mirror of https://github.com/vladmandic/human
5657 lines
1.4 MiB
5657 lines
1.4 MiB
/*
|
|
Human
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var Ng=Object.defineProperty;var jC=(e,t,n)=>t in e?Ng(e,t,{enumerable:!0,configurable:!0,writable:!0,value:n}):e[t]=n;var qC=e=>Ng(e,"__esModule",{value:!0});var ra=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var _p=(e,t)=>{qC(e);for(var n in t)Ng(e,n,{get:t[n],enumerable:!0})};var he=(e,t,n)=>(jC(e,typeof t!="symbol"?t+"":t,n),n),P5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var lc=(e,t,n)=>(P5(e,t,"read from private field"),n?n.call(e):t.get(e)),uc=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},cc=(e,t,n,s)=>(P5(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);function tt(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: ${r} expecting json file`);return r}function ee(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var pe=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Eg(e,t,n="config",s=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")Eg(e[r],t[r],r,s);else{let a=e&&typeof e[r]!="undefined";a||s.push({reason:"unknown property",where:`${n}.${r} = ${t[r]}`});let o=e&&typeof e[r]==typeof t[r];a&&!o&&s.push({reason:"property type mismatch",where:`${n}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&n==="config"&&s.length>0&&ee("invalid configuration",s),s}function kn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=kn(a,o):n[r]=o}),n),{})}var ja={backend:"",modelBasePath:"",wasmPath:"",debug:!0,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",detector:{modelPath:""},maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:2e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:1e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var qd={};_p(qd,{Abs:()=>Xi,Acos:()=>Ki,Acosh:()=>Zi,AdadeltaOptimizer:()=>pf,AdagradOptimizer:()=>hf,AdamOptimizer:()=>ff,AdamaxOptimizer:()=>mf,Add:()=>ia,AddN:()=>Za,All:()=>Yi,Any:()=>Ji,ArgMax:()=>Ya,ArgMin:()=>mc,Asin:()=>Qi,Asinh:()=>el,Atan:()=>tl,Atan2:()=>sl,Atanh:()=>nl,AvgPool:()=>Ja,AvgPool3D:()=>gc,AvgPool3DGrad:()=>Bp,AvgPoolGrad:()=>Lp,BackendWasm:()=>q8,BatchMatMul:()=>Qa,BatchToSpaceND:()=>rl,Bincount:()=>Wp,BroadcastArgs:()=>Vp,BroadcastTo:()=>tb,Callback:()=>Gw,CallbackList:()=>Pv,Cast:()=>eo,Ceil:()=>to,ClipByValue:()=>la,Complex:()=>Up,ComplexAbs:()=>Ac,Concat:()=>al,Conv2D:()=>no,Conv2DBackpropFilter:()=>Gp,Conv2DBackpropInput:()=>so,Conv3D:()=>yc,Conv3DBackpropFilterV2:()=>Hp,Conv3DBackpropInputV2:()=>jp,Cos:()=>ro,Cosh:()=>ao,CropAndResize:()=>ol,Cumsum:()=>oo,CustomCallback:()=>zv,DataStorage:()=>$p,DenseBincount:()=>qp,DepthToSpace:()=>il,DepthwiseConv2dNative:()=>io,DepthwiseConv2dNativeBackpropFilter:()=>Xp,DepthwiseConv2dNativeBackpropInput:()=>Kp,Diag:()=>Zp,Dilation2D:()=>xc,Dilation2DBackpropFilter:()=>Jp,Dilation2DBackpropInput:()=>Yp,ENV:()=>hr,EarlyStopping:()=>jw,Einsum:()=>Qp,Elu:()=>uo,EluGrad:()=>eh,Environment:()=>Q5,Equal:()=>ul,Erf:()=>ll,Exp:()=>co,ExpandDims:()=>cl,Expm1:()=>dl,FFT:()=>th,Fill:()=>bc,FlipLeftRight:()=>pl,Floor:()=>po,FloorDiv:()=>ho,FromPixels:()=>wh,FusedBatchNorm:()=>fo,FusedConv2D:()=>Xo,FusedDepthwiseConv2D:()=>Ko,GPGPUContext:()=>m0,GatherNd:()=>fl,GatherV2:()=>hl,GraphModel:()=>I7,Greater:()=>ml,GreaterEqual:()=>mo,History:()=>Mv,IFFT:()=>nh,Identity:()=>go,Imag:()=>sh,InputSpec:()=>Ht,IsFinite:()=>gl,IsInf:()=>Al,IsNan:()=>yl,KernelBackend:()=>pc,LRN:()=>kc,LRNGrad:()=>ah,LayerVariable:()=>Dv,LayersModel:()=>Ur,LeakyRelu:()=>Ao,Less:()=>xl,LessEqual:()=>bl,LinSpace:()=>rh,Log:()=>yo,Log1p:()=>vl,LogSoftmax:()=>nb,LogicalAnd:()=>wl,LogicalNot:()=>vc,LogicalOr:()=>wc,MathBackendWebGL:()=>Ou,Max:()=>xo,MaxPool:()=>vo,MaxPool3D:()=>Ic,MaxPool3DGrad:()=>ih,MaxPoolGrad:()=>oh,MaxPoolWithArgmax:()=>lh,Maximum:()=>bo,Mean:()=>wo,Min:()=>ko,Minimum:()=>Io,MirrorPad:()=>So,Mod:()=>kl,MomentumOptimizer:()=>gf,Multinomial:()=>uh,Multiply:()=>Co,Neg:()=>Il,NonMaxSuppressionV3:()=>Cl,NonMaxSuppressionV4:()=>Tl,NonMaxSuppressionV5:()=>Nl,NotEqual:()=>Sl,OP_SCOPE_SUFFIX:()=>Ab,OneHot:()=>To,OnesLike:()=>El,Optimizer:()=>Br,OptimizerConstructors:()=>va,Pack:()=>Rl,PadV2:()=>No,Pool:()=>UT,Pow:()=>Eo,Prelu:()=>Ro,Prod:()=>Dl,RMSPropOptimizer:()=>Af,RNN:()=>Sr,Range:()=>Sc,Rank:()=>Bg,Real:()=>ch,RealDiv:()=>lo,Reciprocal:()=>_l,Reduction:()=>_n,Relu:()=>Do,Relu6:()=>Fo,Reshape:()=>Fl,ResizeBilinear:()=>_o,ResizeBilinearGrad:()=>ph,ResizeNearestNeighbor:()=>Cc,ResizeNearestNeighborGrad:()=>dh,Reverse:()=>$o,RotateWithOffset:()=>Xl,Round:()=>Oo,Rsqrt:()=>Po,SGDOptimizer:()=>ad,ScatterNd:()=>$l,Select:()=>Ol,Selu:()=>Pl,Sequential:()=>vu,Sigmoid:()=>zo,Sign:()=>Ll,Sin:()=>Mo,Sinh:()=>zl,Slice:()=>Ml,Softmax:()=>Wo,Softplus:()=>Bl,SpaceToBatchND:()=>Wl,SparseFillEmptyRows:()=>hh,SparseReshape:()=>fh,SparseSegmentMean:()=>mh,SparseSegmentSum:()=>gh,SparseToDense:()=>Ah,SplitV:()=>Vl,Sqrt:()=>Lo,Square:()=>Tc,SquaredDifference:()=>Vo,Step:()=>ca,StridedSlice:()=>Ul,StringNGrams:()=>yh,StringSplit:()=>xh,StringToHashBucketFast:()=>bh,Sub:()=>Uo,Sum:()=>Bo,SymbolicTensor:()=>nr,Tan:()=>Go,Tanh:()=>Ho,Tensor:()=>Ge,TensorBuffer:()=>Zt,Tile:()=>ua,TopK:()=>Gl,Transform:()=>Hl,Transpose:()=>jo,Unique:()=>vh,Unpack:()=>jl,UnsortedSegmentSum:()=>Nc,Variable:()=>Pc,ZerosLike:()=>ql,_FusedMatMul:()=>qo,abs:()=>Vt,acos:()=>gA,acosh:()=>AA,add:()=>le,addN:()=>$h,all:()=>Oh,any:()=>Vc,argMax:()=>xs,argMin:()=>yA,asin:()=>xA,asinh:()=>bA,atan:()=>vA,atan2:()=>wA,atanh:()=>kA,avgPool:()=>Gc,avgPool3d:()=>CA,backend:()=>gr,backend_util:()=>E,basicLSTMCell:()=>NE,batchNorm:()=>ai,batchNorm2d:()=>a3,batchNorm3d:()=>o3,batchNorm4d:()=>i3,batchToSpaceND:()=>Hc,bincount:()=>TA,booleanMaskAsync:()=>O_,broadcastArgs:()=>l3,broadcastTo:()=>su,browser:()=>Os,buffer:()=>He,callbacks:()=>KB,cast:()=>de,ceil:()=>NA,clipByValue:()=>jn,clone:()=>Xs,complex:()=>ha,concat:()=>mt,concat1d:()=>u3,concat2d:()=>ru,concat3d:()=>c3,concat4d:()=>d3,constraints:()=>cv,conv1d:()=>Mh,conv2d:()=>Mr,conv2dTranspose:()=>zh,conv3d:()=>RA,conv3dTranspose:()=>h3,copyRegisteredKernels:()=>jT,cos:()=>jc,cosh:()=>Lh,cosineWindow:()=>s1,cumsum:()=>Bh,customGrad:()=>yr,data:()=>S7,denseBincount:()=>f3,deprecationWarn:()=>fA,depthToSpace:()=>DA,depthwiseConv2d:()=>au,deregisterOp:()=>YB,device_util:()=>zc,diag:()=>rR,dilation2d:()=>_A,disableDeprecationWarnings:()=>GN,dispose:()=>Z,disposeVariables:()=>HN,div:()=>fe,divNoNan:()=>FA,dot:()=>m3,dropout:()=>P3,einsum:()=>g3,elu:()=>ou,enableDebugMode:()=>UN,enableProdMode:()=>e3,enclosingPowerOfTwo:()=>M3,engine:()=>ts,env:()=>Y,equal:()=>ns,erf:()=>$A,exp:()=>ss,expandDims:()=>Lt,expm1:()=>OA,eye:()=>PA,fft:()=>nd,fill:()=>iu,findBackend:()=>mA,findBackendFactory:()=>KN,floor:()=>lu,floorDiv:()=>Fh,forceHalfFloat:()=>J4,fused:()=>ba,gather:()=>oi,gatherND:()=>O3,gather_util:()=>oA,getBackend:()=>Ks,getGradient:()=>Pg,getKernel:()=>kh,getKernelsForBackend:()=>Or,getThreadsCount:()=>Fue,gpgpu_util:()=>C4,grad:()=>$R,grads:()=>OR,greater:()=>qn,greaterEqual:()=>ya,ifft:()=>hu,imag:()=>Wh,image:()=>_e,inTopKAsync:()=>j_,initializers:()=>Av,input:()=>iw,io:()=>Gn,irfft:()=>tf,isFinite:()=>A3,isInf:()=>y3,isNaN:()=>MA,keep:()=>on,kernel_impls:()=>br,layers:()=>Nv,leakyRelu:()=>qc,less:()=>Vh,lessEqual:()=>xa,linalg:()=>K3,linspace:()=>x3,loadGraphModel:()=>Qe,loadLayersModel:()=>aL,localResponseNormalization:()=>zA,log:()=>rs,log1p:()=>Xc,logSigmoid:()=>v3,logSoftmax:()=>Gh,logSumExp:()=>WA,logicalAnd:()=>Ps,logicalNot:()=>Kc,logicalOr:()=>Hh,logicalXor:()=>S3,losses:()=>N$,matMul:()=>Ve,math:()=>Ob,max:()=>Rn,maxPool:()=>Zc,maxPool3d:()=>VA,maxPoolWithArgmax:()=>C3,maximum:()=>xr,mean:()=>_t,memory:()=>Dh,meshgrid:()=>sD,metrics:()=>Ww,min:()=>Yc,minimum:()=>uu,mirrorPad:()=>UA,mod:()=>GA,model:()=>sL,models:()=>Vw,moments:()=>jh,movingAverage:()=>z_,mul:()=>L,multiRNNCell:()=>dD,multinomial:()=>T3,neg:()=>St,nextFrame:()=>Z3,norm:()=>af,notEqual:()=>ui,oneHot:()=>eu,ones:()=>as,onesLike:()=>os,op:()=>W,outerProduct:()=>gD,pad:()=>vs,pad1d:()=>xD,pad2d:()=>vD,pad3d:()=>kD,pad4d:()=>SD,pool:()=>N3,pow:()=>zr,prelu:()=>Qc,print:()=>Eb,prod:()=>qh,profile:()=>jN,rand:()=>$D,randomGamma:()=>zD,randomNormal:()=>E3,randomUniform:()=>cu,range:()=>du,ready:()=>_h,real:()=>ed,reciprocal:()=>qA,registerBackend:()=>tu,registerCallbackConstructor:()=>oL,registerGradient:()=>sb,registerKernel:()=>da,registerOp:()=>ZB,regularizers:()=>Uw,relu:()=>Zs,relu6:()=>Xh,removeBackend:()=>XN,reshape:()=>V,reverse:()=>is,reverse1d:()=>qD,reverse2d:()=>KD,reverse3d:()=>YD,reverse4d:()=>QD,rfft:()=>sd,round:()=>Kh,rsqrt:()=>Zh,scalar:()=>Ee,scatterND:()=>$3,scatter_util:()=>iA,selu:()=>Yh,separableConv2d:()=>XA,sequential:()=>rL,serialization:()=>ue,setBackend:()=>t3,setPlatform:()=>ZN,setThreadsCount:()=>_ue,setWasmPath:()=>Due,setWasmPaths:()=>K8,setWebGLContext:()=>o0,setdiff1dAsync:()=>R3,sigmoid:()=>Hn,sign:()=>KA,signal:()=>T$,sin:()=>Jh,sinh:()=>Qh,slice:()=>Fe,slice1d:()=>ef,slice2d:()=>ZA,slice3d:()=>pu,slice4d:()=>td,slice_util:()=>Yt,softmax:()=>ci,softplus:()=>ii,spaceToBatchND:()=>Jc,sparse:()=>rd,sparseToDense:()=>n1,spectral:()=>C$,split:()=>ln,sqrt:()=>gn,square:()=>ht,squaredDifference:()=>nf,squeeze:()=>rt,stack:()=>An,step:()=>fu,stridedSlice:()=>YA,string:()=>df,sub:()=>be,sum:()=>Ie,sumOutType:()=>Nh,tan:()=>JA,tanh:()=>ri,tensor:()=>zt,tensor1d:()=>Gt,tensor2d:()=>Ys,tensor3d:()=>Pb,tensor4d:()=>S_,tensor5d:()=>C_,tensor6d:()=>T_,tensor_util:()=>js,test_util:()=>Yb,tidy:()=>G,tile:()=>bs,time:()=>qN,topk:()=>QA,train:()=>di,transpose:()=>Ke,truncatedNormal:()=>sf,unique:()=>rf,unregisterGradient:()=>HT,unregisterKernel:()=>GT,unsortedSegmentSum:()=>e1,unstack:()=>Dn,upcastType:()=>$s,util:()=>w,valueAndGrad:()=>PR,valueAndGrads:()=>MR,variable:()=>D3,variableGrads:()=>b3,version:()=>Gue,version_converter:()=>eV,version_core:()=>Wc,version_layers:()=>z1,version_wasm:()=>$ue,version_webgl:()=>pY,webgl:()=>hY,webgl_util:()=>Z6,where:()=>Sn,whereAsync:()=>t1,zeros:()=>Ut,zerosLike:()=>Ze});var XC=Object.create,Fp=Object.defineProperty,KC=Object.getOwnPropertyDescriptor,ZC=Object.getOwnPropertyNames,YC=Object.getPrototypeOf,JC=Object.prototype.hasOwnProperty,M5=e=>Fp(e,"__esModule",{value:!0}),Hi=(e=>typeof ra!="undefined"?ra:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof ra!="undefined"?ra:t)[n]}):e)(function(e){if(typeof ra!="undefined")return ra.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')}),It=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},ze=(e,t)=>{M5(e);for(var n in t)Fp(e,n,{get:t[n],enumerable:!0})},QC=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let s of ZC(t))!JC.call(e,s)&&s!=="default"&&Fp(e,s,{get:()=>t[s],enumerable:!(n=KC(t,s))||n.enumerable});return e},qa=e=>QC(M5(Fp(e!=null?XC(YC(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),eT=It({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch{}function s($,C,M){this.low=$|0,this.high=C|0,this.unsigned=!!M}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r($){return($&&$.__isLong__)===!0}s.isLong=r;var a={},o={};function i($,C){var M,U,j;return C?($>>>=0,(j=0<=$&&$<256)&&(U=o[$],U)?U:(M=c($,($|0)<0?-1:0,!0),j&&(o[$]=M),M)):($|=0,(j=-128<=$&&$<128)&&(U=a[$],U)?U:(M=c($,$<0?-1:0,!1),j&&(a[$]=M),M))}s.fromInt=i;function l($,C){if(isNaN($))return C?b:y;if(C){if($<0)return b;if($>=g)return F}else{if($<=-A)return P;if($+1>=A)return D}return $<0?l(-$,C).neg():c($%m|0,$/m|0,C)}s.fromNumber=l;function c($,C,M){return new s($,C,M)}s.fromBits=c;var u=Math.pow;function d($,C,M){if($.length===0)throw Error("empty string");if($==="NaN"||$==="Infinity"||$==="+Infinity"||$==="-Infinity")return y;if(typeof C=="number"?(M=C,C=!1):C=!!C,M=M||10,M<2||36<M)throw RangeError("radix");var U;if((U=$.indexOf("-"))>0)throw Error("interior hyphen");if(U===0)return d($.substring(1),C,M).neg();for(var j=l(u(M,8)),q=y,X=0;X<$.length;X+=8){var te=Math.min(8,$.length-X),ne=parseInt($.substring(X,X+te),M);if(te<8){var se=l(u(M,te));q=q.mul(se).add(l(ne))}else q=q.mul(j),q=q.add(l(ne))}return q.unsigned=C,q}s.fromString=d;function p($,C){return typeof $=="number"?l($,C):typeof $=="string"?d($,C):c($.low,$.high,typeof C=="boolean"?C:$.unsigned)}s.fromValue=p;var h=1<<16,f=1<<24,m=h*h,g=m*m,A=g/2,x=i(f),y=i(0);s.ZERO=y;var b=i(0,!0);s.UZERO=b;var v=i(1);s.ONE=v;var S=i(1,!0);s.UONE=S;var T=i(-1);s.NEG_ONE=T;var D=c(4294967295|0,2147483647|0,!1);s.MAX_VALUE=D;var F=c(4294967295|0,4294967295|0,!0);s.MAX_UNSIGNED_VALUE=F;var P=c(0,2147483648|0,!1);s.MIN_VALUE=P;var _=s.prototype;_.toInt=function(){return this.unsigned?this.low>>>0:this.low},_.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},_.toString=function(C){if(C=C||10,C<2||36<C)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(P)){var M=l(C),U=this.div(M),j=U.mul(M).sub(this);return U.toString(C)+j.toInt().toString(C)}else return"-"+this.neg().toString(C);for(var q=l(u(C,6),this.unsigned),X=this,te="";;){var ne=X.div(q),se=X.sub(ne.mul(q)).toInt()>>>0,oe=se.toString(C);if(X=ne,X.isZero())return oe+te;for(;oe.length<6;)oe="0"+oe;te=""+oe+te}},_.getHighBits=function(){return this.high},_.getHighBitsUnsigned=function(){return this.high>>>0},_.getLowBits=function(){return this.low},_.getLowBitsUnsigned=function(){return this.low>>>0},_.getNumBitsAbs=function(){if(this.isNegative())return this.eq(P)?64:this.neg().getNumBitsAbs();for(var C=this.high!=0?this.high:this.low,M=31;M>0&&(C&1<<M)==0;M--);return this.high!=0?M+33:M+1},_.isZero=function(){return this.high===0&&this.low===0},_.eqz=_.isZero,_.isNegative=function(){return!this.unsigned&&this.high<0},_.isPositive=function(){return this.unsigned||this.high>=0},_.isOdd=function(){return(this.low&1)==1},_.isEven=function(){return(this.low&1)==0},_.equals=function(C){return r(C)||(C=p(C)),this.unsigned!==C.unsigned&&this.high>>>31==1&&C.high>>>31==1?!1:this.high===C.high&&this.low===C.low},_.eq=_.equals,_.notEquals=function(C){return!this.eq(C)},_.neq=_.notEquals,_.ne=_.notEquals,_.lessThan=function(C){return this.comp(C)<0},_.lt=_.lessThan,_.lessThanOrEqual=function(C){return this.comp(C)<=0},_.lte=_.lessThanOrEqual,_.le=_.lessThanOrEqual,_.greaterThan=function(C){return this.comp(C)>0},_.gt=_.greaterThan,_.greaterThanOrEqual=function(C){return this.comp(C)>=0},_.gte=_.greaterThanOrEqual,_.ge=_.greaterThanOrEqual,_.compare=function(C){if(r(C)||(C=p(C)),this.eq(C))return 0;var M=this.isNegative(),U=C.isNegative();return M&&!U?-1:!M&&U?1:this.unsigned?C.high>>>0>this.high>>>0||C.high===this.high&&C.low>>>0>this.low>>>0?-1:1:this.sub(C).isNegative()?-1:1},_.comp=_.compare,_.negate=function(){return!this.unsigned&&this.eq(P)?P:this.not().add(v)},_.neg=_.negate,_.add=function(C){r(C)||(C=p(C));var M=this.high>>>16,U=this.high&65535,j=this.low>>>16,q=this.low&65535,X=C.high>>>16,te=C.high&65535,ne=C.low>>>16,se=C.low&65535,oe=0,ae=0,re=0,ce=0;return ce+=q+se,re+=ce>>>16,ce&=65535,re+=j+ne,ae+=re>>>16,re&=65535,ae+=U+te,oe+=ae>>>16,ae&=65535,oe+=M+X,oe&=65535,c(re<<16|ce,oe<<16|ae,this.unsigned)},_.subtract=function(C){return r(C)||(C=p(C)),this.add(C.neg())},_.sub=_.subtract,_.multiply=function(C){if(this.isZero())return y;if(r(C)||(C=p(C)),n){var M=n.mul(this.low,this.high,C.low,C.high);return c(M,n.get_high(),this.unsigned)}if(C.isZero())return y;if(this.eq(P))return C.isOdd()?P:y;if(C.eq(P))return this.isOdd()?P:y;if(this.isNegative())return C.isNegative()?this.neg().mul(C.neg()):this.neg().mul(C).neg();if(C.isNegative())return this.mul(C.neg()).neg();if(this.lt(x)&&C.lt(x))return l(this.toNumber()*C.toNumber(),this.unsigned);var U=this.high>>>16,j=this.high&65535,q=this.low>>>16,X=this.low&65535,te=C.high>>>16,ne=C.high&65535,se=C.low>>>16,oe=C.low&65535,ae=0,re=0,ce=0,ge=0;return ge+=X*oe,ce+=ge>>>16,ge&=65535,ce+=q*oe,re+=ce>>>16,ce&=65535,ce+=X*se,re+=ce>>>16,ce&=65535,re+=j*oe,ae+=re>>>16,re&=65535,re+=q*se,ae+=re>>>16,re&=65535,re+=X*ne,ae+=re>>>16,re&=65535,ae+=U*oe+j*se+q*ne+X*te,ae&=65535,c(ce<<16|ge,ae<<16|re,this.unsigned)},_.mul=_.multiply,_.divide=function(C){if(r(C)||(C=p(C)),C.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&C.low===-1&&C.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,C.low,C.high);return c(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:y;var U,j,q;if(this.unsigned){if(C.unsigned||(C=C.toUnsigned()),C.gt(this))return b;if(C.gt(this.shru(1)))return S;q=b}else{if(this.eq(P)){if(C.eq(v)||C.eq(T))return P;if(C.eq(P))return v;var X=this.shr(1);return U=X.div(C).shl(1),U.eq(y)?C.isNegative()?v:T:(j=this.sub(C.mul(U)),q=U.add(j.div(C)),q)}else if(C.eq(P))return this.unsigned?b:y;if(this.isNegative())return C.isNegative()?this.neg().div(C.neg()):this.neg().div(C).neg();if(C.isNegative())return this.div(C.neg()).neg();q=y}for(j=this;j.gte(C);){U=Math.max(1,Math.floor(j.toNumber()/C.toNumber()));for(var te=Math.ceil(Math.log(U)/Math.LN2),ne=te<=48?1:u(2,te-48),se=l(U),oe=se.mul(C);oe.isNegative()||oe.gt(j);)U-=ne,se=l(U,this.unsigned),oe=se.mul(C);se.isZero()&&(se=v),q=q.add(se),j=j.sub(oe)}return q},_.div=_.divide,_.modulo=function(C){if(r(C)||(C=p(C)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,C.low,C.high);return c(M,n.get_high(),this.unsigned)}return this.sub(this.div(C).mul(C))},_.mod=_.modulo,_.rem=_.modulo,_.not=function(){return c(~this.low,~this.high,this.unsigned)},_.and=function(C){return r(C)||(C=p(C)),c(this.low&C.low,this.high&C.high,this.unsigned)},_.or=function(C){return r(C)||(C=p(C)),c(this.low|C.low,this.high|C.high,this.unsigned)},_.xor=function(C){return r(C)||(C=p(C)),c(this.low^C.low,this.high^C.high,this.unsigned)},_.shiftLeft=function(C){return r(C)&&(C=C.toInt()),(C&=63)==0?this:C<32?c(this.low<<C,this.high<<C|this.low>>>32-C,this.unsigned):c(0,this.low<<C-32,this.unsigned)},_.shl=_.shiftLeft,_.shiftRight=function(C){return r(C)&&(C=C.toInt()),(C&=63)==0?this:C<32?c(this.low>>>C|this.high<<32-C,this.high>>C,this.unsigned):c(this.high>>C-32,this.high>=0?0:-1,this.unsigned)},_.shr=_.shiftRight,_.shiftRightUnsigned=function(C){if(r(C)&&(C=C.toInt()),C&=63,C===0)return this;var M=this.high;if(C<32){var U=this.low;return c(U>>>C|M<<32-C,M>>>C,this.unsigned)}else return C===32?c(M,0,this.unsigned):c(M>>>C-32,0,this.unsigned)},_.shru=_.shiftRightUnsigned,_.shr_u=_.shiftRightUnsigned,_.toSigned=function(){return this.unsigned?c(this.low,this.high,!1):this},_.toUnsigned=function(){return this.unsigned?this:c(this.low,this.high,!0)},_.toBytes=function(C){return C?this.toBytesLE():this.toBytesBE()},_.toBytesLE=function(){var C=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,C&255,C>>>8&255,C>>>16&255,C>>>24]},_.toBytesBE=function(){var C=this.high,M=this.low;return[C>>>24,C>>>16&255,C>>>8&255,C&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},s.fromBytes=function(C,M,U){return U?s.fromBytesLE(C,M):s.fromBytesBE(C,M)},s.fromBytesLE=function(C,M){return new s(C[0]|C[1]<<8|C[2]<<16|C[3]<<24,C[4]|C[5]<<8|C[6]<<16|C[7]<<24,M)},s.fromBytesBE=function(C,M){return new s(C[4]<<24|C[5]<<16|C[6]<<8|C[7],C[0]<<24|C[1]<<16|C[2]<<8|C[3],M)}}}),tT=It({"(disabled):node_modules/.pnpm/node-fetch@2.6.5/node_modules/node-fetch/browser.js"(){}}),nT=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(c){var u=this,d=l();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=d(" "),u.s1=d(" "),u.s2=d(" "),u.s0-=d(c),u.s0<0&&(u.s0+=1),u.s1-=d(c),u.s1<0&&(u.s1+=1),u.s2-=d(c),u.s2<0&&(u.s2+=1),d=null}function o(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function i(c,u){var d=new a(c),p=u&&u.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var c=4022871197,u=function(d){d=d.toString();for(var p=0;p<d.length;p++){c+=d.charCodeAt(p);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),sT=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var p=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^p^p>>>8},l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),rT=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(p^p<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,d==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),aT=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.x,p=c.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,c.i=p+1&7,f};function u(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}u(c,l)}function o(l,c){return c.x=l.x.slice(),c.i=l.i,c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.x&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),oT=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.w,p=c.X,h=c.i,f,m;return c.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,c.i=h,m+(d^d>>>16)|0};function u(d,p){var h,f,m,g,A,x=[],y=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,y=Math.max(y,p.length)),m=0,g=-32;g<y;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(A=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(A=A+1640531527|0,h=x[g&127]^=f+A,m=h==0?m+1:0);for(m>=128&&(x[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=x[m+34&127],h=x[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,x[m]=f^h;d.w=A,d.X=x,d.i=m}u(c,l)}function o(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.X&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),iT=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.b,h=c.c,f=c.d,m=c.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,c.b=p=p<<20^p>>>12^h,c.c=h=h-f|0,c.d=f<<16^h>>>16^m,c.a=m-p|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var d=0;d<u.length+20;d++)c.b^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),z5=It({"(disabled):crypto"(){}}),lT=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s){var r=this,a=256,o=6,i=52,l="random",c=s.pow(a,o),u=s.pow(2,i),d=u*2,p=a-1,h;function f(v,S,T){var D=[];S=S==!0?{entropy:!0}:S||{};var F=x(A(S.entropy?[v,b(n)]:v??y(),3),D),P=new m(D),_=function(){for(var $=P.g(o),C=c,M=0;$<u;)$=($+M)*a,C*=a,M=P.g(1);for(;$>=d;)$/=2,C/=2,M>>>=1;return($+M)/C};return _.int32=function(){return P.g(4)|0},_.quick=function(){return P.g(4)/4294967296},_.double=_,x(b(P.S),n),(S.pass||T||function($,C,M,U){return U&&(U.S&&g(U,P),$.state=function(){return g(P,{})}),M?(s[l]=$,C):$})(_,F,"global"in S?S.global:this==s,S.state)}s["seed"+l]=f;function m(v){var S,T=v.length,D=this,F=0,P=D.i=D.j=0,_=D.S=[];for(T||(v=[T++]);F<a;)_[F]=F++;for(F=0;F<a;F++)_[F]=_[P=p&P+v[F%T]+(S=_[F])],_[P]=S;(D.g=function($){for(var C,M=0,U=D.i,j=D.j,q=D.S;$--;)C=q[U=p&U+1],M=M*a+q[p&(q[U]=q[j=p&j+C])+(q[j]=C)];return D.i=U,D.j=j,M})(a)}function g(v,S){return S.i=v.i,S.j=v.j,S.S=v.S.slice(),S}function A(v,S){var T=[],D=typeof v,F;if(S&&D=="object")for(F in v)try{T.push(A(v[F],S-1))}catch{}return T.length?T:D=="string"?v:v+"\0"}function x(v,S){for(var T=v+"",D,F=0;F<T.length;)S[p&F]=p&(D^=S[p&F]*19)+T.charCodeAt(F++);return b(S)}function y(){try{var v;return h&&(v=h.randomBytes)?v=v(a):(v=new Uint8Array(a),(r.crypto||r.msCrypto).getRandomValues(v)),b(v)}catch{var S=r.navigator,T=S&&S.plugins;return[+new Date,r,T,r.screen,b(n)]}}function b(v){return String.fromCharCode.apply(0,v)}if(x(s.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{h=z5()}catch{}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}}),L5=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js"(e,t){var n=nT(),s=sT(),r=rT(),a=aT(),o=oT(),i=iT(),l=lT();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),uT=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(c){var u=this,d=l();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=d(" "),u.s1=d(" "),u.s2=d(" "),u.s0-=d(c),u.s0<0&&(u.s0+=1),u.s1-=d(c),u.s1<0&&(u.s1+=1),u.s2-=d(c),u.s2<0&&(u.s2+=1),d=null}function o(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function i(c,u){var d=new a(c),p=u&&u.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var c=4022871197,u=function(d){d=String(d);for(var p=0;p<d.length;p++){c+=d.charCodeAt(p);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),cT=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var p=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^p^p>>>8},l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),dT=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(p^p<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,d==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),pT=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.x,p=c.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,c.i=p+1&7,f};function u(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}u(c,l)}function o(l,c){return c.x=l.x.slice(),c.i=l.i,c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.x&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),hT=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.w,p=c.X,h=c.i,f,m;return c.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,c.i=h,m+(d^d>>>16)|0};function u(d,p){var h,f,m,g,A,x=[],y=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,y=Math.max(y,p.length)),m=0,g=-32;g<y;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(A=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(A=A+1640531527|0,h=x[g&127]^=f+A,m=h==0?m+1:0);for(m>=128&&(x[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=x[m+34&127],h=x[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,x[m]=f^h;d.w=A,d.X=x,d.i=m}u(c,l)}function o(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.X&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),fT=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.b,h=c.c,f=c.d,m=c.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,c.b=p=p<<20^p>>>12^h,c.c=h=h-f|0,c.d=f<<16^h>>>16^m,c.a=m-p|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var d=0;d<u.length+20;d++)c.b^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),mT=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",c=r.pow(a,o),u=r.pow(2,i),d=u*2,p=a-1,h;function f(v,S,T){var D=[];S=S==!0?{entropy:!0}:S||{};var F=x(A(S.entropy?[v,b(s)]:v??y(),3),D),P=new m(D),_=function(){for(var $=P.g(o),C=c,M=0;$<u;)$=($+M)*a,C*=a,M=P.g(1);for(;$>=d;)$/=2,C/=2,M>>>=1;return($+M)/C};return _.int32=function(){return P.g(4)|0},_.quick=function(){return P.g(4)/4294967296},_.double=_,x(b(P.S),s),(S.pass||T||function($,C,M,U){return U&&(U.S&&g(U,P),$.state=function(){return g(P,{})}),M?(r[l]=$,C):$})(_,F,"global"in S?S.global:this==r,S.state)}function m(v){var S,T=v.length,D=this,F=0,P=D.i=D.j=0,_=D.S=[];for(T||(v=[T++]);F<a;)_[F]=F++;for(F=0;F<a;F++)_[F]=_[P=p&P+v[F%T]+(S=_[F])],_[P]=S;(D.g=function($){for(var C,M=0,U=D.i,j=D.j,q=D.S;$--;)C=q[U=p&U+1],M=M*a+q[p&(q[U]=q[j=p&j+C])+(q[j]=C)];return D.i=U,D.j=j,M})(a)}function g(v,S){return S.i=v.i,S.j=v.j,S.S=v.S.slice(),S}function A(v,S){var T=[],D=typeof v,F;if(S&&D=="object")for(F in v)try{T.push(A(v[F],S-1))}catch{}return T.length?T:D=="string"?v:v+"\0"}function x(v,S){for(var T=v+"",D,F=0;F<T.length;)S[p&F]=p&(D^=S[p&F]*19)+T.charCodeAt(F++);return b(S)}function y(){try{var v;return h&&(v=h.randomBytes)?v=v(a):(v=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(v)),b(v)}catch{var S=n.navigator,T=S&&S.plugins;return[+new Date,n,T,n.screen,b(s)]}}function b(v){return String.fromCharCode.apply(0,v)}if(x(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{h=z5()}catch{}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),B5=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(e,t){var n=uT(),s=cT(),r=dT(),a=pT(),o=hT(),i=fT(),l=mT();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),W5=It({"(disabled):node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js"(){}}),dc=It({"(disabled):path"(){}}),gT=It({"(disabled):worker_threads"(){}}),AT=It({"(disabled):perf_hooks"(){}}),yT=It({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.11.0_@tensorflow+tfjs-core@3.11.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return re.buffer!=wt&&fn(re.buffer),Rt}function o(){return re.buffer!=wt&&fn(re.buffer),Wn}function i(){return re.buffer!=wt&&fn(re.buffer),Cn}function l(){return re.buffer!=wt&&fn(re.buffer),Qn}function c(){return re.buffer!=wt&&fn(re.buffer),As}var u=typeof r!="undefined"?r:{},d,p;u.ready=new Promise(function(I,N){d=I,p=N});var h={},f;for(f in u)u.hasOwnProperty(f)&&(h[f]=u[f]);var m=[],g="./this.program",A=function(I,N){throw N},x=!1,y=!1,b=!1,v=!1;x=typeof window=="object",y=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",v=!x&&!b&&!y;var S=u.ENVIRONMENT_IS_PTHREAD||!1;S&&(wt=u.buffer);var T="";function D(I){return u.locateFile?u.locateFile(I,T):T+I}var F,P,_,$,C,M;if(b){y?T=dc().dirname(T)+"/":T=__dirname+"/",F=function(N,z){return C||(C=Hi("fs")),M||(M=dc()),N=M.normalize(N),C.readFileSync(N,z?null:"utf8")},_=function(N){var z=F(N,!0);return z.buffer||(z=new Uint8Array(z)),Ce(z.buffer),z},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(I){if(!(I instanceof ic))throw I}),process.on("unhandledRejection",Dr),A=function(I){process.exit(I)},u.inspect=function(){return"[Emscripten Module object]"};var U;try{U=gT()}catch(I){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),I}global.Worker=U.Worker}else v?(typeof read!="undefined"&&(F=function(N){return read(N)}),_=function(N){var z;return typeof readbuffer=="function"?new Uint8Array(readbuffer(N)):(z=read(N,"binary"),Ce(typeof z=="object"),z)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(A=function(I){quit(I)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(x||y)&&(y?T=self.location.href:typeof document!="undefined"&&document.currentScript&&(T=document.currentScript.src),typeof s!="undefined"&&s&&(T=s),T.indexOf("blob:")!==0?T=T.substr(0,T.lastIndexOf("/")+1):T="",b?(F=function(N,z){return C||(C=Hi("fs")),M||(M=dc()),N=M.normalize(N),C.readFileSync(N,z?null:"utf8")},_=function(N){var z=F(N,!0);return z.buffer||(z=new Uint8Array(z)),Ce(z.buffer),z}):(F=function(I){var N=new XMLHttpRequest;return N.open("GET",I,!1),N.send(null),N.responseText},y&&(_=function(I){var N=new XMLHttpRequest;return N.open("GET",I,!1),N.responseType="arraybuffer",N.send(null),new Uint8Array(N.response)}),P=function(I,N,z){var K=new XMLHttpRequest;K.open("GET",I,!0),K.responseType="arraybuffer",K.onload=function(){if(K.status==200||K.status==0&&K.response){N(K.response);return}z()},K.onerror=z,K.send(null)}),$=function(I){document.title=I});b&&typeof performance=="undefined"&&(global.performance=AT().performance);var j=u.print||console.log.bind(console),q=u.printErr||console.warn.bind(console);for(f in h)h.hasOwnProperty(f)&&(u[f]=h[f]);h=null,u.arguments&&(m=u.arguments),u.thisProgram&&(g=u.thisProgram),u.quit&&(A=u.quit);function X(I){X.shown||(X.shown={}),X.shown[I]||(X.shown[I]=1,q(I))}var te=Atomics.load,ne=Atomics.store,se=Atomics.compareExchange,oe;u.wasmBinary&&(oe=u.wasmBinary);var ae=u.noExitRuntime||!0;typeof WebAssembly!="object"&&Dr("no native wasm support detected");var re,ce,ge=!1,ve;function Ce(I,N){I||Dr("Assertion failed: "+N)}function Re(I){var N=u["_"+I];return Ce(N,"Cannot call unknown function "+I+", make sure it is exported"),N}function Pe(I,N,z,K,ye){var me={string:function(Tn){var Gi=0;if(Tn!=null&&Tn!==0){var O5=(Tn.length<<2)+1;Gi=Wi(O5),at(Tn,Gi,O5)}return Gi},array:function(Tn){var Gi=Wi(Tn.length);return pt(Tn,Gi),Gi}};function Ae(Tn){return N==="string"?et(Tn):N==="boolean"?Boolean(Tn):Tn}var Te=Re(I),lt=[],sn=0;if(K)for(var Kt=0;Kt<K.length;Kt++){var sa=me[z[Kt]];sa?(sn===0&&(sn=oc()),lt[Kt]=sa(K[Kt])):lt[Kt]=K[Kt]}var Ui=Te.apply(null,lt);return Ui=Ae(Ui),sn!==0&&Bi(sn),Ui}function Be(I,N,z,K){z=z||[];var ye=z.every(function(Ae){return Ae==="number"}),me=N!=="string";return me&&ye&&!K?Re(I):function(){return Pe(I,N,z,arguments,K)}}function Ue(I,N,z){for(var K=N+z,ye="";!(N>=K);){var me=I[N++];if(!me)return ye;if(!(me&128)){ye+=String.fromCharCode(me);continue}var Ae=I[N++]&63;if((me&224)==192){ye+=String.fromCharCode((me&31)<<6|Ae);continue}var Te=I[N++]&63;if((me&240)==224?me=(me&15)<<12|Ae<<6|Te:me=(me&7)<<18|Ae<<12|Te<<6|I[N++]&63,me<65536)ye+=String.fromCharCode(me);else{var lt=me-65536;ye+=String.fromCharCode(55296|lt>>10,56320|lt&1023)}}return ye}function et(I,N){return I?Ue(o(),I,N):""}function ut(I,N,z,K){if(!(K>0))return 0;for(var ye=z,me=z+K-1,Ae=0;Ae<I.length;++Ae){var Te=I.charCodeAt(Ae);if(Te>=55296&&Te<=57343){var lt=I.charCodeAt(++Ae);Te=65536+((Te&1023)<<10)|lt&1023}if(Te<=127){if(z>=me)break;N[z++]=Te}else if(Te<=2047){if(z+1>=me)break;N[z++]=192|Te>>6,N[z++]=128|Te&63}else if(Te<=65535){if(z+2>=me)break;N[z++]=224|Te>>12,N[z++]=128|Te>>6&63,N[z++]=128|Te&63}else{if(z+3>=me)break;N[z++]=240|Te>>18,N[z++]=128|Te>>12&63,N[z++]=128|Te>>6&63,N[z++]=128|Te&63}}return N[z]=0,z-ye}function at(I,N,z){return ut(I,o(),N,z)}function ot(I){for(var N=0,z=0;z<I.length;++z){var K=I.charCodeAt(z);K>=55296&&K<=57343&&(K=65536+((K&1023)<<10)|I.charCodeAt(++z)&1023),K<=127?++N:K<=2047?N+=2:K<=65535?N+=3:N+=4}return N}function pt(I,N){a().set(I,N)}function ft(I,N){return I%N>0&&(I+=N-I%N),I}var wt,Rt,Wn,hn,Gs,Cn,Qn,Rs,As;function fn(I){wt=I,u.HEAP8=Rt=new Int8Array(I),u.HEAP16=hn=new Int16Array(I),u.HEAP32=Cn=new Int32Array(I),u.HEAPU8=Wn=new Uint8Array(I),u.HEAPU16=Gs=new Uint16Array(I),u.HEAPU32=Qn=new Uint32Array(I),u.HEAPF32=Rs=new Float32Array(I),u.HEAPF64=As=new Float64Array(I)}var ur=u.INITIAL_MEMORY||16777216;if(S)re=u.wasmMemory,wt=u.buffer;else if(u.wasmMemory)re=u.wasmMemory;else if(re=new WebAssembly.Memory({initial:ur/65536,maximum:2147483648/65536,shared:!0}),!(re.buffer instanceof SharedArrayBuffer))throw q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");re&&(wt=re.buffer),ur=wt.byteLength,fn(wt);var wn,cr=[],dr=[],Yr=[],Zu=[],Hs=[],op=!1,sm=!1;S||dr.push({func:function(){Ip()}});function ip(){if(!S){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)rm(u.preRun.shift());Mi(cr)}}function lp(){op=!0,!S&&Mi(dr)}function up(){S||Mi(Yr)}function Vn(){S||(sm=!0)}function cp(){if(!S){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)am(u.postRun.shift());Mi(Hs)}}function rm(I){cr.unshift(I)}function am(I){Hs.unshift(I)}var Ds=0,Yu=null,Va=null;function om(I){Ce(!S,"addRunDependency cannot be used in a pthread worker"),Ds++,u.monitorRunDependencies&&u.monitorRunDependencies(Ds)}function im(I){if(Ds--,u.monitorRunDependencies&&u.monitorRunDependencies(Ds),Ds==0&&(Yu!==null&&(clearInterval(Yu),Yu=null),Va)){var N=Va;Va=null,N()}}u.preloadedImages={},u.preloadedAudios={};function Dr(I){u.onAbort&&u.onAbort(I),S&&console.error("Pthread aborting at "+new Error().stack),I+="",q(I),ge=!0,ve=1,I="abort("+I+"). Build with -s ASSERTIONS=1 for more info.";var N=new WebAssembly.RuntimeError(I);throw p(N),N}function Ua(I,N){return String.prototype.startsWith?I.startsWith(N):I.indexOf(N)===0}var lm="data:application/octet-stream;base64,";function dp(I){return Ua(I,lm)}var um="file://";function pp(I){return Ua(I,um)}var Un="tfjs-backend-wasm-threaded-simd.wasm";dp(Un)||(Un=D(Un));function hp(I){try{if(I==Un&&oe)return new Uint8Array(oe);if(_)return _(I);throw"both async and sync fetching of the wasm failed"}catch(N){Dr(N)}}function cm(){if(!oe&&(x||y)){if(typeof fetch=="function"&&!pp(Un))return fetch(Un,{credentials:"same-origin"}).then(function(I){if(!I.ok)throw"failed to load wasm binary file at '"+Un+"'";return I.arrayBuffer()}).catch(function(){return hp(Un)});if(P)return new Promise(function(I,N){P(Un,function(z){I(new Uint8Array(z))},N)})}return Promise.resolve().then(function(){return hp(Un)})}function dm(){var I={a:sg};function N(Ae,Te){var lt=Ae.exports;if(u.asm=lt,wn=u.asm.I,ce=Te,!S){var sn=De.unusedWorkers.length;De.unusedWorkers.forEach(function(Kt){De.loadWasmModuleToWorker(Kt,function(){--sn||im("wasm-instantiate")})})}}S||om("wasm-instantiate");function z(Ae){N(Ae.instance,Ae.module)}function K(Ae){return cm().then(function(Te){return WebAssembly.instantiate(Te,I)}).then(Ae,function(Te){q("failed to asynchronously prepare wasm: "+Te),Dr(Te)})}function ye(){return!oe&&typeof WebAssembly.instantiateStreaming=="function"&&!dp(Un)&&!pp(Un)&&typeof fetch=="function"?fetch(Un,{credentials:"same-origin"}).then(function(Ae){var Te=WebAssembly.instantiateStreaming(Ae,I);return Te.then(z,function(lt){return q("wasm streaming compile failed: "+lt),q("falling back to ArrayBuffer instantiation"),K(z)})}):K(z)}if(u.instantiateWasm)try{var me=u.instantiateWasm(I,N);return me}catch(Ae){return q("Module.instantiateWasm callback failed with error: "+Ae),!1}return ye().catch(p),{}}var pm={10520:function(){throw"Canceled!"},10538:function(I,N){setTimeout(function(){E5(I,N)},0)}};function fp(){De.initRuntime()}function Mi(I){for(;I.length>0;){var N=I.shift();if(typeof N=="function"){N(u);continue}var z=N.func;typeof z=="number"?N.arg===void 0?wn.get(z)():wn.get(z)(N.arg):z(N.arg===void 0?null:N.arg)}}var Jr={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135};function Ju(I,N){if(I<=0||I>a().length||I&!0||N<0)return-28;if(N==0)return 0;N>=2147483647&&(N=1/0);var z=Atomics.load(i(),Vi>>2),K=0;if(z==I){var ye=Atomics.compareExchange(i(),Vi>>2,z,0);if(ye==z&&(--N,K=1,N<=0))return 1}var me=Atomics.notify(i(),I>>2,N);if(me>=0)return me+K;throw"Atomics.notify returned an unexpected value "+me}u._emscripten_futex_wake=Ju;function hm(I){if(S)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in killThread!";i()[I+12>>2]=0;var N=De.pthreads[I];N.worker.terminate(),De.freeThreadData(N),De.runningWorkers.splice(De.runningWorkers.indexOf(N.worker),1),N.worker.pthread=void 0}function fm(I){if(S)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cancelThread!";var N=De.pthreads[I];N.worker.postMessage({cmd:"cancel"})}function mp(I){if(S)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cleanupThread!";var N=De.pthreads[I];if(N){i()[I+12>>2]=0;var z=N.worker;De.returnWorkerToPool(z)}}var De={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var I=8,N=0;N<I;++N)De.allocateUnusedWorker()},initRuntime:function(){for(var I=Ha(228),N=0;N<228/4;++N)l()[I/4+N]=0;i()[I+12>>2]=I;var z=I+152;i()[z>>2]=z;for(var K=Ha(512),N=0;N<128;++N)l()[K/4+N]=0;Atomics.store(l(),I+100>>2,K),Atomics.store(l(),I+40>>2,I),Cg(I,!y,1),T5(I)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;De.threadExitHandlers.length>0;)De.threadExitHandlers.pop()();S&&na()&&C5()},runExitHandlersAndDeinitThread:function(I,N){Atomics.store(l(),I+56>>2,1),Atomics.store(l(),I+60>>2,0),De.runExitHandlers(),Atomics.store(l(),I+4>>2,N),Atomics.store(l(),I+0>>2,1),Ju(I+0,2147483647),Cg(0,0,0)},threadExit:function(I){var N=na();N&&(De.runExitHandlersAndDeinitThread(N,I),S&&postMessage({cmd:"exit"}))},threadCancel:function(){De.runExitHandlersAndDeinitThread(na(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var I in De.pthreads){var N=De.pthreads[I];N&&N.worker&&De.returnWorkerToPool(N.worker)}De.pthreads={};for(var z=0;z<De.unusedWorkers.length;++z){var K=De.unusedWorkers[z];K.terminate()}De.unusedWorkers=[];for(var z=0;z<De.runningWorkers.length;++z){var K=De.runningWorkers[z],N=K.pthread;De.freeThreadData(N),K.terminate()}De.runningWorkers=[]},freeThreadData:function(I){if(!!I){if(I.threadInfoStruct){var N=i()[I.threadInfoStruct+100>>2];i()[I.threadInfoStruct+100>>2]=0,ac(N),ac(I.threadInfoStruct)}I.threadInfoStruct=0,I.allocatedOwnStack&&I.stackBase&&ac(I.stackBase),I.stackBase=0,I.worker&&(I.worker.pthread=null)}},returnWorkerToPool:function(I){De.runWithoutMainThreadQueuedCalls(function(){delete De.pthreads[I.pthread.threadInfoStruct],De.unusedWorkers.push(I),De.runningWorkers.splice(De.runningWorkers.indexOf(I),1),De.freeThreadData(I.pthread),I.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(I){i()[$5>>2]=0;try{I()}finally{i()[$5>>2]=1}},receiveObjectTransfer:function(I){},loadWasmModuleToWorker:function(I,N){I.onmessage=function(z){var K=z.data,ye=K.cmd;if(I.pthread&&(De.currentProxiedOperationCallerThread=I.pthread.threadInfoStruct),K.targetThread&&K.targetThread!=na()){var me=De.pthreads[K.targetThread];me?me.worker.postMessage(z.data,K.transferList):console.error('Internal error! Worker sent a message "'+ye+'" to target pthread '+K.targetThread+", but that thread no longer exists!"),De.currentProxiedOperationCallerThread=void 0;return}if(ye==="processQueuedMainThreadWork")Rp();else if(ye==="spawnThread")wp(z.data);else if(ye==="cleanupThread")mp(K.thread);else if(ye==="killThread")hm(K.thread);else if(ye==="cancelThread")fm(K.thread);else if(ye==="loaded")I.loaded=!0,N&&N(I),I.runPthread&&(I.runPthread(),delete I.runPthread);else if(ye==="print")j("Thread "+K.threadId+": "+K.text);else if(ye==="printErr")q("Thread "+K.threadId+": "+K.text);else if(ye==="alert")alert("Thread "+K.threadId+": "+K.text);else if(ye==="exit"){var Ae=I.pthread&&Atomics.load(l(),I.pthread.threadInfoStruct+64>>2);Ae&&De.returnWorkerToPool(I)}else if(ye==="exitProcess")try{HC(K.returnCode)}catch(Te){if(Te instanceof ic)return;throw Te}else ye==="cancelDone"?De.returnWorkerToPool(I):ye==="objectTransfer"?De.receiveObjectTransfer(z.data):z.data.target==="setimmediate"?I.postMessage(z.data):q("worker sent an unknown command "+ye);De.currentProxiedOperationCallerThread=void 0},I.onerror=function(z){q("pthread sent an error! "+z.filename+":"+z.lineno+": "+z.message)},b&&(I.on("message",function(z){I.onmessage({data:z})}),I.on("error",function(z){I.onerror(z)}),I.on("exit",function(z){})),I.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||s,wasmMemory:re,wasmModule:ce})},allocateUnusedWorker:function(){var I=D("tfjs-backend-wasm-threaded-simd.worker.js");De.unusedWorkers.push(new Worker(I))},getNewWorker:function(){return De.unusedWorkers.length==0&&(De.allocateUnusedWorker(),De.loadWasmModuleToWorker(De.unusedWorkers[0])),De.unusedWorkers.length>0?De.unusedWorkers.pop():null},busySpinWait:function(I){for(var N=performance.now()+I;performance.now()<N;);}};function mm(I,N){_5(I,N),Bi(I)}u.establishStackSpace=mm;function gm(){return ae}u.getNoExitRuntime=gm;function Am(I,N){return wn.get(I)(N)}u.invokeEntryPoint=Am;function ym(I,N,z,K){Dr("Assertion failed: "+et(I)+", at: "+[N?et(N):"unknown filename",z,K?et(K):"unknown function"])}function xm(I,N){var z=_main(I,N)}var Ga;b?Ga=function(){var I=process.hrtime();return I[0]*1e3+I[1]/1e6}:S?Ga=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?Ga=dateNow:Ga=function(){return performance.now()};function bm(I){return i()[I5()>>2]=I,I}function vm(I,N){if(S)return Qr(1,1,I,N)}function wm(I,N){if(I==N)postMessage({cmd:"processQueuedMainThreadWork"});else if(S)postMessage({targetThread:I,cmd:"processThreadQueue"});else{var z=De.pthreads[I],K=z&&z.worker;if(!K)return;K.postMessage({cmd:"processThreadQueue"})}return 1}function km(){Dr()}function Im(I,N,z){var K=Nm(N,z);return pm[I].apply(null,K)}function Sm(I,N){}function gp(I,N,z){if(I<=0||I>a().length||I&!0)return-28;if(x){if(Atomics.load(i(),I>>2)!=N)return-6;for(var ye=performance.now(),me=ye+z,Ae=Atomics.exchange(i(),Vi>>2,I);;){if(ye=performance.now(),ye>me)return Ae=Atomics.exchange(i(),Vi>>2,0),-73;if(Ae=Atomics.exchange(i(),Vi>>2,0),Ae==0)break;if(Rp(),Atomics.load(i(),I>>2)!=N)return-6;Ae=Atomics.exchange(i(),Vi>>2,I)}return 0}else{var K=Atomics.wait(i(),I>>2,N,z);if(K==="timed-out")return-73;if(K==="not-equal")return-6;if(K==="ok")return 0;throw"Atomics.wait returned an unexpected value "+K}}function Cm(I,N,z){o().copyWithin(I,N,N+z)}function Tm(){return b?Hi("os").cpus().length:navigator.hardwareConcurrency}function Qr(I,N){for(var z=arguments.length-2,K=oc(),ye=z,me=Wi(ye*8),Ae=me>>3,Te=0;Te<z;Te++){var lt=arguments[2+Te];c()[Ae+Te]=lt}var sn=D5(I,ye,me,N);return Bi(K),sn}var Qu=[],ec=[];function Nm(I,N){ec.length=0;var z;for(N>>=2;z=o()[I++];){var K=z<105;K&&N&1&&N++,ec.push(K?c()[N++>>1]:i()[N]),++N}return ec}function Em(I,N,z){Qu.length=N;for(var K=z>>3,ye=0;ye<N;ye++)Qu[ye]=c()[K+ye];var me=I<0,Ae=me?pm[-I-1]:ng[I];return Ae.apply(null,Qu)}function Rm(){return o().length}function Dm(I){try{return re.grow(I-wt.byteLength+65535>>>16),fn(re.buffer),1}catch{}}function _m(I){var N=Rm();if(I<=N)return!1;var z=2147483648;if(I>z)return!1;for(var K=1;K<=4;K*=2){var ye=N*(1+.2/K);ye=Math.min(ye,I+100663296);var me=Math.min(z,ft(Math.max(I,ye),65536)),Ae=Dm(me);if(Ae)return!0}return!1}var We={inEventHandler:0,removeAllEventListeners:function(){for(var I=We.eventHandlers.length-1;I>=0;--I)We._removeHandler(I);We.eventHandlers=[],We.deferredCalls=[]},registerRemoveEventListeners:function(){We.removeEventListenersRegistered||(Zu.push(We.removeAllEventListeners),We.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(I,N,z){function K(Ae,Te){if(Ae.length!=Te.length)return!1;for(var lt in Ae)if(Ae[lt]!=Te[lt])return!1;return!0}for(var ye in We.deferredCalls){var me=We.deferredCalls[ye];if(me.targetFunction==I&&K(me.argsList,z))return}We.deferredCalls.push({targetFunction:I,precedence:N,argsList:z}),We.deferredCalls.sort(function(Ae,Te){return Ae.precedence<Te.precedence})},removeDeferredCalls:function(I){for(var N=0;N<We.deferredCalls.length;++N)We.deferredCalls[N].targetFunction==I&&(We.deferredCalls.splice(N,1),--N)},canPerformEventHandlerRequests:function(){return We.inEventHandler&&We.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!We.canPerformEventHandlerRequests())for(var I=0;I<We.deferredCalls.length;++I){var N=We.deferredCalls[I];We.deferredCalls.splice(I,1),--I,N.targetFunction.apply(null,N.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(I,N){for(var z=0;z<We.eventHandlers.length;++z)We.eventHandlers[z].target==I&&(!N||N==We.eventHandlers[z].eventTypeString)&&We._removeHandler(z--)},_removeHandler:function(I){var N=We.eventHandlers[I];N.target.removeEventListener(N.eventTypeString,N.eventListenerFunc,N.useCapture),We.eventHandlers.splice(I,1)},registerOrRemoveHandler:function(I){var N=function(ye){++We.inEventHandler,We.currentEventHandler=I,We.runDeferredCalls(),I.handlerFunc(ye),We.runDeferredCalls(),--We.inEventHandler};if(I.callbackfunc)I.eventListenerFunc=N,I.target.addEventListener(I.eventTypeString,N,I.useCapture),We.eventHandlers.push(I),We.registerRemoveEventListeners();else for(var z=0;z<We.eventHandlers.length;++z)We.eventHandlers[z].target==I.target&&We.eventHandlers[z].eventTypeString==I.eventTypeString&&We._removeHandler(z--)},queueEventHandlerOnThread_iiii:function(I,N,z,K,ye){var me=oc(),Ae=Wi(12);i()[Ae>>2]=z,i()[Ae+4>>2]=K,i()[Ae+8>>2]=ye,Sg(0,I,637534208,N,K,Ae),Bi(me)},getTargetThreadForEventCallback:function(I){switch(I){case 1:return 0;case 2:return De.currentProxiedOperationCallerThread;default:return I}},getNodeNameForTarget:function(I){return I?I==window?"#window":I==screen?"#screen":I&&I.nodeName?I.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Fm(I){var N=ot(I)+1,z=Ha(N);return at(I,z,N),z}function $m(I,N,z,K){var ye=oc(),me=Wi(12),Ae=0;N&&(Ae=Fm(N)),i()[me>>2]=Ae,i()[me+4>>2]=z,i()[me+8>>2]=K,Sg(0,I,657457152,0,Ae,me),Bi(ye)}function Om(I,N,z,K){N=N?et(N):"",$m(I,N,z,K)}function Pm(I){return I>2?et(I):I}var Mm=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function zm(I){I=Pm(I);var N=Mm[I]||(typeof document!="undefined"?document.querySelector(I):void 0);return N}function tc(I){return zm(I)}function Ap(I,N,z){var K=tc(I);if(!K)return-4;if(K.canvasSharedPtr&&(i()[K.canvasSharedPtr>>2]=N,i()[K.canvasSharedPtr+4>>2]=z),K.offscreenCanvas||!K.controlTransferredOffscreen){K.offscreenCanvas&&(K=K.offscreenCanvas);var ye=!1;if(K.GLctxObject&&K.GLctxObject.GLctx){var me=K.GLctxObject.GLctx.getParameter(2978);ye=me[0]===0&&me[1]===0&&me[2]===K.width&&me[3]===K.height}K.width=N,K.height=z,ye&&K.GLctxObject.GLctx.viewport(0,0,N,z)}else if(K.canvasSharedPtr){var Ae=i()[K.canvasSharedPtr+8>>2];return Om(Ae,I,N,z),1}else return-4;return 0}function yp(I,N,z){return S?Qr(2,1,I,N,z):Ap(I,N,z)}function Lm(I,N,z){var K=tc(I);return K?Ap(I,N,z):yp(I,N,z)}function Bm(I){}function Wm(I,N){}function Vm(I){var N=I.getExtension("ANGLE_instanced_arrays");if(N)return I.vertexAttribDivisor=function(z,K){N.vertexAttribDivisorANGLE(z,K)},I.drawArraysInstanced=function(z,K,ye,me){N.drawArraysInstancedANGLE(z,K,ye,me)},I.drawElementsInstanced=function(z,K,ye,me,Ae){N.drawElementsInstancedANGLE(z,K,ye,me,Ae)},1}function Um(I){var N=I.getExtension("OES_vertex_array_object");if(N)return I.createVertexArray=function(){return N.createVertexArrayOES()},I.deleteVertexArray=function(z){N.deleteVertexArrayOES(z)},I.bindVertexArray=function(z){N.bindVertexArrayOES(z)},I.isVertexArray=function(z){return N.isVertexArrayOES(z)},1}function Gm(I){var N=I.getExtension("WEBGL_draw_buffers");if(N)return I.drawBuffers=function(z,K){N.drawBuffersWEBGL(z,K)},1}function Hm(I){return!!(I.multiDrawWebgl=I.getExtension("WEBGL_multi_draw"))}var it={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(N){it.lastError||(it.lastError=N)},getNewId:function(I){for(var N=it.counter++,z=I.length;z<N;z++)I[z]=null;return N},getSource:function(I,N,z,K){for(var ye="",me=0;me<N;++me){var Ae=K?i()[K+me*4>>2]:-1;ye+=et(i()[z+me*4>>2],Ae<0?void 0:Ae)}return ye},createContext:function(I,N){var z=I.getContext("webgl",N);if(!z)return 0;var K=it.registerContext(z,N);return K},registerContext:function(I,N){var z=Ha(8);i()[z+4>>2]=na();var K={handle:z,attributes:N,version:N.majorVersion,GLctx:I};return I.canvas&&(I.canvas.GLctxObject=K),it.contexts[z]=K,(typeof N.enableExtensionsByDefault=="undefined"||N.enableExtensionsByDefault)&&it.initExtensions(K),z},makeContextCurrent:function(I){return it.currentContext=it.contexts[I],u.ctx=ea=it.currentContext&&it.currentContext.GLctx,!(I&&!ea)},getContext:function(I){return it.contexts[I]},deleteContext:function(I){it.currentContext===it.contexts[I]&&(it.currentContext=null),typeof We=="object"&&We.removeAllHandlersOnTarget(it.contexts[I].GLctx.canvas),it.contexts[I]&&it.contexts[I].GLctx.canvas&&(it.contexts[I].GLctx.canvas.GLctxObject=void 0),ac(it.contexts[I].handle),it.contexts[I]=null},initExtensions:function(I){if(I||(I=it.currentContext),!I.initExtensionsDone){I.initExtensionsDone=!0;var N=I.GLctx;Vm(N),Um(N),Gm(N),N.disjointTimerQueryExt=N.getExtension("EXT_disjoint_timer_query"),Hm(N);var z=N.getSupportedExtensions()||[];z.forEach(function(K){K.indexOf("lose_context")<0&&K.indexOf("debug")<0&&N.getExtension(K)})}},populateUniformTable:function(I){for(var N=it.programs[I],z=it.programInfos[I]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},K=z.uniforms,ye=ea.getProgramParameter(N,35718),me=0;me<ye;++me){var Ae=ea.getActiveUniform(N,me),Te=Ae.name;z.maxUniformLength=Math.max(z.maxUniformLength,Te.length+1),Te.slice(-1)=="]"&&(Te=Te.slice(0,Te.lastIndexOf("[")));var lt=ea.getUniformLocation(N,Te);if(lt){var sn=it.getNewId(it.uniforms);K[Te]=[Ae.size,sn],it.uniforms[sn]=lt;for(var Kt=1;Kt<Ae.size;++Kt){var sa=Te+"["+Kt+"]";lt=ea.getUniformLocation(N,sa),sn=it.getNewId(it.uniforms),it.uniforms[sn]=lt}}}}},jm=["default","low-power","high-performance"];function qm(I,N){var z=N>>2,K=i()[z+(24>>2)],ye={alpha:!!i()[z+(0>>2)],depth:!!i()[z+(4>>2)],stencil:!!i()[z+(8>>2)],antialias:!!i()[z+(12>>2)],premultipliedAlpha:!!i()[z+(16>>2)],preserveDrawingBuffer:!!i()[z+(20>>2)],powerPreference:jm[K],failIfMajorPerformanceCaveat:!!i()[z+(28>>2)],majorVersion:i()[z+(32>>2)],minorVersion:i()[z+(36>>2)],enableExtensionsByDefault:i()[z+(40>>2)],explicitSwapControl:i()[z+(44>>2)],proxyContextToMainThread:i()[z+(48>>2)],renderViaOffscreenBackBuffer:i()[z+(52>>2)]},me=tc(I);if(!me||ye.explicitSwapControl)return 0;var Ae=it.createContext(me,ye);return Ae}function Xm(I,N){return qm(I,N)}var zi={mappings:{},buffers:[null,[],[]],printChar:function(I,N){var z=zi.buffers[I];N===0||N===10?((I===1?j:q)(Ue(z,0)),z.length=0):z.push(N)},varargs:void 0,get:function(){zi.varargs+=4;var I=i()[zi.varargs-4>>2];return I},getStr:function(I){var N=et(I);return N},get64:function(I,N){return I}};function xp(I){return S?Qr(3,1,I):0}function bp(I,N,z,K,ye){if(S)return Qr(4,1,I,N,z,K,ye)}function vp(I,N,z,K){if(S)return Qr(5,1,I,N,z,K);for(var ye=0,me=0;me<z;me++){for(var Ae=i()[N+me*8>>2],Te=i()[N+(me*8+4)>>2],lt=0;lt<Te;lt++)zi.printChar(I,o()[Ae+lt]);ye+=Te}return i()[K>>2]=ye,0}function Km(I){var N=De.threadExitHandlers.pop();I&&N()}function Zm(I,N){De.threadExitHandlers.push(function(){wn.get(I)(N)})}function wp(I){if(S)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var N=De.getNewWorker();if(N.pthread!==void 0)throw"Internal error!";if(!I.pthread_ptr)throw"Internal error, no pthread ptr!";De.runningWorkers.push(N);for(var z=Ha(128*4),K=0;K<128;++K)i()[z+K*4>>2]=0;var ye=I.stackBase+I.stackSize,me=De.pthreads[I.pthread_ptr]={worker:N,stackBase:I.stackBase,stackSize:I.stackSize,allocatedOwnStack:I.allocatedOwnStack,threadInfoStruct:I.pthread_ptr},Ae=me.threadInfoStruct>>2;Atomics.store(l(),Ae+(64>>2),I.detached),Atomics.store(l(),Ae+(100>>2),z),Atomics.store(l(),Ae+(40>>2),me.threadInfoStruct),Atomics.store(l(),Ae+(80>>2),I.stackSize),Atomics.store(l(),Ae+(76>>2),ye),Atomics.store(l(),Ae+(104>>2),I.stackSize),Atomics.store(l(),Ae+(104+8>>2),ye),Atomics.store(l(),Ae+(104+12>>2),I.detached);var Te=S5(),lt=Te+40;Atomics.store(l(),Ae+(172>>2),lt),N.pthread=me;var sn={cmd:"run",start_routine:I.startRoutine,arg:I.arg,threadInfoStruct:I.pthread_ptr,stackBase:I.stackBase,stackSize:I.stackSize};N.runPthread=function(){sn.time=performance.now(),N.postMessage(sn,I.transferList)},N.loaded&&(N.runPthread(),delete N.runPthread)}function Ym(I,N,z,K){if(typeof SharedArrayBuffer=="undefined")return q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!I)return q("pthread_create called with a null thread pointer!"),28;var ye=[],me=0;if(S&&(ye.length===0||me))return R5(687865856,I,N,z,K);if(me)return me;var Ae=0,Te=0,lt=0;N&&N!=-1?(Ae=i()[N>>2],Ae+=81920,Te=i()[N+8>>2],lt=i()[N+12>>2]!==0):Ae=2097152;var sn=Te==0;sn?Te=F5(16,Ae):(Te-=Ae,Ce(Te>0));for(var Kt=Ha(228),sa=0;sa<228>>2;++sa)l()[(Kt>>2)+sa]=0;i()[I>>2]=Kt,i()[Kt+12>>2]=Kt;var Ui=Kt+152;i()[Ui>>2]=Ui;var Tn={stackBase:Te,stackSize:Ae,allocatedOwnStack:sn,detached:lt,startRoutine:z,pthread_ptr:Kt,arg:K,transferList:ye};return S?(Tn.cmd="spawnThread",postMessage(Tn,ye)):wp(Tn),0}function Jm(){if(!!S){var I=na();if(!!I){var N=Atomics.load(l(),I+56>>2);if(!N){var z=Atomics.load(l(),I+0>>2);if(z==2)throw"Canceled!"}}}}function Qm(){b||y||X("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function eg(I,N,z){if(!I)return q("pthread_join attempted on a null thread pointer!"),Jr.ESRCH;if(S&&na()==I)return q("PThread "+I+" is attempting to join to itself!"),Jr.EDEADLK;if(!S&&N5()==I)return q("Main thread "+I+" is attempting to join to itself!"),Jr.EDEADLK;var K=i()[I+12>>2];if(K!==I)return q("pthread_join attempted on thread "+I+", which does not point to a valid thread, or does not exist anymore!"),Jr.ESRCH;var ye=Atomics.load(l(),I+64>>2);if(ye)return q("Attempted to join thread "+I+", which was already detached!"),Jr.EINVAL;for(z&&Qm();;){var me=Atomics.load(l(),I+0>>2);if(me==1){var Ae=Atomics.load(l(),I+4>>2);return N&&(i()[N>>2]=Ae),Atomics.store(l(),I+64>>2,1),S?postMessage({cmd:"cleanupThread",thread:I}):mp(I),0}if(!z)return Jr.EBUSY;Jm(),S||Rp(),gp(I+0,me,S?100:1)}}function tg(I,N){return eg(I,N,!0)}function kp(I){if(S)return Qr(6,1,I);switch(I){case 30:return 16384;case 85:var N=2147483648;return N/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return bm(28),-1}S||De.initMainThreadBlock();var ea,ng=[null,vm,yp,xp,bp,vp,kp],sg={e:ym,r:xm,x:wm,b:km,y:Im,j:Sm,d:gp,c:Ju,f:Ga,p:Cm,A:Tm,u:Em,q:_m,v:Lm,i:Bm,s:Wm,w:Xm,l:xp,n:bp,g:vp,o:fp,a:re||u.wasmMemory,z:Km,k:Zm,h:Ym,m:tg,t:kp},k5=dm(),Ip=u.___wasm_call_ctors=function(){return(Ip=u.___wasm_call_ctors=u.asm.B).apply(null,arguments)},rg=u._init=function(){return(rg=u._init=u.asm.C).apply(null,arguments)},ag=u._init_with_threads_count=function(){return(ag=u._init_with_threads_count=u.asm.D).apply(null,arguments)},og=u._get_threads_count=function(){return(og=u._get_threads_count=u.asm.E).apply(null,arguments)},ig=u._register_tensor=function(){return(ig=u._register_tensor=u.asm.F).apply(null,arguments)},lg=u._dispose_data=function(){return(lg=u._dispose_data=u.asm.G).apply(null,arguments)},ug=u._dispose=function(){return(ug=u._dispose=u.asm.H).apply(null,arguments)},cg=u._Abs=function(){return(cg=u._Abs=u.asm.J).apply(null,arguments)},dg=u._Add=function(){return(dg=u._Add=u.asm.K).apply(null,arguments)},pg=u._AddN=function(){return(pg=u._AddN=u.asm.L).apply(null,arguments)},hg=u._All=function(){return(hg=u._All=u.asm.M).apply(null,arguments)},fg=u._Any=function(){return(fg=u._Any=u.asm.N).apply(null,arguments)},mg=u._ArgMax=function(){return(mg=u._ArgMax=u.asm.O).apply(null,arguments)},gg=u._AvgPool=function(){return(gg=u._AvgPool=u.asm.P).apply(null,arguments)},Ag=u._BatchMatMul=function(){return(Ag=u._BatchMatMul=u.asm.Q).apply(null,arguments)},yg=u._Ceil=function(){return(yg=u._Ceil=u.asm.R).apply(null,arguments)},xg=u._ClipByValue=function(){return(xg=u._ClipByValue=u.asm.S).apply(null,arguments)},bg=u._Conv2D=function(){return(bg=u._Conv2D=u.asm.T).apply(null,arguments)},vg=u._Conv2DBackpropInput=function(){return(vg=u._Conv2DBackpropInput=u.asm.U).apply(null,arguments)},wg=u._Cos=function(){return(wg=u._Cos=u.asm.V).apply(null,arguments)},kg=u._Cosh=function(){return(kg=u._Cosh=u.asm.W).apply(null,arguments)},Sp=u._CropAndResize=function(){return(Sp=u._CropAndResize=u.asm.X).apply(null,arguments)},Cp=u._Cumsum=function(){return(Cp=u._Cumsum=u.asm.Y).apply(null,arguments)},Tp=u._DepthToSpace=function(){return(Tp=u._DepthToSpace=u.asm.Z).apply(null,arguments)},nc=u._DepthwiseConv2dNative=function(){return(nc=u._DepthwiseConv2dNative=u.asm._).apply(null,arguments)},Li=u._Elu=function(){return(Li=u._Elu=u.asm.$).apply(null,arguments)},Ig=u._Equal=function(){return(Ig=u._Equal=u.asm.aa).apply(null,arguments)},sc=u._Exp=function(){return(sc=u._Exp=u.asm.ba).apply(null,arguments)},J=u._FlipLeftRight=function(){return(J=u._FlipLeftRight=u.asm.ca).apply(null,arguments)},ie=u._Floor=function(){return(ie=u._Floor=u.asm.da).apply(null,arguments)},ke=u._FloorDiv=function(){return(ke=u._FloorDiv=u.asm.ea).apply(null,arguments)},st=u._FusedBatchNorm=function(){return(st=u._FusedBatchNorm=u.asm.fa).apply(null,arguments)},Ot=u._FusedConv2D=function(){return(Ot=u._FusedConv2D=u.asm.ga).apply(null,arguments)},kt=u._FusedDepthwiseConv2D=function(){return(kt=u._FusedDepthwiseConv2D=u.asm.ha).apply(null,arguments)},Xe=u._Gather=function(){return(Xe=u._Gather=u.asm.ia).apply(null,arguments)},Ye=u._GatherNd=function(){return(Ye=u._GatherNd=u.asm.ja).apply(null,arguments)},mn=u._Greater=function(){return(mn=u._Greater=u.asm.ka).apply(null,arguments)},_r=u._GreaterEqual=function(){return(_r=u._GreaterEqual=u.asm.la).apply(null,arguments)},Fr=u._LeakyRelu=function(){return(Fr=u._LeakyRelu=u.asm.ma).apply(null,arguments)},Np=u._Less=function(){return(Np=u._Less=u.asm.na).apply(null,arguments)},rc=u._LessEqual=function(){return(rc=u._LessEqual=u.asm.oa).apply(null,arguments)},es=u._Log=function(){return(es=u._Log=u.asm.pa).apply(null,arguments)},ta=u._LogicalAnd=function(){return(ta=u._LogicalAnd=u.asm.qa).apply(null,arguments)},Ep=u._Max=function(){return(Ep=u._Max=u.asm.ra).apply(null,arguments)},QS=u._MaxPool=function(){return(QS=u._MaxPool=u.asm.sa).apply(null,arguments)},eC=u._Maximum=function(){return(eC=u._Maximum=u.asm.ta).apply(null,arguments)},tC=u._Mean=function(){return(tC=u._Mean=u.asm.ua).apply(null,arguments)},nC=u._Min=function(){return(nC=u._Min=u.asm.va).apply(null,arguments)},sC=u._Minimum=function(){return(sC=u._Minimum=u.asm.wa).apply(null,arguments)},rC=u._MirrorPad=function(){return(rC=u._MirrorPad=u.asm.xa).apply(null,arguments)},aC=u._Multiply=function(){return(aC=u._Multiply=u.asm.ya).apply(null,arguments)},oC=u._Neg=function(){return(oC=u._Neg=u.asm.za).apply(null,arguments)},iC=u._NonMaxSuppressionV3=function(){return(iC=u._NonMaxSuppressionV3=u.asm.Aa).apply(null,arguments)},lC=u._NonMaxSuppressionV4=function(){return(lC=u._NonMaxSuppressionV4=u.asm.Ba).apply(null,arguments)},uC=u._NonMaxSuppressionV5=function(){return(uC=u._NonMaxSuppressionV5=u.asm.Ca).apply(null,arguments)},cC=u._NotEqual=function(){return(cC=u._NotEqual=u.asm.Da).apply(null,arguments)},dC=u._OneHot=function(){return(dC=u._OneHot=u.asm.Ea).apply(null,arguments)},pC=u._PadV2=function(){return(pC=u._PadV2=u.asm.Fa).apply(null,arguments)},hC=u._Pow=function(){return(hC=u._Pow=u.asm.Ga).apply(null,arguments)},fC=u._Prelu=function(){return(fC=u._Prelu=u.asm.Ha).apply(null,arguments)},mC=u._Prod=function(){return(mC=u._Prod=u.asm.Ia).apply(null,arguments)},gC=u._RealDiv=function(){return(gC=u._RealDiv=u.asm.Ja).apply(null,arguments)},AC=u._Relu=function(){return(AC=u._Relu=u.asm.Ka).apply(null,arguments)},yC=u._Relu6=function(){return(yC=u._Relu6=u.asm.La).apply(null,arguments)},xC=u._ResizeBilinear=function(){return(xC=u._ResizeBilinear=u.asm.Ma).apply(null,arguments)},bC=u._Reverse=function(){return(bC=u._Reverse=u.asm.Na).apply(null,arguments)},vC=u._RotateWithOffset=function(){return(vC=u._RotateWithOffset=u.asm.Oa).apply(null,arguments)},wC=u._Round=function(){return(wC=u._Round=u.asm.Pa).apply(null,arguments)},kC=u._Rsqrt=function(){return(kC=u._Rsqrt=u.asm.Qa).apply(null,arguments)},IC=u._ScatterNd=function(){return(IC=u._ScatterNd=u.asm.Ra).apply(null,arguments)},SC=u._SelectV2=function(){return(SC=u._SelectV2=u.asm.Sa).apply(null,arguments)},CC=u._Sigmoid=function(){return(CC=u._Sigmoid=u.asm.Ta).apply(null,arguments)},TC=u._Sin=function(){return(TC=u._Sin=u.asm.Ua).apply(null,arguments)},NC=u._Softmax=function(){return(NC=u._Softmax=u.asm.Va).apply(null,arguments)},EC=u._Sqrt=function(){return(EC=u._Sqrt=u.asm.Wa).apply(null,arguments)},RC=u._Square=function(){return(RC=u._Square=u.asm.Xa).apply(null,arguments)},DC=u._SquaredDifference=function(){return(DC=u._SquaredDifference=u.asm.Ya).apply(null,arguments)},_C=u._Step=function(){return(_C=u._Step=u.asm.Za).apply(null,arguments)},FC=u._StridedSlice=function(){return(FC=u._StridedSlice=u.asm._a).apply(null,arguments)},$C=u._Sub=function(){return($C=u._Sub=u.asm.$a).apply(null,arguments)},OC=u._Sum=function(){return(OC=u._Sum=u.asm.ab).apply(null,arguments)},PC=u._Tan=function(){return(PC=u._Tan=u.asm.bb).apply(null,arguments)},MC=u._Tanh=function(){return(MC=u._Tanh=u.asm.cb).apply(null,arguments)},zC=u._Tile=function(){return(zC=u._Tile=u.asm.db).apply(null,arguments)},LC=u._TopK=function(){return(LC=u._TopK=u.asm.eb).apply(null,arguments)},BC=u._Transform=function(){return(BC=u._Transform=u.asm.fb).apply(null,arguments)},WC=u._Transpose=function(){return(WC=u._Transpose=u.asm.gb).apply(null,arguments)},VC=u.__FusedMatMul=function(){return(VC=u.__FusedMatMul=u.asm.hb).apply(null,arguments)},Ha=u._malloc=function(){return(Ha=u._malloc=u.asm.ib).apply(null,arguments)},ac=u._free=function(){return(ac=u._free=u.asm.jb).apply(null,arguments)},I5=u.___errno_location=function(){return(I5=u.___errno_location=u.asm.kb).apply(null,arguments)},S5=u._emscripten_get_global_libc=function(){return(S5=u._emscripten_get_global_libc=u.asm.lb).apply(null,arguments)},na=u._pthread_self=function(){return(na=u._pthread_self=u.asm.mb).apply(null,arguments)},C5=u.___pthread_tsd_run_dtors=function(){return(C5=u.___pthread_tsd_run_dtors=u.asm.nb).apply(null,arguments)},Rp=u._emscripten_main_thread_process_queued_calls=function(){return(Rp=u._emscripten_main_thread_process_queued_calls=u.asm.ob).apply(null,arguments)},UC=u._emscripten_current_thread_process_queued_calls=function(){return(UC=u._emscripten_current_thread_process_queued_calls=u.asm.pb).apply(null,arguments)},T5=u._emscripten_register_main_browser_thread_id=function(){return(T5=u._emscripten_register_main_browser_thread_id=u.asm.qb).apply(null,arguments)},N5=u._emscripten_main_browser_thread_id=function(){return(N5=u._emscripten_main_browser_thread_id=u.asm.rb).apply(null,arguments)},E5=u.__emscripten_do_dispatch_to_thread=function(){return(E5=u.__emscripten_do_dispatch_to_thread=u.asm.sb).apply(null,arguments)},R5=u._emscripten_sync_run_in_main_thread_4=function(){return(R5=u._emscripten_sync_run_in_main_thread_4=u.asm.tb).apply(null,arguments)},D5=u._emscripten_run_in_main_runtime_thread_js=function(){return(D5=u._emscripten_run_in_main_runtime_thread_js=u.asm.ub).apply(null,arguments)},Sg=u.__emscripten_call_on_thread=function(){return(Sg=u.__emscripten_call_on_thread=u.asm.vb).apply(null,arguments)},GC=u._emscripten_tls_init=function(){return(GC=u._emscripten_tls_init=u.asm.wb).apply(null,arguments)},Cg=u.__emscripten_thread_init=function(){return(Cg=u.__emscripten_thread_init=u.asm.xb).apply(null,arguments)},oc=u.stackSave=function(){return(oc=u.stackSave=u.asm.yb).apply(null,arguments)},Bi=u.stackRestore=function(){return(Bi=u.stackRestore=u.asm.zb).apply(null,arguments)},Wi=u.stackAlloc=function(){return(Wi=u.stackAlloc=u.asm.Ab).apply(null,arguments)},_5=u._emscripten_stack_set_limits=function(){return(_5=u._emscripten_stack_set_limits=u.asm.Bb).apply(null,arguments)},F5=u._memalign=function(){return(F5=u._memalign=u.asm.Cb).apply(null,arguments)},$5=u.__emscripten_allow_main_runtime_queued_calls=10512,Vi=u.__emscripten_main_thread_futex=12148;u.cwrap=Be,u.PThread=De,u.PThread=De,u.wasmMemory=re,u.ExitStatus=ic;var Dp;function ic(I){this.name="ExitStatus",this.message="Program terminated with exit("+I+")",this.status=I}Va=function I(){Dp||Tg(),Dp||(Va=I)};function Tg(I){if(I=I||m,Ds>0)return;if(S){d(u),lp(),postMessage({cmd:"loaded"});return}if(ip(),Ds>0)return;function N(){Dp||(Dp=!0,u.calledRun=!0,!ge&&(lp(),up(),d(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),cp()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),N()},1)):N()}u.run=Tg;function HC(I,N){if(!(N&&ae&&I===0)){if(!N&&S)throw postMessage({cmd:"exitProcess",returnCode:I}),new ic(I);ae||(De.terminateAllThreads(),ve=I,Vn(),u.onExit&&u.onExit(I),ge=!0),A(I,new ic(I))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return S&&(ae=!1,De.initWorker()),Tg(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),xT=It({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.11.0_@tensorflow+tfjs-core@3.11.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(J,ie){o=J,i=ie});var l={},c;for(c in a)a.hasOwnProperty(c)&&(l[c]=a[c]);var u=[],d="./this.program",p=function(J,ie){throw ie},h=!1,f=!1,m=!1,g=!1;h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!m&&!f;var A="";function x(J){return a.locateFile?a.locateFile(J,A):A+J}var y,b,v,S,T,D;m?(f?A=dc().dirname(A)+"/":A=__dirname+"/",y=function(ie,ke){return T||(T=Hi("fs")),D||(D=dc()),ie=D.normalize(ie),T.readFileSync(ie,ke?null:"utf8")},v=function(ie){var ke=y(ie,!0);return ke.buffer||(ke=new Uint8Array(ke)),j(ke.buffer),ke},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(J){if(!(J instanceof Ig))throw J}),process.on("unhandledRejection",Hs),p=function(J){process.exit(J)},a.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(y=function(ie){return read(ie)}),v=function(ie){var ke;return typeof readbuffer=="function"?new Uint8Array(readbuffer(ie)):(ke=read(ie,"binary"),j(typeof ke=="object"),ke)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(p=function(J){quit(J)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||f)&&(f?A=self.location.href:typeof document!="undefined"&&document.currentScript&&(A=document.currentScript.src),s&&(A=s),A.indexOf("blob:")!==0?A=A.substr(0,A.lastIndexOf("/")+1):A="",y=function(J){var ie=new XMLHttpRequest;return ie.open("GET",J,!1),ie.send(null),ie.responseText},f&&(v=function(J){var ie=new XMLHttpRequest;return ie.open("GET",J,!1),ie.responseType="arraybuffer",ie.send(null),new Uint8Array(ie.response)}),b=function(J,ie,ke){var st=new XMLHttpRequest;st.open("GET",J,!0),st.responseType="arraybuffer",st.onload=function(){if(st.status==200||st.status==0&&st.response){ie(st.response);return}ke()},st.onerror=ke,st.send(null)},S=function(J){document.title=J});var F=a.print||console.log.bind(console),P=a.printErr||console.warn.bind(console);for(c in l)l.hasOwnProperty(c)&&(a[c]=l[c]);l=null,a.arguments&&(u=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(p=a.quit);var _;a.wasmBinary&&(_=a.wasmBinary);var $=a.noExitRuntime||!0;typeof WebAssembly!="object"&&Hs("no native wasm support detected");var C,M=!1,U;function j(J,ie){J||Hs("Assertion failed: "+ie)}function q(J){var ie=a["_"+J];return j(ie,"Cannot call unknown function "+J+", make sure it is exported"),ie}function X(J,ie,ke,st,Ot){var kt={string:function(es){var ta=0;if(es!=null&&es!==0){var Ep=(es.length<<2)+1;ta=nc(Ep),re(es,ta,Ep)}return ta},array:function(es){var ta=nc(es.length);return ce(es,ta),ta}};function Xe(es){return ie==="string"?oe(es):ie==="boolean"?Boolean(es):es}var Ye=q(J),mn=[],_r=0;if(st)for(var Fr=0;Fr<st.length;Fr++){var Np=kt[ke[Fr]];Np?(_r===0&&(_r=Cp()),mn[Fr]=Np(st[Fr])):mn[Fr]=st[Fr]}var rc=Ye.apply(null,mn);return rc=Xe(rc),_r!==0&&Tp(_r),rc}function te(J,ie,ke,st){ke=ke||[];var Ot=ke.every(function(Xe){return Xe==="number"}),kt=ie!=="string";return kt&&Ot&&!st?q(J):function(){return X(J,ie,ke,arguments,st)}}var ne=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function se(J,ie,ke){for(var st=ie+ke,Ot=ie;J[Ot]&&!(Ot>=st);)++Ot;if(Ot-ie>16&&J.subarray&&ne)return ne.decode(J.subarray(ie,Ot));for(var kt="";ie<Ot;){var Xe=J[ie++];if(!(Xe&128)){kt+=String.fromCharCode(Xe);continue}var Ye=J[ie++]&63;if((Xe&224)==192){kt+=String.fromCharCode((Xe&31)<<6|Ye);continue}var mn=J[ie++]&63;if((Xe&240)==224?Xe=(Xe&15)<<12|Ye<<6|mn:Xe=(Xe&7)<<18|Ye<<12|mn<<6|J[ie++]&63,Xe<65536)kt+=String.fromCharCode(Xe);else{var _r=Xe-65536;kt+=String.fromCharCode(55296|_r>>10,56320|_r&1023)}}return kt}function oe(J,ie){return J?se(Re,J,ie):""}function ae(J,ie,ke,st){if(!(st>0))return 0;for(var Ot=ke,kt=ke+st-1,Xe=0;Xe<J.length;++Xe){var Ye=J.charCodeAt(Xe);if(Ye>=55296&&Ye<=57343){var mn=J.charCodeAt(++Xe);Ye=65536+((Ye&1023)<<10)|mn&1023}if(Ye<=127){if(ke>=kt)break;ie[ke++]=Ye}else if(Ye<=2047){if(ke+1>=kt)break;ie[ke++]=192|Ye>>6,ie[ke++]=128|Ye&63}else if(Ye<=65535){if(ke+2>=kt)break;ie[ke++]=224|Ye>>12,ie[ke++]=128|Ye>>6&63,ie[ke++]=128|Ye&63}else{if(ke+3>=kt)break;ie[ke++]=240|Ye>>18,ie[ke++]=128|Ye>>12&63,ie[ke++]=128|Ye>>6&63,ie[ke++]=128|Ye&63}}return ie[ke]=0,ke-Ot}function re(J,ie,ke){return ae(J,Re,ie,ke)}function ce(J,ie){Ce.set(J,ie)}function ge(J,ie){return J%ie>0&&(J+=ie-J%ie),J}var ve,Ce,Re,Pe,Be,Ue,et,ut,at;function ot(J){ve=J,a.HEAP8=Ce=new Int8Array(J),a.HEAP16=Pe=new Int16Array(J),a.HEAP32=Ue=new Int32Array(J),a.HEAPU8=Re=new Uint8Array(J),a.HEAPU16=Be=new Uint16Array(J),a.HEAPU32=et=new Uint32Array(J),a.HEAPF32=ut=new Float32Array(J),a.HEAPF64=at=new Float64Array(J)}var pt=a.INITIAL_MEMORY||16777216,ft,wt=[],Rt=[],Wn=[],hn=[],Gs=!1;Rt.push({func:function(){fp()}});function Cn(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)fn(a.preRun.shift());Ds(wt)}function Qn(){Gs=!0,Ds(Rt)}function Rs(){Ds(Wn)}function As(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)ur(a.postRun.shift());Ds(hn)}function fn(J){wt.unshift(J)}function ur(J){hn.unshift(J)}var wn=0,cr=null,dr=null;function Yr(J){wn++,a.monitorRunDependencies&&a.monitorRunDependencies(wn)}function Zu(J){if(wn--,a.monitorRunDependencies&&a.monitorRunDependencies(wn),wn==0&&(cr!==null&&(clearInterval(cr),cr=null),dr)){var ie=dr;dr=null,ie()}}a.preloadedImages={},a.preloadedAudios={};function Hs(J){a.onAbort&&a.onAbort(J),J+="",P(J),M=!0,U=1,J="abort("+J+"). Build with -s ASSERTIONS=1 for more info.";var ie=new WebAssembly.RuntimeError(J);throw i(ie),ie}function op(J,ie){return String.prototype.startsWith?J.startsWith(ie):J.indexOf(ie)===0}var sm="data:application/octet-stream;base64,";function ip(J){return op(J,sm)}var lp="file://";function up(J){return op(J,lp)}var Vn="tfjs-backend-wasm.wasm";ip(Vn)||(Vn=x(Vn));function cp(J){try{if(J==Vn&&_)return new Uint8Array(_);if(v)return v(J);throw"both async and sync fetching of the wasm failed"}catch(ie){Hs(ie)}}function rm(){if(!_&&(h||f)){if(typeof fetch=="function"&&!up(Vn))return fetch(Vn,{credentials:"same-origin"}).then(function(J){if(!J.ok)throw"failed to load wasm binary file at '"+Vn+"'";return J.arrayBuffer()}).catch(function(){return cp(Vn)});if(b)return new Promise(function(J,ie){b(Vn,function(ke){J(new Uint8Array(ke))},ie)})}return Promise.resolve().then(function(){return cp(Vn)})}function am(){var J={a:dm};function ie(Xe,Ye){var mn=Xe.exports;a.asm=mn,C=a.asm.j,ot(C.buffer),ft=a.asm.r,Zu("wasm-instantiate")}Yr("wasm-instantiate");function ke(Xe){ie(Xe.instance)}function st(Xe){return rm().then(function(Ye){return WebAssembly.instantiate(Ye,J)}).then(Xe,function(Ye){P("failed to asynchronously prepare wasm: "+Ye),Hs(Ye)})}function Ot(){return!_&&typeof WebAssembly.instantiateStreaming=="function"&&!ip(Vn)&&!up(Vn)&&typeof fetch=="function"?fetch(Vn,{credentials:"same-origin"}).then(function(Xe){var Ye=WebAssembly.instantiateStreaming(Xe,J);return Ye.then(ke,function(mn){return P("wasm streaming compile failed: "+mn),P("falling back to ArrayBuffer instantiation"),st(ke)})}):st(ke)}if(a.instantiateWasm)try{var kt=a.instantiateWasm(J,ie);return kt}catch(Xe){return P("Module.instantiateWasm callback failed with error: "+Xe),!1}return Ot().catch(i),{}}function Ds(J){for(;J.length>0;){var ie=J.shift();if(typeof ie=="function"){ie(a);continue}var ke=ie.func;typeof ke=="number"?ie.arg===void 0?ft.get(ke)():ft.get(ke)(ie.arg):ke(ie.arg===void 0?null:ie.arg)}}function Yu(){Hs()}function Va(J,ie,ke){Re.copyWithin(J,ie,ie+ke)}function om(){return Re.length}function im(J){try{return C.grow(J-ve.byteLength+65535>>>16),ot(C.buffer),1}catch{}}function Dr(J){var ie=om(),ke=2147483648;if(J>ke)return!1;for(var st=1;st<=4;st*=2){var Ot=ie*(1+.2/st);Ot=Math.min(Ot,J+100663296);var kt=Math.min(ke,ge(Math.max(J,Ot),65536)),Xe=im(kt);if(Xe)return!0}return!1}var Ua={mappings:{},buffers:[null,[],[]],printChar:function(J,ie){var ke=Ua.buffers[J];ie===0||ie===10?((J===1?F:P)(se(ke,0)),ke.length=0):ke.push(ie)},varargs:void 0,get:function(){Ua.varargs+=4;var J=Ue[Ua.varargs-4>>2];return J},getStr:function(J){var ie=oe(J);return ie},get64:function(J,ie){return J}};function lm(J){return 0}function dp(J,ie,ke,st,Ot){}function um(J,ie,ke,st){for(var Ot=0,kt=0;kt<ke;kt++){for(var Xe=Ue[ie+kt*8>>2],Ye=Ue[ie+(kt*8+4)>>2],mn=0;mn<Ye;mn++)Ua.printChar(J,Re[Xe+mn]);Ot+=Ye}return Ue[st>>2]=Ot,0}function pp(){return 6}function Un(){return 28}function hp(J){return Ue[Sp()>>2]=J,J}function cm(J){switch(J){case 30:return 16384;case 85:var ie=2147483648;return ie/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return hp(28),-1}var dm={a:Yu,d:Va,e:Dr,f:lm,c:dp,b:um,h:pp,g:Un,i:cm},pm=am(),fp=a.___wasm_call_ctors=function(){return(fp=a.___wasm_call_ctors=a.asm.k).apply(null,arguments)},Mi=a._init=function(){return(Mi=a._init=a.asm.l).apply(null,arguments)},Jr=a._init_with_threads_count=function(){return(Jr=a._init_with_threads_count=a.asm.m).apply(null,arguments)},Ju=a._get_threads_count=function(){return(Ju=a._get_threads_count=a.asm.n).apply(null,arguments)},hm=a._register_tensor=function(){return(hm=a._register_tensor=a.asm.o).apply(null,arguments)},fm=a._dispose_data=function(){return(fm=a._dispose_data=a.asm.p).apply(null,arguments)},mp=a._dispose=function(){return(mp=a._dispose=a.asm.q).apply(null,arguments)},De=a._Abs=function(){return(De=a._Abs=a.asm.s).apply(null,arguments)},mm=a._Add=function(){return(mm=a._Add=a.asm.t).apply(null,arguments)},gm=a._AddN=function(){return(gm=a._AddN=a.asm.u).apply(null,arguments)},Am=a._All=function(){return(Am=a._All=a.asm.v).apply(null,arguments)},ym=a._Any=function(){return(ym=a._Any=a.asm.w).apply(null,arguments)},xm=a._ArgMax=function(){return(xm=a._ArgMax=a.asm.x).apply(null,arguments)},Ga=a._AvgPool=function(){return(Ga=a._AvgPool=a.asm.y).apply(null,arguments)},bm=a._BatchMatMul=function(){return(bm=a._BatchMatMul=a.asm.z).apply(null,arguments)},vm=a._Ceil=function(){return(vm=a._Ceil=a.asm.A).apply(null,arguments)},wm=a._ClipByValue=function(){return(wm=a._ClipByValue=a.asm.B).apply(null,arguments)},km=a._Conv2D=function(){return(km=a._Conv2D=a.asm.C).apply(null,arguments)},Im=a._Conv2DBackpropInput=function(){return(Im=a._Conv2DBackpropInput=a.asm.D).apply(null,arguments)},Sm=a._Cos=function(){return(Sm=a._Cos=a.asm.E).apply(null,arguments)},gp=a._Cosh=function(){return(gp=a._Cosh=a.asm.F).apply(null,arguments)},Cm=a._CropAndResize=function(){return(Cm=a._CropAndResize=a.asm.G).apply(null,arguments)},Tm=a._Cumsum=function(){return(Tm=a._Cumsum=a.asm.H).apply(null,arguments)},Qr=a._DepthToSpace=function(){return(Qr=a._DepthToSpace=a.asm.I).apply(null,arguments)},Qu=a._DepthwiseConv2dNative=function(){return(Qu=a._DepthwiseConv2dNative=a.asm.J).apply(null,arguments)},ec=a._Elu=function(){return(ec=a._Elu=a.asm.K).apply(null,arguments)},Nm=a._Equal=function(){return(Nm=a._Equal=a.asm.L).apply(null,arguments)},Em=a._Exp=function(){return(Em=a._Exp=a.asm.M).apply(null,arguments)},Rm=a._FlipLeftRight=function(){return(Rm=a._FlipLeftRight=a.asm.N).apply(null,arguments)},Dm=a._Floor=function(){return(Dm=a._Floor=a.asm.O).apply(null,arguments)},_m=a._FloorDiv=function(){return(_m=a._FloorDiv=a.asm.P).apply(null,arguments)},We=a._FusedBatchNorm=function(){return(We=a._FusedBatchNorm=a.asm.Q).apply(null,arguments)},Fm=a._FusedConv2D=function(){return(Fm=a._FusedConv2D=a.asm.R).apply(null,arguments)},$m=a._FusedDepthwiseConv2D=function(){return($m=a._FusedDepthwiseConv2D=a.asm.S).apply(null,arguments)},Om=a._Gather=function(){return(Om=a._Gather=a.asm.T).apply(null,arguments)},Pm=a._GatherNd=function(){return(Pm=a._GatherNd=a.asm.U).apply(null,arguments)},Mm=a._Greater=function(){return(Mm=a._Greater=a.asm.V).apply(null,arguments)},zm=a._GreaterEqual=function(){return(zm=a._GreaterEqual=a.asm.W).apply(null,arguments)},tc=a._LeakyRelu=function(){return(tc=a._LeakyRelu=a.asm.X).apply(null,arguments)},Ap=a._Less=function(){return(Ap=a._Less=a.asm.Y).apply(null,arguments)},yp=a._LessEqual=function(){return(yp=a._LessEqual=a.asm.Z).apply(null,arguments)},Lm=a._Log=function(){return(Lm=a._Log=a.asm._).apply(null,arguments)},Bm=a._LogicalAnd=function(){return(Bm=a._LogicalAnd=a.asm.$).apply(null,arguments)},Wm=a._Max=function(){return(Wm=a._Max=a.asm.aa).apply(null,arguments)},Vm=a._MaxPool=function(){return(Vm=a._MaxPool=a.asm.ba).apply(null,arguments)},Um=a._Maximum=function(){return(Um=a._Maximum=a.asm.ca).apply(null,arguments)},Gm=a._Mean=function(){return(Gm=a._Mean=a.asm.da).apply(null,arguments)},Hm=a._Min=function(){return(Hm=a._Min=a.asm.ea).apply(null,arguments)},it=a._Minimum=function(){return(it=a._Minimum=a.asm.fa).apply(null,arguments)},jm=a._MirrorPad=function(){return(jm=a._MirrorPad=a.asm.ga).apply(null,arguments)},qm=a._Multiply=function(){return(qm=a._Multiply=a.asm.ha).apply(null,arguments)},Xm=a._Neg=function(){return(Xm=a._Neg=a.asm.ia).apply(null,arguments)},zi=a._NonMaxSuppressionV3=function(){return(zi=a._NonMaxSuppressionV3=a.asm.ja).apply(null,arguments)},xp=a._NonMaxSuppressionV4=function(){return(xp=a._NonMaxSuppressionV4=a.asm.ka).apply(null,arguments)},bp=a._NonMaxSuppressionV5=function(){return(bp=a._NonMaxSuppressionV5=a.asm.la).apply(null,arguments)},vp=a._NotEqual=function(){return(vp=a._NotEqual=a.asm.ma).apply(null,arguments)},Km=a._OneHot=function(){return(Km=a._OneHot=a.asm.na).apply(null,arguments)},Zm=a._PadV2=function(){return(Zm=a._PadV2=a.asm.oa).apply(null,arguments)},wp=a._Pow=function(){return(wp=a._Pow=a.asm.pa).apply(null,arguments)},Ym=a._Prelu=function(){return(Ym=a._Prelu=a.asm.qa).apply(null,arguments)},Jm=a._Prod=function(){return(Jm=a._Prod=a.asm.ra).apply(null,arguments)},Qm=a._RealDiv=function(){return(Qm=a._RealDiv=a.asm.sa).apply(null,arguments)},eg=a._Relu=function(){return(eg=a._Relu=a.asm.ta).apply(null,arguments)},tg=a._Relu6=function(){return(tg=a._Relu6=a.asm.ua).apply(null,arguments)},kp=a._ResizeBilinear=function(){return(kp=a._ResizeBilinear=a.asm.va).apply(null,arguments)},ea=a._Reverse=function(){return(ea=a._Reverse=a.asm.wa).apply(null,arguments)},ng=a._RotateWithOffset=function(){return(ng=a._RotateWithOffset=a.asm.xa).apply(null,arguments)},sg=a._Round=function(){return(sg=a._Round=a.asm.ya).apply(null,arguments)},k5=a._Rsqrt=function(){return(k5=a._Rsqrt=a.asm.za).apply(null,arguments)},Ip=a._ScatterNd=function(){return(Ip=a._ScatterNd=a.asm.Aa).apply(null,arguments)},rg=a._SelectV2=function(){return(rg=a._SelectV2=a.asm.Ba).apply(null,arguments)},ag=a._Sigmoid=function(){return(ag=a._Sigmoid=a.asm.Ca).apply(null,arguments)},og=a._Sin=function(){return(og=a._Sin=a.asm.Da).apply(null,arguments)},ig=a._Softmax=function(){return(ig=a._Softmax=a.asm.Ea).apply(null,arguments)},lg=a._Sqrt=function(){return(lg=a._Sqrt=a.asm.Fa).apply(null,arguments)},ug=a._Square=function(){return(ug=a._Square=a.asm.Ga).apply(null,arguments)},cg=a._SquaredDifference=function(){return(cg=a._SquaredDifference=a.asm.Ha).apply(null,arguments)},dg=a._Step=function(){return(dg=a._Step=a.asm.Ia).apply(null,arguments)},pg=a._StridedSlice=function(){return(pg=a._StridedSlice=a.asm.Ja).apply(null,arguments)},hg=a._Sub=function(){return(hg=a._Sub=a.asm.Ka).apply(null,arguments)},fg=a._Sum=function(){return(fg=a._Sum=a.asm.La).apply(null,arguments)},mg=a._Tan=function(){return(mg=a._Tan=a.asm.Ma).apply(null,arguments)},gg=a._Tanh=function(){return(gg=a._Tanh=a.asm.Na).apply(null,arguments)},Ag=a._Tile=function(){return(Ag=a._Tile=a.asm.Oa).apply(null,arguments)},yg=a._TopK=function(){return(yg=a._TopK=a.asm.Pa).apply(null,arguments)},xg=a._Transform=function(){return(xg=a._Transform=a.asm.Qa).apply(null,arguments)},bg=a._Transpose=function(){return(bg=a._Transpose=a.asm.Ra).apply(null,arguments)},vg=a.