mirror of https://github.com/vladmandic/human
8119 lines
1.5 MiB
8119 lines
1.5 MiB
/*
|
|
Human
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var Human=(()=>{var Fg=Object.defineProperty;var IN=(e,t,n)=>t in e?Fg(e,t,{enumerable:!0,configurable:!0,writable:!0,value:n}):e[t]=n;var CN=e=>Fg(e,"__esModule",{value:!0});var ya=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var Ec=(e,t)=>{CN(e);for(var n in t)Fg(e,n,{get:t[n],enumerable:!0})};var de=(e,t,n)=>(IN(e,typeof t!="symbol"?t+"":t,n),n),t5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var Rc=(e,t,n)=>(t5(e,t,"read from private field"),n?n.call(e):t.get(e)),$c=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},Dc=(e,t,n,s)=>(t5(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);var r2e={};Ec(r2e,{Human:()=>TT,default:()=>TT,defaults:()=>xa,env:()=>Ae});function at(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: ${r} expecting json file`);return r}function ee(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var ce=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Og(e,t,n="config",s=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")Og(e[r],t[r],r,s);else{let a=e&&typeof e[r]!="undefined";a||s.push({reason:"unknown property",where:`${n}.${r} = ${t[r]}`});let o=e&&typeof e[r]==typeof t[r];a&&!o&&s.push({reason:"property type mismatch",where:`${n}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&n==="config"&&s.length>0&&ee("invalid configuration",s),s}function Nn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=Nn(a,o):n[r]=o}),n),{})}var xa={backend:"",modelBasePath:"",wasmPath:"",debug:!0,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",detector:{modelPath:""},maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:2e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:1e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var dp={};Ec(dp,{Abs:()=>ni,Acos:()=>Vl,Acosh:()=>Ul,AdadeltaOptimizer:()=>ff,AdagradOptimizer:()=>mf,AdamOptimizer:()=>gf,AdamaxOptimizer:()=>Af,Add:()=>Ur,AddN:()=>ka,All:()=>Gl,Any:()=>Hl,ArgMax:()=>Sa,ArgMin:()=>jl,Asin:()=>ql,Asinh:()=>Xl,Atan:()=>Kl,Atan2:()=>Yl,Atanh:()=>Zl,AvgPool:()=>Ia,AvgPool3D:()=>Oc,AvgPool3DGrad:()=>nh,AvgPoolGrad:()=>th,BackendWasm:()=>b6,BatchMatMul:()=>Ca,BatchToSpaceND:()=>si,Bincount:()=>sh,BroadcastArgs:()=>rh,BroadcastTo:()=>A5,Callback:()=>Ek,CallbackList:()=>Aw,Cast:()=>Ta,Ceil:()=>Na,ClipByValue:()=>Gr,Complex:()=>Mc,ComplexAbs:()=>zc,Concat:()=>ri,Conv2D:()=>Ea,Conv2DBackpropFilter:()=>ah,Conv2DBackpropInput:()=>Ra,Conv3D:()=>Lc,Conv3DBackpropFilterV2:()=>oh,Conv3DBackpropInputV2:()=>ih,Cos:()=>$a,Cosh:()=>Da,CropAndResize:()=>oi,Cumsum:()=>ai,CustomCallback:()=>xw,DataStorage:()=>_c,DenseBincount:()=>lh,DepthToSpace:()=>ii,DepthwiseConv2dNative:()=>_a,DepthwiseConv2dNativeBackpropFilter:()=>uh,DepthwiseConv2dNativeBackpropInput:()=>ch,Diag:()=>dh,Dilation2D:()=>Bc,Dilation2DBackpropFilter:()=>hh,Dilation2DBackpropInput:()=>ph,ENV:()=>wr,EarlyStopping:()=>$k,Einsum:()=>Wc,Elu:()=>Fa,EluGrad:()=>fh,Environment:()=>m5,Equal:()=>li,Erf:()=>Jl,Exp:()=>Oa,ExpandDims:()=>ui,Expm1:()=>ci,FFT:()=>mh,Fill:()=>Ql,FlipLeftRight:()=>di,Floor:()=>Ma,FloorDiv:()=>za,FromPixels:()=>Zc,FusedBatchNorm:()=>La,FusedConv2D:()=>go,FusedDepthwiseConv2D:()=>Ao,GPGPUContext:()=>vm,GatherNd:()=>hi,GatherV2:()=>pi,GraphModel:()=>u7,Greater:()=>fi,GreaterEqual:()=>Ba,History:()=>yw,IFFT:()=>gh,Identity:()=>Wa,Imag:()=>Vc,InputSpec:()=>Yt,IsFinite:()=>eu,IsInf:()=>tu,IsNan:()=>nu,KernelBackend:()=>Ll,LRN:()=>Gc,LRNGrad:()=>yh,LayerVariable:()=>pw,LayersModel:()=>ea,LeakyRelu:()=>mi,Less:()=>gi,LessEqual:()=>Ai,LinSpace:()=>Ah,Log:()=>Va,Log1p:()=>su,LogSoftmax:()=>y5,LogicalAnd:()=>yi,LogicalNot:()=>ru,LogicalOr:()=>Uc,MathBackendCPU:()=>xy,MathBackendWebGL:()=>Zd,Max:()=>Ua,MaxPool:()=>Ha,MaxPool3D:()=>Hc,MaxPool3DGrad:()=>bh,MaxPoolGrad:()=>xh,MaxPoolWithArgmax:()=>vh,Maximum:()=>Ga,Mean:()=>ja,Min:()=>qa,Minimum:()=>Xa,MirrorPad:()=>Ka,Mod:()=>au,MomentumOptimizer:()=>yf,Multinomial:()=>wh,Multiply:()=>Za,Neg:()=>xi,NonMaxSuppressionV3:()=>vi,NonMaxSuppressionV4:()=>ou,NonMaxSuppressionV5:()=>wi,NotEqual:()=>bi,OP_SCOPE_SUFFIX:()=>_5,OneHot:()=>Si,OnesLike:()=>ki,Optimizer:()=>Yr,OptimizerConstructors:()=>No,Pack:()=>Ii,PadV2:()=>Ya,Pool:()=>fE,Pow:()=>Ja,Prelu:()=>Qa,Prod:()=>Ci,RMSPropOptimizer:()=>xf,RNN:()=>ta,Range:()=>iu,Rank:()=>qg,Real:()=>jc,RealDiv:()=>Pa,Reciprocal:()=>lu,Reduction:()=>zn,Relu:()=>eo,Relu6:()=>no,Reshape:()=>Ti,ResizeBilinear:()=>to,ResizeBilinearGrad:()=>Sh,ResizeNearestNeighbor:()=>uu,ResizeNearestNeighborGrad:()=>kh,Reverse:()=>Ni,RotateWithOffset:()=>Vi,Round:()=>Ei,Rsqrt:()=>so,SGDOptimizer:()=>bd,ScatterNd:()=>Ri,Select:()=>$i,Selu:()=>cu,Sequential:()=>Gf,Sigmoid:()=>ao,Sign:()=>du,Sin:()=>ro,Sinh:()=>_i,Slice:()=>Di,Softmax:()=>lo,Softplus:()=>pu,SpaceToBatchND:()=>Pi,SparseFillEmptyRows:()=>Ih,SparseReshape:()=>Ch,SparseSegmentMean:()=>Th,SparseSegmentSum:()=>Nh,SparseToDense:()=>qc,SplitV:()=>Fi,Sqrt:()=>oo,Square:()=>hu,SquaredDifference:()=>uo,Step:()=>fo,StridedSlice:()=>Oi,StringNGrams:()=>Xc,StringSplit:()=>Eh,StringToHashBucketFast:()=>Rh,Sub:()=>co,Sum:()=>io,SymbolicTensor:()=>pr,Tan:()=>Mi,Tanh:()=>po,Tensor:()=>Je,TensorBuffer:()=>sn,Tile:()=>Hr,TopK:()=>zi,Transform:()=>Li,Transpose:()=>ho,Unique:()=>$h,Unpack:()=>Bi,UnsortedSegmentSum:()=>Kc,Variable:()=>rd,ZerosLike:()=>Wi,_FusedMatMul:()=>mo,abs:()=>rn,acos:()=>x3,acosh:()=>b3,add:()=>ie,addN:()=>Vh,all:()=>T2,any:()=>Uh,argMax:()=>Us,argMin:()=>v3,asin:()=>w3,asinh:()=>k3,atan:()=>S3,atan2:()=>I3,atanh:()=>C3,avgPool:()=>Hh,avgPool3d:()=>R2,backend:()=>Ir,backend_util:()=>N,basicLSTMCell:()=>t$,batchNorm:()=>vu,batchNorm2d:()=>R3,batchNorm3d:()=>$3,batchNorm4d:()=>D3,batchToSpaceND:()=>jh,bincount:()=>$2,booleanMaskAsync:()=>hP,broadcastArgs:()=>_3,broadcastTo:()=>cd,broadcast_util:()=>Xi,browser:()=>Vs,buffer:()=>Be,callbacks:()=>NV,cast:()=>pe,ceil:()=>P3,clipByValue:()=>us,clone:()=>rr,complex:()=>bo,concat:()=>kt,concat1d:()=>F3,concat2d:()=>wu,concat3d:()=>O3,concat4d:()=>M3,constraints:()=>Hv,conv1d:()=>D2,conv2d:()=>Io,conv2dTranspose:()=>P2,conv3d:()=>F2,conv3dTranspose:()=>L3,copyRegisteredKernels:()=>yE,cos:()=>qh,cosh:()=>O2,cosineWindow:()=>i1,cumsum:()=>M2,customGrad:()=>Tr,data:()=>c7,denseBincount:()=>B3,deprecationWarn:()=>S2,depthToSpace:()=>W3,depthwiseConv2d:()=>dd,deregisterOp:()=>RV,device_util:()=>gu,diag:()=>$$,dilation2d:()=>V3,disableDeprecationWarnings:()=>AR,dispose:()=>Y,disposeVariables:()=>yR,div:()=>he,divNoNan:()=>U3,dot:()=>z$,dropout:()=>xv,einsum:()=>G3,elu:()=>pd,enableDebugMode:()=>gR,enableProdMode:()=>A3,enclosingPowerOfTwo:()=>bv,engine:()=>Jn,env:()=>K,equal:()=>Ss,erf:()=>H3,exp:()=>Is,expandDims:()=>Kt,expm1:()=>j3,eye:()=>z2,fft:()=>af,fill:()=>ku,findBackend:()=>I2,findBackendFactory:()=>wR,floor:()=>hd,floorDiv:()=>C2,forceHalfFloat:()=>BI,fused:()=>To,gather:()=>Su,gatherND:()=>yv,gather_util:()=>g2,getBackend:()=>ar,getGradient:()=>Ug,getKernel:()=>Dh,getKernelsForBackend:()=>jr,getThreadsCount:()=>sge,gpgpu_util:()=>hI,grad:()=>uD,grads:()=>cD,greater:()=>cs,greaterEqual:()=>Qi,ifft:()=>Ad,imag:()=>Xh,image:()=>$e,inTopKAsync:()=>SP,initializers:()=>Jv,input:()=>Vw,io:()=>Yn,irfft:()=>t1,isFinite:()=>Q$,isInf:()=>tD,isNaN:()=>q3,keep:()=>hn,kernel_impls:()=>js,layers:()=>uw,leakyRelu:()=>Kh,less:()=>L2,lessEqual:()=>el,linalg:()=>Rv,linspace:()=>X3,loadGraphModel:()=>rt,loadLayersModel:()=>LB,localResponseNormalization:()=>K3,log:()=>Cs,log1p:()=>Zh,logSigmoid:()=>gD,logSoftmax:()=>B2,logSumExp:()=>ev,logicalAnd:()=>or,logicalNot:()=>Jh,logicalOr:()=>U2,logicalXor:()=>ND,losses:()=>lO,matMul:()=>He,math:()=>Y5,max:()=>Qn,maxPool:()=>Qh,maxPool3d:()=>G2,maxPoolWithArgmax:()=>tv,maximum:()=>Kr,mean:()=>Wt,memory:()=>Bh,meshgrid:()=>PD,metrics:()=>Ck,min:()=>ef,minimum:()=>fd,mirrorPad:()=>nv,mod:()=>sv,model:()=>MB,models:()=>Tk,moments:()=>tf,movingAverage:()=>gP,mul:()=>B,multiRNNCell:()=>VD,multinomial:()=>rv,neg:()=>Ot,nextFrame:()=>$v,norm:()=>a1,notEqual:()=>Cu,oneHot:()=>ld,ones:()=>ds,onesLike:()=>Ts,op:()=>W,outerProduct:()=>qD,pad:()=>Hs,pad1d:()=>ZD,pad2d:()=>JD,pad3d:()=>e_,pad4d:()=>n_,pool:()=>i_,pow:()=>Co,prelu:()=>sf,print:()=>H5,prod:()=>H2,profile:()=>xR,rand:()=>p_,randomGamma:()=>g_,randomNormal:()=>av,randomUniform:()=>Tu,range:()=>Nu,ready:()=>Wh,real:()=>md,reciprocal:()=>ov,registerBackend:()=>Yi,registerCallbackConstructor:()=>BB,registerGradient:()=>x5,registerKernel:()=>qr,registerOp:()=>EV,regularizers:()=>Nk,relu:()=>Nr,relu6:()=>X2,removeBackend:()=>vR,reshape:()=>V,reverse:()=>Ns,reverse1d:()=>I_,reverse2d:()=>T_,reverse3d:()=>E_,reverse4d:()=>$_,rfft:()=>of,round:()=>K2,rsqrt:()=>Z2,scalar:()=>Ne,scatterND:()=>Av,scatter_util:()=>A2,selu:()=>Y2,separableConv2d:()=>iv,sequential:()=>zB,serialization:()=>le,setBackend:()=>y3,setPlatform:()=>kR,setThreadsCount:()=>nge,setWasmPath:()=>tge,setWasmPaths:()=>w6,setWebGLContext:()=>pm,setdiff1dAsync:()=>lv,shared:()=>om,sigmoid:()=>ls,sign:()=>uv,signal:()=>iO,sin:()=>J2,sinh:()=>Q2,slice:()=>_e,slice1d:()=>rf,slice2d:()=>e1,slice3d:()=>Eu,slice4d:()=>gd,slice_util:()=>Ft,softmax:()=>Ru,softplus:()=>Iu,spaceToBatchND:()=>nf,sparse:()=>xd,sparseToDense:()=>o1,spectral:()=>oO,split:()=>vn,sqrt:()=>Rn,square:()=>yt,squaredDifference:()=>n1,squeeze:()=>ct,stack:()=>$n,step:()=>yd,stridedSlice:()=>cv,string:()=>hf,sub:()=>xe,sum:()=>ke,sumOutType:()=>ad,tan:()=>dv,tanh:()=>bu,tensor:()=>Gt,tensor1d:()=>Zt,tensor2d:()=>ir,tensor3d:()=>Q5,tensor4d:()=>sP,tensor5d:()=>rP,tensor6d:()=>aP,tensor_util:()=>nr,test_util:()=>f3,tidy:()=>G,tile:()=>Gs,time:()=>bR,topk:()=>pv,train:()=>nl,transpose:()=>tt,truncatedNormal:()=>lf,unique:()=>s1,unregisterGradient:()=>AE,unregisterKernel:()=>gE,unsortedSegmentSum:()=>hv,unstack:()=>es,upcastType:()=>On,util:()=>v,valueAndGrad:()=>dD,valueAndGrads:()=>pD,variable:()=>fv,variableGrads:()=>Z3,version:()=>S6,version_converter:()=>_U,version_core:()=>cp,version_cpu:()=>xH,version_layers:()=>U1,version_wasm:()=>rge,version_webgl:()=>jJ,webgl:()=>qJ,webgl_util:()=>MS,webgpu:()=>wC,where:()=>Mn,whereAsync:()=>r1,zeros:()=>Ht,zerosLike:()=>nt});var zl=(e=>typeof ya!="undefined"?ya:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof ya!="undefined"?ya:t)[n]}):e)(function(e){if(typeof ya!="undefined")return ya.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')}),TN=Object.create,Kp=Object.defineProperty,NN=Object.getOwnPropertyDescriptor,EN=Object.getOwnPropertyNames,RN=Object.getPrototypeOf,$N=Object.prototype.hasOwnProperty,n5=e=>Kp(e,"__esModule",{value:!0}),Ls=(e=>typeof zl!="undefined"?zl:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof zl!="undefined"?zl:t)[n]}):e)(function(e){if(typeof zl!="undefined")return zl.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')}),Zn=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},Me=(e,t)=>{n5(e);for(var n in t)Kp(e,n,{get:t[n],enumerable:!0})},DN=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let s of EN(t))!$N.call(e,s)&&s!=="default"&&Kp(e,s,{get:()=>t[s],enumerable:!(n=NN(t,s))||n.enumerable});return e},Qo=e=>DN(n5(Kp(e!=null?TN(RN(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),_N=Zn({"src/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch{}function s(F,T,M){this.low=F|0,this.high=T|0,this.unsigned=!!M}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(F){return(F&&F.__isLong__)===!0}s.isLong=r;var a={},o={};function i(F,T){var M,U,q;return T?(F>>>=0,(q=0<=F&&F<256)&&(U=o[F],U)?U:(M=c(F,(F|0)<0?-1:0,!0),q&&(o[F]=M),M)):(F|=0,(q=-128<=F&&F<128)&&(U=a[F],U)?U:(M=c(F,F<0?-1:0,!1),q&&(a[F]=M),M))}s.fromInt=i;function l(F,T){if(isNaN(F))return T?b:y;if(T){if(F<0)return b;if(F>=g)return D}else{if(F<=-A)return O;if(F+1>=A)return E}return F<0?l(-F,T).neg():c(F%m|0,F/m|0,T)}s.fromNumber=l;function c(F,T,M){return new s(F,T,M)}s.fromBits=c;var u=Math.pow;function d(F,T,M){if(F.length===0)throw Error("empty string");if(F==="NaN"||F==="Infinity"||F==="+Infinity"||F==="-Infinity")return y;if(typeof T=="number"?(M=T,T=!1):T=!!T,M=M||10,M<2||36<M)throw RangeError("radix");var U;if((U=F.indexOf("-"))>0)throw Error("interior hyphen");if(U===0)return d(F.substring(1),T,M).neg();for(var q=l(u(M,8)),j=y,X=0;X<F.length;X+=8){var J=Math.min(8,F.length-X),te=parseInt(F.substring(X,X+J),M);if(J<8){var ne=l(u(M,J));j=j.mul(ne).add(l(te))}else j=j.mul(q),j=j.add(l(te))}return j.unsigned=T,j}s.fromString=d;function p(F,T){return typeof F=="number"?l(F,T):typeof F=="string"?d(F,T):c(F.low,F.high,typeof T=="boolean"?T:F.unsigned)}s.fromValue=p;var h=1<<16,f=1<<24,m=h*h,g=m*m,A=g/2,x=i(f),y=i(0);s.ZERO=y;var b=i(0,!0);s.UZERO=b;var w=i(1);s.ONE=w;var S=i(1,!0);s.UONE=S;var C=i(-1);s.NEG_ONE=C;var E=c(4294967295|0,2147483647|0,!1);s.MAX_VALUE=E;var D=c(4294967295|0,4294967295|0,!0);s.MAX_UNSIGNED_VALUE=D;var O=c(0,2147483648|0,!1);s.MIN_VALUE=O;var _=s.prototype;_.toInt=function(){return this.unsigned?this.low>>>0:this.low},_.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},_.toString=function(T){if(T=T||10,T<2||36<T)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(O)){var M=l(T),U=this.div(M),q=U.mul(M).sub(this);return U.toString(T)+q.toInt().toString(T)}else return"-"+this.neg().toString(T);for(var j=l(u(T,6),this.unsigned),X=this,J="";;){var te=X.div(j),ne=X.sub(te.mul(j)).toInt()>>>0,ae=ne.toString(T);if(X=te,X.isZero())return ae+J;for(;ae.length<6;)ae="0"+ae;J=""+ae+J}},_.getHighBits=function(){return this.high},_.getHighBitsUnsigned=function(){return this.high>>>0},_.getLowBits=function(){return this.low},_.getLowBitsUnsigned=function(){return this.low>>>0},_.getNumBitsAbs=function(){if(this.isNegative())return this.eq(O)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,M=31;M>0&&(T&1<<M)==0;M--);return this.high!=0?M+33:M+1},_.isZero=function(){return this.high===0&&this.low===0},_.eqz=_.isZero,_.isNegative=function(){return!this.unsigned&&this.high<0},_.isPositive=function(){return this.unsigned||this.high>=0},_.isOdd=function(){return(this.low&1)==1},_.isEven=function(){return(this.low&1)==0},_.equals=function(T){return r(T)||(T=p(T)),this.unsigned!==T.unsigned&&this.high>>>31==1&&T.high>>>31==1?!1:this.high===T.high&&this.low===T.low},_.eq=_.equals,_.notEquals=function(T){return!this.eq(T)},_.neq=_.notEquals,_.ne=_.notEquals,_.lessThan=function(T){return this.comp(T)<0},_.lt=_.lessThan,_.lessThanOrEqual=function(T){return this.comp(T)<=0},_.lte=_.lessThanOrEqual,_.le=_.lessThanOrEqual,_.greaterThan=function(T){return this.comp(T)>0},_.gt=_.greaterThan,_.greaterThanOrEqual=function(T){return this.comp(T)>=0},_.gte=_.greaterThanOrEqual,_.ge=_.greaterThanOrEqual,_.compare=function(T){if(r(T)||(T=p(T)),this.eq(T))return 0;var M=this.isNegative(),U=T.isNegative();return M&&!U?-1:!M&&U?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},_.comp=_.compare,_.negate=function(){return!this.unsigned&&this.eq(O)?O:this.not().add(w)},_.neg=_.negate,_.add=function(T){r(T)||(T=p(T));var M=this.high>>>16,U=this.high&65535,q=this.low>>>16,j=this.low&65535,X=T.high>>>16,J=T.high&65535,te=T.low>>>16,ne=T.low&65535,ae=0,se=0,re=0,ue=0;return ue+=j+ne,re+=ue>>>16,ue&=65535,re+=q+te,se+=re>>>16,re&=65535,se+=U+J,ae+=se>>>16,se&=65535,ae+=M+X,ae&=65535,c(re<<16|ue,ae<<16|se,this.unsigned)},_.subtract=function(T){return r(T)||(T=p(T)),this.add(T.neg())},_.sub=_.subtract,_.multiply=function(T){if(this.isZero())return y;if(r(T)||(T=p(T)),n){var M=n.mul(this.low,this.high,T.low,T.high);return c(M,n.get_high(),this.unsigned)}if(T.isZero())return y;if(this.eq(O))return T.isOdd()?O:y;if(T.eq(O))return this.isOdd()?O:y;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(x)&&T.lt(x))return l(this.toNumber()*T.toNumber(),this.unsigned);var U=this.high>>>16,q=this.high&65535,j=this.low>>>16,X=this.low&65535,J=T.high>>>16,te=T.high&65535,ne=T.low>>>16,ae=T.low&65535,se=0,re=0,ue=0,ye=0;return ye+=X*ae,ue+=ye>>>16,ye&=65535,ue+=j*ae,re+=ue>>>16,ue&=65535,ue+=X*ne,re+=ue>>>16,ue&=65535,re+=q*ae,se+=re>>>16,re&=65535,re+=j*ne,se+=re>>>16,re&=65535,re+=X*te,se+=re>>>16,re&=65535,se+=U*ae+q*ne+j*te+X*J,se&=65535,c(ue<<16|ye,se<<16|re,this.unsigned)},_.mul=_.multiply,_.divide=function(T){if(r(T)||(T=p(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return c(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:y;var U,q,j;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return b;if(T.gt(this.shru(1)))return S;j=b}else{if(this.eq(O)){if(T.eq(w)||T.eq(C))return O;if(T.eq(O))return w;var X=this.shr(1);return U=X.div(T).shl(1),U.eq(y)?T.isNegative()?w:C:(q=this.sub(T.mul(U)),j=U.add(q.div(T)),j)}else if(T.eq(O))return this.unsigned?b:y;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();j=y}for(q=this;q.gte(T);){U=Math.max(1,Math.floor(q.toNumber()/T.toNumber()));for(var J=Math.ceil(Math.log(U)/Math.LN2),te=J<=48?1:u(2,J-48),ne=l(U),ae=ne.mul(T);ae.isNegative()||ae.gt(q);)U-=te,ne=l(U,this.unsigned),ae=ne.mul(T);ne.isZero()&&(ne=w),j=j.add(ne),q=q.sub(ae)}return j},_.div=_.divide,_.modulo=function(T){if(r(T)||(T=p(T)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return c(M,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},_.mod=_.modulo,_.rem=_.modulo,_.not=function(){return c(~this.low,~this.high,this.unsigned)},_.and=function(T){return r(T)||(T=p(T)),c(this.low&T.low,this.high&T.high,this.unsigned)},_.or=function(T){return r(T)||(T=p(T)),c(this.low|T.low,this.high|T.high,this.unsigned)},_.xor=function(T){return r(T)||(T=p(T)),c(this.low^T.low,this.high^T.high,this.unsigned)},_.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?c(this.low<<T,this.high<<T|this.low>>>32-T,this.unsigned):c(0,this.low<<T-32,this.unsigned)},_.shl=_.shiftLeft,_.shiftRight=function(T){return r(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?c(this.low>>>T|this.high<<32-T,this.high>>T,this.unsigned):c(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},_.shr=_.shiftRight,_.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var M=this.high;if(T<32){var U=this.low;return c(U>>>T|M<<32-T,M>>>T,this.unsigned)}else return T===32?c(M,0,this.unsigned):c(M>>>T-32,0,this.unsigned)},_.shru=_.shiftRightUnsigned,_.shr_u=_.shiftRightUnsigned,_.toSigned=function(){return this.unsigned?c(this.low,this.high,!1):this},_.toUnsigned=function(){return this.unsigned?this:c(this.low,this.high,!0)},_.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},_.toBytesLE=function(){var T=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},_.toBytesBE=function(){var T=this.high,M=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},s.fromBytes=function(T,M,U){return U?s.fromBytesLE(T,M):s.fromBytesBE(T,M)},s.fromBytesLE=function(T,M){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,M)},s.fromBytesBE=function(T,M){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],M)}}}),PN=Zn({"(disabled):src/node_modules/node-fetch/browser.js"(){}}),FN=Zn({"(disabled):util"(){}}),ON=Zn({"src/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(c){var u=this,d=l();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=d(" "),u.s1=d(" "),u.s2=d(" "),u.s0-=d(c),u.s0<0&&(u.s0+=1),u.s1-=d(c),u.s1<0&&(u.s1+=1),u.s2-=d(c),u.s2<0&&(u.s2+=1),d=null}function o(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function i(c,u){var d=new a(c),p=u&&u.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var c=4022871197,u=function(d){d=String(d);for(var p=0;p<d.length;p++){c+=d.charCodeAt(p);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),MN=Zn({"src/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var p=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^p^p>>>8},l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),zN=Zn({"src/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(p^p<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,d==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),LN=Zn({"src/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.x,p=c.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,c.i=p+1&7,f};function u(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}u(c,l)}function o(l,c){return c.x=l.x.slice(),c.i=l.i,c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.x&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),BN=Zn({"src/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.w,p=c.X,h=c.i,f,m;return c.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,c.i=h,m+(d^d>>>16)|0};function u(d,p){var h,f,m,g,A,x=[],y=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,y=Math.max(y,p.length)),m=0,g=-32;g<y;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(A=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(A=A+1640531527|0,h=x[g&127]^=f+A,m=h==0?m+1:0);for(m>=128&&(x[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=x[m+34&127],h=x[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,x[m]=f^h;d.w=A,d.X=x,d.i=m}u(c,l)}function o(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.X&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),WN=Zn({"src/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.b,h=c.c,f=c.d,m=c.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,c.b=p=p<<20^p>>>12^h,c.c=h=h-f|0,c.d=f<<16^h>>>16^m,c.a=m-p|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var d=0;d<u.length+20;d++)c.b^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),VN=Zn({"(disabled):crypto"(){}}),UN=Zn({"src/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",c=r.pow(a,o),u=r.pow(2,i),d=u*2,p=a-1,h;function f(w,S,C){var E=[];S=S==!0?{entropy:!0}:S||{};var D=x(A(S.entropy?[w,b(s)]:w??y(),3),E),O=new m(E),_=function(){for(var F=O.g(o),T=c,M=0;F<u;)F=(F+M)*a,T*=a,M=O.g(1);for(;F>=d;)F/=2,T/=2,M>>>=1;return(F+M)/T};return _.int32=function(){return O.g(4)|0},_.quick=function(){return O.g(4)/4294967296},_.double=_,x(b(O.S),s),(S.pass||C||function(F,T,M,U){return U&&(U.S&&g(U,O),F.state=function(){return g(O,{})}),M?(r[l]=F,T):F})(_,D,"global"in S?S.global:this==r,S.state)}function m(w){var S,C=w.length,E=this,D=0,O=E.i=E.j=0,_=E.S=[];for(C||(w=[C++]);D<a;)_[D]=D++;for(D=0;D<a;D++)_[D]=_[O=p&O+w[D%C]+(S=_[D])],_[O]=S;(E.g=function(F){for(var T,M=0,U=E.i,q=E.j,j=E.S;F--;)T=j[U=p&U+1],M=M*a+j[p&(j[U]=j[q=p&q+T])+(j[q]=T)];return E.i=U,E.j=q,M})(a)}function g(w,S){return S.i=w.i,S.j=w.j,S.S=w.S.slice(),S}function A(w,S){var C=[],E=typeof w,D;if(S&&E=="object")for(D in w)try{C.push(A(w[D],S-1))}catch{}return C.length?C:E=="string"?w:w+"\0"}function x(w,S){for(var C=w+"",E,D=0;D<C.length;)S[p&D]=p&(E^=S[p&D]*19)+C.charCodeAt(D++);return b(S)}function y(){try{var w;return h&&(w=h.randomBytes)?w=w(a):(w=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(w)),b(w)}catch{var S=n.navigator,C=S&&S.plugins;return[+new Date,n,C,n.screen,b(s)]}}function b(w){return String.fromCharCode.apply(0,w)}if(x(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{h=VN()}catch{}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),Zp=Zn({"src/node_modules/seedrandom/index.js"(e,t){var n=ON(),s=MN(),r=zN(),a=LN(),o=BN(),i=WN(),l=UN();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),s5=Zn({"(disabled):src/node_modules/string_decoder/index.js"(){}}),GN=Zn({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return re.buffer!=Tt&&xn(re.buffer),_t}function o(){return re.buffer!=Tt&&xn(re.buffer),vs}function i(){return re.buffer!=Tt&&xn(re.buffer),Dn}function l(){return re.buffer!=Tt&&xn(re.buffer),os}function c(){return re.buffer!=Tt&&xn(re.buffer),ws}var u=typeof r!="undefined"?r:{},d,p;u.ready=new Promise(function(I,R){d=I,p=R});var h={},f;for(f in u)u.hasOwnProperty(f)&&(h[f]=u[f]);var m=[],g="./this.program",A=function(I,R){throw R},x=!1,y=!1,b=!1,w=!1;x=typeof window=="object",y=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",w=!x&&!b&&!y;var S=u.ENVIRONMENT_IS_PTHREAD||!1;S&&(Tt=u.buffer);var C="";function E(I){return u.locateFile?u.locateFile(I,C):C+I}var D,O,_,F,T,M;if(b){y?C=Ls("path").dirname(C)+"/":C=__dirname+"/",D=function(R,z){return T||(T=Ls("fs")),M||(M=Ls("path")),R=M.normalize(R),T.readFileSync(R,z?null:"utf8")},_=function(R){var z=D(R,!0);return z.buffer||(z=new Uint8Array(z)),Ie(z.buffer),z},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(I){if(!(I instanceof Nc))throw I}),process.on("unhandledRejection",Br),A=function(I){process.exit(I)},u.inspect=function(){return"[Emscripten Module object]"};var U;try{U=Ls("worker_threads")}catch(I){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),I}global.Worker=U.Worker}else w?(typeof read!="undefined"&&(D=function(R){return read(R)}),_=function(R){var z;return typeof readbuffer=="function"?new Uint8Array(readbuffer(R)):(z=read(R,"binary"),Ie(typeof z=="object"),z)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(A=function(I){quit(I)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(x||y)&&(y?C=self.location.href:typeof document!="undefined"&&document.currentScript&&(C=document.currentScript.src),typeof s!="undefined"&&s&&(C=s),C.indexOf("blob:")!==0?C=C.substr(0,C.lastIndexOf("/")+1):C="",b?(D=function(R,z){return T||(T=Ls("fs")),M||(M=Ls("path")),R=M.normalize(R),T.readFileSync(R,z?null:"utf8")},_=function(R){var z=D(R,!0);return z.buffer||(z=new Uint8Array(z)),Ie(z.buffer),z}):(D=function(I){var R=new XMLHttpRequest;return R.open("GET",I,!1),R.send(null),R.responseText},y&&(_=function(I){var R=new XMLHttpRequest;return R.open("GET",I,!1),R.responseType="arraybuffer",R.send(null),new Uint8Array(R.response)}),O=function(I,R,z){var Z=new XMLHttpRequest;Z.open("GET",I,!0),Z.responseType="arraybuffer",Z.onload=function(){if(Z.status==200||Z.status==0&&Z.response){R(Z.response);return}z()},Z.onerror=z,Z.send(null)}),F=function(I){document.title=I});b&&typeof performance=="undefined"&&(global.performance=Ls("perf_hooks").performance);var q=u.print||console.log.bind(console),j=u.printErr||console.warn.bind(console);for(f in h)h.hasOwnProperty(f)&&(u[f]=h[f]);h=null,u.arguments&&(m=u.arguments),u.thisProgram&&(g=u.thisProgram),u.quit&&(A=u.quit);function X(I){X.shown||(X.shown={}),X.shown[I]||(X.shown[I]=1,j(I))}var J=Atomics.load,te=Atomics.store,ne=Atomics.compareExchange,ae;u.wasmBinary&&(ae=u.wasmBinary);var se=u.noExitRuntime||!0;typeof WebAssembly!="object"&&Br("no native wasm support detected");var re,ue,ye=!1,ve;function Ie(I,R){I||Br("Assertion failed: "+R)}function Ee(I){var R=u["_"+I];return Ie(R,"Cannot call unknown function "+I+", make sure it is exported"),R}function ze(I,R,z,Z,ge){var fe={string:function(_n){var Ml=0;if(_n!=null&&_n!==0){var e5=(_n.length<<2)+1;Ml=Pl(e5),ht(_n,Ml,e5)}return Ml},array:function(_n){var Ml=Pl(_n.length);return St(_n,Ml),Ml}};function me(_n){return R==="string"?Ye(_n):R==="boolean"?Boolean(_n):_n}var Ce=Ee(I),dt=[],cn=0;if(Z)for(var nn=0;nn<Z.length;nn++){var Aa=fe[z[nn]];Aa?(cn===0&&(cn=Tc()),dt[nn]=Aa(Z[nn])):dt[nn]=Z[nn]}var Ol=Ce.apply(null,dt);return Ol=me(Ol),cn!==0&&_l(cn),Ol}function Ue(I,R,z,Z){z=z||[];var ge=z.every(function(me){return me==="number"}),fe=R!=="string";return fe&&ge&&!Z?Ee(I):function(){return ze(I,R,z,arguments,Z)}}function qe(I,R,z){for(var Z=R+z,ge="";!(R>=Z);){var fe=I[R++];if(!fe)return ge;if(!(fe&128)){ge+=String.fromCharCode(fe);continue}var me=I[R++]&63;if((fe&224)==192){ge+=String.fromCharCode((fe&31)<<6|me);continue}var Ce=I[R++]&63;if((fe&240)==224?fe=(fe&15)<<12|me<<6|Ce:fe=(fe&7)<<18|me<<12|Ce<<6|I[R++]&63,fe<65536)ge+=String.fromCharCode(fe);else{var dt=fe-65536;ge+=String.fromCharCode(55296|dt>>10,56320|dt&1023)}}return ge}function Ye(I,R){return I?qe(o(),I,R):""}function pt(I,R,z,Z){if(!(Z>0))return 0;for(var ge=z,fe=z+Z-1,me=0;me<I.length;++me){var Ce=I.charCodeAt(me);if(Ce>=55296&&Ce<=57343){var dt=I.charCodeAt(++me);Ce=65536+((Ce&1023)<<10)|dt&1023}if(Ce<=127){if(z>=fe)break;R[z++]=Ce}else if(Ce<=2047){if(z+1>=fe)break;R[z++]=192|Ce>>6,R[z++]=128|Ce&63}else if(Ce<=65535){if(z+2>=fe)break;R[z++]=224|Ce>>12,R[z++]=128|Ce>>6&63,R[z++]=128|Ce&63}else{if(z+3>=fe)break;R[z++]=240|Ce>>18,R[z++]=128|Ce>>12&63,R[z++]=128|Ce>>6&63,R[z++]=128|Ce&63}}return R[z]=0,z-ge}function ht(I,R,z){return pt(I,o(),R,z)}function it(I){for(var R=0,z=0;z<I.length;++z){var Z=I.charCodeAt(z);Z>=55296&&Z<=57343&&(Z=65536+((Z&1023)<<10)|I.charCodeAt(++z)&1023),Z<=127?++R:Z<=2047?R+=2:Z<=65535?R+=3:R+=4}return R}function St(I,R){a().set(I,R)}function gt(I,R){return I%R>0&&(I+=R-I%R),I}var Tt,_t,vs,yn,er,Dn,os,Ms,ws;function xn(I){Tt=I,u.HEAP8=_t=new Int8Array(I),u.HEAP16=yn=new Int16Array(I),u.HEAP32=Dn=new Int32Array(I),u.HEAPU8=vs=new Uint8Array(I),u.HEAPU16=er=new Uint16Array(I),u.HEAPU32=os=new Uint32Array(I),u.HEAPF32=Ms=new Float32Array(I),u.HEAPF64=ws=new Float64Array(I)}var xr=u.INITIAL_MEMORY||16777216;if(S)re=u.wasmMemory,Tt=u.buffer;else if(u.wasmMemory)re=u.wasmMemory;else if(re=new WebAssembly.Memory({initial:xr/65536,maximum:2147483648/65536,shared:!0}),!(re.buffer instanceof SharedArrayBuffer))throw j("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");re&&(Tt=re.buffer),xr=Tt.byteLength,xn(Tt);var Tn,br=[],vr=[],da=[],Ac=[],tr=[],Sp=!1,h0=!1;S||vr.push({func:function(){Vp()}});function Ip(){if(!S){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)f0(u.preRun.shift());Rl(br)}}function Cp(){Sp=!0,!S&&Rl(vr)}function Tp(){S||Rl(da)}function Xn(){S||(h0=!0)}function Np(){if(!S){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)m0(u.postRun.shift());Rl(tr)}}function f0(I){br.unshift(I)}function m0(I){tr.unshift(I)}var zs=0,yc=null,Ko=null;function g0(I){Ie(!S,"addRunDependency cannot be used in a pthread worker"),zs++,u.monitorRunDependencies&&u.monitorRunDependencies(zs)}function A0(I){if(zs--,u.monitorRunDependencies&&u.monitorRunDependencies(zs),zs==0&&(yc!==null&&(clearInterval(yc),yc=null),Ko)){var R=Ko;Ko=null,R()}}u.preloadedImages={},u.preloadedAudios={};function Br(I){u.onAbort&&u.onAbort(I),S&&console.error("Pthread aborting at "+new Error().stack),I+="",j(I),ye=!0,ve=1,I="abort("+I+"). Build with -s ASSERTIONS=1 for more info.";var R=new WebAssembly.RuntimeError(I);throw p(R),R}function Zo(I,R){return String.prototype.startsWith?I.startsWith(R):I.indexOf(R)===0}var y0="data:application/octet-stream;base64,";function Ep(I){return Zo(I,y0)}var x0="file://";function Rp(I){return Zo(I,x0)}var Kn="tfjs-backend-wasm-threaded-simd.wasm";Ep(Kn)||(Kn=E(Kn));function b0(I){try{if(I==Kn&&ae)return new Uint8Array(ae);if(_)return _(I);throw"both async and sync fetching of the wasm failed"}catch(R){Br(R)}}function $p(){if(!ae&&(x||y)){if(typeof fetch=="function"&&!Rp(Kn))return fetch(Kn,{credentials:"same-origin"}).then(function(I){if(!I.ok)throw"failed to load wasm binary file at '"+Kn+"'";return I.arrayBuffer()}).catch(function(){return b0(Kn)});if(O)return new Promise(function(I,R){O(Kn,function(z){I(new Uint8Array(z))},R)})}return Promise.resolve().then(function(){return b0(Kn)})}function v0(){var I={a:hg};function R(me,Ce){var dt=me.exports;if(u.asm=dt,Tn=u.asm.kb,ue=Ce,!S){var cn=Re.unusedWorkers.length;Re.unusedWorkers.forEach(function(nn){Re.loadWasmModuleToWorker(nn,function(){--cn||A0("wasm-instantiate")})})}}S||g0("wasm-instantiate");function z(me){R(me.instance,me.module)}function Z(me){return $p().then(function(Ce){return WebAssembly.instantiate(Ce,I)}).then(me,function(Ce){j("failed to asynchronously prepare wasm: "+Ce),Br(Ce)})}function ge(){return!ae&&typeof WebAssembly.instantiateStreaming=="function"&&!Ep(Kn)&&!Rp(Kn)&&typeof fetch=="function"?fetch(Kn,{credentials:"same-origin"}).then(function(me){var Ce=WebAssembly.instantiateStreaming(me,I);return Ce.then(z,function(dt){return j("wasm streaming compile failed: "+dt),j("falling back to ArrayBuffer instantiation"),Z(z)})}):Z(z)}if(u.instantiateWasm)try{var fe=u.instantiateWasm(I,R);return fe}catch(me){return j("Module.instantiateWasm callback failed with error: "+me),!1}return ge().catch(p),{}}var Dp={10072:function(){throw"Canceled!"},10090:function(I,R){setTimeout(function(){Xb(I,R)},0)}};function w0(){Re.initRuntime()}function Rl(I){for(;I.length>0;){var R=I.shift();if(typeof R=="function"){R(u);continue}var z=R.func;typeof z=="number"?R.arg===void 0?Tn.get(z)():Tn.get(z)(R.arg):z(R.arg===void 0?null:R.arg)}}var pa={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135};function xc(I,R){if(I<=0||I>a().length||I&!0||R<0)return-28;if(R==0)return 0;R>=2147483647&&(R=1/0);var z=Atomics.load(i(),Fl>>2),Z=0;if(z==I){var ge=Atomics.compareExchange(i(),Fl>>2,z,0);if(ge==z&&(--R,Z=1,R<=0))return 1}var fe=Atomics.notify(i(),I>>2,R);if(fe>=0)return fe+Z;throw"Atomics.notify returned an unexpected value "+fe}u._emscripten_futex_wake=xc;function k0(I){if(S)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in killThread!";i()[I+12>>2]=0;var R=Re.pthreads[I];R.worker.terminate(),Re.freeThreadData(R),Re.runningWorkers.splice(Re.runningWorkers.indexOf(R.worker),1),R.worker.pthread=void 0}function S0(I){if(S)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cancelThread!";var R=Re.pthreads[I];R.worker.postMessage({cmd:"cancel"})}function _p(I){if(S)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cleanupThread!";var R=Re.pthreads[I];if(R){i()[I+12>>2]=0;var z=R.worker;Re.returnWorkerToPool(z)}}var Re={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var I=8,R=0;R<I;++R)Re.allocateUnusedWorker()},initRuntime:function(){for(var I=Jo(228),R=0;R<228/4;++R)l()[I/4+R]=0;i()[I+12>>2]=I;var z=I+152;i()[z>>2]=z;for(var Z=Jo(512),R=0;R<128;++R)l()[Z/4+R]=0;Atomics.store(l(),I+100>>2,Z),Atomics.store(l(),I+40>>2,I),_g(I,!y,1),jb(I)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Re.threadExitHandlers.length>0;)Re.threadExitHandlers.pop()();S&&ga()&&Hb()},runExitHandlersAndDeinitThread:function(I,R){Atomics.store(l(),I+56>>2,1),Atomics.store(l(),I+60>>2,0),Re.runExitHandlers(),Atomics.store(l(),I+4>>2,R),Atomics.store(l(),I+0>>2,1),xc(I+0,2147483647),_g(0,0,0)},threadExit:function(I){var R=ga();R&&(Re.runExitHandlersAndDeinitThread(R,I),S&&postMessage({cmd:"exit"}))},threadCancel:function(){Re.runExitHandlersAndDeinitThread(ga(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var I in Re.pthreads){var R=Re.pthreads[I];R&&R.worker&&Re.returnWorkerToPool(R.worker)}Re.pthreads={};for(var z=0;z<Re.unusedWorkers.length;++z){var Z=Re.unusedWorkers[z];Z.terminate()}Re.unusedWorkers=[];for(var z=0;z<Re.runningWorkers.length;++z){var Z=Re.runningWorkers[z],R=Z.pthread;Re.freeThreadData(R),Z.terminate()}Re.runningWorkers=[]},freeThreadData:function(I){if(!!I){if(I.threadInfoStruct){var R=i()[I.threadInfoStruct+100>>2];i()[I.threadInfoStruct+100>>2]=0,Cc(R),Cc(I.threadInfoStruct)}I.threadInfoStruct=0,I.allocatedOwnStack&&I.stackBase&&Cc(I.stackBase),I.stackBase=0,I.worker&&(I.worker.pthread=null)}},returnWorkerToPool:function(I){Re.runWithoutMainThreadQueuedCalls(function(){delete Re.pthreads[I.pthread.threadInfoStruct],Re.unusedWorkers.push(I),Re.runningWorkers.splice(Re.runningWorkers.indexOf(I),1),Re.freeThreadData(I.pthread),I.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(I){i()[Qb>>2]=0;try{I()}finally{i()[Qb>>2]=1}},receiveObjectTransfer:function(I){},loadWasmModuleToWorker:function(I,R){I.onmessage=function(z){var Z=z.data,ge=Z.cmd;if(I.pthread&&(Re.currentProxiedOperationCallerThread=I.pthread.threadInfoStruct),Z.targetThread&&Z.targetThread!=ga()){var fe=Re.pthreads[Z.targetThread];fe?fe.worker.postMessage(z.data,Z.transferList):console.error('Internal error! Worker sent a message "'+ge+'" to target pthread '+Z.targetThread+", but that thread no longer exists!"),Re.currentProxiedOperationCallerThread=void 0;return}if(ge==="processQueuedMainThreadWork")qp();else if(ge==="spawnThread")Bp(z.data);else if(ge==="cleanupThread")_p(Z.thread);else if(ge==="killThread")k0(Z.thread);else if(ge==="cancelThread")S0(Z.thread);else if(ge==="loaded")I.loaded=!0,R&&R(I),I.runPthread&&(I.runPthread(),delete I.runPthread);else if(ge==="print")q("Thread "+Z.threadId+": "+Z.text);else if(ge==="printErr")j("Thread "+Z.threadId+": "+Z.text);else if(ge==="alert")alert("Thread "+Z.threadId+": "+Z.text);else if(ge==="exit"){var me=I.pthread&&Atomics.load(l(),I.pthread.threadInfoStruct+64>>2);me&&Re.returnWorkerToPool(I)}else if(ge==="exitProcess")try{SN(Z.returnCode)}catch(Ce){if(Ce instanceof Nc)return;throw Ce}else ge==="cancelDone"?Re.returnWorkerToPool(I):ge==="objectTransfer"?Re.receiveObjectTransfer(z.data):z.data.target==="setimmediate"?I.postMessage(z.data):j("worker sent an unknown command "+ge);Re.currentProxiedOperationCallerThread=void 0},I.onerror=function(z){j("pthread sent an error! "+z.filename+":"+z.lineno+": "+z.message)},b&&(I.on("message",function(z){I.onmessage({data:z})}),I.on("error",function(z){I.onerror(z)}),I.on("exit",function(z){})),I.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||s,wasmMemory:re,wasmModule:ue})},allocateUnusedWorker:function(){var I=E("tfjs-backend-wasm-threaded-simd.worker.js");Re.unusedWorkers.push(new Worker(I))},getNewWorker:function(){return Re.unusedWorkers.length==0&&(Re.allocateUnusedWorker(),Re.loadWasmModuleToWorker(Re.unusedWorkers[0])),Re.unusedWorkers.length>0?Re.unusedWorkers.pop():null},busySpinWait:function(I){for(var R=performance.now()+I;performance.now()<R;);}};function I0(I,R){Yb(I,R),_l(I)}u.establishStackSpace=I0;function C0(){return se}u.getNoExitRuntime=C0;function T0(I,R){return Tn.get(I)(R)}u.invokeEntryPoint=T0;function N0(I,R,z,Z){Br("Assertion failed: "+Ye(I)+", at: "+[R?Ye(R):"unknown filename",z,Z?Ye(Z):"unknown function"])}function E0(I,R){var z=_main(I,R)}var Yo;b?Yo=function(){var I=process.hrtime();return I[0]*1e3+I[1]/1e6}:S?Yo=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?Yo=dateNow:Yo=function(){return performance.now()};function R0(I){return i()[Ub()>>2]=I,I}function $0(I,R){if(S)return ha(1,1,I,R)}function D0(I,R){if(I==R)postMessage({cmd:"processQueuedMainThreadWork"});else if(S)postMessage({targetThread:I,cmd:"processThreadQueue"});else{var z=Re.pthreads[I],Z=z&&z.worker;if(!Z)return;Z.postMessage({cmd:"processThreadQueue"})}return 1}function _0(){Br()}function P0(I,R,z){var Z=z0(R,z);return Dp[I].apply(null,Z)}function F0(I,R){}function Pp(I,R,z){if(I<=0||I>a().length||I&!0)return-28;if(x){if(Atomics.load(i(),I>>2)!=R)return-6;for(var ge=performance.now(),fe=ge+z,me=Atomics.exchange(i(),Fl>>2,I);;){if(ge=performance.now(),ge>fe)return me=Atomics.exchange(i(),Fl>>2,0),-73;if(me=Atomics.exchange(i(),Fl>>2,0),me==0)break;if(qp(),Atomics.load(i(),I>>2)!=R)return-6;me=Atomics.exchange(i(),Fl>>2,I)}return 0}else{var Z=Atomics.wait(i(),I>>2,R,z);if(Z==="timed-out")return-73;if(Z==="not-equal")return-6;if(Z==="ok")return 0;throw"Atomics.wait returned an unexpected value "+Z}}function O0(I,R,z){o().copyWithin(I,R,R+z)}function M0(){return b?Ls("os").cpus().length:navigator.hardwareConcurrency}function ha(I,R){for(var z=arguments.length-2,Z=Tc(),ge=z,fe=Pl(ge*8),me=fe>>3,Ce=0;Ce<z;Ce++){var dt=arguments[2+Ce];c()[me+Ce]=dt}var cn=Zb(I,ge,fe,R);return _l(Z),cn}var bc=[],vc=[];function z0(I,R){vc.length=0;var z;for(R>>=2;z=o()[I++];){var Z=z<105;Z&&R&1&&R++,vc.push(Z?c()[R++>>1]:i()[R]),++R}return vc}function L0(I,R,z){bc.length=R;for(var Z=z>>3,ge=0;ge<R;ge++)bc[ge]=c()[Z+ge];var fe=I<0,me=fe?Dp[-I-1]:pg[I];return me.apply(null,bc)}function B0(){return o().length}function W0(I){try{return re.grow(I-Tt.byteLength+65535>>>16),xn(re.buffer),1}catch{}}function V0(I){var R=B0();if(I<=R)return!1;var z=2147483648;if(I>z)return!1;for(var Z=1;Z<=4;Z*=2){var ge=R*(1+.2/Z);ge=Math.min(ge,I+100663296);var fe=Math.min(z,gt(Math.max(I,ge),65536)),me=W0(fe);if(me)return!0}return!1}var Ge={inEventHandler:0,removeAllEventListeners:function(){for(var I=Ge.eventHandlers.length-1;I>=0;--I)Ge._removeHandler(I);Ge.eventHandlers=[],Ge.deferredCalls=[]},registerRemoveEventListeners:function(){Ge.removeEventListenersRegistered||(Ac.push(Ge.removeAllEventListeners),Ge.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(I,R,z){function Z(me,Ce){if(me.length!=Ce.length)return!1;for(var dt in me)if(me[dt]!=Ce[dt])return!1;return!0}for(var ge in Ge.deferredCalls){var fe=Ge.deferredCalls[ge];if(fe.targetFunction==I&&Z(fe.argsList,z))return}Ge.deferredCalls.push({targetFunction:I,precedence:R,argsList:z}),Ge.deferredCalls.sort(function(me,Ce){return me.precedence<Ce.precedence})},removeDeferredCalls:function(I){for(var R=0;R<Ge.deferredCalls.length;++R)Ge.deferredCalls[R].targetFunction==I&&(Ge.deferredCalls.splice(R,1),--R)},canPerformEventHandlerRequests:function(){return Ge.inEventHandler&&Ge.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Ge.canPerformEventHandlerRequests())for(var I=0;I<Ge.deferredCalls.length;++I){var R=Ge.deferredCalls[I];Ge.deferredCalls.splice(I,1),--I,R.targetFunction.apply(null,R.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(I,R){for(var z=0;z<Ge.eventHandlers.length;++z)Ge.eventHandlers[z].target==I&&(!R||R==Ge.eventHandlers[z].eventTypeString)&&Ge._removeHandler(z--)},_removeHandler:function(I){var R=Ge.eventHandlers[I];R.target.removeEventListener(R.eventTypeString,R.eventListenerFunc,R.useCapture),Ge.eventHandlers.splice(I,1)},registerOrRemoveHandler:function(I){var R=function(ge){++Ge.inEventHandler,Ge.currentEventHandler=I,Ge.runDeferredCalls(),I.handlerFunc(ge),Ge.runDeferredCalls(),--Ge.inEventHandler};if(I.callbackfunc)I.eventListenerFunc=R,I.target.addEventListener(I.eventTypeString,R,I.useCapture),Ge.eventHandlers.push(I),Ge.registerRemoveEventListeners();else for(var z=0;z<Ge.eventHandlers.length;++z)Ge.eventHandlers[z].target==I.target&&Ge.eventHandlers[z].eventTypeString==I.eventTypeString&&Ge._removeHandler(z--)},queueEventHandlerOnThread_iiii:function(I,R,z,Z,ge){var fe=Tc(),me=Pl(12);i()[me>>2]=z,i()[me+4>>2]=Z,i()[me+8>>2]=ge,Dg(0,I,637534208,R,Z,me),_l(fe)},getTargetThreadForEventCallback:function(I){switch(I){case 1:return 0;case 2:return Re.currentProxiedOperationCallerThread;default:return I}},getNodeNameForTarget:function(I){return I?I==window?"#window":I==screen?"#screen":I&&I.nodeName?I.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function U0(I){var R=it(I)+1,z=Jo(R);return ht(I,z,R),z}function G0(I,R,z,Z){var ge=Tc(),fe=Pl(12),me=0;R&&(me=U0(R)),i()[fe>>2]=me,i()[fe+4>>2]=z,i()[fe+8>>2]=Z,Dg(0,I,657457152,0,me,fe),_l(ge)}function H0(I,R,z,Z){R=R?Ye(R):"",G0(I,R,z,Z)}function j0(I){return I>2?Ye(I):I}var q0=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function X0(I){I=j0(I);var R=q0[I]||(typeof document!="undefined"?document.querySelector(I):void 0);return R}function wc(I){return X0(I)}function Fp(I,R,z){var Z=wc(I);if(!Z)return-4;if(Z.canvasSharedPtr&&(i()[Z.canvasSharedPtr>>2]=R,i()[Z.canvasSharedPtr+4>>2]=z),Z.offscreenCanvas||!Z.controlTransferredOffscreen){Z.offscreenCanvas&&(Z=Z.offscreenCanvas);var ge=!1;if(Z.GLctxObject&&Z.GLctxObject.GLctx){var fe=Z.GLctxObject.GLctx.getParameter(2978);ge=fe[0]===0&&fe[1]===0&&fe[2]===Z.width&&fe[3]===Z.height}Z.width=R,Z.height=z,ge&&Z.GLctxObject.GLctx.viewport(0,0,R,z)}else if(Z.canvasSharedPtr){var me=i()[Z.canvasSharedPtr+8>>2];return H0(me,I,R,z),1}else return-4;return 0}function Op(I,R,z){return S?ha(2,1,I,R,z):Fp(I,R,z)}function K0(I,R,z){var Z=wc(I);return Z?Fp(I,R,z):Op(I,R,z)}function Z0(I){}function Y0(I,R){}function J0(I){var R=I.getExtension("ANGLE_instanced_arrays");if(R)return I.vertexAttribDivisor=function(z,Z){R.vertexAttribDivisorANGLE(z,Z)},I.drawArraysInstanced=function(z,Z,ge,fe){R.drawArraysInstancedANGLE(z,Z,ge,fe)},I.drawElementsInstanced=function(z,Z,ge,fe,me){R.drawElementsInstancedANGLE(z,Z,ge,fe,me)},1}function Q0(I){var R=I.getExtension("OES_vertex_array_object");if(R)return I.createVertexArray=function(){return R.createVertexArrayOES()},I.deleteVertexArray=function(z){R.deleteVertexArrayOES(z)},I.bindVertexArray=function(z){R.bindVertexArrayOES(z)},I.isVertexArray=function(z){return R.isVertexArrayOES(z)},1}function eg(I){var R=I.getExtension("WEBGL_draw_buffers");if(R)return I.drawBuffers=function(z,Z){R.drawBuffersWEBGL(z,Z)},1}function tg(I){return!!(I.multiDrawWebgl=I.getExtension("WEBGL_multi_draw"))}var ut={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(R){ut.lastError||(ut.lastError=R)},getNewId:function(I){for(var R=ut.counter++,z=I.length;z<R;z++)I[z]=null;return R},getSource:function(I,R,z,Z){for(var ge="",fe=0;fe<R;++fe){var me=Z?i()[Z+fe*4>>2]:-1;ge+=Ye(i()[z+fe*4>>2],me<0?void 0:me)}return ge},createContext:function(I,R){var z=I.getContext("webgl",R);if(!z)return 0;var Z=ut.registerContext(z,R);return Z},registerContext:function(I,R){var z=Jo(8);i()[z+4>>2]=ga();var Z={handle:z,attributes:R,version:R.majorVersion,GLctx:I};return I.canvas&&(I.canvas.GLctxObject=Z),ut.contexts[z]=Z,(typeof R.enableExtensionsByDefault=="undefined"||R.enableExtensionsByDefault)&&ut.initExtensions(Z),z},makeContextCurrent:function(I){return ut.currentContext=ut.contexts[I],u.ctx=fa=ut.currentContext&&ut.currentContext.GLctx,!(I&&!fa)},getContext:function(I){return ut.contexts[I]},deleteContext:function(I){ut.currentContext===ut.contexts[I]&&(ut.currentContext=null),typeof Ge=="object"&&Ge.removeAllHandlersOnTarget(ut.contexts[I].GLctx.canvas),ut.contexts[I]&&ut.contexts[I].GLctx.canvas&&(ut.contexts[I].GLctx.canvas.GLctxObject=void 0),Cc(ut.contexts[I].handle),ut.contexts[I]=null},initExtensions:function(I){if(I||(I=ut.currentContext),!I.initExtensionsDone){I.initExtensionsDone=!0;var R=I.GLctx;J0(R),Q0(R),eg(R),R.disjointTimerQueryExt=R.getExtension("EXT_disjoint_timer_query"),tg(R);var z=R.getSupportedExtensions()||[];z.forEach(function(Z){Z.indexOf("lose_context")<0&&Z.indexOf("debug")<0&&R.getExtension(Z)})}},populateUniformTable:function(I){for(var R=ut.programs[I],z=ut.programInfos[I]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},Z=z.uniforms,ge=fa.getProgramParameter(R,35718),fe=0;fe<ge;++fe){var me=fa.getActiveUniform(R,fe),Ce=me.name;z.maxUniformLength=Math.max(z.maxUniformLength,Ce.length+1),Ce.slice(-1)=="]"&&(Ce=Ce.slice(0,Ce.lastIndexOf("[")));var dt=fa.getUniformLocation(R,Ce);if(dt){var cn=ut.getNewId(ut.uniforms);Z[Ce]=[me.size,cn],ut.uniforms[cn]=dt;for(var nn=1;nn<me.size;++nn){var Aa=Ce+"["+nn+"]";dt=fa.getUniformLocation(R,Aa),cn=ut.getNewId(ut.uniforms),ut.uniforms[cn]=dt}}}}},ng=["default","low-power","high-performance"];function sg(I,R){var z=R>>2,Z=i()[z+(24>>2)],ge={alpha:!!i()[z+(0>>2)],depth:!!i()[z+(4>>2)],stencil:!!i()[z+(8>>2)],antialias:!!i()[z+(12>>2)],premultipliedAlpha:!!i()[z+(16>>2)],preserveDrawingBuffer:!!i()[z+(20>>2)],powerPreference:ng[Z],failIfMajorPerformanceCaveat:!!i()[z+(28>>2)],majorVersion:i()[z+(32>>2)],minorVersion:i()[z+(36>>2)],enableExtensionsByDefault:i()[z+(40>>2)],explicitSwapControl:i()[z+(44>>2)],proxyContextToMainThread:i()[z+(48>>2)],renderViaOffscreenBackBuffer:i()[z+(52>>2)]},fe=wc(I);if(!fe||ge.explicitSwapControl)return 0;var me=ut.createContext(fe,ge);return me}function rg(I,R){return sg(I,R)}var $l={mappings:{},buffers:[null,[],[]],printChar:function(I,R){var z=$l.buffers[I];R===0||R===10?((I===1?q:j)(qe(z,0)),z.length=0):z.push(R)},varargs:void 0,get:function(){$l.varargs+=4;var I=i()[$l.varargs-4>>2];return I},getStr:function(I){var R=Ye(I);return R},get64:function(I,R){return I}};function Mp(I){return S?ha(3,1,I):0}function zp(I,R,z,Z,ge){if(S)return ha(4,1,I,R,z,Z,ge)}function Lp(I,R,z,Z){if(S)return ha(5,1,I,R,z,Z);for(var ge=0,fe=0;fe<z;fe++){for(var me=i()[R+fe*8>>2],Ce=i()[R+(fe*8+4)>>2],dt=0;dt<Ce;dt++)$l.printChar(I,o()[me+dt]);ge+=Ce}return i()[Z>>2]=ge,0}function ag(I){var R=Re.threadExitHandlers.pop();I&&R()}function og(I,R){Re.threadExitHandlers.push(function(){Tn.get(I)(R)})}function Bp(I){if(S)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var R=Re.getNewWorker();if(R.pthread!==void 0)throw"Internal error!";if(!I.pthread_ptr)throw"Internal error, no pthread ptr!";Re.runningWorkers.push(R);for(var z=Jo(128*4),Z=0;Z<128;++Z)i()[z+Z*4>>2]=0;var ge=I.stackBase+I.stackSize,fe=Re.pthreads[I.pthread_ptr]={worker:R,stackBase:I.stackBase,stackSize:I.stackSize,allocatedOwnStack:I.allocatedOwnStack,threadInfoStruct:I.pthread_ptr},me=fe.threadInfoStruct>>2;Atomics.store(l(),me+(64>>2),I.detached),Atomics.store(l(),me+(100>>2),z),Atomics.store(l(),me+(40>>2),fe.threadInfoStruct),Atomics.store(l(),me+(80>>2),I.stackSize),Atomics.store(l(),me+(76>>2),ge),Atomics.store(l(),me+(104>>2),I.stackSize),Atomics.store(l(),me+(104+8>>2),ge),Atomics.store(l(),me+(104+12>>2),I.detached);var Ce=Gb(),dt=Ce+40;Atomics.store(l(),me+(172>>2),dt),R.pthread=fe;var cn={cmd:"run",start_routine:I.startRoutine,arg:I.arg,threadInfoStruct:I.pthread_ptr,stackBase:I.stackBase,stackSize:I.stackSize};R.runPthread=function(){cn.time=performance.now(),R.postMessage(cn,I.transferList)},R.loaded&&(R.runPthread(),delete R.runPthread)}function ig(I,R,z,Z){if(typeof SharedArrayBuffer=="undefined")return j("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!I)return j("pthread_create called with a null thread pointer!"),28;var ge=[],fe=0;if(S&&(ge.length===0||fe))return Kb(687865856,I,R,z,Z);if(fe)return fe;var me=0,Ce=0,dt=0;R&&R!=-1?(me=i()[R>>2],me+=81920,Ce=i()[R+8>>2],dt=i()[R+12>>2]!==0):me=2097152;var cn=Ce==0;cn?Ce=Jb(16,me):(Ce-=me,Ie(Ce>0));for(var nn=Jo(228),Aa=0;Aa<228>>2;++Aa)l()[(nn>>2)+Aa]=0;i()[I>>2]=nn,i()[nn+12>>2]=nn;var Ol=nn+152;i()[Ol>>2]=Ol;var _n={stackBase:Ce,stackSize:me,allocatedOwnStack:cn,detached:dt,startRoutine:z,pthread_ptr:nn,arg:Z,transferList:ge};return S?(_n.cmd="spawnThread",postMessage(_n,ge)):Bp(_n),0}function lg(){if(!!S){var I=ga();if(!!I){var R=Atomics.load(l(),I+56>>2);if(!R){var z=Atomics.load(l(),I+0>>2);if(z==2)throw"Canceled!"}}}}function ug(){b||y||X("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function cg(I,R,z){if(!I)return j("pthread_join attempted on a null thread pointer!"),pa.ESRCH;if(S&&ga()==I)return j("PThread "+I+" is attempting to join to itself!"),pa.EDEADLK;if(!S&&qb()==I)return j("Main thread "+I+" is attempting to join to itself!"),pa.EDEADLK;var Z=i()[I+12>>2];if(Z!==I)return j("pthread_join attempted on thread "+I+", which does not point to a valid thread, or does not exist anymore!"),pa.ESRCH;var ge=Atomics.load(l(),I+64>>2);if(ge)return j("Attempted to join thread "+I+", which was already detached!"),pa.EINVAL;for(z&&ug();;){var fe=Atomics.load(l(),I+0>>2);if(fe==1){var me=Atomics.load(l(),I+4>>2);return R&&(i()[R>>2]=me),Atomics.store(l(),I+64>>2,1),S?postMessage({cmd:"cleanupThread",thread:I}):_p(I),0}if(!z)return pa.EBUSY;lg(),S||qp(),Pp(I+0,fe,S?100:1)}}function dg(I,R){return cg(I,R,!0)}function Wp(I){if(S)return ha(6,1,I);switch(I){case 30:return 16384;case 85:var R=2147483648;return R/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return R0(28),-1}S||Re.initMainThreadBlock();var fa,pg=[null,$0,Op,Mp,zp,Lp,Wp],hg={e:N0,r:E0,x:D0,b:_0,y:P0,j:F0,d:Pp,c:xc,f:Yo,p:O0,A:M0,u:L0,q:V0,v:K0,i:Z0,s:Y0,w:rg,l:Mp,n:zp,g:Lp,o:w0,a:re||u.wasmMemory,z:ag,k:og,h:ig,m:dg,t:Wp},Vb=v0(),Vp=u.___wasm_call_ctors=function(){return(Vp=u.___wasm_call_ctors=u.asm.B).apply(null,arguments)},fg=u._init=function(){return(fg=u._init=u.asm.C).apply(null,arguments)},mg=u._init_with_threads_count=function(){return(mg=u._init_with_threads_count=u.asm.D).apply(null,arguments)},gg=u._get_threads_count=function(){return(gg=u._get_threads_count=u.asm.E).apply(null,arguments)},Ag=u._register_tensor=function(){return(Ag=u._register_tensor=u.asm.F).apply(null,arguments)},yg=u._dispose_data=function(){return(yg=u._dispose_data=u.asm.G).apply(null,arguments)},xg=u._dispose=function(){return(xg=u._dispose=u.asm.H).apply(null,arguments)},bg=u._Abs=function(){return(bg=u._Abs=u.asm.I).apply(null,arguments)},vg=u._Add=function(){return(vg=u._Add=u.asm.J).apply(null,arguments)},wg=u._AddN=function(){return(wg=u._AddN=u.asm.K).apply(null,arguments)},kg=u._All=function(){return(kg=u._All=u.asm.L).apply(null,arguments)},Sg=u._Any=function(){return(Sg=u._Any=u.asm.M).apply(null,arguments)},Ig=u._ArgMax=function(){return(Ig=u._ArgMax=u.asm.N).apply(null,arguments)},Cg=u._AvgPool=function(){return(Cg=u._AvgPool=u.asm.O).apply(null,arguments)},Tg=u._BatchMatMul=function(){return(Tg=u._BatchMatMul=u.asm.P).apply(null,arguments)},Ng=u._Ceil=function(){return(Ng=u._Ceil=u.asm.Q).apply(null,arguments)},Eg=u._ClipByValue=function(){return(Eg=u._ClipByValue=u.asm.R).apply(null,arguments)},Rg=u._Conv2D=function(){return(Rg=u._Conv2D=u.asm.S).apply(null,arguments)},Up=u._Conv2DBackpropInput=function(){return(Up=u._Conv2DBackpropInput=u.asm.T).apply(null,arguments)},Gp=u._Cos=function(){return(Gp=u._Cos=u.asm.U).apply(null,arguments)},kc=u._Cosh=function(){return(kc=u._Cosh=u.asm.V).apply(null,arguments)},Dl=u._CropAndResize=function(){return(Dl=u._CropAndResize=u.asm.W).apply(null,arguments)},$g=u._Cumsum=function(){return($g=u._Cumsum=u.asm.X).apply(null,arguments)},Sc=u._DepthToSpace=function(){return(Sc=u._DepthToSpace=u.asm.Y).apply(null,arguments)},Q=u._DepthwiseConv2dNative=function(){return(Q=u._DepthwiseConv2dNative=u.asm.Z).apply(null,arguments)},oe=u._Elu=function(){return(oe=u._Elu=u.asm._).apply(null,arguments)},we=u._Equal=function(){return(we=u._Equal=u.asm.$).apply(null,arguments)},lt=u._Exp=function(){return(lt=u._Exp=u.asm.aa).apply(null,arguments)},Lt=u._FlipLeftRight=function(){return(Lt=u._FlipLeftRight=u.asm.ba).apply(null,arguments)},Nt=u._Floor=function(){return(Nt=u._Floor=u.asm.ca).apply(null,arguments)},Qe=u._FloorDiv=function(){return(Qe=u._FloorDiv=u.asm.da).apply(null,arguments)},et=u._FusedBatchNorm=function(){return(et=u._FusedBatchNorm=u.asm.ea).apply(null,arguments)},bn=u._FusedConv2D=function(){return(bn=u._FusedConv2D=u.asm.fa).apply(null,arguments)},Wr=u._FusedDepthwiseConv2D=function(){return(Wr=u._FusedDepthwiseConv2D=u.asm.ga).apply(null,arguments)},Vr=u._Gather=function(){return(Vr=u._Gather=u.asm.ha).apply(null,arguments)},Hp=u._GatherNd=function(){return(Hp=u._GatherNd=u.asm.ia).apply(null,arguments)},Ic=u._Greater=function(){return(Ic=u._Greater=u.asm.ja).apply(null,arguments)},is=u._GreaterEqual=function(){return(is=u._GreaterEqual=u.asm.ka).apply(null,arguments)},ma=u._LeakyRelu=function(){return(ma=u._LeakyRelu=u.asm.la).apply(null,arguments)},jp=u._Less=function(){return(jp=u._Less=u.asm.ma).apply(null,arguments)},NT=u._LessEqual=function(){return(NT=u._LessEqual=u.asm.na).apply(null,arguments)},ET=u._Log=function(){return(ET=u._Log=u.asm.oa).apply(null,arguments)},RT=u._LogicalAnd=function(){return(RT=u._LogicalAnd=u.asm.pa).apply(null,arguments)},$T=u._Max=function(){return($T=u._Max=u.asm.qa).apply(null,arguments)},DT=u._MaxPool=function(){return(DT=u._MaxPool=u.asm.ra).apply(null,arguments)},_T=u._Maximum=function(){return(_T=u._Maximum=u.asm.sa).apply(null,arguments)},PT=u._Mean=function(){return(PT=u._Mean=u.asm.ta).apply(null,arguments)},FT=u._Min=function(){return(FT=u._Min=u.asm.ua).apply(null,arguments)},OT=u._Minimum=function(){return(OT=u._Minimum=u.asm.va).apply(null,arguments)},MT=u._MirrorPad=function(){return(MT=u._MirrorPad=u.asm.wa).apply(null,arguments)},zT=u._Multiply=function(){return(zT=u._Multiply=u.asm.xa).apply(null,arguments)},LT=u._Neg=function(){return(LT=u._Neg=u.asm.ya).apply(null,arguments)},BT=u._NonMaxSuppressionV3=function(){return(BT=u._NonMaxSuppressionV3=u.asm.za).apply(null,arguments)},WT=u._NonMaxSuppressionV4=function(){return(WT=u._NonMaxSuppressionV4=u.asm.Aa).apply(null,arguments)},VT=u._NonMaxSuppressionV5=function(){return(VT=u._NonMaxSuppressionV5=u.asm.Ba).apply(null,arguments)},UT=u._NotEqual=function(){return(UT=u._NotEqual=u.asm.Ca).apply(null,arguments)},GT=u._OneHot=function(){return(GT=u._OneHot=u.asm.Da).apply(null,arguments)},HT=u._PadV2=function(){return(HT=u._PadV2=u.asm.Ea).apply(null,arguments)},jT=u._Pow=function(){return(jT=u._Pow=u.asm.Fa).apply(null,arguments)},qT=u._Prelu=function(){return(qT=u._Prelu=u.asm.Ga).apply(null,arguments)},XT=u._Prod=function(){return(XT=u._Prod=u.asm.Ha).apply(null,arguments)},KT=u._RealDiv=function(){return(KT=u._RealDiv=u.asm.Ia).apply(null,arguments)},ZT=u._Relu=function(){return(ZT=u._Relu=u.asm.Ja).apply(null,arguments)},YT=u._Relu6=function(){return(YT=u._Relu6=u.asm.Ka).apply(null,arguments)},JT=u._ResizeBilinear=function(){return(JT=u._ResizeBilinear=u.asm.La).apply(null,arguments)},QT=u._Reverse=function(){return(QT=u._Reverse=u.asm.Ma).apply(null,arguments)},eN=u._RotateWithOffset=function(){return(eN=u._RotateWithOffset=u.asm.Na).apply(null,arguments)},tN=u._Round=function(){return(tN=u._Round=u.asm.Oa).apply(null,arguments)},nN=u._Rsqrt=function(){return(nN=u._Rsqrt=u.asm.Pa).apply(null,arguments)},sN=u._ScatterNd=function(){return(sN=u._ScatterNd=u.asm.Qa).apply(null,arguments)},rN=u._SelectV2=function(){return(rN=u._SelectV2=u.asm.Ra).apply(null,arguments)},aN=u._Sigmoid=function(){return(aN=u._Sigmoid=u.asm.Sa).apply(null,arguments)},oN=u._Sin=function(){return(oN=u._Sin=u.asm.Ta).apply(null,arguments)},iN=u._Softmax=function(){return(iN=u._Softmax=u.asm.Ua).apply(null,arguments)},lN=u._Sqrt=function(){return(lN=u._Sqrt=u.asm.Va).apply(null,arguments)},uN=u._Square=function(){return(uN=u._Square=u.asm.Wa).apply(null,arguments)},cN=u._SquaredDifference=function(){return(cN=u._SquaredDifference=u.asm.Xa).apply(null,arguments)},dN=u._Step=function(){return(dN=u._Step=u.asm.Ya).apply(null,arguments)},pN=u._StridedSlice=function(){return(pN=u._StridedSlice=u.asm.Za).apply(null,arguments)},hN=u._Sub=function(){return(hN=u._Sub=u.asm._a).apply(null,arguments)},fN=u._Sum=function(){return(fN=u._Sum=u.asm.$a).apply(null,arguments)},mN=u._Tan=function(){return(mN=u._Tan=u.asm.ab).apply(null,arguments)},gN=u._Tanh=function(){return(gN=u._Tanh=u.asm.bb).apply(null,arguments)},AN=u._Tile=function(){return(AN=u._Tile=u.asm.cb).apply(null,arguments)},yN=u._TopK=function(){return(yN=u._TopK=u.asm.db).apply(null,arguments)},xN=u._Transform=function(){return(xN=u._Transform=u.asm.eb).apply(null,arguments)},bN=u._Transpose=function(){return(bN=u._Transpose=u.asm.fb).apply(null,arguments)},vN=u.__FusedMatMul=function(){return(vN=u.__FusedMatMul=u.asm.gb).apply(null,arguments)},Jo=u._malloc=function(){return(Jo=u._malloc=u.asm.hb).apply(null,arguments)},Cc=u._free=function(){return(Cc=u._free=u.asm.ib).apply(null,arguments)},Ub=u.___errno_location=function(){return(Ub=u.___errno_location=u.asm.jb).apply(null,arguments)},Gb=u._emscripten_get_global_libc=function(){return(Gb=u._emscripten_get_global_libc=u.asm.lb).apply(null,arguments)},ga=u._pthread_self=function(){return(ga=u._pthread_self=u.asm.mb).apply(null,arguments)},Hb=u.___pthread_tsd_run_dtors=function(){return(Hb=u.___pthread_tsd_run_dtors=u.asm.nb).apply(null,arguments)},qp=u._emscripten_main_thread_process_queued_calls=function(){return(qp=u._emscripten_main_thread_process_queued_calls=u.asm.ob).apply(null,arguments)},wN=u._emscripten_current_thread_process_queued_calls=function(){return(wN=u._emscripten_current_thread_process_queued_calls=u.asm.pb).apply(null,arguments)},jb=u._emscripten_register_main_browser_thread_id=function(){return(jb=u._emscripten_register_main_browser_thread_id=u.asm.qb).apply(null,arguments)},qb=u._emscripten_main_browser_thread_id=function(){return(qb=u._emscripten_main_browser_thread_id=u.asm.rb).apply(null,arguments)},Xb=u.__emscripten_do_dispatch_to_thread=function(){return(Xb=u.__emscripten_do_dispatch_to_thread=u.asm.sb).apply(null,arguments)},Kb=u._emscripten_sync_run_in_main_thread_4=function(){return(Kb=u._emscripten_sync_run_in_main_thread_4=u.asm.tb).apply(null,arguments)},Zb=u._emscripten_run_in_main_runtime_thread_js=function(){return(Zb=u._emscripten_run_in_main_runtime_thread_js=u.asm.ub).apply(null,arguments)},Dg=u.__emscripten_call_on_thread=function(){return(Dg=u.__emscripten_call_on_thread=u.asm.vb).apply(null,arguments)},kN=u._emscripten_tls_init=function(){return(kN=u._emscripten_tls_init=u.asm.wb).apply(null,arguments)},_g=u.__emscripten_thread_init=function(){return(_g=u.__emscripten_thread_init=u.asm.xb).apply(null,arguments)},Tc=u.stackSave=function(){return(Tc=u.stackSave=u.asm.yb).apply(null,arguments)},_l=u.stackRestore=function(){return(_l=u.stackRestore=u.asm.zb).apply(null,arguments)},Pl=u.stackAlloc=function(){return(Pl=u.stackAlloc=u.asm.Ab).apply(null,arguments)},Yb=u._emscripten_stack_set_limits=function(){return(Yb=u._emscripten_stack_set_limits=u.asm.Bb).apply(null,arguments)},Jb=u._memalign=function(){return(Jb=u._memalign=u.asm.Cb).apply(null,arguments)},Qb=u.__emscripten_allow_main_runtime_queued_calls=10064,Fl=u.__emscripten_main_thread_futex=10268;u.cwrap=Ue,u.PThread=Re,u.PThread=Re,u.wasmMemory=re,u.ExitStatus=Nc;var Xp;function Nc(I){this.name="ExitStatus",this.message="Program terminated with exit("+I+")",this.status=I}Ko=function I(){Xp||Pg(),Xp||(Ko=I)};function Pg(I){if(I=I||m,zs>0)return;if(S){d(u),Cp(),postMessage({cmd:"loaded"});return}if(Ip(),zs>0)return;function R(){Xp||(Xp=!0,u.calledRun=!0,!ye&&(Cp(),Tp(),d(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),Np()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),R()},1)):R()}u.run=Pg;function SN(I,R){if(!(R&&se&&I===0)){if(!R&&S)throw postMessage({cmd:"exitProcess",returnCode:I}),new Nc(I);se||(Re.terminateAllThreads(),ve=I,Xn(),u.onExit&&u.onExit(I),ye=!0),A(I,new Nc(I))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return S&&(se=!1,Re.initWorker()),Pg(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),HN=Zn({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(Q,oe){o=Q,i=oe});var l={},c;for(c in a)a.hasOwnProperty(c)&&(l[c]=a[c]);var u=[],d="./this.program",p=function(Q,oe){throw oe},h=!1,f=!1,m=!1,g=!1;h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!m&&!f;var A="";function x(Q){return a.locateFile?a.locateFile(Q,A):A+Q}var y,b,w,S,C,E;m?(f?A=Ls("path").dirname(A)+"/":A=__dirname+"/",y=function(oe,we){return C||(C=Ls("fs")),E||(E=Ls("path")),oe=E.normalize(oe),C.readFileSync(oe,we?null:"utf8")},w=function(oe){var we=y(oe,!0);return we.buffer||(we=new Uint8Array(we)),q(we.buffer),we},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(Q){if(!(Q instanceof $g))throw Q}),process.on("unhandledRejection",tr),p=function(Q){process.exit(Q)},a.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(y=function(oe){return read(oe)}),w=function(oe){var we;return typeof readbuffer=="function"?new Uint8Array(readbuffer(oe)):(we=read(oe,"binary"),q(typeof we=="object"),we)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(p=function(Q){quit(Q)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||f)&&(f?A=self.location.href:typeof document!="undefined"&&document.currentScript&&(A=document.currentScript.src),s&&(A=s),A.indexOf("blob:")!==0?A=A.substr(0,A.lastIndexOf("/")+1):A="",y=function(Q){var oe=new XMLHttpRequest;return oe.open("GET",Q,!1),oe.send(null),oe.responseText},f&&(w=function(Q){var oe=new XMLHttpRequest;return oe.open("GET",Q,!1),oe.responseType="arraybuffer",oe.send(null),new Uint8Array(oe.response)}),b=function(Q,oe,we){var lt=new XMLHttpRequest;lt.open("GET",Q,!0),lt.responseType="arraybuffer",lt.onload=function(){if(lt.status==200||lt.status==0&<.response){oe(lt.response);return}we()},lt.onerror=we,lt.send(null)},S=function(Q){document.title=Q});var D=a.print||console.log.bind(console),O=a.printErr||console.warn.bind(console);for(c in l)l.hasOwnProperty(c)&&(a[c]=l[c]);l=null,a.arguments&&(u=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(p=a.quit);var _;a.wasmBinary&&(_=a.wasmBinary);var F=a.noExitRuntime||!0;typeof WebAssembly!="object"&&tr("no native wasm support detected");var T,M=!1,U;function q(Q,oe){Q||tr("Assertion failed: "+oe)}function j(Q){var oe=a["_"+Q];return q(oe,"Cannot call unknown function "+Q+", make sure it is exported"),oe}function X(Q,oe,we,lt,Lt){var Nt={string:function(is){var ma=0;if(is!=null&&is!==0){var jp=(is.length<<2)+1;ma=kc(jp),re(is,ma,jp)}return ma},array:function(is){var ma=kc(is.length);return ue(is,ma),ma}};function Qe(is){return oe==="string"?ae(is):oe==="boolean"?Boolean(is):is}var et=j(Q),bn=[],Wr=0;if(lt)for(var Vr=0;Vr<lt.length;Vr++){var Hp=Nt[we[Vr]];Hp?(Wr===0&&(Wr=Up()),bn[Vr]=Hp(lt[Vr])):bn[Vr]=lt[Vr]}var Ic=et.apply(null,bn);return Ic=Qe(Ic),Wr!==0&&Gp(Wr),Ic}function J(Q,oe,we,lt){we=we||[];var Lt=we.every(function(Qe){return Qe==="number"}),Nt=oe!=="string";return Nt&&Lt&&!lt?j(Q):function(){return X(Q,oe,we,arguments,lt)}}var te=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ne(Q,oe,we){for(var lt=oe+we,Lt=oe;Q[Lt]&&!(Lt>=lt);)++Lt;if(Lt-oe>16&&Q.subarray&&te)return te.decode(Q.subarray(oe,Lt));for(var Nt="";oe<Lt;){var Qe=Q[oe++];if(!(Qe&128)){Nt+=String.fromCharCode(Qe);continue}var et=Q[oe++]&63;if((Qe&224)==192){Nt+=String.fromCharCode((Qe&31)<<6|et);continue}var bn=Q[oe++]&63;if((Qe&240)==224?Qe=(Qe&15)<<12|et<<6|bn:Qe=(Qe&7)<<18|et<<12|bn<<6|Q[oe++]&63,Qe<65536)Nt+=String.fromCharCode(Qe);else{var Wr=Qe-65536;Nt+=String.fromCharCode(55296|Wr>>10,56320|Wr&1023)}}return Nt}function ae(Q,oe){return Q?ne(Ee,Q,oe):""}function se(Q,oe,we,lt){if(!