__FusedMatMul=function(){return(vg=a.__FusedMatMul=a.asm.Sa).apply(null,arguments)},wg=a._malloc=function(){return(wg=a._malloc=a.asm.Ta).apply(null,arguments)},kg=a._free=function(){return(kg=a._free=a.asm.Ua).apply(null,arguments)},Sp=a.___errno_location=function(){return(Sp=a.___errno_location=a.asm.Va).apply(null,arguments)},Cp=a.stackSave=function(){return(Cp=a.stackSave=a.asm.Wa).apply(null,arguments)},Tp=a.stackRestore=function(){return(Tp=a.stackRestore=a.asm.Xa).apply(null,arguments)},nc=a.stackAlloc=function(){return(nc=a.stackAlloc=a.asm.Ya).apply(null,arguments)};a.cwrap=te;var Li;function Ig(J){this.name="ExitStatus",this.message="Program terminated with exit("+J+")",this.status=J}dr=function J(){Li||sc(),Li||(dr=J)};function sc(J){if(J=J||u,wn>0||(Cn(),wn>0))return;function ie(){Li||(Li=!0,a.calledRun=!0,!M&&(Qn(),Rs(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),As()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),ie()},1)):ie()}if(a.run=sc,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return sc(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),bT=1e-7,vT=1e-4,$p=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},pc=class{refCount(e){return _s("refCount")}incRef(e){return _s("incRef")}timerAvailable(){return!0}time(e){return _s("time")}read(e){return _s("read")}readSync(e){return _s("readSync")}numDataIds(){return _s("numDataIds")}disposeData(e,t){return _s("disposeData")}write(e,t,n){return _s("write")}move(e,t,n,s,r){return _s("move")}memory(){return _s("memory")}floatPrecision(){return _s("floatPrecision")}epsilon(){return this.floatPrecision()===32?bT:vT}dispose(){return _s("dispose")}};function _s(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function V5(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Op(e,t,n)}function wT(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,Op(e,n,s),Op(t,n,s)}function hc(e,t,n){return Math.max(e,Math.min(t,n))}function kT(e){return e%2==0?e:e+1}function Op(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function IT(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function ST(e,t){let n=Math.random();return t*n+(1-n)*e}function CT(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function O(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Nn(e,t,n=""){O($r(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Xa(e){O(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Ka(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||In(e)&&!n)for(let s=0;s<e.length;++s)Ka(e[s],t,n);else t.push(e);return t}function Mt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function TT(e){return e.length===0}function $r(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function rn(e){return e%1==0}function NT(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function ET(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function RT(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return V5(t),t}function fc(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function DT(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function _T(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function Fs(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),O(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),O(e.every(s=>rn(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function U5(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:Fs(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function G5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function H5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function j5(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function q5(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function FT(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function In(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function Rg(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function X5(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function aa(e){return typeof e=="string"||e instanceof String}function K5(e){return typeof e=="boolean"}function Z5(e){return typeof e=="number"}function Pp(e){return Array.isArray(e)?Pp(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":Z5(e)?"float32":aa(e)?"string":K5(e)?"bool":"float32"}function oa(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Mp(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function ji(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function Y5(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,c)=>l*c)*(s?2:1);for(let l=0;l<a;l++)r[l]=Y5(e+l*i,o,n,s)}return r}function qi(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return Y5(0,e,t,n)}function Dg(e,t){let n=zp(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function zp(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function $T(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return qi(e,new Float32Array(n));if(t==="int32")return qi(e,new Int32Array(n));if(t==="bool")return qi(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function _g(e){e.forEach(t=>{O(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function OT(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function PT(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function Fg(e){return e&&e.then&&typeof e.then=="function"}function pr(...e){Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(...e)}function MT(...e){Y().getBool("IS_TEST")||Y().getBool("PROD")||console.log(...e)}var J5="tfjsflags",Q5=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=zT,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&pr(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];pr(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Fg(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);J5 in e&&e[J5].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=BT(s,r)})}};function zT(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(LT(t,s[0],s[1]),s.join("="))),t}function LT(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function BT(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Y(){return hr}var hr=null;function WT(e){hr=e}var $g;function eb(){if($g==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");$g=e}return $g}function VT(){let e=eb();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Og(e,t){let n=VT();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var Xi="Abs",Ki="Acos",Zi="Acosh",ia="Add",Za="AddN",Yi="All",Ji="Any",Ya="ArgMax",mc="ArgMin",Qi="Asin",el="Asinh",tl="Atan",nl="Atanh",sl="Atan2",Ja="AvgPool",Lp="AvgPoolGrad",gc="AvgPool3D",Bp="AvgPool3DGrad",Qa="BatchMatMul",rl="BatchToSpaceND",Wp="Bincount",tb="BroadcastTo",Vp="BroadcastArgs",eo="Cast",to="Ceil",la="ClipByValue",Up="Complex",Ac="ComplexAbs",al="Concat",no="Conv2D",Gp="Conv2DBackpropFilter",so="Conv2DBackpropInput",yc="Conv3D",Hp="Conv3DBackpropFilterV2",jp="Conv3DBackpropInputV2",ro="Cos",ao="Cosh",oo="Cumsum",ol="CropAndResize",qp="DenseBincount",il="DepthToSpace",io="DepthwiseConv2dNative",Xp="DepthwiseConv2dNativeBackpropFilter",Kp="DepthwiseConv2dNativeBackpropInput",Zp="Diag",xc="Dilation2D",Yp="Dilation2DBackpropInput",Jp="Dilation2DBackpropFilter",lo="RealDiv",Qp="Einsum",uo="Elu",eh="EluGrad",ll="Erf",ul="Equal",co="Exp",cl="ExpandDims",dl="Expm1",th="FFT",bc="Fill",pl="FlipLeftRight",po="Floor",ho="FloorDiv",fo="FusedBatchNorm",hl="GatherV2",fl="GatherNd",ml="Greater",mo="GreaterEqual",go="Identity",nh="IFFT",sh="Imag",gl="IsFinite",Al="IsInf",yl="IsNan",Ao="LeakyRelu",xl="Less",bl="LessEqual",rh="LinSpace",yo="Log",vl="Log1p",wl="LogicalAnd",vc="LogicalNot",wc="LogicalOr",nb="LogSoftmax",kc="LRN",ah="LRNGrad",xo="Max",bo="Maximum",vo="MaxPool",oh="MaxPoolGrad",Ic="MaxPool3D",ih="MaxPool3DGrad",lh="MaxPoolWithArgmax",wo="Mean",ko="Min",Io="Minimum",So="MirrorPad",kl="Mod",uh="Multinomial",Co="Multiply",Il="Neg",Sl="NotEqual",Cl="NonMaxSuppressionV3",Tl="NonMaxSuppressionV4",Nl="NonMaxSuppressionV5",El="OnesLike",To="OneHot",Rl="Pack",No="PadV2",UT="Pool",Eo="Pow",Ro="Prelu",Dl="Prod",Sc="Range",ch="Real",_l="Reciprocal",Do="Relu",Fl="Reshape",Cc="ResizeNearestNeighbor",dh="ResizeNearestNeighborGrad",_o="ResizeBilinear",ph="ResizeBilinearGrad",Fo="Relu6",$o="Reverse",Oo="Round",Po="Rsqrt",$l="ScatterNd",Ol="Select",Pl="Selu",Ml="Slice",Mo="Sin",zl="Sinh",Ll="Sign",zo="Sigmoid",Bl="Softplus",Lo="Sqrt",Bo="Sum",Wl="SpaceToBatchND",Vl="SplitV",Wo="Softmax",hh="SparseFillEmptyRows",fh="SparseReshape",mh="SparseSegmentMean",gh="SparseSegmentSum",Ah="SparseToDense",Vo="SquaredDifference",Tc="Square",Ul="StridedSlice",yh="StringNGrams",xh="StringSplit",bh="StringToHashBucketFast",Uo="Sub",Go="Tan",Ho="Tanh",ua="Tile",Gl="TopK",Hl="Transform",jo="Transpose",vh="Unique",jl="Unpack",Nc="UnsortedSegmentSum",ql="ZerosLike",ca="Step",wh="FromPixels",Xl="RotateWithOffset",qo="_FusedMatMul",Xo="FusedConv2D",Ko="FusedDepthwiseConv2D",Kl=Og("kernelRegistry",()=>new Map),Ec=Og("gradRegistry",()=>new Map);function kh(e,t){let n=Mg(e,t);return Kl.get(n)}function Pg(e){return Ec.get(e)}function Or(e){let t=Kl.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function da(e){let{kernelName:t,backendName:n}=e,s=Mg(t,n);Kl.has(s)&&pr(`The kernel '${t}' for backend '${n}' is already registered`),Kl.set(s,e)}function sb(e){let{kernelName:t}=e;Ec.has(t)&&Y().getBool("DEBUG")&&pr(`Overriding the gradient for '${t}'`),Ec.set(t,e)}function GT(e,t){let n=Mg(e,t);if(!Kl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Kl.delete(n)}function HT(e){if(!Ec.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Ec.delete(e)}function jT(e,t){Or(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});da(r)})}function Mg(e,t){return`${t}_${e}`}var w={};ze(w,{arraysEqual:()=>$r,assert:()=>O,assertNonNegativeIntegerDimensions:()=>_g,assertNonNull:()=>Xa,assertShapesMatch:()=>Nn,bytesFromStringArray:()=>X5,bytesPerElement:()=>Rg,checkConversionForErrors:()=>j5,clamp:()=>hc,computeStrides:()=>ji,createScalarValue:()=>JT,createShuffledIndices:()=>RT,decodeString:()=>Ch,distSquared:()=>CT,encodeString:()=>_c,fetch:()=>e9,fingerPrint64:()=>YT,flatten:()=>Ka,getArrayFromDType:()=>H5,getTypedArrayFromDType:()=>G5,hasEncodingLoss:()=>FT,hexToLong:()=>Rc,indexToLoc:()=>PT,inferDtype:()=>Pp,inferFromImplicitShape:()=>_T,isBoolean:()=>K5,isFunction:()=>oa,isInt:()=>rn,isNumber:()=>Z5,isPromise:()=>Fg,isScalarShape:()=>TT,isString:()=>aa,isTypedArray:()=>In,isValidDtype:()=>q5,locToIndex:()=>OT,makeOnesTypedArray:()=>Dg,makeZerosNestedTypedArray:()=>$T,makeZerosTypedArray:()=>zp,nearestDivisor:()=>Mp,nearestLargerEven:()=>kT,now:()=>Dc,parseAxisParam:()=>Fs,randUniform:()=>ST,repeatedTry:()=>DT,rightPad:()=>fc,shuffle:()=>V5,shuffleCombo:()=>wT,sizeFromShape:()=>Mt,sizeToSquarishShape:()=>ET,squeezeShape:()=>U5,sum:()=>IT,swap:()=>Op,tanh:()=>NT,toNestedArray:()=>qi,toTypedArray:()=>Sh});var rb=qa(eT()),Zo=rb.default||rb;function Rc(e){return Zo.fromString(e,!0,16)}var ab=Rc("c3a5c85c97cb3127"),Yo=Rc("b492b66fbe98f273"),En=Rc("9ae16a3b2f90404f");function zg(e){return e.xor(e.shru(47))}function ob(e,t,n){let s=e.slice(t,t+n);return Zo.fromBytes(Array.from(s),!0,!0)}function yt(e,t){return ob(e,t,8)}function ib(e,t){return ob(e,t,4)}function an(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function pa(e,t,n=Rc("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function qT(e,t,n,s,r,a){r=r.add(e),a=an(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(an(r,44)),[r.add(s),a.add(o)]}function Ih(e,t,n,s){return qT(yt(e,t),yt(e,t+8),yt(e,t+16),yt(e,t+24),n,s)}function XT(e,t=e.length){if(t>=8){let n=En.add(t*2),s=yt(e,0).add(En),r=yt(e,t-8),a=an(r,37).mul(n).add(s),o=an(s,25).add(r).mul(n);return pa(a,o,n)}if(t>=4){let n=En.add(t*2),s=ib(e,0);return pa(s.shl(3).add(t),ib(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return zg(En.mul(a).xor(ab.mul(o))).mul(En)}return En}function KT(e,t=e.length){let n=En.add(t*2),s=yt(e,0).mul(Yo),r=yt(e,8),a=yt(e,t-8).mul(n),o=yt(e,t-16).mul(En);return pa(an(s.add(r),43).add(an(a,30)).add(o),s.add(an(r.add(En),18)).add(a),n)}function ZT(e,t=e.length){let n=En.add(t*2),s=yt(e,0).mul(En),r=yt(e,8),a=yt(e,t-8).mul(n),o=yt(e,t-16).mul(En),i=an(s.add(r),43).add(an(a,30)).add(o),l=pa(i,s.add(an(r.add(En),18)).add(a),n),c=yt(e,16).mul(n),u=yt(e,24),d=i.add(yt(e,t-32)).mul(n),p=l.add(yt(e,t-24)).mul(n);return pa(an(c.add(u),43).add(an(d,30)).add(p),c.add(an(u.add(s),18)).add(d),n)}function YT(e,t=e.length){let n=Zo.fromNumber(81,!0);if(t<=32)return t<=16?XT(e,t):KT(e,t);if(t<=64)return ZT(e,t);let s=n,r=n.mul(Yo).add(113),a=zg(r.mul(En).add(113)).mul(En),o=[Zo.UZERO,Zo.UZERO],i=[Zo.UZERO,Zo.UZERO];s=s.mul(En).add(yt(e,0));let l=0,c=(t-1>>6)*64,u=c+(t-1&63)-63;do s=an(s.add(r).add(o[0]).add(yt(e,l+8)),37).mul(Yo),r=an(r.add(o[1]).add(yt(e,l+48)),42).mul(Yo),s=s.xor(i[1]),r=r.add(o[0]).add(yt(e,l+40)),a=an(a.add(i[0]),33).mul(Yo),o=Ih(e,l,o[1].mul(Yo),s.add(i[0])),i=Ih(e,l+32,a.add(i[1]),r.add(yt(e,l+16))),[a,s]=[s,a],l+=64;while(l!==c);let d=Yo.add(a.and(255).shl(1));return l=u,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=an(s.add(r).add(o[0]).add(yt(e,l+8)),37).mul(d),r=an(r.add(o[1]).add(yt(e,l+48)),42).mul(d),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(yt(e,l+40))),a=an(a.add(i[0]),33).mul(d),o=Ih(e,l,o[1].mul(d),s.add(i[0])),i=Ih(e,l+32,a.add(i[1]),r.add(yt(e,l+16))),[a,s]=[s,a],pa(pa(o[0],i[0],d).add(zg(r).mul(ab)).add(a),pa(o[1],i[1],d).add(s),d)}function JT(e,t){return t==="string"?_c(e):Sh([e],t)}function QT(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Sh(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Ka(e)),Y().getBool("DEBUG")&&j5(e,t),QT(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Dc(){return Y().platform.now()}function e9(e,t){return Y().platform.fetch(e,t)}function _c(e,t="utf-8"){return t=t||"utf-8",Y().platform.encode(e,t)}function Ch(e,t="utf-8"){return t=t||"utf-8",Y().platform.decode(e,t)}var t9=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new s9)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=Dc();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:Dc()-o})}if(Y().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let c=s[l];c.data().then(u=>{n9(u,c.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function n9(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var s9=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?fc(`${s}ms`,9):s.error,i=fc(e,25),l=t.rank,c=t.size,u=fc(t.shape.toString(),14),d="";for(let p in r){let h=r[p];if(h!=null){let f=h.shape||t.shape,m=f.length;d+=`${p}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${u} %c${c} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function r9(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let c=e[l],u=c.inputs;for(let d in u){let p=u[d],h=!1;for(let f=0;f<t.length;f++)if(s[p.id]){c.outputs.forEach(m=>s[m.id]=!0),h=!0,r[c.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let d=0;d<c.outputs.length;d++)if(a[c.outputs[d].id]){for(let p in u)a[u[p].id]=!0,o[c.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let c=e[l];if(r[c.id]&&o[c.id]){let u={};for(let p in c.inputs){let h=c.inputs[p];s[h.id]&&(u[p]=h)}let d=Object.assign({},c);d.inputs=u,d.outputs=c.outputs,i.push(d)}}return i}function a9(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let c=e[l.id];c!=null?o.push(c):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let c=n(()=>i[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=a.inputs[l];if(!$r(c.shape,u.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let d=e[u.id];e[u.id]=s(d,c),d.dispose()}}}}var lb=20,Fc=3,Lg=7;function o9(e,t,n,s){let r=ji(t),a=i9(e,t,n,r),o=t.length,i=Th(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(c=>" "+c).join(`
|
|
`)),l.join(`
|
|
`)}function i9(e,t,n,s){let r=Mt(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?Oc(e):e;if(i>1)for(let c=0;c<r/a;c++){let u=c*a;for(let d=0;d<a;d++)o[d]=Math.max(o[d],$c(l[u+d],0,n).length)}return o}function $c(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(Lg))} + ${parseFloat(e[1].toFixed(Lg))}j`:aa(e)?s=`'${e}'`:n==="bool"?s=ub(e):s=parseFloat(e.toFixed(Lg)).toString(),fc(s,t)}function ub(e){return e===0?"false":"true"}function Th(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=Oc(e);return[$c(m[0],0,n)]}return n==="bool"?[ub(e[0])]:[e[0].toString()]}if(l===1){if(i>lb){let g=Fc*o,A=Array.from(e.slice(0,g)),x=Array.from(e.slice((i-Fc)*o,i*o));return n==="complex64"&&(A=Oc(A),x=Oc(x)),["["+A.map((y,b)=>$c(y,r[b],n)).join(", ")+", ..., "+x.map((y,b)=>$c(y,r[i-Fc+b],n)).join(", ")+"]"]}let m=n==="complex64"?Oc(e):Array.from(e);return["["+m.map((g,A)=>$c(g,r[A],n)).join(", ")+"]"]}let c=t.slice(1),u=s.slice(1),d=s[0]*o,p=[];if(i>lb){for(let m=0;m<Fc;m++){let g=m*d,A=g+d;p.push(...Th(e.slice(g,A),c,n,u,r,!1))}p.push("...");for(let m=i-Fc;m<i;m++){let g=m*d,A=g+d;p.push(...Th(e.slice(g,A),c,n,u,r,m===i-1))}}else for(let m=0;m<i;m++){let g=m*d,A=g+d;p.push(...Th(e.slice(g,A),c,n,u,r,m===i-1))}let h=l===2?",":"";p[0]="["+p[0]+h;for(let m=1;m<p.length-1;m++)p[m]=" "+p[m]+h;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(a?"":f),p}function Oc(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Zt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Mt(e),n!=null){let s=n.length;O(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||H5(t,this.size),this.strides=ji(e)}set(e,...t){t.length===0&&(t=[0]),O(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return fr().makeTensor(this.values,this.shape,this.dtype)}},fr=null,Zl=null,l9=null;function u9(e){fr=e}function c9(e){Zl=e}function d9(e){l9=e}var Ge=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Mt(e),this.strides=ji(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Zl.buffer(this.shape,this.dtype,e)}bufferSync(){return Zl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return qi(this.shape,e,this.dtype==="complex64")}arraySync(){return qi(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=fr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Ch(n))}catch{throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=fr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Ch(t))}catch{throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await fr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(fr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Zl.print(this,e)}clone(){return this.throwIfDisposed(),Zl.clone(this)}toString(e=!1){let t=this.dataSync();return o9(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Zl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),fr().makeVariable(this,e,t,n)}};Object.defineProperty(Ge,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Q(){return Og("Tensor",()=>Ge)}Q();var Pc=class extends Ge{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!$r(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);fr().disposeTensor(this),this.dataId=e.dataId,fr().incRef(this,null)}dispose(){fr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Pc,Symbol.hasInstance,{value:e=>e instanceof Ge&&e.assign!=null&&e.assign instanceof Function});var js={};ze(js,{assertTypesMatch:()=>cb,getTensorsInContainer:()=>Hg,isTensorInList:()=>h9,makeTypesMatch:()=>Dt});var Bg;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Bg||(Bg={}));var Wg;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Wg||(Wg={}));var Vg;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Vg||(Vg={}));var Ug;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Ug||(Ug={}));var Gg;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Gg||(Gg={}));var p9={float32:Ug,int32:Wg,bool:Vg,complex64:Gg};function $s(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return p9[e][t]}function Nh(e){return $s(e,"int32")}function Dt(e,t){if(e.dtype===t.dtype)return[e,t];let n=$s(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function cb(e,t){O(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function h9(e,t){return t.some(n=>n.id===e.id)}function Hg(e){let t=[],n=new Set;return db(e,t,n),t}function db(e,t,n){if(e==null)return;if(e instanceof Ge){t.push(e);return}if(!f9(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),db(a,t,n))}}function f9(e){return Array.isArray(e)||typeof e=="object"}function jg(e){return e.kernelName!=null}var pb=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Mc=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new pb}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(pr(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new t9(this.backendInstance),!0}setupRegisteredKernels(){Or(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Or(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof pc)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,pr(`Initialization of backend ${e} failed`),pr(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return pr(`Initialization of backend ${e} failed`),pr(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return Mc.nextTensorId++}nextVariableId(){return Mc.nextVariableId++}clone(e){let t=B.runKernel(go,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return B.runKernel(eo,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(kh(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=jg(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(jg(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=kh(h,this.backendName);O(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let A=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let x=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,A,x);let y=x.map(b=>{if(b.rank!=null)return b;let{dataId:v,shape:S,dtype:T}=b;return this.makeTensorFromDataId(v,S,T)});if(s){let b=this.getTensorsForGradient(h,f,y);n=this.saveTensorsForBackwardMode(b)}return y}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:c,attrs:u}=e,d=jg(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(p=this.profiler.profileKernel(l,c,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),s&&this.addTapeNode(l,c,t,d,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(h=>c[h]!=null?c[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=Pg(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(O(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,c)=>a[c]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&aa(e[0])&&(r=e.map(i=>_c(i)));let a=s.write(r,t,n),o=new Ge(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=X5(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r=new Ge(t,n,e,this.nextTensorId());return this.trackTensor(r,s),r}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new Pc(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Rg(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Pc||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Rg(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=Pg(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((c,u)=>{if(c==null){let d=n[u],p=zp(d.size,d.dtype);return this.makeTensor(p,d.shape,d.dtype)}return c}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Hg(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(O(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));O(r instanceof Ge,()=>"The result y returned by f() must be a tensor.");let a=r9(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n??m9(r.shape),a9(o,a,l=>this.tidy(l),g9);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return O(oa(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{O(t.every(o=>o instanceof Ge),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),O(n.value instanceof Ge,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),O(oa(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),c=Array.isArray(l)?l:[l];O(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),O(c.every(d=>d instanceof Ge),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((d,p)=>{u[p]=()=>d}),u};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Dc(),n=await this.backend.time(e);return n.wallMs=Dc()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new pb;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Mc.nextTensorId=0;Mc.nextVariableId=0;function m9(e){let t=Dg(Mt(e),"float32");return B.makeTensor(t,e,"float32")}function hb(){let e=eb();if(e._tfengine==null){let t=new Q5(e);e._tfengine=new Mc(t)}return WT(e._tfengine.ENV),u9(()=>e._tfengine),e._tfengine}var B=hb();function g9(e,t){let n={a:e,b:t};return B.runKernel(ia,n)}var zc={};ze(zc,{isBrowser:()=>fb,isMobile:()=>x9,mockIsMobile:()=>y9});function A9(){return typeof navigator!="undefined"&&navigator!=null}var qg;function y9(e){qg=e}function x9(e){if(qg!==void 0)return qg;if(e||A9()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function fb(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var qs=Y();qs.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});qs.registerFlag("IS_BROWSER",()=>fb());qs.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");qs.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));qs.registerFlag("PROD",()=>!1);qs.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>qs.getBool("DEBUG"));qs.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);qs.registerFlag("IS_TEST",()=>!1);qs.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);qs.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function mr(e,t){let n=e;if(In(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||In(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&Y().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&mb(e,s,[]),s}function mb(e,t,n){if(n=n||[],!Array.isArray(e)&&!In(e)){O(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}O(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),O(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)mb(e[r],s,n.concat(r))}function gb(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function R(e,t,n,s="numeric"){if(e instanceof Ge)return gb(s,e.dtype,t,n),e;let r=Pp(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),gb(s,r,t,n),e==null||!In(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=mr(e,r);!In(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Sh(e,r):Ka(e,[],!0);return B.makeTensor(i,a,r)}function Lc(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>R(a,`${t}[${o}]`,n,s))}var Ab="__op";function W(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Ab;let r=(...a)=>{B.startScope(n);try{let o=s(...a);return Fg(o)&&console.error("Cannot return a Promise inside of tidy."),B.endScope(o),o}catch(o){throw B.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function b9(e,t){let n=R(e,"real","complex"),s=R(t,"imag","complex");Nn(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return B.runKernel(Up,r)}var ha=W({complex_:b9});function fa(e,t,n,s){if(s==null&&(s=Pp(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!In(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){_g(t);let r=Mt(t),a=Mt(n);O(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==Mt(t.slice(o)):!0;O(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!In(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?Sh(e,s):Ka(e,[],!0),B.makeTensor(e,t,s)}function zt(e,t,n){let s=mr(e,n);return fa(e,t,s,n)}var Xg={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Eh=4;async function v9(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let c={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let u=new Promise(async d=>{let p=await l.bytes(),h=p.reduce((g,A)=>g+A.length,0)+Eh*p.length,f=new Uint8Array(h),m=0;for(let g=0;g<p.length;g++){let A=p[g],x=new Uint8Array(new Uint32Array([A.length]).buffer);f.set(x,m),m+=Eh,f.set(A,m),m+=A.length}d(f)});s.push(u)}else s.push(l.data());t!=null&&(c.group=t),n.push(c)}let a=await Promise.all(s);return{data:w9(a),specs:n}}function yb(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,c=Mt(l),u;if("quantization"in a){let d=a.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${a.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=Xg[d.dtype],h=e.slice(r,r+c*p),f=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){u=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=g*d.scale+d.min}}else if(d.dtype==="float16")s===void 0&&(s=N9()),u=s(f);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(i==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);u=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=c*p}else if(i==="string"){let d=Mt(a.shape);u=[];for(let p=0;p<d;p++){let h=new Uint32Array(e.slice(r,r+Eh))[0];r+=Eh;let f=new Uint8Array(e.slice(r,r+h));u.push(f),r+=h}}else{let d=Xg[i],p=e.slice(r,r+c*d);if(i==="float32")u=new Float32Array(p);else if(i==="int32")u=new Int32Array(p);else if(i==="bool")u=new Uint8Array(p);else if(i==="complex64"){u=new Float32Array(p);let h=new Float32Array(u.length/2),f=new Float32Array(u.length/2);for(let A=0;A<h.length;A++)h[A]=u[A*2],f[A]=u[A*2+1];let m=zt(h,l,"float32"),g=zt(f,l,"float32");n[o]=ha(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=c*d}i!=="complex64"&&(n[o]=zt(u,l,i))}return n}function w9(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var Kg=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function xb(e){return Kg?Buffer.byteLength(e):new Blob([e]).size}function k9(e){if(Kg)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function I9(e){if(Kg){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function Zg(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function bb(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function vb(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function Yg(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Bc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:xb(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:xb(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function S9(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)==0;)r-=8388608,s<<=1;return s&=~8388608,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function C9(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function T9(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function N9(){let e=S9(),t=C9(),n=T9();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Pt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Pt.instance==null&&(Pt.instance=new Pt),Pt.instance}static registerSaveRouter(e){Pt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Pt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Pt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Pt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Pt.getInstance().loadRouters:Pt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},E9=e=>Pt.registerSaveRouter(e),R9=e=>Pt.registerLoadRouter(e),D9=e=>Pt.getSaveHandlers(e),_9=(e,t)=>Pt.getLoadHandlers(e,t),Jg="tensorflowjs",Qg=1,Jo="models_store",ma="model_info_store";function wb(){if(!Y().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function eA(e){let t=e.result;t.createObjectStore(Jo,{keyPath:"modelPath"}),t.createObjectStore(ma,{keyPath:"modelPath"})}var Qo=class{constructor(e){if(this.indexedDB=wb(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(Jg,Qg);r.onupgradeneeded=()=>eA(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(Jo,"readonly"),l=o.objectStore(Jo).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=c=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=Bc(t),i=a.transaction(ma,"readwrite"),l=i.objectStore(ma),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),u;c.onsuccess=()=>{u=a.transaction(Jo,"readwrite");let p=u.objectStore(Jo).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});p.onsuccess=()=>n({modelArtifactsInfo:o}),p.onerror=h=>{l=i.objectStore(ma);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(p.error)),f.onerror=m=>(a.close(),s(p.error))}},c.onerror=d=>(a.close(),s(c.error)),i.oncomplete=()=>{u==null?a.close():u.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};Qo.URL_SCHEME="indexeddb://";var kb=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Qo.URL_SCHEME)?F9(e.slice(Qo.URL_SCHEME.length)):null;Pt.registerSaveRouter(kb);Pt.registerLoadRouter(kb);function F9(e){return new Qo(e)}function $9(e){return e.startsWith(Qo.URL_SCHEME)?e.slice(Qo.URL_SCHEME.length):e}var O9=class{constructor(){this.indexedDB=wb()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Jg,Qg);n.onupgradeneeded=()=>eA(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(ma,"readonly"),o=r.objectStore(ma).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=$9(e),new Promise((t,n)=>{let s=this.indexedDB.open(Jg,Qg);s.onupgradeneeded=()=>eA(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(ma,"readwrite"),o=a.objectStore(ma),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=o.delete(e),u=()=>{l=r.transaction(Jo,"readwrite");let p=l.objectStore(Jo).delete(e);p.onsuccess=()=>t(i.result.modelArtifactsInfo),p.onerror=h=>n(i.error)};c.onsuccess=u,c.onerror=d=>(u(),r.close(),n(i.error))}},i.onerror=c=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},Pr="/",Yl="tensorflowjs_models",Ib="info",P9="model_topology",M9="weight_specs",z9="weight_data",L9="model_metadata";function Sb(e){return{info:[Yl,e,Ib].join(Pr),topology:[Yl,e,P9].join(Pr),weightSpecs:[Yl,e,M9].join(Pr),weightData:[Yl,e,z9].join(Pr),modelMetadata:[Yl,e,L9].join(Pr)}}function Cb(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function B9(e){let t=e.split(Pr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Pr)}function W9(e){return e.startsWith(ei.URL_SCHEME)?e.slice(ei.URL_SCHEME.length):e}var ei=class{constructor(e){if(!Y().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Sb(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=Bc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,k9(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch{throw Cb(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=I9(a),t}};ei.URL_SCHEME="localstorage://";var Tb=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ei.URL_SCHEME)?V9(e.slice(ei.URL_SCHEME.length)):null;Pt.registerSaveRouter(Tb);Pt.registerLoadRouter(Tb);function V9(e){return new ei(e)}var U9=class{constructor(){O(Y().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),O(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Yl+Pr,n=Pr+Ib;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=B9(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=W9(e);let t=Sb(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return Cb(t),n}},Jl="://",ys=class{constructor(){this.managers={}}static getInstance(){return ys.instance==null&&(ys.instance=new ys),ys.instance}static registerManager(e,t){O(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Jl)&&(e=e.slice(0,e.indexOf(Jl))),O(e.length>0,()=>"scheme must not be an empty string.");let n=ys.getInstance();O(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Rh(e){if(e.indexOf(Jl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ys.getSchemes().join(",")}`);return{scheme:e.split(Jl)[0],path:e.split(Jl)[1]}}async function Nb(e,t,n=!1){O(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Pt.getLoadHandlers(e);O(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),O(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Pt.getSaveHandlers(t);O(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),O(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=Rh(e).scheme,l=Rh(e).path,c=i===Rh(e).scheme,u=await r.load();n&&c&&await ys.getManager(i).removeModel(l);let d=await o.save(u);return n&&!c&&await ys.getManager(i).removeModel(l),d.modelArtifactsInfo}async function G9(){let e=ys.getSchemes(),t={};for(let n of e){let s=await ys.getManager(n).listModels();for(let r in s){let a=n+Jl+r;t[a]=s[r]}}return t}async function H9(e){let t=Rh(e);return ys.getManager(t.scheme).removeModel(t.path)}async function j9(e,t){return Nb(e,t,!1)}async function q9(e,t){return Nb(e,t,!0)}var X9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Y().get("IS_BROWSER")){Y().setPlatform("browser",new X9);try{ys.registerManager(ei.URL_SCHEME,new U9)}catch{}try{ys.registerManager(Qo.URL_SCHEME,new O9)}catch{}}var K9={importFetch:()=>tT()},tA,Z9=class{constructor(){this.util=Hi("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Y().global.fetch!=null?Y().global.fetch(e,t):(tA==null&&(tA=K9.importFetch()),tA(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Y().get("IS_NODE")&&Y().setPlatform("node",new Z9);function He(e,t="float32",n){return t=t||"float32",_g(e),new Zt(e,t,n)}function Y9(e,t){let n=R(e,"x","cast");if(!q5(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return B.runKernel(eo,s,r)}var de=W({cast_:Y9});function J9(e){let n={x:R(e,"x","clone","string_or_numeric")};return B.runKernel(go,n)}var Xs=W({clone_:J9});function Eb(e,t=!1){console.log(e.toString(t))}hb();var Q9={buffer:He,cast:de,clone:Xs,print:Eb};c9(Q9);var Gn={};ze(Gn,{browserFiles:()=>oN,browserHTTPRequest:()=>dN,concatenateArrayBuffers:()=>Zg,copyModel:()=>j9,decodeWeights:()=>yb,encodeWeights:()=>v9,fromMemory:()=>hN,getLoadHandlers:()=>_9,getModelArtifactsForJSON:()=>Yg,getModelArtifactsInfoForJSON:()=>Bc,getSaveHandlers:()=>D9,http:()=>rA,isHTTPScheme:()=>sA,listModels:()=>G9,loadWeights:()=>iN,moveModel:()=>q9,registerLoadRouter:()=>R9,registerSaveRouter:()=>E9,removeModel:()=>H9,weightsLoaderFactory:()=>Fb,withSaveHandler:()=>fN});var eN="model",tN=".json",nN=".weights.bin";function Rb(e){return new Promise(t=>setTimeout(t)).then(e)}var Ql=class{constructor(e){if(!Y().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Ql.URL_SCHEME)&&(e=e.slice(Ql.URL_SCHEME.length)),(e==null||e.length===0)&&(e=eN),this.modelJsonFileName=e+tN,this.weightDataFileName=e+nN}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=vb(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await Rb(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await Rb(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Bc(e)}}}};Ql.URL_SCHEME="downloads://";var sN=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=Yg(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,Zg(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>bb(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=bb(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},rN=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Ql.URL_SCHEME)?aN(e.slice(Ql.URL_SCHEME.length)):null;Pt.registerSaveRouter(rN);function aN(e="model"){return new Ql(e)}function oN(e){return new sN(e)}function Db(e,t,n,s){o(e),n=n??0,s=s??1,i(n,s);let r=0,a=l=>(l.then(c=>{let u=n+ ++r/e.length*(s-n);return t(u),c}),l);function o(l){O(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,c){O(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),O(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),O(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(a))}async function _b(e,t){t==null&&(t={});let n=t.fetchFunc==null?Y().platform.fetch:t.fetchFunc,s=e.map(d=>n(d,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await Db(s,t.onProgress,r,a)).map(d=>d.arrayBuffer()),l=.5,c=1;return t.onProgress==null?await Promise.all(i):await Db(i,t.onProgress,l,c)}async function iN(e,t="",n,s){return Fb(o=>_b(o,{requestInit:s}))(e,t,n)}function Fb(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let A="quantization"in g?g.quantization.dtype:g.dtype,x=Xg[A]*Mt(g.shape),y=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:x})};s!=null?s.forEach((b,v)=>{b===g.name&&(y(),o[v]=!0)}):y(),i.push(g.name),m+=x})}),!o.every(h=>h)){let h=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),c=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;c.push(m)})});let u=await e(c),d={},p=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let b=0;b<f;b++)m+=u[p+b].byteLength;let g=new ArrayBuffer(m),A=new Uint8Array(g),x=0;for(let b=0;b<f;b++){let v=new Uint8Array(u[p+b]);A.set(v,x),x+=v.byteLength}a[h].forEach(b=>{let v=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),S=yb(v,[b.manifestEntry]);for(let T in S)d[T]=S[T]}),p+=f}),d}}var lN="application/octet-stream",uN="application/json",nA=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(O(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Y().platform.fetch,O(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&O(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=vb(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:uN}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:lN}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Bc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch{let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Yg(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=cN(t),r=this.weightPathPrefix||n,a=[];for(let c of e)a.push(...c.weights);let o=[],i=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(u)):o.push(r+u+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await _b(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Zg(l)]}};nA.URL_SCHEME_REGEX=/^https?:\/\//;function cN(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function sA(e){return e.match(nA.URL_SCHEME_REGEX)!=null}var $b=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>sA(s)):n=sA(e),n)return rA(e,t)}return null};Pt.registerSaveRouter($b);Pt.registerLoadRouter($b);function rA(e,t){return new nA(e,t)}function dN(e,t){return rA(e,t)}var aA=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},pN=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function hN(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new aA(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new aA({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new aA({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function fN(e){return new pN(e)}var Ob={};ze(Ob,{confusionMatrix:()=>xN});function mN(e,t,n=!1,s=!1){let r=R(e,"a","matMul"),a=R(t,"b","matMul");[r,a]=Dt(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return B.runKernel(Qa,o,i)}var Ve=W({matMul_:mN});function gN(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:R(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return B.runKernel(To,a,o)}var eu=W({oneHot_:gN});function AN(e,t){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{O(a>=0&&a<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let s={x:n},r={perm:t};return B.runKernel(jo,s,r)}var Ke=W({transpose_:AN});function yN(e,t,n){let s=R(e,"labels","confusionMatrix"),r=R(t,"predictions","confusionMatrix");O(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),O(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),O(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),O(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),O(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=eu(de(s,"int32"),n),o=eu(de(r,"int32"),n),i=Ke(a),l=Ve(i,o);return de(l,"int32")}var xN=W({confusionMatrix_:yN}),Os={};ze(Os,{fromPixels:()=>CN,fromPixelsAsync:()=>IN,toPixels:()=>SN});function Pb(e,t,n){if(Xa(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=mr(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return fa(e,t,s,n)}var ti;function Mb(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let f=2;if(r&&e.readyState<f)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(kh(wh,B.backendName)!=null){let f={pixels:e},m={numChannels:t};return B.runKernel(wh,f,m)}let[c,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;if(o)d=e.getContext("2d").getImageData(0,0,c,u).data;else if(s||n)d=e.data;else if(a||r||i){if(ti==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")ti=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else ti=document.createElement("canvas").getContext("2d");ti.canvas.width=c,ti.canvas.height=u,ti.drawImage(e,0,0,c,u),d=ti.getImageData(0,0,c,u).data}let p;if(t===4)p=new Int32Array(d);else{let f=c*u;p=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)p[m*t+g]=d[m*4+g]}return Pb(p,[u,c,t],"int32")}function bN(e){return e!=null&&e.data instanceof Uint8Array}function vN(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function wN(e){return e!=null&&e.width!==0&&e.height!==0}function kN(e){return vN()&&!(e instanceof ImageBitmap)&&wN(e)&&!bN(e)}async function IN(e,t=3){let n=null;if(Y().getBool("WRAP_TO_IMAGEBITMAP")&&kN(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch{s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return Mb(n,t)}async function SN(e,t){let n=R(e,"img","toPixels");if(!(e instanceof Ge)){let c=n;n=de(c,"int32"),c.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let c=0;c<s*r;++c){let u=[0,0,0,255];for(let p=0;p<a;p++){let h=o[c*a+p];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(u[0]=h*i,u[1]=h*i,u[2]=h*i):u[p]=h*i}let d=c*4;l[d+0]=Math.round(u[0]),l[d+1]=Math.round(u[1]),l[d+2]=Math.round(u[2]),l[d+3]=Math.round(u[3])}if(t!=null){t.width=r,t.height=s;let c=t.getContext("2d"),u=new ImageData(l,r,s);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var CN=W({fromPixels_:Mb}),oA={};ze(oA,{prepareAndValidate:()=>zb});function zb(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(Mt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let d=0;d<r.length-1;++d)o*=r[d];let i=e.shape,l=r.slice();l.pop();let c=1;for(let d=a;d<n;++d)c*=i[d],l.push(i[d]);let u=[...ji(e.shape).map(d=>d/c),1].slice(0,a);return[l,o,c,u]}var iA={};ze(iA,{calculateShapes:()=>Lb,validateInput:()=>uA,validateUpdateShape:()=>lA});function lA(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function uA(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}lA(n,t,e)}function Lb(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let d=r;d<a;++d)o*=n[d];let i=r<1?1:r,l=Mt(t.shape)/i,c=[...ji(n.slice(0,r)),1],u=Mt(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:c,outputSize:u}}var Yt={};ze(Yt,{assertParamsValid:()=>NN,computeFlatOffset:()=>FN,computeOutShape:()=>RN,getNormalizedAxes:()=>DN,isSliceContinous:()=>_N,maskToAxes:()=>EN,parseSliceParams:()=>Xb,sliceInfo:()=>$N,startForAxis:()=>jb,startIndicesWithElidedDims:()=>Ub,stopForAxis:()=>qb,stopIndicesWithElidedDims:()=>Gb,stridesForAxis:()=>Hb,stridesWithElidedDims:()=>Bb});var cA=-2,TN=-1;function NN(e,t,n){let s=e.shape.length;O(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),O(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)O(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function EN(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function RN(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function Bb(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function Wb(e,t,n){return n<=e?n:n-(t-1)}function Vb(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function DN(e,t,n,s,r,a,o,i,l){let c=e.length,u=new Array(c),d=new Array(c),p=new Array(c);if(t.length&&n>0){let h=t[0],f=n+1;u=Ub(o,h,f,s,e),d=Gb(i,h,f,r,e),p=Bb(a,h,f,e)}else for(let h=0;h<c;h++)u[h]=jb(o,s,a,e,h,l),d[h]=qb(i,r,a,e,h,l),p[h]=Hb(a,h,l);return{begin:u,end:d,strides:p}}function Ub(e,t,n,s,r){let a=[...r],o=Vb(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=Wb(t,n,i),c=s[l];e&1<<l&&(c=0),a[i]=c}return a}function Gb(e,t,n,s,r){let a=[...r],o=Vb(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=Wb(t,n,i),c=s[l];e&1<<l&&(c=Number.MAX_SAFE_INTEGER),a[i]=c}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=hc(0,a[i],r[i])}return a}function Hb(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function jb(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=hc(0,o,l-1),o}function qb(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=hc(0,o,l):o=hc(-1,o,l-1),o}function _N(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function FN(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function Xb(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{O(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(O(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function $N(e,t,n,s,r,a,o,i,l){let c;if(s==null?(c=new Array(t.length),c.fill(1)):c=s,o!=null&&(o&o-1)!=0)throw new Error("Multiple ellipses in slice is not allowed.");let u=!1,d={dims:c.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:c.slice(),beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};for(let y=0;y<d.dims;y++)u&&(1<<y&i)!=0&&d.numAddAxisAfterEllipsis++,1<<y&o&&(u=!0);u||(d.ellipsisMask|=1<<d.dims,d.dims++);let p={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};ON(d,p);let h=!0,f=!0,m=!0,g=[],A=[];for(let y=0;y<e.length;++y){if(p.strides[y]===0)throw Error(`strides[${y}] must be non-zero`);let b=!!(p.shrinkAxisMask&1<<y),v=e[y];if(v===-1){g.push(b?1:-1);continue}let S=[p.beginMask&1<<y,p.endMask&1<<y],T=[p.strides[y]>0?0:-1,p.strides[y]>0?v:v-1];if(b&&p.strides[y]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&p.strides[y]===1;let D=!!(p.beginMask&1<<y&&p.endMask&1<<y);if(p.beginValid&&p.endValid){if(b){let $=p.begin[y]<0?v+p.begin[y]:p.begin[y];if(p.begin[y]=$,p.end[y]=p.begin[y]+1,$<0||$>=v)throw Error(`slice index ${p.begin[y]} of dimension ${y} out of bounds.`)}else p.begin[y]=Kb(p.begin[y],0,p.strides[y],v,S,T),p.end[y]=Kb(p.end[y],1,p.strides[y],v,S,T);let _=p.strides[y]===1&&p.begin[y]===0&&p.end[y]===v;h=h&&_,f=f&&(y===0&&p.strides[y]===1||_)}else h=h&&p.strides[y]===1&&D,f=f&&(y===0&&p.strides[y]===1||D);let F,P=!1;if(p.beginValid&&p.endValid?(F=p.end[y]-p.begin[y],P=!0):b?(F=1,P=!0):D&&v>=0&&(p.strides[y]<0?F=-v:F=v,P=!0),P){let _;F===0||F<0!=p.strides[y]<0?_=0:_=Math.trunc(F/p.strides[y])+(F%p.strides[y]!=0?1:0),g.push(_)}else g.push(-1)}for(let y=0;y<p.finalShapeGatherIndices.length;++y){let b=p.finalShapeGatherIndices[y];b>=0?A.push(g[b]):b===cA&&A.push(1)}return{finalShapeSparse:A.filter((y,b)=>p.finalShapeGatherIndices[b]!==cA),finalShape:A,isIdentity:h,sliceDim0:f,isSimpleSlice:m,begin:p.begin,end:p.end,strides:p.strides}}function ON(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let s=0;s<e.dims;s++)if(1<<s&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-s)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=s}else if(1<<s&e.newAxisMask)t.finalShapeGatherIndices.push(cA),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[s]),e.end!=null&&(t.end[n]=e.end[s]),t.strides[n]=e.strides[s],e.beginMask&1<<s&&(t.beginMask|=1<<n),e.endMask&1<<s&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<s?(t.finalShapeGatherIndices.push(TN),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(s)),t.inputShapeGatherIndicesSparse[n]=s,n++}}function Kb(e,t,n,s,r,a){if(r[t])return n>0?a[t]:a[t+1&1];{let o=e<0?s+e:e;return o<a[0]?a[0]:o>a[1]?a[1]:o}}var ue={};ze(ue,{Serializable:()=>Zb,SerializationMap:()=>ni,registerClass:()=>ga});var Zb=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},ni=class{constructor(){this.classNameMap={}}static getMap(){return ni.instance==null&&(ni.instance=new ni),ni.instance}static register(e){ni.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ga(e){O(e.className!=null,()=>"Class being registered does not have the static className property defined."),O(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),O(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),ni.register(e)}var Yb={};ze(Yb,{TEST_EPSILON_FLOAT16:()=>Jb,encodeStrings:()=>Qb,expectArrayBuffersEqual:()=>VN,expectArraysClose:()=>MN,expectArraysEqual:()=>LN,expectNumbersClose:()=>BN,expectPromiseToFail:()=>zN,expectValuesInRange:()=>WN,testEpsilon:()=>dA});var PN=.001,Jb=.1;function MN(e,t,n){return n==null&&(n=dA()),pA(e,t,(s,r)=>hA(s,r,n))}function dA(){return B.backend.floatPrecision()===32?PN:Jb}function pA(e,t,n){let s=!0;if((In(e)||In(t))&&(s=!1),In(e)&&In(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=mr(e),i=mr(t);if(!$r(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=In(e)?e:Ka(e),a=In(t)?t:Ka(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`)}}function zN(e,t){e().then(()=>t.fail(),()=>t())}function LN(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return aa(e)||aa(e[0])||aa(t)||aa(t[0])?pA(e,n,(s,r)=>s==r):pA(e,t,(s,r)=>hA(s,r,0))}function BN(e,t,n){if(n==null&&(n=dA()),!hA(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function hA(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function WN(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function VN(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function Qb(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?Qb(n):e[t]=_c(n)}return e}var Wc="3.11.0";function e3(){Y().set("PROD",!0)}function UN(){Y().set("DEBUG",!0)}function GN(){Y().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function fA(e){Y().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}d9(fA);function HN(){B.disposeVariables()}function ts(){return B}function Dh(){return B.memory()}function jN(e){return B.profile(e)}function G(e,t){return B.tidy(e,t)}function Z(e){Hg(e).forEach(n=>n.dispose())}function on(e){return B.keep(e)}function qN(e){return B.time(e)}function t3(e){return B.setBackend(e)}function _h(){return B.ready()}function Ks(){return B.backendName}function XN(e){B.removeBackend(e)}function mA(e){return B.findBackend(e)}function KN(e){return B.findBackendFactory(e)}function tu(e,t,n=1){return B.registerBackend(e,t,n)}function gr(){return B.backend}function ZN(e,t){Y().setPlatform(e,t)}function YN(e,t){let n=R(e,"a","add"),s=R(t,"b","add");[n,s]=Dt(n,s);let r={a:n,b:s};return B.runKernel(ia,r)}var le=W({add_:YN});function JN(e,t){let n=R(e,"a","floorDiv"),s=R(t,"b","floorDiv");[n,s]=Dt(n,s);let r={a:n,b:s};return B.runKernel(ho,r)}var Fh=W({floorDiv_:JN});function QN(e,t){let n=R(e,"a","div"),s=R(t,"b","div");if([n,s]=Dt(n,s),n.dtype==="int32"&&s.dtype==="int32")return Fh(n,s);let r={a:n,b:s},a={};return B.runKernel(lo,r,a)}var fe=W({div_:QN});function eE(e,t){let n=R(e,"a","mul"),s=R(t,"b","mul");[n,s]=Dt(n,s);let r={a:n,b:s};return B.runKernel(Co,r)}var L=W({mul_:eE});function tE(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return B.runKernel(Ac,n)}else{let n={x:t};return B.runKernel(Xi,n)}}var Vt=W({abs_:tE});function nE(e){let n={x:R(e,"x","acos")};return B.runKernel(Ki,n)}var gA=W({acos_:nE});function sE(e){let n={x:R(e,"x","acosh")};return B.runKernel(Zi,n)}var AA=W({acosh_:sE});function rE(e){O(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),O(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>R(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!$r(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return B.runKernel(Za,s)}var $h=W({addN_:rE});function aE(e,t=null,n=!1){let r={x:R(e,"x","all","bool")},a={axis:t,keepDims:n};return B.runKernel(Yi,r,a)}var Oh=W({all_:aE});function oE(e,t=null,n=!1){let r={x:R(e,"x","any","bool")},a={axis:t,keepDims:n};return B.runKernel(Ji,r,a)}var Vc=W({any_:oE});function iE(e,t=0){let s={x:R(e,"x","argMax")},r={axis:t};return B.runKernel(Ya,s,r)}var xs=W({argMax_:iE});function lE(e,t=0){let s={x:R(e,"x","argMin")},r={axis:t};return B.runKernel(mc,s,r)}var yA=W({argMin_:lE});function uE(e){let n={x:R(e,"x","asin")};return B.runKernel(Qi,n)}var xA=W({asin_:uE});function cE(e){let n={x:R(e,"x","asinh")};return B.runKernel(el,n)}var bA=W({asinh_:cE});function dE(e){let n={x:R(e,"x","atan")};return B.runKernel(tl,n)}var vA=W({atan_:dE});function pE(e,t){let n=R(e,"a","atan2"),s=R(t,"b","atan2");[n,s]=Dt(n,s);let r={a:n,b:s};return B.runKernel(sl,r)}var wA=W({atan2_:pE});function hE(e){let n={x:R(e,"x","atanh")};return B.runKernel(nl,n)}var kA=W({atanh_:hE});function fE(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=r3(r);return Uc(e,i,n,a,s,null,null,l)}function n3(e,t,n,s,r,a,o="channelsLast"){let[i,l]=Ph(t),c;if(o==="channelsLast")c=[i,l,e[3],e[3]];else if(o==="channelsFirst")c=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Uc(e,c,n,s,r,a,!1,o)}function mE(e,t,n,s,r,a,o="NDHWC"){let[i,l,c]=SA(t),u,d;if(o==="NDHWC")d="channelsLast",u=[i,l,c,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",u=[i,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return s3(e,u,n,s,r,!1,d,a)}function Uc(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,c,u,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,d]=e;else if(i==="channelsFirst")[l,d,c,u]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,h,,f]=t,[m,g]=Ph(n),[A,x]=Ph(s),y=nu(p,A),b=nu(h,x),{padInfo:v,outHeight:S,outWidth:T}=yE(r,c,u,m,g,y,b,a,i),D=o?f*d:f,F;return i==="channelsFirst"?F=[l,D,S,T]:i==="channelsLast"&&(F=[l,S,T,D]),{batchSize:l,dataFormat:i,inHeight:c,inWidth:u,inChannels:d,outHeight:S,outWidth:T,outChannels:D,padInfo:v,strideHeight:m,strideWidth:g,filterHeight:p,filterWidth:h,effectiveFilterHeight:y,effectiveFilterWidth:b,dilationHeight:A,dilationWidth:x,inShape:e,outShape:F,filterShape:t}}function s3(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,c,u,d,p]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,d,p]=e;else if(o==="channelsFirst")[l,p,c,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[A,x,y]=SA(n),[b,v,S]=SA(s),T=nu(h,b),D=nu(f,v),F=nu(m,S),{padInfo:P,outDepth:_,outHeight:$,outWidth:C}=xE(r,c,u,d,A,x,y,T,D,F,i),M=a?g*p:g,U;return o==="channelsFirst"?U=[l,M,_,$,C]:o==="channelsLast"&&(U=[l,_,$,C,M]),{batchSize:l,dataFormat:o,inDepth:c,inHeight:u,inWidth:d,inChannels:p,outDepth:_,outHeight:$,outWidth:C,outChannels:M,padInfo:P,strideDepth:A,strideHeight:x,strideWidth:y,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:T,effectiveFilterHeight:D,effectiveFilterWidth:F,dilationDepth:b,dilationHeight:v,dilationWidth:S,inShape:e,outShape:U,filterShape:t}}function gE(e,t,n,s,r){s==null&&(s=IA(e,t,n));let a=e[0],o=e[1],i=si((a-t+2*s)/n+1,r),l=si((o-t+2*s)/n+1,r);return[i,l]}function AE(e,t,n,s,r,a){r==null&&(r=IA(e,t,s));let o=e[0],i=e[1],l=e[2],c=si((o-t+2*r)/s+1,a),u=si((i-t+2*r)/s+1,a),d=si((l-t+2*r)/s+1,a);return[c,u,d,n]}function IA(e,t,n,s=1){let r=nu(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function Ph(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function SA(e){return typeof e=="number"?[e,e,e]:e}function nu(e,t){return t<=1?e:e+(e-1)*(t-1)}function yE(e,t,n,s,r,a,o,i,l){let c,u,d;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=gE([t,n],a,s,e,i);u=h[0],d=h[1]}else if(e==="same"){u=Math.ceil(t/s),d=Math.ceil(n/r);let p=Math.max(0,(u-1)*s+a-t),h=Math.max(0,(d-1)*r+o-n),f=Math.floor(p/2),m=p-f,g=Math.floor(h/2),A=h-g;c={top:f,bottom:m,left:g,right:A,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-a+1)/s),d=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];c={top:p,bottom:h,left:f,right:m,type:p===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},u=si((t-a+p+h)/s+1,i),d=si((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:d}}function xE(e,t,n,s,r,a,o,i,l,c,u){let d,p,h,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=AE([t,n,s,1],i,1,r,e,u);p=g[0],h=g[1],f=g[2]}else if(e==="same"){p=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/o);let m=(p-1)*r+i-t,g=(h-1)*a+l-n,A=(f-1)*o+c-s,x=Math.floor(m/2),y=m-x,b=Math.floor(g/2),v=g-b,S=Math.floor(A/2),T=A-S;d={top:b,bottom:v,left:S,right:T,front:x,back:y,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),f=Math.ceil((s-c+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:p,outHeight:h,outWidth:f}}function si(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Aa(e){let[t,n,s]=Ph(e);return t===1&&n===1&&s===1}function Ar(e,t){return Aa(e)||Aa(t)}function r3(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function bE(e,t){let s={x:R(e,"x","reshape","string_or_numeric")},r={shape:t};return B.runKernel(Fl,s,r)}var V=W({reshape_:bE});function vE(e,t,n,s,r){let a=R(e,"x","avgPool","float32"),o=1;O(Ar(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),r!=null&&O(rn(s),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=B.runKernel(Ja,c,u);return d=de(d,a.dtype),l?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Gc=W({avgPool_:vE});function wE(e,t,n,s,r,a="NDHWC"){let o=R(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&O(rn(s),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=B.runKernel(gc,c,u);return d=de(d,i.dtype),l?V(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var CA=W({avgPool3d_:wE});function kE(e,t=0){O(e.length>=1,()=>"Pass at least one tensor to concat");let n=Lc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${a.dtype}. `)}),n.length===1)return Xs(n[0]);let s=n,r={axis:t};return B.runKernel(al,s,r)}var mt=W({concat_:kE});function IE(e){let n={x:R(e,"x","sigmoid","float32")};return B.runKernel(zo,n)}var Hn=W({sigmoid_:IE});function SE(e,t,n){let s=R(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return B.runKernel(Ml,r,a)}var Fe=W({slice_:SE});function CE(e){let n={x:R(e,"x","tanh","float32")};return B.runKernel(Ho,n)}var ri=W({tanh_:CE});function TE(e,t,n,s,r,a){let o=R(e,"forgetBias","basicLSTMCell"),i=R(t,"lstmKernel","basicLSTMCell"),l=R(n,"lstmBias","basicLSTMCell"),c=R(s,"data","basicLSTMCell"),u=R(r,"c","basicLSTMCell"),d=R(a,"h","basicLSTMCell"),p=mt([c,d],1),h=Ve(p,i),f=le(h,l),m=f.shape[0],g=f.shape[1]/4,A=[m,g],x=Fe(f,[0,0],A),y=Fe(f,[0,g],A),b=Fe(f,[0,g*2],A),v=Fe(f,[0,g*3],A),S=le(L(Hn(x),ri(y)),L(u,Hn(le(o,b)))),T=L(ri(S),Hn(v));return[S,T]}var NE=W({basicLSTMCell_:TE});function EE(e,t,n){let s=R(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);O(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),O(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),O(s.shape[0]%r==0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return B.runKernel(rl,a,o)}var Hc=W({batchToSpaceND_:EE});function RE(e){let t;return e.rank===0||e.rank===1?t=V(e,[1,1,1,e.size]):e.rank===2?t=V(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function DE(e,t,n,s,r,a){a==null&&(a=.001);let o=R(e,"x","batchNorm"),i=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;r!=null&&(c=R(r,"scale","batchNorm"));let u;s!=null&&(u=R(s,"offset","batchNorm")),O(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),O(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),O(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:RE(o),scale:c,offset:u,mean:i,variance:l},h={varianceEpsilon:a},f=B.runKernel(fo,p,h);return V(f,o.shape)}var ai=W({batchNorm_:DE});function _E(e,t,n,s,r,a){let o=R(e,"x","batchNorm"),i=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;r!=null&&(c=R(r,"scale","batchNorm"));let u;return s!=null&&(u=R(s,"offset","batchNorm")),O(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),O(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),O(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&O(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&O(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),ai(o,i,l,u,c,a)}var a3=W({batchNorm2d_:_E});function FE(e,t,n,s,r,a){let o=R(e,"x","batchNorm"),i=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;r!=null&&(c=R(r,"scale","batchNorm"));let u;return s!=null&&(u=R(s,"offset","batchNorm")),O(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),O(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),O(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&O(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&O(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),ai(o,i,l,u,c,a)}var o3=W({batchNorm3d_:FE});function $E(e,t,n,s,r,a){let o=R(e,"x","batchNorm"),i=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;r!=null&&(c=R(r,"scale","batchNorm"));let u;return s!=null&&(u=R(s,"offset","batchNorm")),O(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),O(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),O(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&O(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&O(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),ai(o,i,l,u,c,a)}var i3=W({batchNorm4d_:$E});function OE(e,t,n){let s=R(e,"x","bincount"),r=R(t,"weights","bincount");O(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return B.runKernel(Wp,a,o)}var TA=W({bincount_:OE});function PE(e,t){let n=R(e,"s0","broadcastArgs","int32"),s=R(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return B.runKernel(Vp,r)}var l3=W({broadcastArgs_:PE});function ME(e,t){let n=R(e,"broadcastTo","x"),s=n.shape;if(t.some(c=>!(c>0)||c%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let c=n.shape.slice();for(;c.length<t.length;)c.unshift(1);n=V(n,c)}let r=n.shape,a=Array.from(t);for(let c=t.length-1;c>=0;c--)if(r[c]===t[c])a[c]=1;else if(n.shape[c]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((c,u)=>c>1?u:-1).filter(c=>c>=0).length===0)return Xs(n);let i={x:n},l={reps:a};return B.runKernel(ua,i,l)}var su=W({broadcastTo_:ME});function zE(e){let n={x:R(e,"x","ceil","float32")};return B.runKernel(to,n)}var NA=W({ceil_:zE});function LE(e,t,n){let s=R(e,"x","clipByValue");O(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return B.runKernel(la,r,a)}var jn=W({clipByValue_:LE});function BE(e){return mt(e,0)}var u3=W({concat1d_:BE});function WE(e,t){return mt(e,t)}var ru=W({concat2d_:WE});function VE(e,t){return mt(e,t)}var c3=W({concat3d_:VE});function UE(e,t){return mt(e,t)}var d3=W({concat4d_:UE});function GE(e,t,n,s,r="NHWC",a=[1,1],o){let i=R(e,"x","conv2d","float32"),l=R(t,"filter","conv2d","float32"),c=i,u=!1;i.rank===3&&(u=!0,c=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),O(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&O(rn(s),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d=r==="NHWC"?c.shape[3]:c.shape[1];O(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),O(Ar(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let p={x:c,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=B.runKernel(no,p,h);return u?V(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Mr=W({conv2d_:GE});function HE(e,t,n,s,r="NWC",a=1,o){let i=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),c=i,u=!1;i.rank===2&&(u=!0,c=V(i,[1,i.shape[0],i.shape[1]])),O(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),O(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&O(rn(s),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),O(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),O(Ar(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),O(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=V(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=V(c,[c.shape[0],1,c.shape[1],c.shape[2]]),g=Mr(p,d,[1,n],s,"NHWC",[1,a],o);return u?V(g,[g.shape[2],g.shape[3]]):V(g,[g.shape[0],g.shape[2],g.shape[3]])}var Mh=W({conv1d_:HE});function jE(e,t,n,s,r,a="NHWC",o){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,c=!1;t.rank===3&&(c=!0,l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),O(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),O(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),O(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];O(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),O(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&O(rn(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let p={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=B.runKernel(so,p,h);return c?V(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var EA=W({conv2DBackpropInput_:jE});function qE(e,t,n,s,r,a){let o=R(e,"x","conv2dTranspose"),i=R(t,"filter","conv2dTranspose");return EA(n,o,i,s,r,"NHWC",a)}var zh=W({conv2dTranspose_:qE});function XE(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=R(e,"x","conv3d"),i=R(t,"filter","conv3d"),l=o,c=!1;o.rank===4&&(c=!0,l=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),O(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),O(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),O(Ar(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),O(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let u={x:l,filter:i},d={strides:n,pad:s,dataFormat:r,dilations:a},p=B.runKernel(yc,u,d);return c?V(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var RA=W({conv3d_:XE});function KE(e,t,n,s,r){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=V(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],c=o.shape[4];O(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),O(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),O(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),O(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),O(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:o,filter:n},d={pad:r,strides:s,inputShape:a},p=B.runKernel(jp,u,d);return i?V(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var p3=W({conv3DBackpropInput_:KE});function ZE(e,t,n,s,r){let a=R(e,"x","conv3dTranspose"),o=R(t,"filter","conv3dTranspose");return p3(n,a,o,s,r)}var h3=W({conv3dTranspose_:ZE});function YE(e){let n={x:R(e,"x","cos","float32")};return B.runKernel(ro,n)}var jc=W({cos_:YE});function JE(e){let n={x:R(e,"x","cosh","float32")};return B.runKernel(ao,n)}var Lh=W({cosh_:JE});function QE(e,t=0,n=!1,s=!1){let a={x:R(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return B.runKernel(oo,a,o)}var Bh=W({cumsum_:QE});function eR(e,t,n,s=!1){let r=R(e,"x","denseBincount"),a=R(t,"weights","denseBincount");O(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),O(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return B.runKernel(qp,o,i)}var f3=W({denseBincount_:eR});function tR(e,t,n="NHWC"){let s=R(e,"x","depthToSpace","float32"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];O(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),O(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),O(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),O(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return B.runKernel(il,i,l)}var DA=W({depthToSpace_:tR});function nR(e,t,n,s,r="NHWC",a=[1,1],o){let i=R(e,"x","depthwiseConv2d","float32"),l=R(t,"filter","depthwiseConv2d","float32"),c=i,u=!1;i.rank===3&&(u=!0,c=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),O(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),O(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&O(rn(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:c,filter:l},p={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},h=B.runKernel(io,d,p);return u?V(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var au=W({depthwiseConv2d_:nR});function sR(e){let n={x:R(e,"x","diag")};return B.runKernel(Zp,n)}var rR=W({diag_:sR});function aR(e,t,n,s,r=[1,1],a="NHWC"){let o=R(e,"x","dilation2d"),i=R(t,"filter","dilation2d");O(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),O(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),O(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,c=!1;o.rank===3&&(l=V(o,[1,o.shape[0],o.shape[1],o.shape[2]]),c=!0);let u={x:l,filter:i},d={strides:n,pad:s,dilations:r},p=B.runKernel(xc,u,d);return c?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var _A=W({dilation2d_:aR});function oR(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function Jt(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function xt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}function iR(e,t){let n=R(e,"a","equal","string_or_numeric"),s=R(t,"b","equal","string_or_numeric");[n,s]=Dt(n,s),xt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(ul,r)}var ns=W({equal_:iR});function lR(e,t,n){let s=R(t,"a","where"),r=R(n,"b","where"),a=R(e,"condition","where","bool"),o=xt(xt(a.shape,s.shape),r.shape),i=su(a,o),l=su(s,o),c=su(r,o),u={condition:i,t:l,e:c};return B.runKernel(Ol,u)}var Sn=W({where_:lR});function uR(e){let n={x:R(e,"x","zerosLike")};return B.runKernel(ql,n)}var Ze=W({zerosLike_:uR});function cR(e,t){let n=R(e,"a","div"),s=R(t,"b","div");[n,s]=Dt(n,s);let r=fe(n,s),a=Ze(r),o=ns(s,a);return Sn(o,a,r)}var FA=W({divNoNan_:cR});function dR(e,t){let n=R(e,"t1","dot"),s=R(t,"t2","dot");O((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(O(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=V(n,[1,-1]),i=V(s,[-1,1]),l=Ve(o,i);return V(l,[])}else if(n.rank===1&&s.rank===2){let o=V(n,[1,-1]),i=V(s,[s.shape[0],s.shape[1]]),l=Ve(o,i);return V(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=V(s,[-1,1]),i=Ve(n,o);return V(i,[i.size])}else{let o=V(s,[s.shape[0],s.shape[1]]);return Ve(n,o)}}var m3=W({dot_:dR});function pR(e,...t){let n=t.map((r,a)=>R(r,`tensors${a}`,"einsum")),s={equation:e};return B.runKernel(Qp,n,s)}var g3=W({einsum_:pR});function hR(e){let n={x:R(e,"x","elu","float32")};return B.runKernel(uo,n)}var ou=W({elu_:hR});function fR(e){let t=R(e,"x","erf");O(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=de(t,"float32"));let n={x:t};return B.runKernel(ll,n)}var $A=W({erf_:fR});function mR(e){let n={x:R(e,"x","exp")};return B.runKernel(co,n)}var ss=W({exp_:mR});function gR(e,t=0){let n=R(e,"x","expandDims","string_or_numeric");O(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return B.runKernel(cl,s,r)}var Lt=W({expandDims_:gR});function AR(e){let n={x:R(e,"x","expm1")};return B.runKernel(dl,n)}var OA=W({expm1_:AR});function yR(e,t){let n=R(e,"x","tile","string_or_numeric");O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return B.runKernel(ua,s,r)}var bs=W({tile_:yR});function xR(e,t,n,s="float32"){t==null&&(t=e);let r=He([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=V(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return bs(Lt(o,0),[n[0],1,1]);if(n.length===2)return bs(Lt(Lt(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return bs(Lt(Lt(Lt(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var PA=W({eye_:xR});function iu(e,t,n){let s={shape:e,value:t,dtype:n};return B.runKernel(bc,{},s)}function bR(e){let n={x:R(e,"x","floor","float32")};return B.runKernel(po,n)}var lu=W({floor_:bR});function vR(e,t,n=0,s=0){let r=R(e,"x","gather"),a=R(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return B.runKernel(hl,o,i)}var oi=W({gather_:vR});function wR(e,t){let n=R(e,"a","greater","string_or_numeric"),s=R(t,"b","greater","string_or_numeric");[n,s]=Dt(n,s),xt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(ml,r)}var qn=W({greater_:wR});function kR(e,t){let n=R(e,"a","greaterEqual","string_or_numeric"),s=R(t,"b","greaterEqual","string_or_numeric");[n,s]=Dt(n,s),xt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(mo,r)}var ya=W({greaterEqual_:kR});function IR(e){let n={input:R(e,"input","imag")};return B.runKernel(sh,n)}var Wh=W({imag_:IR});function SR(e){let n={x:R(e,"x","isFinite")};return B.runKernel(gl,n)}var A3=W({isFinite_:SR});function CR(e){let n={x:R(e,"x","isInf")};return B.runKernel(Al,n)}var y3=W({isInf_:CR});function TR(e){let n={x:R(e,"x","isNaN")};return B.runKernel(yl,n)}var MA=W({isNaN_:TR});function NR(e,t=.2){let s={x:R(e,"x","leakyRelu")},r={alpha:t};return B.runKernel(Ao,s,r)}var qc=W({leakyRelu_:NR});function ER(e,t){let n=R(e,"a","less","string_or_numeric"),s=R(t,"b","less","string_or_numeric");[n,s]=Dt(n,s),xt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(xl,r)}var Vh=W({less_:ER});function RR(e,t){let n=R(e,"a","lessEqual","string_or_numeric"),s=R(t,"b","lessEqual","string_or_numeric");[n,s]=Dt(n,s),xt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(bl,r)}var xa=W({lessEqual_:RR});function x3(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return B.runKernel(rh,{},s)}function DR(e,t=5,n=1,s=1,r=.5){let a=R(e,"x","localResponseNormalization");O(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${a.rank}.`),O(rn(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=V(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},c={depthRadius:t,bias:n,alpha:s,beta:r},u=B.runKernel(kc,l,c);return i?V(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var zA=W({localResponseNormalization_:DR});function _R(e){let n={x:R(e,"x","log","float32")};return B.runKernel(yo,n)}var rs=W({log_:_R});function FR(e){let n={x:R(e,"x","log1p")};return B.runKernel(vl,n)}var Xc=W({log1p_:FR});function $R(e){return O(oa(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=R(t,"x","tf.grad","string_or_numeric"),r=n!=null?R(n,"dy","tf.grad"):null;return B.tidy(()=>{let{value:a,grads:o}=B.gradients(()=>e(s),[s],r);return r!=null&&Nn(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Uh(o),o[0]})}}function OR(e){return O(oa(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{O(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=Lc(t,"args","tf.grads","string_or_numeric"),r=n!=null?R(n,"dy","tf.grads"):null;return B.tidy(()=>{let{value:a,grads:o}=B.gradients(()=>e(...s),s,r);return r!=null&&Nn(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Uh(o),o})}}function PR(e){return O(oa(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{O(t instanceof Ge,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),O(n==null||n instanceof Ge,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=B.gradients(()=>e(t),[t],n);return Uh(s),{grad:s[0],value:r}}}function MR(e){return O(oa(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{O(Array.isArray(t)&&t.every(r=>r instanceof Ge),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),O(n==null||n instanceof Ge,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=B.gradients(()=>e(...t),t,n);return n!=null&&Nn(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Uh(s.grads),s}}function b3(e,t){O(oa(e),()=>"The f passed in variableGrads(f) must be a function"),O(t==null||Array.isArray(t)&&t.every(c=>c instanceof Pc),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in B.registeredVariables)t.push(B.registeredVariables[c])}let s=n?t.filter(c=>!c.trainable):null,r=t.length;t=t.filter(c=>c.trainable),O(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=B.gradients(e,t,null,a);O(i.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),O(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((c,u)=>{i[u]!=null&&(l[c.name]=i[u])}),s!=null&&s.forEach(c=>l[c.name]=null),{value:o,grads:l}}function yr(e){return B.customGrad(e)}function Uh(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function zR(e){let n={x:R(e,"x","neg")};return B.runKernel(Il,n)}var St=W({neg_:zR});function LR(e){let n={x:R(e,"x","softplus")};return B.runKernel(Bl,n)}var ii=W({softplus_:LR});function BR(e){let t=R(e,"x","logSigmoid");return yr(s=>({value:St(ii(St(s))),gradFunc:o=>L(o,Hn(St(s)))}))(t)}var v3=W({logSigmoid_:BR});function WR(e,t=null,n=!1){let r={x:R(e,"x","max")},a={reductionIndices:t,keepDims:n};return B.runKernel(xo,r,a)}var Rn=W({max_:WR});function VR(e,t){let n=R(e,"a","sub"),s=R(t,"b","sub");[n,s]=Dt(n,s);let r={a:n,b:s};return B.runKernel(Uo,r)}var be=W({sub_:VR});function UR(e,t=null,n=!1){let s=R(e,"x","sum");s.dtype==="bool"&&(s=de(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return B.runKernel(Bo,r,a)}var Ie=W({sum_:UR});function GR(e,t=-1){let n=R(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return yr((r,a)=>{let o=!0,i=Rn(r,t,!0),l=be(r,i),c=be(de(l,"float32"),rs(Ie(ss(l),t,o)));return a([c]),{value:c,gradFunc:(d,p)=>{let[h]=p,f=!0,m=ss(h);return be(d,L(Ie(d,t,f),m))}}})(n)}var Gh=W({logSoftmax_:GR});function LA(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function w3(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function k3(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function li(e,t){let n=t.map(s=>1);return w3(e,n,t)}function HR(e,t,n){O(LA(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function I3(e,t){if(LA(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function BA(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function jR(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function qR(e,t=null,n=!1){let s=R(e,"x","logSumExp"),r=Fs(t,s.shape),a=Rn(s,r,!0),o=be(s,a),i=ss(o),l=Ie(i,r),c=rs(l),u=le(V(a,c.shape),c);if(n){let d=li(u.shape,r);return V(u,d)}return u}var WA=W({logSumExp_:qR});function XR(e,t){let n=R(e,"a","logicalAnd","bool"),s=R(t,"b","logicalAnd","bool");xt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(wl,r)}var Ps=W({logicalAnd_:XR});function KR(e){let n={x:R(e,"x","logicalNot","bool")};return B.runKernel(vc,n)}var Kc=W({logicalNot_:KR});function ZR(e,t){let n=R(e,"a","logicalOr","bool"),s=R(t,"b","logicalOr","bool");xt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(wc,r)}var Hh=W({logicalOr_:ZR});function YR(e,t){let n=R(e,"a","logicalXor","bool"),s=R(t,"b","logicalXor","bool");return xt(n.shape,s.shape),Ps(Hh(e,t),Kc(Ps(e,t)))}var S3=W({logicalXor_:YR});function JR(e,t,n,s,r){let a=R(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),O(Ar(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),r!