(lt>0))return 0;for(var Lt=we,Nt=we+lt-1,Qe=0;Qe<Q.length;++Qe){var et=Q.charCodeAt(Qe);if(et>=55296&&et<=57343){var bn=Q.charCodeAt(++Qe);et=65536+((et&1023)<<10)|bn&1023}if(et<=127){if(we>=Nt)break;oe[we++]=et}else if(et<=2047){if(we+1>=Nt)break;oe[we++]=192|et>>6,oe[we++]=128|et&63}else if(et<=65535){if(we+2>=Nt)break;oe[we++]=224|et>>12,oe[we++]=128|et>>6&63,oe[we++]=128|et&63}else{if(we+3>=Nt)break;oe[we++]=240|et>>18,oe[we++]=128|et>>12&63,oe[we++]=128|et>>6&63,oe[we++]=128|et&63}}return oe[we]=0,we-Lt}function re(Q,oe,we){return se(Q,Ee,oe,we)}function ue(Q,oe){Ie.set(Q,oe)}function ye(Q,oe){return Q%oe>0&&(Q+=oe-Q%oe),Q}var ve,Ie,Ee,ze,Ue,qe,Ye,pt,ht;function it(Q){ve=Q,a.HEAP8=Ie=new Int8Array(Q),a.HEAP16=ze=new Int16Array(Q),a.HEAP32=qe=new Int32Array(Q),a.HEAPU8=Ee=new Uint8Array(Q),a.HEAPU16=Ue=new Uint16Array(Q),a.HEAPU32=Ye=new Uint32Array(Q),a.HEAPF32=pt=new Float32Array(Q),a.HEAPF64=ht=new Float64Array(Q)}var St=a.INITIAL_MEMORY||16777216,gt,Tt=[],_t=[],vs=[],yn=[],er=!1;_t.push({func:function(){$p()}});function Dn(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)xn(a.preRun.shift());zs(Tt)}function os(){er=!0,zs(_t)}function Ms(){zs(vs)}function ws(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)xr(a.postRun.shift());zs(yn)}function xn(Q){Tt.unshift(Q)}function xr(Q){yn.unshift(Q)}var Tn=0,br=null,vr=null;function da(Q){Tn++,a.monitorRunDependencies&&a.monitorRunDependencies(Tn)}function Ac(Q){if(Tn--,a.monitorRunDependencies&&a.monitorRunDependencies(Tn),Tn==0&&(br!==null&&(clearInterval(br),br=null),vr)){var oe=vr;vr=null,oe()}}a.preloadedImages={},a.preloadedAudios={};function tr(Q){a.onAbort&&a.onAbort(Q),Q+="",O(Q),M=!0,U=1,Q="abort("+Q+"). Build with -s ASSERTIONS=1 for more info.";var oe=new WebAssembly.RuntimeError(Q);throw i(oe),oe}function Sp(Q,oe){return String.prototype.startsWith?Q.startsWith(oe):Q.indexOf(oe)===0}var h0="data:application/octet-stream;base64,";function Ip(Q){return Sp(Q,h0)}var Cp="file://";function Tp(Q){return Sp(Q,Cp)}var Xn="tfjs-backend-wasm.wasm";Ip(Xn)||(Xn=x(Xn));function Np(Q){try{if(Q==Xn&&_)return new Uint8Array(_);if(w)return w(Q);throw"both async and sync fetching of the wasm failed"}catch(oe){tr(oe)}}function f0(){if(!_&&(h||f)){if(typeof fetch=="function"&&!Tp(Xn))return fetch(Xn,{credentials:"same-origin"}).then(function(Q){if(!Q.ok)throw"failed to load wasm binary file at '"+Xn+"'";return Q.arrayBuffer()}).catch(function(){return Np(Xn)});if(b)return new Promise(function(Q,oe){b(Xn,function(we){Q(new Uint8Array(we))},oe)})}return Promise.resolve().then(function(){return Np(Xn)})}function m0(){var Q={a:Kn};function oe(Qe,et){var bn=Qe.exports;a.asm=bn,T=a.asm.h,it(T.buffer),gt=a.asm.Sa,Ac("wasm-instantiate")}da("wasm-instantiate");function we(Qe){oe(Qe.instance)}function lt(Qe){return f0().then(function(et){return WebAssembly.instantiate(et,Q)}).then(Qe,function(et){O("failed to asynchronously prepare wasm: "+et),tr(et)})}function Lt(){return!_&&typeof WebAssembly.instantiateStreaming=="function"&&!Ip(Xn)&&!Tp(Xn)&&typeof fetch=="function"?fetch(Xn,{credentials:"same-origin"}).then(function(Qe){var et=WebAssembly.instantiateStreaming(Qe,Q);return et.then(we,function(bn){return O("wasm streaming compile failed: "+bn),O("falling back to ArrayBuffer instantiation"),lt(we)})}):lt(we)}if(a.instantiateWasm)try{var Nt=a.instantiateWasm(Q,oe);return Nt}catch(Qe){return O("Module.instantiateWasm callback failed with error: "+Qe),!1}return Lt().catch(i),{}}function zs(Q){for(;Q.length>0;){var oe=Q.shift();if(typeof oe=="function"){oe(a);continue}var we=oe.func;typeof we=="number"?oe.arg===void 0?gt.get(we)():gt.get(we)(oe.arg):we(oe.arg===void 0?null:oe.arg)}}function yc(){tr()}function Ko(Q,oe,we){Ee.copyWithin(Q,oe,oe+we)}function g0(){return Ee.length}function A0(Q){try{return T.grow(Q-ve.byteLength+65535>>>16),it(T.buffer),1}catch{}}function Br(Q){var oe=g0(),we=2147483648;if(Q>we)return!1;for(var lt=1;lt<=4;lt*=2){var Lt=oe*(1+.2/lt);Lt=Math.min(Lt,Q+100663296);var Nt=Math.min(we,ye(Math.max(Q,Lt),65536)),Qe=A0(Nt);if(Qe)return!0}return!1}var Zo={mappings:{},buffers:[null,[],[]],printChar:function(Q,oe){var we=Zo.buffers[Q];oe===0||oe===10?((Q===1?D:O)(ne(we,0)),we.length=0):we.push(oe)},varargs:void 0,get:function(){Zo.varargs+=4;var Q=qe[Zo.varargs-4>>2];return Q},getStr:function(Q){var oe=ae(Q);return oe},get64:function(Q,oe){return Q}};function y0(Q){return 0}function Ep(Q,oe,we,lt,Lt){}function x0(Q,oe,we,lt){for(var Lt=0,Nt=0;Nt<we;Nt++){for(var Qe=qe[oe+Nt*8>>2],et=qe[oe+(Nt*8+4)>>2],bn=0;bn<et;bn++)Zo.printChar(Q,Ee[Qe+bn]);Lt+=et}return qe[lt>>2]=Lt,0}function Rp(){return 28}var Kn={a:yc,d:Ko,e:Br,f:y0,c:Ep,b:x0,g:Rp},b0=m0(),$p=a.___wasm_call_ctors=function(){return($p=a.___wasm_call_ctors=a.asm.i).apply(null,arguments)},v0=a._init=function(){return(v0=a._init=a.asm.j).apply(null,arguments)},Dp=a._init_with_threads_count=function(){return(Dp=a._init_with_threads_count=a.asm.k).apply(null,arguments)},w0=a._get_threads_count=function(){return(w0=a._get_threads_count=a.asm.l).apply(null,arguments)},Rl=a._register_tensor=function(){return(Rl=a._register_tensor=a.asm.m).apply(null,arguments)},pa=a._dispose_data=function(){return(pa=a._dispose_data=a.asm.n).apply(null,arguments)},xc=a._dispose=function(){return(xc=a._dispose=a.asm.o).apply(null,arguments)},k0=a._Abs=function(){return(k0=a._Abs=a.asm.p).apply(null,arguments)},S0=a._Add=function(){return(S0=a._Add=a.asm.q).apply(null,arguments)},_p=a._AddN=function(){return(_p=a._AddN=a.asm.r).apply(null,arguments)},Re=a._All=function(){return(Re=a._All=a.asm.s).apply(null,arguments)},I0=a._Any=function(){return(I0=a._Any=a.asm.t).apply(null,arguments)},C0=a._ArgMax=function(){return(C0=a._ArgMax=a.asm.u).apply(null,arguments)},T0=a._AvgPool=function(){return(T0=a._AvgPool=a.asm.v).apply(null,arguments)},N0=a._BatchMatMul=function(){return(N0=a._BatchMatMul=a.asm.w).apply(null,arguments)},E0=a._Ceil=function(){return(E0=a._Ceil=a.asm.x).apply(null,arguments)},Yo=a._ClipByValue=function(){return(Yo=a._ClipByValue=a.asm.y).apply(null,arguments)},R0=a._Conv2D=function(){return(R0=a._Conv2D=a.asm.z).apply(null,arguments)},$0=a._Conv2DBackpropInput=function(){return($0=a._Conv2DBackpropInput=a.asm.A).apply(null,arguments)},D0=a._Cos=function(){return(D0=a._Cos=a.asm.B).apply(null,arguments)},_0=a._Cosh=function(){return(_0=a._Cosh=a.asm.C).apply(null,arguments)},P0=a._CropAndResize=function(){return(P0=a._CropAndResize=a.asm.D).apply(null,arguments)},F0=a._Cumsum=function(){return(F0=a._Cumsum=a.asm.E).apply(null,arguments)},Pp=a._DepthToSpace=function(){return(Pp=a._DepthToSpace=a.asm.F).apply(null,arguments)},O0=a._DepthwiseConv2dNative=function(){return(O0=a._DepthwiseConv2dNative=a.asm.G).apply(null,arguments)},M0=a._Elu=function(){return(M0=a._Elu=a.asm.H).apply(null,arguments)},ha=a._Equal=function(){return(ha=a._Equal=a.asm.I).apply(null,arguments)},bc=a._Exp=function(){return(bc=a._Exp=a.asm.J).apply(null,arguments)},vc=a._FlipLeftRight=function(){return(vc=a._FlipLeftRight=a.asm.K).apply(null,arguments)},z0=a._Floor=function(){return(z0=a._Floor=a.asm.L).apply(null,arguments)},L0=a._FloorDiv=function(){return(L0=a._FloorDiv=a.asm.M).apply(null,arguments)},B0=a._FusedBatchNorm=function(){return(B0=a._FusedBatchNorm=a.asm.N).apply(null,arguments)},W0=a._FusedConv2D=function(){return(W0=a._FusedConv2D=a.asm.O).apply(null,arguments)},V0=a._FusedDepthwiseConv2D=function(){return(V0=a._FusedDepthwiseConv2D=a.asm.P).apply(null,arguments)},Ge=a._Gather=function(){return(Ge=a._Gather=a.asm.Q).apply(null,arguments)},U0=a._GatherNd=function(){return(U0=a._GatherNd=a.asm.R).apply(null,arguments)},G0=a._Greater=function(){return(G0=a._Greater=a.asm.S).apply(null,arguments)},H0=a._GreaterEqual=function(){return(H0=a._GreaterEqual=a.asm.T).apply(null,arguments)},j0=a._LeakyRelu=function(){return(j0=a._LeakyRelu=a.asm.U).apply(null,arguments)},q0=a._Less=function(){return(q0=a._Less=a.asm.V).apply(null,arguments)},X0=a._LessEqual=function(){return(X0=a._LessEqual=a.asm.W).apply(null,arguments)},wc=a._Log=function(){return(wc=a._Log=a.asm.X).apply(null,arguments)},Fp=a._LogicalAnd=function(){return(Fp=a._LogicalAnd=a.asm.Y).apply(null,arguments)},Op=a._Max=function(){return(Op=a._Max=a.asm.Z).apply(null,arguments)},K0=a._MaxPool=function(){return(K0=a._MaxPool=a.asm._).apply(null,arguments)},Z0=a._Maximum=function(){return(Z0=a._Maximum=a.asm.$).apply(null,arguments)},Y0=a._Mean=function(){return(Y0=a._Mean=a.asm.aa).apply(null,arguments)},J0=a._Min=function(){return(J0=a._Min=a.asm.ba).apply(null,arguments)},Q0=a._Minimum=function(){return(Q0=a._Minimum=a.asm.ca).apply(null,arguments)},eg=a._MirrorPad=function(){return(eg=a._MirrorPad=a.asm.da).apply(null,arguments)},tg=a._Multiply=function(){return(tg=a._Multiply=a.asm.ea).apply(null,arguments)},ut=a._Neg=function(){return(ut=a._Neg=a.asm.fa).apply(null,arguments)},ng=a._NonMaxSuppressionV3=function(){return(ng=a._NonMaxSuppressionV3=a.asm.ga).apply(null,arguments)},sg=a._NonMaxSuppressionV4=function(){return(sg=a._NonMaxSuppressionV4=a.asm.ha).apply(null,arguments)},rg=a._NonMaxSuppressionV5=function(){return(rg=a._NonMaxSuppressionV5=a.asm.ia).apply(null,arguments)},$l=a._NotEqual=function(){return($l=a._NotEqual=a.asm.ja).apply(null,arguments)},Mp=a._OneHot=function(){return(Mp=a._OneHot=a.asm.ka).apply(null,arguments)},zp=a._PadV2=function(){return(zp=a._PadV2=a.asm.la).apply(null,arguments)},Lp=a._Pow=function(){return(Lp=a._Pow=a.asm.ma).apply(null,arguments)},ag=a._Prelu=function(){return(ag=a._Prelu=a.asm.na).apply(null,arguments)},og=a._Prod=function(){return(og=a._Prod=a.asm.oa).apply(null,arguments)},Bp=a._RealDiv=function(){return(Bp=a._RealDiv=a.asm.pa).apply(null,arguments)},ig=a._Relu=function(){return(ig=a._Relu=a.asm.qa).apply(null,arguments)},lg=a._Relu6=function(){return(lg=a._Relu6=a.asm.ra).apply(null,arguments)},ug=a._ResizeBilinear=function(){return(ug=a._ResizeBilinear=a.asm.sa).apply(null,arguments)},cg=a._Reverse=function(){return(cg=a._Reverse=a.asm.ta).apply(null,arguments)},dg=a._RotateWithOffset=function(){return(dg=a._RotateWithOffset=a.asm.ua).apply(null,arguments)},Wp=a._Round=function(){return(Wp=a._Round=a.asm.va).apply(null,arguments)},fa=a._Rsqrt=function(){return(fa=a._Rsqrt=a.asm.wa).apply(null,arguments)},pg=a._ScatterNd=function(){return(pg=a._ScatterNd=a.asm.xa).apply(null,arguments)},hg=a._SelectV2=function(){return(hg=a._SelectV2=a.asm.ya).apply(null,arguments)},Vb=a._Sigmoid=function(){return(Vb=a._Sigmoid=a.asm.za).apply(null,arguments)},Vp=a._Sin=function(){return(Vp=a._Sin=a.asm.Aa).apply(null,arguments)},fg=a._Softmax=function(){return(fg=a._Softmax=a.asm.Ba).apply(null,arguments)},mg=a._Sqrt=function(){return(mg=a._Sqrt=a.asm.Ca).apply(null,arguments)},gg=a._Square=function(){return(gg=a._Square=a.asm.Da).apply(null,arguments)},Ag=a._SquaredDifference=function(){return(Ag=a._SquaredDifference=a.asm.Ea).apply(null,arguments)},yg=a._Step=function(){return(yg=a._Step=a.asm.Fa).apply(null,arguments)},xg=a._StridedSlice=function(){return(xg=a._StridedSlice=a.asm.Ga).apply(null,arguments)},bg=a._Sub=function(){return(bg=a._Sub=a.asm.Ha).apply(null,arguments)},vg=a._Sum=function(){return(vg=a._Sum=a.asm.Ia).apply(null,arguments)},wg=a._Tan=function(){return(wg=a._Tan=a.asm.Ja).apply(null,arguments)},kg=a._Tanh=function(){return(kg=a._Tanh=a.asm.Ka).apply(null,arguments)},Sg=a._Tile=function(){return(Sg=a._Tile=a.asm.La).apply(null,arguments)},Ig=a._TopK=function(){return(Ig=a._TopK=a.asm.Ma).apply(null,arguments)},Cg=a._Transform=function(){return(Cg=a._Transform=a.asm.Na).apply(null,arguments)},Tg=a._Transpose=function(){return(Tg=a._Transpose=a.asm.Oa).apply(null,arguments)},Ng=a.__FusedMatMul=function(){return(Ng=a.__FusedMatMul=a.asm.Pa).apply(null,arguments)},Eg=a._malloc=function(){return(Eg=a._malloc=a.asm.Qa).apply(null,arguments)},Rg=a._free=function(){return(Rg=a._free=a.asm.Ra).apply(null,arguments)},Up=a.stackSave=function(){return(Up=a.stackSave=a.asm.Ta).apply(null,arguments)},Gp=a.stackRestore=function(){return(Gp=a.stackRestore=a.asm.Ua).apply(null,arguments)},kc=a.stackAlloc=function(){return(kc=a.stackAlloc=a.asm.Va).apply(null,arguments)};a.cwrap=J;var Dl;function $g(Q){this.name="ExitStatus",this.message="Program terminated with exit("+Q+")",this.status=Q}vr=function Q(){Dl||Sc(),Dl||(vr=Q)};function Sc(Q){if(Q=Q||u,Tn>0||(Dn(),Tn>0))return;function oe(){Dl||(Dl=!0,a.calledRun=!0,!M&&(os(),Ms(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),ws()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),oe()},1)):oe()}if(a.run=Sc,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return Sc(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),jN=1e-7,qN=1e-4,_c=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Ll=class{refCount(e){return Bs("refCount")}incRef(e){return Bs("incRef")}timerAvailable(){return!0}time(e){return Bs("time")}read(e){return Bs("read")}readSync(e){return Bs("readSync")}numDataIds(){return Bs("numDataIds")}disposeData(e,t){return Bs("disposeData")}write(e,t,n){return Bs("write")}move(e,t,n,s,r){return Bs("move")}memory(){return Bs("memory")}floatPrecision(){return Bs("floatPrecision")}epsilon(){return this.floatPrecision()===32?jN:qN}dispose(){return Bs("dispose")}};function Bs(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function r5(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Yp(e,t,n)}function XN(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,Yp(e,n,s),Yp(t,n,s)}function Pc(e,t,n){return Math.max(e,Math.min(t,n))}function KN(e){return e%2==0?e:e+1}function Yp(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function ZN(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function YN(e,t){let n=Math.random();return t*n+(1-n)*e}function JN(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function P(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Pn(e,t,n=""){P(ba(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ei(e){P(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ti(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||En(e)&&!n)for(let s=0;s<e.length;++s)ti(e[s],t,n);else t.push(e);return t}function Ut(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function QN(e){return e.length===0}function ba(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function dn(e){return e%1==0}function eE(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function tE(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function nE(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return r5(t),t}function Fc(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function sE(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function rE(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function Ws(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),P(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),P(e.every(s=>dn(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function a5(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:Ws(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function o5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function i5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function l5(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function u5(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function aE(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function En(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function Mg(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function c5(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function va(e){return typeof e=="string"||e instanceof String}function d5(e){return typeof e=="boolean"}function p5(e){return typeof e=="number"}function Jp(e){return Array.isArray(e)?Jp(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":p5(e)?"float32":va(e)?"string":d5(e)?"bool":"float32"}function wa(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Qp(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function Bl(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function h5(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,c)=>l*c)*(s?2:1);for(let l=0;l<a;l++)r[l]=h5(e+l*i,o,n,s)}return r}function Wl(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return h5(0,e,t,n)}function zg(e,t){let n=eh(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function eh(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function oE(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return Wl(e,new Float32Array(n));if(t==="int32")return Wl(e,new Int32Array(n));if(t==="bool")return Wl(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Lg(e){e.forEach(t=>{P(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function iE(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function lE(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function Bg(e){return e&&e.then&&typeof e.then=="function"}var f5="tfjsflags",m5=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=uE,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(K().getBool("IS_TEST")||K().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];K().getBool("IS_TEST")||K().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Bg(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);f5 in e&&e[f5].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=dE(s,r)})}};function uE(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(cE(t,s[0],s[1]),s.join("="))),t}function cE(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function dE(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function K(){return wr}var wr=null;function pE(e){wr=e}var Wg;function g5(){if(Wg==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Wg=e}return Wg}function hE(){let e=g5();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Vg(e,t){let n=hE();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var ni="Abs",Vl="Acos",Ul="Acosh",Ur="Add",ka="AddN",Gl="All",Hl="Any",Sa="ArgMax",jl="ArgMin",ql="Asin",Xl="Asinh",Kl="Atan",Zl="Atanh",Yl="Atan2",Ia="AvgPool",th="AvgPoolGrad",Oc="AvgPool3D",nh="AvgPool3DGrad",Ca="BatchMatMul",si="BatchToSpaceND",sh="Bincount",A5="BroadcastTo",rh="BroadcastArgs",Ta="Cast",Na="Ceil",Gr="ClipByValue",Mc="Complex",zc="ComplexAbs",ri="Concat",Ea="Conv2D",ah="Conv2DBackpropFilter",Ra="Conv2DBackpropInput",Lc="Conv3D",oh="Conv3DBackpropFilterV2",ih="Conv3DBackpropInputV2",$a="Cos",Da="Cosh",ai="Cumsum",oi="CropAndResize",lh="DenseBincount",ii="DepthToSpace",_a="DepthwiseConv2dNative",uh="DepthwiseConv2dNativeBackpropFilter",ch="DepthwiseConv2dNativeBackpropInput",dh="Diag",Bc="Dilation2D",ph="Dilation2DBackpropInput",hh="Dilation2DBackpropFilter",Pa="RealDiv",Wc="Einsum",Fa="Elu",fh="EluGrad",Jl="Erf",li="Equal",Oa="Exp",ui="ExpandDims",ci="Expm1",mh="FFT",Ql="Fill",di="FlipLeftRight",Ma="Floor",za="FloorDiv",La="FusedBatchNorm",pi="GatherV2",hi="GatherNd",fi="Greater",Ba="GreaterEqual",Wa="Identity",gh="IFFT",Vc="Imag",eu="IsFinite",tu="IsInf",nu="IsNan",mi="LeakyRelu",gi="Less",Ai="LessEqual",Ah="LinSpace",Va="Log",su="Log1p",yi="LogicalAnd",ru="LogicalNot",Uc="LogicalOr",y5="LogSoftmax",Gc="LRN",yh="LRNGrad",Ua="Max",Ga="Maximum",Ha="MaxPool",xh="MaxPoolGrad",Hc="MaxPool3D",bh="MaxPool3DGrad",vh="MaxPoolWithArgmax",ja="Mean",qa="Min",Xa="Minimum",Ka="MirrorPad",au="Mod",wh="Multinomial",Za="Multiply",xi="Neg",bi="NotEqual",vi="NonMaxSuppressionV3",ou="NonMaxSuppressionV4",wi="NonMaxSuppressionV5",ki="OnesLike",Si="OneHot",Ii="Pack",Ya="PadV2",fE="Pool",Ja="Pow",Qa="Prelu",Ci="Prod",iu="Range",jc="Real",lu="Reciprocal",eo="Relu",Ti="Reshape",uu="ResizeNearestNeighbor",kh="ResizeNearestNeighborGrad",to="ResizeBilinear",Sh="ResizeBilinearGrad",no="Relu6",Ni="Reverse",Ei="Round",so="Rsqrt",Ri="ScatterNd",$i="Select",cu="Selu",Di="Slice",ro="Sin",_i="Sinh",du="Sign",ao="Sigmoid",pu="Softplus",oo="Sqrt",io="Sum",Pi="SpaceToBatchND",Fi="SplitV",lo="Softmax",Ih="SparseFillEmptyRows",Ch="SparseReshape",Th="SparseSegmentMean",Nh="SparseSegmentSum",qc="SparseToDense",uo="SquaredDifference",hu="Square",Oi="StridedSlice",Xc="StringNGrams",Eh="StringSplit",Rh="StringToHashBucketFast",co="Sub",Mi="Tan",po="Tanh",Hr="Tile",zi="TopK",Li="Transform",ho="Transpose",$h="Unique",Bi="Unpack",Kc="UnsortedSegmentSum",Wi="ZerosLike",fo="Step",Zc="FromPixels",Vi="RotateWithOffset",mo="_FusedMatMul",go="FusedConv2D",Ao="FusedDepthwiseConv2D";function yo(...e){K().getBool("IS_TEST")||K().getBool("PROD")||console.warn(...e)}function mE(...e){K().getBool("IS_TEST")||K().getBool("PROD")||console.log(...e)}var fu=Vg("kernelRegistry",()=>new Map),Yc=Vg("gradRegistry",()=>new Map);function Dh(e,t){let n=Gg(e,t);return fu.get(n)}function Ug(e){return Yc.get(e)}function jr(e){let t=fu.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function qr(e){let{kernelName:t,backendName:n}=e,s=Gg(t,n);fu.has(s)&&yo(`The kernel '${t}' for backend '${n}' is already registered`),fu.set(s,e)}function x5(e){let{kernelName:t}=e;Yc.has(t)&&K().getBool("DEBUG")&&yo(`Overriding the gradient for '${t}'`),Yc.set(t,e)}function gE(e,t){let n=Gg(e,t);if(!fu.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);fu.delete(n)}function AE(e){if(!Yc.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Yc.delete(e)}function yE(e,t){jr(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});qr(r)})}function Gg(e,t){return`${t}_${e}`}var v={};Me(v,{arraysEqual:()=>ba,assert:()=>P,assertNonNegativeIntegerDimensions:()=>Lg,assertNonNull:()=>ei,assertShapesMatch:()=>Pn,bytesFromStringArray:()=>c5,bytesPerElement:()=>Mg,checkConversionForErrors:()=>l5,clamp:()=>Pc,computeStrides:()=>Bl,createScalarValue:()=>SE,createShuffledIndices:()=>nE,decodeString:()=>Fh,distSquared:()=>JN,encodeString:()=>ed,fetch:()=>CE,fingerPrint64:()=>kE,flatten:()=>ti,getArrayFromDType:()=>i5,getTypedArrayFromDType:()=>o5,hasEncodingLoss:()=>aE,hexToLong:()=>Jc,indexToLoc:()=>lE,inferDtype:()=>Jp,inferFromImplicitShape:()=>rE,isBoolean:()=>d5,isFunction:()=>wa,isInt:()=>dn,isNumber:()=>p5,isPromise:()=>Bg,isScalarShape:()=>QN,isString:()=>va,isTypedArray:()=>En,isValidDtype:()=>u5,locToIndex:()=>iE,makeOnesTypedArray:()=>zg,makeZerosNestedTypedArray:()=>oE,makeZerosTypedArray:()=>eh,nearestDivisor:()=>Qp,nearestLargerEven:()=>KN,now:()=>Qc,parseAxisParam:()=>Ws,randUniform:()=>YN,repeatedTry:()=>sE,rightPad:()=>Fc,shuffle:()=>r5,shuffleCombo:()=>XN,sizeFromShape:()=>Ut,sizeToSquarishShape:()=>tE,squeezeShape:()=>a5,sum:()=>ZN,swap:()=>Yp,tanh:()=>eE,toNestedArray:()=>Wl,toTypedArray:()=>Ph});var b5=Qo(_N()),Ui=b5.default||b5;function Jc(e){return Ui.fromString(e,!0,16)}var v5=Jc("c3a5c85c97cb3127"),Gi=Jc("b492b66fbe98f273"),Fn=Jc("9ae16a3b2f90404f");function Hg(e){return e.xor(e.shru(47))}function w5(e,t,n){let s=e.slice(t,t+n);return Ui.fromBytes(Array.from(s),!0,!0)}function wt(e,t){return w5(e,t,8)}function k5(e,t){return w5(e,t,4)}function pn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function xo(e,t,n=Jc("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function xE(e,t,n,s,r,a){r=r.add(e),a=pn(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(pn(r,44)),[r.add(s),a.add(o)]}function _h(e,t,n,s){return xE(wt(e,t),wt(e,t+8),wt(e,t+16),wt(e,t+24),n,s)}function bE(e,t=e.length){if(t>=8){let n=Fn.add(t*2),s=wt(e,0).add(Fn),r=wt(e,t-8),a=pn(r,37).mul(n).add(s),o=pn(s,25).add(r).mul(n);return xo(a,o,n)}if(t>=4){let n=Fn.add(t*2),s=k5(e,0);return xo(s.shl(3).add(t),k5(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return Hg(Fn.mul(a).xor(v5.mul(o))).mul(Fn)}return Fn}function vE(e,t=e.length){let n=Fn.add(t*2),s=wt(e,0).mul(Gi),r=wt(e,8),a=wt(e,t-8).mul(n),o=wt(e,t-16).mul(Fn);return xo(pn(s.add(r),43).add(pn(a,30)).add(o),s.add(pn(r.add(Fn),18)).add(a),n)}function wE(e,t=e.length){let n=Fn.add(t*2),s=wt(e,0).mul(Fn),r=wt(e,8),a=wt(e,t-8).mul(n),o=wt(e,t-16).mul(Fn),i=pn(s.add(r),43).add(pn(a,30)).add(o),l=xo(i,s.add(pn(r.add(Fn),18)).add(a),n),c=wt(e,16).mul(n),u=wt(e,24),d=i.add(wt(e,t-32)).mul(n),p=l.add(wt(e,t-24)).mul(n);return xo(pn(c.add(u),43).add(pn(d,30)).add(p),c.add(pn(u.add(s),18)).add(d),n)}function kE(e,t=e.length){let n=Ui.fromNumber(81,!0);if(t<=32)return t<=16?bE(e,t):vE(e,t);if(t<=64)return wE(e,t);let s=n,r=n.mul(Gi).add(113),a=Hg(r.mul(Fn).add(113)).mul(Fn),o=[Ui.UZERO,Ui.UZERO],i=[Ui.UZERO,Ui.UZERO];s=s.mul(Fn).add(wt(e,0));let l=0,c=(t-1>>6)*64,u=c+(t-1&63)-63;do s=pn(s.add(r).add(o[0]).add(wt(e,l+8)),37).mul(Gi),r=pn(r.add(o[1]).add(wt(e,l+48)),42).mul(Gi),s=s.xor(i[1]),r=r.add(o[0]).add(wt(e,l+40)),a=pn(a.add(i[0]),33).mul(Gi),o=_h(e,l,o[1].mul(Gi),s.add(i[0])),i=_h(e,l+32,a.add(i[1]),r.add(wt(e,l+16))),[a,s]=[s,a],l+=64;while(l!==c);let d=Gi.add(a.and(255).shl(1));return l=u,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=pn(s.add(r).add(o[0]).add(wt(e,l+8)),37).mul(d),r=pn(r.add(o[1]).add(wt(e,l+48)),42).mul(d),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(wt(e,l+40))),a=pn(a.add(i[0]),33).mul(d),o=_h(e,l,o[1].mul(d),s.add(i[0])),i=_h(e,l+32,a.add(i[1]),r.add(wt(e,l+16))),[a,s]=[s,a],xo(xo(o[0],i[0],d).add(Hg(r).mul(v5)).add(a),xo(o[1],i[1],d).add(s),d)}function SE(e,t){return t==="string"?ed(e):Ph([e],t)}function IE(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Ph(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ti(e)),K().getBool("DEBUG")&&l5(e,t),IE(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Qc(){return K().platform.now()}function CE(e,t){return K().platform.fetch(e,t)}function ed(e,t="utf-8"){return t=t||"utf-8",K().platform.encode(e,t)}function Fh(e,t="utf-8"){return t=t||"utf-8",K().platform.decode(e,t)}var TE=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new EE)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=Qc();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:Qc()-o})}if(K().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let c=s[l];c.data().then(u=>{NE(u,c.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function NE(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var EE=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?Fc(`${s}ms`,9):s.error,i=Fc(e,25),l=t.rank,c=t.size,u=Fc(t.shape.toString(),14),d="";for(let p in r){let h=r[p];if(h!=null){let f=h.shape||t.shape,m=f.length;d+=`${p}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${u} %c${c} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function RE(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let c=e[l],u=c.inputs;for(let d in u){let p=u[d],h=!1;for(let f=0;f<t.length;f++)if(s[p.id]){c.outputs.forEach(m=>s[m.id]=!0),h=!0,r[c.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let d=0;d<c.outputs.length;d++)if(a[c.outputs[d].id]){for(let p in u)a[u[p].id]=!0,o[c.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let c=e[l];if(r[c.id]&&o[c.id]){let u={};for(let p in c.inputs){let h=c.inputs[p];s[h.id]&&(u[p]=h)}let d=Object.assign({},c);d.inputs=u,d.outputs=c.outputs,i.push(d)}}return i}function $E(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let c=e[l.id];c!=null?o.push(c):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let c=n(()=>i[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=a.inputs[l];if(!ba(c.shape,u.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let d=e[u.id];e[u.id]=s(d,c),d.dispose()}}}}var S5=20,td=3,jg=7;function DE(e,t,n,s){let r=Bl(t),a=_E(e,t,n,r),o=t.length,i=Oh(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(c=>" "+c).join(`
|
|
`)),l.join(`
|
|
`)}function _E(e,t,n,s){let r=Ut(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?sd(e):e;if(i>1)for(let c=0;c<r/a;c++){let u=c*a;for(let d=0;d<a;d++)o[d]=Math.max(o[d],nd(l[u+d],0,n).length)}return o}function nd(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(jg))} + ${parseFloat(e[1].toFixed(jg))}j`:va(e)?s=`'${e}'`:n==="bool"?s=I5(e):s=parseFloat(e.toFixed(jg)).toString(),Fc(s,t)}function I5(e){return e===0?"false":"true"}function Oh(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=sd(e);return[nd(m[0],0,n)]}return n==="bool"?[I5(e[0])]:[e[0].toString()]}if(l===1){if(i>S5){let g=td*o,A=Array.from(e.slice(0,g)),x=Array.from(e.slice((i-td)*o,i*o));return n==="complex64"&&(A=sd(A),x=sd(x)),["["+A.map((y,b)=>nd(y,r[b],n)).join(", ")+", ..., "+x.map((y,b)=>nd(y,r[i-td+b],n)).join(", ")+"]"]}let m=n==="complex64"?sd(e):Array.from(e);return["["+m.map((g,A)=>nd(g,r[A],n)).join(", ")+"]"]}let c=t.slice(1),u=s.slice(1),d=s[0]*o,p=[];if(i>S5){for(let m=0;m<td;m++){let g=m*d,A=g+d;p.push(...Oh(e.slice(g,A),c,n,u,r,!1))}p.push("...");for(let m=i-td;m<i;m++){let g=m*d,A=g+d;p.push(...Oh(e.slice(g,A),c,n,u,r,m===i-1))}}else for(let m=0;m<i;m++){let g=m*d,A=g+d;p.push(...Oh(e.slice(g,A),c,n,u,r,m===i-1))}let h=l===2?",":"";p[0]="["+p[0]+h;for(let m=1;m<p.length-1;m++)p[m]=" "+p[m]+h;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(a?"":f),p}function sd(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var sn=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Ut(e),n!=null){let s=n.length;P(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||i5(t,this.size),this.strides=Bl(e)}set(e,...t){t.length===0&&(t=[0]),P(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return kr().makeTensor(this.values,this.shape,this.dtype)}},kr=null,mu=null,PE=null;function FE(e){kr=e}function OE(e){mu=e}function ME(e){PE=e}var Je=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Ut(e),this.strides=Bl(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return mu.buffer(this.shape,this.dtype,e)}bufferSync(){return mu.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Wl(this.shape,e,this.dtype==="complex64")}arraySync(){return Wl(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=kr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Fh(n))}catch{throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=kr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Fh(t))}catch{throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await kr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(kr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return mu.print(this,e)}clone(){return this.throwIfDisposed(),mu.clone(this)}toString(e=!1){let t=this.dataSync();return DE(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),mu.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),kr().makeVariable(this,e,t,n)}};Object.defineProperty(Je,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function zE(){return Vg("Tensor",()=>Je)}zE();var rd=class extends Je{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!ba(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);kr().disposeTensor(this),this.dataId=e.dataId,kr().incRef(this,null)}dispose(){kr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(rd,Symbol.hasInstance,{value:e=>e instanceof Je&&e.assign!=null&&e.assign instanceof Function});var nr={};Me(nr,{assertTypesMatch:()=>C5,getTensorsInContainer:()=>Jg,isTensorInList:()=>BE,makeTypesMatch:()=>Pt});var qg;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(qg||(qg={}));var Xg;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Xg||(Xg={}));var Kg;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Kg||(Kg={}));var Zg;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Zg||(Zg={}));var Yg;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Yg||(Yg={}));var LE={float32:Zg,int32:Xg,bool:Kg,complex64:Yg};function On(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return LE[e][t]}function ad(e){return On(e,"int32")}function Pt(e,t){if(e.dtype===t.dtype)return[e,t];let n=On(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function C5(e,t){P(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function BE(e,t){return t.some(n=>n.id===e.id)}function Jg(e){let t=[],n=new Set;return T5(e,t,n),t}function T5(e,t,n){if(e==null)return;if(e instanceof Je){t.push(e);return}if(!WE(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),T5(a,t,n))}}function WE(e){return Array.isArray(e)||typeof e=="object"}function Qg(e){return e.kernelName!=null}var N5=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},e2=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new N5}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(yo(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new TE(this.backendInstance),!0}setupRegisteredKernels(){jr(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){jr(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Ll)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,yo(`Initialization of backend ${e} failed`),yo(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return yo(`Initialization of backend ${e} failed`),yo(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return e2.nextTensorId++}nextVariableId(){return e2.nextVariableId++}clone(e){let t=L.runKernel(Wa,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return L.runKernel(Ta,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(Dh(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=Qg(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Qg(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=Dh(h,this.backendName);P(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let A=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let x=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,A,x);let y=x.map(b=>{if(b.rank!