=null&&O(rn(s),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=B.runKernel(vo,c,u);return l?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Zc=W({maxPool_:JR});function QR(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=R(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&O(rn(s),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=B.runKernel(Ic,c,u);return l?V(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var VA=W({maxPool3d_:QR});function eD(e,t,n,s,r=!1){let o={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=B.runKernel(lh,o,i);return{result:l[0],indexes:l[1]}}var C3=W({maxPoolWithArgmax_:eD});function tD(e,t){let n=R(e,"a","maximum"),s=R(t,"b","maximum");[n,s]=Dt(n,s),n.dtype==="bool"&&(n=de(n,"int32"),s=de(s,"int32")),xt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(bo,r)}var xr=W({maximum_:tD});function nD(e,t=null,n=!1){let r={x:R(e,"x","mean")},a={axis:t,keepDims:n};return B.runKernel(wo,r,a)}var _t=W({mean_:nD});function Ut(e,t="float32"){if(t==="complex64"){let s=Ut(e,"float32"),r=Ut(e,"float32");return ha(s,r)}let n=zp(Mt(e),t);return B.makeTensor(n,e,t)}function as(e,t="float32"){if(t==="complex64"){let s=as(e,"float32"),r=Ut(e,"float32");return ha(s,r)}let n=Dg(Mt(e),t);return B.makeTensor(n,e,t)}function sD(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=R(e,"x","meshgrid",e instanceof Ge?e.dtype:"float32");if(t===void 0)return[s];let r=R(t,"y","meshgrid",t instanceof Ge?t.dtype:"float32"),a=Mt(s.shape),o=Mt(r.shape);return n==="xy"?(s=V(s,[1,-1]),r=V(r,[-1,1]),[Ve(as([o,1],s.dtype),s),Ve(r,as([1,a],r.dtype))]):(s=V(s,[-1,1]),r=V(r,[1,-1]),[Ve(s,as([1,o],s.dtype)),Ve(as([a,1],r.dtype),r)])}function rD(e,t=null,n=!1){let r={x:R(e,"x","min")},a={axis:t,keepDims:n};return B.runKernel(ko,r,a)}var Yc=W({min_:rD});function aD(e,t){let n=R(e,"a","minimum"),s=R(t,"b","minimum");[n,s]=Dt(n,s),n.dtype==="bool"&&(n=de(n,"int32"),s=de(s,"int32")),xt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Io,r)}var uu=W({minimum_:aD});function oD(e,t,n){O(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=R(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");O(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)O(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),O(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return B.runKernel(So,o,a)}var UA=W({mirrorPad_:oD});function iD(e,t){let n=R(e,"a","mod"),s=R(t,"b","mod");[n,s]=Dt(n,s);let r={a:n,b:s};return B.runKernel(kl,r)}var GA=W({mod_:iD});function lD(e){let t=R(e,"x","square"),n={};return B.runKernel("Square",{x:t},n)}var ht=W({square_:lD});function uD(e,t=null,n=!1){e=R(e,"x","moments");let s=Fs(t,e.shape),r=_t(e,s,n),a=r.shape;n||(a=li(r.shape,s));let o=ht(be(de(e,"float32"),V(r,a))),i=_t(o,s,n);return{mean:r,variance:i}}var jh=W({moments_:uD});function cD(e,t,n,s){let r=R(t,"data","multiRNNCell"),a=Lc(n,"c","multiRNNCell"),o=Lc(s,"h","multiRNNCell"),i=r,l=[];for(let d=0;d<e.length;d++){let p=e[d](i,a[d],o[d]);l.push(p[0]),l.push(p[1]),i=p[1]}let c=[],u=[];for(let d=0;d<l.length;d+=2)c.push(l[d]),u.push(l[d+1]);return[c,u]}var dD=W({multiRNNCell_:cD});function pD(e,t,n,s=!1){let r=R(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?V(r,[1,-1]):r},c={numSamples:t,seed:n,normalized:s},u=B.runKernel(uh,l,c);return o===1?V(u,[u.size]):u}var T3=W({multinomial_:pD});function hD(e,t){let n=R(e,"a","notEqual","string_or_numeric"),s=R(t,"b","notEqual","string_or_numeric");[n,s]=Dt(n,s),xt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Sl,r)}var ui=W({notEqual_:hD});function fD(e){let n={x:R(e,"x","onesLike")};return B.runKernel(El,n)}var os=W({onesLike_:fD});function mD(e,t){let n=R(e,"v1","outerProduct"),s=R(t,"v2","outerProduct");O(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=V(n,[-1,1]),a=V(s,[1,-1]);return Ve(r,a)}var gD=W({outerProduct_:mD});function AD(e,t,n=0){let s=R(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return B.runKernel(No,a,r)}var vs=W({pad_:AD});function yD(e,t,n=0){return O(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),vs(e,[t],n)}var xD=W({pad1d_:yD});function bD(e,t,n=0){return O(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),vs(e,t,n)}var vD=W({pad2d_:bD});function wD(e,t,n=0){return O(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),vs(e,t,n)}var kD=W({pad3d_:wD});function ID(e,t,n=0){return O(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),vs(e,t,n)}var SD=W({pad4d_:ID});function CD(e,t,n){let s=R(e,"x","spaceToBatchND");O(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),O(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),O(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return B.runKernel(Wl,r,a)}var Jc=W({spaceToBatchND_:CD});function TD(e,t,n,s,r,a){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=R(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2]])),O(Ar(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=n3(i.shape,t,a,r,s),u=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=ED([c.filterHeight,c.filterWidth],u):d=[[0,0],[0,0]];let p=u[0]===1&&u[1]===1,[h,f]=ND([c.inHeight,c.inWidth],u,d),m=p?s:"valid",g=p?i:Jc(i,u,h),x=(n==="avg"?()=>Gc(g,t,a,m):()=>Zc(g,t,a,m))(),y=p?x:Hc(x,u,f);return l?V(y,[y.shape[1],y.shape[2],y.shape[3]]):y}function ND(e,t,n){let s=n.map(u=>u[0]),r=n.map(u=>u[1]),a=e.concat(s,r),o=t.map((u,d)=>(u-a[d]%u)%u),i=r.map((u,d)=>u+o[d]),l=t.map((u,d)=>[s[d],i[d]]),c=t.map((u,d)=>[0,o[d]]);return[l,c]}function ED(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var N3=W({pool_:TD});function RD(e,t){let n=R(e,"base","pow"),s=R(t,"exp","pow");[n,s]=Dt(n,s);let r={a:n,b:s};return B.runKernel(Eo,r)}var zr=W({pow_:RD});function DD(e,t){let n=R(e,"x","prelu"),s=R(t,"alpha","prelu"),r={x:n,alpha:s};return B.runKernel(Ro,r)}var Qc=W({prelu_:DD});function _D(e,t=null,n=!1){let s=R(e,"x","prod");s.dtype==="bool"&&(s=de(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return B.runKernel(Dl,r,a)}var qh=W({prod_:_D});function FD(e,t,n){let s=Mt(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return B.makeTensor(r,e,n)}var $D=W({rand_:FD}),HA=qa(L5()),jA=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=HA.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},OD=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=HA.alea(r.toString()),this.randn=new jA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},PD=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=HA.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function MD(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new OD(t,n,s,r),o=He(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var zD=W({randomGamma_:MD});function LD(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new jA(t,n,s,!1,r),o=He(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var E3=W({randomNormal_:LD});function BD(e,t=0,n=1,s="float32",r){let a=He(e,s),o=new PD(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var cu=W({randomUniform_:BD});function du(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return B.runKernel(Sc,{},r)}function WD(e){let n={input:R(e,"input","real")};return B.runKernel(ch,n)}var ed=W({real_:WD});function VD(e){let n={x:R(e,"x","reciprocal")};return B.runKernel(_l,n)}var qA=W({reciprocal_:VD});function UD(e){let n={x:R(e,"x","relu")};return B.runKernel(Do,n)}var Zs=W({relu_:UD});function GD(e){let n={x:R(e,"x","relu6")};return B.runKernel(Fo,n)}var Xh=W({relu6_:GD});function HD(e,t){let s={x:R(e,"x","reverse")},r={dims:t};return B.runKernel($o,s,r)}var is=W({reverse_:HD});function jD(e){let t=R(e,"x","reverse");return O(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),is(t,0)}var qD=W({reverse1d_:jD});function XD(e,t){let n=R(e,"x","reverse");return O(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),is(n,t)}var KD=W({reverse2d_:XD});function ZD(e,t){let n=R(e,"x","reverse");return O(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),is(n,t)}var YD=W({reverse3d_:ZD});function JD(e,t){let n=R(e,"x","reverse");return O(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),is(n,t)}var QD=W({reverse4d_:JD});function e_(e){let n={x:R(e,"x","round")};return B.runKernel(Oo,n)}var Kh=W({round_:e_});function t_(e){let n={x:R(e,"x","rsqrt","float32")};return B.runKernel(Po,n)}var Zh=W({rsqrt_:t_});function Ee(e,t){if((In(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&In(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return fa(e,[],[],t)}function n_(e){let n={x:R(e,"x","selu")};return B.runKernel(Pl,n)}var Yh=W({selu_:n_});function s_(e,t,n,s,r,a=[1,1],o="NHWC"){let i=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),c=R(n,"pointwiseFilter","separableConv2d"),u=i,d=!1;if(i.rank===3&&(d=!0,u=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");O(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),O(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),O(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),O(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),O(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let p=l.shape[2],h=l.shape[3];O(c.shape[2]===p*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*h}, but got ${c.shape[2]}.`);let f=au(u,l,s,r,o,a),g=Mr(f,c,1,"valid",o);return d?V(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var XA=W({separableConv2d_:s_});async function r_(e,t){let n=R(e,"x","setdiff1d"),s=R(t,"y","setdiff1d");O(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),O(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),O(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let u=0;u<r.length;u++)o.has(r[u])||i++;let l=new Zt([i],n.dtype),c=new Zt([i],"int32");for(let u=0,d=0;u<r.length;u++)o.has(r[u])||(l.values[d]=r[u],c.values[d]=u,d++);return[l.toTensor(),c.toTensor()]}var R3=r_;function a_(e){let n={x:R(e,"x","sign")};return B.runKernel(Ll,n)}var KA=W({sign_:a_});function o_(e){let n={x:R(e,"x","sin","float32")};return B.runKernel(Mo,n)}var Jh=W({sin_:o_});function i_(e){let n={x:R(e,"x","sinh")};return B.runKernel(zl,n)}var Qh=W({sinh_:i_});function l_(e,t,n){let s=R(e,"x","slice1d");return O(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),Fe(s,[t],[n])}var ef=W({slice1d_:l_});function u_(e,t,n){let s=R(e,"x","slice2d");return O(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),Fe(s,t,n)}var ZA=W({slice2d_:u_});function c_(e,t,n){let s=R(e,"x","slice3d");return O(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),Fe(s,t,n)}var pu=W({slice3d_:c_});function d_(e,t,n){let s=R(e,"x","slice4d");return O(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),Fe(s,t,n)}var td=W({slice4d_:d_});function p_(e,t=-1){let n=R(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return B.runKernel(Wo,s,r)}var ci=W({softmax_:p_});function h_(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(th,t)}var nd=W({fft_:h_});function f_(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(nh,t)}var hu=W({ifft_:f_});function m_(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=V(e,[n,t]);s=hu(r)}else{let r=[n,2*(t-1)],a=V(ed(e),[n,t]),o=V(Wh(e),[n,t]),i=is(Fe(a,[0,1],[n,t-2]),1),l=L(is(Fe(o,[0,1],[n,t-2]),1),Ee(-1)),c=mt([a,i],1),u=mt([o,l],1),d=V(ha(c,u),[r[0],r[1]]);s=hu(d)}if(s=ed(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=V(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var tf=W({irfft_:m_});function g_(e,t,n=0){let r={x:R(e,"x","split")},a={numOrSizeSplits:t,axis:n};return B.runKernel(Vl,r,a)}var ln=W({split_:g_});function A_(e,t){O(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=Fe(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=mt([e,Ut(f)],e.shape.length-1),n=t}else r=e;let a=Ze(r),o=V(ha(r,a),[s,n]),i=nd(o),l=Math.floor(n/2)+1,c=ed(i),u=Wh(i),d=ln(c,[l,n-l],c.shape.length-1),p=ln(u,[l,n-l],u.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,V(ha(d[0],p[0]),h)}var sd=W({rfft_:A_});function y_(e){let n={x:R(e,"x","sqrt","float32")};return B.runKernel(Lo,n)}var gn=W({sqrt_:y_});function x_(e,t){let n=R(e,"a","squaredDifference"),s=R(t,"b","squaredDifference");[n,s]=Dt(n,s),xt(n.shape,s.shape);let r={a:n,b:s},a={};return B.runKernel(Vo,r,a)}var nf=W({squaredDifference_:x_});function b_(e,t){let n=R(e,"x","squeeze");return V(n,U5(n.shape,t).newShape)}var rt=W({squeeze_:b_});function v_(e,t=0){let n=Lc(e,"tensors","stack","string_or_numeric");O(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&O(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return B.runKernel(Rl,s,r)}var An=W({stack_:v_});function w_(e,t=0){let s={x:R(e,"x","step")},r={alpha:t};return B.runKernel(ca,s,r)}var fu=W({step_:w_});function k_(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let u={x:R(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return B.runKernel(Ul,u,d)}var YA=W({stridedSlice_:k_});function I_(e){let n={x:R(e,"x","tan","float32")};return B.runKernel(Go,n)}var JA=W({tan_:I_});function Gt(e,t){Xa(e);let n=mr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return fa(e,null,n,t)}function Ys(e,t,n){if(Xa(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=mr(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return fa(e,t,s,n)}function S_(e,t,n){if(Xa(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=mr(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return fa(e,t,s,n)}function C_(e,t,n){if(Xa(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=mr(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return fa(e,t,s,n)}function T_(e,t,n){if(Xa(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=mr(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,fa(e,t,s,n)}function N_(e,t=1,n=!0){let s=R(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=B.runKernel(Gl,a,o);return{values:i,indices:l}}var QA=W({topk_:N_});function E_(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new jA(t,n,s,!0,r),o=He(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var sf=W({truncatedNormal_:E_});function R_(e,t=0){let n=R(e,"x","unique","string_or_numeric");O(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=B.runKernel(vh,s,r);return{values:a,indices:o}}var rf=W({unique_:R_});function D_(e,t,n){let s=R(e,"x","unsortedSegmentSum"),r=R(t,"segmentIds","unsortedSegmentSum","int32");O(rn(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return B.runKernel(Nc,a,o)}var e1=W({unsortedSegmentSum_:D_});function __(e,t=0){let n=R(e,"x","unstack","string_or_numeric");O(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return B.runKernel(jl,s,r)}var Dn=W({unstack_:__});function D3(e,t=!0,n,s){return B.makeVariable(e,t,n,s)}function _3(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=He(e,"int32"),r=He([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function F_(e){let t=R(e,"condition","whereAsync","bool"),n=await t.data(),s=_3(t.shape,n);return e!==t&&t.dispose(),s}var t1=F_;async function $_(e,t,n){let s=R(e,"tensor","boolMask"),r=R(t,"mask","boolMask","bool"),a=n??0,o=r.rank,i=s.shape;O(o>0,()=>"mask cannot be scalar"),Nn(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m<a+o;m++)l*=i[m];let c=i.slice(0,a).concat([l],i.slice(a+o)),u=V(s,c),d=V(r,[-1]),p=await t1(d),h=rt(p,[1]),f=oi(u,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),u.dispose(),d.dispose(),p.dispose(),f}var O_=$_;function P_(e,t="euclidean",n=null,s=!1){e=R(e,"x","norm");let r=F3(e,t,n),a=r.shape;if(s){let o=Fs(n,e.shape);a=li(r.shape,o)}return V(r,a)}function F3(e,t,n=null){if(e.rank===0)return Vt(e);if(e.rank!==1&&n===null)return F3(V(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Ie(Vt(e),n);if(t===1/0)return Rn(Vt(e),n);if(t===-1/0)return Yc(Vt(e),n);if(t==="euclidean"||t===2)return gn(Ie(zr(Vt(e),Ee(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Rn(Ie(Vt(e),n[0]),n[1]-1);if(t===1/0)return Rn(Ie(Vt(e),n[1]),n[0]);if(t===-1/0)return Yc(Ie(Vt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return gn(Ie(ht(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var af=W({norm_:P_});function M_(e,t,n,s,r=!0){let a=R(e,"v","movingAverage"),o=R(t,"x","movingAverage"),i=R(n,"decay","movingAverage");cb(a,o),O($r(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Ee(1),c=be(l,i),u=L(be(o,a),c);if(r){O(s!=null,()=>"When using zeroDebias: true, step is required.");let d=R(s,"step","movingAverage");u=fe(u,be(l,zr(i,d)))}return le(a,u)}var z_=W({movingAverage_:M_});function L_(e,t,n){let s=R(e,"indices","scatterND","int32"),r=R(t,"updates","scatterND");uA(r,s,n);let a={indices:s,updates:r},o={shape:n};return B.runKernel($l,a,o)}var $3=W({scatterND_:L_});function B_(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function W_(e,t,n,s=0){let r=R(e,"sparseIndices","sparseToDense","int32"),a=R(t,"sparseValues","sparseToDense"),o=R(s,"defaultValue","sparseToDense",a.dtype);B_(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return B.runKernel(Ah,i,l)}var n1=W({sparseToDense_:W_});function V_(e,t){let n=R(t,"indices","gatherND","int32"),r={params:R(e,"x","gatherND","string_or_numeric"),indices:n};return B.runKernel(fl,r)}var O3=W({gatherND_:V_});function U_(e,t){if(t==null)return e.shape.slice();if($r(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function G_(e,t,n,s){let r=R(e,"x","dropout");if(O(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),O(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ge?r.clone():r;let a=U_(r,n),o=1-t,i=fe(lu(le(cu(a,0,1,"float32",s),o)),o);return L(r,i)}var P3=W({dropout_:G_});function M3(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function s1(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return Gt(r,"float32")}async function H_(e,t,n=1){let s=R(e,"predictions","inTopK"),r=R(t,"targets","inTopK");O(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),O(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),Nn(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];O(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,c]=[o.length/a,a],u=G5("bool",l);for(let d=0;d<l;d++){let p=d*c,h=o.subarray(p,p+c),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),u[d]=0;for(let m=0;m<n;m++)if(f[m].index===i[d]){u[d]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),zt(u,r.shape,"bool")}var j_=H_,ba={};ze(ba,{conv2d:()=>K_,depthwiseConv2d:()=>Q_,matMul:()=>tF});function q_(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]])),O(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),O(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),O(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=a==="NHWC"?i.shape[3]:i.shape[1],u=a==="NHWC"?l.shape[3]:l.shape[1];O(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),O(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),o!=null&&O(rn(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:i,dy:l},p={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return B.runKernel(Gp,d,p)}var r1=W({conv2DBackpropFilter_:q_});function of(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return L(e,fu(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function lf(e,t){let n=t,s=Jt(e.shape,t.shape);return s.length>0&&(n=Ie(n,s)),V(n,e.shape)}function uf(e,t,n,s){if(t==="linear")return e;if(t==="relu")return Zs(e);if(t==="elu")return ou(e);if(t==="relu6")return Xh(e);if(t==="prelu")return Qc(e,n);if(t==="leakyrelu")return qc(e,s);if(t==="sigmoid")return Hn(e);throw new Error(`Unknown fused activation ${t}.`)}var cf=(e,t)=>!(e>0)||t==="linear";function X_({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",cf(B.state.gradientDepth,l)===!1){let v=Mr(e,t,n,s,r,a,o);return i!=null&&(v=le(v,i)),uf(v,l,c,u)}let d=R(e,"x","conv2d","float32"),p=R(t,"filter","conv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=V(d,[1,d.shape[0],d.shape[1],d.shape[2]])),O(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),O(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),o!=null&&O(rn(s),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),O(h.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${p.shape[2]}.`),O(Ar(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),O(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let m=Uc(h.shape,p.shape,n,a,s,o),g;i!=null&&(g=R(i,"bias","fused conv2d"),[g]=Dt(g,d),xt(m.outShape,g.shape));let A;c!=null&&(A=R(c,"prelu weights","fused conv2d"));let x=(v,S)=>{let[T,D,F,P]=S,_=of(v,F,l);O(Aa(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let $=EA(D.shape,_,T,n,s),C=r1(D,_,T.shape,n,s),M=[$,C];if(P!=null){let U=lf(P,_);M.push(U)}return M},y={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?yr((S,T,D)=>{let F=B.runKernel(Xo,y,b);return D([T,S,F]),f&&(F=V(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:x}})(h,p):yr((S,T,D,F)=>{let P=B.runKernel(Xo,y,b);return F([T,S,P,D]),f&&(P=V(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:x}})(h,p,g)}var K_=W({fusedConv2d_:X_});function Z_(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:i,dy:l},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return B.runKernel(Xp,c,u)}var z3=W({depthwiseConv2dNativeBackpropFilter_:Z_});function Y_(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:i,filter:n},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},d=B.runKernel(Kp,c,u);return l?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var L3=W({depthwiseConv2dNativeBackpropInput_:Y_});function J_({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(cf(B.state.gradientDepth,l)===!1){let v=au(e,t,n,s,r,a,o);return i!=null&&(v=le(v,i)),uf(v,l,c,u)}let d=R(e,"x","depthwiseConv2d","float32"),p=R(t,"filter","depthwiseConv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=V(d,[1,d.shape[0],d.shape[1],d.shape[2]])),O(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),O(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),O(h.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),a==null&&(a=[1,1]),O(Ar(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&O(rn(s),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${s}.`);let m=Uc(h.shape,p.shape,n,a,s,o,!0),g;i!=null&&(g=R(i,"bias","fused conv2d"),[g]=Dt(g,d),xt(m.outShape,g.shape));let A;c!=null&&(A=R(c,"prelu weights","fused depthwiseConv2d"));let x=(v,S)=>{O(Aa(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[T,D,F,P]=S,_=of(v,F,l),$=L3(D.shape,_,T,n,s,a,o),C=z3(D,_,T.shape,n,s,a,o);if(P!=null){let M=lf(g,_);return[$,C,M]}return[$,C]},y={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?yr((S,T,D)=>{let F=B.runKernel(Ko,y,b);return D([T,S,F]),f&&(F=V(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:x}})(h,p):yr((S,T,D,F)=>{let P=B.runKernel(Ko,y,b);return F([T,S,P,D]),f&&(P=V(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:x}})(h,p,g)}var Q_=W({fusedDepthwiseConv2d_:J_});function eF({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(cf(B.state.gradientDepth,a)===!1){let P=Ve(e,t,n,s);return r!=null&&(P=le(P,r)),uf(P,a,o,i)}let l=R(e,"a","fused matMul"),c=R(t,"b","fused matMul");[l,c]=Dt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=s?c.shape[c.rank-1]:c.shape[c.rank-2],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?c.shape[c.rank-2]:c.shape[c.rank-1],f=l.shape.slice(0,-2),m=c.shape.slice(0,-2),g=Mt(f),A=Mt(m);O(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),O($r(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),O(u===d,()=>`Error in fused matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${s} must match.`);let x=l.shape.slice(0,-2).concat([p,h]),y=n?V(l,[g,u,p]):V(l,[g,p,u]),b=s?V(c,[A,h,d]):V(c,[A,d,h]),v;r!=null&&(v=R(r,"bias","fused matMul"),[v]=Dt(v,l),xt(x,v.shape));let S;o!=null&&(S=R(o,"prelu weights","fused matMul"));let T=(P,_)=>{let[$,C,M,U]=_,j=of(V(P,M.shape),M,a),q,X;if(!n&&!s?(q=Ve(j,C,!1,!0),X=Ve($,j,!0,!1)):!n&&s?(q=Ve(j,C,!1,!1),X=Ve(j,$,!0,!1)):n&&!s?(q=Ve(C,j,!1,!0),X=Ve($,j,!1,!1)):(q=Ve(C,j,!0,!0),X=Ve(j,$,!0,!0)),r!=null){let te=lf(U,j);return[q,X,te]}else return[q,X]},D={a:y,b,bias:v,preluActivationWeights:S},F={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?yr((_,$,C)=>{let M=B.runKernel(qo,D,F);return C([_,$,M]),{value:V(M,x),gradFunc:T}})(y,b):yr((_,$,C,M)=>{let U=B.runKernel(qo,D,F);return M([_,$,U,C]),{value:V(U,x),gradFunc:T}})(y,b,v)}var tF=W({fusedMatMul_:eF});function nF(e){return s1(e,.54,.46)}var sF=W({hammingWindow_:nF});function rF(e){return s1(e,.5,.5)}var B3=W({hannWindow_:rF});function aF(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(Fe(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=mt([Fe(e,a,t-i),iu([i],r)]);o.push(l),a+=n}return o.length===0?Ys([],[0,t]):V(mt(o),[o.length,t])}var W3=W({frame_:aF});function oF(e,t,n,s,r=B3){s==null&&(s=M3(t));let a=W3(e,t,n),o=L(a,r(t));return sd(o,s)}var iF=W({stft_:oF});function lF(e,t,n,s,r="bilinear",a=0){let o=R(e,"image","cropAndResize"),i=R(t,"boxes","cropAndResize","float32"),l=R(n,"boxInd","cropAndResize","int32"),c=i.shape[0];O(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${i.shape}.`),O(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${i.shape}.`),O(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),O(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),O(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let u={image:o,boxes:i,boxInd:l},d={method:r,extrapolationValue:a,cropSize:s};return B.runKernel(ol,u,d)}var uF=W({cropAndResize_:lF});function cF(e){let t=R(e,"image","flipLeftRight","float32");O(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return B.runKernel(pl,n,{})}var dF=W({flipLeftRight_:cF});function pF(e){let t=R(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];O(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),O(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,bs(t,r)}var hF=W({grayscaleToRGB_:pF});function fF(e,t,n=0,s=.5){let r=R(e,"image","rotateWithOffset","float32");O(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return B.runKernel(Xl,a,o)}var mF=W({rotateWithOffset_:fF});function mu(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),O(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),O(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),O(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),O(t.rank===1,()=>"scores must be a 1D tensor"),O(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),O(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function gF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=R(e,"boxes","nonMaxSuppression","float32"),o=R(t,"scores","nonMaxSuppression","float32"),i=mu(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return B.runKernel(Cl,{boxes:a,scores:o},l)}var AF=W({nonMaxSuppression_:gF});function yF(e,t,n){let s=xF(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function xF(e,t,n){return vF(e,t,n||bF)}function bF(e,t){return e>t?1:e<t?-1:0}function vF(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function V3(e,t,n,s,r){return a1(e,t,n,s,r,0)}function U3(e,t,n,s,r,a){return a1(e,t,n,s,r,0,!1,a,!0)}function G3(e,t,n,s,r,a){return a1(e,t,n,s,r,a,!0)}function a1(e,t,n,s,r,a,o=!1,i=!1,l=!1){let c=[];for(let g=0;g<t.length;g++)t[g]>r&&c.push({score:t[g],boxIndex:g,suppressBeginIndex:0});c.sort(H3);let u=a>0?-.5/a:0,d=[],p=[];for(;d.length<n&&c.length>0;){let g=c.pop(),{score:A,boxIndex:x,suppressBeginIndex:y}=g;if(A<r)break;let b=!1;for(let v=d.length-1;v>=y;--v){let S=wF(e,x,d[v]);if(S>=s){b=!0;break}if(g.score=g.score*kF(s,u,S),g.score<=r)break}g.suppressBeginIndex=d.length,b||(g.score===A?(d.push(x),p.push(g.score)):g.score>r&&yF(c,g,H3))}let h=d.length,f=n-h;i&&f>0&&(d.push(...new Array(f).fill(0)),p.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=p),l&&(m.validOutputs=h),m}function wF(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),c=Math.min(r[0],r[2]),u=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),p=Math.max(r[1],r[3]),h=(i-a)*(l-o),f=(d-c)*(p-u);if(h<=0||f<=0)return 0;let m=Math.max(a,c),g=Math.max(o,u),A=Math.min(i,d),x=Math.min(l,p),y=Math.max(A-m,0)*Math.max(x-g,0);return y/(h+f-y)}function kF(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function H3(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function IF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),i=mu(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),c=l[0],u=l[1],{selectedIndices:d}=V3(c,u,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),Gt(d,"int32")}var SF=IF;function CF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=R(e,"boxes","nonMaxSuppression"),i=R(t,"scores","nonMaxSuppression"),l=mu(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c={boxes:o,scores:i},u={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},d=B.runKernel(Nl,c,u);return{selectedIndices:d[0],selectedScores:d[1]}}var TF=W({nonMaxSuppressionWithScore_:CF});async function NF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),l=mu(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c=await Promise.all([o.data(),i.data()]),u=c[0],d=c[1],{selectedIndices:p,selectedScores:h}=G3(u,d,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Gt(p,"int32"),selectedScores:Gt(h)}}var EF=NF;function RF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=R(e,"boxes","nonMaxSuppression"),i=R(t,"scores","nonMaxSuppression"),l=mu(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,p={boxes:o,scores:i},h={maxOutputSize:c,iouThreshold:u,scoreThreshold:d,padToMaxOutputSize:a},f=B.runKernel(Tl,p,h);return{selectedIndices:f[0],validOutputs:f[1]}}var DF=W({nonMaxSuppressionPadded_:RF});async function _F(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),l=mu(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,[p,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=U3(p,h,c,u,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Gt(f,"int32"),validOutputs:Ee(m,"int32")}}var FF=_F;function $F(e,t,n=!1,s=!1){let r=R(e,"images","resizeBilinear");O(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),O(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=V(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=B.runKernel(_o,i,l);return o?V(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var j3=W({resizeBilinear_:$F});function OF(e,t,n=!1,s=!1){let r=R(e,"images","resizeNearestNeighbor");O(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),O(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),O(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=V(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=B.runKernel(Cc,i,l);return o?V(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var q3=W({resizeNearestNeighbor_:OF});function PF(e,t="binary",n=!1,s=.5){let r=R(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],c=L(Gt([s]),255),u,d,p,h;if(O(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),O(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),O(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),O(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[u,d,p]=ln(r,[1,1,1],-1);let g=L(u,a),A=L(d,o),x=L(p,i);h=le(le(g,A),x)}else h=e;if(t==="otsu"){let g=TA(de(Kh(h),"int32"),zt([]),256);c=MF(g,l)}let f=n?xa(h,c):qn(h,c);return de(L(f,255),"int32")}function MF(e,t){let n=Gt([-1]),s=Gt([0]),r=Gt([0]),a,o,i,l,c,u;for(let d=0;d<e.size-1;d++){a=Fe(e,0,d+1),o=Fe(e,d+1),c=fe(Ie(a),t),u=fe(Ie(o),t);let p=Ie(L(a,du(0,a.size)));i=fe(p,Ie(a));let h=iu(o.shape,a.size),f=le(du(0,o.size),h),m=L(o,f);l=fe(Ie(m),Ie(o));let g=be(i,l),A=be(i,l),x=L(c,u);r=L(L(x,g),A);let y=qn(r,s);s=Sn(y,r,s),n=Sn(y,Gt([d]),n)}return n}var zF=W({threshold_:PF});function LF(e,t,n="nearest",s="constant",r=0,a){let o=R(e,"image","transform","float32"),i=R(t,"transforms","transform","float32");O(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),O(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},c={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return B.runKernel(Hl,l,c)}var BF=W({transform_:LF});function WF(e,t,n){O(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),O(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=R(e,"a","bandPart");O(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=V(du(0,a,1,"int32"),[-1,1]),l=du(0,o,1,"int32"),c=be(i,l),u=Ps(xa(c,Ee(+t,"int32")),ya(c,Ee(-n,"int32"))),d=Ut([a,o],s.dtype);return V(An(Dn(V(s,[-1,a,o])).map(p=>Sn(u,p,d))),r)}var VF=W({bandPart_:WF});function UF(e){let t;if(Array.isArray(e)){t=!1,O(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)O(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=ln(e,e.shape[0],0).map(r=>rt(r,[0]));O(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(B.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=L(Ie(L(n[o],a)),n[o]);a=be(a,i)}return fe(a,af(a,"euclidean"))}));return t?An(n,0):n}var GF=W({gramSchmidt_:UF});function HF(e,t=!1){if(O(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return X3(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),s=Dn(V(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[c,u]=X3(l,t);r.push(c),a.push(u)});let o=V(An(r,0),e.shape),i=V(An(a,0),e.shape);return[o,i]}}function X3(e,t=!1){return B.tidy(()=>{O(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=PA(n),a=Xs(e),o=Ys([[1]],[1,1]),i=Xs(o),l=n>=s?s:n;for(let c=0;c<l;++c){let u=a,d=i,p=r;[i,a,r]=B.tidy(()=>{let h=Fe(a,[c,c],[n-c,1]),f=af(h),m=Fe(a,[c,c],[1,1]),g=Sn(qn(m,0),Ys([[-1]]),Ys([[1]])),A=be(m,L(g,f)),x=fe(h,A);x.shape[0]===1?i=Xs(o):i=mt([o,Fe(x,[1,0],[x.shape[0]-1,x.shape[1]])],0);let y=St(fe(Ve(g,A),f)),b=Fe(a,[c,0],[n-c,s]),v=L(y,i),S=Ke(i);if(c===0)a=be(b,Ve(v,Ve(S,b)));else{let F=be(b,Ve(v,Ve(S,b)));a=mt([Fe(a,[0,0],[c,s]),F],0)}let T=Ke(v),D=Fe(r,[0,c],[n,r.shape[1]-c]);if(c===0)r=be(D,Ve(Ve(D,i),T));else{let F=be(D,Ve(Ve(D,i),T));r=mt([Fe(r,[0,0],[n,c]),F],1)}return[i,a,r]}),Z([u,d,p])}return!t&&n>s&&(r=Fe(r,[0,0],[n,s]),a=Fe(a,[0,0],[s,s])),[r,a]})}var jF=W({qr_:HF}),_n;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(_n||(_n={}));function qF(e,t,n=_n.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=R(t,"weights","computeWeightedLoss"));let a=r==null?s:L(s,r);if(n===_n.NONE)return a;if(n===_n.SUM)return Ie(a);if(n===_n.MEAN){if(r==null)return _t(a);{let o=s.size/r.size,i=fe(Ie(a),Ie(r));return o>1?fe(i,Ee(o)):i}}if(n===_n.SUM_BY_NONZERO_WEIGHTS){if(r==null)return fe(Ie(a),Ee(s.size));{let o=L(r,as(s.shape)),i=de(Ie(ui(o,Ee(0))),"float32");return fe(Ie(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Lr=W({computeWeightedLoss_:qF});function XF(e,t,n,s=_n.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"labels","absoluteDifference"),a=R(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=R(n,"weights","absoluteDifference")),Nn(r.shape,a.shape,"Error in absoluteDifference: ");let i=Vt(be(r,a));return Lr(i,o,s)}var KF=W({absoluteDifference_:XF});function ZF(e,t,n,s,r=_n.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","cosineDistance"),o=R(t,"predictions","cosineDistance"),i=null;s!=null&&(i=R(s,"weights","cosineDistance")),Nn(a.shape,o.shape,"Error in cosineDistance: ");let l=Ee(1),c=be(l,Ie(L(a,o),n,!0));return Lr(c,i,r)}var YF=W({cosineDistance_:ZF});function JF(e,t,n,s=_n.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"labels","hingeLoss"),a=R(t,"predictions","hingeLoss"),o=null;n!=null&&(o=R(n,"weights","hingeLoss")),Nn(r.shape,a.shape,"Error in hingeLoss: ");let i=Ee(1);r=be(L(Ee(2),r),i);let l=Zs(be(i,L(r,a)));return Lr(l,o,s)}var QF=W({hingeLoss_:JF});function e$(e,t,n,s=1,r=_n.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","huberLoss"),o=R(t,"predictions","huberLoss"),i=null;n!=null&&(i=R(n,"weights","huberLoss")),Nn(a.shape,o.shape,"Error in huberLoss: ");let l=Ee(s),c=Vt(be(o,a)),u=uu(c,l),d=be(c,u),p=le(L(Ee(.5),ht(u)),L(l,d));return Lr(p,i,r)}var t$=W({huberLoss_:e$});function n$(e,t,n,s=1e-7,r=_n.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","logLoss"),o=R(t,"predictions","logLoss"),i=null;n!=null&&(i=R(n,"weights","logLoss")),Nn(a.shape,o.shape,"Error in logLoss: ");let l=Ee(1),c=Ee(s),u=St(L(a,rs(le(o,c)))),d=L(be(l,a),rs(le(be(l,o),c))),p=be(u,d);return Lr(p,i,r)}var s$=W({logLoss_:n$});function r$(e,t,n,s=_n.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"labels","meanSquaredError"),a=R(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=R(n,"weights","meanSquaredError")),Nn(r.shape,a.shape,"Error in meanSquaredError: ");let i=nf(r,a);return Lr(i,o,s)}var a$=W({meanSquaredError_:r$});function o$(e,t){let n=R(e,"labels","sigmoidCrossEntropyWithLogits"),s=R(t,"logits","sigmoidCrossEntropyWithLogits");Nn(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Zs(s),a=L(s,n),o=Xc(ss(St(Vt(s))));return le(be(r,a),o)}function i$(e,t,n,s=0,r=_n.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"multiClassLabels","sigmoidCrossEntropy"),o=R(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=R(n,"weights","sigmoidCrossEntropy")),Nn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let c=Ee(s),u=Ee(1),d=Ee(.5);a=le(L(a,be(u,c)),L(d,c))}let l=o$(a,o);return Lr(l,i,r)}var l$=W({sigmoidCrossEntropy_:i$});function u$(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return yr((r,a,o)=>{let l=WA(a,[n],!0),c=be(de(a,"float32"),l);o([r,c]);let u=St(L(c,r));return{value:Ie(u,[n]),gradFunc:(h,f)=>{let[m,g]=f,A=li(h.shape,[n]);return[L(V(h,A),be(de(m,"float32"),ss(g))),L(V(h,A),be(ss(g),de(m,"float32")))]}}})(e,t)}function c$(e,t,n,s=0,r=_n.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"onehotLabels","softmaxCrossEntropy"),o=R(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=R(n,"weights","softmaxCrossEntropy")),Nn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let c=Ee(s),u=Ee(1),d=Ee(a.shape[1]);a=le(L(a,be(u,c)),fe(c,d))}let l=u$(a,o);return Lr(l,i,r)}var d$=W({softmaxCrossEntropy_:c$});function p$(e,t,n,s){let r=R(e,"indices","sparseFillEmptyRows"),a=R(t,"values","sparseFillEmptyRows"),o=R(n,"denseShape","sparseFillEmptyRows"),i=R(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},c=B.runKernel(hh,l);return{outputIndices:c[0],outputValues:c[1],emptyRowIndicator:c[2],reverseIndexMap:c[3]}}var h$=W({sparseFillEmptyRows_:p$});function f$(e,t,n){let s=R(e,"inputIndices","sparseReshape"),r=R(t,"inputShape","sparseReshape"),a=R(n,"newShape","sparseReshape");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=B.runKernel(fh,o);return{outputIndices:i[0],outputShape:i[1]}}var m$=W({sparseReshape_:f$});function g$(e,t,n){let s=R(e,"data","sparseSegmentMean"),r=R(t,"indices","sparseSegmentMean"),a=R(n,"segmentIds","sparseSegmentMean");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return B.runKernel(mh,o)}var A$=W({sparseSegmentMean_:g$});function y$(e,t,n){let s=R(e,"data","sparseSegmentSum"),r=R(t,"indices","sparseSegmentSum"),a=R(n,"segmentIds","sparseSegmentSum");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return B.runKernel(gh,o)}var x$=W({sparseSegmentSum_:y$});function b$(e,t,n,s,r,a,o,i){let l=R(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let c=R(t,"dataSplits","stringNGrams");if(c.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let u={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:c},p=B.runKernel(yh,d,u);return{nGrams:p[0],nGramsSplits:p[1]}}var v$=W({stringNGrams_:b$});function w$(e,t,n=!0){let s=R(e,"input","stringSplit","string"),r=R(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=B.runKernel(xh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var k$=W({stringSplit_:w$});function I$(e,t){let n=R(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return B.runKernel(bh,r,s)}var S$=W({stringToHashBucketFast_:I$}),C$={fft:nd,ifft:hu,rfft:sd,irfft:tf},T$={hammingWindow:sF,hannWindow:B3,frame:W3,stft:iF},_e={flipLeftRight:dF,grayscaleToRGB:hF,resizeNearestNeighbor:q3,resizeBilinear:j3,rotateWithOffset:mF,cropAndResize:uF,nonMaxSuppression:AF,nonMaxSuppressionAsync:SF,nonMaxSuppressionWithScore:TF,nonMaxSuppressionWithScoreAsync:EF,nonMaxSuppressionPadded:DF,nonMaxSuppressionPaddedAsync:FF,threshold:zF,transform:BF},K3={bandPart:VF,gramSchmidt:GF,qr:jF},N$={absoluteDifference:KF,computeWeightedLoss:Lr,cosineDistance:YF,hingeLoss:QF,huberLoss:t$,logLoss:s$,meanSquaredError:a$,sigmoidCrossEntropy:l$,softmaxCrossEntropy:d$},rd={sparseFillEmptyRows:h$,sparseReshape:m$,sparseSegmentMean:A$,sparseSegmentSum:x$},df={stringNGrams:v$,stringSplit:k$,stringToHashBucketFast:S$},Br=class extends Zb{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return Z(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return b3(e,t)}dispose(){this.iterations_!=null&&Z(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ee(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Br,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var pf=class extends Br{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:G(()=>Ze(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:G(()=>Ze(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;G(()=>{let c=le(L(i,this.rho),L(ht(o),1-this.rho)),u=L(fe(gn(le(l,this.epsilon)),gn(le(i,this.epsilon))),o),d=le(L(l,this.rho),L(ht(u),1-this.rho));i.assign(c),l.assign(d);let p=le(L(u,-this.learningRate),r);r.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Z(this.accumulatedGrads.map(e=>e.variable)),Z(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};pf.className="Adadelta";ga(pf);var hf=class extends Br{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n];if(this.accumulatedGrads[s]==null){let i=!1;this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:G(()=>iu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;G(()=>{let i=le(o,ht(a));o.assign(i);let l=le(L(fe(a,gn(le(i,B.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Z(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};hf.className="Adagrad";ga(hf);var ff=class extends Br{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],G(()=>{this.accBeta1=Ee(t).variable(),this.accBeta2=Ee(n).variable()}),s==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);G(()=>{let n=be(1,this.accBeta1),s=be(1,this.accBeta2);t.forEach((r,a)=>{let o=B.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:G(()=>Ze(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:G(()=>Ze(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedSecondMoment[a].variable,d=le(L(c,this.beta1),L(l,1-this.beta1)),p=le(L(u,this.beta2),L(ht(l),1-this.beta2)),h=fe(d,n),f=fe(p,s);c.assign(d),u.assign(p);let m=le(L(fe(h,le(gn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Z(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Z(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),G(()=>{this.accBeta1.assign(zr(this.beta1,this.iterations_+1)),this.accBeta2.assign(zr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};ff.className="Adam";ga(ff);var mf=class extends Br{constructor(e,t,n,s=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],G(()=>{this.iteration=Ee(0).variable(),this.accBeta1=Ee(t).variable()}),s==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);G(()=>{let n=be(1,this.accBeta1),s=fe(-this.learningRate,le(L(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=B.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:Ze(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:Ze(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedWeightedInfNorm[a].variable,d=le(L(c,this.beta1),L(l,1-this.beta1)),p=L(u,this.beta2),h=Vt(l),f=xr(p,h);c.assign(d),u.assign(f);let m=le(L(fe(s,n),fe(d,le(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(le(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Z(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Z(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};mf.className="Adamax";ga(mf);var ad=class extends Br{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=B.registeredVariables[n];G(()=>{let o=le(L(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=on(Ee(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};ad.className="SGD";ga(ad);var gf=class extends ad{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ee(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n];if(this.accumulations[s]==null){let i=!1;this.accumulations[s]={originalName:`${n}/momentum`,variable:G(()=>Ze(r).variable(i))}}let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&G(()=>{let i,l=le(L(this.m,a),o);this.useNesterov?i=le(L(this.c,le(o,L(l,this.m))),r):i=le(L(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Z(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};gf.className="Momentum";ga(gf);var Af=class extends Br{constructor(e,t=.9,n=0,s=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=B.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:G(()=>Ze(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:G(()=>Ze(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:G(()=>Ze(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;G(()=>{let c=le(L(i,this.decay),L(ht(o),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[s].variable,d=le(L(u,this.decay),L(o,1-this.decay)),p=fe(L(o,this.learningRate),gn(be(c,le(ht(d),this.epsilon)))),h=le(L(l,this.momentum),p);i.assign(c),u.assign(d),l.assign(h);let f=be(r,h);r.assign(f)}else{let u=le(L(i,this.decay),L(ht(o),1-this.decay)),d=le(L(l,this.momentum),fe(L(o,this.learningRate),gn(le(u,this.epsilon))));i.assign(u),l.assign(d);let p=be(r,d);r.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Z(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Z(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Z(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Af.className="RMSProp";ga(Af);var va=class{static sgd(e){return new ad(e)}static momentum(e,t,n=!1){return new gf(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new Af(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new ff(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new pf(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new mf(e,t,n,s,r)}static adagrad(e,t=.1){return new hf(e,t)}},di={sgd:va.sgd,momentum:va.momentum,adadelta:va.adadelta,adagrad:va.adagrad,rmsprop:va.rmsprop,adamax:va.adamax,adam:va.adam},E$=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Z3(){return new Promise(e=>E$(()=>e()))}var E={};ze(E,{ERF_A1:()=>B$,ERF_A2:()=>W$,ERF_A3:()=>V$,ERF_A4:()=>U$,ERF_A5:()=>G$,ERF_P:()=>L$,PARALLELIZE_THRESHOLD:()=>o1,SELU_SCALE:()=>J3,SELU_SCALEALPHA:()=>Y3,applyActivation:()=>uf,assertAndGetBroadcastShape:()=>xt,assertAxesAreInnerMostDims:()=>HR,assertParamsConsistent:()=>R$,assignToTypedArray:()=>Z$,axesAreInnerMostDims:()=>LA,calculateShapes:()=>Lb,checkEinsumDimSizes:()=>nO,combineLocations:()=>w3,complexWithEvenIndex:()=>q$,complexWithOddIndex:()=>X$,computeConv2DInfo:()=>Uc,computeConv3DInfo:()=>s3,computeDefaultPad:()=>IA,computeDilation2DInfo:()=>fE,computeOptimalWindowSize:()=>_$,computeOutAndReduceShapes:()=>k3,computeOutShape:()=>D$,computePool2DInfo:()=>n3,computePool3DInfo:()=>mE,convertConv2DDataFormat:()=>r3,decodeEinsumEquation:()=>eO,eitherStridesOrDilationsAreOne:()=>Ar,expandShapeToKeepDim:()=>li,exponent:()=>J$,exponents:()=>Y$,fromStringArrayToUint8:()=>dO,fromUint8ToStringArray:()=>cO,getAxesPermutation:()=>I3,getBroadcastDims:()=>oR,getComplexWithIndex:()=>K$,getEinsumComputePath:()=>sO,getEinsumPermutation:()=>tO,getFusedBiasGradient:()=>lf,getFusedDyActivation:()=>of,getImageCenter:()=>F$,getInnerMostAxes:()=>jR,getPermuted:()=>O$,getReductionAxes:()=>Jt,getReshaped:()=>$$,getReshapedPermuted:()=>P$,getSliceBeginCoords:()=>M$,getSliceSize:()=>z$,getUndoAxesPermutation:()=>BA,isIdentityPermutation:()=>rO,log:()=>MT,mergeRealAndImagArrays:()=>H$,prepareAndValidate:()=>zb,prepareSplitSize:()=>oO,segment_util:()=>tv,shouldFuse:()=>cf,slice_util:()=>Yt,splitRealAndImagArrays:()=>j$,tupleValuesAreOne:()=>Aa,upcastType:()=>$s,validateInput:()=>uA,validateUpdateShape:()=>lA,warn:()=>pr});function R$(e,t){let n=e[0].length;e.forEach((r,a)=>{O(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),O(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)O(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function D$(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var o1=30;function _$(e){return e<=o1?e:Mp(e,Math.floor(Math.sqrt(e)))}function F$(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function $$(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function O$(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2==1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function P$(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function M$(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function z$(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var Y3=1.7580993408473768,J3=1.0507009873554805,L$=.3275911,B$=.254829592,W$=-.284496736,V$=1.421413741,U$=-1.453152027,G$=1.061405429;function H$(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function j$(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function q$(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function X$(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function K$(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function Z$(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function Y$(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function J$(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var i1="->",Q$=/->/g,Q3=",",ev="...";function eO(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(Q$,"").length)/i1.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${i1}").`);let[s,r]=e.split(i1);O(s.indexOf(ev)===-1,()=>`The ellipsis notation ("${ev}") is not supported yet.`);let a=s.split(Q3),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let p=0;p<r.length;++p){let h=r[p];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let p=0;p<s.length;++p){let h=s[p];i.indexOf(h)===-1&&h!==Q3&&i.push(h)}let l=new Array(a.length);for(let p=0;p<o;++p){if(new Set(a[p].split("")).size!==a[p].length)throw new Error(`Found duplicate axes in input component ${a[p]}. Support for duplicate axes in input is not implemented yet.`);l[p]=[];for(let h=0;h<a[p].length;++h)l[p].push(i.indexOf(a[p][h]))}let c=i.length,u=r.length,d=[];for(let p=u;p<c;++p)d.push(p);return{allDims:i,summedDims:d,idDims:l}}function tO(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function nO(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:O(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function sO(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=aO(t,i);for(let c of l)a.indexOf(c)===-1&&(s[o].push(c),a.push(c))}return{path:n,steps:s}}function rO(e){return e.every((t,n)=>t===n)}function aO(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function oO(e,t,n=0){let s=[];if(typeof t=="number")O(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);O(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}O(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}var tv={};ze(tv,{collectGatherOpShapeInfo:()=>uO,computeOutShape:()=>lO,segOpComputeOptimalWindowSize:()=>iO});function iO(e,t){let n=!1,s;for(e<=o1?(s=e,n=!0):s=Mp(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=Mp(e,s+1);return s}function lO(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function uO(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
|
|
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let d=0;d<s;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let o=e.shape[n],i=[],l=1,c=1,u=1;for(let d=0;d<s;++d)i.push(e.shape[d]),l*=e.shape[d];for(let d=s;d<n;d++)i.push(e.shape[d]),c*=e.shape[d];for(let d=s;d<r;d++)i.push(t.shape[d]);for(let d=n+1;d<a;d++)i.push(e.shape[d]),u*=e.shape[d];return{batchSize:l,sliceSize:u,outerSize:c,dimSize:o,outputShape:i}}function cO(e){try{return e.map(t=>Ch(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function dO(e){return e.map(t=>_c(t))}var br={};ze(br,{nonMaxSuppressionV3Impl:()=>V3,nonMaxSuppressionV4Impl:()=>U3,nonMaxSuppressionV5Impl:()=>G3,whereImpl:()=>_3});var nv={kernelName:Xi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,fu(de(n,"float32"),-1))}}},pO={kernelName:Ki,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ht(de(n,"float32")),r=gn(be(Ee(1),s));return St(fe(e,r))}}}},hO={kernelName:Zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=gn(be(ht(de(n,"float32")),1));return fe(e,s)}}}},fO={kernelName:ia,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=xt(n.shape,s.shape);return{a:()=>{let i=e,l=Jt(n.shape,r);return l.length>0&&(i=Ie(i,l)),V(i,n.shape)},b:()=>{let i=e,l=Jt(s.shape,r);return l.length>0&&(i=Ie(i,l)),V(i,s.shape)}}}},mO={kernelName:Za,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},gO={kernelName:Ya,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ze(n)}}},AO={kernelName:mc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ze(n)}}},yO={kernelName:Qi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,gn(be(Ee(1),ht(de(n,"float32")))))}}},xO={kernelName:el,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=gn(le(Ee(1),ht(de(n,"float32"))));return fe(e,s)}}}},bO={kernelName:sl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=xt(n.shape,s.shape);return{a:()=>{let i=le(ht(n),ht(s)),l=L(e,fe(s,i)),c=Jt(n.shape,r);return c.length>0&&(l=Ie(l,c)),V(l,n.shape)},b:()=>{let i=le(ht(n),ht(s)),l=St(L(e,fe(n,i))),c=Jt(s.shape,r);return c.length>0&&(l=Ie(l,c)),V(l,s.shape)}}}},vO={kernelName:tl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,le(ht(de(n,"float32")),1))}}},wO={kernelName:nl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,be(Ee(1),ht(de(n,"float32"))))}}};function kO(e,t,n,s,r,a){let o=R(e,"dy","avgPool3dGrad"),i=R(t,"input","avgPool3dGrad"),l=o,c=i,u=!1;i.rank===4&&(u=!0,l=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),c=V(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),O(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),O(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),a!=null&&O(rn(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let d={dy:l,input:c},p={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=B.runKernel(Bp,d,p);return u?V(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var IO=W({avgPool3dGrad_:kO}),SO={kernelName:gc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>IO(e,s,r,a,o,i)}}};function CO(e,t,n,s,r){let a=R(e,"dy","avgPoolGrad"),o=R(t,"input","avgPoolGrad");O(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,c=!1;o.rank===3&&(c=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),O(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let u={dy:l,input:i},d={filterSize:n,strides:s,pad:r},p=B.runKernel(Lp,u,d);return c?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var TO=W({avgPoolGrad_:CO}),NO={kernelName:Ja,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>TO(e,s,r,a,o)}}},EO={kernelName:Qa,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>Ve(e,r,!1,!0),b:()=>Ve(s,e,!0,!1)}:!a&&o?{a:()=>Ve(e,r,!1,!1),b:()=>Ve(e,s,!0,!1)}:a&&!o?{a:()=>Ve(r,e,!1,!0),b:()=>Ve(s,e,!1,!1)}:{a:()=>Ve(r,e,!0,!0),b:()=>Ve(e,s,!0,!0)}}},RO={kernelName:rl,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>Jc(e,s,r)}}},DO={kernelName:tb,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>Ie(e,i,!0)}}},_O={kernelName:eo,gradFunc:e=>({x:()=>e.clone()})},FO={kernelName:to,gradFunc:e=>({x:()=>Ze(e)})},$O={kernelName:la,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>Sn(Ps(ya(s,r),xa(s,a)),e,Ze(e))}}},OO={kernelName:Ac,inputsToSave:["x"],gradFunc:nv.gradFunc},PO={kernelName:al,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=Fs(r,t[0].shape)[0],o=s.map(l=>l[a]);return ln(e,o,a).map(l=>()=>l)}},MO={kernelName:no,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return O(Aa(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>EA(s.shape,e,r,o,i,l),filter:()=>r1(s,e,r.shape,o,i,l)}}},zO={kernelName:so,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>Mr(e,r,a,o,i,1,l),filter:()=>r1(e,s,r.shape,a,o,i,l)}}};function LO(e,t,n,s,r){let a=e;e.rank===4&&(a=V(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=V(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),O(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),O(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),O(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),O(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),O(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return B.runKernel(Hp,i,l)}var BO=W({conv3DBackpropFilter_:LO}),WO={kernelName:yc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;O(Aa(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>p3(o.shape,e,i,r,a),filter:()=>BO(o,e,i.shape,r,a)}}},VO={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(St(Jh(de(n,"float32"))),e)}}},UO={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Qh(de(n,"float32")),e)}}},GO={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=I3([r],s.rank),l=Bh(e,r,a,!o);return i!=null&&(l=Ke(l,i)),l}}}},HO={kernelName:io,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s??[1,1];O(Aa(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,c]=t;return O(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),O(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),O(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),O(Ar(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),o!=null&&O(rn(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>L3(l.shape,e,c,r,a,i,o),filter:()=>z3(l,e,c.shape,r,a,i,o)}}},jO={kernelName:xc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>B.runKernel(Yp,a,n),filter:()=>B.runKernel(Jp,o,n)}}},qO={kernelName:uo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>B.runKernel(eh,s)}}},XO={kernelName:ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(ss(St(ht(n))),2/Math.sqrt(Math.PI));return{x:()=>L(e,s)}}},KO={kernelName:co,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,n)}}},ZO={kernelName:cl,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>V(e,n.shape)}}},YO={kernelName:dl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,ss(n))}}},JO={kernelName:po,gradFunc:e=>({x:()=>Ze(e)})},QO={kernelName:ho,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=xt(n.shape,s.shape);return{a:()=>{let i=fe(e,de(s,"float32")),l=Jt(n.shape,r);return l.length>0?V(Ie(i,l),n.shape):i},b:()=>{let i=L(e,de(n,"float32")),l=Jt(s.shape,r);l.length>0&&(i=V(Ie(i,l),s.shape));let c=ht(s);return St(fe(i,de(c,"float32")))}}}},eP={kernelName:fo,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i??Ee(1),c=Jt(a.shape,r.shape),u=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)u.push(r.shape[b]);u.push(1)}let d=be(r,a),p=L(e,l),h=Zh(le(o,Ee(s))),f=L(L(L(h,h),h),Ee(-.5));return{x:()=>a.rank===1?V(L(L(e,bs(V(h,[1,1,1,a.shape[0]]),u)),l),r.shape):V(L(L(e,h),l),r.shape),mean:()=>{let b=L(L(h,Ee(-1)),p);return a.rank===1&&(b=Ie(b,c)),V(b,a.shape)},variance:()=>{let b=L(L(f,d),p);return a.rank===1&&(b=Ie(b,c)),V(b,a.shape)},scale:()=>{let b=L(d,h),v=L(e,b);return a.rank===1&&(v=Ie(v,c)),V(v,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=Ie(b,c)),V(b,a.shape)}}}},tP={kernelName:hl,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=Fs(a,s.shape)[0];return{x:()=>{let l=s.shape,c=r.size,u=l.slice(0,o),d=u.length,p=l.slice(a,l.length).slice(1),h=p.length,f=sv(0,d),m=sv(d+1,d+1+h),g=rv([u,[c],p]),A=V(e,g),x=V(r,[c]),y=rv([[d],f,m]),b=Ke(A,y),v=e1(b,x,s.shape[o]),S=BA(y);return v=Ke(v,S),v},indices:()=>r}}};function sv(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function rv(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var nP={kernelName:mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>Ze(n),b:()=>Ze(s)}}},sP={kernelName:go,gradFunc:e=>({x:()=>de(e,"float32")})},rP={kernelName:gl,gradFunc:e=>({x:()=>Ze(e)})},aP={kernelName:Al,gradFunc:e=>({x:()=>Ze(e)})},oP={kernelName:yl,gradFunc:e=>({x:()=>Ze(e)})},iP={kernelName:Ao,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=qn(s,0);return{x:()=>Sn(a,e,L(e,r))}}},lP={kernelName:vl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,le(n,1))}}},uP={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,de(n,"float32"))}}},cP={kernelName:nb,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let a=!0,o=ss(s);return be(e,L(Ie(e,r,a),o))}}}};function dP(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return B.runKernel(ah,i,l)}var pP=W({localResponseNormalizationBackprop_:dP}),hP={kernelName:kc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>pP(s,r,e,a,o,i,l)}}};function av(e,t,n,s){return t.rank<n.rank&&(t=V(t,li(t.shape,s))),e.rank<n.rank&&(e=V(e,li(e.shape,s))),{x:()=>L(e,de(ns(n,t),e.dtype))}}var ov={kernelName:xo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=Fs(r,a.shape),l=av(e,o,a,i);return{x:()=>l.x()}}},fP={kernelName:bo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,de(ya(n,s),"float32")),b:()=>L(e,de(Vh(n,s),"float32"))}}};function mP(e,t,n,s,r,a,o){let i=R(e,"dy","maxPool3dGrad"),l=R(t,"input","maxPool3dGrad"),c=R(n,"output","maxPool3dGrad"),u=i,d=l,p=c,h=!1;l.rank===4&&(h=!0,u=V(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=V(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),p=V(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),O(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),O(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),O(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),o!=null&&O(rn(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let f={dy:u,input:d,output:p},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=B.runKernel(ih,f,m);return h?V(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var gP=W({maxPool3dGrad_:mP}),AP={kernelName:Ic,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>gP(e,s,r,a,o,i,l)}}};function yP(e,t,n,s,r,a,o){let i=R(e,"dy","maxPoolGrad"),l=R(t,"input","maxPoolGrad"),c=R(n,"output","maxPoolGrad");O(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),O(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),O(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),o!=null&&O(rn(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let u={dy:i,input:l,output:c},d={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return B.runKernel(oh,u,d)}var xP=W({maxPoolGrad_:yP}),bP={kernelName:vo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>xP(e,s,r,a,o,i)}}},vP={kernelName:wo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=Fs(r,s.shape),i=k3(s.shape,a)[1],l=Mt(i);return{x:()=>{let u=s.shape.slice();a.forEach(h=>{u[h]=1});let d=V(e,u);return fe(L(d,as(s.shape,"float32")),l)}}}},wP={kernelName:ko,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=Fs(r,a.shape),l=av(e,o,a,i);return{x:()=>l.x()}}},kP={kernelName:Io,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,de(xa(n,s),"float32")),b:()=>L(e,de(qn(n,s),"float32"))}}},IP={kernelName:So,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Fe(e,a,s.shape)}}},SP={kernelName:kl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=xt(n.shape,s.shape);return{a:()=>{let i=Jt(n.shape,r);return i.length>0?V(Ie(e,i),n.shape):e},b:()=>{let i=L(e,St(lu(fe(n,s)))),l=Jt(s.shape,r);return l.length>0?V(Ie(i,l),s.shape):i}}}},CP={kernelName:Co,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=xt(n.shape,s.shape);return{a:()=>{let i=L(e,de(s,"float32")),l=Jt(n.shape,r);return l.length>0?V(Ie(i,l),n.shape):i},b:()=>{let i=L(e,de(n,"float32")),l=Jt(s.shape,r);return l.length>0?V(Ie(i,l),s.shape):i}}}},TP={kernelName:Il,gradFunc:e=>({x:()=>St(e)})},NP={kernelName:To,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Ut(n.shape,"float32")}}},EP={kernelName:El,gradFunc:e=>({x:()=>Ze(e)})},RP={kernelName:Rl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return Dn(e,s).map(a=>()=>a)}},iv={kernelName:No,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Fe(e,a,s.shape)}}},DP={kernelName:Eo,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=xt(a.shape,o.shape);return{a:()=>{let u=de(o,"float32"),d=L(e,L(u,zr(a,be(u,Ee(1))))),p=Jt(a.shape,i);return p.length>0&&(d=Ie(d,p)),V(d,a.shape)},b:()=>{let u=qn(a,0),d=Sn(u,rs(a),Ze(a)),p=L(e,L(r,d)),h=Jt(o.shape,i);return h.length>0&&(p=Ie(p,h)),V(p,o.shape)}}}},_P={kernelName:Ro,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=qn(n,0);return{x:()=>Sn(r,e,L(e,s)),alpha:()=>{let a=Sn(r,Ze(e),L(e,n)),o=Jt(s.shape,e.shape);return o.length>0&&(a=Ie(a,o)),V(a,s.shape)}}}},FP={kernelName:lo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=xt(n.shape,s.shape);return{a:()=>{let i=fe(e,de(s,"float32")),l=Jt(n.shape,r);return l.length>0?V(Ie(i,l),n.shape):i},b:()=>{let i=L(e,de(n,"float32")),l=Jt(s.shape,r);l.length>0&&(i=V(Ie(i,l),s.shape));let c=ht(s);return St(fe(i,de(c,"float32")))}}}},$P={kernelName:_l,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,St(ht(n)))}}},OP={kernelName:Fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(xa(n,6),fu(n));return{x:()=>L(e,de(s,"float32"))}}},PP={kernelName:Do,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,de(fu(n),"float32"))}}},MP={kernelName:Fl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,n.shape)}}},zP={kernelName:_o,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>B.runKernel(ph,r,n)}}},LP={kernelName:Cc,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>B.runKernel(dh,r,n)}}},BP={kernelName:$o,gradFunc:(e,t,n)=>{let{dims:s}=n,r=Fs(s,e.shape);return{x:()=>is(e,r)}}},WP={kernelName:Oo,gradFunc:e=>({x:()=>Ze(e)})},VP={kernelName:Po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>St(fe(e,L(zr(n,1.5),2)))}}},UP={kernelName:Ol,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>de(Ze(n),"float32"),t:()=>L(e,de(n,e.dtype)),e:()=>L(e,de(Kc(n),e.dtype))}}},GP={kernelName:Pl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=qn(n,Ee(0)),r=Ee(Y3),a=Ee(J3),o=L(e,a),i=L(L(e,r),ss(de(n,"float32")));return Sn(s,o,i)}}}},HP={kernelName:zo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(n,be(Ee(1),n)))}}},jP={kernelName:Ll,gradFunc:e=>({x:()=>Ze(e)})},qP={kernelName:Mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(jc(de(n,"float32")),e)}}},XP={kernelName:zl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Lh(de(n,"float32")),e)}}},KP={kernelName:Ml,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=Xb(s,r,a),c=[];for(let u=0;u<e.rank;u++)c.push([i[u],o[u]-i[u]-l[u]]);return{x:()=>vs(e,c)}}},ZP={kernelName:Wo,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=L(e,s);return{logits:()=>be(o,L(Ie(o,[r],a),s))}}},YP={kernelName:Bl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Hn(n))}}},lv={kernelName:Wl,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>Hc(e,s,r)}}},uv={kernelName:Vl,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>mt(e,s)}}},JP={kernelName:Lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,L(gn(de(n,"float32")),2))}}},QP={kernelName:Tc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(de(n,"float32"),2))}}},eM={kernelName:Vo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Ee(2);return{a:()=>L(e,L(r,be(n,s))),b:()=>L(e,L(r,be(s,n)))}}},tM={kernelName:ca,gradFunc:e=>({x:()=>Ze(e)})},nM={kernelName:Uo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=xt(n.shape,s.shape);return{a:()=>{let i=e,l=Jt(n.shape,r);return l.length>0&&(i=Ie(i,l)),V(i,n.shape)},b:()=>{let i=e,l=Jt(s.shape,r);return l.length>0&&(i=Ie(i,l)),V(St(i),s.shape)}}}},sM={kernelName:Bo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;Fs(a,s.shape).forEach(c=>{r[c]=1});let i=V(e,r),l=L(i,as(s.shape,"float32"));return{x:()=>l}}},rM={kernelName:Go,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ht(jc(n)))}}},aM={kernelName:Ho,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(be(Ee(1),ht(n)),e)}}},oM={kernelName:ua,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=Ze(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=le(o,Fe(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=le(o,Fe(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let c=0;c<r[2];++c)o=le(o,Fe(e,[i*s.shape[0],l*s.shape[1],c*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let c=0;c<r[2];++c)for(let u=0;u<r[3];++u)o=le(o,Fe(e,[i*s.shape[0],l*s.shape[1],c*s.shape[2],u*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},iM={kernelName:jo,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=BA(r);return{x:()=>Ke(e,a)}}},lM={kernelName:jl,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>An(e,r)}}},uM={kernelName:Nc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>cM(e,n)}}};function cM(e,t){let n=xr(t,Ze(t)),s=oi(e,n),r=ya(t,Ee(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=Lt(r,i+1);r=Ps(r,as(s.shape,"bool"));let o=Ze(s);return Sn(r,s,o)}var dM={kernelName:ql,gradFunc:e=>({x:()=>Ze(e)})},pM=[nv,pO,hO,fO,mO,gO,AO,yO,xO,bO,vO,wO,SO,NO,EO,RO,DO,_O,FO,$O,OO,PO,zO,MO,WO,VO,UO,GO,HO,jO,FP,qO,XO,KO,ZO,YO,QO,JO,eP,tP,nP,sP,rP,aP,oP,iP,lP,uP,cP,hP,ov,ov,fP,AP,bP,vP,wP,kP,IP,SP,CP,TP,NP,EP,RP,iv,iv,DP,_P,$P,OP,PP,MP,zP,LP,BP,WP,VP,UP,GP,HP,jP,qP,XP,KP,ZP,YP,lv,lv,uv,uv,JP,eM,QP,tM,nM,sM,rM,aM,oM,iM,lM,uM,dM];for(let e of pM)sb(e);Q().prototype.abs=function(){return this.throwIfDisposed(),Vt(this)};Q().prototype.acos=function(){return this.throwIfDisposed(),gA(this)};Q().prototype.acosh=function(){return this.throwIfDisposed(),AA(this)};Q().prototype.add=function(e){return this.throwIfDisposed(),le(this,e)};Q().prototype.all=function(e,t){return this.throwIfDisposed(),Oh(this,e,t)};Q().prototype.any=function(e,t){return this.throwIfDisposed(),Vc(this,e,t)};Q().prototype.argMax=function(e){return this.throwIfDisposed(),xs(this,e)};Q().prototype.argMin=function(e){return this.throwIfDisposed(),yA(this,e)};Q().prototype.asScalar=function(){return this.throwIfDisposed(),O(this.size===1,()=>"The array must have only 1 element."),V(this,[])};Q().prototype.asType=function(e){return this.throwIfDisposed(),de(this,e)};Q().prototype.as1D=function(){return this.throwIfDisposed(),V(this,[this.size])};Q().prototype.as2D=function(e,t){return this.throwIfDisposed(),V(this,[e,t])};Q().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),V(this,[e,t,n])};Q().prototype.as4D=function(e,t,n,s){return this.throwIfDisposed(),V(this,[e,t,n,s])};Q().prototype.as5D=function(e,t,n,s,r){return this.throwIfDisposed(),V(this,[e,t,n,s,r])};Q().prototype.asin=function(){return this.throwIfDisposed(),xA(this)};Q().prototype.asinh=function(){return this.throwIfDisposed(),bA(this)};Q().prototype.atan=function(){return this.throwIfDisposed(),vA(this)};Q().prototype.atan2=function(e){return this.throwIfDisposed(),wA(this,e)};Q().prototype.atanh=function(){return this.throwIfDisposed(),kA(this)};Q().prototype.avgPool=function(e,t,n,s){return this.throwIfDisposed(),Gc(this,e,t,n,s)};Q().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Hc(this,e,t)};Q().prototype.batchNorm=function(e,t,n,s,r){return this.throwIfDisposed(),ai(this,e,t,n,s,r)};Q().prototype.broadcastTo=function(e){return this.throwIfDisposed(),su(this,e)};Q().prototype.cast=function(e){return this.throwIfDisposed(),de(this,e)};Q().prototype.ceil=function(){return this.throwIfDisposed(),NA(this)};Q().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),jn(this,e,t)};Q().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ge&&(e=[e]),mt([this,...e],t)};Q().prototype.conv1d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Mh(this,e,t,n,s,r,a)};Q().prototype.conv2dTranspose=function(e,t,n,s,r){return this.throwIfDisposed(),zh(this,e,t,n,s,r)};Q().prototype.conv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Mr(this,e,t,n,s,r,a)};Q().prototype.cos=function(){return this.throwIfDisposed(),jc(this)};Q().prototype.cosh=function(){return this.throwIfDisposed(),Lh(this)};Q().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Bh(this,e,t,n)};Q().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),DA(this,e,t)};Q().prototype.depthwiseConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),au(this,e,t,n,s,r,a)};Q().prototype.dilation2d=function(e,t,n,s,r){return this.throwIfDisposed(),_A(this,e,t,n,s,r)};Q().prototype.divNoNan=function(e){return this.throwIfDisposed(),FA(this,e)};Q().prototype.div=function(e){return this.throwIfDisposed(),fe(this,e)};Q().prototype.dot=function(e){return this.throwIfDisposed(),m3(this,e)};Q().prototype.elu=function(){return this.throwIfDisposed(),ou(this)};Q().prototype.equal=function(e){return this.throwIfDisposed(),ns(this,e)};Q().prototype.erf=function(){return this.throwIfDisposed(),$A(this)};Q().prototype.exp=function(){return this.throwIfDisposed(),ss(this)};Q().prototype.expandDims=function(e){return this.throwIfDisposed(),Lt(this,e)};Q().prototype.expm1=function(){return this.throwIfDisposed(),OA(this)};Q().prototype.fft=function(){return this.throwIfDisposed(),nd(this)};Q().prototype.flatten=function(){return this.throwIfDisposed(),V(this,[this.size])};Q().prototype.floor=function(){return this.throwIfDisposed(),lu(this)};Q().prototype.floorDiv=function(e){return this.throwIfDisposed(),Fh(this,e)};Q().prototype.gather=function(e,t){return this.throwIfDisposed(),oi(this,e,t)};Q().prototype.greaterEqual=function(e){return this.throwIfDisposed(),ya(this,e)};Q().prototype.greater=function(e){return this.throwIfDisposed(),qn(this,e)};Q().prototype.ifft=function(){return this.throwIfDisposed(),hu(this)};Q().prototype.irfft=function(){return this.throwIfDisposed(),tf(this)};Q().prototype.isFinite=function(){return this.throwIfDisposed(),A3(this)};Q().prototype.isInf=function(){return this.throwIfDisposed(),y3(this)};Q().prototype.isNaN=function(){return this.throwIfDisposed(),MA(this)};Q().prototype.leakyRelu=function(e){return this.throwIfDisposed(),qc(this,e)};Q().prototype.lessEqual=function(e){return this.throwIfDisposed(),xa(this,e)};Q().prototype.less=function(e){return this.throwIfDisposed(),Vh(this,e)};Q().prototype.localResponseNormalization=function(e,t,n,s){return this.throwIfDisposed(),zA(this,e,t,n,s)};Q().prototype.logSigmoid=function(){return this.throwIfDisposed(),v3(this)};Q().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Gh(this,e)};Q().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),WA(this,e,t)};Q().prototype.log=function(){return this.throwIfDisposed(),rs(this)};Q().prototype.log1p=function(){return this.throwIfDisposed(),Xc(this)};Q().prototype.logicalAnd=function(e){return this.throwIfDisposed(),Ps(this,e)};Q().prototype.logicalNot=function(){return this.throwIfDisposed(),Kc(this)};Q().prototype.logicalOr=function(e){return this.throwIfDisposed(),Hh(this,e)};Q().prototype.logicalXor=function(e){return this.throwIfDisposed(),S3(this,e)};Q().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ve(this,e,t,n)};Q().prototype.maxPool=function(e,t,n,s){return this.throwIfDisposed(),Zc(this,e,t,n,s)};Q().prototype.max=function(e,t){return this.throwIfDisposed(),Rn(this,e,t)};Q().prototype.maximum=function(e){return this.throwIfDisposed(),xr(this,e)};Q().prototype.mean=function(e,t){return this.throwIfDisposed(),_t(this,e,t)};Q().prototype.min=function(e,t){return this.throwIfDisposed(),Yc(this,e,t)};Q().prototype.minimum=function(e){return this.throwIfDisposed(),uu(this,e)};Q().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),UA(this,e,t)};Q().prototype.mod=function(e){return this.throwIfDisposed(),GA(this,e)};Q().prototype.mul=function(e){return this.throwIfDisposed(),L(this,e)};Q().prototype.neg=function(){return this.throwIfDisposed(),St(this)};Q().prototype.norm=function(e,t,n){return this.throwIfDisposed(),af(this,e,t,n)};Q().prototype.notEqual=function(e){return this.throwIfDisposed(),ui(this,e)};Q().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),eu(this,e,t,n)};Q().prototype.onesLike=function(){return this.throwIfDisposed(),os(this)};Q().prototype.pad=function(e,t){return this.throwIfDisposed(),vs(this,e,t)};Q().prototype.pool=function(e,t,n,s,r){return this.throwIfDisposed(),N3(this,e,t,n,s,r)};Q().prototype.pow=function(e){return this.throwIfDisposed(),zr(this,e)};Q().prototype.prelu=function(e){return this.throwIfDisposed(),Qc(this,e)};Q().prototype.prod=function(e,t){return this.throwIfDisposed(),qh(this,e,t)};Q().prototype.reciprocal=function(){return this.throwIfDisposed(),qA(this)};Q().prototype.relu=function(){return this.throwIfDisposed(),Zs(this)};Q().prototype.relu6=function(){return this.throwIfDisposed(),Xh(this)};Q().prototype.reshapeAs=function(e){return this.throwIfDisposed(),V(this,e.shape)};Q().prototype.reshape=function(e){return this.throwIfDisposed(),V(this,e)};Q().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),j3(this,e,t,n)};Q().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),q3(this,e,t,n)};Q().prototype.reverse=function(e){return this.throwIfDisposed(),is(this,e)};Q().prototype.rfft=function(){return this.throwIfDisposed(),sd(this)};Q().prototype.round=function(){return this.throwIfDisposed(),Kh(this)};Q().prototype.rsqrt=function(){return this.throwIfDisposed(),Zh(this)};Q().prototype.selu=function(){return this.throwIfDisposed(),Yh(this)};Q().prototype.separableConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),XA(this,e,t,n,s,r,a)};Q().prototype.sigmoid=function(){return this.throwIfDisposed(),Hn(this)};Q().prototype.sign=function(){return this.throwIfDisposed(),KA(this)};Q().prototype.sin=function(){return this.throwIfDisposed(),Jh(this)};Q().prototype.sinh=function(){return this.throwIfDisposed(),Qh(this)};Q().prototype.slice=function(e,t){return this.throwIfDisposed(),Fe(this,e,t)};Q().prototype.softmax=function(e){return this.throwIfDisposed(),ci(this,e)};Q().prototype.softplus=function(){return this.throwIfDisposed(),ii(this)};Q().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Jc(this,e,t)};Q().prototype.split=function(e,t){return this.throwIfDisposed(),ln(this,e,t)};Q().prototype.sqrt=function(){return this.throwIfDisposed(),gn(this)};Q().prototype.square=function(){return this.throwIfDisposed(),ht(this)};Q().prototype.squaredDifference=function(e){return this.throwIfDisposed(),nf(this,e)};Q().prototype.squeeze=function(e){return this.throwIfDisposed(),rt(this,e)};Q().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ge?[this,e]:[this,...e];return An(n,t)};Q().prototype.step=function(e){return this.throwIfDisposed(),fu(this,e)};Q().prototype.stridedSlice=function(e,t,n,s,r,a,o,i){return this.throwIfDisposed(),YA(this,e,t,n,s,r,a,o,i)};Q().prototype.sub=function(e){return this.throwIfDisposed(),be(this,e)};Q().prototype.sum=function(e,t){return this.throwIfDisposed(),Ie(this,e,t)};Q().prototype.tan=function(){return this.throwIfDisposed(),JA(this)};Q().prototype.tanh=function(){return this.throwIfDisposed(),ri(this)};Q().prototype.tile=function(e){return this.throwIfDisposed(),bs(this,e)};Q().prototype.toBool=function(){return this.throwIfDisposed(),de(this,"bool")};Q().prototype.toFloat=function(){return this.throwIfDisposed(),de(this,"float32")};Q().prototype.toInt=function(){return this.throwIfDisposed(),de(this,"int32")};Q().prototype.topk=function(e,t){return this.throwIfDisposed(),QA(this,e,t)};Q().prototype.transpose=function(e){return this.throwIfDisposed(),Ke(this,e)};Q().prototype.unique=function(e){return this.throwIfDisposed(),rf(this,e)};Q().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),e1(this,e,t)};Q().prototype.unstack=function(e){return this.throwIfDisposed(),Dn(this,e)};Q().prototype.where=function(e,t){return this.throwIfDisposed(),Sn(e,this,t)};Q().prototype.zerosLike=function(){return this.throwIfDisposed(),Ze(this)};var cv={};ze(cv,{maxNorm:()=>gM,minMaxNorm:()=>xM,nonNeg:()=>yM,unitNorm:()=>AM});var l1;function Qt(){return l1==null&&(l1=gr().epsilon()),l1}function Js(){return"channelsLast"}var Wr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Wr.prototype)}},Qs=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Qs.prototype)}},H=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,H.prototype)}},Me=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Me.prototype)}},dv=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,dv.prototype)}};function pi(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function vr(e,t){if(!e)throw new dv(t)}function pv(e,t){let n=0;for(let s of e)s===t&&n++;return n}function Xn(e){return e.length===1?e[0]:e}function bt(e){return Array.isArray(e)?e:[e]}function Vr(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function hi(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Ms={};function u1(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function c1(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>c1(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:c1(s))}}}function od(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in Ms)o=Ms[a];else if(o=t[a],o==null)throw new H(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new H(`${s}: Improper config format: ${JSON.stringify(a)}.