=null)return b;let{dataId:w,shape:S,dtype:C}=b;return this.makeTensorFromDataId(w,S,C)});if(s){let b=this.getTensorsForGradient(h,f,y);n=this.saveTensorsForBackwardMode(b)}return y}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:c,attrs:u}=e,d=Qg(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(p=this.profiler.profileKernel(l,c,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),s&&this.addTapeNode(l,c,t,d,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(h=>c[h]!=null?c[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=Ug(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(P(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,c)=>a[c]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&va(e[0])&&(r=e.map(i=>ed(i)));let a=s.write(r,t,n),o=new Je(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=c5(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r=new Je(t,n,e,this.nextTensorId());return this.trackTensor(r,s),r}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new rd(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Mg(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof rd||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Mg(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=Ug(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((c,u)=>{if(c==null){let d=n[u],p=eh(d.size,d.dtype);return this.makeTensor(p,d.shape,d.dtype)}return c}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Jg(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(P(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));P(r instanceof Je,()=>"The result y returned by f() must be a tensor.");let a=RE(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n??VE(r.shape),$E(o,a,l=>this.tidy(l),UE);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return P(wa(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{P(t.every(o=>o instanceof Je),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),P(n.value instanceof Je,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),P(wa(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),c=Array.isArray(l)?l:[l];P(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),P(c.every(d=>d instanceof Je),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((d,p)=>{u[p]=()=>d}),u};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Qc(),n=await this.backend.time(e);return n.wallMs=Qc()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new N5;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}},t2=e2;t2.nextTensorId=0;t2.nextVariableId=0;function VE(e){let t=zg(Ut(e),"float32");return L.makeTensor(t,e,"float32")}function E5(){let e=g5();if(e._tfengine==null){let t=new m5(e);e._tfengine=new t2(t)}return pE(e._tfengine.ENV),FE(()=>e._tfengine),e._tfengine}var L=E5();function UE(e,t){let n={a:e,b:t};return L.runKernel(Ur,n)}var gu={};Me(gu,{isBrowser:()=>R5,isMobile:()=>jE,mockIsMobile:()=>HE});function GE(){return typeof navigator!="undefined"&&navigator!=null}var n2;function HE(e){n2=e}function jE(e){if(n2!==void 0)return n2;if(e||GE()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function R5(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var sr=K();sr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});sr.registerFlag("IS_BROWSER",()=>R5());sr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");sr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));sr.registerFlag("PROD",()=>!1);sr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>sr.getBool("DEBUG"));sr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);sr.registerFlag("IS_TEST",()=>!1);sr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);sr.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Sr(e,t){let n=e;if(En(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||En(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&K().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&$5(e,s,[]),s}function $5(e,t,n){if(n=n||[],!Array.isArray(e)&&!En(e)){P(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}P(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),P(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)$5(e[r],s,n.concat(r))}function D5(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function $(e,t,n,s="numeric"){if(e instanceof Je)return D5(s,e.dtype,t,n),e;let r=Jp(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),D5(s,r,t,n),e==null||!En(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=Sr(e,r);!En(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Ph(e,r):ti(e,[],!0);return L.makeTensor(i,a,r)}function od(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>$(a,`${t}[${o}]`,n,s))}var _5="__op";function W(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+_5;let r=(...a)=>{L.startScope(n);try{let o=s(...a);return Bg(o)&&console.error("Cannot return a Promise inside of tidy."),L.endScope(o),o}catch(o){throw L.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function qE(e,t){let n=$(e,"real","complex"),s=$(t,"imag","complex");Pn(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return L.runKernel(Mc,r)}var bo=W({complex_:qE});function vo(e,t,n,s){if(s==null&&(s=Jp(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!En(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Lg(t);let r=Ut(t),a=Ut(n);P(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==Ut(t.slice(o)):!0;P(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!En(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?Ph(e,s):ti(e,[],!0),L.makeTensor(e,t,s)}function Gt(e,t,n){let s=Sr(e,n);return vo(e,t,s,n)}var s2={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Mh=4;async function XE(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let c={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let u=new Promise(async d=>{let p=await l.bytes(),h=p.reduce((g,A)=>g+A.length,0)+Mh*p.length,f=new Uint8Array(h),m=0;for(let g=0;g<p.length;g++){let A=p[g],x=new Uint8Array(new Uint32Array([A.length]).buffer);f.set(x,m),m+=Mh,f.set(A,m),m+=A.length}d(f)});s.push(u)}else s.push(l.data());t!=null&&(c.group=t),n.push(c)}let a=await Promise.all(s);return{data:KE(a),specs:n}}function P5(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,c=Ut(l),u;if("quantization"in a){let d=a.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${a.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=s2[d.dtype],h=e.slice(r,r+c*p),f=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){u=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=g*d.scale+d.min}}else if(d.dtype==="float16")s===void 0&&(s=t9()),u=s(f);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(i==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);u=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=c*p}else if(i==="string"){let d=Ut(a.shape);u=[];for(let p=0;p<d;p++){let h=new Uint32Array(e.slice(r,r+Mh))[0];r+=Mh;let f=new Uint8Array(e.slice(r,r+h));u.push(f),r+=h}}else{let d=s2[i],p=e.slice(r,r+c*d);if(i==="float32")u=new Float32Array(p);else if(i==="int32")u=new Int32Array(p);else if(i==="bool")u=new Uint8Array(p);else if(i==="complex64"){u=new Float32Array(p);let h=new Float32Array(u.length/2),f=new Float32Array(u.length/2);for(let A=0;A<h.length;A++)h[A]=u[A*2],f[A]=u[A*2+1];let m=Gt(h,l,"float32"),g=Gt(f,l,"float32");n[o]=bo(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=c*d}i!=="complex64"&&(n[o]=Gt(u,l,i))}return n}function KE(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var r2=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function F5(e){return r2?Buffer.byteLength(e):new Blob([e]).size}function ZE(e){if(r2)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function YE(e){if(r2){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function a2(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function O5(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function M5(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function o2(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function id(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:F5(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:F5(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function JE(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)==0;)r-=8388608,s<<=1;return s&=~8388608,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function QE(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function e9(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function t9(){let e=JE(),t=QE(),n=e9();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Bt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Bt.instance==null&&(Bt.instance=new Bt),Bt.instance}static registerSaveRouter(e){Bt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Bt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Bt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Bt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Bt.getInstance().loadRouters:Bt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},n9=e=>Bt.registerSaveRouter(e),s9=e=>Bt.registerLoadRouter(e),r9=e=>Bt.getSaveHandlers(e),a9=(e,t)=>Bt.getLoadHandlers(e,t),i2="tensorflowjs",l2=1,Hi="models_store",wo="model_info_store";function z5(){if(!K().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function u2(e){let t=e.result;t.createObjectStore(Hi,{keyPath:"modelPath"}),t.createObjectStore(wo,{keyPath:"modelPath"})}var ji=class{constructor(e){if(this.indexedDB=z5(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(i2,l2);r.onupgradeneeded=()=>u2(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(Hi,"readonly"),l=o.objectStore(Hi).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=c=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=id(t),i=a.transaction(wo,"readwrite"),l=i.objectStore(wo),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),u;c.onsuccess=()=>{u=a.transaction(Hi,"readwrite");let p=u.objectStore(Hi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});p.onsuccess=()=>n({modelArtifactsInfo:o}),p.onerror=h=>{l=i.objectStore(wo);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(p.error)),f.onerror=m=>(a.close(),s(p.error))}},c.onerror=d=>(a.close(),s(c.error)),i.oncomplete=()=>{u==null?a.close():u.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};ji.URL_SCHEME="indexeddb://";var L5=e=>K().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ji.URL_SCHEME)?o9(e.slice(ji.URL_SCHEME.length)):null;Bt.registerSaveRouter(L5);Bt.registerLoadRouter(L5);function o9(e){return new ji(e)}function i9(e){return e.startsWith(ji.URL_SCHEME)?e.slice(ji.URL_SCHEME.length):e}var l9=class{constructor(){this.indexedDB=z5()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(i2,l2);n.onupgradeneeded=()=>u2(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(wo,"readonly"),o=r.objectStore(wo).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=i9(e),new Promise((t,n)=>{let s=this.indexedDB.open(i2,l2);s.onupgradeneeded=()=>u2(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(wo,"readwrite"),o=a.objectStore(wo),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=o.delete(e),u=()=>{l=r.transaction(Hi,"readwrite");let p=l.objectStore(Hi).delete(e);p.onsuccess=()=>t(i.result.modelArtifactsInfo),p.onerror=h=>n(i.error)};c.onsuccess=u,c.onerror=d=>(u(),r.close(),n(i.error))}},i.onerror=c=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},Xr="/",Au="tensorflowjs_models",B5="info",u9="model_topology",c9="weight_specs",d9="weight_data",p9="model_metadata";function W5(e){return{info:[Au,e,B5].join(Xr),topology:[Au,e,u9].join(Xr),weightSpecs:[Au,e,c9].join(Xr),weightData:[Au,e,d9].join(Xr),modelMetadata:[Au,e,p9].join(Xr)}}function V5(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function h9(e){let t=e.split(Xr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Xr)}function f9(e){return e.startsWith(qi.URL_SCHEME)?e.slice(qi.URL_SCHEME.length):e}var qi=class{constructor(e){if(!K().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=W5(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=id(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,ZE(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch{throw V5(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=YE(a),t}};qi.URL_SCHEME="localstorage://";var U5=e=>K().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(qi.URL_SCHEME)?m9(e.slice(qi.URL_SCHEME.length)):null;Bt.registerSaveRouter(U5);Bt.registerLoadRouter(U5);function m9(e){return new qi(e)}var g9=class{constructor(){P(K().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),P(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Au+Xr,n=Xr+B5;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=h9(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=f9(e);let t=W5(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return V5(t),n}},yu="://",ks=class{constructor(){this.managers={}}static getInstance(){return ks.instance==null&&(ks.instance=new ks),ks.instance}static registerManager(e,t){P(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(yu)&&(e=e.slice(0,e.indexOf(yu))),P(e.length>0,()=>"scheme must not be an empty string.");let n=ks.getInstance();P(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function zh(e){if(e.indexOf(yu)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ks.getSchemes().join(",")}`);return{scheme:e.split(yu)[0],path:e.split(yu)[1]}}async function G5(e,t,n=!1){P(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Bt.getLoadHandlers(e);P(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),P(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Bt.getSaveHandlers(t);P(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),P(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=zh(e).scheme,l=zh(e).path,c=i===zh(e).scheme,u=await r.load();n&&c&&await ks.getManager(i).removeModel(l);let d=await o.save(u);return n&&!c&&await ks.getManager(i).removeModel(l),d.modelArtifactsInfo}async function A9(){let e=ks.getSchemes(),t={};for(let n of e){let s=await ks.getManager(n).listModels();for(let r in s){let a=n+yu+r;t[a]=s[r]}}return t}async function y9(e){let t=zh(e);return ks.getManager(t.scheme).removeModel(t.path)}async function x9(e,t){return G5(e,t,!1)}async function b9(e,t){return G5(e,t,!0)}var v9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(K().get("IS_BROWSER")){K().setPlatform("browser",new v9);try{ks.registerManager(qi.URL_SCHEME,new g9)}catch{}try{ks.registerManager(ji.URL_SCHEME,new l9)}catch{}}var w9={importFetch:()=>PN()},c2,k9=class{constructor(){this.util=FN(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return K().global.fetch!=null?K().global.fetch(e,t):(c2==null&&(c2=w9.importFetch()),c2(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};K().get("IS_NODE")&&K().setPlatform("node",new k9);function Be(e,t="float32",n){return t=t||"float32",Lg(e),new sn(e,t,n)}function S9(e,t){let n=$(e,"x","cast");if(!u5(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return L.runKernel(Ta,s,r)}var pe=W({cast_:S9});function I9(e){let n={x:$(e,"x","clone","string_or_numeric")};return L.runKernel(Wa,n)}var rr=W({clone_:I9});function H5(e,t=!1){console.log(e.toString(t))}E5();var C9={buffer:Be,cast:pe,clone:rr,print:H5};OE(C9);var Yn={};Me(Yn,{browserFiles:()=>_9,browserHTTPRequest:()=>z9,concatenateArrayBuffers:()=>a2,copyModel:()=>x9,decodeWeights:()=>P5,encodeWeights:()=>XE,fromMemory:()=>B9,getLoadHandlers:()=>a9,getModelArtifactsForJSON:()=>o2,getModelArtifactsInfoForJSON:()=>id,getSaveHandlers:()=>r9,http:()=>f2,isHTTPScheme:()=>h2,listModels:()=>A9,loadWeights:()=>P9,moveModel:()=>b9,registerLoadRouter:()=>s9,registerSaveRouter:()=>n9,removeModel:()=>y9,weightsLoaderFactory:()=>K5,withSaveHandler:()=>W9});var T9="model",N9=".json",E9=".weights.bin";function j5(e){return new Promise(t=>setTimeout(t)).then(e)}var d2=class{constructor(e){if(!K().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(d2.URL_SCHEME)&&(e=e.slice(d2.URL_SCHEME.length)),(e==null||e.length===0)&&(e=T9),this.modelJsonFileName=e+N9,this.weightDataFileName=e+E9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=M5(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await j5(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await j5(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:id(e)}}}},Lh=d2;Lh.URL_SCHEME="downloads://";var R9=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=o2(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,a2(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>O5(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=O5(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},$9=e=>K().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Lh.URL_SCHEME)?D9(e.slice(Lh.URL_SCHEME.length)):null;Bt.registerSaveRouter($9);function D9(e="model"){return new Lh(e)}function _9(e){return new R9(e)}function q5(e,t,n,s){o(e),n=n??0,s=s??1,i(n,s);let r=0,a=l=>(l.then(c=>{let u=n+ ++r/e.length*(s-n);return t(u),c}),l);function o(l){P(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,c){P(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),P(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),P(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(a))}async function X5(e,t){t==null&&(t={});let n=t.fetchFunc==null?K().platform.fetch:t.fetchFunc,s=e.map(d=>n(d,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await q5(s,t.onProgress,r,a)).map(d=>d.arrayBuffer()),l=.5,c=1;return t.onProgress==null?await Promise.all(i):await q5(i,t.onProgress,l,c)}async function P9(e,t="",n,s){return K5(o=>X5(o,{requestInit:s}))(e,t,n)}function K5(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let A="quantization"in g?g.quantization.dtype:g.dtype,x=s2[A]*Ut(g.shape),y=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:x})};s!=null?s.forEach((b,w)=>{b===g.name&&(y(),o[w]=!0)}):y(),i.push(g.name),m+=x})}),!o.every(h=>h)){let h=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),c=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;c.push(m)})});let u=await e(c),d={},p=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let b=0;b<f;b++)m+=u[p+b].byteLength;let g=new ArrayBuffer(m),A=new Uint8Array(g),x=0;for(let b=0;b<f;b++){let w=new Uint8Array(u[p+b]);A.set(w,x),x+=w.byteLength}a[h].forEach(b=>{let w=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),S=P5(w,[b.manifestEntry]);for(let C in S)d[C]=S[C]}),p+=f}),d}}var F9="application/octet-stream",O9="application/json",p2=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(P(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=K().platform.fetch,P(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&P(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=M5(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:O9}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:F9}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:id(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch{let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return o2(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=M9(t),r=this.weightPathPrefix||n,a=[];for(let c of e)a.push(...c.weights);let o=[],i=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(u)):o.push(r+u+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await X5(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,a2(l)]}};p2.URL_SCHEME_REGEX=/^https?:\/\//;function M9(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function h2(e){return e.match(p2.URL_SCHEME_REGEX)!=null}var Z5=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>h2(s)):n=h2(e),n)return f2(e,t)}return null};Bt.registerSaveRouter(Z5);Bt.registerLoadRouter(Z5);function f2(e,t){return new p2(e,t)}function z9(e,t){return f2(e,t)}var m2=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},L9=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function B9(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new m2(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new m2({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new m2({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function W9(e){return new L9(e)}var Y5={};Me(Y5,{confusionMatrix:()=>j9});function V9(e,t,n=!1,s=!1){let r=$(e,"a","matMul"),a=$(t,"b","matMul");[r,a]=Pt(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return L.runKernel(Ca,o,i)}var He=W({matMul_:V9});function U9(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:$(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return L.runKernel(Si,a,o)}var ld=W({oneHot_:U9});function G9(e,t){let n=$(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),P(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{P(a>=0&&a<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let s={x:n},r={perm:t};return L.runKernel(ho,s,r)}var tt=W({transpose_:G9});function H9(e,t,n){let s=$(e,"labels","confusionMatrix"),r=$(t,"predictions","confusionMatrix");P(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),P(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),P(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),P(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),P(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=ld(pe(s,"int32"),n),o=ld(pe(r,"int32"),n),i=tt(a),l=He(i,o);return pe(l,"int32")}var j9=W({confusionMatrix_:H9}),Xi={};Me(Xi,{assertAndGetBroadcastShape:()=>At,getBroadcastDims:()=>J5,getReductionAxes:()=>Xt});function J5(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function Xt(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function At(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}var Vs={};Me(Vs,{fromPixels:()=>Q9,fromPixelsAsync:()=>Y9,toPixels:()=>J9});function Q5(e,t,n){if(ei(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=Sr(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return vo(e,t,s,n)}var Ki;function e3(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let f=2;if(r&&e.readyState<f)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Dh(Zc,L.backendName)!=null){let f={pixels:e},m={numChannels:t};return L.runKernel(Zc,f,m)}let[c,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;if(o)d=e.getContext("2d").getImageData(0,0,c,u).data;else if(s||n)d=e.data;else if(a||r||i){if(Ki==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Ki=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Ki=document.createElement("canvas").getContext("2d");Ki.canvas.width=c,Ki.canvas.height=u,Ki.drawImage(e,0,0,c,u),d=Ki.getImageData(0,0,c,u).data}let p;if(t===4)p=new Int32Array(d);else{let f=c*u;p=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)p[m*t+g]=d[m*4+g]}return Q5(p,[u,c,t],"int32")}function q9(e){return e!=null&&e.data instanceof Uint8Array}function X9(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function K9(e){return e!=null&&e.width!==0&&e.height!==0}function Z9(e){return X9()&&!(e instanceof ImageBitmap)&&K9(e)&&!q9(e)}async function Y9(e,t=3){let n=null;if(K().getBool("WRAP_TO_IMAGEBITMAP")&&Z9(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch{s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return e3(n,t)}async function J9(e,t){let n=$(e,"img","toPixels");if(!(e instanceof Je)){let c=n;n=pe(c,"int32"),c.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let c=0;c<s*r;++c){let u=[0,0,0,255];for(let p=0;p<a;p++){let h=o[c*a+p];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(u[0]=h*i,u[1]=h*i,u[2]=h*i):u[p]=h*i}let d=c*4;l[d+0]=Math.round(u[0]),l[d+1]=Math.round(u[1]),l[d+2]=Math.round(u[2]),l[d+3]=Math.round(u[3])}if(t!=null){t.width=r,t.height=s;let c=t.getContext("2d"),u=new ImageData(l,r,s);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var Q9=W({fromPixels_:e3}),g2={};Me(g2,{prepareAndValidate:()=>t3});function t3(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(Ut(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let d=0;d<r.length-1;++d)o*=r[d];let i=e.shape,l=r.slice();l.pop();let c=1;for(let d=a;d<n;++d)c*=i[d],l.push(i[d]);let u=[...Bl(e.shape).map(d=>d/c),1].slice(0,a);return[l,o,c,u]}var A2={};Me(A2,{calculateShapes:()=>n3,validateInput:()=>x2,validateUpdateShape:()=>y2});function y2(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function x2(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}y2(n,t,e)}function n3(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let d=r;d<a;++d)o*=n[d];let i=r<1?1:r,l=Ut(t.shape)/i,c=[...Bl(n.slice(0,r)),1],u=Ut(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:c,outputSize:u}}var Ft={};Me(Ft,{assertParamsValid:()=>tR,computeFlatOffset:()=>oR,computeOutShape:()=>sR,getNormalizedAxes:()=>rR,isSliceContinous:()=>aR,maskToAxes:()=>nR,parseSliceParams:()=>d3,sliceInfo:()=>iR,startForAxis:()=>u3,startIndicesWithElidedDims:()=>o3,stopForAxis:()=>c3,stopIndicesWithElidedDims:()=>i3,stridesForAxis:()=>l3,stridesWithElidedDims:()=>s3});var b2=-2,eR=-1;function tR(e,t,n){let s=e.shape.length;P(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),P(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)P(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function nR(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function sR(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function s3(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function r3(e,t,n){return n<=e?n:n-(t-1)}function a3(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function rR(e,t,n,s,r,a,o,i,l){let c=e.length,u=new Array(c),d=new Array(c),p=new Array(c);if(t.length&&n>0){let h=t[0],f=n+1;u=o3(o,h,f,s,e),d=i3(i,h,f,r,e),p=s3(a,h,f,e)}else for(let h=0;h<c;h++)u[h]=u3(o,s,a,e,h,l),d[h]=c3(i,r,a,e,h,l),p[h]=l3(a,h,l);return{begin:u,end:d,strides:p}}function o3(e,t,n,s,r){let a=[...r],o=a3(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=r3(t,n,i),c=s[l];e&1<<l&&(c=0),a[i]=c}return a}function i3(e,t,n,s,r){let a=[...r],o=a3(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=r3(t,n,i),c=s[l];e&1<<l&&(c=Number.MAX_SAFE_INTEGER),a[i]=c}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=Pc(0,a[i],r[i])}return a}function l3(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function u3(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=Pc(0,o,l-1),o}function c3(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=Pc(0,o,l):o=Pc(-1,o,l-1),o}function aR(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function oR(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function d3(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{P(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(P(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function iR(e,t,n,s,r,a,o,i,l){let c;if(s==null?(c=new Array(t.length),c.fill(1)):c=s,o!=null&&(o&o-1)!=0)throw new Error("Multiple ellipses in slice is not allowed.");let u=!1,d={dims:c.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:c.slice(),beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};for(let y=0;y<d.dims;y++)u&&(1<<y&i)!=0&&d.numAddAxisAfterEllipsis++,1<<y&o&&(u=!0);u||(d.ellipsisMask|=1<<d.dims,d.dims++);let p={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};lR(d,p);let h=!0,f=!0,m=!0,g=[],A=[];for(let y=0;y<e.length;++y){if(p.strides[y]===0)throw Error(`strides[${y}] must be non-zero`);let b=!!(p.shrinkAxisMask&1<<y),w=e[y];if(w===-1){g.push(b?1:-1);continue}let S=[p.beginMask&1<<y,p.endMask&1<<y],C=[p.strides[y]>0?0:-1,p.strides[y]>0?w:w-1];if(b&&p.strides[y]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&p.strides[y]===1;let E=!!(p.beginMask&1<<y&&p.endMask&1<<y);if(p.beginValid&&p.endValid){if(b){let F=p.begin[y]<0?w+p.begin[y]:p.begin[y];if(p.begin[y]=F,p.end[y]=p.begin[y]+1,F<0||F>=w)throw Error(`slice index ${p.begin[y]} of dimension ${y} out of bounds.`)}else p.begin[y]=p3(p.begin[y],0,p.strides[y],w,S,C),p.end[y]=p3(p.end[y],1,p.strides[y],w,S,C);let _=p.strides[y]===1&&p.begin[y]===0&&p.end[y]===w;h=h&&_,f=f&&(y===0&&p.strides[y]===1||_)}else h=h&&p.strides[y]===1&&E,f=f&&(y===0&&p.strides[y]===1||E);let D,O=!1;if(p.beginValid&&p.endValid?(D=p.end[y]-p.begin[y],O=!0):b?(D=1,O=!0):E&&w>=0&&(p.strides[y]<0?D=-w:D=w,O=!0),O){let _;D===0||D<0!=p.strides[y]<0?_=0:_=Math.trunc(D/p.strides[y])+(D%p.strides[y]!=0?1:0),g.push(_)}else g.push(-1)}for(let y=0;y<p.finalShapeGatherIndices.length;++y){let b=p.finalShapeGatherIndices[y];b>=0?A.push(g[b]):b===b2&&A.push(1)}return{finalShapeSparse:A.filter((y,b)=>p.finalShapeGatherIndices[b]!==b2),finalShape:A,isIdentity:h,sliceDim0:f,isSimpleSlice:m,begin:p.begin,end:p.end,strides:p.strides}}function lR(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let s=0;s<e.dims;s++)if(1<<s&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-s)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=s}else if(1<<s&e.newAxisMask)t.finalShapeGatherIndices.push(b2),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[s]),e.end!=null&&(t.end[n]=e.end[s]),t.strides[n]=e.strides[s],e.beginMask&1<<s&&(t.beginMask|=1<<n),e.endMask&1<<s&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<s?(t.finalShapeGatherIndices.push(eR),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(s)),t.inputShapeGatherIndicesSparse[n]=s,n++}}function p3(e,t,n,s,r,a){if(r[t])return n>0?a[t]:a[t+1&1];{let o=e<0?s+e:e;return o<a[0]?a[0]:o>a[1]?a[1]:o}}var le={};Me(le,{Serializable:()=>h3,SerializationMap:()=>Zi,registerClass:()=>ko});var h3=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Zi=class{constructor(){this.classNameMap={}}static getMap(){return Zi.instance==null&&(Zi.instance=new Zi),Zi.instance}static register(e){Zi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ko(e){P(e.className!=null,()=>"Class being registered does not have the static className property defined."),P(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),P(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Zi.register(e)}var f3={};Me(f3,{TEST_EPSILON_FLOAT16:()=>m3,encodeStrings:()=>g3,expectArrayBuffersEqual:()=>mR,expectArraysClose:()=>cR,expectArraysEqual:()=>pR,expectNumbersClose:()=>hR,expectPromiseToFail:()=>dR,expectValuesInRange:()=>fR,testEpsilon:()=>v2});var uR=.001,m3=.1;function cR(e,t,n){return n==null&&(n=v2()),w2(e,t,(s,r)=>k2(s,r,n))}function v2(){return L.backend.floatPrecision()===32?uR:m3}function w2(e,t,n){let s=!0;if((En(e)||En(t))&&(s=!1),En(e)&&En(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=Sr(e),i=Sr(t);if(!ba(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=En(e)?e:ti(e),a=En(t)?t:ti(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`)}}function dR(e,t){e().then(()=>t.fail(),()=>t())}function pR(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return va(e)||va(e[0])||va(t)||va(t[0])?w2(e,n,(s,r)=>s==r):w2(e,t,(s,r)=>k2(s,r,0))}function hR(e,t,n){if(n==null&&(n=v2()),!k2(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function k2(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function fR(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function mR(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function g3(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?g3(n):e[t]=ed(n)}return e}function A3(){K().set("PROD",!0)}function gR(){K().set("DEBUG",!0)}function AR(){K().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function S2(e){K().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}ME(S2);function yR(){L.disposeVariables()}function Jn(){return L}function Bh(){return L.memory()}function xR(e){return L.profile(e)}function G(e,t){return L.tidy(e,t)}function Y(e){Jg(e).forEach(n=>n.dispose())}function hn(e){return L.keep(e)}function bR(e){return L.time(e)}function y3(e){return L.setBackend(e)}function Wh(){return L.ready()}function ar(){return L.backendName}function vR(e){L.removeBackend(e)}function I2(e){return L.findBackend(e)}function wR(e){return L.findBackendFactory(e)}function Yi(e,t,n=1){return L.registerBackend(e,t,n)}function Ir(){return L.backend}function kR(e,t){K().setPlatform(e,t)}function SR(e,t){let n=$(e,"a","add"),s=$(t,"b","add");[n,s]=Pt(n,s);let r={a:n,b:s};return L.runKernel(Ur,r)}var ie=W({add_:SR});function IR(e,t){let n=$(e,"a","floorDiv"),s=$(t,"b","floorDiv");[n,s]=Pt(n,s);let r={a:n,b:s};return L.runKernel(za,r)}var C2=W({floorDiv_:IR});function CR(e,t){let n=$(e,"a","div"),s=$(t,"b","div");if([n,s]=Pt(n,s),n.dtype==="int32"&&s.dtype==="int32")return C2(n,s);let r={a:n,b:s},a={};return L.runKernel(Pa,r,a)}var he=W({div_:CR});function TR(e,t){let n=$(e,"a","mul"),s=$(t,"b","mul");[n,s]=Pt(n,s);let r={a:n,b:s};return L.runKernel(Za,r)}var B=W({mul_:TR});function NR(e){let t=$(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return L.runKernel(zc,n)}else{let n={x:t};return L.runKernel(ni,n)}}var rn=W({abs_:NR});function ER(e){let n={x:$(e,"x","acos")};return L.runKernel(Vl,n)}var x3=W({acos_:ER});function RR(e){let n={x:$(e,"x","acosh")};return L.runKernel(Ul,n)}var b3=W({acosh_:RR});function $R(e){P(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),P(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>$(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!ba(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return L.runKernel(ka,s)}var Vh=W({addN_:$R});function DR(e,t=null,n=!1){let r={x:$(e,"x","all","bool")},a={axis:t,keepDims:n};return L.runKernel(Gl,r,a)}var T2=W({all_:DR});function _R(e,t=null,n=!1){let r={x:$(e,"x","any","bool")},a={axis:t,keepDims:n};return L.runKernel(Hl,r,a)}var Uh=W({any_:_R});function PR(e,t=0){let s={x:$(e,"x","argMax")},r={axis:t};return L.runKernel(Sa,s,r)}var Us=W({argMax_:PR});function FR(e,t=0){let s={x:$(e,"x","argMin")},r={axis:t};return L.runKernel(jl,s,r)}var v3=W({argMin_:FR});function OR(e){let n={x:$(e,"x","asin")};return L.runKernel(ql,n)}var w3=W({asin_:OR});function MR(e){let n={x:$(e,"x","asinh")};return L.runKernel(Xl,n)}var k3=W({asinh_:MR});function zR(e){let n={x:$(e,"x","atan")};return L.runKernel(Kl,n)}var S3=W({atan_:zR});function LR(e,t){let n=$(e,"a","atan2"),s=$(t,"b","atan2");[n,s]=Pt(n,s);let r={a:n,b:s};return L.runKernel(Yl,r)}var I3=W({atan2_:LR});function BR(e){let n={x:$(e,"x","atanh")};return L.runKernel(Zl,n)}var C3=W({atanh_:BR});function WR(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=E3(r);return ud(e,i,n,a,s,null,null,l)}function T3(e,t,n,s,r,a,o="channelsLast"){let[i,l]=Gh(t),c;if(o==="channelsLast")c=[i,l,e[3],e[3]];else if(o==="channelsFirst")c=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return ud(e,c,n,s,r,a,!1,o)}function VR(e,t,n,s,r,a,o="NDHWC"){let[i,l,c]=E2(t),u,d;if(o==="NDHWC")d="channelsLast",u=[i,l,c,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",u=[i,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return N3(e,u,n,s,r,!1,d,a)}function ud(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,c,u,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,d]=e;else if(i==="channelsFirst")[l,d,c,u]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,h,,f]=t,[m,g]=Gh(n),[A,x]=Gh(s),y=xu(p,A),b=xu(h,x),{padInfo:w,outHeight:S,outWidth:C}=HR(r,c,u,m,g,y,b,a,i),E=o?f*d:f,D;return i==="channelsFirst"?D=[l,E,S,C]:i==="channelsLast"&&(D=[l,S,C,E]),{batchSize:l,dataFormat:i,inHeight:c,inWidth:u,inChannels:d,outHeight:S,outWidth:C,outChannels:E,padInfo:w,strideHeight:m,strideWidth:g,filterHeight:p,filterWidth:h,effectiveFilterHeight:y,effectiveFilterWidth:b,dilationHeight:A,dilationWidth:x,inShape:e,outShape:D,filterShape:t}}function N3(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,c,u,d,p]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,d,p]=e;else if(o==="channelsFirst")[l,p,c,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[A,x,y]=E2(n),[b,w,S]=E2(s),C=xu(h,b),E=xu(f,w),D=xu(m,S),{padInfo:O,outDepth:_,outHeight:F,outWidth:T}=jR(r,c,u,d,A,x,y,C,E,D,i),M=a?g*p:g,U;return o==="channelsFirst"?U=[l,M,_,F,T]:o==="channelsLast"&&(U=[l,_,F,T,M]),{batchSize:l,dataFormat:o,inDepth:c,inHeight:u,inWidth:d,inChannels:p,outDepth:_,outHeight:F,outWidth:T,outChannels:M,padInfo:O,strideDepth:A,strideHeight:x,strideWidth:y,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:C,effectiveFilterHeight:E,effectiveFilterWidth:D,dilationDepth:b,dilationHeight:w,dilationWidth:S,inShape:e,outShape:U,filterShape:t}}function UR(e,t,n,s,r){s==null&&(s=N2(e,t,n));let a=e[0],o=e[1],i=Ji((a-t+2*s)/n+1,r),l=Ji((o-t+2*s)/n+1,r);return[i,l]}function GR(e,t,n,s,r,a){r==null&&(r=N2(e,t,s));let o=e[0],i=e[1],l=e[2],c=Ji((o-t+2*r)/s+1,a),u=Ji((i-t+2*r)/s+1,a),d=Ji((l-t+2*r)/s+1,a);return[c,u,d,n]}function N2(e,t,n,s=1){let r=xu(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function Gh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function E2(e){return typeof e=="number"?[e,e,e]:e}function xu(e,t){return t<=1?e:e+(e-1)*(t-1)}function HR(e,t,n,s,r,a,o,i,l){let c,u,d;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=UR([t,n],a,s,e,i);u=h[0],d=h[1]}else if(e==="same"){u=Math.ceil(t/s),d=Math.ceil(n/r);let p=Math.max(0,(u-1)*s+a-t),h=Math.max(0,(d-1)*r+o-n),f=Math.floor(p/2),m=p-f,g=Math.floor(h/2),A=h-g;c={top:f,bottom:m,left:g,right:A,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-a+1)/s),d=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];c={top:p,bottom:h,left:f,right:m,type:p===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},u=Ji((t-a+p+h)/s+1,i),d=Ji((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:d}}function jR(e,t,n,s,r,a,o,i,l,c,u){let d,p,h,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=GR([t,n,s,1],i,1,r,e,u);p=g[0],h=g[1],f=g[2]}else if(e==="same"){p=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/o);let m=(p-1)*r+i-t,g=(h-1)*a+l-n,A=(f-1)*o+c-s,x=Math.floor(m/2),y=m-x,b=Math.floor(g/2),w=g-b,S=Math.floor(A/2),C=A-S;d={top:b,bottom:w,left:S,right:C,front:x,back:y,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),f=Math.ceil((s-c+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:p,outHeight:h,outWidth:f}}function Ji(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function So(e){let[t,n,s]=Gh(e);return t===1&&n===1&&s===1}function Cr(e,t){return So(e)||So(t)}function E3(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function qR(e,t){let s={x:$(e,"x","reshape","string_or_numeric")},r={shape:t};return L.runKernel(Ti,s,r)}var V=W({reshape_:qR});function XR(e,t,n,s,r){let a=$(e,"x","avgPool","float32"),o=1;P(Cr(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),P(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),r!=null&&P(dn(s),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=L.runKernel(Ia,c,u);return d=pe(d,a.dtype),l?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Hh=W({avgPool_:XR});function KR(e,t,n,s,r,a="NDHWC"){let o=$(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),P(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),P(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&P(dn(s),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=L.runKernel(Oc,c,u);return d=pe(d,i.dtype),l?V(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var R2=W({avgPool3d_:KR});function ZR(e,t=0){P(e.length>=1,()=>"Pass at least one tensor to concat");let n=od(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${a.dtype}. `)}),n.length===1)return rr(n[0]);let s=n,r={axis:t};return L.runKernel(ri,s,r)}var kt=W({concat_:ZR});function YR(e){let n={x:$(e,"x","sigmoid","float32")};return L.runKernel(ao,n)}var ls=W({sigmoid_:YR});function JR(e,t,n){let s=$(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return L.runKernel(Di,r,a)}var _e=W({slice_:JR});function QR(e){let n={x:$(e,"x","tanh","float32")};return L.runKernel(po,n)}var bu=W({tanh_:QR});function e$(e,t,n,s,r,a){let o=$(e,"forgetBias","basicLSTMCell"),i=$(t,"lstmKernel","basicLSTMCell"),l=$(n,"lstmBias","basicLSTMCell"),c=$(s,"data","basicLSTMCell"),u=$(r,"c","basicLSTMCell"),d=$(a,"h","basicLSTMCell"),p=kt([c,d],1),h=He(p,i),f=ie(h,l),m=f.shape[0],g=f.shape[1]/4,A=[m,g],x=_e(f,[0,0],A),y=_e(f,[0,g],A),b=_e(f,[0,g*2],A),w=_e(f,[0,g*3],A),S=ie(B(ls(x),bu(y)),B(u,ls(ie(o,b)))),C=B(bu(S),ls(w));return[S,C]}var t$=W({basicLSTMCell_:e$});function n$(e,t,n){let s=$(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);P(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),P(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),P(s.shape[0]%r==0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return L.runKernel(si,a,o)}var jh=W({batchToSpaceND_:n$});function s$(e){let t;return e.rank===0||e.rank===1?t=V(e,[1,1,1,e.size]):e.rank===2?t=V(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function r$(e,t,n,s,r,a){a==null&&(a=.001);let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),c;r!=null&&(c=$(r,"scale","batchNorm"));let u;s!=null&&(u=$(s,"offset","batchNorm")),P(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),P(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),P(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:s$(o),scale:c,offset:u,mean:i,variance:l},h={varianceEpsilon:a},f=L.runKernel(La,p,h);return V(f,o.shape)}var vu=W({batchNorm_:r$});function a$(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),c;r!=null&&(c=$(r,"scale","batchNorm"));let u;return s!=null&&(u=$(s,"offset","batchNorm")),P(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),P(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),P(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&P(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&P(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),vu(o,i,l,u,c,a)}var R3=W({batchNorm2d_:a$});function o$(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),c;r!=null&&(c=$(r,"scale","batchNorm"));let u;return s!=null&&(u=$(s,"offset","batchNorm")),P(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),P(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),P(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&P(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&P(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),vu(o,i,l,u,c,a)}var $3=W({batchNorm3d_:o$});function i$(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),c;r!=null&&(c=$(r,"scale","batchNorm"));let u;return s!=null&&(u=$(s,"offset","batchNorm")),P(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),P(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),P(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&P(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&P(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),vu(o,i,l,u,c,a)}var D3=W({batchNorm4d_:i$});function l$(e,t,n){let s=$(e,"x","bincount"),r=$(t,"weights","bincount");P(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),P(n>=0,()=>`size must be non-negative, but got ${n}.`),P(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return L.runKernel(sh,a,o)}var $2=W({bincount_:l$});function u$(e,t){let n=$(e,"s0","broadcastArgs","int32"),s=$(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return L.runKernel(rh,r)}var _3=W({broadcastArgs_:u$});function c$(e,t){let n=$(e,"broadcastTo","x"),s=n.shape;if(t.some(c=>!(c>0)||c%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let c=n.shape.slice();for(;c.length<t.length;)c.unshift(1);n=V(n,c)}let r=n.shape,a=Array.from(t);for(let c=t.length-1;c>=0;c--)if(r[c]===t[c])a[c]=1;else if(n.shape[c]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((c,u)=>c>1?u:-1).filter(c=>c>=0).length===0)return rr(n);let i={x:n},l={reps:a};return L.runKernel(Hr,i,l)}var cd=W({broadcastTo_:c$});function d$(e){let n={x:$(e,"x","ceil","float32")};return L.runKernel(Na,n)}var P3=W({ceil_:d$});function p$(e,t,n){let s=$(e,"x","clipByValue");P(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return L.runKernel(Gr,r,a)}var us=W({clipByValue_:p$});function h$(e){return kt(e,0)}var F3=W({concat1d_:h$});function f$(e,t){return kt(e,t)}var wu=W({concat2d_:f$});function m$(e,t){return kt(e,t)}var O3=W({concat3d_:m$});function g$(e,t){return kt(e,t)}var M3=W({concat4d_:g$});function A$(e,t,n,s,r="NHWC",a=[1,1],o){let i=$(e,"x","conv2d","float32"),l=$(t,"filter","conv2d","float32"),c=i,u=!1;i.rank===3&&(u=!0,c=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),P(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),P(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&P(dn(s),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d=r==="NHWC"?c.shape[3]:c.shape[1];P(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),P(Cr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let p={x:c,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=L.runKernel(Ea,p,h);return u?V(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Io=W({conv2d_:A$});function y$(e,t,n,s,r="NWC",a=1,o){let i=$(e,"x","conv1d"),l=$(t,"filter","conv1d"),c=i,u=!1;i.rank===2&&(u=!0,c=V(i,[1,i.shape[0],i.shape[1]])),P(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),P(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&P(dn(s),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),P(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),P(Cr(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),P(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=V(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=V(c,[c.shape[0],1,c.shape[1],c.shape[2]]),g=Io(p,d,[1,n],s,"NHWC",[1,a],o);return u?V(g,[g.shape[2],g.shape[3]]):V(g,[g.shape[0],g.shape[2],g.shape[3]])}var D2=W({conv1d_:y$});function x$(e,t,n,s,r,a="NHWC",o){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,c=!1;t.rank===3&&(c=!0,l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),P(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),P(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),P(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];P(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),P(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&P(dn(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let p={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=L.runKernel(Ra,p,h);return c?V(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var _2=W({conv2DBackpropInput_:x$});function b$(e,t,n,s,r,a){let o=$(e,"x","conv2dTranspose"),i=$(t,"filter","conv2dTranspose");return _2(n,o,i,s,r,"NHWC",a)}var P2=W({conv2dTranspose_:b$});function v$(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=$(e,"x","conv3d"),i=$(t,"filter","conv3d"),l=o,c=!1;o.rank===4&&(c=!0,l=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),P(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),P(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),P(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),P(Cr(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),P(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let u={x:l,filter:i},d={strides:n,pad:s,dataFormat:r,dilations:a},p=L.runKernel(Lc,u,d);return c?V(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var F2=W({conv3d_:v$});function w$(e,t,n,s,r){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=V(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],c=o.shape[4];P(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),P(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),P(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),P(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),P(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:o,filter:n},d={pad:r,strides:s,inputShape:a},p=L.runKernel(ih,u,d);return i?V(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var z3=W({conv3DBackpropInput_:w$});function k$(e,t,n,s,r){let a=$(e,"x","conv3dTranspose"),o=$(t,"filter","conv3dTranspose");return z3(n,a,o,s,r)}var L3=W({conv3dTranspose_:k$});function S$(e){let n={x:$(e,"x","cos","float32")};return L.runKernel($a,n)}var qh=W({cos_:S$});function I$(e){let n={x:$(e,"x","cosh","float32")};return L.runKernel(Da,n)}var O2=W({cosh_:I$});function C$(e,t=0,n=!1,s=!1){let a={x:$(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return L.runKernel(ai,a,o)}var M2=W({cumsum_:C$});function T$(e,t,n,s=!1){let r=$(e,"x","denseBincount"),a=$(t,"weights","denseBincount");P(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),P(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),P(n>=0,()=>`size must be non-negative, but got ${n}.`),P(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return L.runKernel(lh,o,i)}var B3=W({denseBincount_:T$});function N$(e,t,n="NHWC"){let s=$(e,"x","depthToSpace","float32"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];P(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),P(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),P(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),P(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return L.runKernel(ii,i,l)}var W3=W({depthToSpace_:N$});function E$(e,t,n,s,r="NHWC",a=[1,1],o){let i=$(e,"x","depthwiseConv2d","float32"),l=$(t,"filter","depthwiseConv2d","float32"),c=i,u=!1;i.rank===3&&(u=!0,c=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),P(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),P(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),P(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&P(dn(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:c,filter:l},p={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},h=L.runKernel(_a,d,p);return u?V(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var dd=W({depthwiseConv2d_:E$});function R$(e){let n={x:$(e,"x","diag")};return L.runKernel(dh,n)}var $$=W({diag_:R$});function D$(e,t,n,s,r=[1,1],a="NHWC"){let o=$(e,"x","dilation2d"),i=$(t,"filter","dilation2d");P(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),P(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),P(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,c=!1;o.rank===3&&(l=V(o,[1,o.shape[0],o.shape[1],o.shape[2]]),c=!0);let u={x:l,filter:i},d={strides:n,pad:s,dilations:r},p=L.runKernel(Bc,u,d);return c?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var V3=W({dilation2d_:D$});function _$(e,t){let n=$(e,"a","equal","string_or_numeric"),s=$(t,"b","equal","string_or_numeric");[n,s]=Pt(n,s),At(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(li,r)}var Ss=W({equal_:_$});function P$(e,t,n){let s=$(t,"a","where"),r=$(n,"b","where"),a=$(e,"condition","where","bool"),o=At(At(a.shape,s.shape),r.shape),i=cd(a,o),l=cd(s,o),c=cd(r,o),u={condition:i,t:l,e:c};return L.runKernel($i,u)}var Mn=W({where_:P$});function F$(e){let n={x:$(e,"x","zerosLike")};return L.runKernel(Wi,n)}var nt=W({zerosLike_:F$});function O$(e,t){let n=$(e,"a","div"),s=$(t,"b","div");[n,s]=Pt(n,s);let r=he(n,s),a=nt(r),o=Ss(s,a);return Mn(o,a,r)}var U3=W({divNoNan_:O$});function M$(e,t){let n=$(e,"t1","dot"),s=$(t,"t2","dot");P((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(P(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=V(n,[1,-1]),i=V(s,[-1,1]),l=He(o,i);return V(l,[])}else if(n.rank===1&&s.rank===2){let o=V(n,[1,-1]),i=V(s,[s.shape[0],s.shape[1]]),l=He(o,i);return V(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=V(s,[-1,1]),i=He(n,o);return V(i,[i.size])}else{let o=V(s,[s.shape[0],s.shape[1]]);return He(n,o)}}var z$=W({dot_:M$});function L$(e,...t){let n=t.map((r,a)=>$(r,`tensors${a}`,"einsum")),s={equation:e};return L.runKernel(Wc,n,s)}var G3=W({einsum_:L$});function B$(e){let n={x:$(e,"x","elu","float32")};return L.runKernel(Fa,n)}var pd=W({elu_:B$});function W$(e){let t=$(e,"x","erf");P(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=pe(t,"float32"));let n={x:t};return L.runKernel(Jl,n)}var H3=W({erf_:W$});function V$(e){let n={x:$(e,"x","exp")};return L.runKernel(Oa,n)}var Is=W({exp_:V$});function U$(e,t=0){let n=$(e,"x","expandDims","string_or_numeric");P(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return L.runKernel(ui,s,r)}var Kt=W({expandDims_:U$});function G$(e){let n={x:$(e,"x","expm1")};return L.runKernel(ci,n)}var j3=W({expm1_:G$});function H$(e,t){let n=$(e,"x","tile","string_or_numeric");P(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return L.runKernel(Hr,s,r)}var Gs=W({tile_:H$});function j$(e,t,n,s="float32"){t==null&&(t=e);let r=Be([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=V(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return Gs(Kt(o,0),[n[0],1,1]);if(n.length===2)return Gs(Kt(Kt(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return Gs(Kt(Kt(Kt(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var z2=W({eye_:j$});function ku(e,t,n){let s={shape:e,value:t,dtype:n};return L.runKernel(Ql,{},s)}function q$(e){let n={x:$(e,"x","floor","float32")};return L.runKernel(Ma,n)}var hd=W({floor_:q$});function X$(e,t,n=0,s=0){let r=$(e,"x","gather"),a=$(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return L.runKernel(pi,o,i)}var Su=W({gather_:X$});function K$(e,t){let n=$(e,"a","greater","string_or_numeric"),s=$(t,"b","greater","string_or_numeric");[n,s]=Pt(n,s),At(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(fi,r)}var cs=W({greater_:K$});function Z$(e,t){let n=$(e,"a","greaterEqual","string_or_numeric"),s=$(t,"b","greaterEqual","string_or_numeric");[n,s]=Pt(n,s),At(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Ba,r)}var Qi=W({greaterEqual_:Z$});function Y$(e){let n={input:$(e,"input","imag")};return L.runKernel(Vc,n)}var Xh=W({imag_:Y$});function J$(e){let n={x:$(e,"x","isFinite")};return L.runKernel(eu,n)}var Q$=W({isFinite_:J$});function eD(e){let n={x:$(e,"x","isInf")};return L.runKernel(tu,n)}var tD=W({isInf_:eD});function nD(e){let n={x:$(e,"x","isNaN")};return L.runKernel(nu,n)}var q3=W({isNaN_:nD});function sD(e,t=.2){let s={x:$(e,"x","leakyRelu")},r={alpha:t};return L.runKernel(mi,s,r)}var Kh=W({leakyRelu_:sD});function rD(e,t){let n=$(e,"a","less","string_or_numeric"),s=$(t,"b","less","string_or_numeric");[n,s]=Pt(n,s),At(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(gi,r)}var L2=W({less_:rD});function aD(e,t){let n=$(e,"a","lessEqual","string_or_numeric"),s=$(t,"b","lessEqual","string_or_numeric");[n,s]=Pt(n,s),At(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Ai,r)}var el=W({lessEqual_:aD});function X3(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return L.runKernel(Ah,{},s)}function oD(e,t=5,n=1,s=1,r=.5){let a=$(e,"x","localResponseNormalization");P(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${a.rank}.`),P(dn(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=V(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},c={depthRadius:t,bias:n,alpha:s,beta:r},u=L.runKernel(Gc,l,c);return i?V(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var K3=W({localResponseNormalization_:oD});function iD(e){let n={x:$(e,"x","log","float32")};return L.runKernel(Va,n)}var Cs=W({log_:iD});function lD(e){let n={x:$(e,"x","log1p")};return L.runKernel(su,n)}var Zh=W({log1p_:lD});function uD(e){return P(wa(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=$(t,"x","tf.grad","string_or_numeric"),r=n!=null?$(n,"dy","tf.grad"):null;return L.tidy(()=>{let{value:a,grads:o}=L.gradients(()=>e(s),[s],r);return r!=null&&Pn(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Yh(o),o[0]})}}function cD(e){return P(wa(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{P(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=od(t,"args","tf.grads","string_or_numeric"),r=n!=null?$(n,"dy","tf.grads"):null;return L.tidy(()=>{let{value:a,grads:o}=L.gradients(()=>e(...s),s,r);return r!=null&&Pn(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Yh(o),o})}}function dD(e){return P(wa(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{P(t instanceof Je,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),P(n==null||n instanceof Je,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=L.gradients(()=>e(t),[t],n);return Yh(s),{grad:s[0],value:r}}}function pD(e){return P(wa(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{P(Array.isArray(t)&&t.every(r=>r instanceof Je),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),P(n==null||n instanceof Je,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=L.gradients(()=>e(...t),t,n);return n!=null&&Pn(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Yh(s.grads),s}}function Z3(e,t){P(wa(e),()=>"The f passed in variableGrads(f) must be a function"),P(t==null||Array.isArray(t)&&t.every(c=>c instanceof rd),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in L.registeredVariables)t.push(L.registeredVariables[c])}let s=n?t.filter(c=>!c.trainable):null,r=t.length;t=t.filter(c=>c.trainable),P(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=L.gradients(e,t,null,a);P(i.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),P(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((c,u)=>{i[u]!=null&&(l[c.name]=i[u])}),s!=null&&s.forEach(c=>l[c.name]=null),{value:o,grads:l}}function Tr(e){return L.customGrad(e)}function Yh(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function hD(e){let n={x:$(e,"x","neg")};return L.runKernel(xi,n)}var Ot=W({neg_:hD});function fD(e){let n={x:$(e,"x","softplus")};return L.runKernel(pu,n)}var Iu=W({softplus_:fD});function mD(e){let t=$(e,"x","logSigmoid");return Tr(s=>({value:Ot(Iu(Ot(s))),gradFunc:o=>B(o,ls(Ot(s)))}))(t)}var gD=W({logSigmoid_:mD});function AD(e,t=null,n=!1){let r={x:$(e,"x","max")},a={reductionIndices:t,keepDims:n};return L.runKernel(Ua,r,a)}var Qn=W({max_:AD});function yD(e,t){let n=$(e,"a","sub"),s=$(t,"b","sub");[n,s]=Pt(n,s);let r={a:n,b:s};return L.runKernel(co,r)}var xe=W({sub_:yD});function xD(e,t=null,n=!1){let s=$(e,"x","sum");s.dtype==="bool"&&(s=pe(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return L.runKernel(io,r,a)}var ke=W({sum_:xD});function bD(e,t=-1){let n=$(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Tr((r,a)=>{let o=!0,i=Qn(r,t,!0),l=xe(r,i),c=xe(pe(l,"float32"),Cs(ke(Is(l),t,o)));return a([c]),{value:c,gradFunc:(d,p)=>{let[h]=p,f=!0,m=Is(h);return xe(d,B(ke(d,t,f),m))}}})(n)}var B2=W({logSoftmax_:bD});function W2(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function Y3(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function J3(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function tl(e,t){let n=t.map(s=>1);return Y3(e,n,t)}function vD(e,t,n){P(W2(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Q3(e,t){if(W2(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function V2(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function wD(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function kD(e,t=null,n=!1){let s=$(e,"x","logSumExp"),r=Ws(t,s.shape),a=Qn(s,r,!0),o=xe(s,a),i=Is(o),l=ke(i,r),c=Cs(l),u=ie(V(a,c.shape),c);if(n){let d=tl(u.shape,r);return V(u,d)}return u}var ev=W({logSumExp_:kD});function SD(e,t){let n=$(e,"a","logicalAnd","bool"),s=$(t,"b","logicalAnd","bool");At(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(yi,r)}var or=W({logicalAnd_:SD});function ID(e){let n={x:$(e,"x","logicalNot","bool")};return L.runKernel(ru,n)}var Jh=W({logicalNot_:ID});function CD(e,t){let n=$(e,"a","logicalOr","bool"),s=$(t,"b","logicalOr","bool");At(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Uc,r)}var U2=W({logicalOr_:CD});function TD(e,t){let n=$(e,"a","logicalXor","bool"),s=$(t,"b","logicalXor","bool");return At(n.shape,s.shape),or(U2(e,t),Jh(or(e,t)))}var ND=W({logicalXor_:TD});function ED(e,t,n,s,r){let a=$(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),P(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),P(Cr(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),r!=null&&P(dn(s),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=L.runKernel(Ha,c,u);return l?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Qh=W({maxPool_:ED});function RD(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=$(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),P(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),P(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&P(dn(s),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=L.runKernel(Hc,c,u);return l?V(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var G2=W({maxPool3d_:RD});function $D(e,t,n,s,r=!1){let o={x:$(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=L.runKernel(vh,o,i);return{result:l[0],indexes:l[1]}}var tv=W({maxPoolWithArgmax_:$D});function DD(e,t){let n=$(e,"a","maximum"),s=$(t,"b","maximum");[n,s]=Pt(n,s),n.dtype==="bool"&&(n=pe(n,"int32"),s=pe(s,"int32")),At(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Ga,r)}var Kr=W({maximum_:DD});function _D(e,t=null,n=!1){let r={x:$(e,"x","mean")},a={axis:t,keepDims:n};return L.runKernel(ja,r,a)}var Wt=W({mean_:_D});function Ht(e,t="float32"){if(t==="complex64"){let s=Ht(e,"float32"),r=Ht(e,"float32");return bo(s,r)}let n=eh(Ut(e),t);return L.makeTensor(n,e,t)}function ds(e,t="float32"){if(t==="complex64"){let s=ds(e,"float32"),r=Ht(e,"float32");return bo(s,r)}let n=zg(Ut(e),t);return L.makeTensor(n,e,t)}function PD(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=$(e,"x","meshgrid",e instanceof Je?e.dtype:"float32");if(t===void 0)return[s];let r=$(t,"y","meshgrid",t instanceof Je?t.dtype:"float32"),a=Ut(s.shape),o=Ut(r.shape);return n==="xy"?(s=V(s,[1,-1]),r=V(r,[-1,1]),[He(ds([o,1],s.dtype),s),He(r,ds([1,a],r.dtype))]):(s=V(s,[-1,1]),r=V(r,[1,-1]),[He(s,ds([1,o],s.dtype)),He(ds([a,1],r.dtype),r)])}function FD(e,t=null,n=!1){let r={x:$(e,"x","min")},a={axis:t,keepDims:n};return L.runKernel(qa,r,a)}var ef=W({min_:FD});function OD(e,t){let n=$(e,"a","minimum"),s=$(t,"b","minimum");[n,s]=Pt(n,s),n.dtype==="bool"&&(n=pe(n,"int32"),s=pe(s,"int32")),At(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Xa,r)}var fd=W({minimum_:OD});function MD(e,t,n){P(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=$(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");P(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)P(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),P(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return L.runKernel(Ka,o,a)}var nv=W({mirrorPad_:MD});function zD(e,t){let n=$(e,"a","mod"),s=$(t,"b","mod");[n,s]=Pt(n,s);let r={a:n,b:s};return L.runKernel(au,r)}var sv=W({mod_:zD});function LD(e){let t=$(e,"x","square"),n={};return L.runKernel("Square",{x:t},n)}var yt=W({square_:LD});function BD(e,t=null,n=!1){e=$(e,"x","moments");let s=Ws(t,e.shape),r=Wt(e,s,n),a=r.shape;n||(a=tl(r.shape,s));let o=yt(xe(pe(e,"float32"),V(r,a))),i=Wt(o,s,n);return{mean:r,variance:i}}var tf=W({moments_:BD});function WD(e,t,n,s){let r=$(t,"data","multiRNNCell"),a=od(n,"c","multiRNNCell"),o=od(s,"h","multiRNNCell"),i=r,l=[];for(let d=0;d<e.length;d++){let p=e[d](i,a[d],o[d]);l.push(p[0]),l.push(p[1]),i=p[1]}let c=[],u=[];for(let d=0;d<l.length;d+=2)c.push(l[d]),u.push(l[d+1]);return[c,u]}var VD=W({multiRNNCell_:WD});function UD(e,t,n,s=!1){let r=$(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?V(r,[1,-1]):r},c={numSamples:t,seed:n,normalized:s},u=L.runKernel(wh,l,c);return o===1?V(u,[u.size]):u}var rv=W({multinomial_:UD});function GD(e,t){let n=$(e,"a","notEqual","string_or_numeric"),s=$(t,"b","notEqual","string_or_numeric");[n,s]=Pt(n,s),At(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(bi,r)}var Cu=W({notEqual_:GD});function HD(e){let n={x:$(e,"x","onesLike")};return L.runKernel(ki,n)}var Ts=W({onesLike_:HD});function jD(e,t){let n=$(e,"v1","outerProduct"),s=$(t,"v2","outerProduct");P(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=V(n,[-1,1]),a=V(s,[1,-1]);return He(r,a)}var qD=W({outerProduct_:jD});function XD(e,t,n=0){let s=$(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return L.runKernel(Ya,a,r)}var Hs=W({pad_:XD});function KD(e,t,n=0){return P(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Hs(e,[t],n)}var ZD=W({pad1d_:KD});function YD(e,t,n=0){return P(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Hs(e,t,n)}var JD=W({pad2d_:YD});function QD(e,t,n=0){return P(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Hs(e,t,n)}var e_=W({pad3d_:QD});function t_(e,t,n=0){return P(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Hs(e,t,n)}var n_=W({pad4d_:t_});function s_(e,t,n){let s=$(e,"x","spaceToBatchND");P(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),P(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),P(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return L.runKernel(Pi,r,a)}var nf=W({spaceToBatchND_:s_});function r_(e,t,n,s,r,a){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=$(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(Cr(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=T3(i.shape,t,a,r,s),u=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=o_([c.filterHeight,c.filterWidth],u):d=[[0,0],[0,0]];let p=u[0]===1&&u[1]===1,[h,f]=a_([c.inHeight,c.inWidth],u,d),m=p?s:"valid",g=p?i:nf(i,u,h),x=(n==="avg"?