|
|
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in Ms?[i,l]=Ms.className:o in t&&([i,l]=t[o]),i==null)throw new H(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let h of Object.keys(Ms))c[h]=Ms[h];for(let h of Object.keys(n))c[h]=n[h];let u=a.config;u.customObjects=c;let d=Object.assign({},Ms);for(let h of Object.keys(n))Ms[h]=n[h];c1(a.config);let p=l(i,a.config,n,r);return Ms=Object.assign({},d),p}else{let c=Object.assign({},Ms);for(let d of Object.keys(n))Ms[d]=n[d];let u=new i(a.config);return Ms=Object.assign({},c),u}}}function hM(e,t){return e<t?-1:e>t?1:0}function yf(e,t){return-1*hM(e,t)}function wa(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function fM(e){if(e==null)throw new H(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function fi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new H(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function d1(e,t,n=0,s=1/0){return vr(n>=0),vr(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function un(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>un(n,`element ${s+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${hv(e)}.`)}function hv(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>hv(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function mM(e,t,n){let s=n!=null?n():w.now(),r;return(...o)=>{let i=n!=null?n():w.now();return i-s<t||(s=i,r=e(...o)),r}}function fv(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function p1(e,t){return G(()=>gn(Ie(L(e,e),t,!0)))}var id=class extends ue.Serializable{getConfig(){return{}}},h1=class extends id{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return G(()=>{let t=p1(e,this.axis),n=jn(t,0,this.maxValue);return L(e,fe(n,le(Qt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};h1.className="MaxNorm";ue.registerClass(h1);var f1=class extends id{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return G(()=>fe(e,le(Qt(),p1(e,this.axis))))}getConfig(){return{axis:this.axis}}};f1.className="UnitNorm";ue.registerClass(f1);var m1=class extends id{apply(e){return Zs(e)}};m1.className="NonNeg";ue.registerClass(m1);var g1=class extends id{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return G(()=>{let t=p1(e,this.axis),n=le(L(this.rate,jn(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,fe(n,le(Qt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};g1.className="MinMaxNorm";ue.registerClass(g1);var mv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function en(e){return u1(e)}function gv(e,t={}){return od(e,ue.SerializationMap.getMap().classNameMap,t,"constraint")}function tn(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in mv?mv[e]:e,config:{}};return gv(n)}else return e instanceof id?e:gv(e)}function gM(e){return new h1(e)}function AM(e){return new f1(e)}function yM(){return new m1}function xM(e){return new g1(e)}var Av={};ze(Av,{constant:()=>VM,glorotNormal:()=>KM,glorotUniform:()=>XM,heNormal:()=>ZM,heUniform:()=>YM,identity:()=>jM,leCunNormal:()=>JM,leCunUniform:()=>QM,ones:()=>WM,orthogonal:()=>ez,randomNormal:()=>GM,randomUniform:()=>UM,truncatedNormal:()=>HM,varianceScaling:()=>qM,zeros:()=>BM});var bM=["channelsFirst","channelsLast"],vM=["nearest","bilinear"],wM=["valid","same","causal"],kM=["max","avg"],IM=["sum","mul","concat","ave"],gu=new Map;function Bt(e){fi(bM,"DataFormat",e)}function SM(e){fi(vM,"InterpolationFormat",e)}function ws(e){fi(wM,"PaddingMode",e)}function yv(e){fi(kM,"PoolMode",e)}var ld=[],xv="/";function mi(e,t){ld.push(e);try{let n=t();return ld.pop(),n}catch(n){throw ld.pop(),n}}function CM(){return ld.length===0?"":ld.join(xv)+xv}function bv(e){if(!wv(e))throw new Error("Not a valid tensor name: '"+e+"'");return CM()+e}function vv(e){if(!wv(e))throw new Error("Not a valid tensor name: '"+e+"'");gu.has(e)||gu.set(e,0);let t=gu.get(e);if(gu.set(e,gu.get(e)+1),t>0){let n=`${e}_${t}`;return gu.set(n,1),n}else return e}var TM=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function wv(e){return!!e.match(TM)}function NM(e){return e===parseInt(e.toString(),10)}function ka(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function Au(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function Ia(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function er(e,t){if(t<e)throw new H(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}function xf(e,t){return de(e,t)}function ud(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),V(e,n)}function EM(e,t){return G(()=>{if(e.shape.length!==2)throw new H(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=ud(e,1);return x1(n,[1,t,1])})}function RM(e){let t=[ka(e.shape)];return V(e,t)}function DM(e){if(e.rank<=1)throw new H(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],ka(e.shape,1)];return V(e,t)}function gi(e,t,n){return G(()=>{switch(e.rank){case 1:return ef(e,t,n);case 2:return ZA(e,[t,0],[n,e.shape[1]]);case 3:return pu(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return td(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Fe(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Fe(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new H(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function A1(e,t,n){return G(()=>{switch(e.rank){case 1:return ef(e,t,n);case 2:return ZA(e,[0,t],[e.shape[0],n]);case 3:return pu(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return td(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function bf(e,t,n,s){return G(()=>{switch(e.rank){case 1:return ef(e,t,n);case 2:switch(s){case 1:return gi(e,t,n);case 2:return A1(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return gi(e,t,n);case 2:return pu(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return A1(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return gi(e,t,n);case 2:return td(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return td(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return A1(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${s}`)}default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function y1(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),mt(e,t)}function kv(e,t){switch(e.rank){case 1:return u3([e,t]);case 2:return ru([e,t],0);case 3:return c3([e,t],0);case 4:return d3([e,t],0);default:throw new H(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function x1(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new H(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return bs(e,t)}function vf(e,t=0,n=1,s,r){return E3(e,t,n,s,r)}function wr(e,t,n,s){if(e.rank<2||t.rank<2)throw new Me(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Me(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,a=!1;return ba.matMul({a:e,b:t,transposeA:r,transposeB:a,bias:s?b1(e.rank,s,Js()):null,activation:n})}else{let r=e.shape.slice(),a=r.pop();e=V(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),c=[...o,i],u=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=V(Ke(t,u),[l,-1]);let d=[...r,...c],p=!1,h=!1;return V(ba.matMul({a:e,b:t,transposeA:p,transposeB:h,bias:s?b1(e.rank,s,Js()):null,activation:n}),d)}}function Iv(e,t,n){return G(()=>(Array.isArray(t)?t=Gt(t,"int32"):t=de(t,"int32"),oi(e,t,n)))}function cd(e){return L(e,e)}function b1(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new H(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1,1,1]):V(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,1,1,s[0]]):V(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1,1]):V(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,1,s[0]]):V(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1]):V(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,s[0]]):V(t,[1].concat(s))}else if(e<3)return t;throw new H(`Unsupported input rank by biasAdd: ${t.rank}`)}function tr(e,t,n){return G(()=>(n==null&&(n=Js()),Bt(n),le(e,b1(e.rank,t,n))))}function _M(e,t=1){if(t!==1)throw new Me(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return ou(e)}function FM(e){return G(()=>fe(e,le(Vt(e),1)))}function Sv(e,t,n,s){return G(()=>P3(e,t,n,s))}function $M(e){return G(()=>{let t=le(.5,L(.2,e));return jn(t,0,1)})}function dd(e,t,n=!1){return n?e():t()}var OM=["fanIn","fanOut","fanAvg"],PM=["normal","uniform","truncatedNormal"];function MM(e){fi(OM,"FanMode",e)}function zM(e){fi(PM,"Distribution",e)}var zs=class extends ue.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},v1=class extends zs{apply(e,t){return Ut(e,t)}};v1.className="Zeros";ue.registerClass(v1);var wf=class extends zs{apply(e,t){return as(e,t)}};wf.className="Ones";ue.registerClass(wf);var w1=class extends zs{constructor(e){super();if(typeof e!="object")throw new H(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new H(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return G(()=>L(Ee(this.value),as(e,t)))}getConfig(){return{value:this.value}}};w1.className="Constant";ue.registerClass(w1);var k1=class extends zs{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return cu(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};k1.className="RandomUniform";ue.registerClass(k1);var I1=class extends zs{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Me(`randomNormal does not support dType ${t}.`);return vf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};I1.className="RandomNormal";ue.registerClass(I1);var S1=class extends zs{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Me(`truncatedNormal does not support dType ${t}.`);return sf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};S1.className="TruncatedNormal";ue.registerClass(S1);var C1=class extends zs{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return G(()=>{if(e.length!==2||e[0]!==e[1])throw new H("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,PA(e[0]))})}getConfig(){return{gain:this.gain}}};C1.className="Identity";ue.registerClass(C1);function LM(e,t="channelsLast"){let n,s;if(Bt(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=ka(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=ka(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=ka(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var Kn=class extends zs{constructor(e){super();if(e.scale<0)throw new H(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,MM(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,zM(this.distribution),this.seed=e.seed}apply(e,t){let n=LM(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Me(`${this.getClassName()} does not support dType ${t}.`);return sf(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return cu(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Kn.className="VarianceScaling";ue.registerClass(Kn);var kf=class extends Kn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Kn.className}};kf.className="GlorotUniform";ue.registerClass(kf);var If=class extends Kn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Kn.className}};If.className="GlorotNormal";ue.registerClass(If);var Sf=class extends Kn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Kn.className}};Sf.className="HeNormal";ue.registerClass(Sf);var Cf=class extends Kn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Kn.className}};Cf.className="HeUniform";ue.registerClass(Cf);var Tf=class extends Kn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Kn.className}};Tf.className="LeCunNormal";ue.registerClass(Tf);var Nf=class extends Kn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Kn.className}};Nf.className="LeCunNormal";ue.registerClass(Nf);var T1=class extends zs{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Me("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return G(()=>{if(e.length<2)throw new Me("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=vf(n,0,1,"float32"),r=K3.gramSchmidt(s);return e[0]>e[1]&&(r=Ke(r)),L(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};T1.className="Orthogonal";ue.registerClass(T1);var Cv={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Tv(e,t={}){return od(e,ue.SerializationMap.getMap().classNameMap,t,"initializer")}function Ft(e){return u1(e)}function Ct(e){if(typeof e=="string"){let t=e in Cv?Cv[e]:e;if(t==="GlorotNormal")return new If;if(t==="GlorotUniform")return new kf;if(t==="HeNormal")return new Sf;if(t==="HeUniform")return new Cf;if(t==="LeCunNormal")return new Tf;if(t==="LeCunUniform")return new Nf;{let n={};return n.className=t,n.config={},Tv(n)}}else return e instanceof zs?e:Tv(e)}function BM(){return new v1}function WM(){return new wf}function VM(e){return new w1(e)}function UM(e){return new k1(e)}function GM(e){return new I1(e)}function HM(e){return new S1(e)}function jM(e){return new C1(e)}function qM(e){return new Kn(e)}function XM(e){return new kf(e)}function KM(e){return new If(e)}function ZM(e){return new Sf(e)}function YM(e){return new Cf(e)}function JM(e){return new Tf(e)}function QM(e){return new Nf(e)}function ez(e){return new T1(e)}var Nv={};ze(Nv,{Layer:()=>Je,RNN:()=>Sr,RNNCell:()=>bd,activation:()=>PL,add:()=>HL,alphaDropout:()=>NB,average:()=>jL,averagePooling1d:()=>Hy,averagePooling2d:()=>jy,averagePooling3d:()=>qy,avgPool1d:()=>tB,avgPool2d:()=>sB,avgPool3d:()=>aB,avgPooling1d:()=>nB,avgPooling2d:()=>rB,avgPooling3d:()=>oB,batchNormalization:()=>JL,bidirectional:()=>bB,concatenate:()=>qL,conv1d:()=>TL,conv2d:()=>NL,conv2dTranspose:()=>EL,conv3d:()=>RL,conv3dTranspose:()=>DL,convLstm2d:()=>gB,convLstm2dCell:()=>AB,cropping2D:()=>FL,dense:()=>ML,depthwiseConv2d:()=>OL,dot:()=>YL,dropout:()=>zL,elu:()=>vL,embedding:()=>GL,flatten:()=>BL,gaussianDropout:()=>TB,gaussianNoise:()=>CB,globalAveragePooling1d:()=>iB,globalAveragePooling2d:()=>lB,globalMaxPool1d:()=>wB,globalMaxPool2d:()=>kB,globalMaxPooling1d:()=>Mw,globalMaxPooling2d:()=>zw,gru:()=>cB,gruCell:()=>dB,input:()=>iw,inputLayer:()=>bL,layerNormalization:()=>QL,leakyReLU:()=>kL,lstm:()=>pB,lstmCell:()=>hB,masking:()=>EB,maxPool1d:()=>IB,maxPool2d:()=>SB,maxPooling1d:()=>Lw,maxPooling2d:()=>Bw,maxPooling3d:()=>uB,maximum:()=>XL,minimum:()=>KL,multiply:()=>ZL,permute:()=>UL,prelu:()=>IL,reLU:()=>wL,repeatVector:()=>WL,reshape:()=>VL,rnn:()=>yB,separableConv2d:()=>_L,simpleRNN:()=>fB,simpleRNNCell:()=>mB,softmax:()=>SL,spatialDropout1d:()=>LL,stackedRNNCells:()=>xB,thresholdedReLU:()=>CL,timeDistributed:()=>vB,upSampling2d:()=>$L,zeroPadding2d:()=>eB});var tz=0;function Ev(){return tz++}var Ef={};function Rf(e=""){return e in Ef||(Ef[e]=0),Ef[e]+=1,e+Ef[e].toString()}function N1(e){return Array.isArray(e)&&Array.isArray(e[0])}function Df(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Le(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new H(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ct(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new H(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function _f(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var Rv="Variable",Dv=class{constructor(e,t="float32",n=Rv,s=!0,r=null){this.dtype=t??"float32",this.shape=e.shape,this.id=Ev(),n=n??Rv,this.originalName=bv(n),this.name=vv(this.originalName),this.trainable_=s,this.constraint=r,this.val=D3(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),nz(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function nz(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function E1(e){return e.map(t=>t.read())}function R1(e){e.forEach(t=>{t[0].write(t[1])})}var Ht=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},nr=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=Ev(),a!=null&&(this.originalName=bv(a),this.name=vv(this.originalName)),this.rank=t.length}},sz=0,Ff=class{constructor(e,t){this.callArgs=t,this.id=sz++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},rz=0,Je=class extends ue.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=rz++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Vr(n)+"_"+Rf(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Qs(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new H(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Xn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Xn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Wr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Wr(`Layer ${this.name} is not connected, no input to return.`);return Xn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Wr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Wr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Xn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=bt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=bt(this.inputSpec);if(e.length!==t.length)throw new H(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new H(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),c=r.axes[i],u=l>=0?o[l]:o[o.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=bt(e),s=!0;for(let a of n)if(!(a instanceof nr)){s=!1;break}let r=!0;for(let a of n)if(a instanceof nr){r=!1;break}if(s===r)throw new H("Arguments to apply() must be all SymbolicTensors or all Tensors");return mi(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of bt(e))a.push(o.shape);this.build(Xn(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=bt(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=Xn(i),this.activityRegularizer!=null)throw new Me("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=az(e),o=this.computeOutputShape(a),i,l=oz(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((c,u)=>new nr(l,c,this,bt(e),t,this.name,u)):i=new nr(l,o,this,bt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Me("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Wr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Wr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Qs(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return _f(this.weights)}build(e){this.built=!0}getWeights(e=!1){return E1(e?this.trainableWeights:this.weights)}setWeights(e){G(()=>{let t=this.weights;if(t.length!==e.length)throw new H(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=E1(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!w.arraysEqual(a.shape,i.shape))throw new H(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}R1(n)})}addWeight(e,t,n,s,r,a,o,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new H(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=i!=null?i():Ct("zeros"));let l=s.apply(t,n),c=new Dv(l,n,e,a,o);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(c.read())),a==null&&(a=!0),a?this._trainableWeights.push(c):this._nonTrainableWeights.push(c),c}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=bt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=bt(e);t=bt(t),n=bt(n),s=bt(s),r=Df(r),a=Df(a);let l=[],c=[],u=[];for(let d of i)l.push(d.sourceLayer),c.push(d.nodeIndex),u.push(d.tensorIndex);new Ff({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function az(e){e=bt(e);let t=[];for(let n of e)t.push(n.shape);return Xn(t)}function oz(e){return"float32"}function _v(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],c=_v(o,i,l);for(let u of c)r.indexOf(u)===-1&&r.push(u)}return r}}}var yu=class extends Je{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Rf("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new H("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new H("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new H("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new nr(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new Ff({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new H(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};yu.className="InputLayer";ue.registerClass(yu);function Fv(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new H("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new yu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Sa(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];Z(s)}}function $v(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var Ov;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(Ov||(Ov={}));var iz=125,xu=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},Pv=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},lz=class extends xu{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=G(()=>le(this.totals[s],L(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:G(()=>{let s=L(fe(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),on(t[n])}))}},Mv=class extends xu{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},zv=class extends xu{constructor(e,t){super();if(this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||Z3,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=iz),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=mM(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await Sa(n),s.push(this.yield(e,t,n))),s.push(this.nextFrameFunc()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Sa(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Sa(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Sa(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Sa(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Sa(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Sa(e),await this.trainEnd(e))}};function Lv(e,t){return e==null&&(e={}),e instanceof xu?[e]:Array.isArray(e)&&e[0]instanceof xu?e:bt(e).map(s=>new zv(s,t))}var Ls=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Ls.checkForDuplicate(t),Ls.constructors[e]==null&&(Ls.constructors[e]=[]),Ls.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Ls.constructors)Ls.constructors[+t].forEach(s=>{if(s===e)throw new H("Duplicate callback constructor.")})}static clear(){Ls.constructors={}}static createCallbacks(e){let t=[];for(let n in Ls.constructors){let s=+n;e>=s&&t.push(...Ls.constructors[s])}return t.map(n=>new n)}};Ls.constructors={};function Bv(e,t,n,s,r,a,o,i,l){let c=new Mv,u=[new lz,...Ls.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let d=new Pv(u);return d.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:d,history:c}}function sr(e,t={},n=!1){return od(e,ue.SerializationMap.getMap().classNameMap,t,"layer",n)}function $f(e,t){return G(()=>{e.dtype!=="float32"&&(e=de(e,"float32"));let n=Ie(cd(e),t,!0),s=iu(n.shape,Qt()),r=gn(xr(n,s));return fe(e,r)})}function Ai(e,t){return G(()=>_t(cd(be(t,e)),-1))}function Of(e,t){return G(()=>_t(Vt(be(t,e)),-1))}function bu(e,t){return G(()=>{let n=be(e,t),s=jn(Vt(e),Qt(),Number.MAX_VALUE),r=Vt(fe(n,s));return L(100,_t(r,-1))})}function uz(e,t){return G(()=>{let n=jn(t,Qt(),Number.MAX_VALUE),s=rs(le(1,n)),r=jn(e,Qt(),Number.MAX_VALUE),a=rs(le(1,r));return _t(cd(be(s,a)),-1)})}function cz(e,t){return G(()=>{let n=xr(0,be(1,L(e,t)));return _t(cd(n),-1)})}function dz(e,t){return G(()=>{let n=xr(0,be(1,L(e,t)));return _t(n,-1)})}function pz(e,t){return G(()=>{let n=Ie(L(e,t),-1),s=Rn(L(be(1,e),t),-1);return xr(0,le(1,be(s,n)))})}function hz(e,t){return G(()=>{let n=Math.log(2),s=be(t,e),r=be(le(s,ii(L(-2,s))),n);return _t(r,-1)})}function pd(e,t,n=!1){return G(()=>{if(n)t=ci(t);else{let s=Ie(t,t.shape.length-1,!0);t=fe(t,s)}return t=jn(t,Qt(),1-Qt()),St(Ie(L(de(e,"float32"),rs(t)),t.shape.length-1))})}function Pf(e,t,n=!1){return G(()=>{let s=de(lu(RM(e)),"int32");t=jn(t,Qt(),1-Qt());let r=t.shape,a=V(eu(s,r[r.length-1]),r);return pd(a,t,n)})}function fz(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new H(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return G(()=>{let n=Zs(t),s=St(Vt(t));return le(be(n,L(t,e)),Xc(ss(s)))})}function Mf(e,t){return G(()=>{let n;return n=jn(t,Qt(),1-Qt()),n=rs(fe(n,be(1,n))),_t(fz(e,n),-1)})}function mz(e,t){return G(()=>{let n=jn(e,Qt(),1),s=jn(t,Qt(),1);return Ie(L(e,rs(fe(n,s))),-1)})}function gz(e,t){return G(()=>{let n=rs(le(Qt(),t));return _t(be(t,L(e,n)),-1)})}function D1(e,t){return G(()=>{let n=$f(e,-1),s=$f(t,-1),r=L(n,s);return St(Ie(r,-1))})}var zf={meanSquaredError:Ai,meanAbsoluteError:Of,meanAbsolutePercentageError:bu,meanSquaredLogarithmicError:uz,squaredHinge:cz,hinge:dz,categoricalHinge:pz,logcosh:hz,categoricalCrossentropy:pd,sparseCategoricalCrossentropy:Pf,binaryCrossentropy:Mf,kullbackLeiblerDivergence:mz,poisson:gz,cosineProximity:D1};function _1(e){if(typeof e=="string"){if(e in zf)return zf[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new H(t)}else return e}function F1(e,t){return G(()=>{let n=L(.5,os(t)),s=xf(qn(t,n),e.dtype);return _t(ns(e,s),-1)})}function $1(e,t){return G(()=>xf(ns(xs(e,-1),xs(t,-1)),"float32"))}function Wv(e,t){return G(()=>de(Ie(Ps(ns(e,1),ns(t,1))),"float32"))}function Az(e,t){return G(()=>de(Ie(Ps(ns(e,1),ns(t,0))),"float32"))}function yz(e,t){return G(()=>de(Ie(Ps(ns(e,0),ns(t,1))),"float32"))}function Vv(e,t){return G(()=>{let n=Wv(e,t),s=yz(e,t),r=le(n,s);return de(Sn(qn(r,0),fe(n,r),0),"float32")})}function xz(e,t){return G(()=>{let n=Wv(e,t),s=Az(e,t),r=le(n,s);return de(Sn(qn(r,0),fe(n,r),0),"float32")})}function Uv(e,t){return Mf(e,t)}function Gv(e,t){return e.rank===t.rank&&(e=rt(e,[e.rank-1])),t=xs(t,-1),t.dtype!==e.dtype&&(t=de(t,e.dtype)),de(ns(e,t),"float32")}var bz=Ai,vz=Ai,wz=Of,kz=Of,Iz=bu,Sz=bu,O1=pd,Cz=D1,Hv=Pf,Lf={binaryAccuracy:F1,categoricalAccuracy:$1,precision:Vv,categoricalCrossentropy:O1,sparseCategoricalCrossentropy:Hv,mse:bz,MSE:vz,mae:wz,MAE:kz,mape:Iz,MAPE:Sz,cosine:Cz};function Tz(e){if(typeof e=="string"&&e in Lf)return Lf[e];if(typeof e!="string"&&e!=null)return e;throw new H(`Unknown metric ${e}`)}function Bf(e){if(vr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(zf))if(zf[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Lf))if(Lf[n]===e){t=n;break}return t!==void 0?t:e.name}}function Nz(e){let t={Adagrad:()=>di.adagrad(.01),Adadelta:()=>di.adadelta(1,.95,Qt()),Adam:()=>di.adam(.001,.9,.999,Qt()),Adamax:()=>di.adamax(.002,.9,.999,Qt(),0),RMSProp:()=>di.rmsprop(.001,.9,0,Qt()),SGD:()=>di.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new H(`Unknown Optimizer ${e}`)}var jv=1*1024*1024;function qv(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!P1(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>jv&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${jv}.`)}}function P1(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!P1(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!P1(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Ez(e,t,n,s=console.log){let r=Dz(e),a=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let o;if(!r){a.push("Receives inputs"),o=[];for(let u in e.nodesByDepth)o.push(...e.nodesByDepth[u])}s("_".repeat(t)),Wf(a,n,s),s("=".repeat(t));let i=e.layers;for(let u=0;u<i.length;++u)r?_z(i[u],n,s):Fz(i[u],n,o,s),s((u===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=Rz(e),c=_f(e.nonTrainableWeights);s(`Total params: ${l+c}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${c}`),s("_".repeat(t))}function Rz(e){let t;return e.collectedTrainableWeights!=null?t=_f(e.collectedTrainableWeights):t=_f(e.trainableWeights),t}function Dz(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Wf(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function _z(e,t,n){let s;try{s=JSON.stringify(e.outputShape)}catch{s="multiple"}let r=e.name,a=e.getClassName(),o=[`${r} (${a})`,s,e.countParams().toString()];Wf(o,t,n)}function Fz(e,t,n,s){let r;try{r=JSON.stringify(e.outputShape)}catch{r="multiple"}let a=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let d=0;d<u.inboundLayers.length;++d){let p=u.inboundLayers[d].name,h=u.nodeIndices[d],f=u.tensorIndices[d];a.push(`${p}[${h}][${f}]`)}let o=e.name,i=e.getClassName(),l=a.length===0?"":a[0],c=[`${o} (${i})`,r,e.countParams().toString(),l];Wf(c,t,s);for(let u=1;u<a.length;++u)Wf(["","","",a[u]],t,s)}function Xv(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function hd(e,t){if(e===null)return null;if(typeof e=="string")return hi(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];Xv(t,r,a)?n.push(a):n.push(hd(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=hi(s);n[a]=hd(r,a)}}return n}}function M1(e,t){if(e==null)return null;if(typeof e=="string")return Vr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];Xv(t,r,a)?n.push(a):n.push(M1(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=Vr(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=M1(r,s)}return n}}var z1="3.11.0";function $z(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return de(t,e.dtype)}catch{throw new H(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var yi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof yi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=$z(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new H(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof nr){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof nr){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Z(this.id2Mask)}},L1={},Kv={};function fd(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),l=[],c=t.names();for(let f of i)c.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let u=i.join(",")+"|"+t.names().join(","),d,p;if(L1[u]==null){let f=Oz(o,t);d=f.sorted,p=f.recipientCounts,L1[u]=d,Kv[u]=p}d=L1[u],p={},r||Object.assign(p,Kv[u]);let h=new yi(t);for(let f=0;f<d.length;++f){if(s!=null){let F=Dh().numTensors;F>s.maxNumTensors&&(s.maxNumTensors=F),F<s.minNumTensors&&(s.minNumTensors=F)}let m=d[f],g=m.sourceLayer;if(g instanceof yu)continue;let A=[],x=[],y=[],b=!1;for(let F of m.inputs){let P=h.getValue(F),_=h.getMask(F);A.push(P),x.push(_),_!=null&&(b=!0),r||(p[F.name]--,p[F.name]===0&&!t.hasKey(F)&&i.indexOf(F.name)===-1&&!P.isDisposed&&F.sourceLayer.stateful!==!0&&y.push(P))}b&&(n=n||{},n.mask=x[0]);let v=bt(g.apply(A,n)),S=null;g.supportsMasking&&(S=g.computeMask(A,x));let T=Mz(m),D=Array.isArray(T)?T:[T];for(let F=0;F<D.length;++F){h.hasKey(D[F])||h.add(D[F],v[F],Array.isArray(S)?S[0]:S);let P=i.indexOf(D[F].name);P!==-1&&(l[P]=v[F])}r||Z(y)}return h.disposeMasks(),a?l:l[0]}function Oz(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=Zv(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=Zv(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(c=>s[l].add(c))}}return{sorted:n,recipientCounts:Pz(s)}}function Pz(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Zv(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let c of i.inputs)r[c.name]==null&&(r[c.name]=new Set),r[c.name].add(i.name),!n.has(c.name)&&a.push(c)}}return{sorted:s,recipientMap:r}}function Mz(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var kr=class extends Je{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let A=this.getClassName().toLowerCase();this.name=Rf(A)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],wa(this.inputs).length!==this.inputs.length)throw new H(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(A=>A.name)}`);wa(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(A=>A.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let A of this.outputs){let x=A.sourceLayer,y=A.nodeIndex,b=A.tensorIndex;this.outputLayers.push(x),this.outputLayersNodeIndices.push(y),this.outputLayersTensorIndices.push(b)}for(let A of this.inputs){let x=A.sourceLayer,y=A.nodeIndex,b=A.tensorIndex;vr(y===0,"input layer has >1 nodes"),vr(b===0,"input layer has >1 tensors"),this.inputLayers.push(x),this.inputLayersNodeIndices.push(y),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let A=0;A<this.inputLayers.length;A++){let x=this.inputLayers[A];if(!(x instanceof yu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${A} (0-based) originates from layer type ${x.getClassName()}.`);this.inputNames.push(x.name),this.feedInputShapes.push(x.batchInputShape),this.feedInputNames.push(x.name)}for(let A of this.outputLayers)this.outputNames.push(A.name);this.internalInputShapes=this.inputs.map(A=>A.shape),this.internalOutputShapes=this.outputs.map(A=>A.shape);let t={},n={},s={},r={},a={},o=[],i=(A,x,y,b,v,S)=>{(b==null||v==null||S==null)&&(b=A.sourceLayer,v=A.nodeIndex,S=A.tensorIndex);let T=b.inboundNodes[v];if(y.indexOf(T)!==-1)throw new Qs(`The tensor ${A.name} at layer "${b.name}" is part of a cycle.`);if(x.indexOf(T)!==-1)return;this.containerNodes.add(kr.nodeKey(b,v)),b.id in a||(a[b.id]=Object.keys(a).length),y.indexOf(T)===-1&&y.push(T);let D=T.inboundLayers.length;for(let F=0;F<D;F++){let P=T.inputTensors[F],_=T.inboundLayers[F],$=T.nodeIndices[F],C=T.tensorIndices[F];i(P,x,y,_,$,C)}for(x.push(T);y.indexOf(T)>=0;)y.splice(y.indexOf(T),1);o.push(T)},l=[],c=[];for(let A of this.outputs)i(A,l,c);let u=o.slice().reverse();for(let A of u){n[A.id]=A,A.id in t||(t[A.id]=0);let x=t[A.id],y=s[A.outboundLayer.id]==null?0:s[A.outboundLayer.id];x=Math.max(x,y),s[A.outboundLayer.id]=x,r[A.outboundLayer.id]=A.outboundLayer,t[A.id]=x;for(let b=0;b<A.inboundLayers.length;b++){let v=A.inboundLayers[b],S=A.nodeIndices[b],T=v.inboundNodes[S],D=t[T.id]==null?0:t[T.id];t[T.id]=Math.max(x+1,D),n[T.id]=T}}let d={};for(let A in t){let x=t[A];x in d||(d[x]=[]),d[x].push(n[A])}let p={};for(let A in s){let x=s[A];x in p||(p[x]=[]),p[x].push(r[A])}let h=Object.keys(p).map(A=>parseInt(A,10)).sort(yf);this.layers=[];for(let A of h){let x=p[A];x.sort((y,b)=>{let v=a[y.id],S=a[b.id];return v<S?-1:v>S?1:0});for(let y of x)y instanceof kr&&this.internalContainerRefs.push(y),this.layers.push(y)}this.layersByDepth=p,h=Object.keys(d).map(A=>parseInt(A,10)).sort(yf);let f=this.inputs.slice(),m=[];for(let A of h)for(let x of d[A]){let y=x.outboundLayer;if(y!=null){for(let b of x.inputTensors)if(f.indexOf(b)===-1)throw new Qs(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${y.name}". The following previous layers were accessed without issue: ${m}`);for(let b of x.outputTensors)f.push(b);m.push(y.name)}}this.nodesByDepth=d;let g=this.layers.map(A=>A.name);for(let A of g){let x=g.filter(y=>y===A).length;if(x!==1)throw new Qs(`The name "${A}" is used ${x} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Ff({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(A=>null),outputMasks:this.outputs.map(A=>null),inputShapes:this.inputs.map(A=>A.shape),outputShapes:this.outputs.map(A=>A.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new H("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new H(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new H(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new H(`${a.length} of ${s} weights are not set: ${a}`)}R1(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${z1}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=M1(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return G(()=>{e=bt(e);let n=new yi;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return fd(this.outputs,n,t)})}computeMask(e,t){return G(()=>{e=bt(e);let n;return t==null?n=pi(null,e.length):n=bt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Df(e);if(t.length!==this.inputLayers.length)throw new H(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],c=i.name+"_0_0";n[c]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(yf);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let c=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(c.id)!==-1)continue;let u=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],A=l.tensorIndices[f],x=`${m.name}_${g}_${A}`,y=n[x];u.push(y)}let d=c.computeOutputShape(Xn(u)),p=Df(d),h=c.inboundNodes.indexOf(l);for(let f=0;f<p.length;f++){let m=`${c.name}_${h}_${f}`;n[m]=p[f]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],c=this.outputLayersTensorIndices[o],u=`${i.name}_${l}_${c}`;a.push(u)}for(let o=0;o<a.length;o++){let i=a[o];vr(i in n),r.push(n[i])}return Xn(r)}runInternalGraph(e,t){t==null&&(t=pi(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],c=e[i],u=t[i];n[l.id]=[c,u]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(yf);for(let i of s){let l=this.nodesByDepth[i];for(let c of l){let u=c.outboundLayer,d=c.inputTensors,p=c.outputTensors,h=new Array;for(let f of d)f.id in n&&h.push(n[f.id]);if(h.length===d.length){let f={},m,g,A,x;if(c.callArgs!=null&&(f=c.callArgs),h.length===1){let[y,b]=h[0];f.mask==null&&(f.mask=b),A=bt(u.call(y,f)),x=bt(u.computeMask(y,b)),m=[y],g=[b]}else m=h.map(y=>y[0]),g=h.map(y=>y[1]),f.mask==null&&(f.mask=g),A=bt(u.call(m,f)),x=bt(u.computeMask(m,g));if(u.activityRegularizer)throw new Me("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let y=0;y<p.length;++y){let b=p[y],v=A[y],S=x[y];n[b.id]=[v,S]}}}}let r=[],a=[],o=[];for(let i of this.outputs){vr(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,c]=n[i.id];o.push(l.shape),r.push(l),a.push(c)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof kr?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=kr.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new H(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new H("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new H(`No such layer: ${e}`)}calculateLosses(){return G(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=kr.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let u=0;u<a.inboundNodes.length;u++){let d=a.inboundNodes[u],p=kr.nodeKey(a,u),h={};if(this.containerNodes.has(p)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch{console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let f=[];for(let m=0;m<d.inboundLayers.length;m++){let g=d.inboundLayers[m],A=d.nodeIndices[m],x=d.tensorIndices[m],y=kr.nodeKey(g,A),b=t[y];b==null&&(b=0),f.push([g.name,b,x,h])}l.push(f)}}}let c={};c.name=a.name,c.className=o,c.config=i,c.inboundNodes=l,n.push(c)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=kr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.inputLayersTensorIndices[a];s.push([o.name,c,u])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=kr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.outputLayersTensorIndices[a];r.push([o.name,c,u])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let A=[],x;for(let y of g){let b=y[0],v=y[1],S=y[2];if(x=y[3]==null?{}:y[3],!(b in r)){o(m,g);return}let T=r[b];if(T.inboundNodes.length<=v){o(m,g);return}let D=T.inboundNodes[v];A.push(D.outputTensors[S])}A.length>0&&m.apply(Xn(A),x)}function l(m){let g=m.name,A=sr(m,t.customObjects!=null?t.customObjects:{});A.setFastWeightInitDuringBuild(s),r[g]=A,m.inboundNodes.forEach(y=>{if(!(y instanceof Array))throw new H(`Corrupted configuration, expected array for nodeData: ${y}`);o(A,y)})}let c=t.name,u=t.layers;for(let m of u)l(m);for(;!fM(a);)for(let m of u){let g=r[m.name];if(g.name in a){let A=a[g.name];delete a[g.name];for(let x of A)i(g,x)}}let d=[],p=[],h=t.inputLayers;for(let m of h){let g=m[0],A=m[1],x=m[2];vr(g in r);let b=r[g].inboundNodes[A].outputTensors;d.push(b[x])}let f=t.outputLayers;for(let m of f){let g=m[0],A=m[1],x=m[2];vr(g in r);let b=r[g].inboundNodes[A].outputTensors;p.push(b[x])}return new e({inputs:d,outputs:p,name:c})}get stateful(){if(this._stateful)throw new H("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){G(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function zz(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function Yv(e,t){return zz(e,t,"classWeight")}async function Jv(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=G(()=>{if(e.shape.length===1)return Xs(e);if(e.shape.length===2){if(e.shape[1]>1)return xs(e,1);if(e.shape[1]===1)return V(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());Z(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Gt(o,"float32")}else return null}function Lz(e,t){return L(e,t)}var Bz=32;function Qv(e,t){let n,s,r=t;n=r.xs,s=r.ys,w.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=ew("input",e.inputNames,n),o=ew("output",e.outputNames,s),i=a[0].shape[0];w.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)w.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)w.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function ew(e,t,n){if(n instanceof Ge)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new H(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function Wz(e){if(e.length===3)throw new Me("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function Vz(e,t,n){let s=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(tw(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=Wz(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;r?c=l.slice().concat(l.map(g=>"val_"+g)):c=l.slice();let u=Lv(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:p,history:h}=Bv(u,d,n.epochs,null,null,Uz(t,n),null,r,c);p.setModel(e),e.history=h,await p.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await p.onEpochBegin(f);let A=0,x=0;for(s||(m=await t.iterator());s?A<n.batchesPerEpoch:!0;){let y=await m.next();if(s&&y.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${A} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(y.value!=null){let{xs:b,ys:v}=Qv(e,y.value),S={};S.batch=x,S.size=b[0].shape[0],await p.onBatchBegin(x,S);let T=[];if(n.classWeight!=null){let P=Yv(n.classWeight,e.outputNames);for(let _=0;_<P.length;++_)T.push(await Jv(v[_],null,P[_]))}let D=b.concat(v).concat(T),F=i(D);Z(D);for(let P=0;P<l.length;++P){let _=l[P],$=F[P];S[_]=$,on($)}await p.onBatchEnd(x,S),$v(S),x++,A++}if(s?A>=n.batchesPerEpoch:y.done){if(r){let b;tw(n.validationData)?b=bt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=bt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?Bz:n.validationBatchSize,verbose:0}));for(let v=0;v<e.metricsNames.length;++v)g[`val_${e.metricsNames[v]}`]=b[v]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(f,g),f++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function Uz(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function tw(e){return typeof e.iterator=="function"}function Gz(e){return typeof e.next=="function"}async function Hz(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new Me("Verbose mode is not implemented yet.");w.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=Gz(t)?t:await t.iterator(),i=0,l=0;for(;s?l<n.batches:!0;){let c=await o.next();if(a=G(()=>{if(c.value){let{xs:u,ys:d}=Qv(e,c.value),p=u.concat(d),h=G(()=>r(p));if(Z(p),l===0)for(let m=0;m<h.length;++m)a.push(Ee(0));let f=p[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],A=a[m];a[m]=G(()=>le(a[m],L(f,g))),l>0&&Z(A)}Z(h),i+=f,++l}return a}),c.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c<a.length;++c){let u=a[c];a[c]=fe(a[c],i),Z(u)}return Xn(a)}function B1(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function md(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>gi(s,t,n-t)):gi(e,t,n-t)}function W1(e,t){return G(()=>e==null?null:Array.isArray(e)?e.map(n=>W1(n,t)):Iv(e,t.dtype==="int32"?t:de(t,"int32")))}function V1(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function jz(e,t,n,s,r,a,o,i,l,c,u,d,p,h,f){r==null&&(r=32),a==null&&(a=1),u==null&&(u=!0),p==null&&(p=0);let m=!1;if(l!=null&&c!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new H("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),A;g!=null&&(A=er(0,g)),o==null&&(o=1);let{callbackList:x,history:y}=Bv(i,o,a,p,g,h,r,m,d);x.setModel(e),e.history=y,await x.onTrainBegin(),e.stopTraining_=!1;for(let b=p;b<a;++b){await x.onEpochBegin(b);let v={};if(h!=null)throw new Me("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new Me("batch shuffling is not implemneted yet");u&&w.shuffle(A);let S=Gt(A),T=V1(g,r);for(let D=0;D<T.length;++D){let F={};if(await x.onBatchBegin(D,F),G(()=>{let P=T[D][0],_=T[D][1],$=gi(S,P,_-P);F.batch=D,F.size=_-P;let C=W1(n,$),M=t(C);for(let U=0;U<s.length;++U){let j=s[U],q=M[U];F[j]=q,on(q)}if(D===T.length-1&&m){let U=e.testLoop(l,c,r);for(let j=0;j<s.length;++j){let q=s[j],X=U[j];on(X),v["val_"+q]=X}}}),await x.onBatchEnd(D,F),$v(F),e.stopTraining_)break}S.dispose()}if(await x.onEpochEnd(b,v),e.stopTraining_)break}return await x.onTrainEnd(),await e.history.syncData(),e.history}async function qz(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,c,u;try{let d=s.batchSize==null?32:s.batchSize;B1(d);let p=!1,h=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,p,d);r=h[0],a=h[1],u=h[2];let f=!1,m;if(s.validationData!=null&&s.validationData.length>0){if(f=!0,s.validationData.length===2)o=s.validationData[0],i=s.validationData[1];else throw s.validationData.length===3?new Me("validationData including sample weights is not supported yet."):new H(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let T=!0,D=await e.standardizeUserData(o,i,null,null,T,d);l=D[0],c=D[1],m=l.concat(c)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){f=!0;let T=Math.floor(r[0].shape[0]*(1-s.validationSplit)),D=r[0].shape[0];l=md(r,T,D),r=md(r,0,T),c=md(a,T,D),a=md(a,0,T),m=l.concat(c)}else s.validationSteps!=null&&(f=!0);let g=r.concat(a).concat(u);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),x=e.getDedupedMetricsNames(),y,b;f?(e.makeTestFunction(),y=e.testFunction,b=x.slice().concat(x.map(T=>"val_"+T))):(y=null,m=[],b=x.slice());let v=Lv(s.callbacks,s.yieldEvery);return await jz(e,A,g,x,d,s.epochs,s.verbose,v,y,m,s.shuffle,b,s.initialEpoch,null,null)}finally{e.isTraining=!1,xi(r,t),xi(a,n),xi(l,o),xi(c,i),u!=null&&Z(u)}}function nw(e){let t=[];e instanceof Ge&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(ud(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function xi(e,t){if(e==null)return;let n=[];if(t instanceof Ge)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof Ge)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function Xz(e){return e instanceof Ge}function U1(e){return Array.isArray(e)}function sw(e){return!Xz(e)&&!U1(e)}function rw(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(U1(e)&&e.length>0)o=!0;else if(sw(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new H(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(sw(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new H(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(U1(e)){if(e=e,e.length!==t.length)throw new H(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new H(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=nw(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new H(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let c=i.shape[l],u=n[o][l];if(u!=null&&u>=0&&c!==u)throw new H(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function Kz(e,t,n){let s=wa(e.map(a=>a.shape[0]));s.sort();let r=wa(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new H(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new H(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!w.arraysEqual(s,r))throw new H(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function Zz(e,t,n){let s=[Ai,Mf,pd];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===pd&&a.shape[a.shape.length-1]===1)throw new H(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),c=i.slice(1);for(let u=0;u<l.length;++u){let d=l[u],p=c[u];if(p!=null&&d!==p)throw new H(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function aw(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new H(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new H(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new H(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let c=i.shape[l],u=n[o][l];if(u!=null&&u!==c)throw new H(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function Yz(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var Jz="layers-model",Ur=class extends kr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new H("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Ez(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=Nz(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Br))throw new H("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new H(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(_1(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new H(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>_1(o))}else{let a=_1(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],mi("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=Yz(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};mi("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let c="",u,d,p;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===Mf?["accuracy","acc"].indexOf(h)!==-1?d=F1:["crossentropy","ce"].indexOf(h)!==-1&&(d=Uv):this.lossFunctions[a]===Pf?["accuracy","acc"].indexOf(h)!==-1?d=Gv:["crossentropy","ce"].indexOf(h)!==-1&&(d=Hv):["accuracy","acc"].indexOf(h)!==-1?d=$1:["crossentropy","ce"].indexOf(h)!==-1&&(d=O1);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),p=d,u=c+g}else p=Tz(h),u=c+Bf(h);let f;mi(u,()=>{f=p}),r(a,u,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;B1(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return Xn(l)}finally{xi(a[0],e),xi(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),Hz(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new H(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new H(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new H("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new yi;if(e instanceof Ge&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new H(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new H(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=fd(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=pi(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new H(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return G(()=>{let s=this.checkNumSamples(e);if(n)throw new Me("Verbose predictLoop() is not implemented yet.");let r=V1(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)G(()=>{let l=r[o][0],c=r[o][1],u=md(e,l,c),d=[];if(Array.isArray(u))for(let h=0;h<u.length;++h)d.push({key:this.inputs[h],value:u[h]});else d.push({key:this.inputs[0],value:u});let p=new yi(d);return fd(this.outputs,p)}).forEach((l,c)=>a[c].push(l));return Xn(a.map(o=>mt(o,0)))})}predict(e,t={}){let n=nw(e);aw(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return B1(s),this.predictLoop(n,s)}finally{xi(n,e)}}predictOnBatch(e){aw(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new Qs("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===Pf?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=rw(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=rw(t,this.feedOutputNames,r,!1,"target"),Kz(e,t,null),Zz(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!=0)throw new H(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let c=Yv(s,this.outputNames);l=[];for(let u=0;u<c.length;++u)l.push(await Jv(i[u],null,c[u]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return G(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new Me("Verbose mode is not implemented yet.");if(r!=null)throw new Me("steps mode in testLoop() is not implemented yet");{let i=V1(a,n),l=Gt(er(0,a));for(let c=0;c<i.length;++c){let u=i[c][0],d=i[c][1],p=gi(l,u,d-u),h=W1(t,p),f=e(h);if(c===0)for(let m=0;m<f.length;++m)o.push(Ee(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=le(o[m],L(d-u,g))}}for(let c=0;c<o.length;++c)o[c]=fe(o[c],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;pv(e,s)>1&&(r+=`_${pv(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let u=[];for(let f=0;f<this.inputs.length;++f)u.push({key:this.inputs[f],value:n[f]});let d=new yi(u),p=fd(this.outputs,d,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let g=this.lossFunctions[f](s[f],p[f]);r[f]!=null&&(g=Lz(g,r[f]));let A=_t(g);t.push(A),f===0?h=g:h=le(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],A=this.metricsTensors[f][1];m=_t(g(s[A],p[A]))}on(m),a.push(m)}return h=_t(h),this.calculateLosses().forEach(f=>{h=le(h,f)}),h},i=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>G(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new yi(a),i=fd(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],u=_t(c(r[l],i[l]));l===0?n=u:n=le(n,u),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],u=this.metricsTensors[l][1],d=_t(c(r[u],i[u]));t.push(d)}return t})}async fit(e,t,n={}){return qz(this,e,t,n)}async fitDataset(e,t){return Vz(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let c=await l.data();i.push(c[0])}return Z(o),Xn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Dh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Dh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Vr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Vr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=Vr(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Vr(Bf(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Vr(Bf(e)));{let e={};for(let t in this.metrics)e[t]=Vr(Bf(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=hd(e.optimizer_config),n=sr(t),s;if(typeof e.loss=="string")s=hi(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>hi(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=hi(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>hi(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=hi(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=Gn.getSaveHandlers(e);if(l.length===0)throw new H(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new H(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new H("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Gn.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:Jz,generatedBy:`TensorFlow.js tfjs-layers v${z1}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:c,specs:u}=await Gn.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...u),n.data=Gn.concatenateArrayBuffers([n.data,c])}if(this.userDefinedMetadata!=null){let l=!0;qv(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){qv(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Ur.className="Model";ue.registerClass(Ur);var ow=class extends Ur{};ow.className="Functional";ue.registerClass(ow);async function Qz(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=hd(n),r=sr(s,t);if(e.weightsManifest!=null){let a=await Gn.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),Z(a)}return r}async function eL(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Gn.getLoadHandlers(e,t);if(n.length===0)n.push(Gn.browserHTTPRequest(e,t));else if(n.length>1)throw new H(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return tL(e,void 0,t)}async function tL(e,t,n){if(n==null&&(n={}),e.load==null)throw new H("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=sr(hd(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new H("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=nL(s.weightData,s.weightSpecs);i.loadWeights(c,a),i.optimizer!=null&&u.length>0&&await i.optimizer.setWeights(u),Z(c),Z(u.map(d=>d.tensor))}return i}function nL(e,t){let n=Gn.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var vu=class extends Ur{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Rf("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new H(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof vu||e instanceof Ur,n;if(t){if(n=e,n.outputs.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new H("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new H("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=Fv({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new H(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=_v(this.outputs[0])}this.inboundNodes=[],new Ff({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:pi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ct(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Ur({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Qs("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Qs("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Qs("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Qs("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new H("Legacy serialization format not supported yet.");r=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof vu))throw new Me(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let c=sr(i,void 0,s);s&&c.setFastWeightInitDuringBuild(!0),o.add(c)}return o}set stopTraining(e){if(this.model==null)throw new H("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new H("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};vu.className="Sequential";ue.registerClass(vu);function sL(e){return new Ur(e)}function rL(e){return new vu(e)}function aL(e,t){return t==null&&(t={}),eL(e,t)}function iw(e){return Fv(e)}function oL(e,t){Ls.registerCallbackConstructor(e,t)}var Zn=class extends ue.Serializable{getConfig(){return{}}},lw=class extends Zn{apply(e,t=1){return _M(e,t)}};lw.className="elu";ue.registerClass(lw);var uw=class extends Zn{apply(e){return Yh(e)}};uw.className="selu";ue.registerClass(uw);var cw=class extends Zn{apply(e){return Zs(e)}};cw.className="relu";ue.registerClass(cw);var dw=class extends Zn{apply(e){return G(()=>uu(6,Zs(e)))}};dw.className="relu6";ue.registerClass(dw);var pw=class extends Zn{apply(e){return e}};pw.className="linear";ue.registerClass(pw);var hw=class extends Zn{apply(e){return Hn(e)}};hw.className="sigmoid";ue.registerClass(hw);var fw=class extends Zn{apply(e){return $M(e)}};fw.className="hardSigmoid";ue.registerClass(fw);var mw=class extends Zn{apply(e){return ii(e)}};mw.className="softplus";ue.registerClass(mw);var gw=class extends Zn{apply(e){return FM(e)}};gw.className="softsign";ue.registerClass(gw);var Aw=class extends Zn{apply(e){return ri(e)}};Aw.className="tanh";ue.registerClass(Aw);var G1=class extends Zn{apply(e,t=-1){return ci(e,t)}};G1.className="softmax";ue.registerClass(G1);var yw=class extends Zn{apply(e,t=-1){return Gh(e,t)}};yw.className="logSoftmax";ue.registerClass(yw);var xw=class extends Zn{apply(e,t=1){return G(()=>L(Hn(L(e,t)),e))}};xw.className="swish";ue.registerClass(xw);var bw=class extends Zn{apply(e){return G(()=>L(e,ri(ii(e))))}};bw.className="mish";ue.registerClass(bw);function Ca(e){return e.getClassName()}function H1(e,t={}){return od(e,ue.SerializationMap.getMap().classNameMap,t,"activation")}function Ta(e){if(e==null){let t={};return t.className="linear",t.config={},H1(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},H1(t)}else return e instanceof Zn?e:H1(e)}function j1(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var vw=class extends ue.Serializable{},gd=class extends vw{constructor(e){super();j1(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return G(()=>{let t=Ut([1]);return this.hasL1&&(t=le(t,Ie(L(this.l1,Vt(e))))),this.hasL2&&(t=le(t,Ie(L(this.l2,cd(e))))),V(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};gd.className="L1L2";ue.registerClass(gd);function iL(e){return j1(e),new gd({l1:e!=null?e.l1:null,l2:0})}function lL(e){return j1(e),new gd({l2:e!=null?e.l2:null,l1:0})}var ww={l1l2:"L1L2"};function gt(e){return u1(e)}function kw(e,t={}){return od(e,ue.SerializationMap.getMap().classNameMap,t,"regularizer")}function Tt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in ww?ww[e]:e,config:{}};return kw(n)}else return e instanceof vw?e:kw(e)}var q1=class extends Je{constructor(e){super(e??{});this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Le(e);let n=Zs(e);return this.maxValue!=null&&(n=jn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};q1.className="ReLU";ue.registerClass(q1);var X1=class extends Je{constructor(e){super(e??{});this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Le(e);return qc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};X1.className="LeakyReLU";ue.registerClass(X1);var K1=class extends Je{constructor(e){super(e??{});if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Ct(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Tt(e.alphaRegularizer),this.alphaConstraint=tn(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new H(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ct(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new Ht({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Le(e),Qc(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Ft(this.alphaInitializer),alphaRegularizer:gt(this.alphaRegularizer),alphaConstraint:en(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};K1.className="PReLU";ue.registerClass(K1);var Z1=class extends Je{constructor(e){super(e??{});if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Me(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Le(e);return ou(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Z1.className="ELU";ue.registerClass(Z1);var Y1=class extends Je{constructor(e){super(e??{});this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Le(e);return L(n,de(qn(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};Y1.className="ThresholdedReLU";ue.registerClass(Y1);var J1=class extends Je{constructor(e){super(e??{});this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new G1().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Le(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};J1.className="Softmax";ue.registerClass(J1);function wu(e,t,n){if(typeof e=="number")return pi(e,t);if(e.length!==t)throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!NM(r))throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function rr(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function Ir(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+Ia([n-t,0]);else if(s==="same")e=e*t;else throw new H(`Unsupport padding mode: ${s}.`);return e}function Q1(e,t){return G(()=>(Bt(t),t==="channelsFirst"?Ke(e,[0,2,3,1]):e))}function Iw(e,t){return G(()=>(Bt(t),t==="channelsFirst"?Ke(e,[0,2,3,4,1]):e))}function uL(e,t,n,s=1,r="valid",a,o=1){return G(()=>{if(a==null&&(a=Js()),Bt(a),e.shape.length!==3)throw new H(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new H(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new H(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=Ke(e,[0,2,1])),r==="causal")throw new Me("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=Mh(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=tr(i,n)),i})}function Sw(e,t,n,s=[1,1],r="valid",a,o,i=null){return G(()=>{if(a==null&&(a=Js()),Bt(a),e.rank!==3&&e.rank!==4)throw new H(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new H(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Q1(e,a);if(r==="causal")throw new Me("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=ba.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=Ke(l,[0,3,1,2])),l})}function cL(e,t,n,s=[1,1,1],r="valid",a,o){return G(()=>{if(a==null&&(a=Js()),Bt(a),e.rank!==4&&e.rank!==5)throw new H(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new H(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=Iw(e,a);if(r==="causal")throw new Me("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=RA(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=tr(i,n)),a==="channelsFirst"&&(i=Ke(i,[0,4,1,2,3])),i})}var ey=class extends Je{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",ey.verifyArgs(t),this.rank=e,un(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Me(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=wu(t.kernelSize,e,"kernelSize"),this.strides=wu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,ws(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Bt(this.dataFormat),this.activation=Ta(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Ct(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=tn(t.biasConstraint),this.biasRegularizer=Tt(t.biasRegularizer),this.activityRegularizer=Tt(t.activityRegularizer),this.dilationRate=wu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new H(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new H(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new H(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(vr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!d1(e.kernelSize,"number",1,3))throw new H(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Ca(this.activation),useBias:this.useBias,biasInitializer:Ft(this.biasInitializer),biasRegularizer:gt(this.biasRegularizer),activityRegularizer:gt(this.activityRegularizer),biasConstraint:en(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Ad=class extends ey{constructor(e,t){super(e,t);this.kernel=null,Ad.verifyArgs(t),this.filters=t.filters,un(this.filters,"filters"),this.kernelInitializer=Ct(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=tn(t.kernelConstraint),this.kernelRegularizer=Tt(t.kernelRegularizer)}build(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return G(()=>{e=Le(e);let n,s=this.bias==null?null:this.bias.read(),r=fv(this.activation.getClassName());if(r!=null&&this.rank===2)n=Sw(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=uL(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=Sw(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=cL(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Me("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=ct(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=rr(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:Ft(this.kernelInitializer),kernelRegularizer:gt(this.kernelRegularizer),kernelConstraint:en(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new H(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},yd=class extends Ad{constructor(e){super(2,e);yd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!d1(e.kernelSize,"number",1,2))throw new H(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};yd.className="Conv2D";ue.registerClass(yd);var xd=class extends Ad{constructor(e){super(3,e);xd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new H(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};xd.className="Conv3D";ue.registerClass(xd);var ty=class extends yd{constructor(e){super(e);if(this.inputSpec=[new Ht({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ct(e),e.length!==4)throw new H("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ht({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return G(()=>{let n=Le(e);if(n.shape.length!==4)throw new H(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],c=this.kernelSize[0],u=this.kernelSize[1],d=this.strides[0],p=this.strides[1],h=Ir(i,d,c,this.padding),f=Ir(l,p,u,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=Ke(n,[0,2,3,1]));let g=zh(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ke(g,[0,3,1,2])),this.bias!=null&&(g=tr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=ct(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=Ir(t[s],i,a,this.padding),t[r]=Ir(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};ty.className="Conv2DTranspose";ue.registerClass(ty);var ny=class extends xd{constructor(e){super(e);if(this.inputSpec=[new Ht({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ct(e),e.length!==5)throw new H("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ht({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return G(()=>{let n=Le(e);if(n.shape.length!==5)throw new H(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],c=s[a],u=s[o],d=this.kernelSize[0],p=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],A=Ir(l,f,d,this.padding),x=Ir(c,m,p,this.padding),y=Ir(u,g,h,this.padding),b=[r,A,x,y,this.filters];this.dataFormat!=="channelsLast"&&(n=Ke(n,[0,2,3,4,1]));let v=h3(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(v=Ke(v,[0,4,1,2,3])),this.bias!==null&&(v=tr(v,this.bias.read(),this.dataFormat)),this.activation!==null&&(v=this.activation.apply(v)),v})}computeOutputShape(e){e=ct(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],u=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[s]=Ir(t[s],c,o,this.padding),t[r]=Ir(t[r],u,i,this.padding),t[a]=Ir(t[a],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};ny.className="Conv3DTranspose";ue.registerClass(ny);var Cw=class extends Ad{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new H("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new H("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new H(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Ct(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Tt(t.depthwiseRegularizer),this.depthwiseConstraint=tn(t.depthwiseConstraint),this.pointwiseInitializer=Ct(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Tt(t.pointwiseRegularizer),this.pointwiseConstraint=tn(t.pointwiseConstraint)}build(e){if(e=ct(e),e.length<this.rank+2)throw new H(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Ht({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return G(()=>{e=Le(e);let n;if(this.rank===1)throw new Me("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ke(e,[0,2,3,1])),n=XA(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=tr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ke(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ft(this.depthwiseInitializer),e.pointwiseInitializer=Ft(this.pointwiseInitializer),e.depthwiseRegularizer=gt(this.depthwiseRegularizer),e.pointwiseRegularizer=gt(this.pointwiseRegularizer),e.depthwiseConstraint=en(this.depthwiseConstraint),e.pointwiseConstraint=en(this.pointwiseConstraint),e}};Cw.className="SeparableConv";var sy=class extends Cw{constructor(e){super(2,e)}};sy.className="SeparableConv2D";ue.registerClass(sy);var Vf=class extends Ad{constructor(e){super(1,e);Vf.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!d1(e.kernelSize,"number",1,1))throw new H(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Vf.className="Conv1D";ue.registerClass(Vf);var ry=class extends Je{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return G(()=>{if(e=Le(e),this.dataFormat==="channelsLast"){let n=bf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return bf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=bf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return bf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};ry.className="Cropping2D";ue.registerClass(ry);var ay=class extends Je{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Bt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,SM(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return G(()=>{let n=Le(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=Ke(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?_e.resizeNearestNeighbor(n,[r,a]):_e.resizeBilinear(n,[r,a]);return Ke(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?_e.resizeNearestNeighbor(n,[r,a]):_e.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};ay.className="UpSampling2D";ue.registerClass(ay);function dL(e,t,n=[1,1],s="valid",r,a){return G(()=>{r==null&&(r=Js()),Bt(r);let o=Q1(e,r);if(e.rank!==4)throw new H(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new H(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=au(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=Ke(o,[0,3,1,2])),o})}var oy=class extends ey{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Ct(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=tn(e.depthwiseConstraint),this.depthwiseRegularizer=Tt(e.depthwiseRegularizer)}build(e){if(e=ct(e),e.length<4)throw new H(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return G(()=>{e=Le(e);let n=dL(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=tr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=rr(t,this.kernelSize[0],this.padding,this.strides[0]),a=rr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ft(this.depthwiseInitializer),e.depthwiseRegularizer=gt(this.depthwiseRegularizer),e.depthwiseConstraint=en(this.depthwiseRegularizer),e}};oy.className="DepthwiseConv2D";ue.registerClass(oy);function Tw(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new H("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function Nw(e,t,n,s=!1,r,a,o=!1,i=!1){return G(()=>{let l=t.shape.length;if(l<3)throw new H(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(er(2,l));if(t=Ke(t,c),a!=null)throw new Me("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=de(de(r,"bool"),"float32"),r.rank===l-1&&(r=Lt(r,-1)),r=Ke(r,c)),s&&(t=is(t,0),r!=null&&(r=is(r,0)));let u=[],d,p=n,h=t.shape[0],f=Dn(t),m;r!=null&&(m=Dn(r));for(let A=0;A<h;++A){let x=f[A],y=G(()=>e(x,p));if(r==null)d=y[0],p=y[1];else{let b=G(()=>{let v=m[A],S=be(os(v),v),T=le(L(y[0],v),L(p[0],S)),D=p.map((F,P)=>le(L(y[1][P],v),L(F,S)));return{output:T,newStates:D}});d=b.output,p=b.newStates}i&&u.push(d)}let g;return i&&(g=An(u,1)),[d,g,p]})}var Sr=class extends Je{constructor(e){super(e);let t;if(e.cell==null)throw new H("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Hf({cells:e.cell}):t=e.cell,t.stateSize==null)throw new H("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Ht({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return er(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){N1(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return G(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Me("Constants support is not implemented in RNN yet.");N1(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new Ht({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new Me("Constants support is not implemented in RNN yet.");this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new H(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new Ht({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){G(()=>{if(!this.stateful)throw new Wr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Ut([n,s])):this.states_=[Ut([n,this.cell.stateSize])];else if(e==null)Z(this.states_),this.keptStates!=null&&(Z(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Ut([n,s])):this.states_[0]=Ut([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Z(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!w.arraysEqual(r.shape,o))throw new H(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>on(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=Tw(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new Ht({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof nr){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return G(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=Le(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new H(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=Nw((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),c=l[0],u=l[1],d=l[2];this.stateful&&this.resetStates(d,s);let p=this.returnSequences?u:c;return this.returnState?[p].concat(d):p})}getInitialState(e){return G(()=>{let t=Ut(e.shape);return t=Ie(t,[1,2]),t=ud(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?x1(t,[1,n]):t):this.cell.stateSize>1?[x1(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Sr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let s=t.cell,r=sr(s,n);return new e(Object.assign(t,{cell:r}))}};Sr.className="RNN";ue.registerClass(Sr);var bd=class extends Je{},Uf=class extends bd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,un(this.units,"units"),this.activation=Ta(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ct(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ct(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ct(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=tn(e.kernelConstraint),this.recurrentConstraint=tn(e.recurrentConstraint),this.biasConstraint=tn(e.biasConstraint),this.dropout=Au([1,Ia([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Au([1,Ia([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ct(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return G(()=>{if(e=e,e.length!==2)throw new H(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Na({ones:()=>os(e),rate:this.dropout,training:s,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Na({ones:()=>os(n),rate:this.recurrentDropout,training:s,dropoutFunc:this.dropoutFunc}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=wr(L(e,a),this.kernel.read()):r=wr(e,this.kernel.read()),this.bias!=null&&(r=tr(r,this.bias.read())),o!=null&&(n=L(n,o));let i=le(r,wr(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ca(this.activation),useBias:this.useBias,kernelInitializer:Ft(this.kernelInitializer),recurrentInitializer:Ft(this.recurrentInitializer),biasInitializer:Ft(this.biasInitializer),kernelRegularizer:gt(this.kernelRegularizer),recurrentRegularizer:gt(this.recurrentRegularizer),biasRegularizer:gt(this.biasRegularizer),activityRegularizer:gt(this.activityRegularizer),kernelConstraint:en(this.kernelConstraint),recurrentConstraint:en(this.recurrentConstraint),biasConstraint:en(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Uf.className="SimpleRNNCell";ue.registerClass(Uf);var iy=class extends Sr{constructor(e){e.cell=new Uf(e);super(e)}call(e,t){return G(()=>{this.cell.dropoutMask!=null&&(Z(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Z(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};iy.className="SimpleRNN";ue.registerClass(iy);var Gf=class extends bd{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new H("GRUCell does not support reset_after parameter set to true.");this.units=e.units,un(this.units,"units"),this.activation=Ta(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ta(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ct(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ct(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ct(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=tn(e.kernelConstraint),this.recurrentConstraint=tn(e.recurrentConstraint),this.biasConstraint=tn(e.biasConstraint),this.dropout=Au([1,Ia([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Au([1,Ia([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ct(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return G(()=>{if(e=e,e.length!==2)throw new H(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Na({ones:()=>os(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Na({ones:()=>os(s),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=L(e,r[0]));let c=wr(e,this.kernel.read());this.useBias&&(c=tr(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=L(s,a[0]));let u=this.recurrentKernel.read(),[d,p]=ln(u,[2*this.units,this.units],u.rank-1),h=wr(s,d),[f,m,g]=ln(c,3,c.rank-1),[A,x]=ln(h,2,h.rank-1);o=this.recurrentActivation.apply(le(f,A)),i=this.recurrentActivation.apply(le(m,x));let y=wr(L(i,s),p);l=this.activation.apply(le(g,y));let b=le(L(o,s),L(le(1,St(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ca(this.activation),recurrentActivation:Ca(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ft(this.kernelInitializer),recurrentInitializer:Ft(this.recurrentInitializer),biasInitializer:Ft(this.biasInitializer),kernelRegularizer:gt(this.kernelRegularizer),recurrentRegularizer:gt(this.recurrentRegularizer),biasRegularizer:gt(this.biasRegularizer),activityRegularizer:gt(this.activityRegularizer),kernelConstraint:en(this.kernelConstraint),recurrentConstraint:en(this.recurrentConstraint),biasConstraint:en(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Gf.className="GRUCell";ue.registerClass(Gf);var ly=class extends Sr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Gf(e);super(e)}call(e,t){return G(()=>{this.cell.dropoutMask!=null&&(Z(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Z(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};ly.className="GRU";ue.registerClass(ly);var vd=class extends bd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,un(this.units,"units"),this.activation=Ta(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ta(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ct(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ct(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ct(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=tn(e.kernelConstraint),this.recurrentConstraint=tn(e.recurrentConstraint),this.biasConstraint=tn(e.biasConstraint),this.dropout=Au([1,Ia([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Au([1,Ia([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ct(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends zs{apply(i,l){let c=r.apply([a]),u=new wf().apply([a]),d=r.apply([a*2]);return kv(kv(c,u),d)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return G(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new H(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Na({ones:()=>os(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Na({ones:()=>os(s),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,c,u;0<this.dropout&&this.dropout<1&&(e=L(e,a[0]));let d=wr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=L(s,o[0])),d=le(d,wr(s,this.recurrentKernel.read())),this.useBias&&(d=tr(d,this.bias.read()));let[p,h,f,m]=ln(d,4,d.rank-1);i=this.recurrentActivation.apply(p),l=this.recurrentActivation.apply(h),c=le(L(l,r),L(i,this.activation.apply(f))),u=this.recurrentActivation.apply(m);let g=L(u,this.activation.apply(c));return[g,g,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ca(this.activation),recurrentActivation:Ca(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ft(this.kernelInitializer),recurrentInitializer:Ft(this.recurrentInitializer),biasInitializer:Ft(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:gt(this.kernelRegularizer),recurrentRegularizer:gt(this.recurrentRegularizer),biasRegularizer:gt(this.biasRegularizer),activityRegularizer:gt(this.activityRegularizer),kernelConstraint:en(this.kernelConstraint),recurrentConstraint:en(this.recurrentConstraint),biasConstraint:en(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};vd.className="LSTMCell";ue.registerClass(vd);var uy=class extends Sr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new vd(e);super(e)}call(e,t){return G(()=>{this.cell.dropoutMask!=null&&(Z(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Z(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};uy.className="LSTM";ue.registerClass(uy);var Hf=class extends bd{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return G(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){N1(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{mi(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return Object.assign({},e,s)}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(sr(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return E1(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}R1(t)}};Hf.className="StackedRNNCells";ue.registerClass(Hf);function Na(e){let{ones:t,rate:n,training:s=!1,count:r=1,dropoutFunc:a}=e,o=()=>a!=null?a(t(),n):Sv(t(),n),i=()=>dd(o,t,s);return!r||r<=1?on(i().clone()):Array(r).fill(void 0).map(i).map(c=>on(c.clone()))}var pL=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,s=Object.getOwnPropertySymbols(e);r<s.length;r++)t.indexOf(s[r])<0&&Object.prototype.propertyIsEnumerable.call(e,s[r])&&(n[s[r]]=e[s[r]]);return n},Ew=class extends Sr{constructor(e){if(e.unroll)throw new Me("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Me("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Ht({ndim:5})]}call(e,t){return G(()=>{if(this.cell.dropoutMask!=null&&(Z(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Z(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new H("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return G(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Ut(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){G(()=>{if(!this.stateful)throw new Wr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ut(r)):this.states_=[Ut(r)];else if(e==null)Z(this.states_),this.keptStates!=null&&(Z(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ut(r)):this.states_[0]=Ut(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Z(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!w.arraysEqual(i.shape,l))throw new H(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>on(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],c=e[i?4:3],u=rr(l,s[0],r,a[0],o[0]),d=rr(c,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,u,d]:[u,d,n]]}};Ew.className="ConvRNN2D";var jf=class extends vd{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t}));this.filters=t,un(this.filters,"filters"),this.kernelSize=wu(n,2,"kernelSize"),this.kernelSize.forEach(i=>un(i,"kernelSize")),this.strides=wu(s||1,2,"strides"),this.strides.forEach(i=>un(i,"strides")),this.padding=r||"valid",ws(this.padding),this.dataFormat=a||"channelsLast",Bt(this.dataFormat),this.dilationRate=wu(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>un(i,"dilationRate"))}build(e){var t;e=ct(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;i=new(t=class extends zs{apply(d,p){let h=l.apply([c]),f=as([c]),m=l.apply([c*2]);return y1([h,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return G(()=>{if(e.length!==3)throw new H(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Na({ones:()=>os(s),rate:this.dropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,l=(te,ne,se)=>!ne||!ne[se]?te:L(ne[se],te),c=l(s,i,0),u=l(s,i,1),d=l(s,i,2),p=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Na({ones:()=>os(r),rate:this.recurrentDropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=l(r,h,0),m=l(r,h,1),g=l(r,h,2),A=l(r,h,3),x=3,[y,b,v,S]=ln(this.kernel.read(),o,x),[T,D,F,P]=this.useBias?ln(this.bias.read(),o):[null,null,null,null];c=this.inputConv(c,y,T,this.padding),u=this.inputConv(u,b,D,this.padding),d=this.inputConv(d,v,F,this.padding),p=this.inputConv(p,S,P,this.padding);let[_,$,C,M]=ln(this.recurrentKernel.read(),o,x);f=this.recurrentConv(f,_),m=this.recurrentConv(m,$),g=this.recurrentConv(g,C),A=this.recurrentConv(A,M);let U=this.recurrentActivation.apply(le(c,f)),j=this.recurrentActivation.apply(le(u,m)),q=le(L(j,a),L(U,this.activation.apply(le(d,g)))),X=L(this.recurrentActivation.apply(le(p,A)),this.activation.apply(q));return[X,X,q]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=pL(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){let r=Mr(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?tr(r,n,this.dataFormat):r}recurrentConv(e,t){return Mr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};jf.className="ConvLSTM2DCell";ue.registerClass(jf);var cy=class extends Ew{constructor(e){let t=new jf(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};cy.className="ConvLSTM2D";ue.registerClass(cy);var qf=class extends Je{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Le(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return dd(()=>Sv(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};qf.className="Dropout";ue.registerClass(qf);var dy=class extends qf{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};dy.className="SpatialDropout1D";ue.registerClass(dy);var py=class extends Je{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,un(this.units,"units"),this.activation=Ta(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Ct(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Ct(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=tn(e.kernelConstraint),this.biasConstraint=tn(e.biasConstraint),this.kernelRegularizer=Tt(e.kernelRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.activityRegularizer=Tt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ct(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ct(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Le(e),s=fv(this.activation.getClassName()),r;return s!=null?r=wr(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=wr(n,this.kernel.read()),this.bias!=null&&(r=tr(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:Ca(this.activation),useBias:this.useBias,kernelInitializer:Ft(this.kernelInitializer),biasInitializer:Ft(this.biasInitializer),kernelRegularizer:gt(this.kernelRegularizer),biasRegularizer:gt(this.biasRegularizer),activityRegularizer:gt(this.activityRegularizer),kernelConstraint:en(this.kernelConstraint),biasConstraint:en(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};py.className="Dense";ue.registerClass(py);var hy=class extends Je{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ct(e);for(let t of e.slice(1))if(t==null)throw new H(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],ka(e,1)]}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Le(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=Ke(n,s)}return DM(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};hy.className="Flatten";ue.registerClass(hy);var fy=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.activation=Ta(e.activation)}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Le(e);return this.activation.apply(n)})}getConfig(){let e={activation:Ca(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};fy.className="Activation";ue.registerClass(fy);var my=class extends Je{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return G(()=>(e=Le(e),EM(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};my.className="RepeatVector";ue.registerClass(my);var gy=class extends Je{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new H("Can only specifiy one unknown dimension.");else r*=l}let o=ka(e);if(a!==null){if(r===0||o%r!=0)throw new H(n);s[a]=o/r}else if(o!==r)throw new H(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Le(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return V(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};gy.className="Reshape";ue.registerClass(gy);var Ay=class extends Je{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=er(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ht({ndim:this.dims.length+1})]}computeOutputShape(e){e=ct(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return Ke(Le(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Ay.className="Permute";ue.registerClass(Ay);var yy=class extends Je{constructor(e){super(e??{});this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Le(e),s=-1;return Vc(ui(n,this.maskValue),s)}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Le(e),s=-1,r=!0,a=Vc(ui(n,this.maskValue),s,r);return L(n,de(a,n.dtype))})}};yy.className="Masking";ue.registerClass(yy);var xy=class extends Je{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(bt(e.inputLength))}this.inputDim=e.inputDim,un(this.inputDim,"inputDim"),this.outputDim=e.outputDim,un(this.outputDim,"outputDim"),this.embeddingsInitializer=Ct(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Tt(e.embeddingsRegularizer),this.activityRegularizer=Tt(e.activityRegularizer),this.embeddingsConstraint=tn(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return G(()=>this.maskZero?(e=Le(e),ui(e,Ze(e))):null)}computeOutputShape(e){if(e=ct(e),this.inputLength==null)return[...e,this.outputDim];let t=bt(this.inputLength);if(t.length!==e.length-1)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Le(e);n.dtype!=="int32"&&(n=xf(n,"int32"));let s=Iv(this.embeddings.read(),V(n,[n.size]));return V(s,ct(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ft(this.embeddingsInitializer),embeddingsRegularizer:gt(this.embeddingsRegularizer),activityRegularizer:gt(this.activityRegularizer),embeddingsConstraint:en(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};xy.className="Embedding";ue.registerClass(xy);var bi=class extends Je{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Me}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new H("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[ct(e)]),e=e,e.length<2)throw new H(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=wa(t),t.length>1)throw new H(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&wa(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return G(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=Ia(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=ud(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let c=i.shape,u=c[0],d=c.slice(1).concat([u]),p=V(i,[u].concat(ka(c.slice(1))));p=Ke(p,[1,0]),p=V(p,d),n.push(p),r=!0}else if(l>1){let c=er(1,l).concat([0]);n.push(Ke(i,c)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,c=i[l-1],u=[c].concat(i.slice(0,i.length-1));a=V(Ke(V(a,[-1,c]),[1,0]),u)}else if(o>1){let i=[o-1].concat(er(0,o-1));a=Ke(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=wa(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return G(()=>{if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an Array");if(!Array.isArray(e))throw new H("`inputs` should be an Array");if(t.length!==e.length)throw new H(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Lt(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=Ps(n,t[s]);return n})}},by=class extends bi{constructor(e){super(e)}mergeFunction(e){return G(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=le(t,e[n]);return t})}};by.className="Add";ue.registerClass(by);var vy=class extends bi{constructor(e){super(e)}mergeFunction(e){return G(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=L(t,e[n]);return t})}};vy.className="Multiply";ue.registerClass(vy);var wy=class extends bi{constructor(e){super(e)}mergeFunction(e){return G(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=le(t,e[n]);return L(1/e.length,t)})}};wy.className="Average";ue.registerClass(wy);var ky=class extends bi{constructor(e){super(e)}mergeFunction(e){return G(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=xr(t,e[n]);return t})}};ky.className="Maximum";ue.registerClass(ky);var Iy=class extends bi{constructor(e){super(e)}mergeFunction(e){return G(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=uu(t,e[n]);return t})}};Iy.className="Minimum";ue.registerClass(Iy);var Sy=class extends bi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new H("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(w.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new H("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return G(()=>y1(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new H("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new H("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new H(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return G(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(de(os(e[a]),"bool")):t[a].rank<e[a].rank?s.push(Lt(t[a],-1)):s.push(t[a]);let r=mt(s,this.axis);return Oh(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Sy.className="Concatenate";ue.registerClass(Sy);function wd(e,t){for(;e<0;)e+=t;return e}function hL(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Me("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Me("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return G(()=>{let o;if(s>r){o=s-r;let l=[];for(let c=0;c<o;++c)l.push(1);t=V(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let c=0;c<o;++c)l.push(1);e=V(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=Ie(L(e,t),a[0]):i=Ie(L(Ke(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,c=a[1]===t.shape.length-1;i=Ve(e,t,l,c)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let c=[];for(let u=l;u<l+o;++u)c.push(u);i=rt(i,c)}return i.shape.length===1&&(i=Lt(i,1)),i})}var Cy=class extends bi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Me("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new H(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new H(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>wd(r,e[a].shape.length)):s=[wd(this.axes,t.shape.length),wd(this.axes,n.shape.length)],this.normalize&&(t=$f(t,s[0]),n=$f(n,s[1])),hL(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[wd(this.axes,e.length),wd(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Me("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Cy.className="Dot";ue.registerClass(Cy);var Ty=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Le(e);return dd(()=>le(vf(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};Ty.className="GaussianNoise";ue.registerClass(Ty);var Ny=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Le(e);return this.rate>0&&this.rate<1?dd(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return L(n,vf(n.shape,1,r))},()=>n,t.training||!1):n})}};Ny.className="GaussianDropout";ue.registerClass(Ny);var Ey=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Le(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return G(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return dd(()=>{let r=Le(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=ya(cu(n),this.rate);l=xf(l,"float32");let c=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-c*i*this.rate,d=le(L(r,l),L(le(l,-1),i));return le(L(d,c),u)},()=>Le(e),t.training||!1)}return e})}};Ey.className="AlphaDropout";ue.registerClass(Ey);function kd(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=a3(e,t,n,s,r,a);else if(e.rank===3)o=o3(e,t,n,s,r,a);else if(e.rank===4)o=i3(e,t,n,s,r,a);else throw new Me(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function fL(e,t,n,s,r=.001){return G(()=>{let a=jh(e,s),o=a.mean,i=a.variance;return[kd(e,o,i,n,t,r),o,i]})}function mL(e,t,n,s,r=.001){return G(()=>{let a=jh(e,s),o=a.mean,i=a.variance,l=[];for(let f of er(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let c=V(o,l),u=V(i,l),d=t==null?null:V(t,l),p=n==null?null:V(n,l);return[kd(e,c,u,p,d,r),o,i]})}function gL(e,t,n,s,r=.001){return w.arraysEqual(s.slice().sort(),er(0,e.rank-1))?fL(e,t,n,s,r):mL(e,t,n,s,r)}var Ry=class extends Je{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ct(e.betaInitializer||"zeros"),this.gammaInitializer=Ct(e.gammaInitializer||"ones"),this.movingMeanInitializer=Ct(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Ct(e.movingVarianceInitializer||"ones"),this.betaConstraint=tn(e.betaConstraint),this.gammaConstraint=tn(e.gammaConstraint),this.betaRegularizer=Tt(e.betaRegularizer),this.gammaRegularizer=Tt(e.gammaRegularizer)}build(e){e=ct(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new H(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Ht({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return G(()=>{let n=t.training==null?!1:t.training,s=Le(e),r=s.shape,a=r.length,o=er(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=pi(1,a);l[i]=r[i];let c=o.slice();c.sort();let u=!w.arraysEqual(c,er(0,a).slice(0,a-1)),d=()=>{if(u){let A=V(this.movingMean.read(),l),x=V(this.movingVariance.read(),l),y=this.center?V(this.beta.read(),l):null,b=this.scale?V(this.gamma.read(),l):null;return kd(s,A,x,y,b,this.epsilon)}else return kd(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[p,h,f]=gL(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(A,x,y)=>{G(()=>{let b=1-y,v=A.read(),S=L(be(v,x),b);A.write(be(v,S))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ft(this.betaInitializer),gammaInitializer:Ft(this.gammaInitializer),movingMeanInitializer:Ft(this.movingMeanInitializer),movingVarianceInitializer:Ft(this.movingVarianceInitializer),betaRegularizer:gt(this.betaRegularizer),gammaRegularizer:gt(this.gammaRegularizer),betaConstraint:en(this.betaConstraint),gammaConstraint:en(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Ry.className="BatchNormalization";ue.registerClass(Ry);var Dy=class extends Je{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ct(e.betaInitializer||"zeros"),this.gammaInitializer=Ct(e.gammaInitializer||"ones"),this.betaRegularizer=Tt(e.betaRegularizer),this.gammaRegularizer=Tt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ct(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==wa(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=Le(e),s=n.shape,r=s.length;return G(()=>{let a=!0,{mean:o,variance:i}=jh(n,this.axis,a),l=pi(1,r);for(let f of this.axis)l[f]=s[f];let c=f=>f!=null&&f.shape.length!==r?V(f,l):f,u=c(this.gamma.read()),d=c(this.beta.read()),p=[],h=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(p.push(s[f]),h.push(1)):(p.push(1),h.push(s[f]));return o=bs(o,p),i=bs(i,p),u=bs(u,h),d=bs(d,h),kd(n,o,i,d,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ft(this.betaInitializer),gammaInitializer:Ft(this.gammaInitializer),betaRegularizer:gt(this.betaRegularizer),gammaRegularizer:gt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Dy.className="LayerNormalization";ue.registerClass(Dy);function AL(e,t,n){return G(()=>{if(e.rank!==4)throw new H(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new H("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Js()),n!=="channelsLast"&&n!=="channelsFirst")throw new H(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],vs(e,s)})}var _y=class extends Je{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?Js():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new H(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new H(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new H(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Ht({ndim:4})]}computeOutputShape(e){e=ct(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return G(()=>AL(Le(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};_y.className="ZeroPadding2D";ue.registerClass(_y);function Xf(e,t,n,s,r,a){return G(()=>{Bt(r),yv(a),ws(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=Js()),a==null&&(a="max"),e=Q1(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=Zc(e,t,n,i):o=Gc(e,t,n,i),r==="channelsFirst"&&(o=Ke(o,[0,3,1,2])),o})}function Rw(e,t,n,s,r,a){return G(()=>{Bt(r),yv(a),ws(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=Js()),a==null&&(a="max"),e=Iw(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=VA(e,t,n,i):o=CA(e,t,n,i),r==="channelsFirst"&&(o=Ke(o,[0,4,1,2,3])),o})}var Dw=class extends Je{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new H(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(un(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new H(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);un(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,ws(this.padding),this.inputSpec=[new Ht({ndim:3})]}computeOutputShape(e){e=ct(e);let t=rr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return G(()=>{this.invokeCallHook(e,t),e=ud(Le(e),2);let n=this.poolingFunction(Le(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return rt(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Fy=class extends Dw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Bt(r),ws(s),Xf(e,t,n,s,r,"max")}};Fy.className="MaxPooling1D";ue.registerClass(Fy);var $y=class extends Dw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Bt(r),ws(s),Xf(e,t,n,s,r,"avg")}};$y.className="AveragePooling1D";ue.registerClass($y);var _w=class extends Je{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new H(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];un(this.poolSize,"poolSize"),un(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Bt(this.dataFormat),ws(this.padding),this.inputSpec=[new Ht({ndim:4})]}computeOutputShape(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=rr(t,this.poolSize[0],this.padding,this.strides[0]),n=rr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return G(()=>(this.invokeCallHook(e,t),this.poolingFunction(Le(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Oy=class extends _w{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Bt(r),ws(s),Xf(e,t,n,s,r,"max")}};Oy.className="MaxPooling2D";ue.registerClass(Oy);var Py=class extends _w{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Bt(r),ws(s),Xf(e,t,n,s,r,"avg")}};Py.className="AveragePooling2D";ue.registerClass(Py);var Fw=class extends Je{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new H(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];un(this.poolSize,"poolSize"),un(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Bt(this.dataFormat),ws(this.padding),this.inputSpec=[new Ht({ndim:5})]}computeOutputShape(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=rr(t,this.poolSize[0],this.padding,this.strides[0]),n=rr(n,this.poolSize[1],this.padding,this.strides[1]),s=rr(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return G(()=>(this.invokeCallHook(e,t),this.poolingFunction(Le(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},My=class extends Fw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Bt(r),ws(s),Rw(e,t,n,s,r,"max")}};My.className="MaxPooling3D";ue.registerClass(My);var zy=class extends Fw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Bt(r),ws(s),Rw(e,t,n,s,r,"avg")}};zy.className="AveragePooling3D";ue.registerClass(zy);var $w=class extends Je{constructor(e){super(e);this.inputSpec=[new Ht({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Me}},Ly=class extends $w{constructor(e){super(e||{})}call(e,t){return G(()=>{let n=Le(e);return _t(n,1)})}};Ly.className="GlobalAveragePooling1D";ue.registerClass(Ly);var By=class extends $w{constructor(e){super(e||{})}call(e,t){return G(()=>{let n=Le(e);return Rn(n,1)})}};By.className="GlobalMaxPooling1D";ue.registerClass(By);var Ow=class extends Je{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Bt(this.dataFormat),this.inputSpec=[new Ht({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Me}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Wy=class extends Ow{call(e,t){return G(()=>{let n=Le(e);return this.dataFormat==="channelsLast"?