()=>Hh(g,t,a,m):()=>Qh(g,t,a,m))(),y=p?x:jh(x,u,f);return l?V(y,[y.shape[1],y.shape[2],y.shape[3]]):y}function a_(e,t,n){let s=n.map(u=>u[0]),r=n.map(u=>u[1]),a=e.concat(s,r),o=t.map((u,d)=>(u-a[d]%u)%u),i=r.map((u,d)=>u+o[d]),l=t.map((u,d)=>[s[d],i[d]]),c=t.map((u,d)=>[0,o[d]]);return[l,c]}function o_(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var i_=W({pool_:r_});function l_(e,t){let n=$(e,"base","pow"),s=$(t,"exp","pow");[n,s]=Pt(n,s);let r={a:n,b:s};return L.runKernel(Ja,r)}var Co=W({pow_:l_});function u_(e,t){let n=$(e,"x","prelu"),s=$(t,"alpha","prelu"),r={x:n,alpha:s};return L.runKernel(Qa,r)}var sf=W({prelu_:u_});function c_(e,t=null,n=!1){let s=$(e,"x","prod");s.dtype==="bool"&&(s=pe(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return L.runKernel(Ci,r,a)}var H2=W({prod_:c_});function d_(e,t,n){let s=Ut(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return L.makeTensor(r,e,n)}var p_=W({rand_:d_}),j2=Qo(Zp()),q2=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=j2.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},h_=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=j2.alea(r.toString()),this.randn=new q2(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},f_=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=j2.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function m_(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new h_(t,n,s,r),o=Be(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var g_=W({randomGamma_:m_});function A_(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new q2(t,n,s,!1,r),o=Be(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var av=W({randomNormal_:A_});function y_(e,t=0,n=1,s="float32",r){let a=Be(e,s),o=new f_(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var Tu=W({randomUniform_:y_});function Nu(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return L.runKernel(iu,{},r)}function x_(e){let n={input:$(e,"input","real")};return L.runKernel(jc,n)}var md=W({real_:x_});function b_(e){let n={x:$(e,"x","reciprocal")};return L.runKernel(lu,n)}var ov=W({reciprocal_:b_});function v_(e){let n={x:$(e,"x","relu")};return L.runKernel(eo,n)}var Nr=W({relu_:v_});function w_(e){let n={x:$(e,"x","relu6")};return L.runKernel(no,n)}var X2=W({relu6_:w_});function k_(e,t){let s={x:$(e,"x","reverse")},r={dims:t};return L.runKernel(Ni,s,r)}var Ns=W({reverse_:k_});function S_(e){let t=$(e,"x","reverse");return P(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Ns(t,0)}var I_=W({reverse1d_:S_});function C_(e,t){let n=$(e,"x","reverse");return P(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Ns(n,t)}var T_=W({reverse2d_:C_});function N_(e,t){let n=$(e,"x","reverse");return P(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Ns(n,t)}var E_=W({reverse3d_:N_});function R_(e,t){let n=$(e,"x","reverse");return P(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Ns(n,t)}var $_=W({reverse4d_:R_});function D_(e){let n={x:$(e,"x","round")};return L.runKernel(Ei,n)}var K2=W({round_:D_});function __(e){let n={x:$(e,"x","rsqrt","float32")};return L.runKernel(so,n)}var Z2=W({rsqrt_:__});function Ne(e,t){if((En(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&En(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return vo(e,[],[],t)}function P_(e){let n={x:$(e,"x","selu")};return L.runKernel(cu,n)}var Y2=W({selu_:P_});function F_(e,t,n,s,r,a=[1,1],o="NHWC"){let i=$(e,"x","separableConv2d"),l=$(t,"depthwiseFilter","separableConv2d"),c=$(n,"pointwiseFilter","separableConv2d"),u=i,d=!1;if(i.rank===3&&(d=!0,u=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");P(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),P(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),P(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),P(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),P(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let p=l.shape[2],h=l.shape[3];P(c.shape[2]===p*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*h}, but got ${c.shape[2]}.`);let f=dd(u,l,s,r,o,a),g=Io(f,c,1,"valid",o);return d?V(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var iv=W({separableConv2d_:F_});async function O_(e,t){let n=$(e,"x","setdiff1d"),s=$(t,"y","setdiff1d");P(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),P(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),P(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let u=0;u<r.length;u++)o.has(r[u])||i++;let l=new sn([i],n.dtype),c=new sn([i],"int32");for(let u=0,d=0;u<r.length;u++)o.has(r[u])||(l.values[d]=r[u],c.values[d]=u,d++);return[l.toTensor(),c.toTensor()]}var lv=O_;function M_(e){let n={x:$(e,"x","sign")};return L.runKernel(du,n)}var uv=W({sign_:M_});function z_(e){let n={x:$(e,"x","sin","float32")};return L.runKernel(ro,n)}var J2=W({sin_:z_});function L_(e){let n={x:$(e,"x","sinh")};return L.runKernel(_i,n)}var Q2=W({sinh_:L_});function B_(e,t,n){let s=$(e,"x","slice1d");return P(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),_e(s,[t],[n])}var rf=W({slice1d_:B_});function W_(e,t,n){let s=$(e,"x","slice2d");return P(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var e1=W({slice2d_:W_});function V_(e,t,n){let s=$(e,"x","slice3d");return P(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var Eu=W({slice3d_:V_});function U_(e,t,n){let s=$(e,"x","slice4d");return P(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var gd=W({slice4d_:U_});function G_(e,t=-1){let n=$(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return L.runKernel(lo,s,r)}var Ru=W({softmax_:G_});function H_(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(mh,t)}var af=W({fft_:H_});function j_(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(gh,t)}var Ad=W({ifft_:j_});function q_(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=V(e,[n,t]);s=Ad(r)}else{let r=[n,2*(t-1)],a=V(md(e),[n,t]),o=V(Xh(e),[n,t]),i=Ns(_e(a,[0,1],[n,t-2]),1),l=B(Ns(_e(o,[0,1],[n,t-2]),1),Ne(-1)),c=kt([a,i],1),u=kt([o,l],1),d=V(bo(c,u),[r[0],r[1]]);s=Ad(d)}if(s=md(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=V(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var t1=W({irfft_:q_});function X_(e,t,n=0){let r={x:$(e,"x","split")},a={numOrSizeSplits:t,axis:n};return L.runKernel(Fi,r,a)}var vn=W({split_:X_});function K_(e,t){P(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=_e(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=kt([e,Ht(f)],e.shape.length-1),n=t}else r=e;let a=nt(r),o=V(bo(r,a),[s,n]),i=af(o),l=Math.floor(n/2)+1,c=md(i),u=Xh(i),d=vn(c,[l,n-l],c.shape.length-1),p=vn(u,[l,n-l],u.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,V(bo(d[0],p[0]),h)}var of=W({rfft_:K_});function Z_(e){let n={x:$(e,"x","sqrt","float32")};return L.runKernel(oo,n)}var Rn=W({sqrt_:Z_});function Y_(e,t){let n=$(e,"a","squaredDifference"),s=$(t,"b","squaredDifference");[n,s]=Pt(n,s),At(n.shape,s.shape);let r={a:n,b:s},a={};return L.runKernel(uo,r,a)}var n1=W({squaredDifference_:Y_});function J_(e,t){let n=$(e,"x","squeeze");return V(n,a5(n.shape,t).newShape)}var ct=W({squeeze_:J_});function Q_(e,t=0){let n=od(e,"tensors","stack","string_or_numeric");P(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&P(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return L.runKernel(Ii,s,r)}var $n=W({stack_:Q_});function eP(e,t=0){let s={x:$(e,"x","step")},r={alpha:t};return L.runKernel(fo,s,r)}var yd=W({step_:eP});function tP(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let u={x:$(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return L.runKernel(Oi,u,d)}var cv=W({stridedSlice_:tP});function nP(e){let n={x:$(e,"x","tan","float32")};return L.runKernel(Mi,n)}var dv=W({tan_:nP});function Zt(e,t){ei(e);let n=Sr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return vo(e,null,n,t)}function ir(e,t,n){if(ei(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=Sr(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return vo(e,t,s,n)}function sP(e,t,n){if(ei(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=Sr(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return vo(e,t,s,n)}function rP(e,t,n){if(ei(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=Sr(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return vo(e,t,s,n)}function aP(e,t,n){if(ei(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=Sr(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,vo(e,t,s,n)}function oP(e,t=1,n=!0){let s=$(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=L.runKernel(zi,a,o);return{values:i,indices:l}}var pv=W({topk_:oP});function iP(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new q2(t,n,s,!0,r),o=Be(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var lf=W({truncatedNormal_:iP});function lP(e,t=0){let n=$(e,"x","unique","string_or_numeric");P(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=L.runKernel($h,s,r);return{values:a,indices:o}}var s1=W({unique_:lP});function uP(e,t,n){let s=$(e,"x","unsortedSegmentSum"),r=$(t,"segmentIds","unsortedSegmentSum","int32");P(dn(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return L.runKernel(Kc,a,o)}var hv=W({unsortedSegmentSum_:uP});function cP(e,t=0){let n=$(e,"x","unstack","string_or_numeric");P(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return L.runKernel(Bi,s,r)}var es=W({unstack_:cP});function fv(e,t=!0,n,s){return L.makeVariable(e,t,n,s)}function mv(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=Be(e,"int32"),r=Be([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function dP(e){let t=$(e,"condition","whereAsync","bool"),n=await t.data(),s=mv(t.shape,n);return e!==t&&t.dispose(),s}var r1=dP;async function pP(e,t,n){let s=$(e,"tensor","boolMask"),r=$(t,"mask","boolMask","bool"),a=n??0,o=r.rank,i=s.shape;P(o>0,()=>"mask cannot be scalar"),Pn(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m<a+o;m++)l*=i[m];let c=i.slice(0,a).concat([l],i.slice(a+o)),u=V(s,c),d=V(r,[-1]),p=await r1(d),h=ct(p,[1]),f=Su(u,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),u.dispose(),d.dispose(),p.dispose(),f}var hP=pP;function fP(e,t="euclidean",n=null,s=!1){e=$(e,"x","norm");let r=gv(e,t,n),a=r.shape;if(s){let o=Ws(n,e.shape);a=tl(r.shape,o)}return V(r,a)}function gv(e,t,n=null){if(e.rank===0)return rn(e);if(e.rank!==1&&n===null)return gv(V(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return ke(rn(e),n);if(t===1/0)return Qn(rn(e),n);if(t===-1/0)return ef(rn(e),n);if(t==="euclidean"||t===2)return Rn(ke(Co(rn(e),Ne(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Qn(ke(rn(e),n[0]),n[1]-1);if(t===1/0)return Qn(ke(rn(e),n[1]),n[0]);if(t===-1/0)return ef(ke(rn(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Rn(ke(yt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var a1=W({norm_:fP});function mP(e,t,n,s,r=!0){let a=$(e,"v","movingAverage"),o=$(t,"x","movingAverage"),i=$(n,"decay","movingAverage");C5(a,o),P(ba(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Ne(1),c=xe(l,i),u=B(xe(o,a),c);if(r){P(s!=null,()=>"When using zeroDebias: true, step is required.");let d=$(s,"step","movingAverage");u=he(u,xe(l,Co(i,d)))}return ie(a,u)}var gP=W({movingAverage_:mP});function AP(e,t,n){let s=$(e,"indices","scatterND","int32"),r=$(t,"updates","scatterND");x2(r,s,n);let a={indices:s,updates:r},o={shape:n};return L.runKernel(Ri,a,o)}var Av=W({scatterND_:AP});function yP(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function xP(e,t,n,s=0){let r=$(e,"sparseIndices","sparseToDense","int32"),a=$(t,"sparseValues","sparseToDense"),o=$(s,"defaultValue","sparseToDense",a.dtype);yP(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return L.runKernel(qc,i,l)}var o1=W({sparseToDense_:xP});function bP(e,t){let n=$(t,"indices","gatherND","int32"),r={params:$(e,"x","gatherND","string_or_numeric"),indices:n};return L.runKernel(hi,r)}var yv=W({gatherND_:bP});function vP(e,t){if(t==null)return e.shape.slice();if(ba(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function wP(e,t,n,s){let r=$(e,"x","dropout");if(P(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),P(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Je?r.clone():r;let a=vP(r,n),o=1-t,i=he(hd(ie(Tu(a,0,1,"float32",s),o)),o);return B(r,i)}var xv=W({dropout_:wP});function bv(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function i1(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return Zt(r,"float32")}async function kP(e,t,n=1){let s=$(e,"predictions","inTopK"),r=$(t,"targets","inTopK");P(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),P(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),Pn(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];P(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,c]=[o.length/a,a],u=o5("bool",l);for(let d=0;d<l;d++){let p=d*c,h=o.subarray(p,p+c),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),u[d]=0;for(let m=0;m<n;m++)if(f[m].index===i[d]){u[d]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),Gt(u,r.shape,"bool")}var SP=kP,To={};Me(To,{conv2d:()=>TP,depthwiseConv2d:()=>$P,matMul:()=>_P});function IP(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]])),P(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),P(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),P(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=a==="NHWC"?i.shape[3]:i.shape[1],u=a==="NHWC"?l.shape[3]:l.shape[1];P(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),P(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),o!=null&&P(dn(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:i,dy:l},p={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return L.runKernel(ah,d,p)}var l1=W({conv2DBackpropFilter_:IP});function uf(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return B(e,yd(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function cf(e,t){let n=t,s=Xt(e.shape,t.shape);return s.length>0&&(n=ke(n,s)),V(n,e.shape)}function df(e,t,n,s){if(t==="linear")return e;if(t==="relu")return Nr(e);if(t==="elu")return pd(e);if(t==="relu6")return X2(e);if(t==="prelu")return sf(e,n);if(t==="leakyrelu")return Kh(e,s);if(t==="sigmoid")return ls(e);throw new Error(`Unknown fused activation ${t}.`)}var pf=(e,t)=>!(e>0)||t==="linear";function CP({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",pf(L.state.gradientDepth,l)===!1){let w=Io(e,t,n,s,r,a,o);return i!=null&&(w=ie(w,i)),df(w,l,c,u)}let d=$(e,"x","conv2d","float32"),p=$(t,"filter","conv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=V(d,[1,d.shape[0],d.shape[1],d.shape[2]])),P(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),P(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),o!=null&&P(dn(s),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),P(h.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${p.shape[2]}.`),P(Cr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),P(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let m=ud(h.shape,p.shape,n,a,s,o),g;i!=null&&(g=$(i,"bias","fused conv2d"),[g]=Pt(g,d),At(m.outShape,g.shape));let A;c!=null&&(A=$(c,"prelu weights","fused conv2d"));let x=(w,S)=>{let[C,E,D,O]=S,_=uf(w,D,l);P(So(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let F=_2(E.shape,_,C,n,s),T=l1(E,_,C.shape,n,s),M=[F,T];if(O!=null){let U=cf(O,_);M.push(U)}return M},y={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?Tr((S,C,E)=>{let D=L.runKernel(go,y,b);return E([C,S,D]),f&&(D=V(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:x}})(h,p):Tr((S,C,E,D)=>{let O=L.runKernel(go,y,b);return D([C,S,O,E]),f&&(O=V(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:x}})(h,p,g)}var TP=W({fusedConv2d_:CP});function NP(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:i,dy:l},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return L.runKernel(uh,c,u)}var vv=W({depthwiseConv2dNativeBackpropFilter_:NP});function EP(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:i,filter:n},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},d=L.runKernel(ch,c,u);return l?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var wv=W({depthwiseConv2dNativeBackpropInput_:EP});function RP({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(pf(L.state.gradientDepth,l)===!1){let w=dd(e,t,n,s,r,a,o);return i!=null&&(w=ie(w,i)),df(w,l,c,u)}let d=$(e,"x","depthwiseConv2d","float32"),p=$(t,"filter","depthwiseConv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=V(d,[1,d.shape[0],d.shape[1],d.shape[2]])),P(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),P(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),P(h.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),a==null&&(a=[1,1]),P(Cr(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&P(dn(s),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${s}.`);let m=ud(h.shape,p.shape,n,a,s,o,!0),g;i!=null&&(g=$(i,"bias","fused conv2d"),[g]=Pt(g,d),At(m.outShape,g.shape));let A;c!=null&&(A=$(c,"prelu weights","fused depthwiseConv2d"));let x=(w,S)=>{P(So(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[C,E,D,O]=S,_=uf(w,D,l),F=wv(E.shape,_,C,n,s,a,o),T=vv(E,_,C.shape,n,s,a,o);if(O!=null){let M=cf(g,_);return[F,T,M]}return[F,T]},y={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?Tr((S,C,E)=>{let D=L.runKernel(Ao,y,b);return E([C,S,D]),f&&(D=V(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:x}})(h,p):Tr((S,C,E,D)=>{let O=L.runKernel(Ao,y,b);return D([C,S,O,E]),f&&(O=V(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:x}})(h,p,g)}var $P=W({fusedDepthwiseConv2d_:RP});function DP({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(pf(L.state.gradientDepth,a)===!1){let _=He(e,t,n,s);return r!=null&&(_=ie(_,r)),df(_,a,o,i)}let l=$(e,"a","fused matMul"),c=$(t,"b","fused matMul");[l,c]=Pt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=s?c.shape[c.rank-1]:c.shape[c.rank-2],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?c.shape[c.rank-2]:c.shape[c.rank-1],f=l.shape.slice(0,-2),m=c.shape.slice(0,-2),g=Ut(f),A=Ut(m);P(u===d,()=>`Error in fused matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${s} must match.`);let y=At(l.shape.slice(0,-2),c.shape.slice(0,-2)).concat([p,h]),b=n?V(l,[g,u,p]):V(l,[g,p,u]),w=s?V(c,[A,h,d]):V(c,[A,d,h]),S;r!=null&&(S=$(r,"bias","fused matMul"),[S]=Pt(S,l),At(y,S.shape));let C;o!=null&&(C=$(o,"prelu weights","fused matMul"));let E=(_,F)=>{let[T,M,U,q]=F,j=uf(V(_,U.shape),U,a),X,J;if(!n&&!s?(X=He(j,M,!1,!0),J=He(T,j,!0,!1)):!n&&s?(X=He(j,M,!1,!1),J=He(j,T,!0,!1)):n&&!s?(X=He(M,j,!1,!0),J=He(T,j,!1,!1)):(X=He(M,j,!0,!0),J=He(j,T,!0,!0)),r!=null){let te=cf(q,j);return[X,J,te]}else return[X,J]},D={a:b,b:w,bias:S,preluActivationWeights:C},O={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?Tr((F,T,M)=>{let U=L.runKernel(mo,D,O);return M([F,T,U]),{value:V(U,y),gradFunc:E}})(b,w):Tr((F,T,M,U)=>{let q=L.runKernel(mo,D,O);return U([F,T,q,M]),{value:V(q,y),gradFunc:E}})(b,w,S)}var _P=W({fusedMatMul_:DP});function PP(e){return i1(e,.54,.46)}var FP=W({hammingWindow_:PP});function OP(e){return i1(e,.5,.5)}var kv=W({hannWindow_:OP});function MP(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(_e(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=kt([_e(e,a,t-i),ku([i],r)]);o.push(l),a+=n}return o.length===0?ir([],[0,t]):V(kt(o),[o.length,t])}var Sv=W({frame_:MP});function zP(e,t,n,s,r=kv){s==null&&(s=bv(t));let a=Sv(e,t,n),o=B(a,r(t));return of(o,s)}var LP=W({stft_:zP});function BP(e,t,n,s,r="bilinear",a=0){let o=$(e,"image","cropAndResize"),i=$(t,"boxes","cropAndResize","float32"),l=$(n,"boxInd","cropAndResize","int32"),c=i.shape[0];P(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),P(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${i.shape}.`),P(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${i.shape}.`),P(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),P(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),P(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let u={image:o,boxes:i,boxInd:l},d={method:r,extrapolationValue:a,cropSize:s};return L.runKernel(oi,u,d)}var WP=W({cropAndResize_:BP});function VP(e){let t=$(e,"image","flipLeftRight","float32");P(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return L.runKernel(di,n,{})}var UP=W({flipLeftRight_:VP});function GP(e){let t=$(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];P(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),P(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Gs(t,r)}var HP=W({grayscaleToRGB_:GP});function jP(e,t,n=0,s=.5){let r=$(e,"image","rotateWithOffset","float32");P(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return L.runKernel(Vi,a,o)}var qP=W({rotateWithOffset_:jP});function $u(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),P(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),P(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),P(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),P(t.rank===1,()=>"scores must be a 1D tensor"),P(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),P(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function XP(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppression","float32"),o=$(t,"scores","nonMaxSuppression","float32"),i=$u(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return L.runKernel(vi,{boxes:a,scores:o},l)}var KP=W({nonMaxSuppression_:XP});function ZP(e,t,n){let s=YP(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function YP(e,t,n){return QP(e,t,n||JP)}function JP(e,t){return e>t?1:e<t?-1:0}function QP(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function Iv(e,t,n,s,r){return u1(e,t,n,s,r,0)}function Cv(e,t,n,s,r,a){return u1(e,t,n,s,r,0,!1,a,!0)}function Tv(e,t,n,s,r,a){return u1(e,t,n,s,r,a,!0)}function u1(e,t,n,s,r,a,o=!1,i=!1,l=!1){let c=[];for(let g=0;g<t.length;g++)t[g]>r&&c.push({score:t[g],boxIndex:g,suppressBeginIndex:0});c.sort(Nv);let u=a>0?-.5/a:0,d=[],p=[];for(;d.length<n&&c.length>0;){let g=c.pop(),{score:A,boxIndex:x,suppressBeginIndex:y}=g;if(A<r)break;let b=!1;for(let w=d.length-1;w>=y;--w){let S=eF(e,x,d[w]);if(S>=s){b=!0;break}if(g.score=g.score*tF(s,u,S),g.score<=r)break}g.suppressBeginIndex=d.length,b||(g.score===A?(d.push(x),p.push(g.score)):g.score>r&&ZP(c,g,Nv))}let h=d.length,f=n-h;i&&f>0&&(d.push(...new Array(f).fill(0)),p.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=p),l&&(m.validOutputs=h),m}function eF(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),c=Math.min(r[0],r[2]),u=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),p=Math.max(r[1],r[3]),h=(i-a)*(l-o),f=(d-c)*(p-u);if(h<=0||f<=0)return 0;let m=Math.max(a,c),g=Math.max(o,u),A=Math.min(i,d),x=Math.min(l,p),y=Math.max(A-m,0)*Math.max(x-g,0);return y/(h+f-y)}function tF(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function Nv(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function nF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppressionAsync"),o=$(t,"scores","nonMaxSuppressionAsync"),i=$u(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),c=l[0],u=l[1],{selectedIndices:d}=Iv(c,u,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),Zt(d,"int32")}var sF=nF;function rF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),l=$u(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c={boxes:o,scores:i},u={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},d=L.runKernel(wi,c,u);return{selectedIndices:d[0],selectedScores:d[1]}}var aF=W({nonMaxSuppressionWithScore_:rF});async function oF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),l=$u(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c=await Promise.all([o.data(),i.data()]),u=c[0],d=c[1],{selectedIndices:p,selectedScores:h}=Tv(u,d,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Zt(p,"int32"),selectedScores:Zt(h)}}var iF=oF;function lF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),l=$u(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,p={boxes:o,scores:i},h={maxOutputSize:c,iouThreshold:u,scoreThreshold:d,padToMaxOutputSize:a},f=L.runKernel(ou,p,h);return{selectedIndices:f[0],validOutputs:f[1]}}var uF=W({nonMaxSuppressionPadded_:lF});async function cF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),l=$u(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,[p,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=Cv(p,h,c,u,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Zt(f,"int32"),validOutputs:Ne(m,"int32")}}var dF=cF;function pF(e,t,n=!1,s=!1){let r=$(e,"images","resizeBilinear");P(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),P(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),P(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=V(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=L.runKernel(to,i,l);return o?V(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var hF=W({resizeBilinear_:pF});function fF(e,t,n=!1,s=!1){let r=$(e,"images","resizeNearestNeighbor");P(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),P(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),P(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),P(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=V(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=L.runKernel(uu,i,l);return o?V(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var mF=W({resizeNearestNeighbor_:fF});function gF(e,t="binary",n=!1,s=.5){let r=$(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],c=B(Zt([s]),255),u,d,p,h;if(P(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),P(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),P(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),P(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[u,d,p]=vn(r,[1,1,1],-1);let g=B(u,a),A=B(d,o),x=B(p,i);h=ie(ie(g,A),x)}else h=e;if(t==="otsu"){let g=$2(pe(K2(h),"int32"),Gt([]),256);c=AF(g,l)}let f=n?el(h,c):cs(h,c);return pe(B(f,255),"int32")}function AF(e,t){let n=Zt([-1]),s=Zt([0]),r=Zt([0]),a,o,i,l,c,u;for(let d=0;d<e.size-1;d++){a=_e(e,0,d+1),o=_e(e,d+1),c=he(ke(a),t),u=he(ke(o),t);let p=ke(B(a,Nu(0,a.size)));i=he(p,ke(a));let h=ku(o.shape,a.size),f=ie(Nu(0,o.size),h),m=B(o,f);l=he(ke(m),ke(o));let g=xe(i,l),A=xe(i,l),x=B(c,u);r=B(B(x,g),A);let y=cs(r,s);s=Mn(y,r,s),n=Mn(y,Zt([d]),n)}return n}var yF=W({threshold_:gF});function xF(e,t,n="nearest",s="constant",r=0,a){let o=$(e,"image","transform","float32"),i=$(t,"transforms","transform","float32");P(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),P(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),P(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},c={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return L.runKernel(Li,l,c)}var bF=W({transform_:xF});function vF(e,t,n){P(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),P(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=$(e,"a","bandPart");P(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=V(Nu(0,a,1,"int32"),[-1,1]),l=Nu(0,o,1,"int32"),c=xe(i,l),u=or(el(c,Ne(+t,"int32")),Qi(c,Ne(-n,"int32"))),d=Ht([a,o],s.dtype);return V($n(es(V(s,[-1,a,o])).map(p=>Mn(u,p,d))),r)}var wF=W({bandPart_:vF});function kF(e){let t;if(Array.isArray(e)){t=!1,P(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)P(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=vn(e,e.shape[0],0).map(r=>ct(r,[0]));P(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(L.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=B(ke(B(n[o],a)),n[o]);a=xe(a,i)}return he(a,a1(a,"euclidean"))}));return t?$n(n,0):n}var SF=W({gramSchmidt_:kF});function IF(e,t=!1){if(P(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Ev(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),s=es(V(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[c,u]=Ev(l,t);r.push(c),a.push(u)});let o=V($n(r,0),e.shape),i=V($n(a,0),e.shape);return[o,i]}}function Ev(e,t=!1){return L.tidy(()=>{P(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=z2(n),a=rr(e),o=ir([[1]],[1,1]),i=rr(o),l=n>=s?s:n;for(let c=0;c<l;++c){let u=a,d=i,p=r;[i,a,r]=L.tidy(()=>{let h=_e(a,[c,c],[n-c,1]),f=a1(h),m=_e(a,[c,c],[1,1]),g=Mn(cs(m,0),ir([[-1]]),ir([[1]])),A=xe(m,B(g,f)),x=he(h,A);x.shape[0]===1?i=rr(o):i=kt([o,_e(x,[1,0],[x.shape[0]-1,x.shape[1]])],0);let y=Ot(he(He(g,A),f)),b=_e(a,[c,0],[n-c,s]),w=B(y,i),S=tt(i);if(c===0)a=xe(b,He(w,He(S,b)));else{let D=xe(b,He(w,He(S,b)));a=kt([_e(a,[0,0],[c,s]),D],0)}let C=tt(w),E=_e(r,[0,c],[n,r.shape[1]-c]);if(c===0)r=xe(E,He(He(E,i),C));else{let D=xe(E,He(He(E,i),C));r=kt([_e(r,[0,0],[n,c]),D],1)}return[i,a,r]}),Y([u,d,p])}return!t&&n>s&&(r=_e(r,[0,0],[n,s]),a=_e(a,[0,0],[s,s])),[r,a]})}var CF=W({qr_:IF}),zn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(zn||(zn={}));function TF(e,t,n=zn.SUM_BY_NONZERO_WEIGHTS){let s=$(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=$(t,"weights","computeWeightedLoss"));let a=r==null?s:B(s,r);if(n===zn.NONE)return a;if(n===zn.SUM)return ke(a);if(n===zn.MEAN){if(r==null)return Wt(a);{let o=s.size/r.size,i=he(ke(a),ke(r));return o>1?he(i,Ne(o)):i}}if(n===zn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return he(ke(a),Ne(s.size));{let o=B(r,ds(s.shape)),i=pe(ke(Cu(o,Ne(0))),"float32");return he(ke(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Zr=W({computeWeightedLoss_:TF});function NF(e,t,n,s=zn.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","absoluteDifference"),a=$(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=$(n,"weights","absoluteDifference")),Pn(r.shape,a.shape,"Error in absoluteDifference: ");let i=rn(xe(r,a));return Zr(i,o,s)}var EF=W({absoluteDifference_:NF});function RF(e,t,n,s,r=zn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","cosineDistance"),o=$(t,"predictions","cosineDistance"),i=null;s!=null&&(i=$(s,"weights","cosineDistance")),Pn(a.shape,o.shape,"Error in cosineDistance: ");let l=Ne(1),c=xe(l,ke(B(a,o),n,!0));return Zr(c,i,r)}var $F=W({cosineDistance_:RF});function DF(e,t,n,s=zn.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","hingeLoss"),a=$(t,"predictions","hingeLoss"),o=null;n!=null&&(o=$(n,"weights","hingeLoss")),Pn(r.shape,a.shape,"Error in hingeLoss: ");let i=Ne(1);r=xe(B(Ne(2),r),i);let l=Nr(xe(i,B(r,a)));return Zr(l,o,s)}var _F=W({hingeLoss_:DF});function PF(e,t,n,s=1,r=zn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","huberLoss"),o=$(t,"predictions","huberLoss"),i=null;n!=null&&(i=$(n,"weights","huberLoss")),Pn(a.shape,o.shape,"Error in huberLoss: ");let l=Ne(s),c=rn(xe(o,a)),u=fd(c,l),d=xe(c,u),p=ie(B(Ne(.5),yt(u)),B(l,d));return Zr(p,i,r)}var FF=W({huberLoss_:PF});function OF(e,t,n,s=1e-7,r=zn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","logLoss"),o=$(t,"predictions","logLoss"),i=null;n!=null&&(i=$(n,"weights","logLoss")),Pn(a.shape,o.shape,"Error in logLoss: ");let l=Ne(1),c=Ne(s),u=Ot(B(a,Cs(ie(o,c)))),d=B(xe(l,a),Cs(ie(xe(l,o),c))),p=xe(u,d);return Zr(p,i,r)}var MF=W({logLoss_:OF});function zF(e,t,n,s=zn.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","meanSquaredError"),a=$(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=$(n,"weights","meanSquaredError")),Pn(r.shape,a.shape,"Error in meanSquaredError: ");let i=n1(r,a);return Zr(i,o,s)}var LF=W({meanSquaredError_:zF});function BF(e,t){let n=$(e,"labels","sigmoidCrossEntropyWithLogits"),s=$(t,"logits","sigmoidCrossEntropyWithLogits");Pn(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Nr(s),a=B(s,n),o=Zh(Is(Ot(rn(s))));return ie(xe(r,a),o)}function WF(e,t,n,s=0,r=zn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"multiClassLabels","sigmoidCrossEntropy"),o=$(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","sigmoidCrossEntropy")),Pn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let c=Ne(s),u=Ne(1),d=Ne(.5);a=ie(B(a,xe(u,c)),B(d,c))}let l=BF(a,o);return Zr(l,i,r)}var VF=W({sigmoidCrossEntropy_:WF});function UF(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Tr((r,a,o)=>{let l=ev(a,[n],!0),c=xe(pe(a,"float32"),l);o([r,c]);let u=Ot(B(c,r));return{value:ke(u,[n]),gradFunc:(h,f)=>{let[m,g]=f,A=tl(h.shape,[n]);return[B(V(h,A),xe(pe(m,"float32"),Is(g))),B(V(h,A),xe(Is(g),pe(m,"float32")))]}}})(e,t)}function GF(e,t,n,s=0,r=zn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"onehotLabels","softmaxCrossEntropy"),o=$(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","softmaxCrossEntropy")),Pn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let c=Ne(s),u=Ne(1),d=Ne(a.shape[1]);a=ie(B(a,xe(u,c)),he(c,d))}let l=UF(a,o);return Zr(l,i,r)}var HF=W({softmaxCrossEntropy_:GF});function jF(e,t,n,s){let r=$(e,"indices","sparseFillEmptyRows"),a=$(t,"values","sparseFillEmptyRows"),o=$(n,"denseShape","sparseFillEmptyRows"),i=$(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},c=L.runKernel(Ih,l);return{outputIndices:c[0],outputValues:c[1],emptyRowIndicator:c[2],reverseIndexMap:c[3]}}var qF=W({sparseFillEmptyRows_:jF});function XF(e,t,n){let s=$(e,"inputIndices","sparseReshape"),r=$(t,"inputShape","sparseReshape"),a=$(n,"newShape","sparseReshape");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=L.runKernel(Ch,o);return{outputIndices:i[0],outputShape:i[1]}}var KF=W({sparseReshape_:XF});function ZF(e,t,n){let s=$(e,"data","sparseSegmentMean"),r=$(t,"indices","sparseSegmentMean"),a=$(n,"segmentIds","sparseSegmentMean");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return L.runKernel(Th,o)}var YF=W({sparseSegmentMean_:ZF});function JF(e,t,n){let s=$(e,"data","sparseSegmentSum"),r=$(t,"indices","sparseSegmentSum"),a=$(n,"segmentIds","sparseSegmentSum");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return L.runKernel(Nh,o)}var QF=W({sparseSegmentSum_:JF});function eO(e,t,n,s,r,a,o,i){let l=$(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let c=$(t,"dataSplits","stringNGrams");if(c.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let u={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:c},p=L.runKernel(Xc,d,u);return{nGrams:p[0],nGramsSplits:p[1]}}var tO=W({stringNGrams_:eO});function nO(e,t,n=!0){let s=$(e,"input","stringSplit","string"),r=$(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=L.runKernel(Eh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var sO=W({stringSplit_:nO});function rO(e,t){let n=$(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return L.runKernel(Rh,r,s)}var aO=W({stringToHashBucketFast_:rO}),oO={fft:af,ifft:Ad,rfft:of,irfft:t1},iO={hammingWindow:FP,hannWindow:kv,frame:Sv,stft:LP},$e={flipLeftRight:UP,grayscaleToRGB:HP,resizeNearestNeighbor:mF,resizeBilinear:hF,rotateWithOffset:qP,cropAndResize:WP,nonMaxSuppression:KP,nonMaxSuppressionAsync:sF,nonMaxSuppressionWithScore:aF,nonMaxSuppressionWithScoreAsync:iF,nonMaxSuppressionPadded:uF,nonMaxSuppressionPaddedAsync:dF,threshold:yF,transform:bF},Rv={bandPart:wF,gramSchmidt:SF,qr:CF},lO={absoluteDifference:EF,computeWeightedLoss:Zr,cosineDistance:$F,hingeLoss:_F,huberLoss:FF,logLoss:MF,meanSquaredError:LF,sigmoidCrossEntropy:VF,softmaxCrossEntropy:HF},xd={sparseFillEmptyRows:qF,sparseReshape:KF,sparseSegmentMean:YF,sparseSegmentSum:QF},hf={stringNGrams:tO,stringSplit:sO,stringToHashBucketFast:aO},Yr=class extends h3{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return Y(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Z3(e,t)}dispose(){this.iterations_!=null&&Y(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ne(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Yr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var ff=class extends Yr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:G(()=>nt(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:G(()=>nt(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;G(()=>{let c=ie(B(i,this.rho),B(yt(o),1-this.rho)),u=B(he(Rn(ie(l,this.epsilon)),Rn(ie(i,this.epsilon))),o),d=ie(B(l,this.rho),B(yt(u),1-this.rho));i.assign(c),l.assign(d);let p=ie(B(u,-this.learningRate),r);r.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Y(this.accumulatedGrads.map(e=>e.variable)),Y(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};ff.className="Adadelta";ko(ff);var mf=class extends Yr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n];if(this.accumulatedGrads[s]==null){let i=!1;this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:G(()=>ku(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;G(()=>{let i=ie(o,yt(a));o.assign(i);let l=ie(B(he(a,Rn(ie(i,L.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Y(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};mf.className="Adagrad";ko(mf);var gf=class extends Yr{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],G(()=>{this.accBeta1=Ne(t).variable(),this.accBeta2=Ne(n).variable()}),s==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);G(()=>{let n=xe(1,this.accBeta1),s=xe(1,this.accBeta2);t.forEach((r,a)=>{let o=L.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:G(()=>nt(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:G(()=>nt(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedSecondMoment[a].variable,d=ie(B(c,this.beta1),B(l,1-this.beta1)),p=ie(B(u,this.beta2),B(yt(l),1-this.beta2)),h=he(d,n),f=he(p,s);c.assign(d),u.assign(p);let m=ie(B(he(h,ie(Rn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(B(this.accBeta1,this.beta1)),this.accBeta2.assign(B(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Y(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Y(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),G(()=>{this.accBeta1.assign(Co(this.beta1,this.iterations_+1)),this.accBeta2.assign(Co(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};gf.className="Adam";ko(gf);var Af=class extends Yr{constructor(e,t,n,s=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],G(()=>{this.iteration=Ne(0).variable(),this.accBeta1=Ne(t).variable()}),s==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);G(()=>{let n=xe(1,this.accBeta1),s=he(-this.learningRate,ie(B(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=L.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:nt(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:nt(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedWeightedInfNorm[a].variable,d=ie(B(c,this.beta1),B(l,1-this.beta1)),p=B(u,this.beta2),h=rn(l),f=Kr(p,h);c.assign(d),u.assign(f);let m=ie(B(he(s,n),he(d,ie(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(ie(this.iteration,1)),this.accBeta1.assign(B(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Y(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Y(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Af.className="Adamax";ko(Af);var bd=class extends Yr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=L.registeredVariables[n];G(()=>{let o=ie(B(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=hn(Ne(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};bd.className="SGD";ko(bd);var yf=class extends bd{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ne(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n];if(this.accumulations[s]==null){let i=!1;this.accumulations[s]={originalName:`${n}/momentum`,variable:G(()=>nt(r).variable(i))}}let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&G(()=>{let i,l=ie(B(this.m,a),o);this.useNesterov?i=ie(B(this.c,ie(o,B(l,this.m))),r):i=ie(B(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Y(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};yf.className="Momentum";ko(yf);var xf=class extends Yr{constructor(e,t=.9,n=0,s=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=L.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:G(()=>nt(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:G(()=>nt(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:G(()=>nt(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;G(()=>{let c=ie(B(i,this.decay),B(yt(o),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[s].variable,d=ie(B(u,this.decay),B(o,1-this.decay)),p=he(B(o,this.learningRate),Rn(xe(c,ie(yt(d),this.epsilon)))),h=ie(B(l,this.momentum),p);i.assign(c),u.assign(d),l.assign(h);let f=xe(r,h);r.assign(f)}else{let u=ie(B(i,this.decay),B(yt(o),1-this.decay)),d=ie(B(l,this.momentum),he(B(o,this.learningRate),Rn(ie(u,this.epsilon))));i.assign(u),l.assign(d);let p=xe(r,d);r.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Y(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Y(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Y(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};xf.className="RMSProp";ko(xf);var No=class{static sgd(e){return new bd(e)}static momentum(e,t,n=!1){return new yf(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new xf(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new gf(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new ff(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new Af(e,t,n,s,r)}static adagrad(e,t=.1){return new mf(e,t)}},nl={sgd:No.sgd,momentum:No.momentum,adadelta:No.adadelta,adagrad:No.adagrad,rmsprop:No.rmsprop,adamax:No.adamax,adam:No.adam},uO=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function $v(){return new Promise(e=>uO(()=>e()))}var N={};Me(N,{ERF_A1:()=>bO,ERF_A2:()=>vO,ERF_A3:()=>wO,ERF_A4:()=>kO,ERF_A5:()=>SO,ERF_P:()=>xO,PARALLELIZE_THRESHOLD:()=>c1,SELU_SCALE:()=>_v,SELU_SCALEALPHA:()=>Dv,applyActivation:()=>df,assertAndGetBroadcastShape:()=>At,assertAxesAreInnerMostDims:()=>vD,assertParamsConsistent:()=>cO,assignToTypedArray:()=>RO,axesAreInnerMostDims:()=>W2,calculateShapes:()=>n3,checkEinsumDimSizes:()=>OO,combineLocations:()=>Y3,complexWithEvenIndex:()=>TO,complexWithOddIndex:()=>NO,computeConv2DInfo:()=>ud,computeConv3DInfo:()=>N3,computeDefaultPad:()=>N2,computeDilation2DInfo:()=>WR,computeOptimalWindowSize:()=>pO,computeOutAndReduceShapes:()=>J3,computeOutShape:()=>dO,computePool2DInfo:()=>T3,computePool3DInfo:()=>VR,convertConv2DDataFormat:()=>E3,decodeEinsumEquation:()=>PO,eitherStridesOrDilationsAreOne:()=>Cr,expandShapeToKeepDim:()=>tl,exponent:()=>DO,exponents:()=>$O,fromStringArrayToUint8:()=>HO,fromUint8ToStringArray:()=>GO,getAxesPermutation:()=>Q3,getBroadcastDims:()=>J5,getComplexWithIndex:()=>EO,getEinsumComputePath:()=>MO,getEinsumPermutation:()=>FO,getFusedBiasGradient:()=>cf,getFusedDyActivation:()=>uf,getImageCenter:()=>hO,getInnerMostAxes:()=>wD,getPermuted:()=>mO,getReductionAxes:()=>Xt,getReshaped:()=>fO,getReshapedPermuted:()=>gO,getSliceBeginCoords:()=>AO,getSliceSize:()=>yO,getUndoAxesPermutation:()=>V2,isIdentityPermutation:()=>zO,log:()=>mE,mergeRealAndImagArrays:()=>IO,prepareAndValidate:()=>t3,prepareSplitSize:()=>BO,segment_util:()=>Ov,shouldFuse:()=>pf,slice_util:()=>Ft,splitRealAndImagArrays:()=>CO,tupleValuesAreOne:()=>So,upcastType:()=>On,validateInput:()=>x2,validateUpdateShape:()=>y2,warn:()=>yo});function cO(e,t){let n=e[0].length;e.forEach((r,a)=>{P(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),P(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)P(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function dO(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var c1=30;function pO(e){return e<=c1?e:Qp(e,Math.floor(Math.sqrt(e)))}function hO(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function fO(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function mO(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2==1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function gO(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function AO(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function yO(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var Dv=1.7580993408473768,_v=1.0507009873554805,xO=.3275911,bO=.254829592,vO=-.284496736,wO=1.421413741,kO=-1.453152027,SO=1.061405429;function IO(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function CO(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function TO(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function NO(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function EO(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function RO(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function $O(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function DO(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var d1="->",_O=/->/g,Pv=",",Fv="...";function PO(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(_O,"").length)/d1.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${d1}").`);let[s,r]=e.split(d1);P(s.indexOf(Fv)===-1,()=>`The ellipsis notation ("${Fv}") is not supported yet.`);let a=s.split(Pv),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let p=0;p<r.length;++p){let h=r[p];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let p=0;p<s.length;++p){let h=s[p];i.indexOf(h)===-1&&h!==Pv&&i.push(h)}let l=new Array(a.length);for(let p=0;p<o;++p){if(new Set(a[p].split("")).size!==a[p].length)throw new Error(`Found duplicate axes in input component ${a[p]}. Support for duplicate axes in input is not implemented yet.`);l[p]=[];for(let h=0;h<a[p].length;++h)l[p].push(i.indexOf(a[p][h]))}let c=i.length,u=r.length,d=[];for(let p=u;p<c;++p)d.push(p);return{allDims:i,summedDims:d,idDims:l}}function FO(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function OO(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:P(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function MO(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=LO(t,i);for(let c of l)a.indexOf(c)===-1&&(s[o].push(c),a.push(c))}return{path:n,steps:s}}function zO(e){return e.every((t,n)=>t===n)}function LO(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function BO(e,t,n=0){let s=[];if(typeof t=="number")P(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);P(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}P(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}var Ov={};Me(Ov,{collectGatherOpShapeInfo:()=>UO,computeOutShape:()=>VO,segOpComputeOptimalWindowSize:()=>WO});function WO(e,t){let n=!1,s;for(e<=c1?(s=e,n=!0):s=Qp(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=Qp(e,s+1);return s}function VO(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function UO(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
|
|
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let d=0;d<s;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let o=e.shape[n],i=[],l=1,c=1,u=1;for(let d=0;d<s;++d)i.push(e.shape[d]),l*=e.shape[d];for(let d=s;d<n;d++)i.push(e.shape[d]),c*=e.shape[d];for(let d=s;d<r;d++)i.push(t.shape[d]);for(let d=n+1;d<a;d++)i.push(e.shape[d]),u*=e.shape[d];return{batchSize:l,sliceSize:u,outerSize:c,dimSize:o,outputShape:i}}function GO(e){try{return e.map(t=>Fh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function HO(e){return e.map(t=>ed(t))}var js={};Me(js,{nonMaxSuppressionV3Impl:()=>Iv,nonMaxSuppressionV4Impl:()=>Cv,nonMaxSuppressionV5Impl:()=>Tv,whereImpl:()=>mv});var Mv={kernelName:ni,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,yd(pe(n,"float32"),-1))}}},jO={kernelName:Vl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=yt(pe(n,"float32")),r=Rn(xe(Ne(1),s));return Ot(he(e,r))}}}},qO={kernelName:Ul,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Rn(xe(yt(pe(n,"float32")),1));return he(e,s)}}}},XO={kernelName:Ur,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=At(n.shape,s.shape);return{a:()=>{let i=e,l=Xt(n.shape,r);return l.length>0&&(i=ke(i,l)),V(i,n.shape)},b:()=>{let i=e,l=Xt(s.shape,r);return l.length>0&&(i=ke(i,l)),V(i,s.shape)}}}},KO={kernelName:ka,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},ZO={kernelName:Sa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>nt(n)}}},YO={kernelName:jl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>nt(n)}}},JO={kernelName:ql,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,Rn(xe(Ne(1),yt(pe(n,"float32")))))}}},QO={kernelName:Xl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Rn(ie(Ne(1),yt(pe(n,"float32"))));return he(e,s)}}}},eM={kernelName:Yl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=At(n.shape,s.shape);return{a:()=>{let i=ie(yt(n),yt(s)),l=B(e,he(s,i)),c=Xt(n.shape,r);return c.length>0&&(l=ke(l,c)),V(l,n.shape)},b:()=>{let i=ie(yt(n),yt(s)),l=Ot(B(e,he(n,i))),c=Xt(s.shape,r);return c.length>0&&(l=ke(l,c)),V(l,s.shape)}}}},tM={kernelName:Kl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,ie(yt(pe(n,"float32")),1))}}},nM={kernelName:Zl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,xe(Ne(1),yt(pe(n,"float32"))))}}};function sM(e,t,n,s,r,a){let o=$(e,"dy","avgPool3dGrad"),i=$(t,"input","avgPool3dGrad"),l=o,c=i,u=!1;i.rank===4&&(u=!0,l=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),c=V(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),P(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),a!=null&&P(dn(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let d={dy:l,input:c},p={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=L.runKernel(nh,d,p);return u?V(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var rM=W({avgPool3dGrad_:sM}),aM={kernelName:Oc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>rM(e,s,r,a,o,i)}}};function oM(e,t,n,s,r){let a=$(e,"dy","avgPoolGrad"),o=$(t,"input","avgPoolGrad");P(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,c=!1;o.rank===3&&(c=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),P(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),P(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let u={dy:l,input:i},d={filterSize:n,strides:s,pad:r},p=L.runKernel(th,u,d);return c?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var iM=W({avgPoolGrad_:oM}),lM={kernelName:Ia,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>iM(e,s,r,a,o)}}},uM={kernelName:Ca,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>He(e,r,!1,!0),b:()=>He(s,e,!0,!1)}:!a&&o?{a:()=>He(e,r,!1,!1),b:()=>He(e,s,!0,!1)}:a&&!o?{a:()=>He(r,e,!1,!0),b:()=>He(s,e,!1,!1)}:{a:()=>He(r,e,!0,!0),b:()=>He(e,s,!0,!0)}}},cM={kernelName:si,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>nf(e,s,r)}}},dM={kernelName:A5,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>ke(e,i,!0)}}},pM={kernelName:Ta,gradFunc:e=>({x:()=>e.clone()})},hM={kernelName:Na,gradFunc:e=>({x:()=>nt(e)})},fM={kernelName:Gr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>Mn(or(Qi(s,r),el(s,a)),e,nt(e))}}},mM={kernelName:zc,inputsToSave:["x"],gradFunc:Mv.gradFunc},gM={kernelName:ri,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=Ws(r,t[0].shape)[0],o=s.map(l=>l[a]);return vn(e,o,a).map(l=>()=>l)}},AM={kernelName:Ea,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return P(So(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>_2(s.shape,e,r,o,i,l),filter:()=>l1(s,e,r.shape,o,i,l)}}},yM={kernelName:Ra,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>Io(e,r,a,o,i,1,l),filter:()=>l1(e,s,r.shape,a,o,i,l)}}};function xM(e,t,n,s,r){let a=e;e.rank===4&&(a=V(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=V(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),P(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),P(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),P(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),P(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),P(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return L.runKernel(oh,i,l)}var bM=W({conv3DBackpropFilter_:xM}),vM={kernelName:Lc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;P(So(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>z3(o.shape,e,i,r,a),filter:()=>bM(o,e,i.shape,r,a)}}},wM={kernelName:$a,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Ot(J2(pe(n,"float32"))),e)}}},kM={kernelName:Da,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Q2(pe(n,"float32")),e)}}},SM={kernelName:ai,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=Q3([r],s.rank),l=M2(e,r,a,!o);return i!=null&&(l=tt(l,i)),l}}}},IM={kernelName:_a,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s??[1,1];P(So(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,c]=t;return P(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),P(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),P(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),P(Cr(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),o!=null&&P(dn(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>wv(l.shape,e,c,r,a,i,o),filter:()=>vv(l,e,c.shape,r,a,i,o)}}},CM={kernelName:Bc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>L.runKernel(ph,a,n),filter:()=>L.runKernel(hh,o,n)}}},TM={kernelName:Fa,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>L.runKernel(fh,s)}}},NM={kernelName:Jl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=B(Is(Ot(yt(n))),2/Math.sqrt(Math.PI));return{x:()=>B(e,s)}}},EM={kernelName:Oa,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,n)}}},RM={kernelName:ui,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>V(e,n.shape)}}},$M={kernelName:ci,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Is(n))}}},DM={kernelName:Ma,gradFunc:e=>({x:()=>nt(e)})},_M={kernelName:za,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=At(n.shape,s.shape);return{a:()=>{let i=he(e,pe(s,"float32")),l=Xt(n.shape,r);return l.length>0?V(ke(i,l),n.shape):i},b:()=>{let i=B(e,pe(n,"float32")),l=Xt(s.shape,r);l.length>0&&(i=V(ke(i,l),s.shape));let c=yt(s);return Ot(he(i,pe(c,"float32")))}}}},PM={kernelName:La,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i??Ne(1),c=Xt(a.shape,r.shape),u=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)u.push(r.shape[b]);u.push(1)}let d=xe(r,a),p=B(e,l),h=Z2(ie(o,Ne(s))),f=B(B(B(h,h),h),Ne(-.5));return{x:()=>a.rank===1?V(B(B(e,Gs(V(h,[1,1,1,a.shape[0]]),u)),l),r.shape):V(B(B(e,h),l),r.shape),mean:()=>{let b=B(B(h,Ne(-1)),p);return a.rank===1&&(b=ke(b,c)),V(b,a.shape)},variance:()=>{let b=B(B(f,d),p);return a.rank===1&&(b=ke(b,c)),V(b,a.shape)},scale:()=>{let b=B(d,h),w=B(e,b);return a.rank===1&&(w=ke(w,c)),V(w,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=ke(b,c)),V(b,a.shape)}}}},FM={kernelName:pi,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=Ws(a,s.shape)[0];return{x:()=>{let l=s.shape,c=r.size,u=l.slice(0,o),d=u.length,p=l.slice(a,l.length).slice(1),h=p.length,f=zv(0,d),m=zv(d+1,d+1+h),g=Lv([u,[c],p]),A=V(e,g),x=V(r,[c]),y=Lv([[d],f,m]),b=tt(A,y),w=hv(b,x,s.shape[o]),S=V2(y);return w=tt(w,S),w},indices:()=>r}}};function zv(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function Lv(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var OM={kernelName:Ba,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>nt(n),b:()=>nt(s)}}},MM={kernelName:Wa,gradFunc:e=>({x:()=>pe(e,"float32")})},zM={kernelName:eu,gradFunc:e=>({x:()=>nt(e)})},LM={kernelName:tu,gradFunc:e=>({x:()=>nt(e)})},BM={kernelName:nu,gradFunc:e=>({x:()=>nt(e)})},WM={kernelName:mi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=cs(s,0);return{x:()=>Mn(a,e,B(e,r))}}},VM={kernelName:su,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,ie(n,1))}}},UM={kernelName:Va,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,pe(n,"float32"))}}},GM={kernelName:y5,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let a=!0,o=Is(s);return xe(e,B(ke(e,r,a),o))}}}};function HM(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return L.runKernel(yh,i,l)}var jM=W({localResponseNormalizationBackprop_:HM}),qM={kernelName:Gc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>jM(s,r,e,a,o,i,l)}}};function Bv(e,t,n,s){return t.rank<n.rank&&(t=V(t,tl(t.shape,s))),e.rank<n.rank&&(e=V(e,tl(e.shape,s))),{x:()=>B(e,pe(Ss(n,t),e.dtype))}}var Wv={kernelName:Ua,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=Ws(r,a.shape),l=Bv(e,o,a,i);return{x:()=>l.x()}}},XM={kernelName:Ga,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>B(e,pe(Qi(n,s),"float32")),b:()=>B(e,pe(L2(n,s),"float32"))}}};function KM(e,t,n,s,r,a,o){let i=$(e,"dy","maxPool3dGrad"),l=$(t,"input","maxPool3dGrad"),c=$(n,"output","maxPool3dGrad"),u=i,d=l,p=c,h=!1;l.rank===4&&(h=!0,u=V(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=V(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),p=V(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),P(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),P(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),P(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),o!=null&&P(dn(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let f={dy:u,input:d,output:p},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=L.runKernel(bh,f,m);return h?V(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var ZM=W({maxPool3dGrad_:KM}),YM={kernelName:Hc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>ZM(e,s,r,a,o,i,l)}}};function JM(e,t,n,s,r,a,o){let i=$(e,"dy","maxPoolGrad"),l=$(t,"input","maxPoolGrad"),c=$(n,"output","maxPoolGrad");P(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),P(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),P(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),o!=null&&P(dn(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let u={dy:i,input:l,output:c},d={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return L.runKernel(xh,u,d)}var QM=W({maxPoolGrad_:JM}),ez={kernelName:Ha,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>QM(e,s,r,a,o,i)}}},tz={kernelName:ja,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=Ws(r,s.shape),i=J3(s.shape,a)[1],l=Ut(i);return{x:()=>{let u=s.shape.slice();a.forEach(h=>{u[h]=1});let d=V(e,u);return he(B(d,ds(s.shape,"float32")),l)}}}},nz={kernelName:qa,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=Ws(r,a.shape),l=Bv(e,o,a,i);return{x:()=>l.x()}}},sz={kernelName:Xa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>B(e,pe(el(n,s),"float32")),b:()=>B(e,pe(cs(n,s),"float32"))}}},rz={kernelName:Ka,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>_e(e,a,s.shape)}}},az={kernelName:au,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=At(n.shape,s.shape);return{a:()=>{let i=Xt(n.shape,r);return i.length>0?V(ke(e,i),n.shape):e},b:()=>{let i=B(e,Ot(hd(he(n,s)))),l=Xt(s.shape,r);return l.length>0?V(ke(i,l),s.shape):i}}}},oz={kernelName:Za,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=At(n.shape,s.shape);return{a:()=>{let i=B(e,pe(s,"float32")),l=Xt(n.shape,r);return l.length>0?V(ke(i,l),n.shape):i},b:()=>{let i=B(e,pe(n,"float32")),l=Xt(s.shape,r);return l.length>0?V(ke(i,l),s.shape):i}}}},iz={kernelName:xi,gradFunc:e=>({x:()=>Ot(e)})},lz={kernelName:Si,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Ht(n.shape,"float32")}}},uz={kernelName:ki,gradFunc:e=>({x:()=>nt(e)})},cz={kernelName:Ii,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return es(e,s).map(a=>()=>a)}},Vv={kernelName:Ya,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>_e(e,a,s.shape)}}},dz={kernelName:Ja,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=At(a.shape,o.shape);return{a:()=>{let u=pe(o,"float32"),d=B(e,B(u,Co(a,xe(u,Ne(1))))),p=Xt(a.shape,i);return p.length>0&&(d=ke(d,p)),V(d,a.shape)},b:()=>{let u=cs(a,0),d=Mn(u,Cs(a),nt(a)),p=B(e,B(r,d)),h=Xt(o.shape,i);return h.length>0&&(p=ke(p,h)),V(p,o.shape)}}}},pz={kernelName:Qa,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=cs(n,0);return{x:()=>Mn(r,e,B(e,s)),alpha:()=>{let a=Mn(r,nt(e),B(e,n)),o=Xt(s.shape,e.shape);return o.length>0&&(a=ke(a,o)),V(a,s.shape)}}}},hz={kernelName:Pa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=At(n.shape,s.shape);return{a:()=>{let i=he(e,pe(s,"float32")),l=Xt(n.shape,r);return l.length>0?V(ke(i,l),n.shape):i},b:()=>{let i=B(e,pe(n,"float32")),l=Xt(s.shape,r);l.length>0&&(i=V(ke(i,l),s.shape));let c=yt(s);return Ot(he(i,pe(c,"float32")))}}}},fz={kernelName:lu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,Ot(yt(n)))}}},mz={kernelName:no,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=B(el(n,6),yd(n));return{x:()=>B(e,pe(s,"float32"))}}},gz={kernelName:eo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,pe(yd(n),"float32"))}}},Az={kernelName:Ti,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,n.shape)}}},yz={kernelName:to,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>L.runKernel(Sh,r,n)}}},xz={kernelName:uu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>L.runKernel(kh,r,n)}}},bz={kernelName:Ni,gradFunc:(e,t,n)=>{let{dims:s}=n,r=Ws(s,e.shape);return{x:()=>Ns(e,r)}}},vz={kernelName:Ei,gradFunc:e=>({x:()=>nt(e)})},wz={kernelName:so,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ot(he(e,B(Co(n,1.5),2)))}}},kz={kernelName:$i,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>pe(nt(n),"float32"),t:()=>B(e,pe(n,e.dtype)),e:()=>B(e,pe(Jh(n),e.dtype))}}},Sz={kernelName:cu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=cs(n,Ne(0)),r=Ne(Dv),a=Ne(_v),o=B(e,a),i=B(B(e,r),Is(pe(n,"float32")));return Mn(s,o,i)}}}},Iz={kernelName:ao,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(n,xe(Ne(1),n)))}}},Cz={kernelName:du,gradFunc:e=>({x:()=>nt(e)})},Tz={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(qh(pe(n,"float32")),e)}}},Nz={kernelName:_i,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(O2(pe(n,"float32")),e)}}},Ez={kernelName:Di,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=d3(s,r,a),c=[];for(let u=0;u<e.rank;u++)c.push([i[u],o[u]-i[u]-l[u]]);return{x:()=>Hs(e,c)}}},Rz={kernelName:lo,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=B(e,s);return{logits:()=>xe(o,B(ke(o,[r],a),s))}}},$z={kernelName:pu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,ls(n))}}},Uv={kernelName:Pi,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>jh(e,s,r)}}},Gv={kernelName:Fi,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>kt(e,s)}}},Dz={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,B(Rn(pe(n,"float32")),2))}}},_z={kernelName:hu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(pe(n,"float32"),2))}}},Pz={kernelName:uo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Ne(2);return{a:()=>B(e,B(r,xe(n,s))),b:()=>B(e,B(r,xe(s,n)))}}},Fz={kernelName:fo,gradFunc:e=>({x:()=>nt(e)})},Oz={kernelName:co,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=At(n.shape,s.shape);return{a:()=>{let i=e,l=Xt(n.shape,r);return l.length>0&&(i=ke(i,l)),V(i,n.shape)},b:()=>{let i=e,l=Xt(s.shape,r);return l.length>0&&(i=ke(i,l)),V(Ot(i),s.shape)}}}},Mz={kernelName:io,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;Ws(a,s.shape).forEach(c=>{r[c]=1});let i=V(e,r),l=B(i,ds(s.shape,"float32"));return{x:()=>l}}},zz={kernelName:Mi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,yt(qh(n)))}}},Lz={kernelName:po,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(xe(Ne(1),yt(n)),e)}}},Bz={kernelName:Hr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=nt(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=ie(o,_e(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=ie(o,_e(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let c=0;c<r[2];++c)o=ie(o,_e(e,[i*s.shape[0],l*s.shape[1],c*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let c=0;c<r[2];++c)for(let u=0;u<r[3];++u)o=ie(o,_e(e,[i*s.shape[0],l*s.shape[1],c*s.shape[2],u*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},Wz={kernelName:ho,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=V2(r);return{x:()=>tt(e,a)}}},Vz={kernelName:Bi,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>$n(e,r)}}},Uz={kernelName:Kc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Gz(e,n)}}};function Gz(e,t){let n=Kr(t,nt(t)),s=Su(e,n),r=Qi(t,Ne(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=Kt(r,i+1);r=or(r,ds(s.shape,"bool"));let o=nt(s);return Mn(r,s,o)}var Hz={kernelName:Wi,gradFunc:e=>({x:()=>nt(e)})},jz=[Mv,jO,qO,XO,KO,ZO,YO,JO,QO,eM,tM,nM,aM,lM,uM,cM,dM,pM,hM,fM,mM,gM,yM,AM,vM,wM,kM,SM,IM,CM,hz,TM,NM,EM,RM,$M,_M,DM,PM,FM,OM,MM,zM,LM,BM,WM,VM,UM,GM,qM,Wv,Wv,XM,YM,ez,tz,nz,sz,rz,az,oz,iz,lz,uz,cz,Vv,Vv,dz,pz,fz,mz,gz,Az,yz,xz,bz,vz,wz,kz,Sz,Iz,Cz,Tz,Nz,Ez,Rz,$z,Uv,Uv,Gv,Gv,Dz,Pz,_z,Fz,Oz,Mz,zz,Lz,Bz,Wz,Vz,Uz,Hz];for(let e of jz)x5(e);var Hv={};Me(Hv,{maxNorm:()=>Zz,minMaxNorm:()=>Qz,nonNeg:()=>Jz,unitNorm:()=>Yz});var p1;function an(){return p1==null&&(p1=Ir().epsilon()),p1}function lr(){return"channelsLast"}var Jr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Jr.prototype)}},ur=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ur.prototype)}},H=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,H.prototype)}},We=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,We.prototype)}},jv=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,jv.prototype)}};function sl(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Er(e,t){if(!e)throw new jv(t)}function qv(e,t){let n=0;for(let s of e)s===t&&n++;return n}function ts(e){return e.length===1?e[0]:e}function It(e){return Array.isArray(e)?e:[e]}function Qr(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function rl(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var qs={};function h1(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function f1(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>f1(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:f1(s))}}}function vd(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in qs)o=qs[a];else if(o=t[a],o==null)throw new H(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new H(`${s}: Improper config format: ${JSON.stringify(a)}.