_t(n,[1,2]):_t(n,[2,3])})}};Wy.className="GlobalAveragePooling2D";ue.registerClass(Wy);var Vy=class extends Ow{call(e,t){return G(()=>{let n=Le(e);return this.dataFormat==="channelsLast"?Rn(n,[1,2]):Rn(n,[2,3])})}};Vy.className="GlobalMaxPooling2D";ue.registerClass(Vy);var Pw=class extends Je{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=sr(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},Uy=class extends Pw{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=ct(e),e.length<3)throw new H(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ct(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return G(()=>(e=Le(e),Nw((a,o)=>[Le(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Uy.className="TimeDistributed";ue.registerClass(Uy);function yL(e){fi(IM,"BidirectionalMergeMode",e)}var xL="concat",Gy=class extends Pw{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=sr(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=sr(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?xL:e.mergeMode,yL(this.mergeMode),e.weights)throw new Me("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Xn(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=Tw(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new H("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let c=n.map(u=>new Ht({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),o.push(...c)}if(s!=null)throw new Me("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof nr;for(let l of a)if(l instanceof nr!==i)throw new H("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return G(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=is(r,1));let o;return this.mergeMode==="concat"?o=y1([s,r]):this.mergeMode==="sum"?o=le(s,r):this.mergeMode==="ave"?o=L(.5,le(s,r)):this.mergeMode==="mul"?o=L(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){mi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),mi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=sr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Me("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};Gy.className="Bidirectional";ue.registerClass(Gy);function bL(e){return new yu(e)}function vL(e){return new Z1(e)}function wL(e){return new q1(e)}function kL(e){return new X1(e)}function IL(e){return new K1(e)}function SL(e){return new J1(e)}function CL(e){return new Y1(e)}function TL(e){return new Vf(e)}function NL(e){return new yd(e)}function EL(e){return new ty(e)}function RL(e){return new xd(e)}function DL(e){return new ny(e)}function _L(e){return new sy(e)}function FL(e){return new ry(e)}function $L(e){return new ay(e)}function OL(e){return new oy(e)}function PL(e){return new fy(e)}function ML(e){return new py(e)}function zL(e){return new qf(e)}function LL(e){return new dy(e)}function BL(e){return new hy(e)}function WL(e){return new my(e)}function VL(e){return new gy(e)}function UL(e){return new Ay(e)}function GL(e){return new xy(e)}function HL(e){return new by(e)}function jL(e){return new wy(e)}function qL(e){return new Sy(e)}function XL(e){return new ky(e)}function KL(e){return new Iy(e)}function ZL(e){return new vy(e)}function YL(e){return new Cy(e)}function JL(e){return new Ry(e)}function QL(e){return new Dy(e)}function eB(e){return new _y(e)}function Hy(e){return new $y(e)}function tB(e){return Hy(e)}function nB(e){return Hy(e)}function jy(e){return new Py(e)}function sB(e){return jy(e)}function rB(e){return jy(e)}function qy(e){return new zy(e)}function aB(e){return qy(e)}function oB(e){return qy(e)}function iB(e){return new Ly(e)}function lB(e){return new Wy(e)}function Mw(e){return new By(e)}function zw(e){return new Vy(e)}function Lw(e){return new Fy(e)}function Bw(e){return new Oy(e)}function uB(e){return new My(e)}function cB(e){return new ly(e)}function dB(e){return new Gf(e)}function pB(e){return new uy(e)}function hB(e){return new vd(e)}function fB(e){return new iy(e)}function mB(e){return new Uf(e)}function gB(e){return new cy(e)}function AB(e){return new jf(e)}function yB(e){return new Sr(e)}function xB(e){return new Hf(e)}function bB(e){return new Gy(e)}function vB(e){return new Uy(e)}var wB=Mw,kB=zw,IB=Lw,SB=Bw;function CB(e){return new Ty(e)}function TB(e){return new Ny(e)}function NB(e){return new Ey(e)}function EB(e){return new yy(e)}var Ww={};ze(Ww,{MAPE:()=>BB,MSE:()=>UB,binaryAccuracy:()=>RB,binaryCrossentropy:()=>DB,categoricalAccuracy:()=>FB,categoricalCrossentropy:()=>$B,cosineProximity:()=>MB,mape:()=>WB,meanAbsoluteError:()=>zB,meanAbsolutePercentageError:()=>LB,meanSquaredError:()=>VB,mse:()=>GB,precision:()=>OB,recall:()=>PB,sparseCategoricalAccuracy:()=>_B});function RB(e,t){return F1(e,t)}function DB(e,t){return Uv(e,t)}function _B(e,t){return Gv(e,t)}function FB(e,t){return $1(e,t)}function $B(e,t){return O1(e,t)}function OB(e,t){return Vv(e,t)}function PB(e,t){return xz(e,t)}function MB(e,t){return D1(e,t)}function zB(e,t){return Of(e,t)}function LB(e,t){return bu(e,t)}function BB(e,t){return bu(e,t)}function WB(e,t){return bu(e,t)}function VB(e,t){return Ai(e,t)}function UB(e,t){return Ai(e,t)}function GB(e,t){return Ai(e,t)}var Vw={};ze(Vw,{modelFromJSON:()=>Qz});var Uw={};ze(Uw,{l1:()=>jB,l1l2:()=>HB,l2:()=>qB});function HB(e){return new gd(e)}function jB(e){return iL(e)}function qB(e){return lL(e)}var Gw=class extends xu{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Ur))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Kf(e,t){return e<t}function Hw(e,t){return e>t}var jw=class extends Gw{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Me("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Kf:this.mode==="max"?this.monitorFunc=Hw:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Hw:this.monitorFunc=Kf,this.monitorFunc===Kf&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Kf?1/0:-1/0}async onEpochEnd(e,t){await Sa(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function XB(e){return new jw(e)}var KB={earlyStopping:XB},ar;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(ar||(ar={}));var qw;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(qw||(qw={}));var Xy={};function ZB(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Xy[e]=n}function Xw(e){return Xy[e]}function YB(e){delete Xy[e]}function k(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return Fn(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(p=>Fn(p,n,s,r));let c=Fn(t.inputNames.slice(i)[0],n,s,r),u=c.dataSync();return a.type==="number"?u[0]:w.toNestedArray(c.shape,u)}let o=t.attrParams[e];return o&&o.value}function Fn(e,t,n,s){let[r,a]=ls(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[Zf(r,i)]);return o!==void 0?t[Zf(r,o)][a]:void 0}function JB(e,t,n){return t[Zf(e,n.currentContextId)]}function Gr(e,t){let[n,s,r]=ls(e);return[Zf(n,t&&t.currentContextId),s,r]}function Zf(e,t){return t?`${e}-${t}`:e}function ls(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function Yf(e,t,n){let s=k("pad",e,t,n);if(s==="explicit"){s=k("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function Hr(e){return e.kept?e:Xs(e)}var Kw={};ze(Kw,{json:()=>QB});var QB=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Zw={};ze(Zw,{json:()=>eW});var eW=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Yw={};ze(Yw,{json:()=>tW});var tW=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],Jw={};ze(Jw,{json:()=>nW});var nW=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],Qw={};ze(Qw,{json:()=>sW});var sW=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],e7={};ze(e7,{json:()=>rW});var rW=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],t7={};ze(t7,{json:()=>aW});var aW=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],n7={};ze(n7,{json:()=>oW});var oW=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],s7={};ze(s7,{json:()=>iW});var iW=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],r7={};ze(r7,{json:()=>lW});var lW=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],a7={};ze(a7,{json:()=>uW});var uW=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],o7={};ze(o7,{json:()=>cW});var cW=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],i7={};ze(i7,{json:()=>dW});var dW=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],l7={};ze(l7,{json:()=>pW});var pW=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],u7={};ze(u7,{json:()=>hW});var hW=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],c7={};ze(c7,{json:()=>fW});var fW=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],d7={};ze(d7,{json:()=>mW});var mW=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],p7={};ze(p7,{json:()=>gW});var gW=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],h7={};ze(h7,{json:()=>AW});var AW=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],f7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Kw,Zw,Yw,Jw,Qw,e7,t7,n7,s7,r7,a7,o7,i7,l7,u7,c7,d7,p7,h7],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((g,A)=>{let[x,,y]=Gr(g),b=o[x];if(b.outputs!=null){let v=b.outputs.indexOf(y);if(v!==-1){let S=`${x}:${v}`;m.inputNames[A]=S}}m.inputs.push(b),b.children.push(m)})}),Object.keys(u).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(u).forEach(f=>{let[m]=Gr(f),g=o[m];g!=null&&(g.signatureKey=u[f],l.push(g))}),Object.keys(c).length>0?Object.keys(c).forEach(f=>{let[m]=Gr(f),g=o[m];g&&(g.signatureKey=c[f],i.push(g))}):i=s;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:p};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=Xw(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.substr(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=Ky(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Ky(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=s2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=s2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=Yy(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=Yy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=n2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=n2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=Zy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Zy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=a2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=a2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=t2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=t2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=r2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=r2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=Qy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Qy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=e2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=e2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=g7(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=g7(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&s.push(u[d.name]),u),{}));let a=[],o=[];e.signature.inputArg.forEach(u=>{let[d]=Gr(u.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Jy(u.type),type:"dtype"}},children:[]};p.signatureKey=u.name,a.push(p),r[d]=p}),Object.keys(r).forEach(u=>{let d=r[u];d.inputNames.forEach((p,h)=>{let[f,,m]=Gr(p),g=r[f];if(g.outputs!=null){let A=g.outputs.indexOf(m);if(A!==-1){let x=`${f}:${A}`;d.inputNames[h]=x}}d.inputs.push(g),g.children.push(d)})});let l=e.ret;e.signature.outputArg.forEach(u=>{let[d,p]=Gr(l[u.name]),h=r[d];h!=null&&(h.defaultOutput=p,o.push(h))});let c=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function yW(e){let t=Y().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function m7(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):yW(e);return t?n:n.toLowerCase()}function Ky(e,t,n,s=!1){let r=e[t];return r!=null?m7(r.s,s):n}function Zy(e,t,n){let s=e[t];return s?s.b:n}function Yy(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function Jy(e){switch(typeof e=="string"&&(e=ar[e]),e){case ar.DT_FLOAT:return"float32";case ar.DT_INT32:case ar.DT_INT64:case ar.DT_INT8:case ar.DT_UINT8:return"int32";case ar.DT_BOOL:return"bool";case ar.DT_DOUBLE:return"float32";case ar.DT_STRING:return"string";default:return null}}function g7(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function Qy(e,t,n){let s=e[t];return s&&s.type?Jy(s.type):n}function e2(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>Jy(r)):n}function A7(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function t2(e,t,n){let s=e[t];return s&&s.shape?A7(s.shape):n}function n2(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function s2(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>m7(a,s)):n}function r2(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>A7(r)):n}function a2(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var xW=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return Fn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Fn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Yy(this.node.rawAttrs,e,t);if(n.s!=null)return Ky(this.node.rawAttrs,e,t);if(n.b!=null)return Zy(this.node.rawAttrs,e,t);if(n.shape!=null)return t2(this.node.rawAttrs,e,t);if(n.type!=null)return Qy(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return n2(this.node.rawAttrs,e,t);if(n.list.s!=null)return s2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return r2(this.node.rawAttrs,e,t);if(n.list.b!=null)return a2(this.node.rawAttrs,e,t);if(n.list.type!=null)return e2(this.node.rawAttrs,e,t)}return t}},bW=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[le(k("a",e,t,n),k("b",e,t,n))];case"AddN":return[$h(k("tensors",e,t,n))];case"FloorMod":case"Mod":return[GA(k("a",e,t,n),k("b",e,t,n))];case"Mul":return[L(k("a",e,t,n),k("b",e,t,n))];case"RealDiv":case"Div":return[fe(k("a",e,t,n),k("b",e,t,n))];case"DivNoNan":return[FA(k("a",e,t,n),k("b",e,t,n))];case"FloorDiv":return[Fh(k("a",e,t,n),k("b",e,t,n))];case"Sub":return[be(k("a",e,t,n),k("b",e,t,n))];case"Minimum":return[uu(k("a",e,t,n),k("b",e,t,n))];case"Maximum":return[xr(k("a",e,t,n),k("b",e,t,n))];case"Pow":return[zr(k("a",e,t,n),k("b",e,t,n))];case"SquaredDifference":return[nf(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},vW=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Vt(k("x",e,t,n))];case"Acos":return[gA(k("x",e,t,n))];case"Acosh":return[AA(k("x",e,t,n))];case"Asin":return[xA(k("x",e,t,n))];case"Asinh":return[bA(k("x",e,t,n))];case"Atan":return[vA(k("x",e,t,n))];case"Atan2":return[wA(k("x",e,t,n),k("y",e,t,n))];case"Atanh":return[kA(k("x",e,t,n))];case"Ceil":return[NA(k("x",e,t,n))];case"Complex":return[ha(k("real",e,t,n),k("imag",e,t,n))];case"Cos":return[jc(k("x",e,t,n))];case"Cosh":return[Lh(k("x",e,t,n))];case"Elu":return[ou(k("x",e,t,n))];case"Erf":return[$A(k("x",e,t,n))];case"Exp":return[ss(k("x",e,t,n))];case"Expm1":return[OA(k("x",e,t,n))];case"Floor":return[lu(k("x",e,t,n))];case"Log":return[rs(k("x",e,t,n))];case"Log1p":return[Xc(k("x",e,t,n))];case"Imag":return[Wh(k("x",e,t,n))];case"Neg":return[St(k("x",e,t,n))];case"Reciprocal":return[qA(k("x",e,t,n))];case"Real":return[ed(k("x",e,t,n))];case"Relu":return[Zs(k("x",e,t,n))];case"Round":return[Kh(k("x",e,t,n))];case"Selu":return[Yh(k("x",e,t,n))];case"Sigmoid":return[Hn(k("x",e,t,n))];case"Sin":return[Jh(k("x",e,t,n))];case"Sign":return[KA(k("x",e,t,n))];case"Sinh":return[Qh(k("x",e,t,n))];case"Softplus":return[ii(k("x",e,t,n))];case"Sqrt":return[gn(k("x",e,t,n))];case"Square":return[ht(k("x",e,t,n))];case"Tanh":return[ri(k("x",e,t,n))];case"Tan":return[JA(k("x",e,t,n))];case"ClipByValue":return[jn(k("x",e,t,n),k("clipValueMin",e,t,n),k("clipValueMax",e,t,n))];case"Relu6":return[Xh(k("x",e,t,n))];case"Rsqrt":return[Zh(Fn(e.inputNames[0],t,n))];case"Prod":return[qh(k("x",e,t,n),k("axes",e,t,n))];case"LeakyRelu":return[qc(k("x",e,t,n),k("alpha",e,t,n))];case"Prelu":return[Qc(k("x",e,t,n),k("alpha",e,t,n))];case"IsNan":return[MA(Fn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Bs(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];w.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function y7(e){return!(typeof e=="number"||e.some(t=>t<0))}function Id(e,t,n){let s=o2(e,n),r=!y7(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=o2(a.shape,s)}),!y7(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function o2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var wW=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Ee(0),on(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Bs(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,on(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return zt([],[0].concat(this.elementShape));let n=this.readMany(e);return Bs(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),An(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return zt([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return Bs(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),mt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,Dn(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];G(()=>{t=V(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],c=[0,l,0],u=[1,e[i],r];a[i]=V(Fe(t,c,u),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},Sd=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Bs(t,r.shape,"TensorList shape mismatch: "),on(r)}),this.idTensor=Ee(0),this.maxNumElements=s,on(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Sd([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Bs(e,this.elementShape,"TensorList shape mismatch: ");let s=Id(this.elementShape,this.tensors,e);return G(()=>{let r=this.tensors.map(a=>V(a,s));return An(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Id(this.elementShape,this.tensors,e),s=this.tensors.pop();return Bs(s.shape,e,"TensorList shape mismatch: "),V(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Bs(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");on(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Bs(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=Id(this.elementShape,this.tensors,t);return V(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Bs(this.elementShape,t.shape,"TensorList shape mismatch: "),on(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Bs(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=Id(this.elementShape,this.tensors,n);return e.length===0?zt([],[0].concat(s)):G(()=>{let r=e.map(a=>V(this.tensors[a],s));return An(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Bs(this.elementShape,t,"TensorList shape mismatch: ");let n=Id(this.elementShape,this.tensors,t);return this.size()===0?zt([],[0].concat(n)):G(()=>{let s=this.tensors.map(r=>V(r,n));return mt(s,0)})}};function kW(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Bs(r,t,"TensorList shape mismatch: ");let a=Dn(e);return new Sd(a,t,s)}function IW(e,t,n){return new Sd([],e,t,n)}function SW(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new Sd([],n,e.dtype,s),o=Dn(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function CW(e,t,n){let s=0,r=t.map(u=>(s+=u,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=o2(a,n),i=s===0?0:e.size/s,l=G(()=>{let u=[];e=V(e,[1,s,i]);for(let d=0;d<t.length;++d){let p=d===0?0:r[d-1],h=[0,p,0],f=[1,t[d],i];u[d]=V(Fe(e,h,f),o)}return e.dispose(),u}),c=new Sd([],n,e.dtype,t.length);for(let u=0;u<l.length;u++)c.setItem(u,l[u]);return c}var TW=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=k("thenBranch",e,t,n),r=k("elseBranch",e,t,n),a=k("cond",e,t,n),o=k("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=k("body",e,t,n),r=k("cond",e,t,n),a=k("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(u=>u.id),l=await o[0].data();o.forEach(u=>{!u.kept&&i.indexOf(u.id)===-1&&u.dispose()});let c=a;for(;l[0];){let u=c;c=await n.functionMap[s].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let d=c.map(h=>h.id);u.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let p=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await p[0].data(),p.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return c}case"LoopCond":{let s=k("pred",e,t,n);return[Hr(s)]}case"Switch":{let s=k("pred",e,t,n),r=k("data",e,t,n);return r.kept||(r=Hr(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>Fn(r,t,n)!==void 0);if(s){let r=Fn(s,t,n);return[Hr(r)]}return}case"Enter":{let s=k("frameName",e,t,n),r=k("tensor",e,t,n);return n.enterFrame(s),[Hr(r)]}case"Exit":{let s=k("tensor",e,t,n);return n.exitFrame(),[Hr(s)]}case"NextIteration":{let s=k("tensor",e,t,n);return n.nextIteration(),[Hr(s)]}case"TensorArrayV3":{let s=k("size",e,t,n),r=k("dtype",e,t,n),a=k("elementShape",e,t,n),o=k("dynamicSize",e,t,n),i=k("clearAfterRead",e,t,n),l=k("identicalElementShapes",e,t,n),c=k("name",e,t,n),u=new wW(c,r,s,a,l,o,i);return n.addTensorArray(u),[u.idTensor,Ee(1)]}case"TensorArrayWriteV3":{let s=k("tensorArrayId",e,t,n),r=k("index",e,t,n),a=k("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=k("tensorArrayId",e,t,n),r=k("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),a=k("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),a=k("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=k("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=k("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=k("tensorArrayId",e,t,n),r=k("tensor",e,t,n),a=k("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=k("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Ee(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=k("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=k("tensorListId",e,t,n),r=k("index",e,t,n),a=k("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=k("tensorListId",e,t,n),r=k("index",e,t,n),a=k("elementShape",e,t,n),o=k("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=k("indices",e,t,n),r=k("tensor",e,t,n),a=k("elementShape",e,t,n),o=k("numElements",e,t,n),i=SW(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=k("elementShape",e,t,n),r=k("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=k(a,e,t,n),i=IW(s,r,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let s=k("tensorListId",e,t,n),r=k("indices",e,t,n),a=k("elementShape",e,t,n),o=k("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),a=k("elementDType",e,t,n),o=k("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=k("tensor",e,t,n),r=k("elementShape",e,t,n),a=k("elementDType",e,t,n),o=kW(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let s=k("tensorListId",e,t,n),r=n.getTensorList(s.id),a=k("dtype",e,t,n),o=k("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=k("tensorListId",e,t,n),r=k("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),a=k("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=k("tensor",e,t,n),r=k("elementShape",e,t,n),a=k("lengths",e,t,n),o=CW(s,a,r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function x7(e,t,n){let[s,r]=k("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",c=k("numArgs",e,t,n);if(a){if(i&&c!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&c!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let u=k("strides",e,t,n),d=Yf(e,t,n),p=k("dataFormat",e,t,n).toUpperCase(),h=k("dilations",e,t,n),[f,m]=k("args",e,t,n);o&&(m=f,f=void 0);let g=k("leakyreluAlpha",e,t,n);return{stride:u,pad:d,dataFormat:p,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var NW=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=k("stride",e,t,n),r=k("pad",e,t,n),a=k("dataFormat",e,t,n).toUpperCase(),o=k("dilation",e,t,n);return[Mh(k("x",e,t,n),k("filter",e,t,n),s,r,a,o)]}case"Conv2D":{let s=k("strides",e,t,n),r=Yf(e,t,n),a=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[Mr(k("x",e,t,n),k("filter",e,t,n),[s[1],s[2]],r,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=x7(e,t,n);return[ba.conv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=x7(e,t,n);return[ba.depthwiseConv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=k("outputShape",e,t,n),r=k("strides",e,t,n),a=Yf(e,t,n);return[zh(k("x",e,t,n),k("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=k("strides",e,t,n),r=Yf(e,t,n),a=k("dilations",e,t,n),o=k("dataFormat",e,t,n).toUpperCase();return[au(k("input",e,t,n),k("filter",e,t,n),[s[1],s[2]],r,o,[a[1],a[2]])]}case"Conv3D":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[RA(k("x",e,t,n),k("filter",e,t,n),[s[1],s[2],s[3]],r,a,[o[1],o[2],o[3]])]}case"AvgPool":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("kernelSize",e,t,n);return[Gc(k("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("kernelSize",e,t,n);return[Zc(k("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("kernelSize",e,t,n),o=k("includeBatchInIndex",e,t,n),{result:i,indexes:l}=C3(k("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,o);return[i,l]}case"AvgPool3D":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("kernelSize",e,t,n);return[CA(k("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("kernelSize",e,t,n);return[VA(k("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("dilations",e,t,n),o=s[1],i=s[2],l=a[1],c=a[2];return[_A(k("x",e,t,n),k("filter",e,t,n),[o,i],r,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},EW=(e,t,n)=>{switch(e.op){case"Fill":{let s=k("shape",e,t,n),r=k("dtype",e,t,n),a=k("value",e,t,n);return[iu(s,a,r)]}case"LinSpace":{let s=k("start",e,t,n),r=k("stop",e,t,n),a=k("num",e,t,n);return[x3(s,r,a)]}case"Multinomial":{let s=k("logits",e,t,n),r=k("numSamples",e,t,n),a=k("seed",e,t,n);return[T3(s,r,a)]}case"OneHot":{let s=k("indices",e,t,n),r=k("depth",e,t,n),a=k("onValue",e,t,n),o=k("offValue",e,t,n);return[eu(s,r,a,o)]}case"Ones":return[as(k("shape",e,t,n),k("dtype",e,t,n))];case"OnesLike":return[os(k("x",e,t,n))];case"RandomUniform":return[cu(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("dtype",e,t,n))];case"Range":{let s=k("start",e,t,n),r=k("stop",e,t,n),a=k("step",e,t,n);return[du(s,r,a,k("dtype",e,t,n))]}case"TruncatedNormal":{let s=k("shape",e,t,n),r=k("mean",e,t,n),a=k("stdDev",e,t,n),o=k("seed",e,t,n);return[sf(s,r,a,k("dtype",e,t,n),o)]}case"Zeros":return[Ut(k("shape",e,t,n),k("dtype",e,t,n))];case"ZerosLike":return[Ze(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function i2(e,t,n){let s=k("boxes",e,t,n),r=k("scores",e,t,n),a=k("maxOutputSize",e,t,n),o=k("iouThreshold",e,t,n),i=k("scoreThreshold",e,t,n),l=k("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var RW=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=i2(e,t,n),c=await _e.nonMaxSuppressionWithScoreAsync(s,r,a,o,i,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=i2(e,t,n),l=k("padToMaxOutputSize",e,t,n),c=await _e.nonMaxSuppressionPaddedAsync(s,r,a,o,i,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=i2(e,t,n);return[await _e.nonMaxSuppressionAsync(s,r,a,o,i)]}case"Where":{let s=de(k("condition",e,t,n),"bool"),r=[await t1(s)];return s.dispose(),r}case"ListDiff":return R3(k("x",e,t,n),k("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},DW=(e,t,n)=>{switch(e.op){case"TopKV2":{let s=k("x",e,t,n),r=k("k",e,t,n),a=k("sorted",e,t,n),o=QA(s,r,a);return[o.values,o.indices]}case"Unique":{let s=k("x",e,t,n),r=rf(s);return[r.values,r.indices]}case"UniqueV2":{let s=k("x",e,t,n),r=k("axis",e,t,n),a=rf(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},_W=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=k("default",e,t,n);return[Fn(e.name,t,n)||s];case"Placeholder":return[Fn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=k("x",e,t,n);return[Hr(c)]}case"IdentityN":return k("x",e,t,n).map(c=>Hr(c));case"Snapshot":let r=k("x",e,t,n);return[Hr(r)];case"Shape":return[Gt(k("x",e,t,n).shape,"int32")];case"ShapeN":return k("x",e,t,n).map(c=>Gt(c.shape));case"Size":return[Ee(k("x",e,t,n).size,"int32")];case"Rank":return[Ee(k("x",e,t,n).rank,"int32")];case"NoOp":return[Ee(1)];case"Print":let a=k("x",e,t,n),o=k("data",e,t,n),i=k("message",e,t,n),l=k("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let c=0;c<o.length;c++)console.log(Array.prototype.slice.call(o[c].dataSync()).slice(0,l));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},FW=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Ee(0),this.tensorMap=new Map,on(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ee(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),G(()=>{let s=Dn(t),r=n.length,a=s.length;w.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];on(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return G(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return An(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n??t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},$W=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=k("keyDType",e,t,n),a=k("valueDType",e,t,n),o=new FW(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=k("tableHandle",e,t,n,s),a=k("keys",e,t,n),o=k("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=k("tableHandle",e,t,n,s),a=k("keys",e,t,n),o=k("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=k("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},OW=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=k("images",e,t,n),r=k("size",e,t,n),a=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[_e.resizeBilinear(s,[r[0],r[1]],a,o)]}case"ResizeNearestNeighbor":{let s=k("images",e,t,n),r=k("size",e,t,n),a=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[_e.resizeNearestNeighbor(s,[r[0],r[1]],a,o)]}case"CropAndResize":{let s=k("image",e,t,n),r=k("boxes",e,t,n),a=k("boxInd",e,t,n),o=k("cropSize",e,t,n),i=k("method",e,t,n),l=k("extrapolationValue",e,t,n);return[_e.cropAndResize(s,r,a,o,i,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},PW=(e,t,n)=>{switch(e.op){case"Equal":return[ns(k("a",e,t,n),k("b",e,t,n))];case"NotEqual":return[ui(k("a",e,t,n),k("b",e,t,n))];case"Greater":return[qn(k("a",e,t,n),k("b",e,t,n))];case"GreaterEqual":return[ya(k("a",e,t,n),k("b",e,t,n))];case"Less":return[Vh(k("a",e,t,n),k("b",e,t,n))];case"LessEqual":return[xa(k("a",e,t,n),k("b",e,t,n))];case"LogicalAnd":return[Ps(k("a",e,t,n),k("b",e,t,n))];case"LogicalNot":return[Kc(k("a",e,t,n))];case"LogicalOr":return[Hh(k("a",e,t,n),k("b",e,t,n))];case"Select":case"SelectV2":return[Sn(k("condition",e,t,n),k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},MW=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ve(k("a",e,t,n),k("b",e,t,n),k("transposeA",e,t,n),k("transposeB",e,t,n))];case"Einsum":return[g3(k("equation",e,t,n),...k("tensors",e,t,n))];case"Transpose":return[Ke(k("x",e,t,n),k("perm",e,t,n))];case"_FusedMatMul":let[s,r]=k("fusedOps",e,t,n),a=s==="biasadd",o=r==="prelu",i=k("numArgs",e,t,n),l=k("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=k("args",e,t,n);return[ba.matMul({a:k("a",e,t,n),b:k("b",e,t,n),transposeA:k("transposeA",e,t,n),transposeB:k("transposeB",e,t,n),bias:c,activation:r,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},zW=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[ai(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"FusedBatchNormV3":return[ai(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"LRN":return[zA(k("x",e,t,n),k("radius",e,t,n),k("bias",e,t,n),k("alpha",e,t,n),k("beta",e,t,n))];case"Softmax":return[ci(k("x",e,t,n))];case"LogSoftmax":return[Gh(k("x",e,t,n))];case"SparseToDense":return[n1(k("sparseIndices",e,t,n),k("outputShape",e,t,n),k("sparseValues",e,t,n),k("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},LW=(e,t,n)=>{switch(e.op){case"Max":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[Rn(k("x",e,t,n),o,i)]}case"Mean":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[_t(k("x",e,t,n),o,i)]}case"Min":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[Yc(k("x",e,t,n),o,i)]}case"Sum":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[Ie(k("x",e,t,n),o,i)]}case"All":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[Oh(k("x",e,t,n),o,i)]}case"Any":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[Vc(k("x",e,t,n),o,i)]}case"ArgMax":{let o=k("axis",e,t,n);return[xs(k("x",e,t,n),o)]}case"ArgMin":{let o=k("axis",e,t,n);return[yA(k("x",e,t,n),o)]}case"Prod":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[qh(k("x",e,t,n),o,i)]}case"Cumsum":{let o=k("axis",e,t,n),i=k("exclusive",e,t,n),l=k("reverse",e,t,n);return[Bh(k("x",e,t,n),o,i,l)]}case"Bincount":let s=k("x",e,t,n),r=k("weights",e,t,n),a=k("size",e,t,n);return[TA(s,r,a)];case"DenseBincount":{let o=k("x",e,t,n),i=k("weights",e,t,n),l=k("size",e,t,n),c=k("binaryOutput",e,t,n);return[f3(o,i,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},BW=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=k("n",e,t,n),r=k("axis",e,t,n),a=k("tensors",e,t,n);return a=a.slice(0,s),[mt(a,r)]}case"Gather":{let s=k("x",e,t,n),r=k("indices",e,t,n);return[oi(s,de(r,"int32"),0)]}case"GatherV2":{let s=k("axis",e,t,n),r=k("batchDims",e,t,n),a=k("x",e,t,n),o=k("indices",e,t,n);return[oi(a,de(o,"int32"),s,r)]}case"Reverse":{let s=k("dims",e,t,n),r=[];for(let o=0;o<s.length;o++)s[o]&&r.push(o);let a=k("x",e,t,n);return[is(a,r)]}case"ReverseV2":{let s=k("axis",e,t,n),r=k("x",e,t,n);return[is(r,s)]}case"Slice":{let s=k("begin",e,t,n),r=k("size",e,t,n);return[Fe(k("x",e,t,n),s,r)]}case"StridedSlice":{let s=k("begin",e,t,n),r=k("end",e,t,n),a=k("strides",e,t,n),o=k("beginMask",e,t,n),i=k("endMask",e,t,n),l=k("ellipsisMask",e,t,n),c=k("newAxisMask",e,t,n),u=k("shrinkAxisMask",e,t,n),d=k("x",e,t,n);return[YA(d,s,r,a,o,i,l,c,u)]}case"Pack":return G(()=>{let s=k("axis",e,t,n),r=k("tensors",e,t,n),a=r[0].shape,o=rt(r[0]).shape,i=r.map(l=>{let c=w.arraysEqual(l.shape,a);if(!c&&!w.arraysEqual(rt(l).shape,o))throw new Error("the input tensors shape does not match");return c?l:V(l,a)});return[An(i,s)]});case"Unpack":{let s=k("axis",e,t,n),r=k("tensor",e,t,n);return Dn(r,s)}case"Tile":{let s=k("reps",e,t,n);return[bs(k("x",e,t,n),s)]}case"Split":case"SplitV":{let s=k("axis",e,t,n),r=k("numOrSizeSplits",e,t,n),a=k("x",e,t,n);return ln(a,r,s)}case"ScatterNd":{let s=k("indices",e,t,n),r=k("values",e,t,n),a=k("shape",e,t,n);return[$3(s,r,a)]}case"GatherNd":{let s=k("x",e,t,n),r=k("indices",e,t,n);return[O3(s,r)]}case"SparseToDense":{let s=k("sparseIndices",e,t,n),r=k("outputShape",e,t,n),a=k("sparseValues",e,t,n),o=k("defaultValue",e,t,n);return[n1(s,a,r,a.dtype===o.dtype?o:de(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},WW=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:o}=rd.sparseFillEmptyRows(k("indices",e,t,n),k("values",e,t,n),k("denseShape",e,t,n),k("defaultValue",e,t,n));return[s,r,a,o]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=rd.sparseReshape(k("inputIndices",e,t,n),k("inputShape",e,t,n),k("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[rd.sparseSegmentMean(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];case"SparseSegmentSum":return[rd.sparseSegmentSum(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},VW=(e,t,n)=>{switch(e.op){case"FFT":return[nd(k("x",e,t,n))];case"IFFT":return[hu(k("x",e,t,n))];case"RFFT":return[sd(k("x",e,t,n))];case"IRFFT":return[tf(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},UW=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=df.stringNGrams(k("data",e,t,n),k("dataSplits",e,t,n),k("separator",e,t,n),k("nGramWidths",e,t,n),k("leftPad",e,t,n),k("rightPad",e,t,n),k("padWidth",e,t,n),k("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=df.stringSplit(k("input",e,t,n),k("delimiter",e,t,n),k("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[df.stringToHashBucketFast(k("input",e,t,n),k("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},GW=(e,t,n)=>{switch(e.op){case"Cast":return[de(k("x",e,t,n),k("dtype",e,t,n))];case"ExpandDims":{let s=k("axis",e,t,n);return[Lt(k("x",e,t,n),s)]}case"Squeeze":{let s=k("axis",e,t,n);return[rt(k("x",e,t,n),s)]}case"Reshape":return[V(k("x",e,t,n),k("shape",e,t,n))];case"MirrorPad":return[UA(k("x",e,t,n),k("padding",e,t,n),k("mode",e,t,n))];case"PadV2":case"Pad":return[vs(k("x",e,t,n),k("padding",e,t,n),k("constantValue",e,t,n))];case"SpaceToBatchND":{let s=k("blockShape",e,t,n),r=k("paddings",e,t,n);return[Jc(k("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=k("blockShape",e,t,n),r=k("crops",e,t,n);return[Hc(k("x",e,t,n),s,r)]}case"DepthToSpace":{let s=k("blockSize",e,t,n),r=k("dataFormat",e,t,n).toUpperCase();return[DA(k("x",e,t,n),s,r)]}case"BroadcastTo":return[su(k("x",e,t,n),k("shape",e,t,n))];case"BroadcastArgs":return[l3(k("s0",e,t,n),k("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function b7(e,t,n,s){let r=((a,o,i)=>{switch(a.category){case"arithmetic":return G(()=>bW(a,o,i));case"basic_math":return G(()=>vW(a,o,i));case"control":return TW(a,o,i);case"convolution":return G(()=>NW(a,o,i));case"creation":return G(()=>EW(a,o,i));case"dynamic":return RW(a,o,i);case"evaluation":return G(()=>DW(a,o,i));case"image":return G(()=>OW(a,o,i));case"graph":return G(()=>_W(a,o,i));case"logical":return G(()=>PW(a,o,i));case"matrices":return G(()=>MW(a,o,i));case"normalization":return G(()=>zW(a,o,i));case"reduction":return G(()=>LW(a,o,i));case"slice_join":return G(()=>BW(a,o,i));case"sparse":return G(()=>WW(a,o,i));case"spectral":return G(()=>VW(a,o,i));case"string":return G(()=>UW(a,o,i));case"transformation":return G(()=>GW(a,o,i));case"hash_table":return $W(a,o,i,s);case"custom":let l=Xw(a.op);if(l&&l.customExecutor)return l.customExecutor(new xW(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var v7=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function w7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,c=Object.keys(e).map(p=>ls(p)[0]),u=[];s!=null&&(u=s.map(p=>ls(p.name)[0]));let d=[...t];for(;d.length>0;){let p=d.pop();if((k7(p)||KW(p)||ZW(p))&&o==null&&(o=p,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(p.name),n[p.name]==null&&c.indexOf(p.name)===-1&&u.indexOf(p.name)===-1){if(p.inputs.length===0){a.push(p.name);continue}p.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function HW(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(u=>ls(u)[0]).map(u=>e.nodes[u]),i=e.initNodes;o.forEach(u=>{s.has(u.name)&&a.push(u)}),e.weights.forEach(u=>{s.has(u.name)&&a.push(u)}),i!=null&&i.forEach(u=>{s.has(u.name)&&a.push(u)});let l=new Set,c=[];for(;a.length>0;){let u=a.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(d=>{!l.has(d.name)&&s.has(d.name)&&d.inputs.every(p=>l.has(p.name))&&a.push(d)})}return c}var jW=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],qW=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],XW=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function k7(e){return jW.indexOf(e.op)>=0}function KW(e){return qW.indexOf(e.op)>=0}function ZW(e){return XW.indexOf(e.op)>=0}var l2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new l2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=w7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return HW(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(u=>this.graph.nodes[ls(u)[0]]),r=t.map(u=>ls(u)[0]),a=r.map(u=>this.graph.nodes[u]);a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},c={};return G(()=>{let u=new v7(this.weightMap,l,c,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,g]=ls(f),A=[];A[g]=e[f],d[m]=A});let p=this.getFrozenTensorIds(d),h={};for(let f=0;f<i.length;f++){let m=i[f];if(!d[m.name]){let g=b7(m,d,u,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);d[m.name]=g,this.checkTensorForDisposal(m.name,m,d,u,p,r,h)}}return this.parent==null&&u.dispose(p),t.map(f=>Fn(f,d,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=JB(i.name,n,s);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!r.has(c.id)){let u=o[c.id];u===1?(c.dispose(),delete o[c.id]):u!=null&&o[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new v7(this.weightMap,s,r,this.functionExecutorMap),o=await this.executeWithControlFlow(e,a,t,n),i=t.map(d=>Fn(d,o,a)),l=i.map(d=>d.id),c=Object.keys(e).map(d=>e[d].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(o).forEach(d=>{o[d].forEach(h=>{h&&!h.kept&&!h.isDisposed&&!u.has(h.id)&&h.dispose()})}),this.parent==null&&a.dispose(u),i}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(x=>this.graph.nodes[ls(x)[0]]),o=n.map(x=>ls(x)[0]),i=o.map(x=>this.graph.nodes[x]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:d}=w7(e,i,this.weightMap,this._initNodes),p=[...a,...this.graph.weights,...this._initNodes||[]].map(x=>({node:x,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(x=>{let[y,b]=ls(x),v=[];v[b]=e[x],h[y]=v});let f={},m=this.getFrozenTensorIds(h),g={};for(;p.length>0;){let x=this.processStack(a,p,t,h,g,m,o,f,l);await Promise.all(x)}u==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let A=i.filter(x=>!k7(x)&&!Fn(x.name,h,t)).map(x=>x.name);if(A.length>0){let x="";throw u!=null&&(x=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${A}] from the provided inputs [${r}]. Consider providing the following inputs: [${c}]. ${x}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let d="";if(u.node.op==="Enter"&&k("isConstant",u.node,s,n)&&([d]=Gr(u.node.name,n)),s[u.node.name]==null){let p=b7(u.node,s,n,this._resourceManager);d||([d]=Gr(u.node.name,n));let h=n.currentContext;w.isPromise(p)?c.push(p.then(f=>(s[d]=f,n.currentContext=h,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l),f))):(s[d]=p,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l))}else this.processChildNodes(u.node,t,n,s,r,l)}return c}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=Gr(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!Fn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!Fn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=ls(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);w.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&w.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=ls(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=ls(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},YW=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},JW="?tfjs-format=file",QW="model.json",I7=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new YW}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Gn.browserHTTPRequest(e,this.loadOptions);else{let t=Gn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Gn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=Gn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new l2(f7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=f7.Instance.transformGraph(e.modelInitializer);this.initializer=new l2(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Gn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ge)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Qe(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${QW}${JW}`);let n=new I7(e,t);return await n.load(),n}var eV="3.11.0",S7={};ze(S7,{CSVDataset:()=>M7,Dataset:()=>Iu,FileDataSource:()=>G7,TextLineDataset:()=>$7,URLDataSource:()=>H7,array:()=>kV,csv:()=>$V,func:()=>OV,generator:()=>PV,microphone:()=>zV,version_data:()=>LV,webcam:()=>MV,zip:()=>IV});var tV=qa(B5()),nV=qa(B5());function sV(e,t){return Jf(e,t)}function Jf(e,t,n=new Map,s=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(ku(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=Jf(i,t,n,s);a[o]=l}return s.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function rV(e,t=T7){return C7(e,t)}function C7(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(ku(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(c=>c[o]),l=C7(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function T7(e){return e===null?null:ku(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function N7(e,t){let n=new Map;Jf(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(w.isPromise(a)){let o=await a;n.set(r,o)}}return Jf(e,t,n)}function ku(e){let t=!1;if(Y().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=W5();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ge)&&!(e instanceof Promise)&&!t)}function aV(e){return e==null||oV(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ge||w.isTypedArray(e)}function oV(e){return e===null||typeof e!="object"&&typeof e!="function"}function iV(e){return sV(e,lV)}function lV(e){return e instanceof Ge?{value:e.clone(),recurse:!1}:ku(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var E7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},u2=class extends E7{constructor(){super(u2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};u2.INITIAL_CAPACITY=32;function R7(e){return new dV(e)}function c2(e){return new pV(e)}function uV(e,t){return new _7(e,t)}function cV(e,t=Ea.FAIL){return new vV(e,t)}var cn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new xV(this,e)}filter(e){return new AV(this,e)}map(e){return new yV(this,e)}mapAsync(e){return new D7(this,e)}serialMapAsync(e){return new D7(this,e).serial()}flatmap(e){return new bV(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new gV(this,e,t)}columnMajorBatch(e,t=!0,n=T7){return this.rowMajorBatch(e,t).map(r=>rV(r,n))}concatenate(e,t){return new _7(R7([this,e]),t)}take(e){return e<0||e==null?this:new mV(this,e)}skip(e){return e<0||e==null?this:new fV(this,e)}prefetch(e){return new F7(this,e)}shuffle(e,t){return new wV(this,e,t)}serial(){return new hV(this)}},dV=class extends cn{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:iV(e),done:!1}}},pV=class extends cn{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},hV=class extends cn{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},fV=class extends cn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Z(e.value)}return this.upstream.next()}},mV=class extends cn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},gV=class extends cn{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},AV=class extends cn{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Z(e.value)}}},yV=class extends cn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=js.getTensorsInContainer(e.value),n=this.transform(e.value),s=js.getTensorsInContainer(n);for(let r of t)js.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},xV=class extends cn{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},D7=class extends cn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=js.getTensorsInContainer(e.value),n=await this.transform(e.value),s=js.getTensorsInContainer(n);for(let r of t)js.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},d2=class extends cn{constructor(){super();this.outputQueue=new u2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},bV=class extends d2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=js.getTensorsInContainer(e.value),n=this.transform(e.value),s=js.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)js.isTensorInList(r,s)||r.dispose();return!0}},_7=class extends cn{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Ea;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Ea||(Ea={}));var vV=class extends cn{constructor(e,t=Ea.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof cn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await N7(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Ea.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Ea.SHORTEST:return{value:null,done:!0};case Ea.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},F7=class extends cn{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new E7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},wV=class extends F7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=nV.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Iu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),us(async()=>(await n.iterator()).columnMajorBatch(e,t,SV),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,us(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,us(async()=>(await t.iterator()).filter(s=>G(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return us(async()=>(await t.iterator()).map(n=>G(()=>e(n))),this.size)}mapAsync(e){let t=this;return us(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return us(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,us(async()=>{let s=c2(async()=>({value:await t.iterator(),done:!1}));return uV(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,us(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=tV.alea(t||w.now().toString());return us(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,us(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Iu.MAX_BUFFER_SIZE=1e4;function us(e,t=null){return new class extends Iu{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function kV(e){return us(async()=>R7(e),e.length)}function IV(e){if(!ku(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return us(async()=>{let n=await N7(e,s=>{if(s instanceof Iu)return{value:s.iterator(),recurse:!1};if(ku(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return cV(n,Ea.SHORTEST)},t)}function SV(e){if(e===null)return null;let t=e[0];return aV(t)?{value:CV(e),recurse:!1}:{value:null,recurse:!0}}function CV(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ge?An(e):zt(e)}var $7=class extends Iu{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},Qf='"',Cd=Symbol("out"),O7=Symbol("field"),e0=Symbol("quote"),p2=Symbol("quoteafterquote"),P7=Symbol("quoteinquote"),M7=class extends Iu{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new $7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let c=Number(i);if(isNaN(c))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=c;else switch(o.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(i);break;default:l=c}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=Cd;for(let o=0;o<r;o++)switch(a){case Cd:switch(e.charAt(o)){case Qf:s=o+1,a=e0;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=Cd;break;default:a=O7,s=o;break}break;case O7:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=Cd,s=o+1;break;default:}break;case e0:switch(e.charAt(o)){case Qf:a=p2;break;default:}break;case p2:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=Cd,s=o+1;break;case Qf:a=e0;break;default:a=P7;break}break;case P7:switch(e.charAt(o)){case Qf:a=e0;break;default:}break;default:}if(a===p2?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},z7=class extends cn{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(Y().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new z7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),zt(n,t)}},L7=class extends cn{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Gt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=Ys([a,r,i,o],[1,4])}else this.cropBox=Ys([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(Y().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new L7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Os.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return G(()=>{let t=Lt(de(e,"float32"),0),n;n=_e.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return V(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},B7=class{},W7=class extends cn{split(e){return new TV(this,e)}},TV=class extends W7{constructor(e,t){super();this.upstream=e,this.impl=new NV(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},NV=class extends d2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},EV=class extends cn{decodeUTF8(){return new RV(this)}},RV=class extends W7{constructor(e){super();this.upstream=e,this.impl=new DV(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},DV=class extends d2{constructor(e){super();if(this.upstream=e,Y().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=W5();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Y().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},V7=class extends EV{constructor(e,t={}){super();this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(Y().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function _V(e,t={},n){let s,r;typeof e=="string"?s=e:(s=e.url,r=FV(e));let a=await(n||w.fetch)(s,r);if(a.ok){let o=new Uint8Array(await a.arrayBuffer());return new V7(o,t)}else throw new Error(a.statusText)}var FV=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function U7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var G7=class extends B7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(U7(this.input)&&Y().get("IS_NODE")){let e=Hi("fs");this.input=e.readFileSync(this.input.substr(7))}return new V7(this.input,this.options)}},H7=class extends B7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return U7(this.url)?new G7(this.url,this.fileOptions).iterator():_V(this.url,this.fileOptions)}};function $V(e,t={}){return new M7(new H7(e),t)}function OV(e){let t=c2(e);return us(async()=>t)}function PV(e){return us(async()=>{let t=await e();return c2(()=>t.next())})}async function MV(e,t){return L7.create(e,t)}async function zV(e){return z7.create(e)}var LV="3.11.0";function Ne(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var BV=br.whereImpl,h2=class extends pc{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new $p(this,ts())}nextDataId(){return h2.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,Y().get("IS_NODE")&&E.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return E.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>w.decodeString(s))}catch{throw new Error("Failed to decode encoded string bytes into utf-8")}return He(e.shape,e.dtype,n)}makeOutput(e,t,n){let s=this.write(e,t,n);return ts().makeTensorFromDataId(s,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Ne([e],"where");let t=this.readSync(e.dataId);return BV(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};h2.nextDataId=0;var j7={};ze(j7,{addImpl:()=>X7,bincountImpl:()=>m2,bincountReduceImpl:()=>K7,ceilImpl:()=>Z7,concatImpl:()=>g2,equalImpl:()=>Y7,expImpl:()=>Q7,expm1Impl:()=>t6,floorImpl:()=>n6,gatherNdImpl:()=>s6,gatherV2Impl:()=>r6,greaterEqualImpl:()=>o6,greaterImpl:()=>a6,lessEqualImpl:()=>l6,lessImpl:()=>i6,linSpaceImpl:()=>u6,logImpl:()=>c6,maxImpl:()=>d6,maximumImpl:()=>p6,minimumImpl:()=>h6,multiplyImpl:()=>A2,negImpl:()=>f6,notEqualImpl:()=>m6,prodImpl:()=>g6,rangeImpl:()=>x2,rsqrtImpl:()=>A6,sigmoidImpl:()=>NU,simpleAbsImpl:()=>q7,sliceImpl:()=>s0,sparseFillEmptyRowsImpl:()=>x6,sparseReshapeImpl:()=>b6,sparseSegmentReductionImpl:()=>b2,sqrtImpl:()=>DU,squaredDifferenceImpl:()=>v6,stridedSliceImpl:()=>w6,stringNGramsImpl:()=>k6,stringSplitImpl:()=>I6,stringToHashBucketFastImpl:()=>S6,subImpl:()=>C6,tileImpl:()=>T6,topKImpl:()=>E6,transposeImpl:()=>y2,uniqueImpl:()=>R6});function q7(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var WV=e=>{let{x:t}=e.inputs,n=e.backend;Ne(t,"abs");let s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=q7(r),n.makeOutput(s,t.shape,t.dtype)},VV={kernelName:Xi,backendName:"cpu",kernelFunc:WV};function jt(e){return(t,n,s,r,a)=>{let o=E.assertAndGetBroadcastShape(t,n),i=o.length,l=w.computeStrides(o),c=w.sizeFromShape(o),u=w.getTypedArrayFromDType(a,c),d=t.length,p=n.length,h=w.computeStrides(t),f=w.computeStrides(n),m=E.getBroadcastDims(t,o),g=E.getBroadcastDims(n,o);if(m.length+g.length===0)for(let A=0;A<u.length;++A)u[A]=e(s[A%s.length],r[A%r.length]);else for(let A=0;A<u.length;++A){let x=w.indexToLoc(A,i,l),y=x.slice(-d);m.forEach(T=>y[T]=0);let b=w.locToIndex(y,d,h),v=x.slice(-p);g.forEach(T=>v[T]=0);let S=w.locToIndex(v,p,f);u[A]=e(s[b],r[S])}return[u,o]}}function cs(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var UV={kernelName:Up,backendName:"cpu",kernelFunc:cs};function t0(e,t,n="float32"){if(n==="complex64"){let r=t0(e,t,"float32"),a=t0(e,t,"float32");return cs({inputs:{real:r,imag:a},backend:e})}let s=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function Cr(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var GV={kernelName:go,backendName:"cpu",kernelFunc:Cr};function vi(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var HV={kernelName:ch,backendName:"cpu",kernelFunc:vi};function Ra(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Cr({inputs:{x:r},backend:n});let o=t0(n,r.shape,r.dtype),i=Ra({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=cs({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=vi({inputs:{input:r},backend:n}),i=Ra({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(r.dtype,a)){let o=Cr({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=w.toTypedArray([0],r.dtype),[l,c]=jt((u,d)=>u!==d?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var jV={kernelName:eo,backendName:"cpu",kernelFunc:Ra};function dn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Ne([o,i],e);let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=o.dtype==="string"?E.fromUint8ToStringArray(c):c,p=o.dtype==="string"?E.fromUint8ToStringArray(u):u,h=s||o.dtype,[f,m]=t(o.shape,i.shape,d,p,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let c=Ra({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),d=u.complexTensorInfos.real,p=u.complexTensorInfos.imag,h=l.data.get(d.dataId).values,f=l.data.get(p.dataId).values,m=Ra({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),A=g.complexTensorInfos.real,x=g.complexTensorInfos.imag,y=l.data.get(A.dataId).values,b=l.data.get(x.dataId).values,[v,S,T]=n(o.shape,i.shape,h,f,y,b),D=l.makeTensorInfo(T,"float32",v),F=l.makeTensorInfo(T,"float32",S),P=cs({inputs:{real:D,imag:F},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(D),l.disposeIntermediateTensorInfo(F),P}else{let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=s||o.dtype,[p,h]=t(o.shape,i.shape,c,u,d);return l.makeTensorInfo(h,d,p)}}}function f2(e){return(t,n,s,r,a,o)=>{let i=E.assertAndGetBroadcastShape(t,n),l=w.sizeFromShape(i),c=i.length,u=w.computeStrides(i),d=w.getTypedArrayFromDType("float32",l),p=w.getTypedArrayFromDType("float32",l),h=E.getBroadcastDims(t,i),f=E.getBroadcastDims(n,i),m=E.mergeRealAndImagArrays(s,r),g=E.mergeRealAndImagArrays(a,o),A=t.length,x=w.computeStrides(t),y=n.length,b=w.computeStrides(n);if(h.length+f.length===0)for(let v=0;v<d.length;v++){let S=v%m.length,T=v%g.length,D=e(m[S*2],m[S*2+1],g[T*2],g[T*2+1]);d[v]=D.real,p[v]=D.imag}else for(let v=0;v<d.length;v++){let S=w.indexToLoc(v,c,u),T=S.slice(-A);h.forEach($=>T[$]=0);let D=w.locToIndex(T,A,x),F=S.slice(-y);f.forEach($=>F[$]=0);let P=w.locToIndex(F,y,b),_=e(m[D*2],m[D*2+1],g[P*2],g[P*2+1]);d[v]=_.real,p[v]=_.imag}return[d,p,i]}}var X7=jt((e,t)=>e+t),qV=f2((e,t,n,s)=>({real:e+n,imag:t+s})),Td=dn(ia,X7,qV),XV={kernelName:ia,backendName:"cpu",kernelFunc:Td};function m2(e,t,n,s,r){let a=w.sizeFromShape(s),o=w.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function K7(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=He([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let c=e.get(i,l);if(c<0)throw new Error("Input x must be non-negative!");c>=n||(s?o.set(1,i,c):t.size>0?o.set(o.get(i,c)+t.get(i,l),i,c):o.set(o.get(i,c)+1,i,c))}return o}function Da(e){return(t,n,s)=>{let r=w.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function dt(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ne(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=w.sizeFromShape(o.shape),u=n||o.dtype,d=w.getArrayFromDType(u,c);for(let p=0;p<c;++p)d[p]=t(l[p],r);return i.makeTensorInfo(o.shape,u,d)}}function Su(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ne(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=n||o.dtype,u=t(l,c,r);return i.makeTensorInfo(o.shape,c,u)}}var Z7=Da(e=>Math.ceil(e)),KV=Su(to,Z7),ZV={kernelName:to,backendName:"cpu",kernelFunc:KV};function g2(e,t,n,s){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=w.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?E.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let c=0;c<o.shape[0];++c){let u=c*t[1]+a;for(let d=0;d<o.shape[1];++d)r[u+d]=i[l++]}a+=o.shape[1]})}return r}var Y7=jt((e,t)=>e===t?1:0),J7=dn(ul,Y7,null,"bool"),YV={kernelName:ul,backendName:"cpu",kernelFunc:J7},Q7=Da(e=>Math.exp(e)),e6=Su(co,Q7,"float32"),JV={kernelName:co,backendName:"cpu",kernelFunc:e6},t6=Da(e=>Math.expm1(e)),QV=Su(dl,t6),eU={kernelName:dl,backendName:"cpu",kernelFunc:QV},n6=Da(e=>Math.floor(e)),tU=Su(po,n6),nU={kernelName:po,backendName:"cpu",kernelFunc:tU};function s6(e,t,n,s,r,a,o,i,l){let c=He([s,a],n);for(let u=0;u<s;u++){let d=[],p=0;for(let h=0;h<r;h++){let f=e[u*r+h];p+=f*o[h],d.push(f)}if(p<0||p>=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let h=0;h<a;h++)c.values[u*a+h]=t.get(...t.indexToLoc(p*a+h))}return c}function r6(e,t,n){let s=He(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],c=t.locToIndex([i,l]);o[2]=t.values[c];let u=e.locToIndex(o);s.values[r]=e.values[u]}return s}var a6=jt((e,t)=>e>t?1:0),sU=dn(ml,a6,null,"bool"),rU={kernelName:ml,backendName:"cpu",kernelFunc:sU},o6=jt((e,t)=>e>=t?1:0),aU=dn(mo,o6,null,"bool"),oU={kernelName:mo,backendName:"cpu",kernelFunc:aU},i6=jt((e,t)=>e<t?1:0),iU=dn(xl,i6,null,"bool"),lU={kernelName:xl,backendName:"cpu",kernelFunc:iU},l6=jt((e,t)=>e<=t?1:0),uU=dn(bl,l6,null,"bool"),cU={kernelName:bl,backendName:"cpu",kernelFunc:uU};function u6(e,t,n){let s=(t-e)/(n-1),r=w.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var c6=Da(e=>Math.log(e)),dU=Su(yo,c6),pU={kernelName:yo,backendName:"cpu",kernelFunc:dU};function d6(e,t,n,s){let r=w.getTypedArrayFromDType(s,w.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let c=e[o+l];(Number.isNaN(c)||c>i)&&(i=c)}r[a]=i}return r}var p6=jt((e,t)=>Math.max(e,t)),hU=dn(bo,p6),fU={kernelName:bo,backendName:"cpu",kernelFunc:hU},h6=jt((e,t)=>Math.min(e,t)),mU=dn(Io,h6),gU={kernelName:Io,backendName:"cpu",kernelFunc:mU},A2=jt((e,t)=>e*t),AU=f2((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),n0=dn(Co,A2,AU),yU={kernelName:Co,backendName:"cpu",kernelFunc:n0};function f6(e,t,n){let s=w.createScalarValue(-1,n);return A2([],t,s,e,n)}function xU(e){let{inputs:t,backend:n}=e,{x:s}=t;Ne(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=f6(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var bU={kernelName:Il,backendName:"cpu",kernelFunc:xU},m6=jt((e,t)=>e!==t?1:0),vU=dn(Sl,m6,null,"bool"),wU={kernelName:Sl,backendName:"cpu",kernelFunc:vU};function y2(e,t,n,s,r){let a=t.length,o=w.sizeFromShape(t),i=w.computeStrides(t),l=w.computeStrides(r),c=w.getTypedArrayFromDType(n,w.sizeFromShape(r));for(let u=0;u<o;++u){let d=w.indexToLoc(u,a,i),p=new Array(d.length);for(let f=0;f<p.length;f++)p[f]=d[s[f]];let h=w.locToIndex(p,a,l);c[h]=e[u]}return c}function ks(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;Ne(r,"transpose");let o=r.shape.length,i=new Array(o);for(let d=0;d<i.length;d++)i[d]=r.shape[a[d]];let l=s.data.get(r.dataId).values,c=y2(l,r.shape,r.dtype,a,i);return{dataId:s.write(c,i,r.dtype),shape:i,dtype:r.dtype}}var kU={kernelName:jo,backendName:"cpu",kernelFunc:ks};function g6(e,t,n,s){let[r,a]=E.computeOutAndReduceShapes(e,s),o=$s(t,"int32"),i=w.makeZerosTypedArray(w.sizeFromShape(r),o),l=w.sizeFromShape(a);for(let c=0;c<i.length;++c){let u=c*l,d=1;for(let p=0;p<l;++p)d*=n[u+p];i[c]=d}return{outVals:i,outShape:r,outDtype:o}}function IU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"prod");let i=r.shape.length,l=w.parseAxisParam(a,r.shape),c=E.getAxesPermutation(l,i),u=l,d=r,p=[];c!=null&&(d=ks({inputs:{x:r},backend:n,attrs:{perm:c}}),p.push(d),u=E.getInnerMostAxes(u.length,i));let h=n.data.get(d.dataId).values,{outVals:f,outShape:m,outDtype:g}=g6(d.shape,d.dtype,h,u),A=m;return o&&(A=E.expandShapeToKeepDim(m,l)),p.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.makeTensorInfo(A,g,f)}var SU={kernelName:Dl,backendName:"cpu",kernelFunc:IU};function x2(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return w.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=w.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}var A6=Da(e=>1/Math.sqrt(e)),CU=Su(Po,A6),TU={kernelName:Po,backendName:"cpu",kernelFunc:CU},NU=Da(e=>1/(1+Math.exp(-e))),y6=dt(zo,e=>1/(1+Math.exp(-e))),EU={kernelName:zo,backendName:"cpu",kernelFunc:y6};function s0(e,t,n,s,r){let a=Yt.isSliceContinous(s,t,n),o=w.sizeFromShape(n),i=w.computeStrides(s);if(a){let d=Yt.computeFlatOffset(t,i);return r==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=r==="string"?E.fromUint8ToStringArray(e):e,c=He(s,r,l),u=He(n,r);for(let d=0;d<u.size;++d){let p=u.indexToLoc(d),h=p.map((f,m)=>f+t[m]);u.set(c.get(...h),...p)}return r==="string"?E.fromStringArrayToUint8(u.values):u.values}function wi(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Ne(r,"slice");let[i,l]=Yt.parseSliceParams(r,a,o);Yt.assertParamsValid(r,i,l);let c=n.data.get(r.dataId).values,u=s0(c,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,u)}var RU={kernelName:Ml,backendName:"cpu",kernelFunc:wi};function x6(e,t,n,s,r,a,o){let i=t[0],l=a[0],c=new Array(l),u=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${i}`);let g=w.getArrayFromDType(n,0),A=w.getArrayFromDType(r,0);return[g,[0,d],A,c,u]}let p=!0,h=0,f=new Array(l).fill(0);for(let g=0;g<i;++g){let A=e[g*d];if(A<0)throw new Error(`indices(${g}, 0) is invalid: ${A} < 0`);if(A>=l)throw new Error(`indices(${g}, 0) is invalid: ${A} >= ${l}`);++f[A],p=p&&A>=h,h=A}let m=!0;for(let g=0;g<l;++g){let A=f[g]===0;c[g]=A,m=m&&!A,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&p){let g=e,A=s;for(let x=0;x<i;++x)u[x]=x;return[g,[i,d],A,c,u]}else{let g=f[l-1],A=w.getArrayFromDType(n,g*d),x=w.getArrayFromDType(r,g),y=new Array(l).fill(0);for(let b=0;b<i;++b){let v=e[b*d],S=y[v],T=(v===0?0:f[v-1])+S;y[v]++;for(let D=0;D<d;++D)A[T*d+D]=e[b*d+D];x[T]=s[b],u[b]=T}for(let b=0;b<l;++b)if(y[b]===0){let S=b===0?0:f[b-1];A[S*d+0]=b;for(let T=1;T<d;++T)A[S*d+T]=0;x[S]=o}return[A,[g,d],x,c,u]}}function b6(e,t,n,s,r){let a=w.sizeFromShape(s),o=t[0],i=r.length,l=[],c=1,u=-1;for(let g=0;g<i;++g){let A=r[g];if(A===-1){if(u!==-1)throw new Error(`only one output dimension may be -1, not both ${u} and ${g}`);u=g,l.push(1)}else{if(A<0)throw new Error(`size ${g} must be non-negative, not ${A}`);c*=A,l.push(A)}}if(u!==-1){if(c<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let g=Math.trunc(a/c);if(c*g!==a)throw new Error(`Input to reshape is a SparseTensor with ${a}
|
|
dense values, but the requested shape requires a multiple of ${c}. inputShape=${s} outputShape= ${l}`);l[u]=g}let d=w.sizeFromShape(l);if(d!==a)throw new Error(`Input to reshape is a tensor with ${a} dense values, but the requested shape has ${d}. inputShape=${s} outputShape=${l}`);let p=s.length,h=[];if(p>0){h[p-1]=1;for(let g=p-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=w.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let A=0;for(let x=0;x<p;++x)A+=e[g*p+x]*h[x];for(let x=0;x<i;++x)m[g*i+x]=Math.trunc(A/f[x]),A%=f[x]}return[m,[o,i],l]}function b2(e,t,n,s,r,a=!1,o=0){let i=s.length;if(i!==r.length)throw new Error("segmentIds and indices should have same size.");let l=[t[0],e.length/t[0]],c=l[1],d=i>0?r[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let p=t.slice();p[0]=d;let h=p.reduce((y,b)=>y*b,1),f=w.getArrayFromDType(n,h);if(i===0)return d>0&&f.fill(o),[f,p];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,g=1,A=0,x=r[m];for(;;){let y=0;if(g<i){if(y=r[g],x===y){++g;continue}if(x>=y)throw new Error("segment ids are not increasing")}if(x<0||x>=d)throw new Error(`Segment id ${x} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);x>A&&f.fill(o,A*c,x*c);for(let b=m;b<g;++b){let v=s[b];if(v<0||v>=l[0])throw new Error(`Bad: indices[${b}] == ${s[b]} out of range [0, ${l[0]})`);for(let S=0;S<c;S++)f[x*c+S]+=e[v*c+S]}if(a)for(let b=0;b<c;b++)f[x*c+b]/=g-m;if(m=g,++g,A=x+1,x=y,g>i)break}return A<d&&f.fill(o,A*c,d*c),[f,p]}var DU=Da(e=>Math.sqrt(e)),_U=dt(Lo,e=>Math.sqrt(e)),FU={kernelName:Lo,backendName:"cpu",kernelFunc:_U},v6=jt((e,t)=>{let n=e-t;return n*n}),$U=dn(Vo,v6),OU={kernelName:Vo,backendName:"cpu",kernelFunc:$U};function w6(e,t,n,s){let r=He(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var PU=class{constructor(e,t,n,s,r,a){this.separator=w.encodeString(e),this.nGramWidths=t,this.leftPad=w.encodeString(n),this.rightPad=w.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),c=Math.max(0,i-(r-(o+1))),u=a-(l+c),d=t+(l>0?0:o-i),p=0;p+=l*this.leftPad.length;for(let A=0;A<u;++A)p+=e[d+A].length;p+=c*this.rightPad.length,p+=(l+c+u-1)*this.separator.length,n[s+o]=new Uint8Array(p);let f=n[s+o],m=0,g=A=>A.forEach(x=>f[m++]=x);for(let A=0;A<l;++A)g(this.leftPad),g(this.separator);for(let A=0;A<u-1;++A)g(e[d+A]),g(this.separator);if(u>0){g(e[d+u-1]);for(let A=0;A<c;++A)g(this.separator),g(this.rightPad)}else{for(let A=0;A<c-1;++A)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let c=t[l]>=i;if(c=c&&t[l]<=n,!c)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=w.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],c=0;this.nGramWidths.forEach(u=>{c+=this.getNumNGrams(l,u)}),this.preserveShort&&l>0&&c===0&&(c=1),a[i]=a[i-1]+c}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],c=a[i];if(this.nGramWidths.forEach(u=>{let d=t[i+1]-t[i],p=this.getNumNGrams(d,u);this.createNGrams(e,l,o,c,p,u),c+=p}),this.preserveShort&&c===a[i]){let u=t[i+1]-t[i];if(u===0)continue;let d=u+2*this.padWidth,p=1;this.createNGrams(e,l,o,c,p,d)}}return[o,a]}};function k6(e,t,n,s,r,a,o,i){return new PU(n,s,r,a,o,i).compute(e,t)}function MU(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&s.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}}function I6(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let p=0;p<s;++p){let h=r.length;MU(e[p],t,n,r);let f=r.length-h;i[p]=f,a+=f,o=Math.max(o,f)}let l=w.getArrayFromDType("int32",a*2),c=new Array(a),u=[s,o],d=0;for(let p=0;p<s;++p)for(let h=0;h<i[p];++h)l[d*2]=p,l[d*2+1]=h,c[d]=r[d],++d;return[l,c,u]}function S6(e,t){let n=w.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=w.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var C6=jt((e,t)=>e-t),zU=f2((e,t,n,s)=>({real:e-n,imag:t-s})),v2=dn(Uo,C6,zU),LU={kernelName:Uo,backendName:"cpu",kernelFunc:v2};function T6(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=He(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var Nd=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function N6(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,c=Math.log(i),u=.5*Math.exp(2*c/3),d=.5*Math.sqrt(c*u*(i-u)/i)*Math.sign(l-i/2),p=Math.max(n,Math.floor(t-l*u/i+d)),h=Math.min(s,Math.floor(t+(i-l)*u/i+d));N6(e,t,p,h)}let r=e[t],a=n,o=s;for(w.swap(e,n,t),Nd(e[s],r)>0&&w.swap(e,n,s);a<o;){for(w.swap(e,a,o),a++,o--;Nd(e[a],r)<0;)a=a+1;for(;Nd(e[o],r)>0;)o=o-1}Nd(e[n],r)===0?w.swap(e,n,o):(o=o+1,w.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function E6(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=w.getTypedArrayFromDType(n,o*s),c=w.getTypedArrayFromDType("int32",o*s);for(let d=0;d<o;d++){let p=d*i,h=e.subarray(p,p+i),f=new Array(h.length);h.forEach((x,y)=>f[y]={value:x,index:y}),s<f.length&&(N6(f,s),f=f.slice(0,s)),r&&f.sort(Nd);let m=d*s,g=l.subarray(m,m+s),A=c.subarray(m,m+s);for(let x=0;x<s;x++)g[x]=f[x].value,A[x]=f[x].index}let u=t.slice();return u[u.length-1]=s,[He(u,n,l),He(u,"int32",c)]}function R6(e,t,n,s){let r=w.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[r]),l=new Zt(a,s,e),c=[],u=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(u)m=e[f].toString();else{let g=[];for(let A=0;A<a[0];A++)for(let x=0;x<a[2];x++)g.push(l.get(A,f,x));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,c.push(f)}}let d=a.slice();d[1]=Object.keys(o).length;let p=new Zt(d,s);c.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let A=0;A<a[2];A++)p.set(l.get(g,f,A),g,m,A)});let h=n.slice();return h[r]=d[1],{outputValues:p.values,outputShape:h,indices:i}}tu("cpu",()=>new h2,1);var D6=dt(uo,e=>e>=0?e:Math.exp(e)-1),BU={kernelName:uo,backendName:"cpu",kernelFunc:D6};function _6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Ne([r],"leakyRelu");let o=w.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=w.getTypedArrayFromDType("float32",o);for(let c=0;c<i.length;c++)l[c]=i[c]<0?a*i[c]:i[c];return n.makeTensorInfo(r.shape,"float32",l)}var WU={kernelName:Ao,backendName:"cpu",kernelFunc:_6},VU=jt((e,t)=>e<0?t*e:e);function F6(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Ne([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=VU(s.shape,r.shape,a,o,"float32");return n.makeTensorInfo(l,"float32",i)}var UU={kernelName:Ro,backendName:"cpu",kernelFunc:F6},$6=dt(Do,e=>Math.max(0,e)),GU={kernelName:Do,backendName:"cpu",kernelFunc:$6},O6=dt(Fo,e=>Math.min(Math.max(0,e),6)),HU={kernelName:Fo,backendName:"cpu",kernelFunc:O6};function w2(e,t,n,s,r){if(n==="linear")return Cr({inputs:{x:t},backend:e});if(n==="relu")return $6({inputs:{x:t},backend:e});if(n==="elu")return D6({inputs:{x:t},backend:e});if(n==="relu6")return O6({inputs:{x:t},backend:e});if(n==="prelu")return F6({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return _6({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return y6({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function Nt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=w.sizeFromShape(r.shape),i=w.inferFromImplicitShape(a,o),l=w.sizeFromShape(i);w.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let c=n.data.get(r.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,d=c.complexTensorInfos.imag;u.shape=i,d.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var jU={kernelName:Fl,backendName:"cpu",kernelFunc:Nt};function P6(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Ne([r,a],"matMul");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),A=w.sizeFromShape(m),x=g===A||g===1||A===1;w.assert(l>=2&&c>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>A?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);w.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,u,p]:[g,p,u],S=i?[A,h,d]:[A,d,h],T=Nt({inputs:{x:r},backend:n,attrs:{shape:v}}),D=Nt({inputs:{x:a},backend:n,attrs:{shape:S}}),F=o?T.shape[1]:T.shape[2],P=o?T.shape[2]:T.shape[1],_=i?D.shape[1]:D.shape[2],$=Math.max(g,A),C=n.data.get(T.dataId).values,M=n.data.get(D.dataId).values,U=w.computeStrides(T.shape),j=w.computeStrides(D.shape),[q,X,te]=o?[U[0],1,U[1]]:[U[0],U[1],1],[ne,se,oe]=i?[1,j[1],j[0]]:[j[1],1,j[0]],ae=P*_,re=He([$,P,_],T.dtype),ce=re.values,ge=n.blockSize;for(let ve=0;ve<$;ve++)for(let Ce=0;Ce<P;Ce+=ge)for(let Re=0;Re<_;Re+=ge)for(let Pe=0;Pe<F;Pe+=ge){let Be=Math.min(Ce+ge,P),Ue=Math.min(Re+ge,_),et=Math.min(Pe+ge,F);for(let ut=Ce;ut<Be;ut++)for(let at=Re;at<Ue;at++){let ot=0;for(let pt=Pe;pt<et;pt++){let ft=Math.min(ve,g-1)*q,wt=Math.min(ve,A-1)*oe,Rt=C[ft+ut*X+pt*te],Wn=M[pt*ne+at*se+wt];ot+=Rt*Wn}ce[ve*ae+(ut*_+at)]+=ot}}return n.disposeIntermediateTensorInfo(T),n.disposeIntermediateTensorInfo(D),n.makeTensorInfo(b,re.dtype,re.values)}var qU={kernelName:Qa,backendName:"cpu",kernelFunc:P6};function XU(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s,p,h,f,m=[];p=P6({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:c},backend:n}),o&&(h=Td({inputs:{a:p,b:o},backend:n}),m.push(p),p=h),u&&(f=w2(n,p,u,i,d),m.push(p),p=f);for(let A of m)n.disposeIntermediateTensorInfo(A);return p}var KU={kernelName:qo,backendName:"cpu",kernelFunc:XU},ZU=dt(Ki,e=>Math.acos(e)),YU={kernelName:Ki,backendName:"cpu",kernelFunc:ZU},JU=dt(Zi,e=>Math.acosh(e)),QU={kernelName:Zi,backendName:"cpu",kernelFunc:JU};function eG(e){let{inputs:t,backend:n}=e,s=t;Ne(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=He(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let c=0;c<o.length;c++)o[c]+=l[c]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var tG={kernelName:Za,backendName:"cpu",kernelFunc:eG};function nG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"all");let i=w.parseAxisParam(a,r.shape),l=i,c=E.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=ks({inputs:{x:r},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("all",l,u.shape.length);let[d,p]=E.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let x=A*h,y=m[x];for(let b=0;b<h;++b){let v=m[x+b];y=y&&v}f[A]=y}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=E.expandShapeToKeepDim(d,i),x=Nt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),x}return g}var sG={kernelName:Yi,backendName:"cpu",kernelFunc:nG};function rG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"any");let i=w.parseAxisParam(a,r.shape),l=i,c=E.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=ks({inputs:{x:r},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("any",l,u.shape.length);let[d,p]=E.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let x=A*h,y=m[x];for(let b=0;b<h;++b){let v=m[x+b];y=y||v}f[A]=y}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=E.expandShapeToKeepDim(d,i),x=Nt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),x}return g}var aG={kernelName:Ji,backendName:"cpu",kernelFunc:rG};function oG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ne(r,"argMax");let o=w.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=ks({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],E.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[u,d]=E.computeOutAndReduceShapes(l.shape,o),p=w.sizeFromShape(u),h=w.makeZerosTypedArray(p,"int32"),f=w.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,x=m[A],y=0;for(let b=0;b<f;++b){let v=m[A+b];v>x&&(x=v,y=b)}h[g]=y}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var iG={kernelName:Ya,backendName:"cpu",kernelFunc:oG};function lG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ne(r,"argMin");let o=w.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=ks({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],E.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[u,d]=E.computeOutAndReduceShapes(l.shape,o),p=w.sizeFromShape(u),h=w.makeZerosTypedArray(p,"int32"),f=w.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,x=m[A],y=0;for(let b=0;b<f;++b){let v=m[A+b];v<x&&(x=v,y=b)}h[g]=y}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var uG={kernelName:mc,backendName:"cpu",kernelFunc:lG},cG=dt(Qi,e=>Math.asin(e)),dG={kernelName:Qi,backendName:"cpu",kernelFunc:cG},pG=dt(el,e=>Math.asinh(e)),hG={kernelName:el,backendName:"cpu",kernelFunc:pG},fG=dt(tl,e=>Math.atan(e)),mG={kernelName:tl,backendName:"cpu",kernelFunc:fG},gG=jt((e,t)=>Math.atan2(e,t)),AG=dn(sl,gG),yG={kernelName:sl,backendName:"cpu",kernelFunc:AG},xG=dt(nl,e=>Math.atanh(e)),bG={kernelName:nl,backendName:"cpu",kernelFunc:xG};function k2(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,c=r.dilationWidth,u=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=He(r.outShape,n),g=m.values,A=r.outShape[1]*r.outShape[2]*r.outShape[3],x=r.outShape[2]*r.outShape[3],y=r.outShape[3];for(let b=0;b<r.batchSize;++b){let v=b*A,S=b*s[0];for(let T=0;T<r.inChannels;++T)for(let D=0;D<r.outHeight;++D){let F=D*o-p,P=Math.max(0,F),_=Math.min(r.inHeight,u+F),$=v+D*x;for(let C=0;C<r.outWidth;++C){let M=C*i-h,U=Math.max(0,M),j=Math.min(r.inWidth,d+M),q=f,X=0,te=0;for(let se=P;se<_;se+=l){let oe=S+se*s[1];for(let ae=U;ae<j;ae+=c){let re=oe+ae*s[2],ce=e[re+T];a==="max"&&ce>q?q=ce:a==="avg"&&(X+=ce,te++)}if(isNaN(q))break}let ne=$+C*y+T;g[ne]=a==="avg"?X/te:q}}}return m}function M6(e,t,n,s,r=!1,a=!1){let o=He(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,c=s.dilationHeight,u=s.dilationWidth,d=s.effectiveFilterHeight,p=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=He(t,n,e);for(let g=0;g<s.batchSize;++g)for(let A=0;A<s.inChannels;++A)for(let x=0;x<s.outHeight;++x){let y=x*i-h,b=y;for(;b<0;)b+=c;let v=Math.min(s.inHeight,d+y);for(let S=0;S<s.outWidth;++S){let T=S*l-f,D=T;for(;D<0;)D+=u;let F=Math.min(s.inWidth,p+T),P=Number.NEGATIVE_INFINITY,_=-1;for(let $=b;$<v;$+=c){let C=$-y;for(let M=D;M<F;M+=u){let U=M-T,j=m.get(g,$,M,A);j>P&&(P=j,r?_=a?((g*s.inHeight+$)*s.inWidth+M)*s.inChannels+A:($*s.inWidth+M)*s.inChannels+A:_=C*p+U)}}o.set(_,g,x,S,A)}}return o}function z6(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,c=r.dilationDepth,u=r.dilationHeight,d=r.dilationWidth,p=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,A=r.padInfo.left,x=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,y=He(r.outShape,n),b=y.values,v=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[2]*r.outShape[3]*r.outShape[4],T=r.outShape[3]*r.outShape[4],D=r.outShape[4];for(let F=0;F<r.batchSize;++F){let P=F*v,_=F*s[0];for(let $=0;$<r.inChannels;++$)for(let C=0;C<r.outDepth;++C){let M=C*o-m,U=M;for(;U<0;)U+=c;let j=Math.min(r.inDepth,p+M),q=P+C*S;for(let X=0;X<r.outHeight;++X){let te=X*i-g,ne=te;for(;ne<0;)ne+=u;let se=Math.min(r.inHeight,h+te),oe=q+X*T;for(let ae=0;ae<r.outWidth;++ae){let re=ae*l-A,ce=re;for(;ce<0;)ce+=d;let ge=Math.min(r.inWidth,f+re),ve=oe+ae*D,Ce=x,Re=0,Pe=0;for(let Ue=U;Ue<j;Ue+=c){let et=_+Ue*s[1];for(let ut=ne;ut<se;ut+=u){let at=et+ut*s[2];for(let ot=ce;ot<ge;ot+=d){let pt=at+ot*s[3],ft=e[pt+$];if(a==="max"&&ft>Ce?Ce=ft:a==="avg"&&(Re+=ft,Pe++),isNaN(Ce))break}if(isNaN(Ce))break}if(isNaN(Ce))break}let Be=ve+$;b[Be]=a==="avg"?Re/Pe:Ce}}}}return y}function vG(e,t){let n=He(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,d=t.effectiveFilterWidth,p=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let A=0;A<t.outDepth;++A){let x=A*s-p,y=x;for(;y<0;)y+=o;let b=Math.min(t.inDepth,c+x);for(let v=0;v<t.outHeight;++v){let S=v*r-h,T=S;for(;T<0;)T+=i;let D=Math.min(t.inHeight,u+S);for(let F=0;F<t.outWidth;++F){let P=F*a-f,_=P;for(;_<0;)_+=l;let $=Math.min(t.inWidth,d+P),C=Number.NEGATIVE_INFINITY,M=-1;for(let U=y;U<b;U+=o){let j=U-x;for(let q=T;q<D;q+=i){let X=q-S;for(let te=_;te<$;te+=l){let ne=te-P,se=e.get(m,U,q,te,g);se>=C&&(C=se,M=j*u*d+X*u+ne)}}}n.set(M,m,A,v,F,g)}}}return n}function wG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ne(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;w.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))d=Cr({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),f=k2(p,r.shape,r.dtype,h,u,"avg");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var kG={kernelName:Ja,backendName:"cpu",kernelFunc:wG};function IG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Ne(r,"avgPool3d");let u=E.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=z6(d,r.shape,r.dtype,w.computeStrides(r.shape),u,"avg");return n.makeTensorInfo(p.shape,"float32",p.values)}var SG={kernelName:gc,backendName:"cpu",kernelFunc:IG};function CG(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Ne([r,a],"avgPool3DGrad");let u=E.computePool3DInfo(a.shape,o,i,1,l,c),d=u.strideDepth,p=u.strideHeight,h=u.strideWidth,f=u.filterDepth,m=u.filterHeight,g=u.filterWidth,A=u.dilationDepth,x=u.dilationHeight,y=u.dilationWidth,b=u.effectiveFilterDepth,v=u.effectiveFilterHeight,S=u.effectiveFilterWidth,T=b-1-u.padInfo.front,D=S-1-u.padInfo.left,F=v-1-u.padInfo.top,P=He(a.shape,"float32"),_=1/(f*m*g),$=n.bufferSync(r);for(let C=0;C<u.batchSize;++C)for(let M=0;M<u.inChannels;++M)for(let U=0;U<u.inDepth;++U)for(let j=0;j<u.inHeight;++j)for(let q=0;q<u.inWidth;++q){let X=U-T,te=j-F,ne=q-D,se=0;for(let oe=0;oe<b;oe+=A){let ae=(X+oe)/d;if(!(ae<0||ae>=u.outDepth||Math.floor(ae)!==ae))for(let re=0;re<v;re+=x){let ce=(te+re)/p;if(!(ce<0||ce>=u.outHeight||Math.floor(ce)!==ce))for(let ge=0;ge<S;ge+=y){let ve=(ne+ge)/h;if(ve<0||ve>=u.outWidth||Math.floor(ve)!==ve)continue;se+=$.get(C,ae,ce,ve,M)}}}P.set(se*_,C,U,j,q,M)}return n.makeTensorInfo(P.shape,P.dtype,P.values)}var TG={kernelName:Bp,backendName:"cpu",kernelFunc:CG};function NG(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Ne([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=E.computePool2DInfo(o.shape,i,l,1,c),d=u.strideHeight,p=u.strideWidth,h=u.filterHeight,f=u.filterWidth,m=u.dilationHeight,g=u.dilationWidth,A=u.effectiveFilterHeight,x=u.effectiveFilterWidth,y=x-1-u.padInfo.left,b=A-1-u.padInfo.top,v=He(o.shape,"float32"),S=1/(h*f),T=n.data.get(r.dataId).values,D=He(r.shape,"float32",T);for(let F=0;F<u.batchSize;++F)for(let P=0;P<u.inChannels;++P)for(let _=0;_<u.inHeight;++_)for(let $=0;$<u.inWidth;++$){let C=_-b,M=$-y,U=0;for(let j=0;j<A;j+=m){let q=(C+j)/d;if(!(q<0||q>=u.outHeight||Math.floor(q)!==q))for(let X=0;X<x;X+=g){let te=(M+X)/p;if(te<0||te>=u.outWidth||Math.floor(te)!==te)continue;U+=D.get(F,q,te,P)}}v.set(U*S,F,_,$,P)}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var EG={kernelName:Lp,backendName:"cpu",kernelFunc:NG};function RG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;w.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Ne([r,i,l,a,o],"batchNorm");let{varianceEpsilon:c}=s;c==null&&(c=.001);let u=n.data.get(r.dataId).values,d=n.data.get(i.dataId).values,p=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(u.length),g=f.length,A=h.length,x=p.length,y=d.length,b=0,v=0,S=0,T=0;for(let D=0;D<u.length;++D)m[D]=f[b++]+(u[D]-d[v++])*h[S++]/Math.sqrt(p[T++]+c),b>=g&&(b=0),v>=y&&(v=0),S>=A&&(S=0),T>=x&&(T=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var DG={kernelName:fo,backendName:"cpu",kernelFunc:RG};function _G(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Ne([r],"batchToSpaceND");let i=a.reduce((A,x)=>A*x),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=Nt({inputs:{x:r},backend:n,attrs:{shape:l}}),f=ks({inputs:{x:h},backend:n,attrs:{perm:c}}),m=Nt({inputs:{x:f},backend:n,attrs:{shape:u}}),g=wi({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var FG={kernelName:rl,backendName:"cpu",kernelFunc:_G};function $G(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=m2(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var OG={kernelName:Wp,backendName:"cpu",kernelFunc:$G};function PG(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=E.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var MG={kernelName:Vp,backendName:"cpu",kernelFunc:PG},zG=dt(la,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),LG={kernelName:la,backendName:"cpu",kernelFunc:zG},BG=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let c=0;c<i.length;c++){let u=i[c],d=l[c];s[c]=Math.hypot(u,d)}return n.makeOutput(s,t.shape,"float32")},WG={kernelName:Ac,backendName:"cpu",kernelFunc:BG};function Cu(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var VG={kernelName:sh,backendName:"cpu",kernelFunc:Cu};function Tu(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],o=E.computeOutShape(t.map(m=>m.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>w.sizeFromShape(m.shape)>0);if(i.length===1)return Cr({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(E.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>vi({inputs:{input:b},backend:n})),g=i.map(b=>Cu({inputs:{input:b},backend:n})),A=Tu({inputs:m,backend:n,attrs:{axis:a}}),x=Tu({inputs:g,backend:n,attrs:{axis:a}}),y=cs({inputs:{real:A,imag:x},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(x),y}let c=i.map(m=>{let g=w.sizeFromShape(m.shape.slice(a));return Nt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),u=c.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=E.computeOutShape(c.map(m=>m.shape),1);let d=c[0].shape[0]===1,p=g2(u,o,t[0].dtype,d),h=E.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,p);return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var UG={kernelName:al,backendName:"cpu",kernelFunc:Tu};function L6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s;Ne([r,a],"conv2d");let d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,A=p.padInfo.left,x=p.padInfo.top,y=p.dataFormat==="channelsLast",b=new Zt(p.outShape,r.dtype),v=w.computeStrides(r.shape),S=w.computeStrides(a.shape),T=v[0],D=y?v[1]:v[2],F=y?v[2]:1,P=y?1:v[1],_=b.strides[0],$=y?b.strides[1]:b.strides[2],C=y?b.strides[2]:1,M=y?1:b.strides[1],U=n.data.get(r.dataId).values,j=n.data.get(a.dataId).values,q=b.values;for(let X=0;X<p.batchSize;++X){let te=X*T,ne=X*_;for(let se=0;se<p.outHeight;++se){let oe=ne+se*$,ae=se*p.strideHeight-x;for(let re=0;re<h;++re){let ce=ae+re*m;if(ce<0||ce>=p.inHeight)continue;let ge=re*S[0],ve=te+ce*D;for(let Ce=0;Ce<p.outWidth;++Ce){let Re=oe+Ce*C,Pe=Ce*p.strideWidth-A;for(let Be=0;Be<f;++Be){let Ue=Pe+Be*g;if(Ue<0||Ue>=p.inWidth)continue;let et=ge+Be*S[1],ut=ve+Ue*F,at=et;for(let ot=0;ot<p.inChannels;++ot){let pt=U[ut+ot*P];for(let ft=0;ft<p.outChannels;++ft)q[Re+ft*M]+=pt*j[at+ft];at+=p.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,q)}var GG={kernelName:no,backendName:"cpu",kernelFunc:L6};function HG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,filterShape:u}=s;Ne([r,a],"conv2dBackpropFilter");let d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,u,o,1,i,c,!1,d),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=p,A=p.dataFormat==="channelsLast",x=new Zt(p.filterShape,"float32"),y=p.padInfo.left,b=p.padInfo.top,v=n.data.get(r.dataId).values,S=n.data.get(a.dataId).values,T=new Zt(r.shape,r.dtype,v),D=new Zt(a.shape,a.dtype,S);for(let F=0;F<m;++F){let P=Math.max(0,Math.ceil((b-F)/h)),_=Math.min(p.outHeight,(p.inHeight+b-F)/h);for(let $=0;$<g;++$){let C=Math.max(0,Math.ceil((y-$)/f)),M=Math.min(p.outWidth,(p.inWidth+y-$)/f);for(let U=0;U<p.inChannels;++U)for(let j=0;j<p.outChannels;++j){let q=0;for(let X=0;X<p.batchSize;++X)for(let te=P;te<_;++te){let ne=F+te*h-b;for(let se=C;se<M;++se){let oe=$+se*f-y;A?q+=T.get(X,ne,oe,U)*D.get(X,te,se,j):q+=T.get(X,U,ne,oe)*D.get(X,j,te,se)}}x.set(q,F,$,U,j)}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var jG={kernelName:Gp,backendName:"cpu",kernelFunc:HG};function qG(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s;Ne([r,a],"conv2dBackpropInput");let d=w.computeStrides(a.shape),p=w.computeStrides(r.shape),h=E.convertConv2DDataFormat(c),f=E.computeConv2DInfo(o,a.shape,i,1,l,u,!1,h),m=new Zt(f.inShape,"float32"),g=m.values,A=n.data.get(r.dataId).values,x=n.data.get(a.dataId).values,[y,b,v]=d,{batchSize:S,filterHeight:T,filterWidth:D,inChannels:F,inHeight:P,inWidth:_,outChannels:$,outHeight:C,outWidth:M,strideHeight:U,strideWidth:j}=f;h=f.dataFormat;let q=T-1-f.padInfo.top,X=D-1-f.padInfo.left,te=h==="channelsLast",ne=m.strides[0],se=te?m.strides[1]:m.strides[2],oe=te?m.strides[2]:1,ae=te?1:m.strides[1],re=p[0],ce=te?p[1]:p[2],ge=te?p[2]:1,ve=te?1:p[1];for(let Ce=0;Ce<S;++Ce)for(let Re=0;Re<F;++Re)for(let Pe=0;Pe<P;++Pe){let Be=Pe-q,Ue=Math.max(0,Math.ceil(Be/U)),et=Math.min(C,(T+Be)/U);for(let ut=0;ut<_;++ut){let at=ut-X,ot=Math.max(0,Math.ceil(at/j)),pt=Math.min(M,(D+at)/j),ft=0;for(let Rt=Ue;Rt<et;++Rt){let Wn=Rt*U-Be;for(let hn=ot;hn<pt;++hn){let Gs=hn*j-at,Cn=re*Ce+ce*Rt+ge*hn,Qn=y*(T-1-Wn)+b*(D-1-Gs)+v*Re;for(let Rs=0;Rs<$;++Rs){let As=A[Cn+ve*Rs],fn=x[Qn+Rs];ft+=As*fn}}}let wt=ne*Ce+se*Pe+oe*ut+ae*Re;g[wt]=ft}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var XG={kernelName:so,backendName:"cpu",kernelFunc:qG};function KG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;Ne([r,a],"conv3d");let c=E.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:u,filterHeight:d,filterWidth:p,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=c,A=g.front,x=g.left,y=g.top,b=new Zt(c.outShape,r.dtype),v=n.data.get(r.dataId).values,S=n.data.get(a.dataId).values,T=b.values,D=w.computeStrides(r.shape),F=w.computeStrides(a.shape);for(let P=0;P<c.batchSize;++P){let _=P*D[0],$=P*b.strides[0];for(let C=0;C<c.outDepth;++C){let M=$+C*b.strides[1],U=C*c.strideDepth-A;for(let j=0;j<u;++j){let q=U+j*h;if(q<0||q>=c.inDepth)continue;let X=j*F[0],te=_+q*D[1];for(let ne=0;ne<c.outHeight;++ne){let se=M+ne*b.strides[2],oe=ne*c.strideHeight-y;for(let ae=0;ae<d;++ae){let re=oe+ae*f;if(re<0||re>=c.inHeight)continue;let ce=X+ae*F[1],ge=te+re*D[2];for(let ve=0;ve<c.outWidth;++ve){let Ce=se+ve*c.outChannels,Re=ve*c.strideWidth-x;for(let Pe=0;Pe<p;++Pe){let Be=Re+Pe*m;if(Be<0||Be>=c.inWidth)continue;let Ue=ce+Pe*F[2],et=ge+Be*c.inChannels,ut=Ue;for(let at=0;at<c.inChannels;++at){let ot=v[et+at];for(let pt=0;pt<c.outChannels;++pt)T[Ce+pt]+=ot*S[ut+pt];ut+=c.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var ZG={kernelName:yc,backendName:"cpu",kernelFunc:KG};function YG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;Ne([r,a],"conv3dBackpropFilterV2");let c=w.computeStrides(r.shape),u=w.computeStrides(a.shape),d=E.computeConv3DInfo(r.shape,l,o,1,i),p=d.strideDepth,h=d.strideHeight,f=d.strideWidth,m=d.filterDepth,g=d.filterHeight,A=d.filterWidth,x=new Zt(d.filterShape,"float32"),y=x.values,[b,v,S,T]=x.strides,D=n.data.get(a.dataId).values,[F,P,_,$]=u,C=n.data.get(r.dataId).values,[M,U,j,q]=c,X=d.padInfo.front,te=d.padInfo.left,ne=d.padInfo.top;for(let se=0;se<m;++se){let oe=Math.max(0,Math.ceil((X-se)/p)),ae=Math.min(d.outDepth,(d.inDepth+X-se)/p),re=se*b;for(let ce=0;ce<g;++ce){let ge=Math.max(0,Math.ceil((ne-ce)/h)),ve=Math.min(d.outHeight,(d.inHeight+ne-ce)/h),Ce=ce*v+re;for(let Re=0;Re<A;++Re){let Pe=Math.max(0,Math.ceil((te-Re)/f)),Be=Math.min(d.outWidth,(d.inWidth+te-Re)/f),Ue=Re*S+Ce;for(let et=0;et<d.inChannels;++et){let ut=et*T+Ue;for(let at=0;at<d.outChannels;++at){let ot=0;for(let pt=0;pt<d.batchSize;++pt){let ft=pt*M,wt=pt*F;for(let Rt=oe;Rt<ae;++Rt){let hn=(se+Rt*p-X)*U+ft,Gs=Rt*P+wt;for(let Cn=ge;Cn<ve;++Cn){let Rs=(ce+Cn*h-ne)*j+hn,As=Cn*_+Gs;for(let fn=Pe;fn<Be;++fn){let wn=(Re+fn*f-te)*q+Rs,cr=fn*$+As;ot+=C[wn+et]*D[cr+at]}}}}y[ut+at]=ot}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var JG={kernelName:Hp,backendName:"cpu",kernelFunc:YG};function QG(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;Ne([r],"conv3dBackpropInputV2");let c=w.computeStrides(r.shape),u=w.computeStrides(a.shape),d=E.computeConv3DInfo(l,a.shape,i,1,o),p=new Zt(d.inShape,"float32"),h=p.values,[f,m,g,A]=p.strides,x=n.data.get(r.dataId).values,[y,b,v,S]=c,T=n.data.get(a.dataId).values,[D,F,P,_]=u,{batchSize:$,filterDepth:C,filterHeight:M,filterWidth:U,inChannels:j,inDepth:q,inHeight:X,inWidth:te,outChannels:ne,outDepth:se,outHeight:oe,outWidth:ae,strideDepth:re,strideHeight:ce,strideWidth:ge}=d,ve=C-1-d.padInfo.front,Ce=M-1-d.padInfo.top,Re=U-1-d.padInfo.left;for(let Pe=0;Pe<$;++Pe)for(let Be=0;Be<j;++Be)for(let Ue=0;Ue<q;++Ue){let et=Ue-ve,ut=Math.max(0,Math.ceil(et/re)),at=Math.min(se,(C+et)/re);for(let ot=0;ot<X;++ot){let pt=ot-Ce,ft=Math.max(0,Math.ceil(pt/ce)),wt=Math.min(oe,(M+pt)/ce);for(let Rt=0;Rt<te;++Rt){let Wn=Rt-Re,hn=Math.max(0,Math.ceil(Wn/ge)),Gs=Math.min(ae,(U+Wn)/ge),Cn=0;for(let Qn=ut;Qn<at;++Qn){let Rs=Qn*re-et;for(let As=ft;As<wt;++As){let fn=As*ce-pt;for(let ur=hn;ur<Gs;++ur){let wn=ur*ge-Wn,cr=y*Pe+b*Qn+v*As+S*ur,dr=D*(C-1-Rs)+F*(M-1-fn)+P*(U-1-wn)+_*Be;for(let Yr=0;Yr<ne;++Yr){let Zu=x[cr+Yr],Hs=T[dr+Yr];Cn+=Zu*Hs}}}}h[f*Pe+m*Ue+g*ot+A*Rt+Be]=Cn}}}return n.makeTensorInfo(p.shape,p.dtype,p.values)}var eH={kernelName:jp,backendName:"cpu",kernelFunc:QG},tH=dt(ro,e=>Math.cos(e)),nH={kernelName:ro,backendName:"cpu",kernelFunc:tH},sH=dt(ao,e=>Math.cosh(e)),rH={kernelName:ao,backendName:"cpu",kernelFunc:sH};function aH(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,[u,d,p,h]=r.shape,f=a.shape[0],[m,g]=i,A=He([f,m,g,h],"float32"),x=n.data.get(a.dataId).values,y=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,v=w.computeStrides(r.shape),S=w.computeStrides(A.shape);for(let T=0;T<f;T++){let D=T*4,F=x[D],P=x[D+1],_=x[D+2],$=x[D+3],C=y[T];if(C>=u)continue;let M=m>1?(_-F)*(d-1)/(m-1):0,U=g>1?($-P)*(p-1)/(g-1):0;for(let j=0;j<m;j++){let q=m>1?F*(d-1)+j*M:.5*(F+_)*(d-1);if(q<0||q>d-1){for(let X=0;X<g;X++)for(let te=0;te<h;te++){let ne=te+X*S[2]+j*S[1]+T*S[0];A.values[ne]=c}continue}if(l==="bilinear"){let X=Math.floor(q),te=Math.ceil(q),ne=q-X;for(let se=0;se<g;se++){let oe=g>1?P*(p-1)+se*U:.5*(P+$)*(p-1);if(oe<0||oe>p-1){for(let ge=0;ge<h;ge++){let ve=ge+se*S[2]+j*S[1]+T*S[0];A.values[ve]=c}continue}let ae=Math.floor(oe),re=Math.ceil(oe),ce=oe-ae;for(let ge=0;ge<h;ge++){let ve=ge+ae*v[2]+X*v[1]+C*v[0],Ce=b[ve];ve=ge+re*v[2]+X*v[1]+C*v[0];let Re=b[ve];ve=ge+ae*v[2]+te*v[1]+C*v[0];let Pe=b[ve];ve=ge+re*v[2]+te*v[1]+C*v[0];let Be=b[ve],Ue=Ce+(Re-Ce)*ce,et=Pe+(Be-Pe)*ce;ve=ge+se*S[2]+j*S[1]+T*S[0],A.values[ve]=Ue+(et-Ue)*ne}}}else for(let X=0;X<g;++X){let te=g>1?P*(p-1)+X*U:.5*(P+$)*(p-1);if(te<0||te>p-1){for(let oe=0;oe<h;oe++){let ae=oe+X*S[2]+j*S[1]+T*S[0];A.values[ae]=c}continue}let ne=Math.round(te),se=Math.round(q);for(let oe=0;oe<h;oe++){let ae=oe+ne*v[2]+se*v[1]+C*v[0],re=oe+X*S[2]+j*S[1]+T*S[0];A.values[re]=b[ae]}}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var oH={kernelName:ol,backendName:"cpu",kernelFunc:aH};function iH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Ne(r,"cumsum");let l=E.getAxesPermutation([a],r.shape.length),c=r;l!=null&&(c=ks({inputs:{x:r},backend:n,attrs:{perm:l}}));let u=E.getInnerMostAxes(1,r.shape.length)[0];if(u!==c.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${c.shape.length-1} but got axis=${u}`);let d=$s(c.dtype,"int32"),p=w.makeZerosTypedArray(w.sizeFromShape(c.shape),d),h=n.data.get(c.dataId).values,f=c.shape[c.shape.length-1],m=i?(A,x)=>A+f-x-1:(A,x)=>A+x;for(let A=0;A<h.length;A+=f)for(let x=0;x<f;x++){let y=m(A,x);if(x===0)p[y]=o?0:h[y];else{let b=m(A,x-1);p[y]=o?h[b]+p[b]:h[y]+p[b]}}let g=n.makeTensorInfo(c.shape,d,p);if(l!=null){let A=E.getUndoAxesPermutation(l),x=ks({inputs:{x:g},backend:n,attrs:{perm:A}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(c),x}return g}var lH={kernelName:oo,backendName:"cpu",kernelFunc:iH};function uH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=m2(l,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(a),u=K7(l,c,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var cH={kernelName:qp,backendName:"cpu",kernelFunc:uH};function dH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;w.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`);let i=r.shape[0],l=r.shape[1],c=r.shape[2],u=r.shape[3],d=l*a,p=c*a,h=u/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*d*p*h),g=0;for(let A=0;A<i;++A)for(let x=0;x<d;++x){let y=Math.floor(x/a),b=x%a;for(let v=0;v<p;++v){let S=Math.floor(v/a),T=v%a,D=(b*a+T)*h;for(let F=0;F<h;++F){let _=F+D+u*(S+c*(y+l*A));m[g++]=f[_]}}}return n.makeTensorInfo([i,d,p,h],r.dtype,m)}var pH={kernelName:il,backendName:"cpu",kernelFunc:dH};function B6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s;Ne([r,a],"depthwiseConv2DNative");let u=w.computeStrides(r.shape),d=w.computeStrides(a.shape),p=l;p==null&&(p=[1,1]),w.assert(E.eitherStridesOrDilationsAreOne(o,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${p}'`);let h=E.computeConv2DInfo(r.shape,a.shape,o,p,i,c,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:A,padInfo:x}=h,y=x.left,b=x.top,v=h.outChannels/h.inChannels,S=new Zt(h.outShape,r.dtype),T=n.data.get(r.dataId).values,D=n.data.get(a.dataId).values,F=S.values;for(let P=0;P<h.batchSize;++P){let _=P*u[0],$=P*S.strides[0];for(let C=0;C<h.outHeight;++C){let M=$+C*S.strides[1],U=C*h.strideHeight-b;for(let j=0;j<f;++j){let q=U+j*g;if(q<0||q>=h.inHeight)continue;let X=j*d[0],te=_+q*u[1];for(let ne=0;ne<h.outWidth;++ne){let se=M+ne*S.strides[2],oe=ne*h.strideWidth-y;for(let ae=0;ae<m;++ae){let re=oe+ae*A;if(re<0||re>=h.inWidth)continue;let ce=X+ae*d[1],ge=te+re*h.inChannels,ve=se,Ce=ce;for(let Re=0;Re<h.inChannels;++Re){let Pe=T[ge+Re];for(let Be=0;Be<v;++Be)F[ve+Be]+=Pe*D[Ce+Be];ve+=v,Ce+=v}}}}}}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var hH={kernelName:io,backendName:"cpu",kernelFunc:B6};function fH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,filterShape:u}=s;Ne([r,a],"depthwiseConv2dNativeBackpropFilter");let d=E.computeConv2DInfo(r.shape,u,o,i,l,c,!0),{strideHeight:p,strideWidth:h,filterHeight:f,filterWidth:m}=d,g=new Zt(d.filterShape,"float32"),A=d.padInfo.left,x=d.padInfo.top,y=d.outChannels/d.inChannels,b=n.data.get(r.dataId).values,v=new Zt(r.shape,r.dtype,b),S=n.data.get(a.dataId).values,T=new Zt(a.shape,a.dtype,S);for(let D=0;D<f;++D){let F=Math.max(0,Math.ceil((x-D)/p)),P=Math.min(d.outHeight,(d.inHeight+x-D)/p);for(let _=0;_<m;++_){let $=Math.max(0,Math.ceil((A-_)/h)),C=Math.min(d.outWidth,(d.inWidth+A-_)/h);for(let M=0;M<d.outChannels;++M){let U=Math.trunc(M/y),j=M%y,q=0;for(let X=0;X<d.batchSize;++X)for(let te=F;te<P;++te){let ne=D+te*p-x;for(let se=$;se<C;++se){let oe=_+se*h-A;q+=v.get(X,ne,oe,U)*T.get(X,te,se,M)}}g.set(q,D,_,U,j)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var mH={kernelName:Xp,backendName:"cpu",kernelFunc:fH};function gH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,inputShape:u}=s;Ne([r,a],"depthwiseConv2DNativeBackpropInput");let d=w.computeStrides(r.shape),p=w.computeStrides(a.shape),h=E.computeConv2DInfo(u,a.shape,o,i,l,c,!0),f=new Zt(h.inShape,"float32"),m=f.values,[g,A,x]=f.strides,y=n.data.get(r.dataId).values,[b,v,S]=d,T=n.data.get(a.dataId).values,[D,F,P]=p,{batchSize:_,filterHeight:$,filterWidth:C,inChannels:M,inHeight:U,inWidth:j,outChannels:q,outHeight:X,outWidth:te,strideHeight:ne,strideWidth:se}=h,oe=$-1-h.padInfo.top,ae=C-1-h.padInfo.left,re=q/M;for(let ce=0;ce<_;++ce)for(let ge=0;ge<M;++ge)for(let ve=0;ve<U;++ve){let Ce=ve-oe,Re=Math.max(0,Math.ceil(Ce/ne)),Pe=Math.min(X,($+Ce)/ne);for(let Be=0;Be<j;++Be){let Ue=Be-ae,et=Math.max(0,Math.ceil(Ue/se)),ut=Math.min(te,(C+Ue)/se),at=0;for(let ot=Re;ot<Pe;++ot){let pt=ot*ne-Ce;for(let ft=et;ft<ut;++ft){let wt=ft*se-Ue,Rt=b*ce+v*ot+S*ft,Wn=D*($-1-pt)+F*(C-1-wt)+P*ge;for(let hn=0;hn<re;++hn){let Gs=ge*re+hn,Cn=y[Rt+Gs],Qn=T[Wn+hn];at+=Cn*Qn}}}m[g*ce+A*ve+x*Be+ge]=at}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var AH={kernelName:Kp,backendName:"cpu",kernelFunc:gH};function yH(e){let{inputs:t,backend:n}=e,{x:s}=t,r=w.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=He([r,r],s.dtype),i=o.values;for(let c=0;c<a.length;c++)i[c*r+c]=a[c];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var xH={kernelName:Zp,backendName:"cpu",kernelFunc:yH},bH={kernelName:xc,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,c=l.data.get(s.dataId).values,u=s.shape.length,d=l.data.get(r.dataId).values,p=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:A,outWidth:x,padInfo:y,strideHeight:b,strideWidth:v,filterHeight:S,filterWidth:T,dilationHeight:D,dilationWidth:F,outShape:P}=E.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),_=w.sizeFromShape(P),$=P.length,C=w.getArrayFromDType(s.dtype,_);for(let U=0;U<h;++U)for(let j=0;j<A;++j){let q=j*b-y.top;for(let X=0;X<x;++X){let te=X*v-y.left;for(let ne=0;ne<g;++ne){let se=Number.MIN_SAFE_INTEGER;for(let ae=0;ae<S;++ae){let re=q+ae*D;if(re>=0&&re<f)for(let ce=0;ce<T;++ce){let ge=te+ce*F;if(ge>=0&&ge<m){let ve=w.locToIndex([U,re,ge,ne],u,w.computeStrides(s.shape)),Ce=w.locToIndex([ae,ce,ne],p,w.computeStrides(r.shape)),Re=c[ve]+d[Ce];Re>se&&(se=Re)}}}let oe=w.locToIndex([U,j,X,ne],$,w.computeStrides(P));C[oe]=se}}}return{dataId:l.write(w.toTypedArray(C,s.dtype),P,s.dtype),shape:P,dtype:s.dtype}}},vH={kernelName:Jp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=w.toNestedArray(s.shape,c.data.get(s.dataId).values),d=w.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:x,strideHeight:y,strideWidth:b,filterHeight:v,filterWidth:S,dilationHeight:T,dilationWidth:D,outShape:F}=E.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);w.assert(a.rank===F.length,()=>`Error in ${Jp}, dy must have the same rank as output ${F.length}, but got ${a.rank}`);let P=w.toNestedArray(F,c.data.get(a.dataId).values),_=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let C=0;C<p;++C)for(let M=0;M<g;++M){let U=M*y-x.top;for(let j=0;j<A;++j){let q=j*b-x.left;for(let X=0;X<m;++X){let te=Number.MIN_SAFE_INTEGER,ne=0,se=0;for(let oe=0;oe<v;++oe){let ae=U+oe*T;if(ae>=0&&ae<h)for(let re=0;re<S;++re){let ce=q+re*D;if(ce>=0&&ce<f){let ge=u[C][ae][ce][X]+d[oe][re][X];ge>te&&(te=ge,ne=oe,se=re)}}}_[ne][se][X]+=P[C][M][j][X]}}}return{dataId:c.write(w.toTypedArray(_,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},wH={kernelName:Yp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=w.toNestedArray(s.shape,c.data.get(s.dataId).values),d=w.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:x,strideHeight:y,strideWidth:b,filterHeight:v,filterWidth:S,dilationHeight:T,dilationWidth:D,outShape:F}=E.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);w.assert(a.rank===F.length,()=>`Error in ${Yp}, dy must have the same rank as output ${F.length}, but got ${a.rank}`);let P=w.toNestedArray(F,c.data.get(a.dataId).values),_=w.makeZerosNestedTypedArray(s.shape,s.dtype);for(let C=0;C<p;++C)for(let M=0;M<g;++M){let U=M*y-x.top;for(let j=0;j<A;++j){let q=j*b-x.left;for(let X=0;X<m;++X){let te=Number.MIN_SAFE_INTEGER,ne=U<0?0:U,se=q<0?0:q;for(let oe=0;oe<v;++oe){let ae=U+oe*T;if(ae>=0&&ae<h)for(let re=0;re<S;++re){let ce=q+re*D;if(ce>=0&&ce<f){let ge=u[C][ae][ce][X]+d[oe][re][X];ge>te&&(te=ge,ne=ae,se=ce)}}}_[C][ne][se][X]+=P[C][M][j][X]}}}return{dataId:c.write(w.toTypedArray(_,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Ed(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"sum");let i;r.dtype==="bool"?i=Ra({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=Cr({inputs:{x:r},backend:n});let l=i.shape.length,c=w.parseAxisParam(a,i.shape),u=E.getAxesPermutation(c,l),d=c,p=i;u!=null&&(p=ks({inputs:{x:i},backend:n,attrs:{perm:u}}),d=E.getInnerMostAxes(d.length,l)),E.assertAxesAreInnerMostDims("sum",d,p.shape.length);let[h,f]=E.computeOutAndReduceShapes(p.shape,d),m=E.upcastType(p.dtype,"int32"),g=t0(n,h,m),A=w.sizeFromShape(f),x=n.data.get(g.dataId).values,y=n.data.get(p.dataId).values;for(let b=0;b<x.length;++b){let v=b*A,S=0;for(let T=0;T<A;++T)S+=y[v+T];x[b]=S}if(o){let b=E.expandShapeToKeepDim(g.shape,c),v=g;g=Nt({inputs:{x:g},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(v)}return n.disposeIntermediateTensorInfo(i),u!=null&&n.disposeIntermediateTensorInfo(p),g}var kH={kernelName:Bo,backendName:"cpu",kernelFunc:Ed};function IH(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=E.decodeEinsumEquation(r,a.length);E.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=E.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:x}=E.getEinsumPermutation(h,l[g]),y;E.isIdentityPermutation(A)?y=a[g]:(y=ks({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(y));let b=y.shape.slice();for(let v=0;v<x.length;++v)b.splice(x[v],0,1);w.arraysEqual(y.shape,b)||(y=Nt({inputs:{x:y},backend:n,attrs:{shape:b}}),f.push(y)),p===null?p=y:(p=n0({inputs:{a:y,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=Ed({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var SH={kernelName:Qp,backendName:"cpu",kernelFunc:IH};function CH(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Ne([s,r],"eluGrad");let a=new Float32Array(w.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let c=o[l];c>=1?a[l]=i[l]:a[l]=i[l]*(c+1)}return n.makeTensorInfo(r.shape,"float32",a)}var TH={kernelName:eh,backendName:"cpu",kernelFunc:CH},NH=E.ERF_P,EH=E.ERF_A1,RH=E.ERF_A2,DH=E.ERF_A3,_H=E.ERF_A4,FH=E.ERF_A5,$H=dt(ll,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+NH*n);return t*(1-((((FH*s+_H)*s+DH)*s+RH)*s+EH)*s*Math.exp(-n*n))}),OH={kernelName:ll,backendName:"cpu",kernelFunc:$H};function r0(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Nt({inputs:{x:r},backend:n,attrs:{shape:i}})}var PH={kernelName:cl,backendName:"cpu",kernelFunc:r0},MH=jt((e,t)=>e/t),I2=dn(lo,MH),S2={kernelName:lo,backendName:"cpu",kernelFunc:I2};function W6(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,c=[r,a],u=w.sizeFromShape(c),d=w.getTypedArrayFromDType("float32",u),p=w.getTypedArrayFromDType("float32",u);for(let g=0;g<r;g++){let A=wi({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),x=wi({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,a]}}),y=cs({inputs:{real:A,imag:x},backend:n}),{real:b,imag:v}=zH(y,t,n),S=E.mergeRealAndImagArrays(b,v);for(let T=0;T<a;T++){let D=E.getComplexWithIndex(S,T);d[g*a+T]=D.real,p[g*a+T]=D.imag}n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(y)}let h=n.makeTensorInfo(c,"float32",d),f=n.makeTensorInfo(c,"float32",p),m=cs({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function zH(e,t,n){let s=w.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if(LH(s)){let i=C2(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let c=n.makeTensorInfo(l,"float32",i.real),u=n.makeTensorInfo(l,"float32",i.imag),d=n.makeTensorInfo([],"float32",w.createScalarValue(s,"float32")),p=Cr({inputs:{x:d},backend:n}),h=S2.kernelFunc({inputs:{a:c,b:d},backend:n}),f=S2.kernelFunc({inputs:{a:u,b:p},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=E.mergeRealAndImagArrays(a,o),l=BH(i,s,t);return E.splitRealAndImagArrays(l)}}function LH(e){return(e&e-1)==0}function C2(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=E.mergeRealAndImagArrays(e,t),o=n/2,i=E.complexWithEvenIndex(a),l=i.real,c=i.imag,u=[l.length],d=r.makeTensorInfo(u,"float32",l),p=r.makeTensorInfo(u,"float32",c),h=cs({inputs:{real:d,imag:p},backend:r}),f=E.complexWithOddIndex(a),m=f.real,g=f.imag,A=[m.length],x=r.makeTensorInfo(A,"float32",m),y=r.makeTensorInfo(A,"float32",g),b=cs({inputs:{real:x,imag:y},backend:r}),v=C2(l,c,o,s,r),S=v.real,T=v.imag,D=[S.length],F=r.makeTensorInfo(D,"float32",S),P=r.makeTensorInfo(D,"float32",T),_=cs({inputs:{real:F,imag:P},backend:r}),$=C2(m,g,o,s,r),C=$.real,M=$.imag,U=[C.length],j=r.makeTensorInfo(U,"float32",C),q=r.makeTensorInfo(U,"float32",M),X=cs({inputs:{real:j,imag:q},backend:r}),te=E.exponents(n,s),ne=[te.real.length],se=r.makeTensorInfo(ne,"float32",te.real),oe=r.makeTensorInfo(ne,"float32",te.imag),ae=cs({inputs:{real:se,imag:oe},backend:r}),re=n0({inputs:{a:ae,b:X},backend:r}),ce=Td({inputs:{a:_,b:re},backend:r}),ge=v2({inputs:{a:_,b:re},backend:r}),ve=vi({inputs:{input:ce},backend:r}),Ce=vi({inputs:{input:ge},backend:r}),Re=Cu({inputs:{input:ce},backend:r}),Pe=Cu({inputs:{input:ge},backend:r}),Be=Tu({inputs:[ve,Ce],backend:r,attrs:{axis:0}}),Ue=Tu({inputs:[Re,Pe],backend:r,attrs:{axis:0}}),et=r.data.get(Be.dataId).values,ut=r.data.get(Ue.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(F),r.disposeIntermediateTensorInfo(P),r.disposeIntermediateTensorInfo(_),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(se),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(re),r.disposeIntermediateTensorInfo(ce),r.disposeIntermediateTensorInfo(ge),r.disposeIntermediateTensorInfo(ve),r.disposeIntermediateTensorInfo(Re),r.disposeIntermediateTensorInfo(Ce),r.disposeIntermediateTensorInfo(Pe),r.disposeIntermediateTensorInfo(Be),r.disposeIntermediateTensorInfo(Ue),{real:et,imag:ut}}function BH(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=E.exponent(r*i,t,n),c=E.getComplexWithIndex(e,i);a+=c.real*l.real-c.imag*l.imag,o+=c.real*l.imag+c.imag*l.real}n&&(a/=t,o/=t),E.assignToTypedArray(s,a,o,r)}return s}function WH(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Nt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=W6(i,!1,n),c=Nt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var VH={kernelName:th,backendName:"cpu",kernelFunc:WH};function T2(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||w.inferDtype(r),i=w.getArrayFromDType(o,w.sizeFromShape(s));return GH(i,r,o),t.makeTensorInfo(s,o,i)}var UH={kernelName:bc,backendName:"cpu",kernelFunc:T2};function GH(e,t,n){e.fill(t)}var HH={kernelName:pl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[o,i,l,c]=s.shape,u=r.data.get(s.dataId).values;for(let p=0;p<o;p++){let h=p*l*i*c;for(let f=0;f<i;f++){let m=f*(l*c);for(let g=0;g<l;g++){let A=g*c;for(let x=0;x<c;x++){let y=Math.round(l-g-1),b=h+m+A+x,v=u[b];if(y>=0&&y<l){let S=y*c,T=h+m+S+x;v=u[T]}a[b]=v}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},jH=jt((e,t)=>Math.floor(e/t)),qH=dn(ho,jH,null,"int32"),XH={kernelName:ho,backendName:"cpu",kernelFunc:qH};function KH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=L6({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=Td({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=w2(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var ZH={kernelName:Xo,backendName:"cpu",kernelFunc:KH};function YH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=B6({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=Td({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=w2(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var JH={kernelName:Ko,backendName:"cpu",kernelFunc:YH};function QH(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=w.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,c,u,d]=E.prepareAndValidate(s,r);if(c===0)return n.makeTensorInfo(l,s.dtype,[]);let p=n.data.get(r.dataId).values,h=n.bufferSync(s),f=s6(p,h,s.dtype,c,i,u,d,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var ej={kernelName:fl,backendName:"cpu",kernelFunc:QH};function tj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Ne([r,a],"gatherV2");let l=w.parseAxisParam(o,r.shape)[0],c=n.data.get(a.dataId).values,u=r.shape[l];for(let b=0;b<c.length;++b){let v=c[b];w.assert(v<=u-1&&v>=0,()=>`GatherV2: the index value ${v} is not in [0, ${u-1}]`)}let d=i;i==null&&(d=0);let p=w.sizeFromShape(a.shape),h=E.segment_util.collectGatherOpShapeInfo(r,a,l,d),f=Nt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=Nt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,p/h.batchSize]}}),g=[h.batchSize,h.outerSize,p/h.batchSize,h.sliceSize],A=n.bufferSync(m),x=n.bufferSync(f),y=r6(x,A,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,y.dtype,y.values)}var nj={kernelName:hl,backendName:"cpu",kernelFunc:tj};function sj(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Nt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=W6(i,!0,n),c=Nt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var rj={kernelName:nh,backendName:"cpu",kernelFunc:sj},aj=dt(gl,e=>Number.isFinite(e)?1:0,"bool"),oj={kernelName:gl,backendName:"cpu",kernelFunc:aj},ij=dt(Al,e=>Math.abs(e)===1/0?1:0,"bool"),lj={kernelName:Al,backendName:"cpu",kernelFunc:ij},uj=dt(yl,e=>Number.isNaN(e)?1:0,"bool"),cj={kernelName:yl,backendName:"cpu",kernelFunc:uj};function dj(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=u6(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var pj={kernelName:rh,backendName:"cpu",kernelFunc:dj},hj=dt(vl,e=>Math.log1p(e)),fj={kernelName:vl,backendName:"cpu",kernelFunc:hj},mj=jt((e,t)=>e&&t),gj=dn(wl,mj,null,"bool"),Aj={kernelName:wl,backendName:"cpu",kernelFunc:gj},yj=dt(vc,e=>e?0:1,"bool"),xj={kernelName:vc,backendName:"cpu",kernelFunc:yj},bj=jt((e,t)=>e||t),vj=dn(wc,bj,null,"bool"),wj={kernelName:wc,backendName:"cpu",kernelFunc:vj};function kj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Ne(r,"LRN");let c=r.shape[3],u=c-1,d=n.data.get(r.dataId).values,p=w.sizeFromShape(r.shape),h=new Float32Array(p);function f(m){let g=m%c,A=m-g+Math.max(0,g-a),x=m-g+Math.min(g+a,u),y=0;for(;A<=x;A++){let b=d[A];y+=b*b}return y}for(let m=0;m<p;m++){let g=f(m),A=d[m]*Math.pow(o+i*g,-l);h[m]=A}return n.makeTensorInfo(r.shape,r.dtype,h)}var Ij={kernelName:kc,backendName:"cpu",kernelFunc:kj};function Sj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:c,beta:u}=s;Ne(o,"LRNGrad");let d=w.sizeFromShape(o.shape),p=o.shape[3],h=n.data.get(o.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(d),A=d;for(let x=0;x<A;x++){let y=x%p,b=x-y+Math.max(0,y-i),v=x-y+Math.min(p,y+i+1),S=0;for(let T=b;T<v;T++)S+=Math.pow(f[T],2);S=c*S+l;for(let T=b;T<v;T++){let D=-2*c*u*f[T]*m[x]/S;x===T&&(D+=Math.pow(S,-u)),D*=h[x],g[T]+=D}}return n.makeTensorInfo(o.shape,r.dtype,g)}var Cj={kernelName:ah,backendName:"cpu",kernelFunc:Sj};function V6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,c=l.length,u=w.parseAxisParam(a,l),d=u,p=E.getAxesPermutation(d,c),h=i.data.get(r.dataId).values;if(p!=null){let b=new Array(c);for(let v=0;v<b.length;v++)b[v]=l[p[v]];h=y2(h,l,r.dtype,p,b),d=E.getInnerMostAxes(d.length,c),l=b}Ne(r,"max"),E.assertAxesAreInnerMostDims("max",d,c);let[f,m]=E.computeOutAndReduceShapes(l,d),g=w.sizeFromShape(m),A=d6(h,g,f,r.dtype),x=i.write(A,f,r.dtype),y=f;return o&&(y=E.expandShapeToKeepDim(f,u)),{dataId:x,shape:y,dtype:r.dtype}}var Tj={kernelName:xo,backendName:"cpu",kernelFunc:V6};function Nj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ne(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;w.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))d=Cr({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),f=k2(p,r.shape,r.dtype,h,u,"max");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var Ej={kernelName:vo,backendName:"cpu",kernelFunc:Nj};function Rj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Ne(r,"maxPool3d");let u=E.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=z6(d,r.shape,r.dtype,w.computeStrides(r.shape),u,"max");return n.makeTensorInfo(p.shape,"float32",p.values)}var Dj={kernelName:Ic,backendName:"cpu",kernelFunc:Rj};function _j(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Ne([r,a],"maxPool3DGrad");let u=E.computePool3DInfo(a.shape,o,i,1,l,c),d=n.bufferSync(a),p=vG(d,u),h=u.strideDepth,f=u.strideHeight,m=u.strideWidth,g=u.dilationDepth,A=u.dilationHeight,x=u.dilationWidth,y=u.effectiveFilterDepth,b=u.effectiveFilterHeight,v=u.effectiveFilterWidth,S=y-1-u.padInfo.front,T=v-1-u.padInfo.left,D=b-1-u.padInfo.top,F=He(a.shape,"float32"),P=n.bufferSync(r);for(let _=0;_<u.batchSize;++_)for(let $=0;$<u.inChannels;++$)for(let C=0;C<u.inDepth;++C)for(let M=0;M<u.inHeight;++M)for(let U=0;U<u.inWidth;++U){let j=C-S,q=M-D,X=U-T,te=0;for(let ne=0;ne<y;ne+=g){let se=(j+ne)/h;if(!(se<0||se>=u.outDepth||Math.floor(se)!==se))for(let oe=0;oe<b;oe+=A){let ae=(q+oe)/f;if(!(ae<0||ae>=u.outHeight||Math.floor(ae)!==ae))for(let re=0;re<v;re+=x){let ce=(X+re)/m;if(ce<0||ce>=u.outWidth||Math.floor(ce)!==ce)continue;let ge=y*b*v-1-p.get(_,se,ae,ce,$),ve=ne*b*v+oe*v+re,Ce=ge===ve?1:0;if(Ce===0)continue;te+=P.get(_,se,ae,ce,$)*Ce}}}F.set(te,_,C,M,U,$)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var Fj={kernelName:ih,backendName:"cpu",kernelFunc:_j};function $j(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Ne([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=E.computePool2DInfo(i.shape,l,c,1,u,d),h=n.data.get(i.dataId).values,f=He(p.outShape,i.dtype,M6(h,i.shape,i.dtype,p).values),m=p.strideHeight,g=p.strideWidth,A=p.dilationHeight,x=p.dilationWidth,y=p.effectiveFilterHeight,b=p.effectiveFilterWidth,v=b-1-p.padInfo.left,S=y-1-p.padInfo.top,T=He(i.shape,"float32"),D=n.data.get(r.dataId).values,F=He(r.shape,"float32",D);for(let P=0;P<p.batchSize;++P)for(let _=0;_<p.inChannels;++_)for(let $=0;$<p.inHeight;++$)for(let C=0;C<p.inWidth;++C){let M=$-S,U=C-v,j=0;for(let q=0;q<y;q+=A){let X=(M+q)/m;if(!(X<0||X>=p.outHeight||Math.floor(X)!==X))for(let te=0;te<b;te+=x){let ne=(U+te)/g;if(ne<0||ne>=p.outWidth||Math.floor(ne)!==ne)continue;let se=y*b-1-f.get(P,X,ne,_),oe=q*b+te,ae=se===oe?1:0;if(ae===0)continue;j+=F.get(P,X,ne,_)*ae}}T.set(j,P,$,C,_)}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var Oj={kernelName:oh,backendName:"cpu",kernelFunc:$j};function Pj(e,t,n,s,r){let a=w.computeStrides(t),o=k2(e,t,n,a,r,"max"),i=M6(e,t,n,r,!0,s);return[o.values,i.values]}var Mj={kernelName:lh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Ne(s,"MaxPoolWithArgmax");let c=l.data.get(s.dataId).values,u=E.computePool2DInfo(s.shape,r,a,[1,1],o),[d,p]=Pj(c,s.shape,s.dtype,i,u),h=l.write(d,u.outShape,s.dtype),f=l.write(p,u.outShape,s.dtype);return[{dataId:h,shape:u.outShape,dtype:s.dtype},{dataId:f,shape:u.outShape,dtype:"int32"}]}};function zj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=w.parseAxisParam(a,r.shape),c=E.computeOutAndReduceShapes(r.shape,i)[1],u=w.sizeFromShape(c),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([u]));d.push(p);let h=Ra({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(h);let f=I2({inputs:{a:h,b:p},backend:n});d.push(f);let m=Ed({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var Lj={kernelName:wo,backendName:"cpu",kernelFunc:zj};function Bj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"min");let i=w.parseAxisParam(a,r.shape),l=i,c=E.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=ks({inputs:{x:r},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("min",l,u.shape.length);let[d,p]=E.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let x=A*h,y=m[x];for(let b=0;b<h;++b){let v=m[x+b];(Number.isNaN(v)||v<y)&&(y=v)}f[A]=y}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=E.expandShapeToKeepDim(d,i),x=Nt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),x}return g}var Wj={kernelName:ko,backendName:"cpu",kernelFunc:Bj};function Vj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;Ne(r,"mirrorPad");let i=a.map((y,b)=>y[0]+r.shape[b]+y[1]),l=a.map(y=>y[0]),c=a.map((y,b)=>y[0]+r.shape[b]),u=o==="reflect"?0:1,d=n.data.get(r.dataId).values,p=r.shape.length,h=w.computeStrides(r.shape),f=w.sizeFromShape(i),m=i.length,g=w.computeStrides(i),A=w.getTypedArrayFromDType(r.dtype,f);for(let y=0;y<f;y++){let b=w.indexToLoc(y,m,g);for(let S=0;S<m;S++)b[S]<l[S]?b[S]=l[S]*2-b[S]-u:b[S]>=c[S]&&(b[S]=(c[S]-1)*2-b[S]+u);b=b.map((S,T)=>S-l[T]);let v=w.locToIndex(b,p,h);A[y]=d[v]}return{dataId:n.write(A,i,r.dtype),shape:i,dtype:r.dtype}}var Uj={kernelName:So,backendName:"cpu",kernelFunc:Vj},Gj=jt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),Hj=dn(kl,Gj),jj={kernelName:kl,backendName:"cpu",kernelFunc:Hj},qj=qa(L5());function U6(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=w.parseAxisParam([i],r.shape),c=V6({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=E.expandShapeToKeepDim(c.shape,l),d=Nt({inputs:{x:c},backend:n,attrs:{shape:u}}),p=v2({inputs:{a:r,b:d},backend:n}),h=e6({inputs:{x:p},backend:n}),f=Ed({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),m=Nt({inputs:{x:f},backend:n,attrs:{shape:u}}),g=I2({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var Xj={kernelName:Wo,backendName:"cpu",kernelFunc:U6};function Kj(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Ne(r,"multinomial");let l=i?r:U6({inputs:{logits:r},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],d=n.data.get(l.dataId).values,p=[c,a],h=w.makeZerosTypedArray(w.sizeFromShape(p),"int32");for(let f=0;f<c;++f){let m=f*u,g=new Float32Array(u-1);g[0]=d[m];for(let y=1;y<g.length;++y)g[y]=g[y-1]+d[m+y];let A=qj.alea(o.toString()),x=f*a;for(let y=0;y<a;++y){let b=A();h[x+y]=g.length;for(let v=0;v<g.length;v++)if(b<g[v]){h[x+y]=v;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(p,"int32",h)}var Zj={kernelName:uh,backendName:"cpu",kernelFunc:Kj},Yj=br.nonMaxSuppressionV3Impl;function Jj(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;Ne(r,"NonMaxSuppression");let c=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,{selectedIndices:d}=Yj(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Qj={kernelName:Cl,backendName:"cpu",kernelFunc:Jj},eq=br.nonMaxSuppressionV4Impl;function tq(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:c}=s;Ne(r,"NonMaxSuppressionPadded");let u=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,{selectedIndices:p,validOutputs:h}=eq(u,d,o,i,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var nq={kernelName:Tl,backendName:"cpu",kernelFunc:tq},sq=br.nonMaxSuppressionV5Impl;function rq(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s;Ne(r,"NonMaxSuppressionWithScore");let u=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=sq(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var aq={kernelName:Nl,backendName:"cpu",kernelFunc:rq};function oq(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s;Ne(r,"oneHot");let l=w.sizeFromShape(r.shape),c=new Float32Array(l*a);c.fill(i);let u=n.data.get(r.dataId).values;for(let d=0;d<l;++d)u[d]>=0&&u[d]<a&&(c[d*a+u[d]]=o);return n.makeTensorInfo([...r.shape,a],"int32",c)}var iq={kernelName:To,backendName:"cpu",kernelFunc:oq};function a0(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=vi({inputs:{input:s},backend:n}),a=a0({inputs:{x:r},backend:n}),o=Cu({inputs:{input:s},backend:n}),i=a0({inputs:{x:o},backend:n}),l=cs({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return T2({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var lq={kernelName:ql,backendName:"cpu",kernelFunc:a0};function G6(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=vi({inputs:{input:s},backend:n}),a=G6({inputs:{x:r},backend:n}),o=Cu({inputs:{input:s},backend:n}),i=a0({inputs:{x:o},backend:n}),l=cs({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return T2({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var uq={kernelName:El,backendName:"cpu",kernelFunc:G6};function H6(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return r0({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=r0({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=Tu({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var cq={kernelName:Rl,backendName:"cpu",kernelFunc:H6};function dq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Ne(r,"pad");let i=a.map((x,y)=>x[0]+r.shape[y]+x[1]),l=a.map(x=>x[0]),c=n.data.get(r.dataId).values,u=w.sizeFromShape(r.shape),d=r.shape.length,p=w.computeStrides(r.shape),h=w.sizeFromShape(i),f=i.length,m=w.computeStrides(i),g=w.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let x=0;x<u;x++){let b=w.indexToLoc(x,d,p).map((S,T)=>S+l[T]),v=w.locToIndex(b,f,m);g[v]=c[x]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var j6={kernelName:No,backendName:"cpu",kernelFunc:dq},pq=jt((e,t)=>Math.pow(e,t)),hq=dn(Eo,pq),fq={kernelName:Eo,backendName:"cpu",kernelFunc:hq};function mq(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=x2(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var gq={kernelName:Sc,backendName:"cpu",kernelFunc:mq},Aq=dt(_l,e=>1/e),yq={kernelName:_l,backendName:"cpu",kernelFunc:Aq};function xq(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ne(r,"resizeBilinear");let l=w.computeStrides(r.shape),[c,u]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(w.sizeFromShape([d,c,u,f])),A=[a&&c>1?p-1:p,a&&u>1?h-1:h],x=[a&&c>1?c-1:c,a&&u>1?u-1:u],y=0,b=A[0]/x[0],v=A[1]/x[1];for(let S=0;S<d;S++)for(let T=0;T<c;T++){let D;o?D=b*(T+.5)-.5:D=b*T;let F=Math.max(0,Math.floor(D)),P=D-F,_=Math.min(p-1,Math.ceil(D)),$=S*l[0]+F*l[1],C=S*l[0]+_*l[1];for(let M=0;M<u;M++){let U;o?U=v*(M+.5)-.5:U=v*M;let j=Math.max(0,Math.floor(U)),q=U-j,X=Math.min(h-1,Math.ceil(U)),te=$+j*l[2],ne=C+j*l[2],se=$+X*l[2],oe=C+X*l[2];for(let ae=0;ae<f;ae++){let re=m[te+ae],ce=m[ne+ae],ge=m[se+ae],ve=m[oe+ae],Ce=re+(ge-re)*q,Re=ce+(ve-ce)*q,Pe=Ce+(Re-Ce)*P;g[y++]=Pe}}}return n.makeTensorInfo([d,c,u,f],"float32",g)}var bq={kernelName:_o,backendName:"cpu",kernelFunc:xq};function vq(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ne([a,r],"resizeBilinearGrad");let i=w.computeStrides(r.shape),[l,c,u,d]=r.shape,[,p,h]=a.shape,f=new Float32Array(l*c*u*d),m=[o&&p>1?c-1:c,o&&h>1?u-1:u],g=[o&&p>1?p-1:p,o&&h>1?h-1:h],A=m[0]/g[0],x=m[1]/g[1],y=n.data.get(a.dataId).values,b=0;for(let v=0;v<l;v++){let S=v*i[0];for(let T=0;T<p;T++){let D=T*A,F=Math.floor(D),P=Math.min(Math.ceil(D),c-1),_=S+F*i[1],$=S+P*i[1],C=D-F,M=1-C;for(let U=0;U<h;U++){let j=U*x,q=Math.floor(j),X=Math.min(Math.ceil(j),u-1),te=j-q,ne=1-te,se=_+q*i[2],oe=_+X*i[2],ae=$+q*i[2],re=$+X*i[2],ce=M*ne,ge=M*te,ve=C*ne,Ce=C*te;for(let Re=0;Re<d;Re++){let Pe=y[b++];f[se+Re]+=Pe*ce,f[oe+Re]+=Pe*ge,f[ae+Re]+=Pe*ve,f[re+Re]+=Pe*Ce}}}}return n.makeTensorInfo([l,u,c,d],"float32",f)}var wq={kernelName:ph,backendName:"cpu",kernelFunc:vq};function kq(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ne(r,"resizeNearestNeighbor");let l=w.computeStrides(r.shape),[c,u]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(d*c*u*f),A=[a&&c>1?p-1:p,a&&u>1?h-1:h],x=[a&&c>1?c-1:c,a&&u>1?u-1:u],y=A[0]/x[0],b=A[1]/x[1],v=0;for(let S=0;S<d;S++){let T=S*l[0];for(let D=0;D<c;D++){let F=o?y*(D+.5):y*D,P=Math.min(p-1,a?Math.round(F):Math.floor(F));o&&(P=Math.max(0,P));let _=T+P*l[1];for(let $=0;$<u;$++){let C=o?b*($+.5):b*$,M=Math.min(h-1,a?Math.round(C):Math.floor(C));o&&(M=Math.max(0,M));let U=_+M*l[2];for(let j=0;j<f;j++){let q=m[U+j];g[v++]=q}}}}return n.makeTensorInfo([d,c,u,f],r.dtype,g)}var Iq={kernelName:Cc,backendName:"cpu",kernelFunc:kq};function Sq(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ne([a,r],"resizeNearestNeighborGrad");let i=w.computeStrides(r.shape),l=w.computeStrides(a.shape),[c,u,d,p]=r.shape,[,h,f]=a.shape,m=new Float32Array(c*u*d*p),g=n.data.get(a.dataId).values,A=[o&&h>1?u-1:u,o&&f>1?d-1:d],x=[o&&h>1?h-1:h,o&&f>1?f-1:f],y=A[0]/x[0],b=A[1]/x[1],v=1/y,S=1/b,T=Math.ceil(v)*2+2,D=Math.ceil(S)*2+2;for(let F=0;F<c;F++){let P=F*i[0];for(let _=0;_<u;_++){let $=P+_*i[1],C=Math.floor(_*v),M=Math.floor(C-T/2);for(let U=0;U<d;U++){let j=$+U*i[2],q=Math.floor(U*S),X=Math.floor(q-D/2);for(let te=0;te<p;te++){let ne=0;for(let se=0;se<T;se++){let oe=se+M;if(oe<0||oe>=h)continue;let ae=P+oe*l[1],re=oe*y,ce=Math.min(u-1,o?Math.round(re):Math.floor(re));if(_===ce)for(let ge=0;ge<D;ge++){let ve=ge+X;if(ve<0||ve>=f)continue;let Ce=ae+ve*l[2],Re=ve*b,Pe=Math.min(d-1,o?Math.round(Re):Math.floor(Re));U===Pe&&(ne+=g[Ce+te])}}m[j+te]=ne}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var Cq={kernelName:dh,backendName:"cpu",kernelFunc:Sq};function Tq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Ne(r,"reverse");let o=r.shape.length,i=w.parseAxisParam(a,r.shape);if(o===0)return Cr({inputs:{x:r},backend:n});let l=new Zt(r.shape,r.dtype),c=n.bufferSync(r);for(let u=0;u<l.size;u++){let d=l.indexToLoc(u),p=d.slice();i.forEach(h=>p[h]=r.shape[h]-1-p[h]),l.set(c.get(...p),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var Nq={kernelName:$o,backendName:"cpu",kernelFunc:Tq},Eq={kernelName:Xl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[c,u,d,p]=s.shape,[h,f]=E.getImageCenter(o,u,d),m=255,g=Math.sin(r),A=Math.cos(r),x=i.data.get(s.dataId).values;for(let b=0;b<c;b++){let v=b*d*u*p;for(let S=0;S<u;S++){let T=S*(d*p);for(let D=0;D<d;D++){let F=D*p;for(let P=0;P<p;P++){let _=[c,S,D,P],$=_[2],C=_[1],M=($-h)*A-(C-f)*g,U=($-h)*g+(C-f)*A;M=Math.round(M+h),U=Math.round(U+f);let j=a;if(typeof a!="number"&&(P===3?j=m:j=a[P]),M>=0&&M<d&&U>=0&&U<u){let X=U*(d*p),te=M*p,ne=v+X+te+P;j=x[ne]}let q=v+T+F+P;l[q]=j}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},Rq=dt(Oo,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),Dq={kernelName:Oo,backendName:"cpu",kernelFunc:Rq};function q6(e,t,n,s,r,a,o,i,l,c){let u=[s/r,r],d=e.values,p=t.values;if(s===0)return He(n,t.dtype);let h=He(u,t.dtype);h.values.fill(l);for(let f=0;f<a;f++){let m=[],g=0;for(let A=0;A<o;A++){let x=d[f*o+A];m.push(x),g+=x*i[A]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let A=0;A<r;A++)c?h.values[g*r+A]+=p[f*r+A]:h.values[g*r+A]=t.rank===0?p[0]:p[f*r+A]}return h}function _q(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=E.calculateShapes(a,r,o),p=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=q6(h,f,o,d,c,l,i,u,0,p);return n.makeTensorInfo(o,m.dtype,m.values)}var Fq={kernelName:$l,backendName:"cpu",kernelFunc:_q};function $q(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;Ne([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=$s(r.dtype,a.dtype),d=w.makeZerosTypedArray(w.sizeFromShape(r.shape),u),p=0,h=o===0||o>1||r.shape.length===1?1:w.sizeFromShape(r.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<h;m++)i[f]===1?d[p++]=l[f]:d[p++]=c[f];return n.makeTensorInfo(r.shape,u,d)}var Oq={kernelName:Ol,backendName:"cpu",kernelFunc:$q},Pq=E.SELU_SCALEALPHA,Mq=E.SELU_SCALE,zq=dt(Pl,e=>e>=0?Mq*e:Pq*(Math.exp(e)-1)),Lq={kernelName:Pl,backendName:"cpu",kernelFunc:zq},Bq=dt(Ll,e=>e<0?-1:e>0?1:0),Wq={kernelName:Ll,backendName:"cpu",kernelFunc:Bq},Vq=dt(Mo,e=>Math.sin(e)),Uq={kernelName:Mo,backendName:"cpu",kernelFunc:Vq},Gq=dt(zl,e=>Math.sinh(e)),Hq={kernelName:zl,backendName:"cpu",kernelFunc:Gq},jq=11920928955078125e-23,X6=Math.log(jq)+2,qq=dt(Bl,e=>{let t=e>-X6,n=e<X6,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),Xq={kernelName:Bl,backendName:"cpu",kernelFunc:qq};function Kq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;Ne([r],"spaceToBatchND");let i=w.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let S=1+a.length;S<r.shape.length;++S)l.push([0,0]);let c=j6.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=E.getReshaped(c.shape,a,i,!1),d=E.getPermuted(u.length,a.length,!1),p=E.getReshapedPermuted(c.shape,a,i,!1),m=Nt({inputs:{x:c},backend:n,attrs:{shape:u}}),x=ks({inputs:{x:m},backend:n,attrs:{perm:d}}),v=Nt({inputs:{x},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(x),v}var Zq={kernelName:Wl,backendName:"cpu",kernelFunc:Kq};function Yq(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=n.data.get(o.dataId).values[0],[d,p,h,f,m]=x6(i,s.shape,s.dtype,l,r.dtype,c,u);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var Jq={kernelName:hh,backendName:"cpu",kernelFunc:Yq};function Qq(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[c,u,d]=b6(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var eX={kernelName:fh,backendName:"cpu",kernelFunc:Qq};function tX(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=b2(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var nX={kernelName:mh,backendName:"cpu",kernelFunc:tX};function sX(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=b2(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var rX={kernelName:gh,backendName:"cpu",kernelFunc:sX};function aX(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=E.calculateShapes(a,r,i),h=!1,f=n.bufferSync(r),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],A=q6(f,m,i,p,u,c,l,d,g,h);return n.makeTensorInfo(i,A.dtype,A.values)}var oX={kernelName:Ah,backendName:"cpu",kernelFunc:aX};function iX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=w.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(d=>{let p=[...u];p[i]=d;let h=wi({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});return c[i]+=d,h})}var lX={kernelName:Vl,backendName:"cpu",kernelFunc:iX},uX={kernelName:Tc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Ne(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},cX=dt(ca,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),dX={kernelName:ca,backendName:"cpu",kernelFunc:cX};function pX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s;Ne(r,"stridedSlice");let{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:A,begin:x,end:y,strides:b}=Yt.sliceInfo(r.shape,a,o,i,l,c,u,d,p),v;if(m)v=Nt({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||A){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=Yt.computeOutShape(x,y,b),T=wi({inputs:{x:r},backend:n,attrs:{begin:x,size:S}});v=Nt({inputs:{x:T},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(T)}else{let S=n.bufferSync(r),T=w6(h,S,b,x);v=n.makeTensorInfo(f,T.dtype,T.values)}return v}var hX={kernelName:Ul,backendName:"cpu",kernelFunc:pX};function fX(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.data.get(u.dataId).values,h=n.data.get(d.dataId).values,[f,m]=k6(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var mX={kernelName:yh,backendName:"cpu",kernelFunc:fX};function gX(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[c,u,d]=I6(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var AX={kernelName:xh,backendName:"cpu",kernelFunc:gX};function yX(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=S6(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var xX={kernelName:bh,backendName:"cpu",kernelFunc:yX},bX=dt(Go,e=>Math.tan(e)),vX={kernelName:Go,backendName:"cpu",kernelFunc:bX},wX=dt(Ho,e=>Math.tanh(e)),kX={kernelName:Ho,backendName:"cpu",kernelFunc:wX};function IX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Ne(r,"tile");let o=T6(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var SX={kernelName:ua,backendName:"cpu",kernelFunc:IX};function CX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Ne(r,"topk");let i=n.data.get(r.dataId).values,[l,c]=E6(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var TX={kernelName:Gl,backendName:"cpu",kernelFunc:CX};function NX(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=n,[u,d,p,h]=r.shape,[f,m]=c??[d,p],g=[u,f,m,h],A=w.computeStrides(r.shape),x=A[0],y=A[1],b=A[2],v=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(g));v.fill(l);let S=s.data.get(r.dataId).values,T=s.data.get(a.dataId).values;for(let F=0;F<u;++F){let P=a.shape[0]===1?T:T.subarray(F*8,F*8+8);for(let _=0;_<f;++_)for(let $=0;$<m;++$)for(let C=0;C<h;++C){let M,U=P[6]*$+P[7]*_+1;if(U===0)continue;let j=(P[0]*$+P[1]*_+P[2])/U,q=(P[3]*$+P[4]*_+P[5])/U,X=K6(j,p,i),te=K6(q,d,i);switch(o){case"nearest":M=$X(S,d,p,x,y,b,F,te,X,C,l);break;case"bilinear":M=OX(S,d,p,x,y,b,F,te,X,C,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let ne=F*x+_*y+$*b+C;v[ne]=M}return s.makeTensorInfo(g,r.dtype,v)}return{dataId:s.write(v,g,r.dtype),shape:r.shape,dtype:r.dtype}}var EX={kernelName:Hl,backendName:"cpu",kernelFunc:NX};function K6(e,t,n){switch(n){case"reflect":return RX(e,t);case"wrap":return DX(e,t);case"nearest":return FX(e,t);case"constant":default:return _X(e,t)}}function RX(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return w.clamp(0,n,t-1)}function DX(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return w.clamp(0,n,t-1)}function _X(e,t){return e}function FX(e,t){return w.clamp(0,e,t-1)}function Rd(e,t,n,s,r,a,o,i,l,c,u){let d=o*s+i*r+l*a+c;return 0<=i&&i<t&&0<=l&&l<n?e[d]:u}function $X(e,t,n,s,r,a,o,i,l,c,u){let d=Math.round(i),p=Math.round(l);return Rd(e,t,n,s,r,a,o,d,p,c,u)}function OX(e,t,n,s,r,a,o,i,l,c,u){let d=Math.floor(i),p=Math.floor(l),h=d+1,f=p+1,m=(f-l)*Rd(e,t,n,s,r,a,o,d,p,c,u)+(l-p)*Rd(e,t,n,s,r,a,o,d,f,c,u),g=(f-l)*Rd(e,t,n,s,r,a,o,h,p,c,u)+(l-p)*Rd(e,t,n,s,r,a,o,h,f,c,u);return(h-i)*m+(i-d)*g}function PX(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Ne(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:c}=R6(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([c.length],"int32",c)]}var MX={kernelName:vh,backendName:"cpu",kernelFunc:PX};function zX(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),c=0;for(let h=0;h<o;h++)h!==a&&(l[c++]=r.shape[h]);let u=new Array(o).fill(0),d=r.shape.slice();d[a]=1;let p=new Array(i);for(let h=0;h<p.length;h++){u[a]=h;let f=wi({inputs:{x:r},backend:n,attrs:{begin:u,size:d}});p[h]=Nt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return p}var LX={kernelName:jl,backendName:"cpu",kernelFunc:zX};function BX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;Ne(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,c=[],u=[],d=i-l,p=a;for(let f=0;f<d;++f){let m=r0({inputs:{input:p},backend:n,attrs:{dim:f+1}});p=m,u.push(m)}for(let f=0;f<o;++f){let m=w.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),A=J7({inputs:{a:g,b:p},backend:n}),x=Ra({inputs:{x:A},backend:n,attrs:{dtype:"float32"}}),y=n0({inputs:{a:x,b:r},backend:n}),b=Ed({inputs:{x:y},backend:n,attrs:{axis:0,keepDims:!1}});c.push(b),u.push(g),u.push(A),u.push(x),u.push(y),u.push(b)}let h=H6({inputs:c,backend:n,attrs:{axis:0}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var WX={kernelName:Nc,backendName:"cpu",kernelFunc:BX},VX=[KU,VV,YU,QU,XV,tG,sG,aG,iG,uG,dG,hG,mG,yG,bG,kG,SG,TG,EG,qU,DG,FG,OG,MG,jV,ZV,LG,UV,WG,UG,jG,XG,GG,JG,eH,ZG,nH,rH,oH,lH,cH,pH,hH,mH,AH,xH,bH,wH,vH,S2,SH,BU,TH,YV,OH,JV,PH,eU,VH,UH,HH,nU,XH,ZH,JH,ej,nj,rU,oU,GV,rj,VG,oj,lj,cj,WU,lU,cU,pj,pU,fj,Aj,xj,wj,Ij,Cj,fU,Ej,Dj,Fj,Oj,Mj,Tj,Lj,Wj,gU,Uj,jj,Zj,yU,bU,Qj,nq,aq,wU,iq,uq,cq,j6,fq,UU,SU,gq,HV,yq,GU,HU,jU,bq,wq,Iq,Cq,Nq,Eq,Dq,TU,Fq,Oq,Lq,EU,Wq,Uq,Hq,RU,Xj,Xq,Zq,Jq,eX,nX,rX,oX,lX,FU,uX,OU,dX,hX,mX,AX,xX,LU,kH,vX,kX,SX,TX,kU,EX,MX,LX,WX,lq];for(let e of VX)da(e);var Z6={};ze(Z6,{assertNotComplex:()=>Eu,bindCanvasToFramebuffer:()=>eK,bindColorTextureToFramebuffer:()=>u0,bindTextureToProgramUniformSampler:()=>d4,bindTextureUnit:()=>l4,bindVertexBufferToProgramAttribute:()=>R2,callAndCheck:()=>Se,canBeRepresented:()=>Y6,createFragmentShader:()=>e4,createFramebuffer:()=>i4,createProgram:()=>t4,createStaticIndexBuffer:()=>r4,createStaticVertexBuffer:()=>s4,createTexture:()=>a4,createVertexShader:()=>Q6,getBatchDim:()=>Ii,getExtensionOrThrow:()=>Fd,getFramebufferErrorMessage:()=>p4,getMaxTexturesInShader:()=>g4,getNumChannels:()=>JX,getProgramUniformLocation:()=>c4,getProgramUniformLocationOrThrow:()=>u4,getRowsCols:()=>Si,getShapeAs3D:()=>c0,getTextureShapeFromLogicalShape:()=>f4,getWebGLDisjointQueryTimerVersion:()=>A4,getWebGLErrorMessage:()=>J6,getWebGLMaxTextureSize:()=>m4,hasExtension:()=>Ss,isCapableOfRenderingToFloatTexture:()=>y4,isDownloadFloatTextureEnabled:()=>x4,isReshapeFree:()=>Od,isWebGLFenceEnabled:()=>b4,isWebGLVersionEnabled:()=>_2,linkProgram:()=>n4,resetMaxTextureSize:()=>tK,resetMaxTexturesInShader:()=>nK,unbindColorTextureFromFramebuffer:()=>D2,unbindTextureUnit:()=>QX,validateFramebuffer:()=>$d,validateProgram:()=>l0,validateTextureSize:()=>o4});var ki={},N2={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function o0(e,t){ki[e]=t}function Tr(e){if(!(e in ki)){let n=GX(e);if(n!==null)ki[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=ki[e];return t.isContextLost()?(delete ki[e],Tr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),ki[e])}function UX(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function GX(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=UX(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete ki[e]},!1),e===1?t.getContext("webgl",N2)||t.getContext("experimental-webgl",N2):t.getContext("webgl2",N2)}var Dd;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Dd||(Dd={}));var Is;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Is||(Is={}));var yn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(yn||(yn={}));function _d(e,t){return[t,e]}function HX(e,t){return e*t}function i0(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function Nu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function jX(e,t){let[n,s]=Nu(e,t);return n*s*4}function E2(e,t){let n=e,s,r,a,o,i,l,c,u,d,p;return Y().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,c=4,u=1,d=n.HALF_FLOAT,p=n.FLOAT):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,c=4,u=4,d=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT),l=e.RGBA,{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:d,textureTypeFloat:p}}function Se(e,t){let n=t();return Y().getBool("DEBUG")&&qX(e),n}function qX(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+J6(e,t))}var XX=596e-10,KX=65504;function Y6(e){return!!(Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||XX<Math.abs(e)&&Math.abs(e)<KX)}function J6(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Fd(e,t){return jr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Q6(e,t){let n=jr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Se(e,()=>e.shaderSource(n,t)),Se(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function e4(e,t){let n=jr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Se(e,()=>e.shaderSource(n,t)),Se(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw YX(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var ZX=/ERROR: [0-9]+:([0-9]+):/g;function YX(e,t){let n=ZX.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
|
|
`),a=r.length.toString().length+2,o=r.map((d,p)=>w.rightPad((p+1).toString(),a)+d),i=0;for(let d=0;d<o.length;d++)i=Math.max(o[d].length,i);let l=o.slice(0,s-1),c=o.slice(s-1,s),u=o.slice(s);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${w.rightPad(c[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
|
|
`))}function t4(e){return jr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function n4(e,t){if(Se(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function l0(e,t){if(Se(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function s4(e,t){let n=jr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Se(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function r4(e,t){let n=jr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Se(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Se(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function JX(){return Y().getNumber("WEBGL_VERSION")===2?1:4}function a4(e){return jr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function o4(e,t){let n=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function i4(e){return jr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function R2(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),Se(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),Se(e,()=>e.enableVertexAttribArray(i)),!0)}function l4(e,t,n){h4(e,n),Se(e,()=>e.activeTexture(e.TEXTURE0+n)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function QX(e,t){h4(e,t),Se(e,()=>e.activeTexture(e.TEXTURE0+t)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function u4(e,t,n){return jr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function c4(e,t,n){return e.getUniformLocation(t,n)}function d4(e,t,n,s){Se(e,()=>l4(e,t,s)),Se(e,()=>e.uniform1i(n,s))}function eK(e){Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Se(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),Se(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function u0(e,t,n){Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Se(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function D2(e,t){Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Se(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function $d(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+p4(e,t))}function p4(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function jr(e,t,n){let s=Se(e,()=>t());if(s==null)throw new Error(n);return s}function h4(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function Ii(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function Si(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function c0(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Ii(e),...Si(e)]),t}function f4(e,t=!1){let n=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?w.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let s=w.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=Ii(e),a=2,o=2;return e.length&&([a,o]=Si(e)),s=r*(a/2)*(o/2),w.sizeToSquarishShape(s).map(i=>i*2)}return w.sizeToSquarishShape(s)}function d0(e){return e%2==0}function Od(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||d0(n)&&d0(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&d0(e[0])&&d0(t[0])}var p0,h0;function m4(e){if(p0==null){let t=Tr(e);p0=t.getParameter(t.MAX_TEXTURE_SIZE)}return p0}function tK(){p0=null}function nK(){h0=null}function g4(e){if(h0==null){let t=Tr(e);h0=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,h0)}function A4(e){if(e===0)return 0;let t,n=Tr(e);return Ss(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Ss(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Ss(e,t){return e.getExtension(t)!=null}function _2(e){try{if(Tr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function y4(e){if(e===0)return!1;let t=Tr(e);if(e===1){if(!Ss(t,"OES_texture_float"))return!1}else if(!Ss(t,"EXT_color_buffer_float"))return!1;return F2(t)}function x4(e){if(e===0)return!1;let t=Tr(e);if(e===1){if(!Ss(t,"OES_texture_float")||!Ss(t,"WEBGL_color_buffer_float"))return!1}else{if(Ss(t,"EXT_color_buffer_float"))return F2(t);let s="EXT_color_buffer_half_float";if(Ss(t,s)){let r=t.getExtension(s);return sK(t,r)}return!1}return F2(t)}function F2(e){let t=E2(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function sK(e,t){let n=E2(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function b4(e){return e!==2?!1:Tr(e).fenceSync!=null}function Eu(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var $e=Y();$e.registerFlag("HAS_WEBGL",()=>$e.getNumber("WEBGL_VERSION")>0);$e.registerFlag("WEBGL_VERSION",()=>_2(2)?2:_2(1)?1:0);$e.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);$e.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>$e.get("WEBGL_VERSION")===2);$e.registerFlag("WEBGL_CPU_FORWARD",()=>!0);$e.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);$e.registerFlag("WEBGL_PACK",()=>$e.getBool("HAS_WEBGL"));$e.registerFlag("WEBGL_PACK_NORMALIZATION",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_CLIP",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_REDUCE",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_LAZILY_UNPACK",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_CONV_IM2COL",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>m4($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>g4($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=$e.getNumber("WEBGL_VERSION");return e===0?0:A4(e)});$e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>$e.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!zc.isMobile());$e.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>y4($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>$e.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:$e.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));$e.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>x4($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_FENCE_API_ENABLED",()=>b4($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>$e.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);$e.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});$e.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>zc.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});$e.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);$e.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);$e.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);$e.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function $n(){let e,t,n,s,r,a,o,i,l,c;return Y().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",c=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,c=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:c}}function Ci(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function f0(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function rK(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function aK(e,t,n="index"){let s=e.map((a,o)=>o),r=rK(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function $2(e){let t=w.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function O2(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var v4=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:w4}=E;function oK(e,t,n){let s=[];if(e.forEach(h=>{let f=w.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=P2(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
|
|
`),a=e.map(h=>iK(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),o=t.texShape,i=$n(),l=cK(i),c,u,d=hK(i);return t.isPacked?(c=lK(t.logicalShape,o,n.enableShapeUniforms),u=pK(i)):(c=uK(t.logicalShape,o,n.enableShapeUniforms),u=dK(i)),n.packedInputs&&(d+=AK),[d,l,u,r,c,a,n.userCode].join(`
|
|
`)}function Ru(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return EK(e,t);case 1:return DK(e,t);case 2:return FK(e,t);case 3:return OK(e,t);case 4:return MK(e,t);case 5:return zK(e);case 6:return LK(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function k4(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return NK(e);case 1:return RK(e,t);case 2:return _K(e,t);case 3:return $K(e,t);default:return PK(e,t)}}function iK(e,t,n=!1,s){let r="";n?r+=k4(e,s):r+=Ru(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=BK(e,t):r+=WK(e,t)),r}function lK(e,t,n){switch(e.length){case 0:return I4();case 1:return yK(e,t,n);case 2:return CK(e,t,n);case 3:return bK(e,t,n);default:return wK(e,t,n)}}function uK(e,t,n){switch(e.length){case 0:return I4();case 1:return xK(e,t,n);case 2:return TK(e,t,n);case 3:return vK(e,t,n);case 4:return kK(e,t,n);case 5:return IK(e,t);case 6:return SK(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function cK(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function dK(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function pK(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function hK(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${fK}
|
|
${mK}
|
|
${gK}
|
|
`}var fK=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,mK=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,gK=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,AK=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function I4(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function yK(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${s[1]}.0);
|
|
}
|
|
`:s[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${s[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
|
|
}
|
|
`}function xK(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function bK(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function vK(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${f0(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let s=Ci(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function wK(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let c=2;c<e.length-1;c++)o*=e[e.length-c-1],i=`
|
|
int b${c} = index / ${o};
|
|
index -= b${c} * ${o};
|
|
`+i,l=`b${c}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function kK(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${f0(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let s=Ci(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function IK(e,t){let n=Ci(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function SK(e,t){let n=Ci(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function CK(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function TK(e,t,n){return w.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Ti(e){return`offset${e}`}function NK(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=$n();return`
|
|
vec4 ${n}() {
|
|
return ${s.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function EK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${s}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=Ti(n);if(t)return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[i,l]=e.shapeInfo.texShape;return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function RK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=$n();if(t)return`
|
|
vec4 ${s}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${s}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${o[0]}, ${o[1]}, index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`}function DK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int index) {
|
|
${Du(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
|
|
float ${s}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=Ti(n);return o===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:a===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function _K(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=$n();if(a!=null&&w.arraysEqual(n,a))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;let c=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],u=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${c[0]}, ${c[1]}, row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`}function FK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&w.arraysEqual(n,a)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let p=a[0],h=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}let{newShape:o,keptDims:i}=w.squeezeShape(n),l=o;if(l.length<n.length){let p=_u(e,l),h=["row","col"];return`
|
|
${Ru(p,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${Fu(h,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${Du(e)}
|
|
}
|
|
`;let c=a[0],u=a[1],d=Ti(s);return u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${c}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:c===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s}Shape[1] + col + ${d};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${c}, ${u}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function $K(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let p=n.slice(1),h=[1,2],f=_u(e,p),m=["b","row","col"];return`
|
|
${k4(f,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${Fu(m,h)});
|
|
}
|
|
`}let i=$n();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`;let l=o[0],c=o[1],u=Math.ceil(n[2]/2),d=u*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${c}, ${d}, ${u}, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`}function OK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=w.squeezeShape(n),c=i;if(c.length<n.length){let m=_u(e,c),g=["row","col","depth"];return`
|
|
${Ru(m,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${Fu(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${o}, 1)));
|
|
${Du(e)}
|
|
}
|
|
`;let u=e.shapeInfo.texShape,d=u[0],p=u[1],h=e.shapeInfo.flatOffset;if(p===a&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${s}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(p===o&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let f=Ti(s);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${s}Shape[1] * ${s}Shape[2];
|
|
int stride1 = ${s}Shape[2];
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${p}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function PK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=$n();if(t)return`
|
|
vec4 ${s}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],c=l[0],u=l[1],d=Math.ceil(a[o-1]/2),p=d*Math.ceil(a[o-2]/2),h="int b, int row, int col",f=`b * ${p} + (row / 2) * ${d} + (col / 2)`;for(let m=2;m<o-1;m++)h=`int b${m}, `+h,p*=a[o-m-1],f=`b${m} * ${p} + `+f;return`
|
|
vec4 ${s}(${h}) {
|
|
int index = ${f};
|
|
int texR = index / ${u};
|
|
int texC = index - texR * ${u};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${u}, ${c});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function MK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:c}=w.squeezeShape(n);if(l.length<n.length){let x=_u(e,l),y=["row","col","depth","depth2"];return`
|
|
${Ru(x,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${Fu(y,c)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, 1)));
|
|
${Du(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===i&&u==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${o}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(h===a&&u==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let A=Ti(s);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${A});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${h}, index + ${A});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function zK(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:c}=w.squeezeShape(t);if(l.length<t.length){let m=_u(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${Ru(m)}
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${s}(${Fu(g,c)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, ${r})) +
|
|
depth3;
|
|
${Du(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1];if(h===i&&u==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${o}, ${a}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&u==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=Ti(n);return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} + depth * ${a} +
|
|
depth2 * ${r} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function LK(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=w.squeezeShape(t);if(r.length<t.length){let g=_u(e,r),A=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${Ru(g)}
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${s}(${Fu(A,a)});
|
|
}
|
|
`}let o=t[5],i=t[4]*o,l=t[3]*i,c=t[2]*l,u=t[1]*c;if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${u}, ${c}, ${l}, ${i})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${o}, 1)));
|
|
${Du(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,h=p[0],f=p[1];if(f===u&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${c}, ${l}, ${i}, ${o})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===o&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=Ti(n);return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${u} + col * ${c} + depth * ${l} +
|
|
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${h}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Du(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function BK(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=w4(e.shapeInfo.logicalShape,t.logicalShape),l=At(o),c=o-a,u,d=["x","y","z","w","u","v"];a===0?u="":o<2&&i.length>=1?u="coords = 0;":u=i.map(x=>`coords.${d[x+c]} = 0;`).join(`
|
|
`);let p="";o<2&&a>0?p="coords":p=e.shapeInfo.logicalShape.map((x,y)=>`coords.${d[y+c]}`).join(", ");let h="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,A=w.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!A)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!A)o===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(i.length){let x=a-2,y=a-1;i.indexOf(x)>-1&&i.indexOf(y)>-1?h="return vec4(outputValue.x);":i.indexOf(x)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${u}
|
|
vec4 outputValue = get${s}(${p});
|
|
${h}
|
|
}
|
|
`}function WK(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&w.arraysEqual(o,a))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let c=At(l),u=w4(e.shapeInfo.logicalShape,t.logicalShape),d=l-i,p,h=["x","y","z","w","u","v"];i===0?p="":l<2&&u.length>=1?p="coords = 0;":p=u.map(m=>`coords.${h[m+d]} = 0;`).join(`
|
|
`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+d]}`).join(", "),`
|
|
float ${r}() {
|
|
${c} coords = getOutputCoords();
|
|
${p}
|
|
return get${s}(${f});
|
|
}
|
|
`}function At(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function P2(e,t,n){let{newShape:s,keptDims:r}=w.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!w.arraysEqual(t,n)&&s.length<a||o;return{useSqueezeShape:l,uniformShape:l?i:t,keptDims:r}}function _u(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Fu(e,t){return t.map(n=>e[n]).join(", ")}function VK(e,t,n,s){let r=n.map((y,b)=>{let v={logicalShape:y.shape,texShape:y.isUniform?null:y.texData.texShape,isUniform:y.isUniform,isPacked:y.isUniform?!1:y.texData.isPacked,flatOffset:null};return y.texData!=null&&y.texData.slice!=null&&y.texData.slice.flatOffset>0&&(v.flatOffset=y.texData.slice.flatOffset),{name:t.variableNames[b],shapeInfo:v}}),a=r.map(y=>y.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=oK(r,o,t),l=e.createProgram(i),c=null,u=e.getUniformLocation(l,"NAN",!1);Y().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(l,"INFINITY",!1));let d=!1,p={},h={},f={};for(let y=0;y<t.variableNames.length;y++){let b=t.variableNames[y];p[b]=e.getUniformLocation(l,b,d),p[`offset${b}`]=e.getUniformLocation(l,`offset${b}`,d),t.enableShapeUniforms&&(h[`${b}Shape`]=e.getUniformLocation(l,`${b}Shape`,d),f[`${b}TexShape`]=e.getUniformLocation(l,`${b}TexShape`,d))}let m,g,A;t.enableShapeUniforms&&(m=e.getUniformLocation(l,"outShape",d),A=e.getUniformLocation(l,"outShapeStrides",d),g=e.getUniformLocation(l,"outTexShape",d));let x=[];return t.customUniforms&&t.customUniforms.forEach((y,b)=>{x[b]=e.getUniformLocation(l,y.name,d)}),{program:t,source:i,webGLProgram:l,uniformLocations:p,customUniformLocations:x,inShapeInfos:a,outShapeInfo:o,infLoc:c,nanLoc:u,inShapesLocations:h,inTexShapesLocations:f,outShapeLocation:m,outShapeStridesLocation:A,outTexShapeLocation:g}}function S4(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!w.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!w.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function UK(e,t,n,s,r){t.program.enableShapeUniforms||(S4(t.inShapeInfos,n),S4([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),Y().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,c)=>{let u=t.program.variableNames[c],d=t.uniformLocations[u],p=t.uniformLocations[`offset${u}`],h=t.inShapesLocations[`${u}Shape`],f=t.inTexShapesLocations[`${u}TexShape`];if(h){let{uniformShape:m}=P2(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(w.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}l.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture,d,c)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=w.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,c)=>{let u=t.customUniformLocations[c],d=r[c];if(l.type==="float")e.gl.uniform1fv(u,d);else if(l.type==="vec2")e.gl.uniform2fv(u,d);else if(l.type==="vec3")e.gl.uniform3fv(u,d);else if(l.type==="vec4")e.gl.uniform4fv(u,d);else if(l.type==="int")e.gl.uniform1iv(u,d);else if(l.type==="ivec2")e.gl.uniform2iv(u,d);else if(l.type==="ivec3")e.gl.uniform3iv(u,d);else if(l.type==="ivec4")e.gl.uniform4iv(u,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function GK(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:c,uniformShape:u,keptDims:d}=P2(e.packedInputs,o.shape,l),p="",h="",f="";if(u.length===1&&e.packedInputs){let v=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];p=`${v[0]>1}_${v[1]>1}`}else if(u.length===2&&!e.packedInputs)h=`${u[0]>1}_${u[1]>1}`;else if(u.length>2&&!e.packedInputs){let v=w.computeStrides(u);f=`${v[0]===l[1]}_${v[v.length-1]===l[1]}`}let m=o.shape.length,g=u.length===2&&w.arraysEqual(o.shape,l),A=w.sizeFromShape(o.shape)===1,x=E.getBroadcastDims(o.shape,n.shape),y=!e.packedInputs&&m===n.shape.length&&w.arraysEqual(l,n.texData.texShape),b=e.packedInputs||u.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${y}_${c?d:""}_${u.length}_${A}_${x}_${g}_${p}_${h}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${Y().getNumber("WEBGL_VERSION")}`,a}function Cs(e){return Y().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var HK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Dd.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=$n();this.outputShape=e,this.enableShapeUniforms=Cs(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?f0(["r","c","d"],e):Ci(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},jK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Dd.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=$n();this.outputShape=e,this.enableShapeUniforms=Cs(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?f0(["r","c","d"],e):Ci(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},qK=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Is.DOWNLOAD;let t=$n();this.outputShape=e,this.userCode=`
|
|
${v4}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},XK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Is.DOWNLOAD;let t=$n();this.outputShape=e,this.userCode=`
|
|
${v4}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},KK=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=$n();this.outputShape=e,this.enableShapeUniforms=Cs(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?O2():$2(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${s}, 0., 0., 0.);
|
|
}
|
|
`}},ZK=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=$n();this.outputShape=e,this.enableShapeUniforms=Cs(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${o};
|
|
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${a};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${i}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${i}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${i}] = values[2];
|
|
} else {
|
|
result[${i}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?O2():$2(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${s}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},C4={};ze(C4,{bindVertexProgramAttributeStreams:()=>O4,createBufferFromOutputTexture:()=>z4,createFloat16MatrixTexture:()=>D4,createFloat16PackedMatrixTexture:()=>$4,createFloat32MatrixTexture:()=>R4,createIndexBuffer:()=>E4,createPackedMatrixTexture:()=>F4,createUnsignedBytesMatrixTexture:()=>_4,createVertexBuffer:()=>N4,createVertexShader:()=>T4,downloadByteEncodedFloatMatrixFromOutputTexture:()=>B4,downloadFloat32MatrixFromBuffer:()=>L4,downloadMatrixFromPackedOutputTexture:()=>V4,downloadPackedMatrixFromBuffer:()=>W4,getInternalFormatForFloat16MatrixTexture:()=>z2,getInternalFormatForFloat16PackedMatrixTexture:()=>W2,getInternalFormatForFloat32MatrixTexture:()=>M2,getInternalFormatForPackedMatrixTexture:()=>B2,getInternalFormatForUnsignedBytesMatrixTexture:()=>L2,uploadDenseMatrixToTexture:()=>P4,uploadPixelDataToTexture:()=>M4});function T4(e){let t=$n(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return Q6(e,n)}function N4(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return s4(e,t)}function E4(e){let t=new Uint16Array([0,1,2,2,1,3]);return r4(e,t)}function Pd(e,t,n,s,r,a){o4(t,n);let o=a4(e),i=e.TEXTURE_2D;return Se(e,()=>e.bindTexture(i,o)),Se(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Se(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Se(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),Se(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),Se(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function M2(e){return e.internalFormatFloat}function R4(e,t,n,s){let[r,a]=_d(t,n);return Pd(e,r,a,M2(s),s.textureFormatFloat,e.FLOAT)}function z2(e){return e.internalFormatHalfFloat}function D4(e,t,n,s){let[r,a]=_d(t,n);return Pd(e,r,a,z2(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function L2(e){return e.downloadTextureFormat}function _4(e,t,n,s){let[r,a]=_d(t,n);return Pd(e,r,a,L2(s),e.RGBA,e.UNSIGNED_BYTE)}function B2(e){return e.internalFormatPackedFloat}function F4(e,t,n,s){let[r,a]=Nu(t,n);return Pd(e,r,a,B2(s),e.RGBA,e.FLOAT)}function W2(e){return e.internalFormatPackedHalfFloat}function $4(e,t,n,s){let[r,a]=Nu(t,n);return Pd(e,r,a,W2(s),e.RGBA,s.textureTypeHalfFloat)}function O4(e,t,n){let s=0,r=3*4,a=3*4+2*4;return Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),R2(e,t,"clipSpacePos",n,3,a,s)&&R2(e,t,"uv",n,2,a,r)}function P4(e,t,n,s,r,a){Se(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),Se(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function M4(e,t,n){Se(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Se(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Se(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function z4(e,t,n,s){let r=e.createBuffer();Se(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return Se(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),Se(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Se(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function L4(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function B4(e,t,n,s){let[r,a]=_d(t,n),o=4,i=new Uint8Array(HX(t*n,o));return Se(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function W4(e,t,n,s,r,a,o,i){let l=e,c=new Float32Array(jX(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function V4(e,t,n){let s=new Float32Array(t*n*4);return Se(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var m0=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Y().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,o0(t,e)):this.gl=Tr(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(Y().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=Fd(this.gl,r),Ss(this.gl,a))this.textureHalfFloatExtension=Fd(this.gl,a);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Ss(this.gl,s))this.colorBufferHalfFloatExtension=Fd(this.gl,s);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Ss(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Ss(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=N4(this.gl),this.indexBuffer=E4(this.gl),this.framebuffer=i4(this.gl),this.textureConfig=E2(this.gl,this.textureHalfFloatExtension)}get debug(){return Y().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Se(e,()=>e.finish()),Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Se(e,()=>e.deleteFramebuffer(this.framebuffer)),Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Se(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Se(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),R4(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),D4(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),_4(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),M4(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),P4(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),$4(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),F4(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(D2(this.gl,this.framebuffer),this.outputTexture=null),Se(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>B4(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return W4(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return L4(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=z4(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Y().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>V4(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=e4(t,e);this.vertexShader==null&&(this.vertexShader=T4(t));let s=t4(t);return Se(t,()=>t.attachShader(s,this.vertexShader)),Se(t,()=>t.attachShader(s,n)),n4(t,s),this.debug&&l0(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=O4(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Se(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&l0(this.gl,this.program),Se(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?u4(this.gl,e,t):c4(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Se(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),d4(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=Nu(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&l0(this.gl,this.program),$d(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Se(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Se(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Fd(this.gl,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=YK(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),u0(this.gl,e,this.framebuffer),this.debug&&$d(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(u0(this.gl,this.outputTexture,this.framebuffer),this.debug&&$d(this.gl)):D2(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;u0(s,e,this.framebuffer),this.debug&&$d(s),this.outputTexture=e,Se(s,()=>s.viewport(0,0,t,n)),Se(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),Se(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function YK(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:JK,bincountImpl:U4,bincountReduceImpl:QK,ceilImpl:eZ,concatImpl:tZ,equalImpl:nZ,expImpl:sZ,expm1Impl:rZ,floorImpl:aZ,gatherNdImpl:oZ,gatherV2Impl:iZ,greaterImpl:lZ,greaterEqualImpl:uZ,lessImpl:cZ,lessEqualImpl:dZ,linSpaceImpl:pZ,logImpl:hZ,maxImpl:fZ,maximumImpl:mZ,minimumImpl:gZ,multiplyImpl:AZ,negImpl:yZ,notEqualImpl:xZ,prodImpl:bZ,rangeImpl:vZ,rsqrtImpl:wZ,sigmoidImpl:kZ,simpleAbsImpl:G4,sliceImpl:IZ,sparseFillEmptyRowsImpl:SZ,sparseReshapeImpl:CZ,sparseSegmentReductionImpl:H4,sqrtImpl:TZ,stridedSliceImpl:NZ,stringNGramsImpl:EZ,stringSplitImpl:RZ,stringToHashBucketFastImpl:DZ,subImpl:_Z,tileImpl:FZ,topKImpl:$Z,transposeImpl:V2,uniqueImpl:OZ}=j7;function j4(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function On(e,t){return t===1?[e]:j4(e,t)}function PZ(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var MZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=On("rc",t),s=At(t),r=LZ(t,e,n),a=BZ(t,e[e.length-1],e[e.length-2],n),o=WZ(e,n);this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${a}
|
|
|
|
setOutput(vec4(${o}));
|
|
}
|
|
}
|
|
`}}};function zZ(e,t){let n=[];for(let s=0;s<=1;s++)for(let r=0;r<=1;r++){let a=`${s===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let o=2;o<e;o++)a=`${t[t.length-1-o]},`+a;n.push(a)}return n}function LZ(e,t,n){if(e===1)return`rc > ${t[0]}`;let s="";for(let r=e-2;r<e;r++)s+=`${n[r]} >= ${t[r]}`,r<e-1&&(s+="||");return s}function BZ(e,t,n,s){if(e===1)return"";let r=s.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function WZ(e,t){let n=e.length,s=zZ(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${s[0]}),
|
|
cEdge ? 0. : getA(${s[1]}),
|
|
rEdge ? 0. : getA(${s[2]}),
|
|
rEdge || cEdge ? 0. : getA(${s[3]})`}var q4=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=Cs(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2==1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${s}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${s>0?"}":""}
|
|
`}this.userCode=`
|
|
${VZ(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?O2():$2(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function VZ(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?aK(["r","c","d"],"inputShape"):Ci(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var UZ=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=K4(t,n),r=Z4(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=X4(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===yn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===yn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===yn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===yn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===yn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=K4(n,s),a=Z4(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=X4(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=Y().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function GZ(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function X4(e,t,n,s,r){let a=HZ(t,s),o;if(r){let[l,c]=Nu(e[0],e[1]);o=l*c}else{let[l,c]=_d(e[0],e[1]);o=l*c}let i=GZ(n,a);return o*i}function HZ(e,t){switch(e){case yn.PACKED_2X2_FLOAT32:return B2(t);case yn.PACKED_2X2_FLOAT16:return W2(t);case yn.UNPACKED_FLOAT32:return M2(t);case yn.UNPACKED_FLOAT16:return z2(t);case yn.PACKED_4X1_UNSIGNED_BYTE:return L2(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function jZ(e){return Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?yn.PACKED_2X2_FLOAT32:yn.UNPACKED_FLOAT32:e?yn.PACKED_2X2_FLOAT16:yn.UNPACKED_FLOAT16}function K4(e,t){if(e===Is.UPLOAD)return yn.PACKED_2X2_FLOAT32;if(e===Is.RENDER||e==null)return jZ(t);if(e===Is.DOWNLOAD||e===Is.PIXELS)return yn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function Z4(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var _a=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Cs(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},or="if (isnan(x)) return x;",qZ="return x;",Y4="return abs(x);",XZ="return (x >= 0.0) ? x : (exp(x) - 1.0);",KZ=or+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,ZZ=or+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,g0="return x;",YZ="return 1.0 / (1.0 + exp(-1.0 * x));",JZ="return x;",QZ=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,eY=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,tY=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,nY="return 1.0 / (1.0 + exp(-1.0 * x));",$u=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Cs(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},sY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=On("rc",t),s=At(t),r=PZ(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${o}));
|
|
}
|
|
`}},rY=br.whereImpl,aY=1e-7,oY=1e-4,A0={};function iY(e){return e in A0||(A0[e]={}),A0[e]}var lY=Y().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),uY=600;function cY(){return Y().global.screen==null?1024:Y().global.screen.height*Y().global.screen.width*window.devicePixelRatio*uY/1024/1024}var Ou=class extends pc{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!Y().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Tr(Y().getNumber("WEBGL_VERSION"));this.binaryCache=iY(Y().getNumber("WEBGL_VERSION")),this.gpgpu=new m0(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new UZ(this.gpgpu),this.numMBBeforeWarning=cY(),this.texData=new $p(this,ts())}nextDataId(){return Ou.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((Y().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Y().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:Is.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(Y().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:Is.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new $u(o,g0):d=new _a(o,g0);let p=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,c;l&&(c=w.now());let u;if(s==="complex64"){let d=this.readSync(r.real.dataId),p=this.readSync(r.imag.dataId);u=E.mergeRealAndImagArrays(d,p)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=w.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new $u(s,g0):h=new _a(s,g0);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Y().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(a!=="complex64"&&Y().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let h=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...i0(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];u=E.mergeRealAndImagArrays(f,m)}else if(l==null)u=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(s);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(c!=null&&this.disposeIntermediateTensorInfo(c),l!=null){let h=this.gpgpu.gl;Se(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,u),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ts().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>w.decodeString(s))}catch{throw new Error("Failed to decode encoded string bytes into utf-8")}return He(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!Y6(n))throw Y().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=w.sizeFromShape(t);if(Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),p=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(p.texture,...i0(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let a=Y().getBool("WEBGL_PACK")&&s===!0,o=a?c0(t):t,i=a?new XK(o):new qK(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),c=this.texData.get(l.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),u}timerAvailable(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=w.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=w.sum(i),o.getExtraProfileInfo=()=>i.map((l,c)=>({name:a[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=lY){return Y().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&w.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){E.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return rY(e.shape,t)}packedUnaryOp(e,t,n){let s=new $u(e.shape,t),r=this.compileAndRun(s,[e],n);return ts().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=G4(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(Y().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Y4,e.dtype);let t=new _a(e.shape,Y4),n=this.compileAndRun(t,[e]);return ts().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:s}=this.makeTensorInfo(e,t,n);return ts().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){let t=new sY(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new MZ(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Ii(e.shape),...Si(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[Ii(t),...Si(t)],a=new q4(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:s,dtype:r}=t,a=c0(s),o,i=i0(a);n?o=new jK(a):o=new HK(a);let l=!0,c=[i],u=this.runWebGLProgram(o,[{shape:a,dtype:r,dataId:e}],r,c,l);return{dtype:r,shape:s,dataId:u.dataId}}runWebGLProgram(e,t,n,s,r=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===Dd.DENSE){let m=i0(e.outputShape);o.texShape=m.map(g=>g*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),w.sizeFromShape(a.shape)===0)return o.values=w.getTypedArrayFromDType(a.dtype,0),a;let i=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(m.dataId);if(g.texture==null){if(!e.packedInputs&&w.sizeFromShape(m.shape)<=Y().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=m.shape)}else if(!!g.isPacked!=!!e.packedInputs)m=g.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),g=this.texData.get(m.dataId);else if(g.isPacked&&!Od(g.shape,m.shape)){let A=m,x=m.shape;m.shape=g.shape,m=this.packedReshape(m,x),i.push(m),g=this.texData.get(m.dataId),A.shape=x}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let c={shape:a.shape,texData:o,isUniform:!1},u=GK(e,l,c),d=this.getAndSaveBinary(u,()=>VK(this.gpgpu,e,l,c)),p=this.activeTimers!=null,h;p&&(h=this.startTimer()),UK(this.gpgpu,d,l,c,s),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),p&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let f=Y().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=w.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!Y().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Y().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=G(()=>{if(!Y().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Y().getBool("DEBUG");Y().set("DEBUG",!1);let t=this.abs(Ee(1e-8)).dataSync()[0];if(Y().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?aY:oY}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,c;l&&(c=w.now());let u=t.texShape;if(u==null&&(u=f4(n,i),t.texShape=u),r!=null){let d=c0(n),p,h=u[1],f=u[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;i?([h,f]=Nu(u[0],u[1]),p=new ZK(d,m)):p=new KK(d,m);let g=this.makeTensorInfo([f,h],s);m?this.texData.get(g.dataId).usage=Is.PIXELS:this.texData.get(g.dataId).usage=Is.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,f,r);let A=[[f,h]],x=!0,y=this.runWebGLProgram(p,[g],s,A,x),b=this.texData.get(y.dataId);t.texture=b.texture,t.texShape=b.texShape,t.isPacked=b.isPacked,t.usage=b.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(y.dataId),t.values=null,l&&(this.uploadWaitMs+=w.now()-c)}else{let d=this.acquireTexture(u,o,s,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=dY(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}};Ou.nextDataId=0;function dY(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var pY="3.11.0";function J4(){Y().set("WEBGL_FORCE_F16_TEXTURES",!0)}zc.isBrowser()&&tu("webgl",()=>new Ou,2);var hY={forceHalfFloat:J4},Q4=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Pu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=Cs(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},y0=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Md=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=E.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=Cs(r);let a="";if(s)if(r===0||w.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${At(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?a+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=On("coords",r);this.enableShapeUniforms?a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function ds(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var fY={kernelName:go,backendName:"webgl",kernelFunc:ds};function Fa(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=ds({inputs:{x:s},backend:n}),l=ds({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var mY={kernelName:Up,backendName:"webgl",kernelFunc:Fa},ek="return (a < 0.) ? b * a : a;",tk=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function gY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),i=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Md(tk,r.shape,o.shape):new Pu(ek,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],"float32");return n.disposeIntermediateTensorInfo(o),l}var AY={kernelName:Ao,backendName:"webgl",kernelFunc:gY},nk="return (a < 0.) ? b * a : a;",sk=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function yY(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Md(sk,s.shape,r.shape):new Pu(nk,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],"float32")}var xY={kernelName:Ro,backendName:"webgl",kernelFunc:yY},rk="if (isnan(x)) return x;",bY=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,vY=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function nt({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),p=n(d.values,l);return i.makeTensorInfo(o.shape,l,p)}let c=Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new $u(o.shape,t):u=new _a(o.shape,e),i.runWebGLProgram(u,[o],l)}}function xn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:c}=o,u=i;if(s&&l.dtype==="complex64"){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[g,A]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(y=>{let[b,v]=y,S={dataId:b.dataId,dtype:b.dtype,shape:l.shape},T={dataId:v.dataId,dtype:v.dtype,shape:c.shape},D=new Pu(e,l.shape,c.shape);return u.runWebGLProgram(D,[S,T],$s(b.dtype,v.dtype))}),x=Fa({inputs:{real:g,imag:A},backend:u});return u.disposeIntermediateTensorInfo(g),u.disposeIntermediateTensorInfo(A),x}let d=a||$s(l.dtype,c.dtype);if((l.dtype==="string"||c.dtype==="string"||u.shouldExecuteOnCPU([l,c]))&&r!=null){let f=u.texData.get(l.dataId).values,m=u.texData.get(c.dataId).values,g=l.dtype==="string"?E.fromUint8ToStringArray(f):f,A=l.dtype==="string"?E.fromUint8ToStringArray(m):m,[x,y]=r(l.shape,c.shape,g,A,d),b=u.makeTensorInfo(y,d),v=u.texData.get(b.dataId);return v.values=x,b}let p=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return p?h=new Md(t,l.shape,c.shape,n):h=new Pu(e,l.shape,c.shape),u.runWebGLProgram(h,[l,c],d)}}function x0(e,t=!1){if(e==="linear")return t?JZ:qZ;if(e==="relu")return t?eY:KZ;if(e==="elu")return t?QZ:XZ;if(e==="relu6")return t?tY:ZZ;if(e==="prelu")return t?sk:nk;if(e==="leakyrelu")return t?tk:ek;if(e==="sigmoid")return t?nY:YZ;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var ak=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=Cs(this.outputShape.length);let c=s?e[1]:e[2],u=Math.ceil(c/2),d=s?"i * 2, rc.y":"rc.y, i * 2",p=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${o}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${o}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${o}
|
|
}`,g="result = activation(result);");let A=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let x="rc.x",y="rc.x";e[0]<t[0]?x=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(y=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${u}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${u}; i++) {
|
|
int batchA = ${x};
|
|
int batchB = ${y};
|
|
vec4 a = getMatrixA(batchA, ${d});
|
|
vec4 b = getMatrixB(batchB, ${p});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${f[0]});
|
|
result += (${h[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${A}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},ok={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},ik=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},lk="return a * b;";function U2(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=E.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),c=new ik(ok.REAL,s.shape,r.shape),u=new ik(ok.IMAG,s.shape,r.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],p=n.runWebGLProgram(c,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=Fa({inputs:{real:p,imag:h},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[c,u]=AZ(s.shape,r.shape,i.values,l.values,a),d=n.makeTensorInfo(u,a),p=n.texData.get(d.dataId);return p.values=c,d}let o;return Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new Md(lk,s.shape,r.shape):o=new Pu(lk,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var wY={kernelName:Co,backendName:"webgl",kernelFunc:U2};function kY(e,t,n){let s=[Ii(e.shape),...Si(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[Ii(t),...Si(t)],o=new q4(a,s),i=!0,l=[s],c=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:c.dataId,shape:t,dtype:c.dtype}}function we(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=w.sizeFromShape(r.shape),l=w.inferFromImplicitShape(a,i),c=w.sizeFromShape(l);w.assert(i===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let u=o.texData.get(r.dataId);return u.isPacked&&!Od(r.shape,l)&&!(u.texture!==null&&Od(u.shape,l))?kY(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var IY={kernelName:Fl,backendName:"webgl",kernelFunc:we},uk=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${w.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${o}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${o};
|
|
if (${i===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},SY=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,d=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,p="vec4";t==="all"?(o="1.0",d=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,p="bvec4"):t==="any"&&(o="0.0",d=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,p="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${o});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${u===1}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===2}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===3}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function CY(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=E.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function Ni(e,t,n,s){let r=CY(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:c}=r[o],u,d;n==="mean"?u=o===0?new uk({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c},i):new uk({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c}):u=new SY({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c},n),d=a,a=s.runWebGLProgram(u,[a],t),d.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(d)}return a}var TY=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=At(this.rank),r=NY(t);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function NY(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var EY=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=At(this.rank),r=j4("rc",this.rank),a=new Array(this.rank);for(let c=0;c<t.length;c++)a[t[c]]=r[c];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${i}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${i}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function b0(e,t,n){let s=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new EY(e.shape,t):new TY(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function RY(e,t,n,s){let r=t,a=e.shape.length,o=w.parseAxisParam(r,e.shape),i=o,l=E.getAxesPermutation(i,a),c=l!=null,u=e;c&&(u=b0(e,l,s),i=E.getInnerMostAxes(i.length,a)),E.assertAxesAreInnerMostDims("sum",i,a);let[d,p]=E.computeOutAndReduceShapes(u.shape,i),h=d;n&&(h=E.expandShapeToKeepDim(d,o));let f=w.sizeFromShape(p),g=w.sizeFromShape(e.shape)/f,A=we({inputs:{x:u},attrs:{shape:[g,f]},backend:s}),x=Nh(e.dtype),y=Ni(A,x,"sum",s),b=we({inputs:{x:y},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(A),s.disposeIntermediateTensorInfo(y),c&&s.disposeIntermediateTensorInfo(u),b}function v0(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return RY(r,a,o,n)}var DY={kernelName:Bo,backendName:"webgl",kernelFunc:v0};function Pn(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let u=0;u<l.length;u++)l[u]=r.shape[a[u]];let c;if(o.shouldExecuteOnCPU([r])){let d=o.texData.get(r.dataId).values,p=V2(d,r.shape,r.dtype,a,l);c=o.makeTensorInfo(l,r.dtype);let h=o.texData.get(c.dataId);h.values=p}else c=b0(r,a,o);return c}var _Y={kernelName:jo,backendName:"webgl",kernelFunc:Pn},ck=1e3;function w0({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,d=n?e.shape[c-2]:e.shape[c-1],p=s?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],f=s?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),A=w.sizeFromShape(m),x=w.sizeFromShape(g),y=A===x||A===1||x===1;w.assert(c>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${g}).`);let v=(A>x?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,f]);w.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let S=n?[A,d,h]:[A,h,d],T=s?[x,f,p]:[x,p,f],D=we({inputs:{x:e},backend:r,attrs:{shape:S}}),F=we({inputs:{x:t},backend:r,attrs:{shape:T}}),P=[D,F],_=Math.max(A,x),$=n?D.shape[1]:D.shape[2],C=a!=null,M=o!=null,U=l==="leakyrelu",j=l!=null?x0(l,!0):null,q=C||M||U||j!=null,X;if((h===1||f===1)&&$>ck&&q===!1){let ne=D,se=F;n&&(ne=Pn({inputs:{x:D},backend:r,attrs:{perm:[0,2,1]}}),P.push(ne)),s&&(se=Pn({inputs:{x:F},backend:r,attrs:{perm:[0,2,1]}}),P.push(se));let oe=f!==1,ae=f===1,re=ne;oe&&(re=we({inputs:{x:ne},backend:r,attrs:{shape:[_,$,1]}}),P.push(re));let ce=f===1?2:1,ge=se;ae&&(ge=we({inputs:{x:se},backend:r,attrs:{shape:[_,1,$]}}),P.push(ge));let ve=U2({inputs:{a:re,b:ge},backend:r});X=v0({inputs:{x:ve},backend:r,attrs:{axis:ce,keepDims:!0}}),P.push(ve)}else{let ne=$s(e.dtype,t.dtype),se=new ak(S,T,[_,h,f],n,s,C,j,M,U),oe=[D,F];if(a!=null&&oe.push(a),M&&oe.push(o),U){let ae=r.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));oe.push(ae),P.push(ae)}X=r.runWebGLProgram(se,oe,ne)}let te=we({inputs:{x:X},backend:r,attrs:{shape:v}});P.push(X);for(let ne of P)r.disposeIntermediateTensorInfo(ne);return te}function FY(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s;return w0({a:r,b:a,transposeA:l,transposeB:c,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:u})}var $Y={kernelName:qo,backendName:"webgl",kernelFunc:FY},dk="return abs(x);";function OY(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=G4(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new $u(s.shape,dk):r=new _a(s.shape,dk),n.runWebGLProgram(r,[s],s.dtype)}var PY={kernelName:Xi,backendName:"webgl",kernelFunc:OY},MY=or+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,zY=nt({opSnippet:MY}),LY={kernelName:Ki,backendName:"webgl",kernelFunc:zY},BY=or+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,WY=nt({opSnippet:BY}),VY={kernelName:Zi,backendName:"webgl",kernelFunc:WY},pk="return a + b;",UY=xn({opSnippet:pk,packedOpSnippet:pk,supportsComplex:!0,cpuKernelImpl:JK}),GY={kernelName:ia,backendName:"webgl",kernelFunc:UY},HY=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}},jY=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}};function k0(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return ds({inputs:{x:s[0]},backend:n});if(s.length>Y().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),c=k0({inputs:s.slice(0,l),backend:n}),u=k0({inputs:s.slice(l),backend:n});return k0({inputs:[c,u],backend:n})}let r=s.map(l=>l.dtype).reduce((l,c)=>$s(l,c)),a=s.map(l=>l.shape),i=Y().getBool("WEBGL_PACK")?new jY(s[0].shape,a):new HY(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var qY={kernelName:Za,backendName:"webgl",kernelFunc:k0};function XY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=r;u!=null&&(d=Pn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,i)),E.assertAxesAreInnerMostDims("all",c,i);let[p,h]=E.computeOutAndReduceShapes(d.shape,c),f=w.sizeFromShape(h),m=we({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Ni(m,m.dtype,"all",n),A;if(o){let x=E.expandShapeToKeepDim(p,l);A=we({inputs:{x:g},backend:n,attrs:{shape:x}})}else A=we({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var KY={kernelName:Yi,backendName:"webgl",kernelFunc:XY};function ZY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=r;u!=null&&(d=Pn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,i)),E.assertAxesAreInnerMostDims("any",c,i);let[p,h]=E.computeOutAndReduceShapes(d.shape,c),f=w.sizeFromShape(h),m=we({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Ni(m,m.dtype,"any",n),A;if(o){let x=E.expandShapeToKeepDim(p,l);A=we({inputs:{x:g},backend:n,attrs:{shape:x}})}else A=we({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var YY={kernelName:Ji,backendName:"webgl",kernelFunc:ZY},JY=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${s};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
int inIdx = ${i};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${o} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},QY=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=At(i),c=On("coords",i),u,d;if(a===1){d=i+1;let T=At(d);u=`
|
|
${T} sourceLocR = ${T}(${c.join()}, 0);
|
|
++${c[i-1]};
|
|
${T} sourceLocG = ${T}(${c.join()}, 0);
|
|
++${c[i-2]};
|
|
${T} sourceLocA = ${T}(${c.join()}, 0);
|
|
--${c[i-1]};
|
|
${T} sourceLocB = ${T}(${c.join()}, 0);
|
|
--${c[i-2]};`}else d=i,u=`
|
|
${l} sourceLocR = coords;
|
|
++${c[i-1]};
|
|
${l} sourceLocG = coords;
|
|
++${c[i-2]};
|
|
${l} sourceLocA = coords;
|
|
--${c[i-1]};
|
|
${l} sourceLocB = coords;
|
|
--${c[i-2]};`;let p=["x","y","z","w","u","v"].slice(0,d),h="."+p[d-1],f=p.map(T=>"int "+T),m=On("sourceLocR",d-1).concat("inIdx.r"),g=On("sourceLocG",d-1).concat("inIdx.g"),A=On("sourceLocB",d-1).concat("inIdx.b"),x=On("sourceLocA",d-1).concat("inIdx.a"),y=n==="max"?"greaterThan":"lessThan",b=s?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${x.join()})));`,v=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${x.join()}) : 0.)`,S=s?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}
|
|
${S}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${c[i-1]} < ${o[i-1]-1};
|
|
bool hasNextRow = ${c[i-2]} < ${o[i-2]-1};
|
|
${u}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${v};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${v};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${y}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function hk(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=E.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new JY(i,n,s==null),c=[t];s!=null&&c.push(s);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let d=hk(e,t,n,u);return e.disposeIntermediateTensorInfo(u),d}function fk(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=E.computeOptimalWindowSize(a),i=new QY(r,o,n,s==null),l=s==null?[t]:[t,s],c=e.runWebGLProgram(i,l,"int32");if(c.shape.length===t.shape.length){let u=fk(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function mk(e,t,n,s){let r=[n];if(E.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!Y().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[c,u]=E.computeOutAndReduceShapes(l.shape,r),d=w.sizeFromShape(u),p=we({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});a.push(p);let h=hk(e,p,s);a.push(h);let f=we({inputs:{x:h},backend:e,attrs:{shape:c}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return fk(e,t,s)}function eJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=w.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Pn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let u=mk(n,l,o[0],"max");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var tJ={kernelName:Ya,backendName:"webgl",kernelFunc:eJ};function nJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=w.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Pn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let u=mk(n,l,o[0],"min");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var sJ={kernelName:mc,backendName:"webgl",kernelFunc:nJ},rJ=or+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,aJ=nt({opSnippet:rJ}),oJ={kernelName:Qi,backendName:"webgl",kernelFunc:aJ},iJ=or+"return log(x + sqrt(x * x + 1.0));",lJ=nt({opSnippet:iJ}),uJ={kernelName:el,backendName:"webgl",kernelFunc:lJ},cJ=or+`
|
|
return atan(x);
|
|
`,dJ=nt({opSnippet:cJ}),pJ={kernelName:tl,backendName:"webgl",kernelFunc:dJ},hJ=bY+`
|
|
return atan(a, b);
|
|
`,fJ=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+vY+`
|
|
return result;
|
|
`,mJ=xn({opSnippet:hJ,packedOpSnippet:fJ}),gJ={kernelName:sl,backendName:"webgl",kernelFunc:mJ},AJ=or+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,yJ=nt({opSnippet:AJ}),xJ={kernelName:nl,backendName:"webgl",kernelFunc:yJ},zd=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,A="0.0";if(f||(A="-1.0 / 1e-20"),n){let T=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${c}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${T} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?m:g:`wR * ${d} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let x="max",y=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(y="avgValue / count");let b=Math.floor(a/4)*4,v=a%4,S=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${x}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${h});
|
|
const float initializationValue = ${A};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${A});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
getValue(batch, xR, xC + 3 * ${c}, d)
|
|
);
|
|
|
|
${S}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${v===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${S}
|
|
} else if (${v===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${S}
|
|
} else if (${v===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${S}
|
|
}
|
|
}
|
|
setOutput(${y});
|
|
}
|
|
`}},G2=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,d=e.dilationWidth,p=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,A=e.padInfo.left;this.outputShape=e.outShape;let x=t==="avg",y="0.0";if(x||(y="-1.0 / 1e-20"),n){let F=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${d}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${F} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",v=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(v="avgValue / count");let S=Math.floor(a/4)*4,T=a%4,D=`
|
|
if (${x}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${A});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${S}; wC += 4) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
|
|
);
|
|
|
|
${D}
|
|
}
|
|
|
|
int xC = xCCorner + ${S};
|
|
if (${T===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${D}
|
|
} else if (${T===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${D}
|
|
} else if (${T===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${D}
|
|
}
|
|
}
|
|
setOutput(${v});
|
|
}
|
|
}
|
|
`}};function bJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Eu(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;w.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))return ds({inputs:{x:r},backend:n});let d=new zd(u,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var vJ={kernelName:Ja,backendName:"webgl",kernelFunc:bJ};function wJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s,u=[1,1,1],d=E.computePool3DInfo(r.shape,a,o,u,i,l,c),p=new G2(d,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var kJ={kernelName:gc,backendName:"webgl",kernelFunc:wJ},IJ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=i-1-e.padInfo.top,u=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${c}, ${u});
|
|
const float avgMultiplier = float(${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${i};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},SJ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,h=u-1-e.padInfo.front,f=d-1-e.padInfo.top,m=p-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${f}, ${m});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${u};
|
|
wD += ${i}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${c}) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function CJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=E.computePool3DInfo(o.shape,i,l,d,c,u),h=new SJ(p);return n.runWebGLProgram(h,[r],o.dtype)}var TJ={kernelName:Bp,backendName:"webgl",kernelFunc:CJ};function NJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Eu([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=E.computePool2DInfo(o.shape,i,l,1,c),d=new IJ(u);return n.runWebGLProgram(d,[r],o.dtype)}var EJ={kernelName:Lp,backendName:"webgl",kernelFunc:NJ};function RJ(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return w0({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var DJ={kernelName:Qa,backendName:"webgl",kernelFunc:RJ},_J=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(E.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${o};
|
|
float scale = ${i};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},FJ=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(E.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${o};
|
|
vec4 scale = ${i};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},$J=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;w.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[s,r,a],u=null;o!=null&&(u=o.shape,c.push(o));let d=null;i!=null&&(d=i.shape,c.push(i));let p=Y().getBool("WEBGL_PACK_NORMALIZATION")?new FJ(s.shape,r.shape,a.shape,u,d,l):new _J(s.shape,r.shape,a.shape,u,d,l);return t.runWebGLProgram(p,c,c[0].dtype)},OJ={kernelName:fo,backendName:"webgl",kernelFunc:$J},PJ=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=At(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=MJ(this.rank),s,r=e.map((a,o)=>`sourceLoc.${H2[o]} = start[${o}] + coords.${H2[o]};`);s=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${s}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},H2=["x","y","z","w","u","v"];function MJ(e){if(e===1)return"sourceLoc";if(e<=6)return H2.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var zJ=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=At(this.rank),n=On("coords",this.rank),s=On("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
|
|
result.x = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.y = ${a};
|
|
--${s[this.rank-1]};
|
|
}
|
|
`,i=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${s[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${s[u]} = ${n[u]} + start[${u}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${o}
|
|
${i}
|
|
setOutput(result);
|
|
}
|
|
`}};function LJ(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=Yt.computeFlatOffset(t,w.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function Mu(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Yt.parseSliceParams(r,a,o);if(Yt.assertParamsValid(r,i,l),w.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),p=IZ(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}let{isPacked:c}=n.texData.get(r.dataId),u=Yt.isSliceContinous(r.shape,i,l);if(c||!u){let d=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new zJ(l):new PJ(l),p=[i];return n.runWebGLProgram(d,[r],r.dtype,p)}return n.uploadToGPU(r.dataId),LJ(r,i,l,n)}var BJ={kernelName:Ml,backendName:"webgl",kernelFunc:Mu},WJ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((x,y)=>x*y),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=[],f=we({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Pn({inputs:{x:f},backend:n,attrs:{perm:c}}),g=we({inputs:{x:m},backend:n,attrs:{shape:u}}),A=Mu({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeIntermediateTensorInfo(x)),A},VJ={kernelName:rl,backendName:"webgl",kernelFunc:WJ};function UJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),c=U4(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var GJ={kernelName:Wp,backendName:"webgl",kernelFunc:UJ};function HJ(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.readSync(s.dataId),o=n.readSync(r.dataId),i=E.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var jJ={kernelName:Vp,backendName:"webgl",kernelFunc:HJ},qJ="return float(a != b);",gk=xn({opSnippet:qJ,cpuKernelImpl:xZ,dtype:"bool"}),XJ={kernelName:Sl,backendName:"webgl",kernelFunc:gk};function Ld(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return ds({inputs:{x:r.complexTensorInfos.real},backend:n})}var KJ={kernelName:ch,backendName:"webgl",kernelFunc:Ld},ZJ="return float(int(x));";function YJ(e,t){let n=new _a(e.shape,ZJ),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function j2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return ds({inputs:{x:r},backend:n});let o=Ut(r.shape),i=j2({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Fa({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=Ld({inputs:{input:r},backend:n}),i=j2({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(r.dtype,a)){let o=ds({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return YJ(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),l=gk({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var JJ={kernelName:eo,backendName:"webgl",kernelFunc:j2},Ak="return ceil(x);",QJ=nt({opSnippet:Ak,packedOpSnippet:Ak,cpuKernelImpl:eZ}),eQ={kernelName:to,backendName:"webgl",kernelFunc:QJ},tQ=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},nQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function sQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;Y().getBool("WEBGL_PACK_CLIP")?i=new nQ(r.shape):i=new tQ(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var rQ={kernelName:la,backendName:"webgl",kernelFunc:sQ},aQ=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function yk(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function oQ(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new aQ(s.shape),o=[yk(s,r.complexTensorInfos.real),yk(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var iQ={kernelName:Ac,backendName:"webgl",kernelFunc:oQ},lQ=class{constructor(e){this.outputShape=[],this.outputShape=E.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},uQ=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=E.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=At(s),a=On("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let l=o[t],c=o.slice(-2),u=o.join(),d=`if (${l} < ${i[0]}) {
|
|
return getChannel(
|
|
getT0(${u}), vec2(${c.join()}));
|
|
}`;for(let f=1;f<i.length;f++){let m=i[f-1];d+=`
|
|
if (${l} < ${i[f]} && ${l} >= ${i[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${I0(o,l,m)}),
|
|
vec2(${I0(c,l,m)}));
|
|
}`}let p=i.length,h=i[i.length-1];d+=`
|
|
return getChannel(
|
|
getT${p}(${I0(o,l,h)}),
|
|
vec2(${I0(c,l,h)}));`,this.userCode=`
|
|
float getValue(${o.map(f=>"int "+f)}) {
|
|
${d}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[s-1]} = ${a[s-1]} + 1;
|
|
if (${a[s-1]} < ${n[s-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[s-2]} = ${a[s-2]} + 1;
|
|
if (${a[s-2]} < ${n[s-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[s-1]} = ${a[s-1]} - 1;
|
|
if (${a[s-2]} < ${n[s-2]} &&
|
|
${a[s-1]} < ${n[s-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function I0(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function S0(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return ds({inputs:{x:r.complexTensorInfos.imag},backend:n})}var cQ={kernelName:sh,backendName:"webgl",kernelFunc:S0};function zu(e,t,n){let s=e[0].dtype;if(s==="complex64"){let u=e.map(m=>Ld({inputs:{input:m},backend:n})),d=e.map(m=>S0({inputs:{input:m},backend:n})),p=zu(u,t,n),h=zu(d,t,n),f=Fa({inputs:{real:p,imag:h},backend:n});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let u=e.map(A=>{let x=w.sizeFromShape(A.shape.slice(t));return we({inputs:{x:A},backend:n,attrs:{shape:[-1,x]}})}),d=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),p=E.computeOutShape(u.map(A=>A.shape),1),h=u[0].shape[0]===1,f=tZ(d,p,s,h),m=E.computeOutShape(e.map(A=>A.shape),t),g=n.makeTensorInfo(m,s,f);return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),g}if(e.length>Y().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),d=zu(e.slice(0,u),t,n),p=zu(e.slice(u),t,n),h=zu([d,p],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),h}if(Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new uQ(e.map(d=>d.shape),t);return n.runWebGLProgram(u,e,s)}let{tensors2D:a,outShape:o}=dQ(e,t,n),i=new lQ(a.map(u=>u.shape)),l=n.runWebGLProgram(i,a,s);a.forEach(u=>n.disposeIntermediateTensorInfo(u));let c=we({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),c}function dQ(e,t,n){let s=E.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>we({inputs:{x:a},attrs:{shape:[-1,w.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function xk(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],o=E.computeOutShape(t.map(c=>c.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(c=>w.sizeFromShape(c.shape)>0);if(i.length===1)return ds({inputs:{x:i[0]},backend:n});let l=i.map(c=>c.shape);return E.assertParamsConsistent(l,a),zu(i,a,n)}var pQ={kernelName:al,backendName:"webgl",kernelFunc:xk},bk=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,A=m?2:3,x=m?3:1,y="",b="";n&&(s?y=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?y=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:y=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,b="result = activation(result);");let v=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${y}
|
|
|
|
const ivec2 strides = ivec2(${i}, ${l});
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${x}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${A}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${c};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${v}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},hQ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${a}, ${o});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${s});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${u}; wF++) {
|
|
int xF = xFCorner + wF * ${i};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},fQ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=Cs(this.outputShape.length);let{dataFormat:n}=t,s=$n(),r=n==="channelsLast",a=r?0:1,o=r?1:2,i=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let c=0;c<=1;c++)for(let u=0;u<=1;u++)l+=`
|
|
blockIndex = rc.y + ${u};
|
|
pos = rc.x + ${c};
|
|
|
|
${i}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${a}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${o}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${c*2+u}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${c*2+u}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${s.output} = result;
|
|
}
|
|
`}};function vk({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,c=s.texData.get(e.dataId),u=n.inChannels,d=l[0]*l[1]*l[2],p=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,A=[];if(!((d===1||p===1)&&u>ck)&&c.isPacked&&h&&c.texture!=null&&l[2]%2!=0&&w.arraysEqual(c.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),v={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},S=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,w.assert(Od(c.shape,v.shape),()=>`packed reshape ${c.shape} to ${v.shape} isn't free`);let T=we({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});A.push(T);let D=w0({a:v,b:T,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),F=s.texData.get(D.dataId);w.assert(F.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=S,F.shape=n.outShape,g=ds({inputs:{x:D},backend:s}),g.shape=n.outShape,A.push(D)}else{let b=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],v=we({inputs:{x:e},backend:s,attrs:{shape:[1,b,n.inChannels]}}),S=we({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),T=w0({a:v,b:S,transposeA:f,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=we({inputs:{x:T},backend:s,attrs:{shape:n.outShape}}),A.push(v),A.push(S),A.push(T)}for(let b of A)s.disposeIntermediateTensorInfo(b);return g}function wk({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:d,outHeight:p,dataFormat:h}=n,f=h==="channelsLast",m=l*c*u,g=p*d,A=[m,g],x=!0,y=!1,b=[],v=we({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),S=we({inputs:{x:t},backend:s,attrs:{shape:[1,m,w.sizeFromShape(t.shape)/m]}});b.push(v),b.push(S);let T=new fQ(A,n),D=[v.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],F=s.runWebGLProgram(T,[v],"float32",D),P=we({inputs:{x:F},backend:s,attrs:{shape:[1,A[0],A[1]]}});b.push(F),b.push(P);let _=r!=null,$=a!=null,C=i==="leakyrelu",M=i?x0(i,!0):null,U=new ak(P.shape,S.shape,[1,g,n.outChannels],x,y,_,M,$,C),j=[P,S];if(r&&j.push(r),$&&j.push(a),C){let ne=s.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));j.push(ne),b.push(ne)}let q=s.runWebGLProgram(U,j,"float32"),X=f?[1,p,d,n.outChannels]:[1,n.outChannels,p,d],te=we({inputs:{x:q},backend:s,attrs:{shape:X}});b.push(q);for(let ne of b)s.disposeIntermediateTensorInfo(ne);return te}function mQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s,d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))h=vk({x:r,filter:a,convInfo:p,backend:n});else if(Y().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=wk({x:r,filter:a,convInfo:p,backend:n});else{let m=new bk(p);h=n.runWebGLProgram(m,[r,a],"float32")}let f=we({inputs:{x:h},backend:n,attrs:{shape:p.outShape}});return n.disposeIntermediateTensorInfo(h),f}var gQ={kernelName:no,backendName:"webgl",kernelFunc:mQ},AQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},yQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,c=a?2:3,u=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${u}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},xQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${s} - ${o};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},bQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=s-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${i}, ${l}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${s} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function vQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,filterShape:u}=s,d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,u,o,1,i,c,!1,d),h=new AQ(p);return n.runWebGLProgram(h,[r,a],"float32")}var wQ={kernelName:Gp,backendName:"webgl",kernelFunc:vQ};function kQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s,d=E.convertConv2DDataFormat(c),p=E.computeConv2DInfo(o,a.shape,i,1,l,u,!1,d),h=new yQ(p);return n.runWebGLProgram(h,[r,a],"float32")}var IQ={kernelName:so,backendName:"webgl",kernelFunc:kQ};function SQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=E.computeConv3DInfo(r.shape,a.shape,o,l,i),u=new hQ(c);return n.runWebGLProgram(u,[r,a],"float32")}var CQ={kernelName:yc,backendName:"webgl",kernelFunc:SQ};function TQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,c=E.computeConv3DInfo(r.shape,l,o,1,i),u=new xQ(c);return n.runWebGLProgram(u,[r,a],"float32")}var NQ={kernelName:Hp,backendName:"webgl",kernelFunc:TQ};function EQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,c=E.computeConv3DInfo(l,a.shape,i,1,o),u=new bQ(c);return n.runWebGLProgram(u,[r,a],"float32")}var RQ={kernelName:jp,backendName:"webgl",kernelFunc:EQ},DQ=rk+`
|
|
return cos(x);
|
|
`,_Q=nt({opSnippet:DQ}),FQ={kernelName:ro,backendName:"webgl",kernelFunc:_Q},$Q=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,OQ=nt({opSnippet:$Q}),PQ={kernelName:ao,backendName:"webgl",kernelFunc:OQ},MQ=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[c]=t,[u,d]=n;this.outputShape=[c,u,d,l];let p=s==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,A]=u>1?[`${(o-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[x,y,b]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${x});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${y};
|
|
|
|
float in_y = ${A};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${p} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},zQ=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,u=new MQ(r.shape,a.shape,i,l,c);return n.runWebGLProgram(u,[r,a,o],"float32")},LQ={kernelName:ol,backendName:"webgl",kernelFunc:zQ},kk=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"0.0":`getX(${Ik(s,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${At(s)} coords = getOutputCoords();
|
|
int end = ${Sk(s,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${o}) {
|
|
int idx = ${i};
|
|
${Sk(s,"coords")} = idx;
|
|
val += getX(${Ik(s,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function Ik(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Sk(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function BQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length,c=E.getAxesPermutation([a],l),u=r;c!=null&&(u=Pn({inputs:{x:r},backend:n,attrs:{perm:c}}));let d=E.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let p=u.shape[d],h=ds({inputs:{x:u},backend:n});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new kk(u.shape,!1,i),g=[[f]],A=h;h=n.runWebGLProgram(m,[h],h.dtype,g),n.disposeIntermediateTensorInfo(A)}if(o){let f=new kk(u.shape,o,i),m=h;h=n.runWebGLProgram(f,[h],h.dtype),n.disposeIntermediateTensorInfo(m)}if(c!=null){let f=E.getUndoAxesPermutation(c),m=Pn({inputs:{x:h},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(u),m}return h}var WQ={kernelName:oo,backendName:"webgl",kernelFunc:BQ};function VQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=U4(l,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(a),u=QK(l,c,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var UQ={kernelName:qp,backendName:"webgl",kernelFunc:VQ},GQ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function HQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=new GQ(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var jQ={kernelName:il,backendName:"webgl",kernelFunc:HQ},Ck=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Cs(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",c="";n&&(s?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,c="result = activation(result);");let u=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${i};
|
|
int q = d2 - d1 * ${i};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${a}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${o}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${u}
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},Tk=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Cs(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,c=e.filterHeight,u=e.filterWidth,d=u,p=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<u;g++)p+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;p+=`
|
|
for (int r = 0; r < ${c}; r++) {
|
|
`;for(let g=0;g<u;g++)p+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;p+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(d+1)/2;g++){let A=g*2;if(p+=`
|
|
xC = xCCorner + ${A*l};
|
|
`,i===1){if(A<u&&(o%2==1?(p+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
`,l===1&&A>0?p+=`
|
|
xC${A} = vec4(xTexelC${A-2}.zw, xTexelC${A}.xy);
|
|
`:p+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${A} = vec4(previous.zw, xTexelC${A}.xy);
|
|
} else {
|
|
xC${A} = vec4(0.0, 0.0, xTexelC${A}.xy);
|
|
}
|
|
`):p+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
|
|
xC${A} = xTexelC${A};
|
|
`,A+1<u)){let x=o%2==0?w.nearestLargerEven(l):l;l%2==0&&o%2==1||l%2!=0&&o%2!=1?(p+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
`,l>1&&(p+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
`),p+=`
|
|
xC${A+1} = vec4(xTexelC${A}.zw, xTexelC${A+1}.xy);
|
|
`):x===1?p+=`
|
|
xC${A+1} = xTexelC${A};
|
|
`:p+=`
|
|
xCOffset = xC + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
|
|
xC${A+1} = xTexelC${A+1};
|
|
`}}else A<u&&(o%2==1?(p+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
|
|
xC${A} = vec4(xTexelC${A}.zw, xTexelC${A+1}.zw);
|
|
`,A+1<u&&(p+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${A+1} = vec4(xTexelC${A+1}.xy, final.xy);
|
|
`)):(p+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
|
|
xC${A} = vec4(
|
|
xTexelC${A}.xy, xTexelC${A+1}.xy);
|
|
`,A+1<u&&(p+=`
|
|
xC${A+1} = vec4(xTexelC${A}.zw, xTexelC${A+1}.zw);
|
|
`)));A<u&&(p+=`
|
|
wTexel = getW(r, ${A}, d1, q);
|
|
dotProd += xC${A} * vec4(wTexel.xz, wTexel.xz);
|
|
`,A+1<u&&(p+=`
|
|
wTexel = getW(r, ${A+1}, d1, q);
|
|
dotProd += xC${A+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}p+=`
|
|
}
|
|
`,p+=`
|
|
}
|
|
`;let h="",f="";n&&(s?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${a};
|
|
int q = d2 - d1 * ${a};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${p}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};function qQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s,u=l;u==null&&(u=[1,1]),w.assert(E.eitherStridesOrDilationsAreOne(o,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let d=E.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!0),p;Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?p=new Tk(d):p=new Ck(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(p,[r,a],"float32",h)}var XQ={kernelName:io,backendName:"webgl",kernelFunc:qQ},KQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},ZQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${i}; dm++) {
|
|
int d2 = d1 * ${i} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function YQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,filterShape:u}=s,d=E.computeConv2DInfo(r.shape,u,o,i,l,c,!0),p=new KQ(d);return n.runWebGLProgram(p,[r,a],"float32")}var JQ={kernelName:Xp,backendName:"webgl",kernelFunc:YQ};function QQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,inputShape:u}=s,d=E.computeConv2DInfo(u,a.shape,o,i,l,c,!0),p=new ZQ(d);return n.runWebGLProgram(p,[r,a],"float32")}var eee={kernelName:Kp,backendName:"webgl",kernelFunc:QQ},tee=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function nee(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=w.sizeFromShape(s.shape),o=we({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new tee(a),l=n.runWebGLProgram(i,[o],o.dtype),c=we({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var see={kernelName:Zp,backendName:"webgl",kernelFunc:nee},ree=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:c}=e,{top:u,left:d}=s;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${a});
|
|
const ivec2 pads = ivec2(${u}, ${d});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${o}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${i}; w++) {
|
|
int wIn = wBeg + w * ${c};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function aee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=E.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),u,d=new ree(c);u=n.runWebGLProgram(d,[r,a],"float32");let p=we({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),p}var oee={kernelName:xc,backendName:"webgl",kernelFunc:aee};function iee(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=E.decodeEinsumEquation(r,a.length);E.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=E.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:x}=E.getEinsumPermutation(h,l[g]),y;E.isIdentityPermutation(A)?y=a[g]:(y=Pn({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(y));let b=y.shape.slice();for(let v=0;v<x.length;++v)b.splice(x[v],0,1);w.arraysEqual(y.shape,b)||(y=we({inputs:{x:y},backend:n,attrs:{shape:b}}),f.push(y)),p===null?p=y:(p=U2({inputs:{a:y,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=v0({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var lee={kernelName:Qp,backendName:"webgl",kernelFunc:iee},uee="return (x >= 0.0) ? x : (exp(x) - 1.0);",cee=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,dee=nt({opSnippet:uee,packedOpSnippet:cee}),pee={kernelName:uo,backendName:"webgl",kernelFunc:dee},hee="return (b >= 1.0) ? a : a * (b + 1.0);",fee=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,mee=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Md(fee,s.shape,r.shape):new Pu(hee,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},gee={kernelName:eh,backendName:"webgl",kernelFunc:mee},Aee=`
|
|
return vec4(equal(a, b));
|
|
`,yee="return float(a == b);",xee=xn({opSnippet:yee,packedOpSnippet:Aee,dtype:"bool",cpuKernelImpl:nZ}),bee={kernelName:ul,backendName:"webgl",kernelFunc:xee},vee=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${E.ERF_P};
|
|
float a1 = ${E.ERF_A1};
|
|
float a2 = ${E.ERF_A2};
|
|
float a3 = ${E.ERF_A3};
|
|
float a4 = ${E.ERF_A4};
|
|
float a5 = ${E.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,wee=nt({opSnippet:vee}),kee={kernelName:ll,backendName:"webgl",kernelFunc:wee},Nk="return exp(x);",Ek=nt({opSnippet:Nk,packedOpSnippet:Nk,cpuKernelImpl:sZ,dtype:"float32"}),Iee={kernelName:co,backendName:"webgl",kernelFunc:Ek};function q2(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(w.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),we({inputs:{x:a},backend:s,attrs:{shape:i}})}var See={kernelName:cl,backendName:"webgl",kernelFunc:q2},Rk="return exp(x) - 1.0;",Cee=nt({opSnippet:Rk,packedOpSnippet:Rk,cpuKernelImpl:rZ}),Tee={kernelName:dl,backendName:"webgl",kernelFunc:Cee},Dk=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${o}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${s});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function _k(e,t,n){let s=n.texData.get(e.dataId),r=w.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=we({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,c=new Dk("real",l,t),u=new Dk("imag",l,t),d=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],p=n.runWebGLProgram(c,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=Fa({inputs:{real:p,imag:h},backend:n});n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h);let m=we({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function Nee(e){let{inputs:t,backend:n}=e,{input:s}=t;return _k(s,!1,n)}var Eee={kernelName:th,backendName:"webgl",kernelFunc:Nee},Ree=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function Bd(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||w.inferDtype(r),a==="string"){let o=w.getArrayFromDType(a,w.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new Ree(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var Dee={kernelName:bc,backendName:"webgl",kernelFunc:Bd},_ee=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Fee={kernelName:pl,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new _ee(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},Fk="return floor(x);",$ee=nt({opSnippet:Fk,packedOpSnippet:Fk,cpuKernelImpl:aZ}),Oee={kernelName:po,backendName:"webgl",kernelFunc:$ee},Pee=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,Mee=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,zee=xn({opSnippet:Pee,packedOpSnippet:Mee,dtype:"int32"}),Lee={kernelName:ho,backendName:"webgl",kernelFunc:zee},Bee=class{constructor(e){this.variableNames=["A"];let t=$n(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},Wee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=$n(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},Vee={kernelName:wh,backendName:"webgl",kernelFunc:Uee},Lu;function Uee(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],u=[c,l],d=[c,l,a];(i||o)&&(Lu==null&&(Lu=document.createElement("canvas").getContext("2d")),Lu.canvas.width=l,Lu.canvas.height=c,Lu.drawImage(r,0,0,l,c),r=Lu.canvas);let p=n.makeTensorInfo(u,"int32");n.texData.get(p.dataId).usage=Is.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),r);let h=Y().getBool("WEBGL_PACK")?new Wee(d):new Bee(d),f=n.runWebGLProgram(h,[p],"int32");return n.disposeData(p.dataId),f}function Gee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=E.convertConv2DDataFormat(u),g=E.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!1,m),A,x=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))A=vk({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(Y().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)A=wk({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,v=i!=null,S=h==="leakyrelu",T=h?x0(h,!1):null,D=new bk(g,b,T,v,S),F=[r,a];if(o&&F.push(o),i&&F.push(i),S){let P=n.makeTensorInfo([],"float32",w.createScalarValue(f,"float32"));F.push(P),x.push(P)}A=n.runWebGLProgram(D,F,"float32")}let y=we({inputs:{x:A},backend:n,attrs:{shape:g.outShape}});return x.push(A),x.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var Hee={kernelName:Xo,backendName:"webgl",kernelFunc:Gee};function jee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:d,activation:p,leakyreluAlpha:h}=s,f=[],m=u;m==null&&(m=[1,1]),w.assert(E.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=E.computeConv2DInfo(r.shape,a.shape,l,m,c,d,!0),A=Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,x=p?x0(p,A):null,y=[r,a],b=o!=null,v=i!=null,S=p==="leakyrelu";if(b&&y.push(o),v&&y.push(i),S){let P=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));y.push(P),f.push(P)}let T;A?T=new Tk(g,b,x,v,S):T=new Ck(g,b,x,v,S);let D=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],F=n.runWebGLProgram(T,y,"float32",D);return f.forEach(P=>n.disposeIntermediateTensorInfo(P)),F}var qee={kernelName:Ko,backendName:"webgl",kernelFunc:jee},Xee=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=At(t.length),r=At(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${s} strides = ${s}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${a};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function Kee(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=w.sizeFromShape(s.shape),[l,c,u,d]=E.prepareAndValidate(s,r),p=we({inputs:{x:r},backend:n,attrs:{shape:[c,o]}}),h=we({inputs:{x:s},backend:n,attrs:{shape:[w.sizeFromShape(s.shape)/u,u]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let A=n.readSync(r.dataId),x=n.bufferSync(s),y=oZ(A,x,s.dtype,c,o,u,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,y.values)}let f=new Xee(o,d,[c,u]),m=n.runWebGLProgram(f,[h,p],h.dtype),g=we({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var Zee={kernelName:fl,backendName:"webgl",kernelFunc:Kee},Yee=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=At(this.rank),s=Jee(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function Jee(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("int(getIndices(resRC.x, resRC.z))"):s.push(`${n[r]}`);return s.join()}function $k(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=w.parseAxisParam(o,r.shape)[0],c=n.readSync(a.dataId),u=r.shape[l];for(let b=0;b<c.length;++b){let v=c[b];w.assert(v<=u-1&&v>=0,()=>`GatherV2: the index value ${v} is not in [0, ${u-1}]`)}let d=E.segment_util.collectGatherOpShapeInfo(r,a,l,i),p=w.sizeFromShape(a.shape),h=[],f=we({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),m=we({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,p/d.batchSize]}});h.push(f),h.push(m);let g=[d.batchSize,d.outerSize,p/d.batchSize,d.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let b=n.bufferSync(m),v=n.bufferSync(f),S=iZ(v,b,g);return h.forEach(T=>n.disposeIntermediateTensorInfo(T)),n.makeTensorInfo(d.outputShape,S.dtype,S.values)}let A=new Yee(f.shape,g),x=n.runWebGLProgram(A,[f,m],f.dtype);h.push(x);let y=we({inputs:{x},backend:n,attrs:{shape:d.outputShape}});return h.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var Qee={kernelName:hl,backendName:"webgl",kernelFunc:$k},ete="return float(a > b);",tte=`
|
|
return vec4(greaterThan(a, b));
|
|
`,nte=xn({opSnippet:ete,packedOpSnippet:tte,cpuKernelImpl:lZ,dtype:"bool"}),ste={kernelName:ml,backendName:"webgl",kernelFunc:nte},rte="return float(a >= b);",ate=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,ote=xn({opSnippet:rte,packedOpSnippet:ate,dtype:"bool",cpuKernelImpl:uZ}),ite={kernelName:mo,backendName:"webgl",kernelFunc:ote};function lte(e){let{inputs:t,backend:n}=e,{input:s}=t;return _k(s,!0,n)}var ute={kernelName:nh,backendName:"webgl",kernelFunc:lte},cte="return float(!isnan(x) && !isinf(x));",dte=nt({opSnippet:cte,dtype:"bool"}),pte={kernelName:gl,backendName:"webgl",kernelFunc:dte},hte="return float(isinf(x));",fte=nt({opSnippet:hte,dtype:"bool"}),mte={kernelName:Al,backendName:"webgl",kernelFunc:fte},gte="return float(isnan(x));",Ate=nt({opSnippet:gte,dtype:"bool"}),yte={kernelName:yl,backendName:"webgl",kernelFunc:Ate},xte="return float(a < b);",bte=`
|
|
return vec4(lessThan(a, b));
|
|
`,vte=xn({opSnippet:xte,packedOpSnippet:bte,cpuKernelImpl:cZ,dtype:"bool"}),wte={kernelName:xl,backendName:"webgl",kernelFunc:vte},kte="return float(a <= b);",Ite=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,Ste=xn({opSnippet:kte,packedOpSnippet:Ite,cpuKernelImpl:dZ,dtype:"bool"}),Cte={kernelName:bl,backendName:"webgl",kernelFunc:Ste};function Tte(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=pZ(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var Nte={kernelName:rh,backendName:"webgl",kernelFunc:Tte},Ete=`if (x < 0.0) return NAN;
|
|
return log(x);`,Rte=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,Dte=nt({opSnippet:Ete,packedOpSnippet:Rte,cpuKernelImpl:hZ}),_te={kernelName:yo,backendName:"webgl",kernelFunc:Dte},Fte="return log(1.0 + x);",$te=nt({opSnippet:Fte}),Ote={kernelName:vl,backendName:"webgl",kernelFunc:$te},Pte="return float(a >= 1.0 && b >= 1.0);",Mte=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,zte=xn({opSnippet:Pte,packedOpSnippet:Mte,dtype:"bool"}),Lte={kernelName:wl,backendName:"webgl",kernelFunc:zte},Bte="return float(!(x >= 1.0));",Wte=nt({opSnippet:Bte}),Vte={kernelName:vc,backendName:"webgl",kernelFunc:Wte},Ute="return float(a >= 1.0 || b >= 1.0);",Gte=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,Hte=xn({opSnippet:Ute,packedOpSnippet:Gte,dtype:"bool"}),jte={kernelName:wc,backendName:"webgl",kernelFunc:Hte},qte=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${o}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${i};
|
|
setOutput(val);
|
|
}
|
|
`}},Xte=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${i};
|
|
setOutput(result);
|
|
}
|
|
`}},Kte=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,c=Y().getBool("WEBGL_PACK_NORMALIZATION")?new Xte(r.shape,a,o,i,l):new qte(r.shape,a,o,i,l);return n.runWebGLProgram(c,[r],r.dtype)},Zte={kernelName:kc,backendName:"webgl",kernelFunc:Kte},Yte=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${s}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${s})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},Jte=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:c,beta:u}=s,d=new Yte(r.shape,i,l,c,u);return n.runWebGLProgram(d,[r,a,o],r.dtype)},Qte={kernelName:ah,backendName:"webgl",kernelFunc:Jte};function ene(e,t,n,s){let r=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/r,i=we({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Ni(i,e.dtype,"max",s),c=we({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}function Ok(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=u!=null,p=n.shouldExecuteOnCPU([r]),h=r;if(d){if(p){let y=n.texData.get(h.dataId).values,b=new Array(i);for(let T=0;T<b.length;T++)b[T]=r.shape[u[T]];let v=V2(y,r.shape,r.dtype,u,b);h=n.makeTensorInfo(b,r.dtype);let S=n.texData.get(h.dataId);S.values=v}else h=b0(r,u,n);c=E.getInnerMostAxes(c.length,i)}E.assertAxesAreInnerMostDims("max",c,i);let[f,m]=E.computeOutAndReduceShapes(h.shape,c),g=f;o&&(g=E.expandShapeToKeepDim(f,l));let A;if(p){let y=n.texData.get(h.dataId).values,b=fZ(y,w.sizeFromShape(m),g,r.dtype);A=n.makeTensorInfo(g,r.dtype);let v=n.texData.get(A.dataId);v.values=b}else A=ene(h,m,g,n);return d&&n.disposeIntermediateTensorInfo(h),A}var tne={kernelName:xo,backendName:"webgl",kernelFunc:Ok},nne=Q4+`
|
|
return max(a, b);
|
|
`,sne=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+y0+`
|
|
return result;
|
|
`,rne=xn({opSnippet:nne,packedOpSnippet:sne,cpuKernelImpl:mZ}),ane={kernelName:bo,backendName:"webgl",kernelFunc:rne};function one(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Eu(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;w.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))return ds({inputs:{x:r},backend:n});let d=new zd(u,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var ine={kernelName:vo,backendName:"webgl",kernelFunc:one};function lne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:c}=s,u=[1,1,1],d=E.computePool3DInfo(r.shape,a,o,u,i,c,l),p=new G2(d,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var une={kernelName:Ic,backendName:"webgl",kernelFunc:lne},cne=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},dne=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=i-1-e.padInfo.front,d=l-1-e.padInfo.top,p=c-1-e.padInfo.left,h=i*l*c-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${u}, ${d}, ${p});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${i};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${c} +
|
|
wR * ${c} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function pne(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=E.computePool3DInfo(o.shape,i,l,d,c,u),h=new G2(p,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new dne(p),g=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var hne={kernelName:ih,backendName:"webgl",kernelFunc:pne};function fne(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Eu([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=E.computePool2DInfo(i.shape,l,c,1,u,d),h=!0,f=new zd(p,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new cne(p),A=n.runWebGLProgram(g,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),A}var mne={kernelName:oh,backendName:"webgl",kernelFunc:fne};function gne(e,t,n,s){let r=new zd(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new zd(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var Ane={kernelName:lh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;w.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let c=[1,1];w.assert(E.eitherStridesOrDilationsAreOne(a,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let u=E.computePool2DInfo(s.shape,r,a,c,o),[d,p]=gne(s,i,u,l);return[d,p]}};function yne(e,t,n,s){let r=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/r,i=we({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Ni(i,"float32","mean",s),c=we({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}var xne={kernelName:wo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=w.parseAxisParam(a,s.shape),c=l,u=E.getAxesPermutation(c,i),d=u!=null,p=o.shouldExecuteOnCPU([s]),h=[],f=s;if(d){if(p){let b=o.texData.get(f.dataId).values,v=new Array(i);for(let D=0;D<v.length;D++)v[D]=s.shape[u[D]];let S=V2(b,s.shape,s.dtype,u,v);f=o.makeTensorInfo(v,s.dtype);let T=o.texData.get(f.dataId);T.values=S}else f=b0(s,u,o);h.push(f),c=E.getInnerMostAxes(c.length,i)}E.assertAxesAreInnerMostDims("sum",c,i);let[m,g]=E.computeOutAndReduceShapes(f.shape,c),A=m;r&&(A=E.expandShapeToKeepDim(m,l));let x=yne(f,g,A,o);for(let y of h)o.disposeIntermediateTensorInfo(y);return x}};function bne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=r;u!=null&&(d=Pn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,r.shape.length)),E.assertAxesAreInnerMostDims("min",c,i);let[p,h]=E.computeOutAndReduceShapes(d.shape,c),f=w.sizeFromShape(h),m=we({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Ni(m,m.dtype,"min",n),A;if(o){let x=E.expandShapeToKeepDim(p,l);A=we({inputs:{x:g},backend:n,attrs:{shape:x}})}else A=we({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var vne={kernelName:ko,backendName:"webgl",kernelFunc:bne},wne=Q4+`
|
|
return min(a, b);
|
|
`,kne=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+y0+`
|
|
return result;
|
|
`,Ine=xn({opSnippet:wne,packedOpSnippet:kne,cpuKernelImpl:gZ}),Sne={kernelName:Io,backendName:"webgl",kernelFunc:Ine},Cne=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let s=e.length,r=At(s),a=t.map(c=>c[0]).join(","),o=t.map((c,u)=>c[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${s}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}},Tne=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=At(s),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=On("rc",s),l=On("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,p="";if(s===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${d};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${d};
|
|
}
|
|
source -= start;
|
|
`;p=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${u});
|
|
${i[s-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${d}) +
|
|
gte * ((end - 1) * 2 - source + ${d});
|
|
source -= start;
|
|
`;p=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${u});
|
|
${i[s-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${u});
|
|
${i[s-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},Nne=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Tne(s.shape,r,a):new Cne(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},Ene={kernelName:So,backendName:"webgl",kernelFunc:Nne},Rne=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,Dne=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+y0+`
|
|
return result;
|
|
`,_ne=xn({opSnippet:Rne,packedOpSnippet:Dne}),Fne={kernelName:kl,backendName:"webgl",kernelFunc:_ne},$ne=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},One=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,Pne=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,Pk=xn({opSnippet:One,packedOpSnippet:Pne,checkOutOfBounds:!0}),Mne={kernelName:lo,backendName:"webgl",kernelFunc:Pk},Mk="return a - b;",zk=xn({opSnippet:Mk,packedOpSnippet:Mk,supportsComplex:!0,cpuKernelImpl:_Z}),zne={kernelName:Uo,backendName:"webgl",kernelFunc:zk};function Lk(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=w.parseAxisParam([a],r.shape),i=Ok({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=E.expandShapeToKeepDim(i.shape,o),c=we({inputs:{x:i},backend:n,attrs:{shape:l}}),u=zk({inputs:{a:r,b:c},backend:n}),d=Ek({inputs:{x:u},backend:n}),p=v0({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=we({inputs:{x:p},backend:n,attrs:{shape:l}}),f=Pk({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}var Lne={kernelName:Wo,backendName:"webgl",kernelFunc:Lk};function Bne(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:Lk({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),c=l.shape[0],u=l.shape[1],d=new $ne(c,u,a),p=[[o]],h=n.runWebGLProgram(d,[l],"int32",p);return i||n.disposeIntermediateTensorInfo(l),h}var Wne={kernelName:uh,backendName:"webgl",kernelFunc:Bne},Bk="return -x;";function Vne(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=yZ(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new $u(s.shape,Bk):r=new _a(s.shape,Bk),n.runWebGLProgram(r,[s],s.dtype)}var Une={kernelName:Il,backendName:"webgl",kernelFunc:Vne},Gne=br.nonMaxSuppressionV3Impl;function Hne(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,c=n.readSync(r.dataId),u=n.readSync(a.dataId),{selectedIndices:d}=Gne(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var jne={kernelName:Cl,backendName:"webgl",kernelFunc:Hne},qne=br.nonMaxSuppressionV4Impl;function Xne(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),{selectedIndices:p,validOutputs:h}=qne(u,d,o,i,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Kne={kernelName:Tl,backendName:"webgl",kernelFunc:Xne},Zne=br.nonMaxSuppressionV5Impl;function Yne(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=Zne(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var Jne={kernelName:Nl,backendName:"webgl",kernelFunc:Yne},Qne=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${s}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},ese=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=w.sizeFromShape(r.shape),c=new Qne(l,a,o,i),u=we({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(c,[u],r.dtype);n.disposeIntermediateTensorInfo(u);let p=[...r.shape,a],h=we({inputs:{x:d},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(d),h},tse={kernelName:To,backendName:"webgl",kernelFunc:ese};function C0(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Ld({inputs:{input:s},backend:n}),a=C0({inputs:{x:r},backend:n}),o=S0({inputs:{input:s},backend:n}),i=C0({inputs:{x:o},backend:n}),l=Fa({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Bd({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var nse={kernelName:ql,backendName:"webgl",kernelFunc:C0};function Wk(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Ld({inputs:{input:s},backend:n}),a=Wk({inputs:{x:r},backend:n}),o=S0({inputs:{input:s},backend:n}),i=C0({inputs:{x:o},backend:n}),l=Fa({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Bd({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var sse={kernelName:El,backendName:"webgl",kernelFunc:Wk};function rse(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return q2({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=q2({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=xk({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var ase={kernelName:Rl,backendName:"webgl",kernelFunc:rse},ose=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let s=e.length,r=At(s),a=t.map(l=>l[0]).join(","),o=t.map((l,c)=>l[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
}
|
|
`}},ise=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=At(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=On("rc",s),l=On("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
|
|
if(${c}) {
|
|
`,s===1?"":`}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
|
|
if(${c}) {`],p=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f<m;f++)h+=`
|
|
${d[f]}
|
|
if (${p}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
`;h+=s===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},Vk=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(w.sizeFromShape(r.shape)===0){let c=a.map((u,d)=>u[0]+r.shape[d]+u[1]);return Bd({backend:n,attrs:{shape:c,value:o,dtype:r.dtype}})}let i=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new ise(r.shape,a,o):new ose(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},lse={kernelName:No,backendName:"webgl",kernelFunc:Vk},use=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,cse=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+y0+`
|
|
return result;
|
|
`,dse=xn({opSnippet:use,packedOpSnippet:cse}),pse={kernelName:Eo,backendName:"webgl",kernelFunc:dse};function hse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],c=w.parseAxisParam(a,r.shape),u=c,d=E.getAxesPermutation(u,i),p=r;d!=null&&(p=Pn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=E.getInnerMostAxes(u.length,i),l.push(p)),E.assertAxesAreInnerMostDims("prod",u,i);let h;if(n.shouldExecuteOnCPU([p])){let f=n.texData.get(p.dataId).values,{outVals:m,outShape:g,outDtype:A}=bZ(p.shape,p.dtype,f,u);h=n.makeTensorInfo(g,A,m)}else{let[f,m]=E.computeOutAndReduceShapes(p.shape,u),g=w.sizeFromShape(m),A=we({inputs:{x:p},backend:n,attrs:{shape:[-1,g]}}),x=Nh(r.dtype),y=Ni(A,x,"prod",n);h=we({inputs:{x:y},backend:n,attrs:{shape:f}}),l.push(A),l.push(y)}if(o){l.push(h);let f=E.expandShapeToKeepDim(h.shape,c);h=we({inputs:{x:h},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var fse={kernelName:Dl,backendName:"webgl",kernelFunc:hse},Uk=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=vZ(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},mse={kernelName:Sc,backendName:"webgl",kernelFunc:Uk},gse="return 1.0 / x;",Ase=nt({opSnippet:gse}),yse={kernelName:_l,backendName:"webgl",kernelFunc:Ase},xse=or+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,bse=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,vse=nt({opSnippet:xse,packedOpSnippet:bse}),wse={kernelName:Do,backendName:"webgl",kernelFunc:vse},kse=or+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Ise=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Sse=nt({opSnippet:kse,packedOpSnippet:Ise}),Cse={kernelName:Fo,backendName:"webgl",kernelFunc:Sse},Tse=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Nse=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]},
|
|
${c[1]/u[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Ese(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=Y().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Nse(r.shape,l,c,a,o):new Tse(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],"float32")}var Rse={kernelName:_o,backendName:"webgl",kernelFunc:Ese},Dse=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function _se(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Dse(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Fse={kernelName:ph,backendName:"webgl",kernelFunc:_se},$se=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Ose=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]},
|
|
${c[1]/u[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Pse(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=Y().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Ose(r.shape,l,c,a,o):new $se(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],r.dtype)}var Mse={kernelName:Cc,backendName:"webgl",kernelFunc:Pse},zse=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${i[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${i[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Lse(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new zse(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Bse={kernelName:dh,backendName:"webgl",kernelFunc:Lse},Wse=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=At(n);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},Vse=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=On("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=At(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${i(s.slice())};
|
|
if(${r}){
|
|
result.g = ${l(s.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${c(s.slice())};
|
|
if(${r}) {
|
|
result.a = ${u(s.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function i(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function c(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let f=e.map((A,x)=>p(x,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function p(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function Use(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=w.parseAxisParam(a,r.shape);if(o===0)return ds({inputs:{x:r},backend:n});let l=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Vse(r.shape,i):new Wse(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var Gse={kernelName:$o,backendName:"webgl",kernelFunc:Use},Hse=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},jse={kernelName:Xl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Hse(s.shape,a),[c,u]=E.getImageCenter(o,s.shape[1],s.shape[2]),d=[[c,u,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,d)}},qse=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,Xse=nt({opSnippet:qse}),Kse={kernelName:Oo,backendName:"webgl",kernelFunc:Xse},Zse="return inversesqrt(x);",Yse=nt({opSnippet:Zse,cpuKernelImpl:wZ}),Jse={kernelName:Po,backendName:"webgl",kernelFunc:Yse},Gk=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=At(r.length),l=At(a.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,d="";s===1?d="i":s===2&&(d="i, coords[1]");let p=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${i} strides = ${i}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${u});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${p};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function Qse(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=E.calculateShapes(a,r,o),p=[d/c,c];if(d===0)return n.makeTensorInfo(o,r.dtype);let h=we({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=we({inputs:{x:a},backend:n,attrs:{shape:[l,c]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new Gk(l,i,h.shape.length,f.shape.length,u,p),A=n.runWebGLProgram(g,[f,h,m],f.dtype),x=we({inputs:{x:A},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(m),x}var ere={kernelName:$l,backendName:"webgl",kernelFunc:Qse},tre=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let c=0;c<t.length;c++)l.push(`${o[c]}`),c<e&&i.push(`${o[c]}`);s=i.join(),r=l.join()}let a=At(n);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${s});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function nre(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new tre(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],$s(r.dtype,a.dtype))}var sre={kernelName:Ol,backendName:"webgl",kernelFunc:nre},rre=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${E.SELU_SCALEALPHA};
|
|
float scale = ${E.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,are=nt({opSnippet:rre}),ore={kernelName:Pl,backendName:"webgl",kernelFunc:are},Hk="return 1.0 / (1.0 + exp(-1.0 * x));",ire=nt({opSnippet:Hk,packedOpSnippet:Hk,cpuKernelImpl:kZ}),lre={kernelName:zo,backendName:"webgl",kernelFunc:ire},ure=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,cre=nt({opSnippet:ure}),dre={kernelName:Ll,backendName:"webgl",kernelFunc:cre},pre=rk+`
|
|
return sin(x);
|
|
`,hre=nt({opSnippet:pre}),fre={kernelName:Mo,backendName:"webgl",kernelFunc:hre},mre=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,gre=nt({opSnippet:mre}),Are={kernelName:zl,backendName:"webgl",kernelFunc:gre},yre=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,xre=nt({opSnippet:yre}),bre={kernelName:Bl,backendName:"webgl",kernelFunc:xre},vre=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((A,x)=>A*x),l=[[0,0]];l.push(...o);for(let A=1+a.length;A<r.shape.length;++A)l.push([0,0]);let c=[],u=Vk({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=E.getReshaped(u.shape,a,i,!1),p=E.getPermuted(d.length,a.length,!1),h=E.getReshapedPermuted(u.shape,a,i,!1),f=we({inputs:{x:u},backend:n,attrs:{shape:d}}),m=Pn({inputs:{x:f},backend:n,attrs:{perm:p}}),g=we({inputs:{x:m},backend:n,attrs:{shape:h}});return c.push(u),c.push(f),c.push(m),c.forEach(A=>n.disposeIntermediateTensorInfo(A)),g},wre={kernelName:Wl,backendName:"webgl",kernelFunc:vre};function kre(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=n.readSync(o.dataId)[0],[d,p,h,f,m]=SZ(i,s.shape,s.dtype,l,r.dtype,c,u);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var Ire={kernelName:hh,backendName:"webgl",kernelFunc:kre};function Sre(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[c,u,d]=CZ(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var Cre={kernelName:fh,backendName:"webgl",kernelFunc:Sre};function Tre(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=H4(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var Nre={kernelName:mh,backendName:"webgl",kernelFunc:Tre};function Ere(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=H4(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var Rre={kernelName:gh,backendName:"webgl",kernelFunc:Ere};function Dre(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,strides:u,outputSize:d}=E.calculateShapes(a,r,i),p=!1,h=new Gk(c,l,r.shape.length,a.shape.length,u,[d,1],p),f=n.runWebGLProgram(h,[a,r,o],a.dtype),m=we({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var _re={kernelName:Ah,backendName:"webgl",kernelFunc:Dre};function Fre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=w.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=r.shape.length,u=new Array(c).fill(0),d=r.shape.slice();return l.map(p=>{let h=[...d];h[i]=p;let f=Mu({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=p,f})}var $re={kernelName:Vl,backendName:"webgl",kernelFunc:Fre},jk="return sqrt(x);",Ore=nt({opSnippet:jk,packedOpSnippet:jk,cpuKernelImpl:TZ}),Pre={kernelName:Lo,backendName:"webgl",kernelFunc:Ore},Mre="return x * x;",zre=nt({opSnippet:Mre}),Lre={kernelName:Tc,backendName:"webgl",kernelFunc:zre},qk="return (a - b) * (a - b);",Bre=xn({opSnippet:qk,packedOpSnippet:qk}),Wre={kernelName:Vo,backendName:"webgl",kernelFunc:Bre};function Vre({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=or+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,a=new _a(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var Ure={kernelName:ca,backendName:"webgl",kernelFunc:Vre},Gre=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=At(n.length),a=At(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,c)=>(i++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${i-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}};function Hre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:A,begin:x,end:y,strides:b}=Yt.sliceInfo(r.shape,a,o,i,l,c,u,d,p),v;if(m)v=we({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||A){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=Yt.computeOutShape(x,y,b),D=Mu({inputs:{x:r},backend:n,attrs:{begin:x,size:T}});v=we({inputs:{x:D},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(D)}else if(n.shouldExecuteOnCPU([r])){let D=n.readSync(r.dataId),F=He(r.shape,r.dtype,D),P=NZ(h,F,b,x);v=n.makeTensorInfo(f,r.dtype,P.values)}else{let D=new Gre(x,b,h);v=n.runWebGLProgram(D,[r],r.dtype)}let S=we({inputs:{x:v},backend:n,attrs:{shape:f}});return n.disposeIntermediateTensorInfo(v),S}var jre={kernelName:Ul,backendName:"webgl",kernelFunc:Hre};function qre(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.readSync(u.dataId),h=n.readSync(d.dataId),[f,m]=EZ(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Xre={kernelName:yh,backendName:"webgl",kernelFunc:qre};function Kre(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[c,u,d]=RZ(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Zre={kernelName:xh,backendName:"webgl",kernelFunc:Kre};function Yre(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=DZ(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var Jre={kernelName:bh,backendName:"webgl",kernelFunc:Yre},Qre="return tan(x);",eae=nt({opSnippet:Qre}),tae={kernelName:Go,backendName:"webgl",kernelFunc:eae},nae=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,sae=nt({opSnippet:nae}),rae={kernelName:Ho,backendName:"webgl",kernelFunc:sae},aae=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=At(this.rank),r=oae(e);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function oae(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function Xk(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),c=r.dtype==="string"?l.map(p=>w.decodeString(p)):l,u=He(r.shape,r.dtype,c),d=FZ(u,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new aae(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var iae={kernelName:ua,backendName:"webgl",kernelFunc:Xk},lae=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},uae=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function Ei(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function Kk(e){let t=1;for(;t<e;)t*=2;return t}function cae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=Y().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=Y().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),c=r.shape,u=c[c.length-1];if(n.shouldExecuteOnCPU([r])||u<i||a>l){let P=n.readSync(r.dataId),[_,$]=$Z(P,c,r.dtype,a,o);return[n.makeTensorInfo(_.shape,_.dtype,_.values),n.makeTensorInfo($.shape,$.dtype,$.values)]}if(a===0)return c[c.length-1]=0,[n.makeTensorInfo(c,r.dtype,[]),n.makeTensorInfo(c,"int32",[])];if(u===1)return[r,Bd({attrs:{shape:c,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),p=d!==null&&d.isPacked,h=p?n.unpackTensor(r):r,m=w.sizeFromShape(c)/u,g=we({inputs:{x:h},attrs:{shape:[m,u]},backend:n});p&&Ei(n,h);let A=Kk(a),x=Kk(u),y=null,b=()=>y===null?[g,g]:[g,y],v=(P,_,$)=>{let C=b(),M=new lae($),j=[[u],[y===null?1:0],[Number.NEGATIVE_INFINITY],[P],[_]],q=y;y=n.runWebGLProgram(M,C,"int32",j),Ei(n,q)};for(let P=1;P<A;P*=2){let _=P*2;for(let $=P;$>=1;$/=2)v(_,$,[m,x])}for(let P=x;P>A;P/=2){let _=b(),$=new uae([m,P/2]),M=[[u],[y===null?1:0],[A]],U=y;y=n.runWebGLProgram($,_,"int32",M),Ei(n,U);let j=A/2,q=j*2;for(let X=j;X>=1;X/=2)v(q,X,y.shape)}let S=y;y=Mu({inputs:{x:y},backend:n,attrs:{begin:0,size:[m,a]}}),Ei(n,S);let T=$k({inputs:{x:g,indices:y},backend:n,attrs:{axis:1,batchDims:1}});Ei(n,g);let D=c.slice(0,-1);D.push(a),S=y,y=we({inputs:{x:y},attrs:{shape:D},backend:n}),Ei(n,S);let F=T;return T=we({inputs:{x:T},attrs:{shape:D},backend:n}),Ei(n,F),[T,y]}var dae={kernelName:Gl,backendName:"webgl",kernelFunc:cae},pae=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${i} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${o} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function hae(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c??[d,p],g=[u,f,m,h],A=new pae(d,p,o,i,l,g);return n.runWebGLProgram(A,[r,a],"float32")}var fae={kernelName:Hl,backendName:"webgl",kernelFunc:hae};function mae(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Eu(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:c}=OZ(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([c.length],"int32",c)]}var gae={kernelName:vh,backendName:"webgl",kernelFunc:mae};function Aae(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],c=new Array(i-1),u=0;for(let m=0;m<i;m++)m!==a&&(c[u++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[a]=m;let g=Mu({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),A=we({inputs:{x:g},backend:n,attrs:{shape:c}});f[m]=A,d.push(g)}return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var yae={kernelName:jl,backendName:"webgl",kernelFunc:Aae},xae=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,d=`
|
|
sumValue += dot(values, segFilter);
|
|
`,p="";r%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${u===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function bae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],c=0,u=E.getAxesPermutation([c],i),d=r;u!=null&&(d=Pn({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(d),c=E.getInnerMostAxes(1,i)[0]);let p=E.segment_util.computeOutShape(d.shape,c,o),h=w.sizeFromShape([d.shape[c]]),f=we({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(f);let m=Nh(r.dtype),g=(b,v,S,T,D)=>{let F=b.shape[0],P=b.shape[1],_=E.segment_util.segOpComputeOptimalWindowSize(P,D),$={windowSize:_,inSize:P,batchSize:F,numSegments:D},C=new xae($,v),M=n.compileAndRun(C,[b,S],T);if(l.push(M),M.shape[1]===D)return M;let U=Uk({backend:n,attrs:{start:0,stop:D,step:1,dtype:"float32"}}),j=Xk({inputs:{x:U},backend:n,attrs:{reps:[P/_]}});return l.push(U),l.push(j),g(M,v,j,T,D)},A=g(f,"unsortedSegmentSum",a,m,o),x=we({inputs:{x:A},backend:n,attrs:{shape:p}}),y=x;if(u!=null){l.push(x);let b=E.getUndoAxesPermutation(u);y=Pn({inputs:{x:y},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var vae={kernelName:Nc,backendName:"webgl",kernelFunc:bae},wae=[Zte,Qte,$Y,PY,LY,VY,GY,qY,KY,YY,tJ,sJ,oJ,uJ,gJ,pJ,xJ,kJ,vJ,TJ,EJ,DJ,OJ,VJ,GJ,jJ,JJ,eQ,rQ,iQ,mY,pQ,wQ,IQ,gQ,NQ,RQ,CQ,FQ,PQ,LQ,WQ,UQ,jQ,JQ,eee,XQ,see,oee,lee,pee,gee,bee,kee,Iee,See,Tee,Eee,Dee,Fee,Oee,Lee,Vee,Hee,qee,Zee,Qee,ste,ite,fY,ute,cQ,pte,mte,yte,AY,wte,Cte,Nte,Ote,_te,Lte,Vte,jte,tne,une,ine,hne,mne,Ane,ane,xne,vne,Sne,Ene,Fne,Wne,wY,Une,jne,Kne,Jne,XJ,tse,sse,ase,lse,pse,xY,fse,mse,KJ,Mne,yse,Cse,wse,IY,Rse,Fse,Mse,Bse,Gse,jse,Kse,Jse,ere,sre,ore,lre,dre,fre,Are,BJ,Lne,bre,wre,Ire,Cre,Nre,Rre,_re,$re,Pre,Lre,Wre,Ure,jre,Xre,Zre,Jre,zne,DY,tae,rae,iae,dae,fae,_Y,gae,yae,vae,nse];for(let e of wae)da(e);var qt;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(qt||(qt={}));var Wd;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(Wd||(Wd={}));var Zk;function kae(e){Zk=e.wasm.cwrap(qo,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Iae(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s,p=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let D=n.dataIdMap.get(o.dataId);if(D.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${D.shape.length}.`);f=D.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=Wd[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let A=l?r.shape[2]:r.shape[1],x=c?a.shape[1]:a.shape[2],y=r.shape[0],b=n.makeOutput([y,A,x],r.dtype),v=n.dataIdMap.get(b.dataId).id,S=new Uint8Array(new Int32Array(r.shape).buffer),T=new Uint8Array(new Int32Array(a.shape).buffer);return Zk(p,S,r.shape.length,h,T,a.shape.length,l,c,g,f,m,d||0,v),b}var Sae={kernelName:qo,backendName:"wasm",setupFunc:kae,kernelFunc:Iae};function bn(e,t){let n;function s(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function r(a){let{backend:o,inputs:{x:i}}=a,l=o.dataIdMap.get(i.dataId).id,c=o.makeOutput(i.shape,t||i.dtype),u=o.dataIdMap.get(c.dataId).id;return w.sizeFromShape(c.shape)===0||n(l,qt[i.dtype],u),c}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:r}}var Cae=bn(Xi);function Mn(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:c,b:u}=l,d=i.dataIdMap.get(c.dataId).id,p=i.dataIdMap.get(u.dataId).id,h=n??c.dtype,f=E.assertAndGetBroadcastShape(c.shape,u.shape),m=i.makeOutput(f,h);if(w.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(c.shape).buffer),A=new Uint8Array(new Int32Array(u.shape).buffer),x=i.dataIdMap.get(m.dataId).id,y=()=>s(d,g,c.shape.length,p,A,u.shape.length,qt[c.dtype],x);if(t&&c.dtype==="float32")return y(),m;let b=E.getBroadcastDims(c.shape,f),v=E.getBroadcastDims(u.shape,f),S=b.every((D,F)=>D===F),T=v.every((D,F)=>D===F);if(S&&T)return y(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var Tae=!0,Nae=Mn(ia,Tae),Yk;function Eae(e){Yk=e.wasm.cwrap(Za,null,["array","number","number","number"])}function Rae(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return Yk(a,r.length,qt[s.dtype],o),s}var Dae={kernelName:Za,backendName:"wasm",setupFunc:Eae,kernelFunc:Rae};function T0(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var _ae={kernelName:go,backendName:"wasm",kernelFunc:T0},Jk;function Fae(e){Jk=e.wasm.cwrap(jo,null,["number","array","number","number","number","array","number"])}function Bu(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=Oae(t.x.shape,s.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=$ae(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let f=T0({inputs:t,backend:n});return f.shape=i,f}let c=n.makeOutput(i,l.dtype),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(c.dataId).id,p=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return Jk(u,h,l.shape.length,qt[l.dtype],d,p,a.length),c}function $ae(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function Oae(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var Pae={kernelName:jo,backendName:"wasm",kernelFunc:Bu,setupFunc:Fae};function $a(e,t,n){let s=e.shape,r=e.shape.length,a=w.parseAxisParam(t,s),o=a,i=E.getAxesPermutation(o,r),l=null,c=!1;if(i!=null){let u=new Array(r);for(let h=0;h<u.length;h++)u[h]=s[i[h]];o=E.getInnerMostAxes(o.length,r),l=Bu({inputs:{x:e},attrs:{perm:i},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(c=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:c}}var Qk;function Mae(e){Qk=e.wasm.cwrap(Yi,null,["number, number, number"])}function zae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=$a(o,r,t);if(h){let y=t.dataIdMap.get(u.dataId).id;c=u,l=y}let f=c.shape.length;E.assertAxesAreInnerMostDims("all",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),A=w.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(w.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;Qk(l,A,y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var Lae={kernelName:Yi,backendName:"wasm",setupFunc:Mae,kernelFunc:zae},e8;function Bae(e){e8=e.wasm.cwrap(Ji,null,["number, number, number"])}function Wae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=$a(o,r,t);if(h){let y=t.dataIdMap.get(u.dataId).id;c=u,l=y}let f=c.shape.length;E.assertAxesAreInnerMostDims("any",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),A=w.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(w.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;e8(l,A,y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var Vae={kernelName:Ji,backendName:"wasm",setupFunc:Bae,kernelFunc:Wae},t8;function Uae(e){t8=e.wasm.cwrap(Ya,null,["number","number","number","number","number"])}function Gae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:c,axes:u,inputWasTransposed:d}=$a(a,r,t);if(d){let A=t.dataIdMap.get(c.dataId).id;A!==o&&(l=c,i=A)}let p=l.shape.slice(0,-1),h=t.makeOutput(p,"int32"),f=t.dataIdMap.get(h.dataId).id,m=w.sizeFromShape(h.shape),g=l.shape[u[0]];return t8(i,qt[l.dtype],m,g,f),d&&t.disposeData(c.dataId),h}var Hae={kernelName:Ya,backendName:"wasm",kernelFunc:Gae,setupFunc:Uae},n8;function jae(e){n8=e.wasm.cwrap(Ja,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function qae(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=n,u=E.computePool2DInfo(r.shape,o,i,1,l,c),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,A=u.strideHeight,x=u.strideWidth,y=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let b=s.makeOutput(u.outShape,"float32"),v=s.dataIdMap.get(b.dataId).id;return n8(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,x,y,v),b}var Xae={kernelName:Ja,backendName:"wasm",setupFunc:jae,kernelFunc:qae};function Yn(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=w.sizeFromShape(s.shape),o=w.inferFromImplicitShape(r,a);return w.assert(a===w.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var Kae={kernelName:Fl,backendName:"wasm",kernelFunc:Yn},s8;function Zae(e){s8=e.wasm.cwrap(Qa,null,["number","array","number","number","array","number","number","number","number"])}function Yae(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),A=w.sizeFromShape(m),x=g===A||g===1||A===1;w.assert(l>=2&&c>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>A?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);w.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,u,p]:[g,p,u],S=i?[A,h,d]:[A,d,h],T=Yn({inputs:{x:r},backend:n,attrs:{shape:v}}),D=Yn({inputs:{x:a},backend:n,attrs:{shape:S}}),F=n.dataIdMap.get(T.dataId).id,P=n.dataIdMap.get(D.dataId).id,_=o?T.shape[2]:T.shape[1],$=i?D.shape[1]:D.shape[2],C=Math.max(g,A),M=n.makeOutput([C,_,$],T.dtype),U=n.dataIdMap.get(M.dataId).id,j=new Uint8Array(new Int32Array(T.shape).buffer),q=new Uint8Array(new Int32Array(D.shape).buffer);return s8(F,j,T.shape.length,P,q,D.shape.length,o,i,U),n.disposeData(T.dataId),n.disposeData(D.dataId),M.shape=b,M}var Jae={kernelName:Qa,backendName:"wasm",setupFunc:Zae,kernelFunc:Yae};function Vd(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=Yt.parseSliceParams(t,n,s),i=Yt.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),c=r.makeOutput(o,t.dtype),u=w.computeStrides(t.shape),d=r.dataIdMap.get(c.dataId);if(i){let f=Yt.computeFlatOffset(a,u);return t.dtype==="string"?d.stringBytes=l.slice(f,f+w.sizeFromShape(o)):r.typedArrayFromHeap(c).set(l.subarray(f,f+w.sizeFromShape(o))),c}if(t.dtype==="string"){let f=s0(l,a,o,t.shape,t.dtype);return d.stringBytes=f,c}let p=r.typedArrayFromHeap(c),h=t.shape.length;if(h===2)Qae(l,u[0],p,a,o);else if(h===3)eoe(l,u[0],u[1],p,a,o);else if(h===4)toe(l,u[0],u[1],u[2],p,a,o);else{let f=s0(l,a,o,t.shape,t.dtype);p.set(f)}return c}function Qae(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let c=o;c<l;c++){let u=c*t+i;n.set(e.subarray(u,u+r[1]),a),a+=r[1]}}function eoe(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],c=r[2],u=i+a[0],d=l+a[1];for(let p=i;p<u;p++)for(let h=l;h<d;h++){let f=p*t+h*n+c;s.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function toe(e,t,n,s,r,a,o){let i=0,l=a[0],c=a[1],u=a[2],d=l+o[0],p=c+o[1],h=u+o[2],f=a[3];for(let m=l;m<d;m++)for(let g=c;g<p;g++)for(let A=u;A<h;A++){let x=m*t+g*n+A*s+f;r.set(e.subarray(x,x+o[3]),i),i+=o[3]}}var noe={kernelName:Ml,backendName:"wasm",kernelFunc:Vd};function soe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((A,x)=>A*x),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=Yn({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Bu({inputs:{x:h},backend:n,attrs:{perm:c}}),m=Yn({inputs:{x:f},backend:n,attrs:{shape:u}}),g=Vd({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var roe={kernelName:rl,backendName:"wasm",kernelFunc:soe};function Ud(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var aoe={kernelName:eo,backendName:"wasm",kernelFunc:Ud},ooe=bn(to),r8;function ioe(e){r8=e.wasm.cwrap(la,null,["number","number","number","number"])}function loe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id;return r8(i,a,o,c),l}var uoe={kernelName:la,backendName:"wasm",setupFunc:ioe,kernelFunc:loe};function a8(e){let{inputs:t,backend:n}=e,s=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=E.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>w.sizeFromShape(h.shape)>0);if(a.length===1)return T0({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(w.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(E.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(y=>{let b=w.sizeFromShape(y.shape.slice(s));return Yn({inputs:{x:y},backend:n,attrs:{shape:[-1,b]}})}),f=h.map(y=>({vals:n.readSync(y.dataId),shape:y.shape}));r=E.computeOutShape(h.map(y=>y.shape),1);let m=h[0].shape[0]===1,g=g2(f,r,t[0].dtype,m),A=E.computeOutShape(a.map(y=>y.shape),s);o.shape=A;let x=n.dataIdMap.get(o.dataId);return x.stringBytes=E.fromStringArrayToUint8(g),h.forEach(y=>n.disposeData(y.dataId)),o}let l=w.sizeFromShape(a[0].shape.slice(0,s)),c=0,u=a.map(h=>{let f=w.sizeFromShape(h.shape.slice(s));return c+=f,f}),d=a.map(h=>n.typedArrayFromHeap(h)),p=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let f=h*c;for(let m=0;m<d.length;m++){let g=u[m],A=h*g,x=d[m].subarray(A,A+g);p.set(x,f),f+=g}}return o}var coe={kernelName:al,backendName:"wasm",kernelFunc:a8},o8;function doe(e){o8=e.wasm.cwrap(no,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function poe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:d,dataFormat:p}=n,h=E.convertConv2DDataFormat(p),f=E.computeConv2DInfo(r.shape,a.shape,l,c,u,d,!1,h),m=f.filterHeight,g=f.filterWidth,A=f.padInfo.top,x=f.padInfo.right,y=f.padInfo.bottom,b=f.padInfo.left,v=f.dilationHeight,S=f.dilationWidth,T=f.strideHeight,D=f.strideWidth,F=f.inChannels,P=f.outChannels,_=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let $=s.makeOutput(f.outShape,"float32"),C=s.dataIdMap.get($.dataId).id;return o8(o,r.shape[0],r.shape[1],r.shape[2],i,m,g,A,x,y,b,_,v,S,T,D,F,P,C),$}var hoe={kernelName:no,backendName:"wasm",setupFunc:doe,kernelFunc:poe},i8;function foe(e){i8=e.wasm.cwrap(so,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function moe(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,inputShape:u}=s,d=1,p=E.convertConv2DDataFormat(l),h=E.computeConv2DInfo(u,a.shape,o,d,i,c,!1,p),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:A,inHeight:x,inWidth:y,outChannels:b,outHeight:v,outWidth:S,strideHeight:T,strideWidth:D}=h,F=m-1-h.padInfo.top,P=g-1-h.padInfo.left,_=h.dataFormat==="channelsLast",$=w.computeStrides(h.inShape),C=w.computeStrides(r.shape),[M,U,j]=w.computeStrides(a.shape),q=$[0],X=_?$[1]:$[2],te=_?$[2]:1,ne=_?1:$[1],se=C[0],oe=_?C[1]:C[2],ae=_?C[2]:1,re=_?1:C[1],ce=t.makeOutput(h.inShape,"float32"),ge=t.dataIdMap.get(ce.dataId).id,ve=t.dataIdMap.get(r.dataId).id,Ce=t.dataIdMap.get(a.dataId).id;return i8(ve,Ce,f,m,g,x,y,A,v,S,b,T,D,F,P,M,U,j,q,X,te,ne,se,oe,ae,re,ge),ce}var goe={kernelName:so,backendName:"wasm",setupFunc:foe,kernelFunc:moe},Aoe=bn(ro),yoe=bn(ao),X2;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(X2||(X2={}));var l8;function xoe(e){l8=e.wasm.cwrap(ol,null,["number","number","number","number","array","number","number","number","number","number"])}function boe(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:c}=n,u=l.shape[0],[d,p]=o,h=[u,d,p,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=Ud({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,A=t.dataIdMap.get(l.dataId).id,x=t.dataIdMap.get(c.dataId).id,y=t.makeOutput(h,"float32"),b=t.dataIdMap.get(y.dataId).id,v=new Uint8Array(new Int32Array(i.shape).buffer);return l8(g,A,x,u,v,d,p,X2[r],a,b),m!=null&&t.disposeData(m.dataId),y}var voe={kernelName:ol,backendName:"wasm",setupFunc:xoe,kernelFunc:boe},u8;function woe(e){u8=e.wasm.cwrap(oo,null,["number","number","number","number","number","number"])}function koe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let c=E.getAxesPermutation([a],l),u=r;c!==null&&(u=Bu({inputs:{x:r},attrs:{perm:c},backend:n}));let d=E.getInnerMostAxes(1,l)[0];E.assertAxesAreInnerMostDims("cumsum",[d],l);let p=n.makeOutput(u.shape,u.dtype),h=u.shape[d],f=n.dataIdMap.get(u.dataId).id,m=n.dataIdMap.get(p.dataId).id;u8(f,o?1:0,i?1:0,h,m,qt[r.dtype]);let g=p;if(c!==null){let A=E.getUndoAxesPermutation(c);g=Bu({inputs:{x:p},attrs:{perm:A},backend:n}),n.disposeData(u.dataId),n.disposeData(p.dataId)}return g}var Ioe={kernelName:oo,backendName:"wasm",setupFunc:woe,kernelFunc:koe},c8;function Soe(e){c8=e.wasm.cwrap(il,null,["number","number","number","array","number","array","array","number","number"])}function Coe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(r.dataId).id,x=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(w.computeStrides(f)).buffer),v=t.dataIdMap.get(m.dataId).id;return c8(A,a,o==="NHWC"?1:0,x,r.shape.length-1,y,b,f.length,v),m}var Toe={kernelName:il,backendName:"wasm",setupFunc:Soe,kernelFunc:Coe},d8;function Noe(e){d8=e.wasm.cwrap(io,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Eoe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:d}=n,p=c??[1,1],h=E.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,A=h.padInfo.right,x=h.padInfo.bottom,y=h.padInfo.left,b=h.dilationHeight,v=h.dilationWidth,S=h.strideHeight,T=h.strideWidth,D=h.inChannels,F=h.outChannels,P=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let _=s.makeOutput(h.outShape,"float32"),$=s.dataIdMap.get(_.dataId).id;return d8(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,A,x,y,P,b,v,S,T,D,F,$),_}var Roe={kernelName:io,backendName:"wasm",setupFunc:Noe,kernelFunc:Eoe},Doe=bn(uo),_oe=!1,Foe=Mn(ul,_oe,"bool"),$oe=bn(co,"float32");function K2(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Yn({inputs:{x:r},backend:s,attrs:{shape:i}})}var Ooe={kernelName:cl,backendName:"wasm",kernelFunc:K2};function p8(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var Poe={kernelName:bc,backendName:"wasm",kernelFunc:p8},h8;function Moe(e){h8=e.wasm.cwrap(pl,null,["number","number","number","number","number","number"])}function zoe(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,c,u]=s.shape;return h8(a,i,l,c,u,o),r}var Loe={kernelName:pl,backendName:"wasm",kernelFunc:zoe,setupFunc:Moe},Boe=bn(po),Woe=!1,Voe=Mn(ho,Woe),f8;function Uoe(e){f8=e.wasm.cwrap(fo,null,["number","number","number","number","number","number","number"])}function Goe(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:c}=n,u=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=c!=null?t.dataIdMap.get(c.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(w.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return f8(u,d,p,h,f,r,g),m}var Hoe={kernelName:fo,backendName:"wasm",setupFunc:Uoe,kernelFunc:Goe},m8;function joe(e){m8=e.wasm.cwrap(Xo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function qoe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=E.computeConv2DInfo(r.shape,a.shape,l,u,c,p),g=Wd[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,y=m.outChannels,b=0;if(o!=null){let ae=s.dataIdMap.get(o.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==y)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${y})`);b=ae.id}let v=m.filterHeight,S=m.filterWidth,T=m.padInfo.top,D=m.padInfo.right,F=m.padInfo.bottom,P=m.padInfo.left,_=m.dilationHeight,$=m.dilationWidth,C=m.strideHeight,M=m.strideWidth,U=m.inChannels,j=m.padInfo.type==="SAME"?1:0,q=m.batchSize,X=m.inHeight,te=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let ne=s.makeOutput(m.outShape,"float32"),se=s.dataIdMap.get(ne.dataId).id,oe=i==null?0:s.dataIdMap.get(i.dataId).id;return m8(A,q,X,te,x,v,S,b,T,D,F,P,j,_,$,C,M,U,y,g,oe,f||0,se),ne}var Xoe={kernelName:Xo,backendName:"wasm",setupFunc:joe,kernelFunc:qoe},g8;function Koe(e){g8=e.wasm.cwrap(Ko,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Zoe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=E.computeConv2DInfo(r.shape,a.shape,l,u,c,p,!0),g=Wd[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,y=m.outChannels,b=0;if(o!=null){let ae=s.dataIdMap.get(o.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==y)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${y})`);b=ae.id}let v=m.filterHeight,S=m.filterWidth,T=m.padInfo.top,D=m.padInfo.right,F=m.padInfo.bottom,P=m.padInfo.left,_=m.dilationHeight,$=m.dilationWidth,C=m.strideHeight,M=m.strideWidth,U=m.inChannels,j=m.padInfo.type==="SAME"?1:0,q=m.batchSize,X=m.inHeight,te=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let ne=s.makeOutput(m.outShape,"float32"),se=s.dataIdMap.get(ne.dataId).id,oe=i==null?0:s.dataIdMap.get(i.dataId).id;return g8(A,q,X,te,x,v,S,b,T,D,F,P,j,_,$,C,M,U,y,g,oe,f||0,se),ne}var Yoe={kernelName:Ko,backendName:"wasm",setupFunc:Koe,kernelFunc:Zoe},A8;function Joe(e){A8=e.wasm.cwrap(fl,null,["number","number","number","number","number","number","array","number"])}function Qoe(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=oA.prepareAndValidate(s,r),c=t.makeOutput(a,s.dtype);if(o===0)return c;let u=r.shape,d=u[u.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),A=t.dataIdMap.get(c.dataId).id;return A8(h,qt[s.dtype],m,o,d,i,g,A),c}var eie={kernelName:fl,backendName:"wasm",setupFunc:Joe,kernelFunc:Qoe},y8;function tie(e){y8=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function nie(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=w.parseAxisParam(o,r.shape)[0],c=t.readSync(a.dataId),u=r.shape[l];for(let F=0;F<c.length;++F){let P=c[F];w.assert(P<=u-1&&P>=0,()=>`GatherV2: the index value ${P} is not in [0, ${u-1}]`)}let d=E.segment_util.collectGatherOpShapeInfo(r,a,l,i),p=Yn({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=w.sizeFromShape(a.shape),f=Yn({inputs:{x:a},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),m=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(m,r.dtype);if(w.sizeFromShape(r.shape)===0)return g;let A=p.shape.length-1,y=t.dataIdMap.get(p.dataId).id,v=t.dataIdMap.get(f.dataId).id,S=t.dataIdMap.get(g.dataId).id,T=new Uint8Array(new Int32Array(w.computeStrides(p.shape)).buffer),D=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer);return y8(y,qt[r.dtype],T,A,v,d.batchSize,D,S),t.disposeData(p.dataId),t.disposeData(f.dataId),g.shape=d.outputShape,g}var sie={kernelName:hl,backendName:"wasm",setupFunc:tie,kernelFunc:nie},rie=!1,aie=Mn(ml,rie,"bool"),oie=!1,iie=Mn(mo,oie,"bool"),x8;function lie(e){x8=e.wasm.cwrap(Ao,null,["number","number","number","number"])}function uie(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,"float32");if(w.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;x8(r,qt[t.dtype],n,o)}return a}var cie={kernelName:Ao,backendName:"wasm",setupFunc:lie,kernelFunc:uie},die=!1,pie=Mn(xl,die,"bool"),hie=!1,fie=Mn(bl,hie,"bool"),mie=bn(yo),gie=!1,Aie=Mn(wl,gie,"bool"),b8;function yie(e){b8=e.wasm.cwrap(xo,null,["number","number","number","number"])}function xie(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=$a(o,r,t);if(h){let y=t.dataIdMap.get(u.dataId).id;c=u,l=y}let f=c.shape.length;E.assertAxesAreInnerMostDims("max",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),A=w.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(w.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;b8(l,qt[o.dtype],A,y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var bie={kernelName:xo,backendName:"wasm",setupFunc:yie,kernelFunc:xie},vie=!1,wie=Mn(bo,vie),v8;function kie(e){v8=e.wasm.cwrap(vo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Iie(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id;w.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=n,u=E.computePool2DInfo(r.shape,o,i,1,l,c),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,A=u.dilationHeight,x=u.dilationWidth,y=u.strideHeight,b=u.strideWidth,v=u.inChannels,S=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let T=s.makeOutput(u.outShape,"float32"),D=s.dataIdMap.get(T.dataId).id;return v8(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,x,y,b,v,S,D),T}var Sie={kernelName:vo,backendName:"wasm",setupFunc:kie,kernelFunc:Iie},w8;function Cie(e){w8=e.wasm.cwrap(wo,null,["number, number, number"])}function Tie(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=$a(o,r,t),f=d;if(h){let b=t.dataIdMap.get(u.dataId).id;b!==i&&(c=u,l=b,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("mean",f,c.shape.length);let[m,g]=E.computeOutAndReduceShapes(c.shape,f),A=w.sizeFromShape(g),x=c;c.dtype!=="float32"&&(x=Ud({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(x.dataId).id);let y=t.makeOutput(m,"float32");if(w.sizeFromShape(c.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;w8(l,A,b)}if(h&&t.disposeData(u.dataId),a){let b=E.expandShapeToKeepDim(y.shape,p);y.shape=b}return c.dtype!=="float32"&&t.disposeData(x.dataId),y}var Nie={kernelName:wo,backendName:"wasm",setupFunc:Cie,kernelFunc:Tie},k8;function Eie(e){k8=e.wasm.cwrap(ko,null,["number","number","number","number"])}function Rie(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=$a(o,r,t);if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(c=u,l=y)}let f=c.shape.length;E.assertAxesAreInnerMostDims("min",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),A=w.sizeFromShape(g),x=t.makeOutput(m,c.dtype);if(w.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;k8(l,qt[o.dtype],A,y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var Die={kernelName:ko,backendName:"wasm",setupFunc:Eie,kernelFunc:Rie},_ie=!1,Fie=Mn(Io,_ie),Z2;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(Z2||(Z2={}));var I8;function $ie(e){I8=e.wasm.cwrap(So,null,["number","array","number","number","array","array","number","number"])}function Oie(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=s.map(f=>f[0]),d=s.map(f=>f[1]),p=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(d).buffer);return I8(o,c,t.shape.length,qt[t.dtype],p,h,Z2[r],l),i}var Pie={kernelName:So,backendName:"wasm",kernelFunc:Oie,setupFunc:$ie},Mie=!0,zie=Mn(Co,Mie),Lie=bn(Il);function Y2(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var S8;function Bie(e){S8=e.wasm.cwrap(Cl,"number",["number","number","number","number","number"])}function Wie(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,c=t.dataIdMap.get(i.dataId).id,u=t.dataIdMap.get(l.dataId).id,d=S8(c,u,a,r,o),{pSelectedIndices:p,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=Y2(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",p)}var Vie={kernelName:Cl,backendName:"wasm",setupFunc:Bie,kernelFunc:Wie},C8;function Uie(e){C8=e.wasm.cwrap(Tl,"number",["number","number","number","number","number","bool"])}function Gie(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=C8(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Y2(t,p);t.wasm._free(m);let A=t.makeOutput([f],"int32",h),x=t.makeOutput([],"int32",g);return[A,x]}var Hie={kernelName:Tl,backendName:"wasm",setupFunc:Uie,kernelFunc:Gie},T8;function jie(e){T8=e.wasm.cwrap(Nl,"number",["number","number","number","number","number","number"])}function qie(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=T8(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Y2(t,p);t.wasm._free(g);let A=t.makeOutput([f],"int32",h),x=t.makeOutput([f],"float32",m);return[A,x]}var Xie={kernelName:Nl,backendName:"wasm",setupFunc:jie,kernelFunc:qie},Kie=!1,Zie=Mn(Sl,Kie,"bool"),N8;function Yie(e){N8=e.wasm.cwrap(To,null,["number","number","number","number","number"])}function Jie(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),c=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return N8(d,a,o,i,c),l}var Qie={kernelName:To,backendName:"wasm",setupFunc:Yie,kernelFunc:Jie};function ele(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var tle={kernelName:El,backendName:"wasm",kernelFunc:ele};function nle(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return K2({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=K2({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=a8({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeData(u.dataId)),c}var sle={kernelName:Rl,backendName:"wasm",kernelFunc:nle},E8;function rle(e){E8=e.wasm.cwrap(No,null,["number","array","number","number","array","array","number","number"])}function ale(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(w.sizeFromShape(t.shape)===0)return p8({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=s.map(m=>m[0]),p=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(d).buffer),f=new Uint8Array(new Int32Array(p).buffer);return E8(o,u,t.shape.length,qt[t.dtype],h,f,r,c),i}var R8={kernelName:No,backendName:"wasm",kernelFunc:ale,setupFunc:rle},ole=!1,ile=Mn(Eo,ole),D8;function lle(e){D8=e.wasm.cwrap(Ro,null,["number","number","number"])}function ule(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=a,l=s,c=l;l.dtype!=="float32"&&(c=Ud({backend:n,inputs:{x:s},attrs:{dtype:"float32"}}),i=n.dataIdMap.get(c.dataId).id);let u=n.makeOutput(s.shape,"float32"),d=n.dataIdMap.get(u.dataId).id;return D8(i,o,d),l.dtype!=="float32"&&n.disposeData(c.dataId),u}var cle={kernelName:Ro,backendName:"wasm",setupFunc:lle,kernelFunc:ule},_8;function dle(e){_8=e.wasm.cwrap(Dl,null,["number","number","number","number"])}function ple(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=$a(o,r,t),f=d;if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(c=u,l=y,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("prod",f,c.shape.length);let[m,g]=E.computeOutAndReduceShapes(c.shape,f),A=w.sizeFromShape(g),x=t.makeOutput(m,c.dtype);if(w.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;_8(l,A,qt[x.dtype],y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var hle={kernelName:Dl,backendName:"wasm",setupFunc:dle,kernelFunc:ple},fle=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=x2(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},mle={kernelName:Sc,backendName:"wasm",kernelFunc:fle},gle=!0,Ale=Mn(lo,gle),yle=bn(Do),xle=bn(Fo),F8;function ble(e){F8=e.wasm.cwrap(_o,null,["number","number","number","number","number","number","number","number","number","number"])}function vle(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,[u,d,p,h]=r.shape,f=[u,l,c,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=Ud({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let A=m.id,x=t.makeOutput(f,"float32");if(w.sizeFromShape(r.shape)===0)return x;let y=t.dataIdMap.get(x.dataId).id;return F8(A,u,d,p,h,l,c,a?1:0,o?1:0,y),g!=null&&t.disposeData(g.dataId),x}var wle={kernelName:_o,backendName:"wasm",setupFunc:ble,kernelFunc:vle},$8;function kle(e){$8=e.wasm.cwrap($o,null,["number","array","number","array","number","number"])}function Ile(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=w.parseAxisParam(a,r.shape);if(r.shape.length===0)return T0({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);$8(l,u,o.length,d,r.shape.length,c);let p=Yn({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),p}var Sle={kernelName:$o,backendName:"wasm",kernelFunc:Ile,setupFunc:kle},O8;function Cle(e){O8=e.wasm.cwrap(Xl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Tle(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[d,p,h,f]=r.shape,[m,g]=E.getImageCenter(i,p,h),A=o===0,x=255,y=typeof o=="number"?[o,o,o,A?0:x]:[...o,x],b=new Uint8Array(new Int32Array(y).buffer);return O8(c,d,p,h,f,a,m,g,b,y.length,u),l}var Nle={kernelName:Xl,backendName:"wasm",kernelFunc:Tle,setupFunc:Cle},Ele=bn(Oo),Rle=bn(Po),P8;function Dle(e){P8=e.wasm.cwrap($l,null,["number","number","number","number","number","number","array","number","number"])}function _le(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(w.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=iA.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,A=new Uint8Array(new Int32Array(d).buffer),x=t.dataIdMap.get(i.dataId).id;return P8(f,g,qt[a.dtype],l,c,u,A,p,x),i}var Fle={kernelName:$l,backendName:"wasm",setupFunc:Dle,kernelFunc:_le},M8;function $le(e){M8=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Ole(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,c=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(c.dataId).id,d=s.shape.length,p=r.shape.length,h=d===0||d>1||p===1?1:w.sizeFromShape(r.shape.slice(1));return M8(o,i,l,h,u),c}var Ple={kernelName:Ol,backendName:"wasm",kernelFunc:Ole,setupFunc:$le},z8;function Mle(e){z8=e.wasm.cwrap(zo,null,["number","number"])}function zle(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||z8(s,a),r}var Lle={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Mle,kernelFunc:zle},Ble=bn(Mo),L8;function Wle(e){L8=e.wasm.cwrap(Wo,null,["number","number","number","number"])}function Vle(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=w.sizeFromShape(n.shape)/i;return w.sizeFromShape(a.shape)===0||L8(r,o,i,l),a}var Ule={kernelName:Wo,backendName:"wasm",setupFunc:Wle,kernelFunc:Vle};function Gle(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=w.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let S=1+a.length;S<r.shape.length;++S)l.push([0,0]);let c=R8.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=E.getReshaped(c.shape,a,i,!1),d=E.getPermuted(u.length,a.length,!1),p=E.getReshapedPermuted(c.shape,a,i,!1),m=Yn({inputs:{x:c},backend:n,attrs:{shape:u}}),x=Bu({inputs:{x:m},backend:n,attrs:{perm:d}}),v=Yn({inputs:{x},backend:n,attrs:{shape:p}});return n.disposeData(c.dataId),n.disposeData(m.dataId),n.disposeData(x.dataId),v}var Hle={kernelName:Wl,backendName:"wasm",kernelFunc:Gle};function jle(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=w.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(d=>{let p=[...u];p[i]=d;let h=Vd({inputs:{x:r},attrs:{begin:c,size:p},backend:s});return c[i]+=d,h})}var qle={kernelName:Vl,backendName:"wasm",kernelFunc:jle},Xle=bn(Lo),Kle=bn(Tc),Zle=!0,Yle=Mn(Vo,Zle),B8;function Jle(e){B8=e.wasm.cwrap(ca,null,["number","number","number","number"])}function Qle(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return B8(o,r,qt[a.dtype],l),i}var eue={kernelName:ca,backendName:"wasm",setupFunc:Jle,kernelFunc:Qle},W8;function tue(e){W8=e.wasm.cwrap(Ul,null,["number","array","number","array","array","array","array","array","number","number"])}function nue(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:A,begin:x,end:y,strides:b}=Yt.sliceInfo(r.shape,a,o,i,l,c,u,d,p),v;if(m)v=Yn({inputs:{x:r},backend:t,attrs:{shape:f}});else if(g||A){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=Yt.computeOutShape(x,y,b),T=Vd({inputs:{x:r},backend:t,attrs:{begin:x,size:S}});v=Yn({inputs:{x:T},backend:t,attrs:{shape:f}}),t.disposeData(T.dataId)}else{let S=t.makeOutput(h,"float32"),T=t.dataIdMap.get(r.dataId).id,D=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),F=new Uint8Array(new Int32Array(x).buffer),P=new Uint8Array(new Int32Array(y).buffer),_=new Uint8Array(new Int32Array(b).buffer),$=new Uint8Array(new Int32Array(h).buffer),C=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer),M=t.dataIdMap.get(S.dataId).id;W8(T,D,r.shape.length,F,P,_,$,C,h.length,M),v=Yn({inputs:{x:S},backend:t,attrs:{shape:f}}),t.disposeData(S.dataId)}return v}var sue={kernelName:Ul,backendName:"wasm",setupFunc:tue,kernelFunc:nue},rue=!0,aue=Mn(Uo,rue),V8;function oue(e){V8=e.wasm.cwrap(Bo,null,["number","number","number","number"])}function iue(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=$a(o,r,t),f=d;if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(c=u,l=y,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("sum",f,c.shape.length);let[m,g]=E.computeOutAndReduceShapes(c.shape,f),A=w.sizeFromShape(g),x=t.makeOutput(m,c.dtype);if(w.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;V8(l,A,qt[x.dtype],y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var lue={kernelName:Bo,backendName:"wasm",setupFunc:oue,kernelFunc:iue},uue=bn(Go),cue=bn(Ho),U8;function due(e){U8=e.wasm.cwrap(ua,null,["number","array","number","array","number","number"])}function pue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let p=0;p<i.length;p++)i[p]=r.shape[p]*o[p];let l=new Uint8Array(new Int32Array(r.shape).buffer),c=new Uint8Array(new Int32Array(i).buffer),u=n.makeOutput(i,r.dtype),d=n.dataIdMap.get(u.dataId).id;return U8(a,l,r.shape.length,c,i.length,qt[u.dtype],d),u}var hue={kernelName:ua,backendName:"wasm",setupFunc:due,kernelFunc:pue},G8;function fue(e){G8=e.wasm.cwrap(Gl,null,["number","array","number","number","number","bool","number","number"])}var mue=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let c=t.makeOutput(l,s.dtype),u=t.dataIdMap.get(c.dataId).id,d=t.makeOutput(l,"int32"),p=t.dataIdMap.get(d.dataId).id;return G8(o,i,s.shape.length,qt[s.dtype],r,a,u,p),[c,d]},gue={kernelName:Gl,backendName:"wasm",setupFunc:fue,kernelFunc:mue},H8;function Aue(e){H8=e.wasm.cwrap(Hl,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function yue(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c??[d,p],g=[u,f,m,h],A=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),x=t.makeOutput(g,r.dtype),y=t.dataIdMap.get(x.dataId).id,v=t.dataIdMap.get(r.dataId).id,T=t.dataIdMap.get(a.dataId).id,D=o==="nearest"?1:2,F;switch(i){case"constant":F=1;break;case"reflect":F=2;break;case"wrap":F=3;break;case"nearest":F=4;break;default:F=1;break}return H8(v,T,a.shape[0]>1,u,f,m,h,p,d,A,r.shape.length-1,D,F,l,y),x}var xue={kernelName:Hl,backendName:"wasm",setupFunc:Aue,kernelFunc:yue};function bue(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==a&&(l[c++]=r.shape[h]);let u=new Array(o),d=new Array(i).fill(0),p=r.shape.slice();p[a]=1;for(let h=0;h<u.length;h++)d[a]=h,u[h]=Vd({inputs:{x:r},attrs:{begin:d,size:p},backend:n});return u.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:l}))}var vue={kernelName:jl,backendName:"wasm",kernelFunc:bue};function wue(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var kue={kernelName:ql,backendName:"wasm",kernelFunc:wue},Iue=[Cae,Nae,Dae,Lae,Vae,Hae,Xae,Jae,roe,aoe,ooe,uoe,coe,hoe,goe,Aoe,yoe,voe,Ioe,Toe,Roe,Doe,Foe,$oe,Ooe,Poe,Loe,Boe,Voe,Sae,Hoe,Xoe,Yoe,eie,sie,aie,iie,_ae,cie,pie,fie,mie,Aie,bie,wie,Sie,Nie,Die,Fie,Pie,zie,Lie,Vie,Hie,Xie,Zie,Qie,tle,sle,R8,ile,cle,hle,mle,Ale,yle,xle,Kae,wle,Sle,Nle,Rle,Ele,Fle,Ple,Lle,Ble,noe,Ule,Hle,qle,Xle,Kle,Yle,eue,sue,aue,lue,uue,cue,hue,gue,xue,Pae,vue,kue];for(let e of Iue)da(e);var J2=Y();J2.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));J2.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(J2.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch{return!1}});var j8=qa(yT()),Sue='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',Cue=qa(xT()),q8=class extends pc{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(Z8),ex=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new $p(this,ts())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let c=t;this.dataIdMap.set(e,{id:a,stringBytes:c,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=w.sizeFromShape(n),i=o*w.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:s,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let a=this.wasm.HEAPU8.slice(t,t+w.sizeFromShape(s)*w.bytesPerElement(n));return Eue(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function Tue(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function X8(e,t,n){if(N0!=null)return N0;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),Hd!=null&&Hd[s]!=null?Hd[s]:n+s}async function Nue(){let[e,t]=await Promise.all([Y().getAsync("WASM_HAS_SIMD_SUPPORT"),Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let c=Sue,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return i.endsWith(".wasm")?X8(e,t,Gd??l):l+i},Q2&&(r.instantiateWasm=Tue(X8(e,t,Gd??"")));let a=!1;r.onAbort=()=>{if(a||jd)return;jd=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&N0==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+j8.default.toString()],{type:"text/javascript"}),o=(0,j8.default)(r)):o=(0,Cue.default)(r),o.then(i=>{a=!0,jd=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),initWithThreadsCount:i.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:i.cwrap("get_threads_count","number",[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function Eue(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Rue=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],N0=null,Gd=null,Hd={},jd=!1,Q2=!1;function Due(e,t=!1){if(fA("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),jd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");N0=e,Q2=t}function K8(e,t=!1){if(jd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Gd=e;else{Hd=e;let n=Rue.filter(s=>Hd[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Q2=t}var Z8=-1,ex=-1;function _ue(e){Z8=e}function Fue(){if(ex===-1)throw new Error("WASM backend not initialized.");return ex}var $ue="3.11.0",Oue=2;tu("wasm",async()=>{let{wasm:e}=await Nue();return new q8(e)},Oue);var Pue="3.11.0",Mue="3.11.0",zue="3.11.0",Lue="3.11.0",Bue="3.11.0",Wue="3.11.0",Vue="3.11.0",Uue="3.11.0",Gue={tfjs:Pue,"tfjs-core":Mue,"tfjs-data":zue,"tfjs-layers":Lue,"tfjs-converter":Bue,"tfjs-backend-cpu":Wue,"tfjs-backend-webgl":Vue,"tfjs-backend-wasm":Uue};var Y8=`
|
|
precision highp float;
|
|
attribute vec2 pos;
|
|
attribute vec2 uv;
|
|
varying vec2 vUv;
|
|
uniform float flipY;
|
|
void main(void) {
|
|
vUv = uv;
|
|
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
|
|
}
|
|
`;var J8=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
|
|
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
|
|
}
|
|
`,Q8=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
|
|
gl_FragColor.a = c.a;
|
|
}
|
|
`,eI=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform vec2 size;
|
|
uniform sampler2D texture;
|
|
vec2 pixelate(vec2 coord, vec2 size) {
|
|
return floor( coord / size ) * size;
|
|
}
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
vec2 coord = pixelate(vUv, size);
|
|
gl_FragColor += texture2D(texture, coord);
|
|
}
|
|
`,tI=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
|
|
}
|
|
`,nI=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
uniform float m[9];
|
|
void main(void) {
|
|
vec4 c11 = texture2D(texture, vUv - px); // top left
|
|
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
|
|
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
|
|
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
|
|
vec4 c22 = texture2D(texture, vUv); // mid center
|
|
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
|
|
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
|
|
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
|
|
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
|
|
gl_FragColor =
|
|
c11 * m[0] + c12 * m[1] + c22 * m[2] +
|
|
c21 * m[3] + c22 * m[4] + c23 * m[5] +
|
|
c31 * m[6] + c32 * m[7] + c33 * m[8];
|
|
gl_FragColor.a = c22.a;
|
|
}
|
|
`;var tx=(e,t,n)=>{let s=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(s,(r,a)=>(n[a]=0,r))},sI=class{constructor(t,n,s){he(this,"uniform",{});he(this,"attribute",{});he(this,"gl");he(this,"id");he(this,"compile",(t,n)=>{let s=this.gl.createShader(n);if(this.gl.shaderSource(s,t),this.gl.compileShader(s),!this.gl.getShaderParameter(s,this.gl.COMPILE_STATUS))throw new Error(`filter: gl compile failed: ${this.gl.getShaderInfoLog(s)}`);return s});this.gl=t;let r=this.compile(n,this.gl.VERTEX_SHADER),a=this.compile(s,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,a),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS))throw new Error(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)}`);this.gl.useProgram(this.id),tx(n,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=this.gl.getAttribLocation(this.id,o);tx(n,"uniform",this.uniform),tx(s,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=this.gl.getUniformLocation(this.id,o)}};function rI(){let e=0,t=null,n=!1,s=-1,r=[null,null],a=[],o=null,i=null,l=zn(100,100),c={},u={INTERMEDIATE:1},d=l.getContext("webgl");if(!d)throw new Error("filter: cannot get webgl context");function p(x,y){if(!(x===l.width&&y===l.height)){if(l.width=x,l.height=y,!o){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);o=d.createBuffer(),d.bindBuffer(d.ARRAY_BUFFER,o),d.bufferData(d.ARRAY_BUFFER,b,d.STATIC_DRAW),d.pixelStorei(d.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}d.viewport(0,0,l.width,l.height),r=[null,null]}}function h(x,y){let b=d.createFramebuffer();d.bindFramebuffer(d.FRAMEBUFFER,b);let v=d.createRenderbuffer();d.bindRenderbuffer(d.RENDERBUFFER,v);let S=d.createTexture();return d.bindTexture(d.TEXTURE_2D,S),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,x,y,0,d.RGBA,d.UNSIGNED_BYTE,null),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.framebufferTexture2D(d.FRAMEBUFFER,d.COLOR_ATTACHMENT0,d.TEXTURE_2D,S,0),d.bindTexture(d.TEXTURE_2D,null),d.bindFramebuffer(d.FRAMEBUFFER,null),{fbo:b,texture:S}}function f(x){return r[x]=r[x]||h(l.width,l.height),r[x]}function m(x=0){if(!i)return;let y=null,b=null,v=!1;e===0?y=t:y=f(s)?.texture||null,e++,n&&!(x&u.INTERMEDIATE)?(b=null,v=e%2==0):(s=(s+1)%2,b=f(s)?.fbo||null),d.bindTexture(d.TEXTURE_2D,y),d.bindFramebuffer(d.FRAMEBUFFER,b),d.uniform1f(i.uniform.flipY,v?-1:1),d.drawArrays(d.TRIANGLES,0,6)}function g(x){if(c[x])return i=c[x],d.useProgram(i?.id||null),i;i=new sI(d,Y8,x);let y=Float32Array.BYTES_PER_ELEMENT,b=4*y;return d.enableVertexAttribArray(i.attribute.pos),d.vertexAttribPointer(i.attribute.pos,2,d.FLOAT,!1,b,0*y),d.enableVertexAttribArray(i.attribute.uv),d.vertexAttribPointer(i.attribute.uv,2,d.FLOAT,!1,b,2*y),c[x]=i,i}let A={colorMatrix:x=>{let y=new Float32Array(x);y[4]/=255,y[9]/=255,y[14]/=255,y[19]/=255;let b=y[18]===1&&y[3]===0&&y[8]===0&&y[13]===0&&y[15]===0&&y[16]===0&&y[17]===0&&y[19]===0?Q8:J8,v=g(b);d.uniform1fv(v?.uniform.m,y),m()},brightness:x=>{let y=(x||0)+1;A.colorMatrix([y,0,0,0,0,0,y,0,0,0,0,0,y,0,0,0,0,0,1,0])},saturation:x=>{let y=(x||0)*2/3+1,b=(y-1)*-.5;A.colorMatrix([y,b,b,0,0,b,y,b,0,0,b,b,y,0,0,0,0,0,1,0])},desaturate:()=>{A.saturation(-1)},contrast:x=>{let y=(x||0)+1,b=-128*(y-1);A.colorMatrix([y,0,0,0,b,0,y,0,0,b,0,0,y,0,b,0,0,0,1,0])},negative:()=>{A.contrast(-2)},hue:x=>{x=(x||0)/180*Math.PI;let y=Math.cos(x),b=Math.sin(x),v=.213,S=.715,T=.072;A.colorMatrix([v+y*(1-v)+b*-v,S+y*-S+b*-S,T+y*-T+b*(1-T),0,0,v+y*-v+b*.143,S+y*(1-S)+b*.14,T+y*-T+b*-.283,0,0,v+y*-v+b*-(1-v),S+y*-S+b*S,T+y*(1-T)+b*T,0,0,0,0,0,1,0])},desaturateLuminance:()=>{A.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{A.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{A.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{A.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{A.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{A.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{A.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{A.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:x=>{let y=new Float32Array(x),b=1/l.width,v=1/l.height,S=g(nI);d.uniform1fv(S?.uniform.m,y),d.uniform2f(S?.uniform.px,b,v),m()},detectEdges:()=>{A.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{A.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{A.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:x=>{let y=x||1;A.convolution.call(this,[0,-1*y,0,-1*y,1+4*y,-1*y,0,-1*y,0])},emboss:x=>{let y=x||1;A.convolution.call(this,[-2*y,-1*y,0,-1*y,1,1*y,0,1*y,2*y])},blur:x=>{let y=x/7/l.width,b=x/7/l.height,v=g(tI);d.uniform2f(v?.uniform.px,0,b),m(u.INTERMEDIATE),d.uniform2f(v?.uniform.px,y,0),m()},pixelate:x=>{let y=x/l.width,b=x/l.height,v=g(eI);d.uniform2f(v?.uniform.size,y,b),m()}};this.add=function(x){let y=Array.prototype.slice.call(arguments,1),b=A[x];a.push({func:b,args:y})},this.reset=function(){a=[]},this.get=function(){return a},this.apply=function(x){p(x.width,x.height),e=0,t||(t=d.createTexture()),d.bindTexture(d.TEXTURE_2D,t),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.NEAREST),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.NEAREST),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,d.RGBA,d.UNSIGNED_BYTE,x);for(let y=0;y<a.length;y++){n=y===a.length-1;let b=a[y];b.func.apply(this,b.args||[])}return l},this.draw=function(x){return this.add("brightness",0),this.apply(x)}}var E0=2048,pn=null,vn=null,Wu=null,Et;function zn(e,t){let n;if(xe.browser)if(xe.worker)n=new OffscreenCanvas(e,t);else{if(typeof document=="undefined")throw new Error("attempted to run in web worker but offscreenCanvas is not supported");n=document.createElement("canvas"),n.width=e,n.height=t}else typeof xe.Canvas!="undefined"?n=new xe.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(n=new globalThis.Canvas(e,t));return n}function nx(e,t){let n=t||zn(e.width,e.height);return n.getContext("2d").drawImage(e,0,0),n}function Vu(e,t,n=!0){if(!e)return t.debug&&ee("input is missing"),{tensor:null,canvas:null};if(!(e instanceof Ge)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof xe.Canvas!="undefined"&&e instanceof xe.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input type is not recognized");if(e instanceof Ge){if(e.isDisposedInternal)throw new Error("input tensor is disposed");if(!e.shape||e.shape.length!==4||e.shape[0]!==1||e.shape[3]!==3)throw new Error(`input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);return{tensor:Xs(e),canvas:t.filter.return?vn:null}}else{if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&ee("input stream is not ready"),{tensor:null,canvas:pn};let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return t.debug&&ee("cannot determine input dimensions"),{tensor:null,canvas:pn};let a=s,o=r;if(a>E0&&(a=E0,o=Math.trunc(a*r/s)),o>E0&&(o=E0,a=Math.trunc(o*s/r)),(t.filter.width||0)>0?a=t.filter.width:(t.filter.height||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("input cannot determine dimension");(!pn||pn?.width!==a||pn?.height!==o)&&(pn=zn(a,o));let i=pn.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,pn?.width,pn?.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,pn?.width,pn?.height),(!vn||pn.width!==vn.width||pn?.height!==vn?.height)&&(vn=zn(pn.width,pn.height)),t.filter.enabled&&xe.webgl.supported){if(Et||(Et=xe.browser?new rI:null),xe.filter=!!Et,!Et)return{tensor:null,canvas:pn};Et.reset(),t.filter.brightness!==0&&Et.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Et.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Et.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Et.add("blur",t.filter.blur),t.filter.saturation!==0&&Et.add("saturation",t.filter.saturation),t.filter.hue!==0&&Et.add("hue",t.filter.hue),t.filter.negative&&Et.add("negative"),t.filter.sepia&&Et.add("sepia"),t.filter.vintage&&Et.add("brownie"),t.filter.sepia&&Et.add("sepia"),t.filter.kodachrome&&Et.add("kodachrome"),t.filter.technicolor&&Et.add("technicolor"),t.filter.polaroid&&Et.add("polaroid"),t.filter.pixelate!==0&&Et.add("pixelate",t.filter.pixelate),Et.get()>0?vn=Et.apply(pn):vn=Et.draw(pn)}else nx(pn,vn),Et&&(Et=null),xe.filter=!!Et;if(!n)return{tensor:null,canvas:vn};if(!vn)throw new Error("cannot create output canvas");let l,c=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(xe.browser&&Os)l=Os?Os.fromPixels(e):null;else{c=e.data.length/e.height/e.width;let p=new Uint8Array(e.data.buffer);l=zt(p,[e.height,e.width,c],"int32")}else if((!Wu||vn.width!==Wu.width||vn?.height!==Wu?.height)&&(Wu=zn(vn.width,vn.height)),Os&&xe.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=Os.fromPixels(vn):(Wu=nx(vn),l=Os.fromPixels(Wu));else{let f=nx(vn).getContext("2d").getImageData(0,0,a,o);c=f.data.length/a/o;let m=new Uint8Array(f.data.buffer);l=zt(m,[a,o,c])}if(c===4){let p=pu(l,[0,0,0],[-1,-1,3]);Z(l),l=p}if(!l)throw new Error("cannot create tensor from input");let u=de(l,"float32"),d=Lt(u,0);return Z([l,u]),{tensor:d,canvas:t.filter.return?vn:null}}}var sx=0,rx=1,ax=0,Hue=async e=>{let t=48,n=_e.resizeBilinear(e,[Math.trunc((e.shape[1]||1)/t),Math.trunc((e.shape[2]||1)/t)]),s=async()=>{let o=Ie(n),i=await o.data();return Z(o),i[0]},r=async()=>{let o=await n.data(),i=0;for(let l=0;l<o.length/3;l++)i+=o[3*l+2];return i};if(ax===0){let o=pe();await r();let i=pe();await s();let l=pe();ax=i-o<l-i?1:2}let a=ax===1?await r():await s();return Z(n),a};async function aI(e,t){if(e.cacheSensitivity===0)return!1;let n=await Hue(t),s=100*(Math.max(n,sx)/Math.min(n,sx)-1);sx=n;let r=s<Math.max(e.cacheSensitivity,rx);return rx=s>10*e.cacheSensitivity?0:s,r=r&&rx>0,r}var oI=class{constructor(){he(this,"browser");he(this,"node");he(this,"worker");he(this,"platform","");he(this,"agent","");he(this,"backends",[]);he(this,"initial");he(this,"filter");he(this,"tfjs");he(this,"offscreen");he(this,"perfadd",!1);he(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});he(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});he(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});he(this,"cpu",{model:void 0,flags:[]});he(this,"kernels",[]);he(this,"Canvas");he(this,"Image");he(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined",this.tfjs={version:Wc},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let n=t[0].match(/\(([^()]+)\)/g);this.platform=n&&n[0]?n[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(ts().registryFactory),this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&Ks()==="wasm"&&(this.wasm.simd=await Y().getAsync("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=await Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let t=zn(100,100),n=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof n!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(Ks()==="webgl"||Ks()==="humangl")){let s=gr().gpgpu!=="undefined"?await gr().getGPGPUContext().gl:null;s&&(this.webgl.version=s.getParameter(s.VERSION),this.webgl.renderer=s.getParameter(s.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu"),this.webgpu.supported&&(this.webgpu.adapter=(await navigator.gpu.requestAdapter())?.name),this.kernels=Or(Ks()).map(s=>s.kernelName.toLowerCase())}async updateCPU(){let t={model:"",flags:[]};if(this.node&&this.platform?.startsWith("linux")){let n=ra("fs");try{let s=n.readFileSync("/proc/cpuinfo").toString();for(let r of s.split(`
|
|
`))r.startsWith("model name")&&(t.model=r.match(/:(.*)/g)[0].replace(":","").trim()),r.startsWith("flags")&&(t.flags=r.match(/:(.*)/g)[0].replace(":","").trim().split(" ").sort())}catch{}}this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},xe=new oI;var ox="2.4.3";var Oa;var dde=Number.MAX_SAFE_INTEGER;async function iI(e){return xe.initial&&(Oa=null),Oa?e.debug&&ee("cached model:",Oa.modelUrl):(Oa=await Qe(tt(e.modelBasePath,e.face.agegenderrace.modelPath)),!Oa||!Oa.modelUrl?ee("load model failed:",e.face.agegenderrace.modelPath):e.debug&&ee("load model:",Oa.modelUrl)),Oa}var ps,R0=[],ix=Number.MAX_SAFE_INTEGER,lI=0,uI=0;async function cI(e){return xe.initial&&(ps=null),ps?e.debug&&ee("cached model:",ps.modelUrl):(ps=await Qe(tt(e.modelBasePath,e.face.antispoof?.modelPath||"")),!ps||!ps.modelUrl?ee("load model failed:",e.face.antispoof?.modelPath):e.debug&&ee("load model:",ps.modelUrl)),ps}async function lx(e,t,n,s){if(!ps)return null;let r=(t.face.antispoof?.skipTime||0)>pe()-uI,a=ix<(t.face.antispoof?.skipFrames||0);return t.skipAllowed&&r&&a&&lI===s&&R0[n]?(ix++,R0[n]):(ix=0,new Promise(async o=>{let i=_e.resizeBilinear(e,[ps?.inputs[0].shape?ps.inputs[0].shape[2]:0,ps?.inputs[0].shape?ps.inputs[0].shape[1]:0],!1),l=ps?.predict(i),c=(await l.data())[0];R0[n]=Math.round(100*c)/100,lI=s,uI=pe(),Z([i,l]),o(R0[n])}))}var Nr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},ux={count:468,mouth:13,symmetryLine:[13,Nr.midwayBetweenEyes[0]]},Xd={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},cx=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Kd=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],Ri=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var que=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Xue=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Kue=[33,133,362,263,1,78,308],Ade=que.map(e=>Kd[e]),yde=Xue.map(e=>Kd[e]),xde=Kue.map(e=>Kd[e]);var dI=e=>({startPoint:Fe(e,[0,0],[-1,2]),endPoint:Fe(e,[0,2],[-1,2])});var Zd=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],D0=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2],dx=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],px=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],pI=(e,t)=>{let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s}},hx=(e,t,n)=>{let s=t.shape[1],r=t.shape[2];return _e.cropAndResize(t,[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]],[0],n)},Yd=(e,t=1.5)=>{let n=D0(e),s=Zd(e),r=[t*s[0]/2,t*s[1]/2];return{startPoint:[n[0]-r[0],n[1]-r[1]],endPoint:[n[0]+r[0],n[1]+r[1]],landmarks:e.landmarks}},Jd=e=>{let t=D0(e),n=Zd(e),s=Math.max(...n)/2;return{startPoint:[Math.round(t[0]-s),Math.round(t[1]-s)],endPoint:[Math.round(t[0]+s),Math.round(t[1]+s)],landmarks:e.landmarks}},_0=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return{startPoint:[Math.min(...t),Math.min(...n)],endPoint:[Math.max(...t),Math.max(...n)],landmarks:e}},F0=[[1,0,0],[0,1,0],[0,0,1]],Zue=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),Yue=(e,t)=>Zue(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var hI=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Di=(e,t)=>{let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n},Jue=(e,t)=>{let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n},fI=(e,t)=>{let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(Di(e[r],Jue(t,a)))}return n},mI=(e,t)=>{let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=hI(t[0],t[1]),o=fI(a,r),i=hI(-t[0],-t[1]);return fI(o,i)},Que=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-Di(t[0],n),-Di(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]},ece=(e,t)=>[Di(e,t[0]),Di(e,t[1])];function gI(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let c=r*(l+.5);for(let u=0;u<o;u++){let d=r*(u+.5);for(let p=0;p<i;p++)n.push([d,c])}}}return n}function AI(e,t,n,s,r){let a=Zd({startPoint:t.startPoint,endPoint:t.endPoint}),o=e.map(d=>[a[0]/r*(d[0]-r/2),a[1]/r*(d[1]-r/2),d[2]||0]),i=n!==0?mI(n,[0,0]):F0,l=n!==0?o.map(d=>[...ece(d,i),d[2]]):o,c=n!==0?Que(s):F0,u=[...D0({startPoint:t.startPoint,endPoint:t.endPoint}),1];return l.map(d=>[Math.round(d[0]+Di(u,c[0])),Math.round(d[1]+Di(u,c[1])),Math.round(d[2]||0)])}function fx(e,t,n){let s=e.landmarks.length>=ux.count?ux.symmetryLine:Xd.symmetryLine,r=Yue(e.landmarks[s[0]],e.landmarks[s[1]]),a=D0({startPoint:e.startPoint,endPoint:e.endPoint}),o=[a[0]/t.shape[2],a[1]/t.shape[1]],i=_e.rotateWithOffset(t,r,0,o),l=mI(-r,a),c=hx({startPoint:e.startPoint,endPoint:e.endPoint},i,[n,n]),u=fe(c,255);return Z(c),Z(i),[r,l,u]}var yI=6,ir,mx=[],xI=null,Ts=0,Qd=()=>Ts;async function bI(e){return xe.initial&&(ir=null),ir?e.debug&&ee("cached model:",ir.modelUrl):(ir=await Qe(tt(e.modelBasePath,e.face.detector?.modelPath||"")),!ir||!ir.modelUrl?ee("load model failed:",e.face.detector?.modelPath):e.debug&&ee("load model:",ir.modelUrl)),Ts=ir.inputs[0].shape?ir.inputs[0].shape[2]:0,Ts===-1&&(Ts=64),mx=gI(Ts),xI=Ys(mx),ir}function tce(e){let t=Fe(e,[0,1],[-1,2]),n=le(t,xI),s=Fe(e,[0,3],[-1,2]),r=fe(s,Ts),a=fe(n,Ts),o=fe(r,2),i=be(a,o),l=le(a,o),c=L(i,Ts),u=L(l,Ts);return ru([c,u],1)}async function vI(e,t){if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return{boxes:[]};let[n,s,r]=G(()=>{let c=_e.resizeBilinear(e,[Ts,Ts]),u=be(fe(c,127.5),.5),d=ir?.execute(u),p;if(Array.isArray(d)){let g=d.sort((b,v)=>b.size-v.size),A=mt([g[0],g[2]],2),x=mt([g[1],g[3]],2),y=mt([x,A],1);p=rt(y,0)}else p=rt(d);let h=tce(p),f=Fe(p,[0,0],[-1,1]),m=rt(Hn(f));return[p,h,m]}),a=await _e.nonMaxSuppressionAsync(s,r,t.face.detector?.maxDetected||0,t.face.detector?.iouThreshold||0,t.face.detector?.minConfidence||0),o=await a.array();Z(a);let i=[],l=await r.data();for(let c=0;c<o.length;c++){let u=l[o[c]];if(u>(t.face.detector?.minConfidence||0)){let d=Fe(s,[o[c],0],[1,-1]),p=G(()=>V(rt(Fe(n,[o[c],yI-1],[1,-1])),[yI,-1]));i.push({box:dI(d),landmarks:p,anchor:mx[o[c]],confidence:u}),Z(d)}}return Z(n),Z(s),Z(r),{boxes:i,scaleFactor:[e.shape[2]/Ts,e.shape[1]/Ts]}}var yx={};_p(yx,{connected:()=>Ax,kpt:()=>gx});var gx=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftThumb","leftHand","rightThumb","rightHand"],Ax={leftLeg:["leftHip","leftKnee","leftAnkle","leftHeel","leftFoot"],rightLeg:["rightHip","rightKnee","rightAnkle","rightHeel","rightFoot"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist","leftPalm"],rightArm:["rightShoulder","rightElbow","rightWrist","rightPalm"],leftHand:[],rightHand:[],head:[]};var wI={initial:!0},nn=[null,null],Pa=[[0,0],[0,0]],xx=Number.MAX_SAFE_INTEGER,bx,$0=null,Ma=[[0,0],[0,0],[0,0],[0,0]],kI=0;async function II(e){if(wI.initial&&(nn[0]=null),!nn[0]&&e.body.detector?.modelPath){nn[0]=await Qe(tt(e.modelBasePath,e.body.detector?.modelPath||""));let t=Object.values(nn[0].modelSignature.inputs);Pa[0][0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,Pa[0][1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0,!nn[0]||!nn[0].modelUrl?ee("load model failed:",e.body.detector?.modelPath):e.debug&&ee("load model:",nn[0].modelUrl)}else e.debug&&nn[0]&&ee("cached model:",nn[0].modelUrl);return nn[0]}async function SI(e){if(wI.initial&&(nn[1]=null),nn[1])e.debug&&ee("cached model:",nn[1].modelUrl);else{nn[1]=await Qe(tt(e.modelBasePath,e.body.modelPath||""));let t=Object.values(nn[1].modelSignature.inputs);Pa[1][0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,Pa[1][1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0,e.body.modelPath?.includes("lite")?bx=["ld_3d","output_segmentation","output_heatmap","world_3d","output_poseflag"]:bx=["Identity","Identity_2","Identity_3","Identity_4","Identity_1"],!nn[1]||!nn[1].modelUrl?ee("load model failed:",e.body.modelPath):e.debug&&ee("load model:",nn[1].modelUrl)}return nn[1]}function nce(e,t){let n=e.map(o=>o.position[0]),s=e.map(o=>o.position[1]),r=[Math.min(...n),Math.min(...s),Math.max(...n)-Math.min(...n),Math.max(...s)-Math.min(...s)],a=[r[0]/t[0],r[1]/t[1],r[2]/t[0],r[3]/t[1]];return{keypointsBox:r,keypointsBoxRaw:a}}async function sce(e){let t={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;Ma=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],t.pad=vs(e,Ma),t.resize=_e.resizeBilinear(t.pad,[Pa[1][0],Pa[1][1]]);let n=fe(t.resize,255);return Object.keys(t).forEach(s=>Z(t[s])),n}function rce(e,t){for(let n of e)n.position=[n.position[0]*(t[0]+Ma[2][0]+Ma[2][1])/t[0]-Ma[2][0],n.position[1]*(t[1]+Ma[1][0]+Ma[1][1])/t[1]-Ma[1][0],n.position[2]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1],n.position[2]];return e}var CI=e=>1-1/(1+Math.exp(e));async function ace(e,t,n){let s={};s.input=await sce(e),[s.ld,s.segmentation,s.heatmap,s.world,s.poseflag]=await nn[1]?.execute(s.input,bx);let r=(await s.poseflag.data())[0],a=Math.max(0,(r-.8)/(1-.8)),o=await s.ld.data(),i=[],l=5;for(let h=0;h<o.length/l;h++){let f=CI(o[l*h+3]),m=CI(o[l*h+4]),g=Math.trunc(100*f*m*a)/100,A=[o[l*h+0]/Pa[1][0],o[l*h+1]/Pa[1][1],o[l*h+2]+0],x=[Math.trunc(n[0]*A[0]),Math.trunc(n[1]*A[1]),A[2]];i.push({part:gx[h],positionRaw:A,position:x,score:g})}if(a<(t.body.minConfidence||0))return null;let c=rce(i,n),u=nce(c,[n[0],n[1]]);Object.keys(s).forEach(h=>Z(s[h]));let d={};for(let[h,f]of Object.entries(Ax)){let m=[];for(let g=0;g<f.length-1;g++){let A=c.find(y=>y.part===f[g]),x=c.find(y=>y.part===f[g+1]);A&&x&&A.score>(t.body.minConfidence||0)&&x.score>(t.body.minConfidence||0)&&m.push([A.position,x.position])}d[h]=m}return{id:0,score:Math.trunc(100*a)/100,box:u.keypointsBox,boxRaw:u.keypointsBoxRaw,keypoints:c,annotations:d}}async function vx(e,t){let n=[e.shape[2]||0,e.shape[1]||0],s=(t.body.skipTime||0)>pe()-kI,r=xx<(t.body.skipFrames||0);return t.skipAllowed&&s&&r&&$0!==null?xx++:($0=await ace(e,t,n),kI=pe(),xx=0),$0?[$0]:[]}var Uu=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Er,_i=0,O0=[],TI=0,wx=Number.MAX_SAFE_INTEGER;async function NI(e){if(xe.initial&&(Er=null),Er)e.debug&&ee("cached model:",Er.modelUrl);else{Gu(["floormod"],e),Er=await Qe(tt(e.modelBasePath,e.object.modelPath||""));let t=Object.values(Er.modelSignature.inputs);_i=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0,!Er||!Er.modelUrl?ee("load model failed:",e.object.modelPath):e.debug&&ee("load model:",Er.modelUrl)}return Er}async function oce(e,t,n){if(!e)return[];let s=[],r=await e.array(),a=rt(e);Z(e);let o=ln(a,6,1);Z(a);let i=An([o[1],o[0],o[3],o[2]],1),l=rt(i);Z(i);let c=rt(o[4]),u=rt(o[5]);o.forEach(f=>Z(f));let d=await _e.nonMaxSuppressionAsync(l,c,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);Z(l),Z(c),Z(u);let p=await d.data();Z(d);let h=0;for(let f of p){let m=Math.trunc(100*r[0][f][4])/100,g=r[0][f][5],A=Uu[g].label,[x,y]=[r[0][f][0]/_i,r[0][f][1]/_i],b=[x,y,r[0][f][2]/_i-x,r[0][f][3]/_i-y],v=[Math.trunc(b[0]*t[0]),Math.trunc(b[1]*t[1]),Math.trunc(b[2]*t[0]),Math.trunc(b[3]*t[1])];s.push({id:h++,score:m,class:g,label:A,box:v,boxRaw:b})}return s}async function kx(e,t){let n=(t.object.skipTime||0)>pe()-TI,s=wx<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&O0.length>0?(wx++,O0):(wx=0,!xe.kernels.includes("mod")||!xe.kernels.includes("sparsetodense")?O0:new Promise(async r=>{let a=[e.shape[2],e.shape[1]],o=_e.resizeBilinear(e,[_i,_i]),i=t.object.enabled?Er?.execute(o,["tower_0/detections"]):null;TI=pe(),Z(o);let l=await oce(i,a,t);O0=l,r(l)}))}var Cx={};_p(Cx,{connected:()=>Sx,kpt:()=>Ix});var Ix=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],Sx={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var Ln,EI=0,Bn={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},Tx=Number.MAX_SAFE_INTEGER;async function Nx(e){return xe.initial&&(Ln=null),Ln?e.debug&&ee("cached model:",Ln.modelUrl):(Ln=await Qe(tt(e.modelBasePath,e.body.modelPath||"")),!Ln||!Ln.modelUrl?ee("load model failed:",e.body.modelPath):e.debug&&ee("load model:",Ln.modelUrl)),Ln}function ice(e,t){let[n,s]=e.shape;return G(()=>{let r=(i,l)=>be(i,L(fe(i,Ee(l,"int32")),Ee(l,"int32"))),a=V(e,[s*n]),o=Rn(a,0).dataSync()[0];if(o>t){let i=xs(a,0),l=r(i,n).dataSync()[0],c=fe(i,Ee(n,"int32")).dataSync()[0];return[l,c,o]}return[0,0,o]})}async function Ex(e,t){let n=(t.body.skipTime||0)>pe()-EI,s=Tx<(t.body.skipFrames||0);return t.skipAllowed&&n&&s&&Object.keys(Bn.keypoints).length>0?(Tx++,[Bn]):(Tx=0,new Promise(async r=>{let a=G(()=>{if(!Ln?.inputs[0].shape)return null;let d=_e.resizeBilinear(e,[Ln.inputs[0].shape[2],Ln.inputs[0].shape[1]],!1);return L(d,2).sub(1)}),o;if(t.body.enabled&&(o=await Ln?.predict(a)),EI=pe(),Z(a),o){Bn.keypoints.length=0;let d=o.squeeze();Z(o);let p=d.unstack(2);Z(d);for(let h=0;h<p.length;h++){let[f,m,g]=ice(p[h],t.body.minConfidence);g>(t.body?.minConfidence||0)&&Bn.keypoints.push({score:Math.round(100*g)/100,part:Ix[h],positionRaw:[f/Ln.inputs[0].shape[2],m/Ln.inputs[0].shape[1]],position:[Math.round(e.shape[2]*f/Ln.inputs[0].shape[2]),Math.round(e.shape[1]*m/Ln.inputs[0].shape[1])]})}p.forEach(h=>Z(h))}Bn.score=Bn.keypoints.reduce((d,p)=>p.score>d?p.score:d,0);let i=Bn.keypoints.map(d=>d.position[0]),l=Bn.keypoints.map(d=>d.position[1]);Bn.box=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)];let c=Bn.keypoints.map(d=>d.positionRaw[0]),u=Bn.keypoints.map(d=>d.positionRaw[1]);Bn.boxRaw=[Math.min(...c),Math.min(...u),Math.max(...c)-Math.min(...c),Math.max(...u)-Math.min(...u)];for(let[d,p]of Object.entries(Sx)){let h=[];for(let f=0;f<p.length-1;f++){let m=Bn.keypoints.find(A=>A.part===p[f]),g=Bn.keypoints.find(A=>A.part===p[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}Bn.annotations[d]=h}r([Bn])}))}var lce=["angry","disgust","fear","happy","sad","surprise","neutral"],hs,P0=[],RI=0,DI=0,Rx=Number.MAX_SAFE_INTEGER,Dx=[.2989,.587,.114];async function _I(e){return xe.initial&&(hs=null),hs?e.debug&&ee("cached model:",hs.modelUrl):(hs=await Qe(tt(e.modelBasePath,e.face.emotion?.modelPath||"")),!hs||!hs.modelUrl?ee("load model failed:",e.face.emotion?.modelPath):e.debug&&ee("load model:",hs.modelUrl)),hs}async function _x(e,t,n,s){if(!hs)return null;let r=Rx<(t.face.emotion?.skipFrames||0),a=(t.face.emotion?.skipTime||0)>pe()-DI;return t.skipAllowed&&a&&r&&RI===s&&P0[n]&&P0[n].length>0?(Rx++,P0[n]):(Rx=0,new Promise(async o=>{let i=[];if(t.face.emotion?.enabled){let l=_e.resizeBilinear(e,[hs?.inputs[0].shape?hs.inputs[0].shape[2]:0,hs?.inputs[0].shape?hs.inputs[0].shape[1]:0],!1),[c,u,d]=ln(l,3,3);Z(l);let p=L(c,Dx[0]),h=L(u,Dx[1]),f=L(d,Dx[2]);Z(c),Z(u),Z(d);let m=$h([p,h,f]);Z(p),Z(h),Z(f);let g=G(()=>L(be(m,.5),2));Z(m);let A=await hs?.predict(g);DI=pe();let x=await A.data();Z(A);for(let y=0;y<x.length;y++)x[y]>(t.face.emotion?.minConfidence||0)&&i.push({score:Math.min(.99,Math.trunc(100*x[y])/100),emotion:lce[y]});i.sort((y,b)=>b.score-y.score),Z(g)}P0[n]=i,RI=s,o(i)}))}var Ws,za=0,uce=2.3,Fx=Nr.leftEyeLower0,$x=Nr.rightEyeLower0,Hu={leftBounds:[Fx[0],Fx[Fx.length-1]],rightBounds:[$x[0],$x[$x.length-1]]},ju={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function FI(e){return xe.initial&&(Ws=null),Ws?e.debug&&ee("cached model:",Ws.modelUrl):(Ws=await Qe(tt(e.modelBasePath,e.face.iris?.modelPath||"")),!Ws||!Ws.modelUrl?ee("load model failed:",e.face.iris?.modelPath):e.debug&&ee("load model:",Ws.modelUrl)),za=Ws.inputs[0].shape?Ws.inputs[0].shape[2]:0,za===-1&&(za=64),Ws}function M0(e,t,n,s){for(let r=0;r<cx.length;r++){let{key:a,indices:o}=cx[r],i=Nr[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let c=o[l];e[i[l]]=[t[c][0],t[c][1],(t[c][2]+e[i[l]][2])/2]}}}var cce=e=>{let t=e[Hu.leftBounds[0]][2],n=e[Hu.rightBounds[0]][2];return t-n},$I=(e,t,n,s,r=!1,a)=>{let o=Jd(Yd(_0([e[n],e[s]]),uce)),i=Zd(o),l=_e.cropAndResize(t,[[o.startPoint[1]/a,o.startPoint[0]/a,o.endPoint[1]/a,o.endPoint[0]/a]],[0],[za,za]);if(r&&xe.kernels.includes("flipleftright")){let c=_e.flipLeftRight(l);Z(l),l=c}return{box:o,boxSize:i,crop:l}},OI=(e,t,n,s=!1)=>{let r=[];for(let a=0;a<ju.numCoordinates;a++){let o=e[a*3],i=e[a*3+1],l=e[a*3+2];r.push([(s?1-o/za:o/za)*n[0]+t.startPoint[0],i/za*n[1]+t.startPoint[1],l])}return{rawCoords:r,iris:r.slice(ju.index)}},PI=(e,t,n)=>{let s=e[Nr[`${n}EyeUpper0`][ju.upperCenter]][2],r=e[Nr[`${n}EyeLower0`][ju.lowerCenter]][2],a=(s+r)/2;return t.map((o,i)=>{let l=a;return i===2?l=s:i===4&&(l=r),[o[0],o[1],l]})};async function MI(e,t,n,s){if(!Ws)return n.debug&&ee("face mesh iris detection requested, but model is not loaded"),e;let{box:r,boxSize:a,crop:o}=$I(e,t,Hu.leftBounds[0],Hu.leftBounds[1],!0,s),{box:i,boxSize:l,crop:c}=$I(e,t,Hu.rightBounds[0],Hu.rightBounds[1],!0,s),u=mt([o,c]);Z(o),Z(c);let d=Ws.predict(u);Z(u);let p=await d.data();Z(d);let h=p.slice(0,ju.numCoordinates*3),{rawCoords:f,iris:m}=OI(h,r,a,!0),g=p.slice(ju.numCoordinates*3),{rawCoords:A,iris:x}=OI(g,i,l),y=cce(e);Math.abs(y)<30?(M0(e,f,"left",null),M0(e,A,"right",null)):y<1?M0(e,f,"left",["EyeUpper0","EyeLower0"]):M0(e,A,"right",["EyeUpper0","EyeLower0"]);let b=PI(e,m,"left"),v=PI(e,x,"right");return e.concat(b).concat(v)}var Rr=[],Vs=null,lr=0,Ox=Number.MAX_SAFE_INTEGER,zI=0,LI=0;async function BI(e,t){let n=(t.face.detector?.skipTime||0)>pe()-zI,s=Ox<(t.face.detector?.skipFrames||0);if(!t.skipAllowed||!n||!s||LI===0){let i=await vI(e,t);zI=pe(),Rr=[];for(let l of i.boxes){let c=await l.box.startPoint.data(),u=await l.box.endPoint.data(),d=await l.landmarks.array();Rr.push({startPoint:c,endPoint:u,landmarks:d,confidence:l.confidence})}i.boxes.forEach(l=>Z([l.box.startPoint,l.box.endPoint,l.landmarks]));for(let l=0;l<Rr.length;l++){let c=pI({startPoint:Rr[l].startPoint,endPoint:Rr[l].endPoint},i.scaleFactor),u=Yd(c),d=Jd(u);Rr[l]={...d,confidence:Rr[l].confidence,landmarks:Rr[l].landmarks}}Ox=0}else Ox++;let r=[],a=[],o=0;for(let i of Rr){let l=0,c,u={id:o++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if(t.face.detector?.rotation&&t.face.mesh?.enabled&&xe.kernels.includes("rotatewithoffset"))[l,c,u.tensor]=fx(i,e,lr);else{c=F0;let d=hx({startPoint:i.startPoint,endPoint:i.endPoint},e,t.face.mesh?.enabled?[lr,lr]:[Qd(),Qd()]);u.tensor=fe(d,255),Z(d)}if(u.boxScore=Math.round(100*i.confidence)/100,t.face.mesh?.enabled)if(!Vs)t.debug&&ee("face mesh detection requested, but model is not loaded");else{let[d,p,h]=Vs.execute(u.tensor);Z(d);let f=(await p.data())[0];Z(p);let m=V(h,[-1,3]),g=await m.array();if(Z(h),Z(m),f<(t.face.detector?.minConfidence||1))i.confidence=f;else{t.face.iris?.enabled&&(g=await MI(g,u.tensor,t,lr)),u.mesh=AI(g,i,l,c,lr),u.meshRaw=u.mesh.map(A=>[A[0]/(e.shape[2]||0),A[1]/(e.shape[1]||0),(A[2]||0)/lr]),i={...Yd(_0(u.mesh),1.5),confidence:i.confidence};for(let A of Object.keys(Nr))u.annotations[A]=Nr[A].map(x=>u.mesh[x]);t.face.detector?.rotation&&t.face.mesh.enabled&&t.face.description?.enabled&&xe.kernels.includes("rotatewithoffset")&&(Z(u.tensor),[l,c,u.tensor]=fx(i,e,lr)),u.box=dx(i,e),u.boxRaw=px(i,e),u.score=Math.round(100*f||100*i.confidence||0)/100,u.faceScore=Math.round(100*f)/100,i={...Jd(i),confidence:i.confidence,faceConfidence:f}}}else{u.box=dx(i,e),u.boxRaw=px(i,e),u.score=Math.round(100*i.confidence||0)/100,u.mesh=i.landmarks.map(d=>[(i.startPoint[0]+i.endPoint[0])/2+(i.endPoint[0]+i.startPoint[0])*d[0]/Qd(),(i.startPoint[1]+i.endPoint[1])/2+(i.endPoint[1]+i.startPoint[1])*d[1]/Qd()]),u.meshRaw=u.mesh.map(d=>[d[0]/(e.shape[2]||0),d[1]/(e.shape[1]||0),(d[2]||0)/lr]);for(let d of Object.keys(Xd))u.annotations[d]=[u.mesh[Xd[d]]]}r.push(u),a.push(i)}return t.face.mesh?.enabled&&(Rr=a.filter(i=>i.confidence>(t.face.detector?.minConfidence||0))),LI=r.length,r}async function WI(e){return xe.initial&&(Vs=null),Vs?e.debug&&ee("cached model:",Vs.modelUrl):(Vs=await Qe(tt(e.modelBasePath,e.face.mesh?.modelPath||"")),!Vs||!Vs.modelUrl?ee("load model failed:",e.face.mesh?.modelPath):e.debug&&ee("load model:",Vs.modelUrl)),lr=Vs.inputs[0].shape?Vs.inputs[0].shape[2]:0,lr===-1&&(lr=64),Vs}var VI=Ri,UI=Kd;var Us,z0=[],GI=0,HI=0,Px=Number.MAX_SAFE_INTEGER;async function jI(e){let t=tt(e.modelBasePath,e.face.description?.modelPath||"");return xe.initial&&(Us=null),Us?e.debug&&ee("cached model:",t):(Us=await Qe(t),Us?e.debug&&ee("load model:",t):ee("load model failed:",e.face.description?.modelPath||"")),Us}function Mx(e){return G(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Ge))return null;let s=[[.05,.15,.85,.85]];if(!Us?.inputs[0].shape)return null;let r=n.shape.length===3?_e.cropAndResize(Lt(n,0),s,[0],[Us.inputs[0].shape[2],Us.inputs[0].shape[1]]):_e.cropAndResize(n,s,[0],[Us.inputs[0].shape[2],Us.inputs[0].shape[1]]);return L(r,255)})}async function zx(e,t,n,s){if(!Us)return null;let r=Px<(t.face.description?.skipFrames||0),a=(t.face.description?.skipTime||0)>pe()-GI;return t.skipAllowed&&r&&a&&HI===s&&z0[n]?.age&&z0[n]?.age>0?(Px++,z0[n]):(Px=0,new Promise(async o=>{let i={age:0,gender:"unknown",genderScore:0,descriptor:[]};if(t.face.description?.enabled){let l=Mx(e),c=await Us?.predict(l);GI=pe(),Z(l);let d=await(await c.find(y=>y.shape[1]===1)).data(),p=Math.trunc(200*Math.abs(d[0]-.5))/100;p>(t.face.description?.minConfidence||0)&&(i.gender=d[0]<=.5?"female":"male",i.genderScore=Math.min(.99,p));let h=xs(c.find(y=>y.shape[1]===100),1),f=(await h.data())[0];Z(h);let g=await c.find(y=>y.shape[1]===100).data();i.age=Math.round(g[f-1]>g[f+1]?10*f-100*g[f-1]:10*f+100*g[f+1])/10;let A=c.find(y=>y.shape[1]===1024),x=A?await A.data():[];i.descriptor=Array.from(x),c.forEach(y=>Z(y))}z0[n]=i,HI=s,o(i)}))}function L0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function ep(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function qI(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return _e.cropAndResize(t,a,[0],n)}function XI(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function B0(e,t=1.5){let n=ep(e),s=L0(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function W0(e){let t=ep(e),n=L0(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function dce(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function KI(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return dce(n)}var ZI=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function La(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function pce(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function YI(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(La(e[r],pce(t,a)))}return n}function Lx(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=ZI(t[0],t[1]),o=YI(a,r),i=ZI(-t[0],-t[1]);return YI(o,i)}function JI(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-La(t[0],n),-La(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function Bx(e,t){return[La(e,t[0]),La(e,t[1])]}var QI=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var Wx=class{constructor(t){he(this,"model");he(this,"anchors");he(this,"anchorsTensor");he(this,"inputSize");he(this,"inputSizeTensor");he(this,"doubleInputSizeTensor");this.model=t,this.anchors=QI.map(n=>[n.x,n.y]),this.anchorsTensor=Ys(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=Gt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Gt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return G(()=>{let n=Fe(t,[0,0],[-1,2]),s=Fe(t,[0,2],[-1,2]),r=le(fe(n,this.inputSizeTensor),this.anchorsTensor),a=fe(s,this.doubleInputSizeTensor),o=L(be(r,a),this.inputSizeTensor),i=L(le(r,a),this.inputSizeTensor);return ru([o,i],1)})}normalizeLandmarks(t,n){return G(()=>{let s=le(fe(V(t,[-1,7,2]),this.inputSizeTensor),this.anchors[n]);return L(s,this.inputSizeTensor)})}async getBoxes(t,n){let s={};s.batched=this.model.predict(t),s.predictions=rt(s.batched),s.scores=G(()=>rt(Hn(Fe(s.predictions,[0,0],[-1,1]))));let r=await s.scores.data();s.boxes=Fe(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await _e.nonMaxSuppressionAsync(s.norm,s.scores,3*n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let i of a){let l=Fe(s.norm,[i,0],[1,-1]),c=G(()=>V(this.normalizeLandmarks(Fe(s.predictions,[i,5],[1,14]),i),[-1,2]));o.push({box:l,palmLandmarks:c,confidence:r[i]})}for(let i of Object.keys(s))Z(s[i]);return o}async estimateHandBounds(t,n){let s=t.shape[1],r=t.shape[2],a=G(()=>be(fe(_e.resizeBilinear(t,[this.inputSize,this.inputSize]),127.5),1)),o=await this.getBoxes(a,n);Z(a);let i=[];if(!o||o.length===0)return i;for(let l of o){let c=await l.box.data(),u=c.slice(0,2),d=c.slice(2,4),p=await l.palmLandmarks.array();Z(l.box),Z(l.palmLandmarks),i.push(XI({startPoint:u,endPoint:d,palmLandmarks:p,confidence:l.confidence},[r/this.inputSize,s/this.inputSize]))}return i}};var hce=5,eS=1.65,tS=[0,5,9,13,17,1,2],fce=0,mce=2,nS=0,Vx=class{constructor(t,n){he(this,"handDetector");he(this,"handPoseModel");he(this,"inputSize");he(this,"storedBoxes");he(this,"skipped");he(this,"detectedHands");this.handDetector=t,this.handPoseModel=n,this.inputSize=this.handPoseModel&&this.handPoseModel.inputs[0].shape?this.handPoseModel.inputs[0].shape[2]:0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>Bx([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return B0(W0(r),hce)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=B0(W0(n),eS);s.palmLandmarks=[];for(let r=0;r<tS.length;r++)s.palmLandmarks.push(t[tS[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=L0(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(h=>[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=Lx(s,[0,0]),c=i.map(h=>[...Bx(h,l),h[2]]),u=JI(r),d=[...ep(n),1],p=[La(d,u[0]),La(d,u[1])];return c.map(h=>[Math.trunc(h[0]+p[0]),Math.trunc(h[1]+p[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r,a=(n.hand.skipTime||0)>pe()-nS,o=this.skipped<(n.hand.skipFrames||0);n.skipAllowed&&a&&o&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let i=[];for(let l=0;l<this.storedBoxes.length;l++){let c=this.storedBoxes[l];if(!!c)if(n.hand.landmarks){let u=n.hand.rotation?KI(c.palmLandmarks[fce],c.palmLandmarks[mce]):0,d=ep(c),p=[d[0]/t.shape[2],d[1]/t.shape[1]],h=n.hand.rotation&&xe.kernels.includes("rotatewithoffset")?_e.rotateWithOffset(t,u,0,p):t.clone(),f=Lx(-u,d),m=s?this.getBoxForPalmLandmarks(c.palmLandmarks,f):c,g=qI(m,h,[this.inputSize,this.inputSize]),A=fe(g,255);Z(g),Z(h);let[x,y]=await this.handPoseModel.predict(A);nS=pe(),Z(A);let b=(await x.data())[0];if(Z(x),b>=n.hand.minConfidence/4){let v=V(y,[-1,3]),S=await v.array();Z(y),Z(v);let T=this.transformRawCoords(S,m,u,f),D=this.getBoxForHandLandmarks(T);this.storedBoxes[l]={...D,confidence:b};let F={landmarks:T,confidence:b,boxConfidence:c.confidence,fingerConfidence:b,box:{topLeft:D.startPoint,bottomRight:D.endPoint}};i.push(F)}else this.storedBoxes[l]=null;Z(y)}else{let u=B0(W0(c),eS),d={confidence:c.confidence,boxConfidence:c.confidence,fingerConfidence:0,box:{topLeft:u.startPoint,bottomRight:u.endPoint},landmarks:[]};i.push(d)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=i.length,i.length>n.hand.maxDetected&&(i.length=n.hand.maxDetected),i}};var qe={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>qe.nameMapping[e],getPoints:e=>qe.pointsMapping[e]},Jn={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>Jn.nameMapping[e]},je={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>je.nameMapping[e]},V0=class{constructor(t){he(this,"name");he(this,"curls");he(this,"directions");he(this,"weights");he(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}addCurl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}addDirection(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}setWeight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var Ba=new V0("thumbs up");Ba.addCurl(qe.thumb,Jn.none,1);Ba.addDirection(qe.thumb,je.verticalUp,1);Ba.addDirection(qe.thumb,je.diagonalUpLeft,.25);Ba.addDirection(qe.thumb,je.diagonalUpRight,.25);for(let e of[qe.index,qe.middle,qe.ring,qe.pinky])Ba.addCurl(e,Jn.full,1),Ba.addDirection(e,je.horizontalLeft,1),Ba.addDirection(e,je.horizontalRight,1);var Xt=new V0("victory");Xt.addCurl(qe.thumb,Jn.half,.5);Xt.addCurl(qe.thumb,Jn.none,.5);Xt.addDirection(qe.thumb,je.verticalUp,1);Xt.addDirection(qe.thumb,je.diagonalUpLeft,1);Xt.addCurl(qe.index,Jn.none,1);Xt.addDirection(qe.index,je.verticalUp,.75);Xt.addDirection(qe.index,je.diagonalUpLeft,1);Xt.addCurl(qe.middle,Jn.none,1);Xt.addDirection(qe.middle,je.verticalUp,1);Xt.addDirection(qe.middle,je.diagonalUpLeft,.75);Xt.addCurl(qe.ring,Jn.full,1);Xt.addDirection(qe.ring,je.verticalUp,.2);Xt.addDirection(qe.ring,je.diagonalUpLeft,1);Xt.addDirection(qe.ring,je.horizontalLeft,.2);Xt.addCurl(qe.pinky,Jn.full,1);Xt.addDirection(qe.pinky,je.verticalUp,.2);Xt.addDirection(qe.pinky,je.diagonalUpLeft,1);Xt.addDirection(qe.pinky,je.horizontalLeft,.2);Xt.setWeight(qe.index,2);Xt.setWeight(qe.middle,2);var sS=[Ba,Xt];var gce=.7,Fi={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function rS(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function aS(e,t){if(!e||!t)return[0,0];let n=rS(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=rS(e[1],e[2],t[1],t[2]);return[n,s]}function oS(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function Ace(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],c=e[2]-t[2],u=e[2]-n[2],d=t[2]-n[2],p=Math.sqrt(s*s+o*o+c*c),h=Math.sqrt(r*r+i*i+u*u),f=Math.sqrt(a*a+l*l+d*d),m=(f*f+p*p-h*h)/(2*f*p);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let A;return g>Fi.NO_CURL_START_LIMIT?A=Jn.none:g>Fi.HALF_CURL_START_LIMIT?A=Jn.half:A=Jn.full,A}function iS(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=je.horizontalLeft:r=je.horizontalRight:s===Math.abs(t)?t>0?r=je.horizontalLeft:r=je.horizontalRight:n>0?r=je.horizontalLeft:r=je.horizontalRight,r}function lS(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=je.verticalDown:r=je.verticalUp:s===Math.abs(t)?t<0?r=je.verticalDown:r=je.verticalUp:n<0?r=je.verticalDown:r=je.verticalUp,r}function yce(e,t,n,s,r,a,o,i){let l,c=lS(e,t,n,s),u=iS(r,a,o,i);return c===je.verticalUp?u===je.horizontalLeft?l=je.diagonalUpLeft:l=je.diagonalUpRight:u===je.horizontalLeft?l=je.diagonalDownLeft:l=je.diagonalDownRight,l}function xce(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],c=t[1]-n[1],u=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),d=Math.max(Math.abs(i),Math.abs(l),Math.abs(c)),p=0,h=0,f=0,m=d/(u+1e-5);m>1.5?p+=Fi.DISTANCE_VOTE_POWER:m>.66?h+=Fi.DISTANCE_VOTE_POWER:f+=Fi.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),A=Math.sqrt(a*a+l*l),x=Math.sqrt(o*o+c*c),y=Math.max(g,A,x),b=e[0],v=e[1],S=n[0],T=n[1];y===g?(S=n[0],T=n[1]):y===x&&(b=t[0],v=t[1]);let P=aS([b,v],[S,T]),_=oS(P,Fi.TOTAL_ANGLE_VOTE_POWER);p+=_[0],h+=_[1],f+=_[2];for(let C of s){let M=oS(C,Fi.SINGLE_ANGLE_VOTE_POWER);p+=M[0],h+=M[1],f+=M[2]}let $;return p===Math.max(p,h,f)?$=lS(l,i,c,d):f===Math.max(h,f)?$=iS(a,r,o,u):$=yce(l,i,c,d,a,r,o,u),$}function uS(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of qe.all){let o=qe.getPoints(a),i=[],l=[];for(let c of o){let u=e[c[0]],d=e[c[1]],p=aS(u,d),h=p[0],f=p[1];i.push(h),l.push(f)}t.push(i),n.push(l)}for(let a of qe.all){let o=a===qe.thumb?1:0,i=qe.getPoints(a),l=e[i[o][0]],c=e[i[o+1][1]],u=e[i[3][1]],d=Ace(l,c,u),p=xce(l,c,u,t[a].slice(o));s[a]=d,r[a]=p}return{curls:s,directions:r}}function U0(e){if(!e||e.length===0)return null;let t=uS(e),n={};for(let s of qe.all)n[qe.getName(s)]={curl:Jn.getName(t.curls[s]),direction:je.getName(t.directions[s])};return n}function cS(e){let t=[];if(!e||e.length===0)return t;let n=uS(e);for(let s of sS){let r=s.matchAgainst(n.curls,n.directions);r>=gce&&t.push({name:s.name,confidence:r})}return t}var dS={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},qr,Xr,pS;async function Ux(e,t){let n=await pS.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let u of Object.keys(dS))a[u]=dS[u].map(d=>n[r].landmarks[d]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let u of o)u[0]<i[0]&&(i[0]=u[0]),u[1]<i[1]&&(i[1]=u[1]),u[0]>i[2]&&(i[2]=u[0]),u[1]>i[3]&&(i[3]=u[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let c=U0(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,boxScore:Math.round(100*n[r].boxConfidence)/100,fingerScore:Math.round(100*n[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:c})}return s}async function Gx(e){xe.initial&&(qr=null,Xr=null),!qr||!Xr?([qr,Xr]=await Promise.all([e.hand.enabled?Qe(tt(e.modelBasePath,e.hand.detector?.modelPath||""),{fromTFHub:(e.hand.detector?.modelPath||"").includes("tfhub.dev")}):null,e.hand.landmarks?Qe(tt(e.modelBasePath,e.hand.skeleton?.modelPath||""),{fromTFHub:(e.hand.skeleton?.modelPath||"").includes("tfhub.dev")}):null]),e.hand.enabled&&(!qr||!qr.modelUrl?ee("load model failed:",e.hand.detector?.modelPath||""):e.debug&&ee("load model:",qr.modelUrl),!Xr||!Xr.modelUrl?ee("load model failed:",e.hand.skeleton?.modelPath||""):e.debug&&ee("load model:",Xr.modelUrl))):(e.debug&&ee("cached model:",qr.modelUrl),e.debug&&ee("cached model:",Xr.modelUrl));let t=new Wx(qr);return pS=new Vx(t,Xr),[qr,Xr]}function $i(e,t=[1,1]){let n=[e.map(i=>i[0]),e.map(i=>i[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[s[0],s[1],r[0]-s[0],r[1]-s[1]],o=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:o}}function hS(e,t=[1,1]){let n=[e.map(c=>c[0]),e.map(c=>c[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[(s[0]+r[0])/2,(s[1]+r[1])/2],o=Math.max(a[0]-s[0],a[1]-s[1],-a[0]+r[0],-a[1]+r[1]),i=[Math.trunc(a[0]-o),Math.trunc(a[1]-o),Math.trunc(2*o),Math.trunc(2*o)],l=[i[0]/t[0],i[1]/t[1],i[2]/t[0],i[3]/t[1]];return{box:i,boxRaw:l}}function G0(e,t){let n=[e[2]*t,e[3]*t];return[e[0]-(n[0]-e[2])/2,e[1]-(n[1]-e[3])/2,n[0],n[1]]}function Hx(e){return[Math.max(0,e[1]),Math.max(0,e[0]),Math.min(1,e[3]+e[1]),Math.min(1,e[2]+e[0])]}var vt=[null,null],bce=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],Wa=[[0,0],[0,0]],vce=["hand","fist","pinch","point","face","tip","pinchtip"],fS=4,mS=1.6,wce=512,kce=1.4,H0=Number.MAX_SAFE_INTEGER,jx=0,Kr=[0,0],Wt={boxes:[],hands:[]},gS={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]};async function AS(e){if(xe.initial&&(vt[0]=null),vt[0])e.debug&&ee("cached model:",vt[0].modelUrl);else{Gu(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),vt[0]=await Qe(tt(e.modelBasePath,e.hand.detector?.modelPath||""));let t=Object.values(vt[0].modelSignature.inputs);Wa[0][0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,Wa[0][1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0,!vt[0]||!vt[0].modelUrl?ee("load model failed:",e.hand.detector?.modelPath):e.debug&&ee("load model:",vt[0].modelUrl)}return vt[0]}async function yS(e){if(xe.initial&&(vt[1]=null),vt[1])e.debug&&ee("cached model:",vt[1].modelUrl);else{vt[1]=await Qe(tt(e.modelBasePath,e.hand.skeleton?.modelPath||""));let t=Object.values(vt[1].modelSignature.inputs);Wa[1][0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,Wa[1][1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0,!vt[1]||!vt[1].modelUrl?ee("load model failed:",e.hand.skeleton?.modelPath):e.debug&&ee("load model:",vt[1].modelUrl)}return vt[1]}async function Ice(e,t){let n=[];if(!e||!vt[0])return n;let s={},r=(e.shape[2]||1)/(e.shape[1]||1),a=Math.min(Math.round((e.shape[1]||0)/8)*8,wce),o=Math.round(a*r/8)*8;s.resize=_e.resizeBilinear(e,[a,o]),s.cast=de(s.resize,"int32"),[s.rawScores,s.rawBoxes]=await vt[0].executeAsync(s.cast,bce),s.boxes=rt(s.rawBoxes,[0,2]),s.scores=rt(s.rawScores,[0]);let i=Dn(s.scores,1);Z(i[fS]),i.splice(fS,1),s.filtered=An(i,1),Z(i),s.max=Rn(s.filtered,1),s.argmax=xs(s.filtered,1);let l=0;s.nms=await _e.nonMaxSuppressionAsync(s.boxes,s.max,t.hand.maxDetected,t.hand.iouThreshold,t.hand.minConfidence);let c=await s.nms.data(),u=await s.max.data(),d=await s.argmax.data();for(let p of Array.from(c)){let h=Fe(s.boxes,p,1),f=await h.data();Z(h);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=G0(m,kce),A=Hx(g),x=[Math.trunc(m[0]*Kr[0]),Math.trunc(m[1]*Kr[1]),Math.trunc(m[2]*Kr[0]),Math.trunc(m[3]*Kr[1])],y=u[p],b=vce[d[p]],v={id:l++,score:y,box:x,boxRaw:g,boxCrop:A,label:b};n.push(v)}return Object.keys(s).forEach(p=>Z(s[p])),n.sort((p,h)=>h.score-p.score),n.length>(t.hand.maxDetected||1)&&(n.length=t.hand.maxDetected||1),n}async function qx(e,t,n){let s={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&vt[1]&&n.hand.landmarks&&t.score>(n.hand.minConfidence||0)){let r={};r.crop=_e.cropAndResize(e,[t.boxCrop],[0],[Wa[1][0],Wa[1][1]],"bilinear"),r.cast=de(r.crop,"float32"),r.div=fe(r.cast,255),[r.score,r.keypoints]=vt[1].execute(r.div);let a=(await r.score.data())[0],o=(100-Math.trunc(100/(1+Math.exp(a))))/100;if(o>=(n.hand.minConfidence||0)){s.fingerScore=o,r.reshaped=V(r.keypoints,[-1,3]);let c=(await r.reshaped.array()).map(u=>[u[0]/Wa[1][1],u[1]/Wa[1][0],u[2]||0]).map(u=>[u[0]*t.boxRaw[2],u[1]*t.boxRaw[3],u[2]||0]);s.keypoints=c.map(u=>[Kr[0]*(u[0]+t.boxRaw[0]),Kr[1]*(u[1]+t.boxRaw[1]),u[2]||0]),s.landmarks=U0(s.keypoints);for(let u of Object.keys(gS))s.annotations[u]=gS[u].map(d=>s.landmarks&&s.keypoints[d]?s.keypoints[d]:null)}Object.keys(r).forEach(i=>Z(r[i]))}return s}async function Xx(e,t){if(!vt[0]||!vt[1]||!vt[0]?.inputs[0].shape||!vt[1]?.inputs[0].shape)return[];Kr=[e.shape[2]||0,e.shape[1]||0],H0++;let n=(t.hand.skipTime||0)>pe()-jx,s=H0<(t.hand.skipFrames||0);return t.skipAllowed&&n&&s?Wt.hands:new Promise(async r=>{let a=3*(t.hand.skipTime||0)>pe()-jx,o=H0<3*(t.hand.skipFrames||0);t.skipAllowed&&Wt.hands.length===t.hand.maxDetected?Wt.hands=await Promise.all(Wt.boxes.map(l=>qx(e,l,t))):t.skipAllowed&&a&&o&&Wt.hands.length>0?Wt.hands=await Promise.all(Wt.boxes.map(l=>qx(e,l,t))):(Wt.boxes=await Ice(e,t),jx=pe(),Wt.hands=await Promise.all(Wt.boxes.map(l=>qx(e,l,t))),H0=0);let i=[...Wt.boxes];if(Wt.boxes.length=0,t.cacheSensitivity>0)for(let l=0;l<Wt.hands.length;l++){let c=hS(Wt.hands[l].keypoints,Kr);if(c.box[2]/(e.shape[2]||1)>.05&&c.box[3]/(e.shape[1]||1)>.05&&Wt.hands[l].fingerScore&&Wt.hands[l].fingerScore>(t.hand.minConfidence||0)){let u=G0(c.box,mS),d=G0(c.boxRaw,mS),p=Hx(d);Wt.boxes.push({...i[l],box:u,boxRaw:d,boxCrop:p})}}for(let l=0;l<Wt.hands.length;l++){let c=$i(Wt.hands[l].keypoints,Kr);Wt.hands[l].box=c.box,Wt.hands[l].boxRaw=c.boxRaw}r(Wt.hands)})}var Jx={};_p(Jx,{connected:()=>q0,horizontal:()=>Kx,kpt:()=>j0,relative:()=>Yx,vertical:()=>Zx});var j0=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Kx=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],Zx=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],Yx=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],q0={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var xS=.005,fs={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function Qx(e){for(let t of Kx){let n=e.keypoints.findIndex(r=>r.part===t[0]),s=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[0]<e.keypoints[s].position[0]){let r=e.keypoints[n];e.keypoints[n]=e.keypoints[s],e.keypoints[s]=r}}for(let t of Zx){let n=e.keypoints.findIndex(r=>r&&r.part===t[0]),s=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[1]<e.keypoints[s].position[1]&&e.keypoints.splice(n,1)}for(let[t,n]of Yx){let s=e.keypoints.findIndex(c=>c&&c.part===t[0]),r=e.keypoints.findIndex(c=>c&&c.part===t[1]),a=e.keypoints.findIndex(c=>c&&c.part===n[0]),o=e.keypoints.findIndex(c=>c&&c.part===n[1]);if(!e.keypoints[a]||!e.keypoints[o])continue;let i=e.keypoints[s]?[Math.abs(e.keypoints[a].position[0]-e.keypoints[s].position[0]),Math.abs(e.keypoints[o].position[0]-e.keypoints[s].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[o].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[a].position[0]-e.keypoints[r].position[0])]:[0,0];if(i[0]>i[1]||l[0]>l[1]){let c=e.keypoints[s];e.keypoints[s]=e.keypoints[r],e.keypoints[r]=c}}}function bS(e){for(let t=0;t<e.length;t++)if(e[t]&&fs.keypoints[t]){let n=[Math.abs(e[t].positionRaw[0]-fs.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-fs.keypoints[t].positionRaw[1])];n[0]<xS&&n[1]<xS?e[t]=fs.keypoints[t]:fs.keypoints[t]=e[t]}else fs.keypoints[t]=e[t];return e}function vS(e,t){let n={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;fs.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],n.pad=vs(e,fs.padding),n.resize=_e.resizeBilinear(n.pad,[t,t]);let s=de(n.resize,"int32");return Object.keys(n).forEach(r=>Z(n[r])),s}function wS(e,t){e.keypoints=e.keypoints.filter(s=>s&&s.position);for(let s of e.keypoints)s.position=[s.position[0]*(t[0]+fs.padding[2][0]+fs.padding[2][1])/t[0]-fs.padding[2][0],s.position[1]*(t[1]+fs.padding[1][0]+fs.padding[1][1])/t[1]-fs.padding[1][0]],s.positionRaw=[s.position[0]/t[0],s.position[1]/t[1]];let n=$i(e.keypoints.map(s=>s.position),t);return e.box=n.box,e.boxRaw=n.boxRaw,e}var Ns,X0=0,e5=Number.MAX_SAFE_INTEGER,Oi={boxes:[],bodies:[],last:0};async function kS(e){return xe.initial&&(Ns=null),Ns?e.debug&&ee("cached model:",Ns.modelUrl):(Gu(["size"],e),Ns=await Qe(tt(e.modelBasePath,e.body.modelPath||"")),!Ns||!Ns.modelUrl?ee("load model failed:",e.body.modelPath):e.debug&&ee("load model:",Ns.modelUrl)),X0=Ns.inputs[0].shape?Ns.inputs[0].shape[2]:0,X0===-1&&(X0=256),Ns}async function Sce(e,t,n,s){let r=e[0][0],a=[],o=0;for(let d=0;d<r.length;d++)if(o=r[d][2],o>t.body.minConfidence){let p=[(s[3]-s[1])*r[d][1]+s[1],(s[2]-s[0])*r[d][0]+s[0]];a.push({score:Math.round(100*o)/100,part:j0[d],positionRaw:p,position:[Math.round((n.shape[2]||0)*p[0]),Math.round((n.shape[1]||0)*p[1])]})}o=a.reduce((d,p)=>p.score>d?p.score:d,0);let i=[],l=$i(a.map(d=>d.position),[n.shape[2],n.shape[1]]),c={};for(let[d,p]of Object.entries(q0)){let h=[];for(let f=0;f<p.length-1;f++){let m=a.find(A=>A.part===p[f]),g=a.find(A=>A.part===p[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}c[d]=h}let u={id:0,score:o,box:l.box,boxRaw:l.boxRaw,keypoints:a,annotations:c};return Qx(u),i.push(u),i}async function Cce(e,t,n,s){let r=[];for(let a=0;a<e[0].length;a++){let o=e[0][a],i=Math.round(100*o[51+4])/100;if(i>t.body.minConfidence){let l=[];for(let p=0;p<17;p++){let h=o[3*p+2];if(h>t.body.minConfidence){let f=[(s[3]-s[1])*o[3*p+1]+s[1],(s[2]-s[0])*o[3*p+0]+s[0]];l.push({part:j0[p],score:Math.round(100*h)/100,positionRaw:f,position:[Math.round((n.shape[2]||0)*f[0]),Math.round((n.shape[1]||0)*f[1])]})}}let c=$i(l.map(p=>p.position),[n.shape[2],n.shape[1]]),u={};for(let[p,h]of Object.entries(q0)){let f=[];for(let m=0;m<h.length-1;m++){let g=l.find(x=>x.part===h[m]),A=l.find(x=>x.part===h[m+1]);g&&A&&g.score>(t.body.minConfidence||0)&&A.score>(t.body.minConfidence||0)&&f.push([g.position,A.position])}u[p]=f}let d={id:a,score:i,box:c.box,boxRaw:c.boxRaw,keypoints:[...l],annotations:u};Qx(d),r.push(d)}}return r.sort((a,o)=>o.score-a.score),r.length>t.body.maxDetected&&(r.length=t.body.maxDetected),r}async function t5(e,t){if(!Ns||!Ns?.inputs[0].shape)return[];t.skipAllowed||(Oi.boxes.length=0),e5++;let n=(t.body.skipTime||0)>pe()-Oi.last,s=e5<(t.body.skipFrames||0);return t.skipAllowed&&n&&s?Oi.bodies:new Promise(async r=>{let a={};e5=0,a.input=vS(e,X0),a.res=await Ns?.predict(a.input),Oi.last=pe();let o=await a.res.array();Oi.bodies=a.res.shape[2]===17?await Sce(o,t,e,[0,0,1,1]):await Cce(o,t,e,[0,0,1,1]);for(let i of Oi.bodies)wS(i,[e.shape[2]||1,e.shape[1]||1]),bS(i.keypoints);Object.keys(a).forEach(i=>Z(a[i])),r(Oi.bodies)})}var ms,K0=[],IS=0,n5=Number.MAX_SAFE_INTEGER,Z0=2.5;async function SS(e){if(!ms||xe.initial){ms=await Qe(tt(e.modelBasePath,e.object.modelPath||""));let t=Object.values(ms.modelSignature.inputs);if(ms.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!ms.inputSize)throw new Error(`cannot determine model inputSize: ${e.object.modelPath}`);!ms||!ms.modelUrl?ee("load model failed:",e.object.modelPath):e.debug&&ee("load model:",ms.modelUrl)}else e.debug&&ee("cached model:",ms.modelUrl);return ms}async function Tce(e,t,n,s){let r=0,a=[];for(let c of[1,2,4])G(async()=>{let u=c*13,d=e.find(g=>g.shape[1]===u**2&&g.shape[2]===Uu.length)?.squeeze(),p=e.find(g=>g.shape[1]===u**2&&g.shape[2]<Uu.length)?.squeeze(),f=await p.reshape([-1,4,p.shape[1]/4]).argMax(2).array(),m=await d.array();for(let g=0;g<d.shape[0];g++)for(let A=0;A<d.shape[1];A++){let x=m[g][A];if(x>s.object.minConfidence&&A!==61){let y=(.5+Math.trunc(g%u))/u,b=(.5+Math.trunc(g/u))/u,v=f[g].map(C=>C*(u/c/t)),[S,T]=[y-Z0/c*v[0],b-Z0/c*v[1]],[D,F]=[y+Z0/c*v[2]-S,b+Z0/c*v[3]-T],P=[S,T,D,F];P=P.map(C=>Math.max(0,Math.min(C,1)));let _=[P[0]*n[0],P[1]*n[1],P[2]*n[0],P[3]*n[1]],$={id:r++,score:Math.round(100*x)/100,class:A+1,label:Uu[A].label,box:_.map(C=>Math.trunc(C)),boxRaw:P};a.push($)}}});e.forEach(c=>Z(c));let o=a.map(c=>[c.boxRaw[1],c.boxRaw[0],c.boxRaw[3],c.boxRaw[2]]),i=a.map(c=>c.score),l=[];if(o&&o.length>0){let c=await _e.nonMaxSuppressionAsync(o,i,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);l=await c.data(),Z(c)}return a=a.filter((c,u)=>l.includes(u)).sort((c,u)=>u.score-c.score),a}async function s5(e,t){let n=(t.object.skipTime||0)>pe()-IS,s=n5<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&K0.length>0?(n5++,K0):(n5=0,!xe.kernels.includes("mod")||!xe.kernels.includes("sparsetodense")?K0:new Promise(async r=>{let a=[e.shape[2],e.shape[1]],o=_e.resizeBilinear(e,[ms.inputSize,ms.inputSize],!1),i=fe(o,255),l=i.transpose([0,3,1,2]);Z(i),Z(o);let c;t.object.enabled&&(c=await ms.predict(l)),IS=pe(),Z(l);let u=await Tce(c,ms.inputSize,a,t);K0=u,r(u)}))}var tp=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Nce=tp.length,np=tp.reduce((e,t,n)=>(e[t]=n,e),{}),Ece=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],uhe=Ece.map(([e,t])=>[np[e],np[t]]),CS=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function TS(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function NS(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(c,u)=>({id:u,score:c.score,boxRaw:[c.box[0]/r,c.box[1]/s,c.box[2]/r,c.box[3]/s],box:[Math.trunc(c.box[0]*o),Math.trunc(c.box[1]*a),Math.trunc(c.box[2]*o),Math.trunc(c.box[3]*a)],keypoints:c.keypoints.map(({score:d,part:p,position:h})=>({score:d,part:p,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]}))});return e.map((c,u)=>i(c,u))}var r5=class{constructor(t,n){he(this,"priorityQueue");he(this,"numberOfElements");he(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function a5(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+Nce)}}function o5(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=a5(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function i5(e,t,n){return e<t?t:e>n?n:e}function ES(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function l5(e,t){return{x:e.x+t.x,y:e.y+t.y}}var gs,Rce=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],Y0=1,qu=16,Dce=50**2;function RS(e,t,n,s,r,a,o=2){let i=A=>({y:a.get(A.y,A.x,e),x:a.get(A.y,A.x,a.shape[2]/2+e)}),l=(A,x,y)=>({y:i5(Math.round(A.y/qu),0,x-1),x:i5(Math.round(A.x/qu),0,y-1)}),[c,u]=s.shape,d=l(t.position,c,u),p=i(d),f=l5(t.position,p);for(let A=0;A<o;A++){let x=l(f,c,u),y=a5(x.y,x.x,n,r);f=l5({x:x.x*qu,y:x.y*qu},{x:y.x,y:y.y})}let m=l(f,c,u),g=s.get(m.y,m.x,n);return{position:f,part:tp[n],score:g}}function _ce(e,t,n,s,r){let a=CS.map(([p,h])=>[np[p],np[h]]),o=a.map(([,p])=>p),i=a.map(([p])=>p),l=t.shape[2],c=o.length,u=new Array(l),d=o5(e.part,qu,n);u[e.part.id]={score:e.score,part:tp[e.part.id],position:d};for(let p=c-1;p>=0;--p){let h=o[p],f=i[p];u[h]&&!u[f]&&(u[f]=RS(p,u[h],f,t,n,r))}for(let p=0;p<c;++p){let h=i[p],f=o[p];u[h]&&!u[f]&&(u[f]=RS(p,u[h],f,t,n,s))}return u}function Fce(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-Y0,0),c=Math.min(n+Y0+1,a);for(let u=l;u<c;++u){let d=Math.max(s-Y0,0),p=Math.min(s+Y0+1,o);for(let h=d;h<p;++h)if(r.get(u,h,e)>t){i=!1;break}if(!i)break}return i}function $ce(e,t){let[n,s,r]=t.shape,a=new r5(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let c=t.get(o,i,l);c<e||Fce(l,c,o,i,t)&&a.enqueue({score:c,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function DS(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{let a=r[s]?.position;return a?ES(n,t,a.y,a.x)<=Dce:!1})}function Oce(e,t){return t.reduce((s,{position:r,score:a},o)=>(DS(e,r,o)||(s+=a),s),0)/t.length}function Pce(e,t,n,s,r,a){let o=[],i=$ce(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),c=o5(l.part,qu,e);if(DS(o,c,l.part.id))continue;let u=_ce(l,t,e,n,s);u=u.filter(h=>h.score>a);let d=Oce(o,u),p=TS(u);d>a&&o.push({keypoints:u,box:p,score:Math.round(100*d)/100})}return o}async function u5(e,t){let n=G(()=>{if(!gs.inputs[0].shape)return[];let o=_e.resizeBilinear(e,[gs.inputs[0].shape[2],gs.inputs[0].shape[1]]),i=be(fe(de(o,"float32"),127.5),1),c=gs.execute(i,Rce).map(u=>rt(u,[0]));return c[1]=c[1].sigmoid(),c}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)Z(o);let r=await Pce(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return gs.inputs[0].shape?NS(r,[e.shape[1],e.shape[2]],[gs.inputs[0].shape[2],gs.inputs[0].shape[1]]):[]}async function _S(e){return!gs||xe.initial?(gs=await Qe(tt(e.modelBasePath,e.body.modelPath||"")),!gs||!gs.modelUrl?ee("load model failed:",e.body.modelPath):e.debug&&ee("load model:",gs.modelUrl)):e.debug&&ee("cached model:",gs.modelUrl),gs}var Es,c5=!1;async function d5(e){return!Es||xe.initial?(Es=await Qe(tt(e.modelBasePath,e.segmentation.modelPath||"")),!Es||!Es.modelUrl?ee("load model failed:",e.segmentation.modelPath):e.debug&&ee("load model:",Es.modelUrl)):e.debug&&ee("cached model:",Es.modelUrl),Es}async function FS(e,t,n){if(c5)return{data:[],canvas:null,alpha:null};c5=!0,Es||await d5(n);let s=Vu(e,n),r=s.canvas?.width||0,a=s.canvas?.height||0;if(!s.tensor)return{data:[],canvas:null,alpha:null};let o={};o.resize=_e.resizeBilinear(s.tensor,[Es.inputs[0].shape?Es.inputs[0].shape[1]:0,Es.inputs[0].shape?Es.inputs[0].shape[2]:0],!1),Z(s.tensor),o.norm=fe(o.resize,255),o.res=Es.predict(o.norm),o.squeeze=rt(o.res,0),o.squeeze.shape[2]===2?(o.softmax=ci(o.squeeze),[o.bg,o.fg]=Dn(o.softmax,2),o.expand=Lt(o.fg,2),o.pad=Lt(o.expand,0),o.crop=_e.cropAndResize(o.pad,[[0,0,.5,.5]],[0],[r,a]),o.data=rt(o.crop,0)):o.data=_e.resizeBilinear(o.squeeze,[a,r]);let i=Array.from(await o.data.data());if(xe.node&&!xe.Canvas&&typeof ImageData=="undefined")return n.debug&&ee("canvas support missing"),Object.keys(o).forEach(m=>Z(o[m])),{data:i,canvas:null,alpha:null};let l=zn(r,a);await Os.toPixels(o.data,l);let c=l.getContext("2d");n.segmentation.blur&&n.segmentation.blur>0&&(c.filter=`blur(${n.segmentation.blur}px)`);let u=c.getImageData(0,0,r,a),d=zn(r,a),p=d.getContext("2d");s.canvas&&p.drawImage(s.canvas,0,0),p.globalCompositeOperation="darken",n.segmentation.blur&&n.segmentation.blur>0&&(p.filter=`blur(${n.segmentation.blur}px)`),p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none";let h=p.getImageData(0,0,r,a);for(let m=0;m<r*a;m++)h.data[4*m+3]=u.data[4*m+0];p.putImageData(h,0,0);let f=null;if(t&&d){f=zn(r,a);let m=Vu(t,n);Z(m.tensor);let g=f.getContext("2d");g.drawImage(m.canvas,0,0,f.width,f.height),g.drawImage(d,0,0)}return Object.keys(o).forEach(m=>Z(o[m])),c5=!1,{data:i,canvas:f||d,alpha:l}}var p5=class{constructor(){he(this,"age",null);he(this,"agegenderrace",null);he(this,"blazeposedetect",null);he(this,"blazepose",null);he(this,"centernet",null);he(this,"efficientpose",null);he(this,"embedding",null);he(this,"emotion",null);he(this,"facedetect",null);he(this,"faceiris",null);he(this,"facemesh",null);he(this,"faceres",null);he(this,"gender",null);he(this,"handpose",null);he(this,"handskeleton",null);he(this,"handtrack",null);he(this,"movenet",null);he(this,"nanodet",null);he(this,"posenet",null);he(this,"segmentation",null);he(this,"antispoof",null)}};function h5(e){for(let t of Object.keys(e.models))e.models[t]=null}async function $S(e){xe.initial&&h5(e),e.config.hand.enabled&&(!e.models.handpose&&e.config.hand.detector?.modelPath?.includes("handdetect")&&([e.models.handpose,e.models.handskeleton]=await Gx(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&e.config.hand.detector?.modelPath?.includes("handdetect")&&([e.models.handpose,e.models.handskeleton]=await Gx(e.config))),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=bI(e.config)),e.config.face.enabled&&e.config.face.mesh?.enabled&&!e.models.facemesh&&(e.models.facemesh=WI(e.config)),e.config.face.enabled&&e.config.face.iris?.enabled&&!e.models.faceiris&&(e.models.faceiris=FI(e.config)),e.config.face.enabled&&e.config.face.antispoof?.enabled&&!e.models.antispoof&&(e.models.antispoof=cI(e.config)),e.config.hand.enabled&&!e.models.handtrack&&e.config.hand.detector?.modelPath?.includes("handtrack")&&(e.models.handtrack=AS(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&e.config.hand.detector?.modelPath?.includes("handtrack")&&(e.models.handskeleton=yS(e.config)),e.config.body.enabled&&!e.models.posenet&&e.config.body?.modelPath?.includes("posenet")&&(e.models.posenet=_S(e.config)),e.config.body.enabled&&!e.models.efficientpose&&e.config.body?.modelPath?.includes("efficientpose")&&(e.models.efficientpose=Nx(e.config)),e.config.body.enabled&&!e.models.blazepose&&e.config.body?.modelPath?.includes("blazepose")&&(e.models.blazepose=SI(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector?.modelPath&&e.config.body?.modelPath?.includes("blazepose")&&(e.models.blazeposedetect=II(e.config)),e.config.body.enabled&&!e.models.efficientpose&&e.config.body?.modelPath?.includes("efficientpose")&&(e.models.efficientpose=Nx(e.config)),e.config.body.enabled&&!e.models.movenet&&e.config.body?.modelPath?.includes("movenet")&&(e.models.movenet=kS(e.config)),e.config.object.enabled&&!e.models.nanodet&&e.config.object?.modelPath?.includes("nanodet")&&(e.models.nanodet=SS(e.config)),e.config.object.enabled&&!e.models.centernet&&e.config.object?.modelPath?.includes("centernet")&&(e.models.centernet=NI(e.config)),e.config.face.enabled&&e.config.face.emotion?.enabled&&!e.models.emotion&&(e.models.emotion=_I(e.config)),e.config.face.enabled&&e.config.face.description?.enabled&&!e.models.faceres&&(e.models.faceres=jI(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=d5(e.config)),e.config.face.enabled&&e.config.face.agegenderrace?.enabled&&!e.models.agegenderrace&&(e.models.agegenderrace=iI(e.config));for await(let t of Object.keys(e.models))e.models[t]&&typeof e.models[t]!="undefined"&&(e.models[t]=await e.models[t])}async function OS(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let n of Object.keys(e.models))if(e.models[n]){let s=[];Array.isArray(e.models[n])?s=e.models[n].filter(r=>r!==null).map(r=>r&&r.executor?r:r.model):s=[e.models[n]];for(let r of s){if(!r){e.config.debug&&ee("model marked as loaded but not defined:",n);continue}let a=[],o=r?.executor;if(o&&o.graph.nodes)for(let l of Object.values(o.graph.nodes)){let c=l.op.toLowerCase();a.includes(c)||a.push(c)}else!o&&e.config.debug&&ee("model signature not determined:",n);let i=[];for(let l of a)!t.includes(l)&&!e.env.kernels.includes(l)&&!e.env.kernels.includes(l.replace("_",""))&&!e.env.kernels.includes(l.replace("native",""))&&!e.env.kernels.includes(l.replace("v2",""))&&i.push(l);i.length>0&&e.config.debug&&ee("model validation:",n,i)}}}var $t={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Mce(){let e=$t.gl;!e||($t.extensions=e.getSupportedExtensions())}async function PS(e){if(e.config.backend==="humangl"&&($t.name in ts().registry&&(!$t.gl||!$t.gl.getParameter($t.gl.VERSION))&&(ee("error: humangl backend invalid context"),h5(e)),!mA($t.name))){try{$t.canvas=await zn(100,100)}catch(n){ee("error: cannot create canvas:",n);return}try{$t.gl=$t.canvas?.getContext("webgl2",$t.webGLattr),$t.canvas&&($t.canvas.addEventListener("webglcontextlost",async n=>{throw ee("error: humangl:",n.type),ee("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("browser webgl error")}),$t.canvas.addEventListener("webglcontextrestored",n=>{ee("error: humangl context restored:",n)}),$t.canvas.addEventListener("webglcontextcreationerror",n=>{ee("error: humangl context create:",n)}))}catch(n){ee("error: cannot get WebGL context:",n);return}try{o0(2,$t.gl)}catch(n){ee("error: cannot set WebGL context:",n);return}try{let n=new m0($t.gl);tu($t.name,()=>new Ou(n),$t.priority)}catch(n){ee("error: cannot register WebGL backend:",n);return}try{Or("webgl").forEach(s=>{let r={...s,backendName:$t.name};da(r)})}catch(n){ee("error: cannot update WebGL backend registration:",n);return}let t=gr().getGPGPUContext?gr().getGPGPUContext().gl:null;if(t)ee(`humangl webgl version:${t.getParameter(t.VERSION)} renderer:${t.getParameter(t.RENDERER)}`);else{ee("error: no current gl context:",t,$t.gl);return}try{hr.set("WEBGL_VERSION",2)}catch(n){ee("error: cannot set WebGL backend flags:",n);return}Mce(),ee("backend registered:",$t.name)}}async function J0(e,t=!1){if(e.state="backend",t||xe.initial||e.config.backend&&e.config.backend.length>0&&Ks()!==e.config.backend){let n=pe();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&ee("running inside web worker"),xe.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&ee("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),xe.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&ee(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),xe.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")ee("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();e.config.debug&&ee("enumerated webgpu adapter:",r)}e.config.backend==="humangl"&&await PS(e);let s=Object.keys(ts().registryFactory);if(e.config.debug&&ee("available backends:",s),s.includes(e.config.backend)||(ee(`error: backend ${e.config.backend} not found in registry`),e.config.backend=xe.node?"tensorflow":"webgl",e.config.debug&&ee(`override: setting backend ${e.config.backend}`)),e.config.debug&&ee("setting backend:",e.config.backend),e.config.backend==="wasm"){if(e.config.debug&&ee("wasm path:",e.config.wasmPath),typeof qd?.setWasmPaths!="undefined")await K8(e.config.wasmPath);else throw new Error("wasm backend is not loaded");let r=await Y().getAsync("WASM_HAS_SIMD_SUPPORT"),a=await Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&ee(`wasm execution: ${r?"SIMD":"no SIMD"} ${a?"multithreaded":"singlethreaded"}`),e.config.debug&&!r&&ee("warning: wasm simd support is not enabled")}try{await t3(e.config.backend),await _h()}catch(r){return ee("error: cannot set backend:",e.config.backend,r),!1}}if(Ks()==="humangl"&&(hr.set("CHECK_COMPUTATION_FOR_ERRORS",!1),hr.set("WEBGL_CPU_FORWARD",!0),hr.set("WEBGL_USE_SHAPES_UNIFORMS",!0),hr.set("CPU_HANDOFF_SIZE_THRESHOLD",256),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(ee("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),hr.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),gr().getGPGPUContext)){let s=await gr().getGPGPUContext().gl;e.config.debug&&ee(`gl version:${s.getParameter(s.VERSION)} renderer:${s.getParameter(s.RENDERER)}`)}Ks()==="webgpu",e3(),await _h(),e.performance.initBackend=Math.trunc(pe()-n),e.config.backend=Ks(),xe.updateBackend()}return!0}function Gu(e,t){for(let n of e){let s={kernelName:n,backendName:t.backend,kernelFunc:()=>{t.debug&&ee("kernelFunc",n,t.backend)}};da(s)}xe.kernels=Or(Ks()).map(n=>n.kernelName.toLowerCase())}var Zr={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1},f5=0,Pi=e=>{if(e&&e.getContext)return e.getContext("2d");throw new Error("invalid canvas")},Xu=e=>Math.round(e*180/Math.PI);function m5(e,t,n,s=0,r){e.fillStyle=r.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function sp(e,t,n,s,r,a){if(e.beginPath(),a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function MS(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t){let r=s[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(s[0],Math.round(s[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function zce(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){MS(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function zS(e,t,n,s=5){let r,a,o;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(n[0],n[1]),r=Math.atan2(n[1]-t[1],n[0]-t[0]),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.moveTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),e.closePath(),e.stroke(),e.fill()}async function g5(e,t,n){let s=kn(Zr,n);if(!(!t||!e)&&s.drawGestures){let r=Pi(e);r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let c=i[1]>0?`#${i[1]}`:"",u=`${i[0]} ${c}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(u,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(u,6,0+a*s.lineHeight),a+=1}}}}async function A5(e,t,n){let s=kn(Zr,n);if(!t||!e)return;let r=Pi(e);for(let a of t){if(r.font=s.font,r.strokeStyle=s.color,r.fillStyle=s.color,s.drawBoxes&&sp(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=[];if(o.push(`face: ${Math.trunc(100*a.score)}%`),a.genderScore&&o.push(`${a.gender||""} ${Math.trunc(100*a.genderScore)}%`),a.age&&o.push(`age: ${a.age||""}`),a.iris&&o.push(`distance: ${a.iris}`),a.real&&o.push(`real: ${Math.trunc(100*a.real)}%`),a.emotion&&a.emotion.length>0){let i=a.emotion.map(l=>`${Math.trunc(100*l.score)}% ${l.emotion}`);i.length>3&&(i.length=3),o.push(i.join(" "))}a.rotation&&a.rotation.angle&&a.rotation.gaze&&(a.rotation.angle.roll&&o.push(`roll: ${Xu(a.rotation.angle.roll)}\xB0 yaw:${Xu(a.rotation.angle.yaw)}\xB0 pitch:${Xu(a.rotation.angle.pitch)}\xB0`),a.rotation.gaze.bearing&&o.push(`gaze: ${Xu(a.rotation.gaze.bearing)}\xB0`)),o.length===0&&o.push("face"),r.fillStyle=s.color;for(let i=o.length-1;i>=0;i--){let l=Math.max(a.box[0],0),c=i*s.lineHeight+a.box[1];s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o[i],l+5,c+16)),r.fillStyle=s.labelColor,r.fillText(o[i],l+4,c+15)}}if(r.lineWidth=1,a.mesh&&a.mesh.length>0){if(s.drawPoints)for(let o of a.mesh)m5(r,o[0],o[1],o[2],s);if(s.drawPolygons){if(r.lineWidth=1,a.mesh.length>450)for(let o=0;o<Ri.length/3;o++){let i=[Ri[o*3+0],Ri[o*3+1],Ri[o*3+2]].map(l=>a.mesh[l]);MS(r,i,s)}if(a.annotations&&a.annotations.leftEyeIris&&a.annotations.leftEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let o=Math.abs(a.annotations.leftEyeIris[3][0]-a.annotations.leftEyeIris[1][0])/2,i=Math.abs(a.annotations.leftEyeIris[4][1]-a.annotations.leftEyeIris[2][1])/2;r.ellipse(a.annotations.leftEyeIris[0][0],a.annotations.leftEyeIris[0][1],o,i,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(a.annotations&&a.annotations.rightEyeIris&&a.annotations.rightEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let o=Math.abs(a.annotations.rightEyeIris[3][0]-a.annotations.rightEyeIris[1][0])/2,i=Math.abs(a.annotations.rightEyeIris[4][1]-a.annotations.rightEyeIris[2][1])/2;r.ellipse(a.annotations.rightEyeIris[0][0],a.annotations.rightEyeIris[0][1],o,i,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(s.drawGaze&&a.rotation?.angle){r.strokeStyle="pink";let o=a.box[0]+a.box[2]/2-a.box[3]*Xu(a.rotation.angle.yaw)/90,i=a.box[1]+a.box[3]/2+a.box[2]*Xu(a.rotation.angle.pitch)/90,l=new Path2D(`
|
|
M ${a.box[0]+a.box[2]/2} ${a.box[1]}
|
|
C
|
|
${o} ${a.box[1]},
|
|
${o} ${a.box[1]+a.box[3]},
|
|
${a.box[0]+a.box[2]/2} ${a.box[1]+a.box[3]}
|
|
`),c=new Path2D(`
|
|
M ${a.box[0]} ${a.box[1]+a.box[3]/2}
|
|
C
|
|
${a.box[0]} ${i},
|
|
${a.box[0]+a.box[2]} ${i},
|
|
${a.box[0]+a.box[2]} ${a.box[1]+a.box[3]/2}
|
|
`);r.stroke(c),r.stroke(l)}if(s.drawGaze&&a.rotation?.gaze?.strength&&a.rotation?.gaze?.bearing&&a.annotations.leftEyeIris&&a.annotations.rightEyeIris&&a.annotations.leftEyeIris[0]&&a.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.fillStyle="pink";let o=[a.annotations.leftEyeIris[0][0]+Math.sin(a.rotation.gaze.bearing)*a.rotation.gaze.strength*a.box[3],a.annotations.leftEyeIris[0][1]+Math.cos(a.rotation.gaze.bearing)*a.rotation.gaze.strength*a.box[2]];zS(r,[a.annotations.leftEyeIris[0][0],a.annotations.leftEyeIris[0][1]],[o[0],o[1]],4);let i=[a.annotations.rightEyeIris[0][0]+Math.sin(a.rotation.gaze.bearing)*a.rotation.gaze.strength*a.box[3],a.annotations.rightEyeIris[0][1]+Math.cos(a.rotation.gaze.bearing)*a.rotation.gaze.strength*a.box[2]];zS(r,[a.annotations.rightEyeIris[0][0],a.annotations.rightEyeIris[0][1]],[i[0],i[1]],4)}}}}}async function y5(e,t,n){let s=kn(Zr,n);if(!t||!e)return;let r=Pi(e);r.lineJoin="round";for(let a=0;a<t.length;a++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[a].box&&t[a].box?.length===4&&(sp(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[a].score}%`,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[a].score}%`,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2]))),s.drawPoints&&t[a].keypoints)for(let o=0;o<t[a].keypoints.length;o++)r.fillStyle=s.useDepth&&t[a].keypoints[o].position[2]?`rgba(${127.5+2*(t[a].keypoints[o].position[2]||0)}, ${127.5-2*(t[a].keypoints[o].position[2]||0)}, 255, 0.5)`:s.color,m5(r,t[a].keypoints[o].position[0],t[a].keypoints[o].position[1],0,s);if(s.drawLabels&&t[a].keypoints){r.font=s.font;for(let o of t[a].keypoints)r.fillStyle=s.useDepth&&o.position[2]?`rgba(${127.5+2*o.position[2]}, ${127.5-2*o.position[2]}, 255, 0.5)`:s.color,r.fillText(`${o.part} ${Math.trunc(100*o.score)}%`,o.position[0]+4,o.position[1]+4)}if(s.drawPolygons&&t[a].keypoints&&t[a].annotations)for(let o of Object.values(t[a].annotations))for(let i of o)zce(r,i,s)}}async function x5(e,t,n){let s=kn(Zr,n);if(!t||!e)return;let r=Pi(e);r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,sp(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=s.useDepth?`rgba(${127.5+2*(o[2]||0)}, ${127.5-2*(o[2]||0)}, 255, 0.5)`:s.color,m5(r,o[0],o[1],0,s);if(s.drawLabels&&a.annotations){let o=(i,l)=>{!i||i.length===0||!i[0]||(r.fillStyle=s.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:s.color,r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4))};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons&&a.annotations){let o=i=>{if(!(!i||i.length===0||!i[0]))for(let l=0;l<i.length;l++)r.beginPath(),r.strokeStyle=s.useDepth?`rgba(${127.5+2*i[l][2]}, ${127.5-2*i[l][2]}, 255, 0.5)`:s.color,r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}async function b5(e,t,n){let s=kn(Zr,n);if(!t||!e)return;let r=Pi(e);r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,sp(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}async function LS(e,t,n){let s=kn(Zr,n);if(!t||!e)return;let r=Pi(e);r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,sp(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}async function BS(e,t){if(!e||!t)return;Pi(t).drawImage(e,0,0)}async function WS(e,t,n){if(!t||!t.performance||!t||!e)return null;let s=pe(),r=kn(Zr,n),a=Promise.all([A5(e,t.face,r),y5(e,t.body,r),x5(e,t.hand,r),b5(e,t.object,r),g5(e,t.gesture,r)]);return f5=xe.perfadd?f5+Math.round(pe()-s):Math.round(pe()-s),t.performance.draw=f5,a}var Lce=e=>{let t=(d,p)=>Math.atan2(d[1]-p[1],d[0]-p[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=e.mesh[33][2]>e.mesh[263][2],a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],c=Math.sqrt(l[0]**2+l[1]**2);return c=Math.min(c,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:c}},VS=(e,t)=>{let n=g=>{let A=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=A,g[1]/=A,g[2]/=A,g},s=(g,A)=>{let x=g[0]-A[0],y=g[1]-A[1],b=g[2]-A[2];return[x,y,b]},r=(g,A)=>{let x=g[1]*A[2]-g[2]*A[1],y=g[2]*A[0]-g[0]*A[2],b=g[0]*A[1]-g[1]*A[0];return[x,y,b]},a=g=>{let[A,x,y,b,v,S,T,D,F]=g,P,_,$;return b<1?b>-1?($=Math.asin(b),_=Math.atan2(-T,A),P=Math.atan2(-S,v)):($=-Math.PI/2,_=-Math.atan2(D,F),P=0):($=Math.PI/2,_=Math.atan2(D,F),P=0),isNaN(P)&&(P=0),isNaN(_)&&(_=0),isNaN($)&&($=0),{pitch:2*-P,yaw:2*-_,roll:2*-$}},o=g=>{let A=(y,b,v,S)=>Math.atan2(S-b,v-y);return{pitch:A(g[10][1],g[10][2],g[152][1],g[152][2]),yaw:A(g[33][0],g[33][2],g[263][0],g[263][2]),roll:A(g[33][0],g[33][1],g[263][0],g[263][1])}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,c=[i[10],i[152],i[234],i[454]].map(g=>[g[0]*t[0]/l,g[1]*t[1]/l,g[2]]),u=n(s(c[1],c[0])),d=n(s(c[3],c[2])),p=n(r(d,u));d=r(u,p);let h=[d[0],d[1],d[2],u[0],u[1],u[2],p[0],p[1],p[2]],f=a(h),m=i.length===478?Lce(e):{bearing:0,strength:0};return{angle:f,matrix:h,gaze:m}};var v5=async(e,t)=>{let n,s,r,a,o,i,l,c,u=[];e.state="run:face",n=pe();let d=await BI(t,e.config);if(e.performance.face=xe.perfadd?(e.performance.face||0)+Math.trunc(pe()-n):Math.trunc(pe()-n),!t.shape||t.shape.length!==4)return[];if(!d)return[];for(let p=0;p<d.length;p++){if(e.analyze("Get Face"),!d[p].tensor||d[p].tensor.isDisposedInternal){ee("Face object is disposed:",d[p].tensor);continue}let h=VS(d[p],[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?o=e.config.face.emotion.enabled?_x(d[p].tensor||zt([]),e.config,p,d.length):null:(e.state="run:emotion",n=pe(),o=e.config.face.emotion.enabled?await _x(d[p].tensor||zt([]),e.config,p,d.length):null,e.performance.emotion=xe.perfadd?(e.performance.emotion||0)+Math.trunc(pe()-n):Math.trunc(pe()-n)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?l=e.config.face.antispoof.enabled?lx(d[p].tensor||zt([]),e.config,p,d.length):null:(e.state="run:antispoof",n=pe(),l=e.config.face.antispoof.enabled?await lx(d[p].tensor||zt([]),e.config,p,d.length):null,e.performance.antispoof=xe.perfadd?(e.performance.antispoof||0)+Math.trunc(pe()-n):Math.trunc(pe()-n)),e.analyze("End AntiSpoof:"),e.analyze("Start Description:"),e.config.async?c=e.config.face.description.enabled?zx(d[p].tensor||zt([]),e.config,p,d.length):null:(e.state="run:description",n=pe(),c=e.config.face.description.enabled?await zx(d[p].tensor||zt([]),e.config,p,d.length):null,e.performance.description=xe.perfadd?(e.performance.description||0)+Math.trunc(pe()-n):Math.trunc(pe()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,c,r,l]=await Promise.all([s,a,o,i,c,r,l])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&d[p]?.annotations?.leftEyeIris&&d[p]?.annotations?.rightEyeIris&&(delete d[p].annotations.leftEyeIris,delete d[p].annotations.rightEyeIris);let f=d[p].annotations&&d[p].annotations.leftEyeIris&&d[p].annotations.leftEyeIris[0]&&d[p].annotations.rightEyeIris&&d[p].annotations.rightEyeIris[0]&&d[p].annotations.leftEyeIris.length>0&&d[p].annotations.rightEyeIris.length>0&&d[p].annotations.leftEyeIris[0]!==null&&d[p].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(d[p].annotations.leftEyeIris[3][0]-d[p].annotations.leftEyeIris[1][0]),Math.abs(d[p].annotations.rightEyeIris[4][1]-d[p].annotations.rightEyeIris[2][1]))/t.shape[2]:0,m=e.config.face.detector.return?rt(d[p].tensor):null;Z(d[p].tensor),d[p].tensor&&delete d[p].tensor,u.push({...d[p],id:p,age:c?.age,gender:c?.gender,genderScore:c?.genderScore,embedding:c?.descriptor,emotion:o,real:l,iris:f!==0?Math.trunc(500/f/11.7)/100:0,rotation:h,tensor:m}),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),u};var US=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position[1]<a.position[1]&&r.position[1]<a.position[1]?t.push({body:n,gesture:"i give up"}):a&&s&&s.position[1]<a.position[1]?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position[1]<a.position[1]&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&t.push({body:n,gesture:`leaning ${o.position[1]>i.position[1]?"left":"right"}`})}return t},GS=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>450){let s=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(s)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));o>10&&t.push({face:n,gesture:`mouth ${Math.trunc(o)}% open`});let i=e[n].mesh[152][2];Math.abs(i)>10&&t.push({face:n,gesture:`head ${i<0?"up":"down"}`})}return t},HS=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.leftEyeIris[0]||!e[n].annotations.rightEyeIris||!e[n].annotations.rightEyeIris[0])continue;let s=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],a=Math.abs(s*r),o=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],i=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(o*i),c=!1;Math.abs(a-l)/Math.max(a,l)<.25&&(c=!0,t.push({iris:n,gesture:"facing center"}));let d=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2],p=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2];(p>.06||d>.06)&&(c=!1),p>.06&&t.push({iris:n,gesture:"looking right"}),d>.06&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||h<.01||f>.022||h>.022)&&(c=!1),(f<.01||h<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||h>.022)&&t.push({iris:n,gesture:"looking up"}),c&&t.push({iris:n,gesture:"looking center"})}return t},jS=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];if(e[n].annotations)for(let[r,a]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(a)&&a[0]&&s.push({name:r.toLowerCase(),position:a[0]});if(s&&s.length>0){let r=s.reduce((o,i)=>o.position[2]<i.position[2]?o:i);t.push({hand:n,gesture:`${r.name} forward`});let a=s.reduce((o,i)=>o.position[1]<i.position[1]?o:i);t.push({hand:n,gesture:`${a.name} up`})}if(e[n].keypoints){let r=cS(e[n].keypoints);for(let a of r)t.push({hand:n,gesture:a.name})}}return t};var Oe={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0},w5=0;function qS(e,t){let n=pe();if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};let s=Date.now()-e.timestamp,r=s<1e3?8-Math.log(s+1):1;if(Oe.canvas=e.canvas,!Oe.body||e.body.length!==Oe.body.length)Oe.body=JSON.parse(JSON.stringify(e.body));else for(let o=0;o<e.body.length;o++){let i=e.body[o].box.map((p,h)=>((r-1)*Oe.body[o].box[h]+p)/r),l=e.body[o].boxRaw.map((p,h)=>((r-1)*Oe.body[o].boxRaw[h]+p)/r),c=e.body[o].keypoints.map((p,h)=>({score:p.score,part:p.part,position:[Oe.body[o].keypoints[h]?((r-1)*Oe.body[o].keypoints[h].position[0]+p.position[0])/r:p.position[0],Oe.body[o].keypoints[h]?((r-1)*Oe.body[o].keypoints[h].position[1]+p.position[1])/r:p.position[1]],positionRaw:[Oe.body[o].keypoints[h]?((r-1)*Oe.body[o].keypoints[h].positionRaw[0]+p.positionRaw[0])/r:p.position[0],Oe.body[o].keypoints[h]?((r-1)*Oe.body[o].keypoints[h].positionRaw[1]+p.positionRaw[1])/r:p.position[1]]})),u={},d={connected:{}};t.body?.modelPath?.includes("efficientpose")?d=Cx:t.body?.modelPath?.includes("blazepose")?d=yx:t.body?.modelPath?.includes("movenet")&&(d=Jx);for(let[p,h]of Object.entries(d.connected)){let f=[];for(let m=0;m<h.length-1;m++){let g=c.find(x=>x.part===h[m]),A=c.find(x=>x.part===h[m+1]);g&&A&&g.score>(t.body.minConfidence||0)&&A.score>(t.body.minConfidence||0)&&f.push([g.position,A.position])}u[p]=f}Oe.body[o]={...e.body[o],box:i,boxRaw:l,keypoints:c,annotations:u}}if(!Oe.hand||e.hand.length!==Oe.hand.length)Oe.hand=JSON.parse(JSON.stringify(e.hand));else for(let o=0;o<e.hand.length;o++){let i=e.hand[o].box.map((d,p)=>((r-1)*Oe.hand[o].box[p]+d)/r),l=e.hand[o].boxRaw.map((d,p)=>((r-1)*Oe.hand[o].boxRaw[p]+d)/r);Oe.hand[o].keypoints.length!==e.hand[o].keypoints.length&&(Oe.hand[o].keypoints=e.hand[o].keypoints);let c=e.hand[o].keypoints&&e.hand[o].keypoints.length>0?e.hand[o].keypoints.map((d,p)=>d.map((h,f)=>((r-1)*(Oe.hand[o].keypoints[p][f]||1)+(h||0))/r)):[],u={};if(Object.keys(Oe.hand[o].annotations).length!==Object.keys(e.hand[o].annotations).length)Oe.hand[o].annotations=e.hand[o].annotations,u=Oe.hand[o].annotations;else if(e.hand[o].annotations)for(let d of Object.keys(e.hand[o].annotations))u[d]=e.hand[o].annotations[d]&&e.hand[o].annotations[d][0]?e.hand[o].annotations[d].map((p,h)=>p.map((f,m)=>((r-1)*Oe.hand[o].annotations[d][h][m]+f)/r)):null;Oe.hand[o]={...e.hand[o],box:i,boxRaw:l,keypoints:c,annotations:u}}if(!Oe.face||e.face.length!==Oe.face.length)Oe.face=JSON.parse(JSON.stringify(e.face));else for(let o=0;o<e.face.length;o++){let i=e.face[o].box.map((u,d)=>((r-1)*Oe.face[o].box[d]+u)/r),l=e.face[o].boxRaw.map((u,d)=>((r-1)*Oe.face[o].boxRaw[d]+u)/r),c={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};c.matrix=e.face[o].rotation?.matrix,c.angle={roll:((r-1)*(Oe.face[o].rotation?.angle?.roll||0)+(e.face[o].rotation?.angle?.roll||0))/r,yaw:((r-1)*(Oe.face[o].rotation?.angle?.yaw||0)+(e.face[o].rotation?.angle?.yaw||0))/r,pitch:((r-1)*(Oe.face[o].rotation?.angle?.pitch||0)+(e.face[o].rotation?.angle?.pitch||0))/r},c.gaze={bearing:((r-1)*(Oe.face[o].rotation?.gaze?.bearing||0)+(e.face[o].rotation?.gaze?.bearing||0))/r,strength:((r-1)*(Oe.face[o].rotation?.gaze?.strength||0)+(e.face[o].rotation?.gaze?.strength||0))/r},Oe.face[o]={...e.face[o],rotation:c,box:i,boxRaw:l}}if(!Oe.object||e.object.length!==Oe.object.length)Oe.object=JSON.parse(JSON.stringify(e.object));else for(let o=0;o<e.object.length;o++){let i=e.object[o].box.map((c,u)=>((r-1)*Oe.object[o].box[u]+c)/r),l=e.object[o].boxRaw.map((c,u)=>((r-1)*Oe.object[o].boxRaw[u]+c)/r);Oe.object[o]={...e.object[o],box:i,boxRaw:l}}if(e.persons){let o=e.persons;if(!Oe.persons||o.length!==Oe.persons.length)Oe.persons=JSON.parse(JSON.stringify(o));else for(let i=0;i<o.length;i++)Oe.persons[i].box=o[i].box.map((l,c)=>((r-1)*Oe.persons[i].box[c]+l)/r)}e.gesture&&(Oe.gesture=e.gesture);let a=pe();return w5=xe.perfadd?w5+Math.round(a-n):Math.round(a-n),e.performance&&(Oe.performance={...e.performance,interpolate:w5}),Oe}function Q0(e,t,n={order:2,multiplier:20}){let s=0;for(let r=0;r<e.length;r++){let a=!n.order||n.order===2?e[r]-t[r]:Math.abs(e[r]-t[r]);s+=!n.order||n.order===2?a*a:a**n.order}return(n.multiplier||20)*s}function XS(e,t,n={order:2,multiplier:20}){let s=Q0(e,t,n),r=!n.order||n.order===2?Math.sqrt(s):s**(1/n.order);return Math.max(0,100-r)/100}function KS(e,t,n={order:2,multiplier:20,threshold:0}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0||e.length!==t[0].length)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let s=Number.MAX_SAFE_INTEGER,r=-1;for(let a=0;a<t.length;a++){let o=Q0(e,t[a],n);if(o<s&&(s=o,r=a),s<(n.threshold||0))break}return s=!n.order||n.order===2?Math.sqrt(s):s**(1/n.order),{index:r,distance:s,similarity:Math.max(0,100-s)/100}}function ZS(e,t,n,s,r){let a=0,o=[];for(let i of e){let l={id:a++,face:i,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let f of t)i.box[0]>f.box[0]&&i.box[0]<f.box[0]+f.box[2]&&i.box[1]+i.box[3]>f.box[1]&&i.box[1]+i.box[3]<f.box[1]+f.box[3]&&(l.body=f);if(l.body)for(let f of n)f.box[0]+f.box[2]>l.body.box[0]&&f.box[0]+f.box[2]<l.body.box[0]+l.body.box[2]&&f.box[1]+f.box[3]>l.body.box[1]&&f.box[1]+f.box[3]<l.body.box[1]+l.body.box[3]&&l.hands&&(l.hands.left=f),f.box[0]<l.body.box[0]+l.body.box[2]&&f.box[0]>l.body.box[0]&&f.box[1]+f.box[3]>l.body.box[1]&&f.box[1]+f.box[3]<l.body.box[1]+l.body.box[3]&&l.hands&&(l.hands.right=f);for(let f of s)(f.face!==void 0&&f.face===i.id||f.iris!==void 0&&f.iris===i.id||f.body!==void 0&&f.body===l.body?.id||f.hand!==void 0&&f.hand===l.hands?.left?.id||f.hand!==void 0&&f.hand===l.hands?.right?.id)&&l.gestures?.push(f);let c=[],u=[],d=f=>{f&&f.length===4&&(c.push(f[0],f[0]+f[2]),u.push(f[1],f[1]+f[3]))};d(l.face?.box),d(l.body?.box),d(l.hands?.left?.box),d(l.hands?.right?.box);let p=Math.min(...c),h=Math.min(...u);l.box=[p,h,Math.max(...c)-p,Math.max(...u)-h],r&&r[1]&&r[2]&&(l.boxRaw=[l.box[0]/r[2],l.box[1]/r[1],l.box[2]/r[2],l.box[3]/r[1]]),o.push(l)}return o}var em=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,tm=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;async function Bce(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(em);break;case"body":case"full":n=await t(tm);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function Wce(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+em;break;case"full":case"body":n="data:image/jpeg;base64,"+tm;break;default:n=null}let s;typeof Image!="undefined"?s=new Image:xe.Image&&(s=new xe.Image),s.onload=async()=>{let r=zn(s.naturalWidth,s.naturalHeight);if(!r)ee("Warmup: Canvas not found"),t({});else{let a=r.getContext("2d");a&&a.drawImage(s,0,0);let o=await e.image(r),i=await e.detect(o.tensor,e.config);t(i)}},n?s.src=n:t(null)})}async function Vce(e){let t=r=>Buffer.from(r,"base64"),n;if(e.config.warmup==="face"&&(n=t(em)),(e.config.warmup==="body"||e.config.warmup==="full")&&(n=t(tm)),!n)return null;let s;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&ee("Warmup tfjs-node not loaded");return s}async function YS(e,t){let n=pe();if(e.state="warmup",t&&(e.config=kn(e.config,t)),!e.config.warmup||e.config.warmup==="none")return{error:"null"};let s;return new Promise(async r=>{typeof createImageBitmap=="function"?s=await Bce(e):typeof Image!="undefined"||xe.Canvas!==void 0?s=await Wce(e):s=await Vce(e);let a=pe();e.config.debug&&ee("Warmup",e.config.warmup,Math.round(a-n),"ms"),e.emit("warmup"),r(s)})}var Ku,rp,ap,nm,Uce=class{constructor(t){he(this,"version");he(this,"config");he(this,"result");he(this,"state");he(this,"process");he(this,"tf");he(this,"env");he(this,"draw");he(this,"models");he(this,"events");he(this,"faceTriangulation");he(this,"faceUVMap");he(this,"performance");uc(this,Ku,void 0);uc(this,rp,void 0);uc(this,ap,void 0);he(this,"gl");he(this,"analyze",(...t)=>{if(!lc(this,rp))return;let n=this.tf.engine().state.numTensors,s=lc(this,Ku);cc(this,Ku,n);let r=n-s;r!==0&&ee(...t,r)});uc(this,nm,t=>{if(!lc(this,ap))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof Ge))return"input must be a tensor";try{this.tf.getBackend()}catch{return"backend not loaded"}return null});he(this,"similarity",XS);he(this,"distance",Q0);he(this,"match",KS);he(this,"emit",t=>{this.events&&this.events.dispatchEvent&&this.events?.dispatchEvent(new Event(t))});this.env=xe,ja.wasmPath=Wc.includes("-")?"https://vladmandic.github.io/tfjs/dist/":`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${Wc}/dist/`,ja.modelBasePath=xe.browser?"../models/":"file://models/",ja.backend=xe.browser?"humangl":"tensorflow",this.version=ox,Object.defineProperty(this,"version",{value:ox}),this.config=JSON.parse(JSON.stringify(ja)),Object.seal(this.config),t&&(this.config=kn(this.config,t)),this.tf=qd,this.state="idle",cc(this,Ku,0),cc(this,rp,!1),cc(this,ap,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new p5,this.draw={options:Zr,canvas:(n,s)=>BS(n,s),face:(n,s,r)=>A5(n,s,r),body:(n,s,r)=>y5(n,s,r),hand:(n,s,r)=>x5(n,s,r),gesture:(n,s,r)=>g5(n,s,r),object:(n,s,r)=>b5(n,s,r),person:(n,s,r)=>LS(n,s,r),all:(n,s,r)=>WS(n,s,r)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[]},this.process={tensor:null,canvas:null},this.faceTriangulation=VI,this.faceUVMap=UI,this.gl=$t,this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(ja)),this.config.backend=t}validate(t){return Eg(ja,t||this.config)}now(){return pe()}image(t,n=!0){return Vu(t,this.config,n)}async segmentation(t,n){return FS(t,n,this.config)}enhance(t){return Mx(t)}async init(){await J0(this,!0),await this.tf.ready()}async load(t){this.state="load";let n=pe(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=kn(this.config,t)),this.env.initial&&(this.config.debug&&ee(`version: ${this.version}`),this.config.debug&&ee(`tfjs version: ${this.tf.version_core}`),await J0(this)||ee("error: backend check failed"),await _h(),this.env.browser&&(this.config.debug&&ee("configuration:",this.config),this.config.debug&&ee("environment:",this.env),this.config.debug&&ee("tf flags:",this.tf.ENV.flags))),await $S(this),this.env.initial&&this.config.debug&&ee("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(await OS(this),this.emit("load"));let a=Math.trunc(pe()-n);a>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+a:a)}next(t=this.result){return qS(t,this.config)}async warmup(t){let n=pe(),s=await YS(this,t),r=pe();return this.performance.warmup=Math.trunc(r-n),s}async detect(t,n){return this.state="detect",new Promise(async s=>{this.state="config";let r;this.config=kn(this.config,n),this.state="check";let a=lc(this,nm).call(this,t);a&&(ee(a,t),s({error:a}));let o=pe();await J0(this),await this.load(),r=pe(),this.state="image";let i=Vu(t,this.config);if(this.process=i,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(pe()-r):Math.trunc(pe()-r),this.analyze("Get Image:"),!i.tensor){this.config.debug&&ee("could not convert input to tensor"),s({error:"could not convert input to tensor"});return}this.emit("image"),r=pe(),this.config.skipAllowed=await aI(this.config,i.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.inputCheck=this.env.perfadd?(this.performance.inputCheck||0)+Math.trunc(pe()-r):Math.trunc(pe()-r),this.analyze("Check Changed:");let l=[],c=[],u=[],d=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?v5(this,i.tensor):[],this.performance.face&&delete this.performance.face):(r=pe(),l=this.config.face.enabled?await v5(this,i.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(pe()-r):Math.trunc(pe()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let p=this.config.body.maxDetected===-1?kn(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?(this.config.body.modelPath?.includes("posenet")?c=this.config.body.enabled?u5(i.tensor,p):[]:this.config.body.modelPath?.includes("blazepose")?c=this.config.body.enabled?vx(i.tensor,p):[]:this.config.body.modelPath?.includes("efficientpose")?c=this.config.body.enabled?Ex(i.tensor,p):[]:this.config.body.modelPath?.includes("movenet")&&(c=this.config.body.enabled?t5(i.tensor,p):[]),this.performance.body&&delete this.performance.body):(r=pe(),this.config.body.modelPath?.includes("posenet")?c=this.config.body.enabled?await u5(i.tensor,p):[]:this.config.body.modelPath?.includes("blazepose")?c=this.config.body.enabled?await vx(i.tensor,p):[]:this.config.body.modelPath?.includes("efficientpose")?c=this.config.body.enabled?await Ex(i.tensor,p):[]:this.config.body.modelPath?.includes("movenet")&&(c=this.config.body.enabled?await t5(i.tensor,p):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(pe()-r):Math.trunc(pe()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let h=this.config.hand.maxDetected===-1?kn(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?(this.config.hand.detector?.modelPath?.includes("handdetect")?u=this.config.hand.enabled?Ux(i.tensor,h):[]:this.config.hand.detector?.modelPath?.includes("handtrack")&&(u=this.config.hand.enabled?Xx(i.tensor,h):[]),this.performance.hand&&delete this.performance.hand):(r=pe(),this.config.hand.detector?.modelPath?.includes("handdetect")?u=this.config.hand.enabled?await Ux(i.tensor,h):[]:this.config.hand.detector?.modelPath?.includes("handtrack")&&(u=this.config.hand.enabled?await Xx(i.tensor,h):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(pe()-r):Math.trunc(pe()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?(this.config.object.modelPath?.includes("nanodet")?d=this.config.object.enabled?s5(i.tensor,this.config):[]:this.config.object.modelPath?.includes("centernet")&&(d=this.config.object.enabled?kx(i.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=pe(),this.config.object.modelPath?.includes("nanodet")?d=this.config.object.enabled?await s5(i.tensor,this.config):[]:this.config.object.modelPath?.includes("centernet")&&(d=this.config.object.enabled?await kx(i.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(pe()-r):Math.trunc(pe()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,c,u,d]=await Promise.all([l,c,u,d])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(r=pe(),f=[...GS(l),...US(c),...jS(u),...HS(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(pe()-r):Math.trunc(pe()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(pe()-o):Math.trunc(pe()-o);let m=this.process?.tensor?.shape||[];this.result={face:l,body:c,hand:u,gesture:f,object:d,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),get persons(){return ZS(l,c,u,f,m)}},Z(i.tensor),this.emit("detect"),this.state="idle",s(this.result)})}};Ku=new WeakMap,rp=new WeakMap,ap=new WeakMap,nm=new WeakMap;export{Uce as Human,Uce as default,ja as defaults,xe as env};
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* Human main module
|
|
* @default Human Library
|
|
* @summary <https://github.com/vladmandic/human>
|
|
* @author <https://github.com/vladmandic>
|
|
* @copyright <https://github.com/vladmandic>
|
|
* @license MIT
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|
|
//# sourceMappingURL=human.esm.js.map
|