|
|
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in qs?[i,l]=qs.className:o in t&&([i,l]=t[o]),i==null)throw new H(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let h of Object.keys(qs))c[h]=qs[h];for(let h of Object.keys(n))c[h]=n[h];let u=a.config;u.customObjects=c;let d={...qs};for(let h of Object.keys(n))qs[h]=n[h];f1(a.config);let p=l(i,a.config,n,r);return qs={...d},p}else{let c={...qs};for(let d of Object.keys(n))qs[d]=n[d];let u=new i(a.config);return qs={...c},u}}}function qz(e,t){return e<t?-1:e>t?1:0}function bf(e,t){return-1*qz(e,t)}function Eo(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function Xz(e){if(e==null)throw new H(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function al(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new H(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function m1(e,t,n=0,s=1/0){return Er(n>=0),Er(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function fn(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>fn(n,`element ${s+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Xv(e)}.`)}function Xv(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Xv(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function Kz(e,t,n){let s=n!=null?n():v.now(),r;return(...o)=>{let i=n!=null?n():v.now();return i-s<t||(s=i,r=e(...o)),r}}function Kv(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function g1(e,t){return G(()=>Rn(ke(B(e,e),t,!0)))}var wd=class extends le.Serializable{getConfig(){return{}}},A1=class extends wd{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return G(()=>{let t=g1(e,this.axis),n=us(t,0,this.maxValue);return B(e,he(n,ie(an(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};A1.className="MaxNorm";le.registerClass(A1);var y1=class extends wd{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return G(()=>he(e,ie(an(),g1(e,this.axis))))}getConfig(){return{axis:this.axis}}};y1.className="UnitNorm";le.registerClass(y1);var x1=class extends wd{apply(e){return Nr(e)}};x1.className="NonNeg";le.registerClass(x1);var b1=class extends wd{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return G(()=>{let t=g1(e,this.axis),n=ie(B(this.rate,us(t,this.minValue,this.maxValue)),B(1-this.rate,t));return B(e,he(n,ie(an(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};b1.className="MinMaxNorm";le.registerClass(b1);var Zv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function on(e){return h1(e)}function Yv(e,t={}){return vd(e,le.SerializationMap.getMap().classNameMap,t,"constraint")}function ln(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in Zv?Zv[e]:e,config:{}};return Yv(n)}else return e instanceof wd?e:Yv(e)}function Zz(e){return new A1(e)}function Yz(e){return new y1(e)}function Jz(){return new x1}function Qz(e){return new b1(e)}var Jv={};Me(Jv,{constant:()=>wL,glorotNormal:()=>EL,glorotUniform:()=>NL,heNormal:()=>RL,heUniform:()=>$L,identity:()=>CL,leCunNormal:()=>DL,leCunUniform:()=>_L,ones:()=>vL,orthogonal:()=>PL,randomNormal:()=>SL,randomUniform:()=>kL,truncatedNormal:()=>IL,varianceScaling:()=>TL,zeros:()=>bL});var eL=["channelsFirst","channelsLast"],tL=["nearest","bilinear"],nL=["valid","same","causal"],sL=["max","avg"],rL=["sum","mul","concat","ave"],Du=new Map;function jt(e){al(eL,"DataFormat",e)}function aL(e){al(tL,"InterpolationFormat",e)}function Es(e){al(nL,"PaddingMode",e)}function Qv(e){al(sL,"PoolMode",e)}var kd=[],ew="/";function ol(e,t){kd.push(e);try{let n=t();return kd.pop(),n}catch(n){throw kd.pop(),n}}function oL(){return kd.length===0?"":kd.join(ew)+ew}function tw(e){if(!sw(e))throw new Error("Not a valid tensor name: '"+e+"'");return oL()+e}function nw(e){if(!sw(e))throw new Error("Not a valid tensor name: '"+e+"'");Du.has(e)||Du.set(e,0);let t=Du.get(e);if(Du.set(e,Du.get(e)+1),t>0){let n=`${e}_${t}`;return Du.set(n,1),n}else return e}var iL=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function sw(e){return!!e.match(iL)}function lL(e){return e===parseInt(e.toString(),10)}function Ro(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function _u(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function $o(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function cr(e,t){if(t<e)throw new H(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}function vf(e,t){return pe(e,t)}function Sd(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),V(e,n)}function uL(e,t){return G(()=>{if(e.shape.length!==2)throw new H(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Sd(e,1);return k1(n,[1,t,1])})}function cL(e){let t=[Ro(e.shape)];return V(e,t)}function dL(e){if(e.rank<=1)throw new H(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Ro(e.shape,1)];return V(e,t)}function il(e,t,n){return G(()=>{switch(e.rank){case 1:return rf(e,t,n);case 2:return e1(e,[t,0],[n,e.shape[1]]);case 3:return Eu(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return gd(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return _e(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return _e(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new H(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function v1(e,t,n){return G(()=>{switch(e.rank){case 1:return rf(e,t,n);case 2:return e1(e,[0,t],[e.shape[0],n]);case 3:return Eu(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return gd(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function wf(e,t,n,s){return G(()=>{switch(e.rank){case 1:return rf(e,t,n);case 2:switch(s){case 1:return il(e,t,n);case 2:return v1(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return il(e,t,n);case 2:return Eu(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return v1(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return il(e,t,n);case 2:return gd(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return gd(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return v1(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${s}`)}default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function w1(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),kt(e,t)}function rw(e,t){switch(e.rank){case 1:return F3([e,t]);case 2:return wu([e,t],0);case 3:return O3([e,t],0);case 4:return M3([e,t],0);default:throw new H(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function k1(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new H(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Gs(e,t)}function kf(e,t=0,n=1,s,r){return av(e,t,n,s,r)}function Rr(e,t,n,s){if(e.rank<2||t.rank<2)throw new We(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new We(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,a=!1;return To.matMul({a:e,b:t,transposeA:r,transposeB:a,bias:s?S1(e.rank,s,lr()):null,activation:n})}else{let r=e.shape.slice(),a=r.pop();e=V(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),c=[...o,i],u=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=V(tt(t,u),[l,-1]);let d=[...r,...c],p=!1,h=!1;return V(To.matMul({a:e,b:t,transposeA:p,transposeB:h,bias:s?S1(e.rank,s,lr()):null,activation:n}),d)}}function aw(e,t,n){return G(()=>(Array.isArray(t)?t=Zt(t,"int32"):t=pe(t,"int32"),Su(e,t,n)))}function Id(e){return B(e,e)}function S1(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new H(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1,1,1]):V(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,1,1,s[0]]):V(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1,1]):V(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,1,s[0]]):V(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1]):V(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,s[0]]):V(t,[1].concat(s))}else if(e<3)return t;throw new H(`Unsupported input rank by biasAdd: ${t.rank}`)}function dr(e,t,n){return G(()=>(n==null&&(n=lr()),jt(n),ie(e,S1(e.rank,t,n))))}function pL(e,t=1){if(t!==1)throw new We(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return pd(e)}function hL(e){return G(()=>he(e,ie(rn(e),1)))}function ow(e,t,n,s){return G(()=>xv(e,t,n,s))}function fL(e){return G(()=>{let t=ie(.5,B(.2,e));return us(t,0,1)})}function Cd(e,t,n=!1){return n?e():t()}var mL=["fanIn","fanOut","fanAvg"],gL=["normal","uniform","truncatedNormal"];function AL(e){al(mL,"FanMode",e)}function yL(e){al(gL,"Distribution",e)}var Xs=class extends le.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},I1=class extends Xs{apply(e,t){return Ht(e,t)}};I1.className="Zeros";le.registerClass(I1);var Sf=class extends Xs{apply(e,t){return ds(e,t)}};Sf.className="Ones";le.registerClass(Sf);var C1=class extends Xs{constructor(e){super();if(typeof e!="object")throw new H(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new H(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return G(()=>B(Ne(this.value),ds(e,t)))}getConfig(){return{value:this.value}}};C1.className="Constant";le.registerClass(C1);var T1=class extends Xs{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Tu(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};T1.className="RandomUniform";le.registerClass(T1);var N1=class extends Xs{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new We(`randomNormal does not support dType ${t}.`);return kf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};N1.className="RandomNormal";le.registerClass(N1);var E1=class extends Xs{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new We(`truncatedNormal does not support dType ${t}.`);return lf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};E1.className="TruncatedNormal";le.registerClass(E1);var R1=class extends Xs{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return G(()=>{if(e.length!==2||e[0]!==e[1])throw new H("Identity matrix initializer can only be used for 2D square matrices.");return B(this.gain,z2(e[0]))})}getConfig(){return{gain:this.gain}}};R1.className="Identity";le.registerClass(R1);function xL(e,t="channelsLast"){let n,s;if(jt(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Ro(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=Ro(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=Ro(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var ns=class extends Xs{constructor(e){super();if(e.scale<0)throw new H(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,AL(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,yL(this.distribution),this.seed=e.seed}apply(e,t){let n=xL(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new We(`${this.getClassName()} does not support dType ${t}.`);return lf(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return Tu(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};ns.className="VarianceScaling";le.registerClass(ns);var If=class extends ns{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ns.className}};If.className="GlorotUniform";le.registerClass(If);var Cf=class extends ns{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ns.className}};Cf.className="GlorotNormal";le.registerClass(Cf);var Tf=class extends ns{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ns.className}};Tf.className="HeNormal";le.registerClass(Tf);var Nf=class extends ns{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ns.className}};Nf.className="HeUniform";le.registerClass(Nf);var Ef=class extends ns{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ns.className}};Ef.className="LeCunNormal";le.registerClass(Ef);var Rf=class extends ns{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ns.className}};Rf.className="LeCunNormal";le.registerClass(Rf);var $1=class extends Xs{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new We("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return G(()=>{if(e.length<2)throw new We("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=kf(n,0,1,"float32"),r=Rv.gramSchmidt(s);return e[0]>e[1]&&(r=tt(r)),B(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};$1.className="Orthogonal";le.registerClass($1);var iw={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function lw(e,t={}){return vd(e,le.SerializationMap.getMap().classNameMap,t,"initializer")}function Mt(e){return h1(e)}function Et(e){if(typeof e=="string"){let t=e in iw?iw[e]:e;if(t==="GlorotNormal")return new Cf;if(t==="GlorotUniform")return new If;if(t==="HeNormal")return new Tf;if(t==="HeUniform")return new Nf;if(t==="LeCunNormal")return new Ef;if(t==="LeCunUniform")return new Rf;{let n={};return n.className=t,n.config={},lw(n)}}else return e instanceof Xs?e:lw(e)}function bL(){return new I1}function vL(){return new Sf}function wL(e){return new C1(e)}function kL(e){return new T1(e)}function SL(e){return new N1(e)}function IL(e){return new E1(e)}function CL(e){return new R1(e)}function TL(e){return new ns(e)}function NL(e){return new If(e)}function EL(e){return new Cf(e)}function RL(e){return new Tf(e)}function $L(e){return new Nf(e)}function DL(e){return new Ef(e)}function _L(e){return new Rf(e)}function PL(e){return new $1(e)}var uw={};Me(uw,{Layer:()=>st,RNN:()=>ta,RNNCell:()=>_d,activation:()=>mW,add:()=>SW,alphaDropout:()=>iV,average:()=>IW,averagePooling1d:()=>JA,averagePooling2d:()=>QA,averagePooling3d:()=>ey,avgPool1d:()=>PW,avgPool2d:()=>OW,avgPool3d:()=>zW,avgPooling1d:()=>FW,avgPooling2d:()=>MW,avgPooling3d:()=>LW,batchNormalization:()=>$W,bidirectional:()=>QW,concatenate:()=>CW,conv1d:()=>oW,conv2d:()=>iW,conv2dTranspose:()=>lW,conv3d:()=>uW,conv3dTranspose:()=>cW,convLstm2d:()=>KW,convLstm2dCell:()=>ZW,cropping2D:()=>pW,dense:()=>gW,depthwiseConv2d:()=>fW,dot:()=>RW,dropout:()=>AW,elu:()=>eW,embedding:()=>kW,flatten:()=>xW,gaussianDropout:()=>oV,gaussianNoise:()=>aV,globalAveragePooling1d:()=>BW,globalAveragePooling2d:()=>WW,globalMaxPool1d:()=>tV,globalMaxPool2d:()=>nV,globalMaxPooling1d:()=>wk,globalMaxPooling2d:()=>kk,gru:()=>UW,gruCell:()=>GW,input:()=>Vw,inputLayer:()=>QB,layerNormalization:()=>DW,leakyReLU:()=>nW,lstm:()=>HW,lstmCell:()=>jW,masking:()=>lV,maxPool1d:()=>sV,maxPool2d:()=>rV,maxPooling1d:()=>Sk,maxPooling2d:()=>Ik,maxPooling3d:()=>VW,maximum:()=>TW,minimum:()=>NW,multiply:()=>EW,permute:()=>wW,prelu:()=>sW,reLU:()=>tW,repeatVector:()=>bW,reshape:()=>vW,rnn:()=>YW,separableConv2d:()=>dW,simpleRNN:()=>qW,simpleRNNCell:()=>XW,softmax:()=>rW,spatialDropout1d:()=>yW,stackedRNNCells:()=>JW,thresholdedReLU:()=>aW,timeDistributed:()=>eV,upSampling2d:()=>hW,zeroPadding2d:()=>_W});var FL=0;function cw(){return FL++}var $f={};function Df(e=""){return e in $f||($f[e]=0),$f[e]+=1,e+$f[e].toString()}function D1(e){return Array.isArray(e)&&Array.isArray(e[0])}function _f(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Ve(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new H(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ft(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new H(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Pf(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var dw="Variable",pw=class{constructor(e,t="float32",n=dw,s=!0,r=null){this.dtype=t??"float32",this.shape=e.shape,this.id=cw(),n=n??dw,this.originalName=tw(n),this.name=nw(this.originalName),this.trainable_=s,this.constraint=r,this.val=fv(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),OL(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function OL(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function _1(e){return e.map(t=>t.read())}function P1(e){e.forEach(t=>{t[0].write(t[1])})}var Yt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},pr=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=cw(),a!=null&&(this.originalName=tw(a),this.name=nw(this.originalName)),this.rank=t.length}},ML=0,Ff=class{constructor(e,t){this.callArgs=t,this.id=ML++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},zL=0,st=class extends le.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=zL++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Qr(n)+"_"+Df(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new ur(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new H(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return ts(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return ts(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Jr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Jr(`Layer ${this.name} is not connected, no input to return.`);return ts(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Jr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Jr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return ts(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=It(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=It(this.inputSpec);if(e.length!==t.length)throw new H(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new H(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),c=r.axes[i],u=l>=0?o[l]:o[o.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=It(e),s=!0;for(let a of n)if(!(a instanceof pr)){s=!1;break}let r=!0;for(let a of n)if(a instanceof pr){r=!1;break}if(s===r)throw new H("Arguments to apply() must be all SymbolicTensors or all Tensors");return ol(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of It(e))a.push(o.shape);this.build(ts(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=It(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=ts(i),this.activityRegularizer!=null)throw new We("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=LL(e),o=this.computeOutputShape(a),i,l=BL(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((c,u)=>new pr(l,c,this,It(e),t,this.name,u)):i=new pr(l,o,this,It(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new We("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Jr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Jr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new ur(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Pf(this.weights)}build(e){this.built=!0}getWeights(e=!1){return _1(e?this.trainableWeights:this.weights)}setWeights(e){G(()=>{let t=this.weights;if(t.length!==e.length)throw new H(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=_1(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!v.arraysEqual(a.shape,i.shape))throw new H(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}P1(n)})}addWeight(e,t,n,s,r,a,o,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new H(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=i!=null?i():Et("zeros"));let l=s.apply(t,n),c=new pw(l,n,e,a,o);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(c.read())),a==null&&(a=!0),a?this._trainableWeights.push(c):this._nonTrainableWeights.push(c),c}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=It(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=It(e);t=It(t),n=It(n),s=It(s),r=_f(r),a=_f(a);let l=[],c=[],u=[];for(let d of i)l.push(d.sourceLayer),c.push(d.nodeIndex),u.push(d.tensorIndex);new Ff({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function LL(e){e=It(e);let t=[];for(let n of e)t.push(n.shape);return ts(t)}function BL(e){return"float32"}function hw(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],c=hw(o,i,l);for(let u of c)r.indexOf(u)===-1&&r.push(u)}return r}}}var Pu=class extends st{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Df("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new H("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new H("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new H("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new pr(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new Ff({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new H(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Pu.className="InputLayer";le.registerClass(Pu);function fw(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new H("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Pu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Do(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];Y(s)}}function mw(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var gw;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(gw||(gw={}));var WL=125,Fu=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},Aw=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},VL=class extends Fu{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=G(()=>ie(this.totals[s],B(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:G(()=>{let s=B(he(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),hn(t[n])}))}},yw=class extends Fu{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},xw=class extends Fu{constructor(e,t){super();if(this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||$v,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=WL),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=Kz(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await Do(n),s.push(this.yield(e,t,n))),s.push(this.nextFrameFunc()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Do(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Do(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Do(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Do(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Do(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Do(e),await this.trainEnd(e))}};function bw(e,t){return e==null&&(e={}),e instanceof Fu?[e]:Array.isArray(e)&&e[0]instanceof Fu?e:It(e).map(s=>new xw(s,t))}var $r=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),$r.checkForDuplicate(t),$r.constructors[e]==null&&($r.constructors[e]=[]),$r.constructors[e].push(t)}static checkForDuplicate(e){for(let t in $r.constructors)$r.constructors[+t].forEach(s=>{if(s===e)throw new H("Duplicate callback constructor.")})}static clear(){$r.constructors={}}static createCallbacks(e){let t=[];for(let n in $r.constructors){let s=+n;e>=s&&t.push(...$r.constructors[s])}return t.map(n=>new n)}},F1=$r;F1.constructors={};function vw(e,t,n,s,r,a,o,i,l){let c=new yw,u=[new VL,...F1.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let d=new Aw(u);return d.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:d,history:c}}function hr(e,t={},n=!1){return vd(e,le.SerializationMap.getMap().classNameMap,t,"layer",n)}function Of(e,t){return G(()=>{e.dtype!=="float32"&&(e=pe(e,"float32"));let n=ke(Id(e),t,!0),s=ku(n.shape,an()),r=Rn(Kr(n,s));return he(e,r)})}function ll(e,t){return G(()=>Wt(Id(xe(t,e)),-1))}function Mf(e,t){return G(()=>Wt(rn(xe(t,e)),-1))}function Ou(e,t){return G(()=>{let n=xe(e,t),s=us(rn(e),an(),Number.MAX_VALUE),r=rn(he(n,s));return B(100,Wt(r,-1))})}function UL(e,t){return G(()=>{let n=us(t,an(),Number.MAX_VALUE),s=Cs(ie(1,n)),r=us(e,an(),Number.MAX_VALUE),a=Cs(ie(1,r));return Wt(Id(xe(s,a)),-1)})}function GL(e,t){return G(()=>{let n=Kr(0,xe(1,B(e,t)));return Wt(Id(n),-1)})}function HL(e,t){return G(()=>{let n=Kr(0,xe(1,B(e,t)));return Wt(n,-1)})}function jL(e,t){return G(()=>{let n=ke(B(e,t),-1),s=Qn(B(xe(1,e),t),-1);return Kr(0,ie(1,xe(s,n)))})}function qL(e,t){return G(()=>{let n=Math.log(2),s=xe(t,e),r=xe(ie(s,Iu(B(-2,s))),n);return Wt(r,-1)})}function Td(e,t,n=!1){return G(()=>{if(n)t=Ru(t);else{let s=ke(t,t.shape.length-1,!0);t=he(t,s)}return t=us(t,an(),1-an()),Ot(ke(B(pe(e,"float32"),Cs(t)),t.shape.length-1))})}function zf(e,t,n=!1){return G(()=>{let s=pe(hd(cL(e)),"int32");t=us(t,an(),1-an());let r=t.shape,a=V(ld(s,r[r.length-1]),r);return Td(a,t,n)})}function XL(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new H(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return G(()=>{let n=Nr(t),s=Ot(rn(t));return ie(xe(n,B(t,e)),Zh(Is(s)))})}function Lf(e,t){return G(()=>{let n;return n=us(t,an(),1-an()),n=Cs(he(n,xe(1,n))),Wt(XL(e,n),-1)})}function KL(e,t){return G(()=>{let n=us(e,an(),1),s=us(t,an(),1);return ke(B(e,Cs(he(n,s))),-1)})}function ZL(e,t){return G(()=>{let n=Cs(ie(an(),t));return Wt(xe(t,B(e,n)),-1)})}function O1(e,t){return G(()=>{let n=Of(e,-1),s=Of(t,-1),r=B(n,s);return Ot(ke(r,-1))})}var Bf={meanSquaredError:ll,meanAbsoluteError:Mf,meanAbsolutePercentageError:Ou,meanSquaredLogarithmicError:UL,squaredHinge:GL,hinge:HL,categoricalHinge:jL,logcosh:qL,categoricalCrossentropy:Td,sparseCategoricalCrossentropy:zf,binaryCrossentropy:Lf,kullbackLeiblerDivergence:KL,poisson:ZL,cosineProximity:O1};function M1(e){if(typeof e=="string"){if(e in Bf)return Bf[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new H(t)}else return e}function z1(e,t){return G(()=>{let n=B(.5,Ts(t)),s=vf(cs(t,n),e.dtype);return Wt(Ss(e,s),-1)})}function L1(e,t){return G(()=>vf(Ss(Us(e,-1),Us(t,-1)),"float32"))}function ww(e,t){return G(()=>pe(ke(or(Ss(e,1),Ss(t,1))),"float32"))}function YL(e,t){return G(()=>pe(ke(or(Ss(e,1),Ss(t,0))),"float32"))}function JL(e,t){return G(()=>pe(ke(or(Ss(e,0),Ss(t,1))),"float32"))}function kw(e,t){return G(()=>{let n=ww(e,t),s=JL(e,t),r=ie(n,s);return pe(Mn(cs(r,0),he(n,r),0),"float32")})}function QL(e,t){return G(()=>{let n=ww(e,t),s=YL(e,t),r=ie(n,s);return pe(Mn(cs(r,0),he(n,r),0),"float32")})}function Sw(e,t){return Lf(e,t)}function Iw(e,t){return e.rank===t.rank&&(e=ct(e,[e.rank-1])),t=Us(t,-1),t.dtype!==e.dtype&&(t=pe(t,e.dtype)),pe(Ss(e,t),"float32")}var eB=ll,tB=ll,nB=Mf,sB=Mf,rB=Ou,aB=Ou,B1=Td,oB=O1,Cw=zf,Wf={binaryAccuracy:z1,categoricalAccuracy:L1,precision:kw,categoricalCrossentropy:B1,sparseCategoricalCrossentropy:Cw,mse:eB,MSE:tB,mae:nB,MAE:sB,mape:rB,MAPE:aB,cosine:oB};function iB(e){if(typeof e=="string"&&e in Wf)return Wf[e];if(typeof e!="string"&&e!=null)return e;throw new H(`Unknown metric ${e}`)}function Vf(e){if(Er(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Bf))if(Bf[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Wf))if(Wf[n]===e){t=n;break}return t!==void 0?t:e.name}}function lB(e){let t={Adagrad:()=>nl.adagrad(.01),Adadelta:()=>nl.adadelta(1,.95,an()),Adam:()=>nl.adam(.001,.9,.999,an()),Adamax:()=>nl.adamax(.002,.9,.999,an(),0),RMSProp:()=>nl.rmsprop(.001,.9,0,an()),SGD:()=>nl.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new H(`Unknown Optimizer ${e}`)}var Tw=1*1024*1024;function Nw(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!W1(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>Tw&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${Tw}.`)}}function W1(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!W1(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!W1(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function uB(e,t,n,s=console.log){let r=dB(e),a=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let o;if(!r){a.push("Receives inputs"),o=[];for(let u in e.nodesByDepth)o.push(...e.nodesByDepth[u])}s("_".repeat(t)),Uf(a,n,s),s("=".repeat(t));let i=e.layers;for(let u=0;u<i.length;++u)r?pB(i[u],n,s):hB(i[u],n,o,s),s((u===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=cB(e),c=Pf(e.nonTrainableWeights);s(`Total params: ${l+c}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${c}`),s("_".repeat(t))}function cB(e){let t;return e.collectedTrainableWeights!=null?t=Pf(e.collectedTrainableWeights):t=Pf(e.trainableWeights),t}function dB(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Uf(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function pB(e,t,n){let s;try{s=JSON.stringify(e.outputShape)}catch{s="multiple"}let r=e.name,a=e.getClassName(),o=[`${r} (${a})`,s,e.countParams().toString()];Uf(o,t,n)}function hB(e,t,n,s){let r;try{r=JSON.stringify(e.outputShape)}catch{r="multiple"}let a=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let d=0;d<u.inboundLayers.length;++d){let p=u.inboundLayers[d].name,h=u.nodeIndices[d],f=u.tensorIndices[d];a.push(`${p}[${h}][${f}]`)}let o=e.name,i=e.getClassName(),l=a.length===0?"":a[0],c=[`${o} (${i})`,r,e.countParams().toString(),l];Uf(c,t,s);for(let u=1;u<a.length;++u)Uf(["","","",a[u]],t,s)}function Ew(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Nd(e,t){if(e===null)return null;if(typeof e=="string")return rl(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];Ew(t,r,a)?n.push(a):n.push(Nd(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=rl(s);n[a]=Nd(r,a)}}return n}}function V1(e,t){if(e==null)return null;if(typeof e=="string")return Qr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];Ew(t,r,a)?n.push(a):n.push(V1(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=Qr(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=V1(r,s)}return n}}var U1="0.0.0";function fB(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return pe(t,e.dtype)}catch{throw new H(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var ul=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof ul)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=fB(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new H(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof pr){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof pr){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Y(this.id2Mask)}},G1={},Rw={};function Ed(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),l=[],c=t.names();for(let f of i)c.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let u=i.join(",")+"|"+t.names().join(","),d,p;if(G1[u]==null){let f=mB(o,t);d=f.sorted,p=f.recipientCounts,G1[u]=d,Rw[u]=p}d=G1[u],p={},r||Object.assign(p,Rw[u]);let h=new ul(t);for(let f=0;f<d.length;++f){if(s!=null){let D=Bh().numTensors;D>s.maxNumTensors&&(s.maxNumTensors=D),D<s.minNumTensors&&(s.minNumTensors=D)}let m=d[f],g=m.sourceLayer;if(g instanceof Pu)continue;let A=[],x=[],y=[],b=!1;for(let D of m.inputs){let O=h.getValue(D),_=h.getMask(D);A.push(O),x.push(_),_!=null&&(b=!0),r||(p[D.name]--,p[D.name]===0&&!t.hasKey(D)&&i.indexOf(D.name)===-1&&!O.isDisposed&&D.sourceLayer.stateful!==!0&&y.push(O))}b&&(n=n||{},n.mask=x[0]);let w=It(g.apply(A,n)),S=null;g.supportsMasking&&(S=g.computeMask(A,x));let C=AB(m),E=Array.isArray(C)?C:[C];for(let D=0;D<E.length;++D){h.hasKey(E[D])||h.add(E[D],w[D],Array.isArray(S)?S[0]:S);let O=i.indexOf(E[D].name);O!==-1&&(l[O]=w[D])}r||Y(y)}return h.disposeMasks(),a?l:l[0]}function mB(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=$w(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=$w(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(c=>s[l].add(c))}}return{sorted:n,recipientCounts:gB(s)}}function gB(e){let t={};for(let n in e)t[n]=e[n].size;return t}function $w(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let c of i.inputs)r[c.name]==null&&(r[c.name]=new Set),r[c.name].add(i.name),!n.has(c.name)&&a.push(c)}}return{sorted:s,recipientMap:r}}function AB(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var Dr=class extends st{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let A=this.getClassName().toLowerCase();this.name=Df(A)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Eo(this.inputs).length!==this.inputs.length)throw new H(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(A=>A.name)}`);Eo(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(A=>A.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let A of this.outputs){let x=A.sourceLayer,y=A.nodeIndex,b=A.tensorIndex;this.outputLayers.push(x),this.outputLayersNodeIndices.push(y),this.outputLayersTensorIndices.push(b)}for(let A of this.inputs){let x=A.sourceLayer,y=A.nodeIndex,b=A.tensorIndex;Er(y===0,"input layer has >1 nodes"),Er(b===0,"input layer has >1 tensors"),this.inputLayers.push(x),this.inputLayersNodeIndices.push(y),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let A=0;A<this.inputLayers.length;A++){let x=this.inputLayers[A];if(!(x instanceof Pu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${A} (0-based) originates from layer type ${x.getClassName()}.`);this.inputNames.push(x.name),this.feedInputShapes.push(x.batchInputShape),this.feedInputNames.push(x.name)}for(let A of this.outputLayers)this.outputNames.push(A.name);this.internalInputShapes=this.inputs.map(A=>A.shape),this.internalOutputShapes=this.outputs.map(A=>A.shape);let t={},n={},s={},r={},a={},o=[],i=(A,x,y,b,w,S)=>{(b==null||w==null||S==null)&&(b=A.sourceLayer,w=A.nodeIndex,S=A.tensorIndex);let C=b.inboundNodes[w];if(y.indexOf(C)!==-1)throw new ur(`The tensor ${A.name} at layer "${b.name}" is part of a cycle.`);if(x.indexOf(C)!==-1)return;this.containerNodes.add(Dr.nodeKey(b,w)),b.id in a||(a[b.id]=Object.keys(a).length),y.indexOf(C)===-1&&y.push(C);let E=C.inboundLayers.length;for(let D=0;D<E;D++){let O=C.inputTensors[D],_=C.inboundLayers[D],F=C.nodeIndices[D],T=C.tensorIndices[D];i(O,x,y,_,F,T)}for(x.push(C);y.indexOf(C)>=0;)y.splice(y.indexOf(C),1);o.push(C)},l=[],c=[];for(let A of this.outputs)i(A,l,c);let u=o.slice().reverse();for(let A of u){n[A.id]=A,A.id in t||(t[A.id]=0);let x=t[A.id],y=s[A.outboundLayer.id]==null?0:s[A.outboundLayer.id];x=Math.max(x,y),s[A.outboundLayer.id]=x,r[A.outboundLayer.id]=A.outboundLayer,t[A.id]=x;for(let b=0;b<A.inboundLayers.length;b++){let w=A.inboundLayers[b],S=A.nodeIndices[b],C=w.inboundNodes[S],E=t[C.id]==null?0:t[C.id];t[C.id]=Math.max(x+1,E),n[C.id]=C}}let d={};for(let A in t){let x=t[A];x in d||(d[x]=[]),d[x].push(n[A])}let p={};for(let A in s){let x=s[A];x in p||(p[x]=[]),p[x].push(r[A])}let h=Object.keys(p).map(A=>parseInt(A,10)).sort(bf);this.layers=[];for(let A of h){let x=p[A];x.sort((y,b)=>{let w=a[y.id],S=a[b.id];return w<S?-1:w>S?1:0});for(let y of x)y instanceof Dr&&this.internalContainerRefs.push(y),this.layers.push(y)}this.layersByDepth=p,h=Object.keys(d).map(A=>parseInt(A,10)).sort(bf);let f=this.inputs.slice(),m=[];for(let A of h)for(let x of d[A]){let y=x.outboundLayer;if(y!=null){for(let b of x.inputTensors)if(f.indexOf(b)===-1)throw new ur(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${y.name}". The following previous layers were accessed without issue: ${m}`);for(let b of x.outputTensors)f.push(b);m.push(y.name)}}this.nodesByDepth=d;let g=this.layers.map(A=>A.name);for(let A of g){let x=g.filter(y=>y===A).length;if(x!==1)throw new ur(`The name "${A}" is used ${x} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Ff({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(A=>null),outputMasks:this.outputs.map(A=>null),inputShapes:this.inputs.map(A=>A.shape),outputShapes:this.outputs.map(A=>A.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new H("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new H(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new H(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new H(`${a.length} of ${s} weights are not set: ${a}`)}P1(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${U1}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=V1(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return G(()=>{e=It(e);let n=new ul;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return Ed(this.outputs,n,t)})}computeMask(e,t){return G(()=>{e=It(e);let n;return t==null?n=sl(null,e.length):n=It(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=_f(e);if(t.length!==this.inputLayers.length)throw new H(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],c=i.name+"_0_0";n[c]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(bf);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let c=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(c.id)!==-1)continue;let u=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],A=l.tensorIndices[f],x=`${m.name}_${g}_${A}`,y=n[x];u.push(y)}let d=c.computeOutputShape(ts(u)),p=_f(d),h=c.inboundNodes.indexOf(l);for(let f=0;f<p.length;f++){let m=`${c.name}_${h}_${f}`;n[m]=p[f]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],c=this.outputLayersTensorIndices[o],u=`${i.name}_${l}_${c}`;a.push(u)}for(let o=0;o<a.length;o++){let i=a[o];Er(i in n),r.push(n[i])}return ts(r)}runInternalGraph(e,t){t==null&&(t=sl(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],c=e[i],u=t[i];n[l.id]=[c,u]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(bf);for(let i of s){let l=this.nodesByDepth[i];for(let c of l){let u=c.outboundLayer,d=c.inputTensors,p=c.outputTensors,h=new Array;for(let f of d)f.id in n&&h.push(n[f.id]);if(h.length===d.length){let f={},m,g,A,x;if(c.callArgs!=null&&(f=c.callArgs),h.length===1){let[y,b]=h[0];f.mask==null&&(f.mask=b),A=It(u.call(y,f)),x=It(u.computeMask(y,b)),m=[y],g=[b]}else m=h.map(y=>y[0]),g=h.map(y=>y[1]),f.mask==null&&(f.mask=g),A=It(u.call(m,f)),x=It(u.computeMask(m,g));if(u.activityRegularizer)throw new We("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let y=0;y<p.length;++y){let b=p[y],w=A[y],S=x[y];n[b.id]=[w,S]}}}}let r=[],a=[],o=[];for(let i of this.outputs){Er(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,c]=n[i.id];o.push(l.shape),r.push(l),a.push(c)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof Dr?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=Dr.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new H(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new H("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new H(`No such layer: ${e}`)}calculateLosses(){return G(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=Dr.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let u=0;u<a.inboundNodes.length;u++){let d=a.inboundNodes[u],p=Dr.nodeKey(a,u),h={};if(this.containerNodes.has(p)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch{console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let f=[];for(let m=0;m<d.inboundLayers.length;m++){let g=d.inboundLayers[m],A=d.nodeIndices[m],x=d.tensorIndices[m],y=Dr.nodeKey(g,A),b=t[y];b==null&&(b=0),f.push([g.name,b,x,h])}l.push(f)}}}let c={};c.name=a.name,c.className=o,c.config=i,c.inboundNodes=l,n.push(c)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=Dr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.inputLayersTensorIndices[a];s.push([o.name,c,u])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=Dr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.outputLayersTensorIndices[a];r.push([o.name,c,u])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let A=[],x;for(let y of g){let b=y[0],w=y[1],S=y[2];if(x=y[3]==null?{}:y[3],!(b in r)){o(m,g);return}let C=r[b];if(C.inboundNodes.length<=w){o(m,g);return}let E=C.inboundNodes[w];A.push(E.outputTensors[S])}A.length>0&&m.apply(ts(A),x)}function l(m){let g=m.name,A=hr(m,t.customObjects!=null?t.customObjects:{});A.setFastWeightInitDuringBuild(s),r[g]=A,m.inboundNodes.forEach(y=>{if(!(y instanceof Array))throw new H(`Corrupted configuration, expected array for nodeData: ${y}`);o(A,y)})}let c=t.name,u=t.layers;for(let m of u)l(m);for(;!Xz(a);)for(let m of u){let g=r[m.name];if(g.name in a){let A=a[g.name];delete a[g.name];for(let x of A)i(g,x)}}let d=[],p=[],h=t.inputLayers;for(let m of h){let g=m[0],A=m[1],x=m[2];Er(g in r);let b=r[g].inboundNodes[A].outputTensors;d.push(b[x])}let f=t.outputLayers;for(let m of f){let g=m[0],A=m[1],x=m[2];Er(g in r);let b=r[g].inboundNodes[A].outputTensors;p.push(b[x])}return new e({inputs:d,outputs:p,name:c})}get stateful(){if(this._stateful)throw new H("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){G(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function yB(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function Dw(e,t){return yB(e,t,"classWeight")}async function _w(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=G(()=>{if(e.shape.length===1)return rr(e);if(e.shape.length===2){if(e.shape[1]>1)return Us(e,1);if(e.shape[1]===1)return V(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());Y(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Zt(o,"float32")}else return null}function xB(e,t){return B(e,t)}var bB=32;function Pw(e,t){let n,s,r=t;n=r.xs,s=r.ys,v.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=Fw("input",e.inputNames,n),o=Fw("output",e.outputNames,s),i=a[0].shape[0];v.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)v.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)v.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function Fw(e,t,n){if(n instanceof Je)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new H(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function vB(e){if(e.length===3)throw new We("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function wB(e,t,n){let s=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(Ow(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=vB(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;r?c=l.slice().concat(l.map(g=>"val_"+g)):c=l.slice();let u=bw(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:p,history:h}=vw(u,d,n.epochs,null,null,kB(t,n),null,r,c);p.setModel(e),e.history=h,await p.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await p.onEpochBegin(f);let A=0,x=0;for(s||(m=await t.iterator());s?A<n.batchesPerEpoch:!0;){let y=await m.next();if(s&&y.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${A} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(y.value!=null){let{xs:b,ys:w}=Pw(e,y.value),S={};S.batch=x,S.size=b[0].shape[0],await p.onBatchBegin(x,S);let C=[];if(n.classWeight!=null){let O=Dw(n.classWeight,e.outputNames);for(let _=0;_<O.length;++_)C.push(await _w(w[_],null,O[_]))}let E=b.concat(w).concat(C),D=i(E);Y(E);for(let O=0;O<l.length;++O){let _=l[O],F=D[O];S[_]=F,hn(F)}await p.onBatchEnd(x,S),mw(S),x++,A++}if(s?A>=n.batchesPerEpoch:y.done){if(r){let b;Ow(n.validationData)?b=It(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=It(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?bB:n.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)g[`val_${e.metricsNames[w]}`]=b[w]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(f,g),f++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function kB(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function Ow(e){return typeof e.iterator=="function"}function SB(e){return typeof e.next=="function"}async function IB(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new We("Verbose mode is not implemented yet.");v.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=SB(t)?t:await t.iterator(),i=0,l=0;for(;s?l<n.batches:!0;){let c=await o.next();if(a=G(()=>{if(c.value){let{xs:u,ys:d}=Pw(e,c.value),p=u.concat(d),h=G(()=>r(p));if(Y(p),l===0)for(let m=0;m<h.length;++m)a.push(Ne(0));let f=p[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],A=a[m];a[m]=G(()=>ie(a[m],B(f,g))),l>0&&Y(A)}Y(h),i+=f,++l}return a}),c.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c<a.length;++c){let u=a[c];a[c]=he(a[c],i),Y(u)}return ts(a)}function H1(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Rd(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>il(s,t,n-t)):il(e,t,n-t)}function j1(e,t){return G(()=>e==null?null:Array.isArray(e)?e.map(n=>j1(n,t)):aw(e,t.dtype==="int32"?t:pe(t,"int32")))}function q1(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function CB(e,t,n,s,r,a,o,i,l,c,u,d,p,h,f){r==null&&(r=32),a==null&&(a=1),u==null&&(u=!0),p==null&&(p=0);let m=!1;if(l!=null&&c!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new H("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),A;g!=null&&(A=cr(0,g)),o==null&&(o=1);let{callbackList:x,history:y}=vw(i,o,a,p,g,h,r,m,d);x.setModel(e),e.history=y,await x.onTrainBegin(),e.stopTraining_=!1;for(let b=p;b<a;++b){await x.onEpochBegin(b);let w={};if(h!=null)throw new We("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new We("batch shuffling is not implemneted yet");u&&v.shuffle(A);let S=Zt(A),C=q1(g,r);for(let E=0;E<C.length;++E){let D={};if(await x.onBatchBegin(E,D),G(()=>{let O=C[E][0],_=C[E][1],F=il(S,O,_-O);D.batch=E,D.size=_-O;let T=j1(n,F),M=t(T);for(let U=0;U<s.length;++U){let q=s[U],j=M[U];D[q]=j,hn(j)}if(E===C.length-1&&m){let U=e.testLoop(l,c,r);for(let q=0;q<s.length;++q){let j=s[q],X=U[q];hn(X),w["val_"+j]=X}}}),await x.onBatchEnd(E,D),mw(D),e.stopTraining_)break}S.dispose()}if(await x.onEpochEnd(b,w),e.stopTraining_)break}return await x.onTrainEnd(),await e.history.syncData(),e.history}async function TB(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,c,u;try{let d=s.batchSize==null?32:s.batchSize;H1(d);let p=!1,h=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,p,d);r=h[0],a=h[1],u=h[2];let f=!1,m;if(s.validationData!=null&&s.validationData.length>0){if(f=!0,s.validationData.length===2)o=s.validationData[0],i=s.validationData[1];else throw s.validationData.length===3?new We("validationData including sample weights is not supported yet."):new H(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let C=!0,E=await e.standardizeUserData(o,i,null,null,C,d);l=E[0],c=E[1],m=l.concat(c)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){f=!0;let C=Math.floor(r[0].shape[0]*(1-s.validationSplit)),E=r[0].shape[0];l=Rd(r,C,E),r=Rd(r,0,C),c=Rd(a,C,E),a=Rd(a,0,C),m=l.concat(c)}else s.validationSteps!=null&&(f=!0);let g=r.concat(a).concat(u);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),x=e.getDedupedMetricsNames(),y,b;f?(e.makeTestFunction(),y=e.testFunction,b=x.slice().concat(x.map(C=>"val_"+C))):(y=null,m=[],b=x.slice());let w=bw(s.callbacks,s.yieldEvery);return await CB(e,A,g,x,d,s.epochs,s.verbose,w,y,m,s.shuffle,b,s.initialEpoch,null,null)}finally{e.isTraining=!1,cl(r,t),cl(a,n),cl(l,o),cl(c,i),u!=null&&Y(u)}}function Mw(e){let t=[];e instanceof Je&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(Sd(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function cl(e,t){if(e==null)return;let n=[];if(t instanceof Je)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof Je)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function NB(e){return e instanceof Je}function X1(e){return Array.isArray(e)}function zw(e){return!NB(e)&&!X1(e)}function Lw(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(X1(e)&&e.length>0)o=!0;else if(zw(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new H(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(zw(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new H(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(X1(e)){if(e=e,e.length!==t.length)throw new H(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new H(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=Mw(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new H(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let c=i.shape[l],u=n[o][l];if(u!=null&&u>=0&&c!==u)throw new H(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function EB(e,t,n){let s=Eo(e.map(a=>a.shape[0]));s.sort();let r=Eo(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new H(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new H(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!v.arraysEqual(s,r))throw new H(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function RB(e,t,n){let s=[ll,Lf,Td];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===Td&&a.shape[a.shape.length-1]===1)throw new H(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),c=i.slice(1);for(let u=0;u<l.length;++u){let d=l[u],p=c[u];if(p!=null&&d!==p)throw new H(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function Bw(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new H(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new H(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new H(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let c=i.shape[l],u=n[o][l];if(u!=null&&u!==c)throw new H(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function $B(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var DB="layers-model",ea=class extends Dr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new H("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");uB(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=lB(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Yr))throw new H("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new H(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(M1(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new H(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>M1(o))}else{let a=M1(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],ol("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=$B(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};ol("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let c="",u,d,p;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===Lf?["accuracy","acc"].indexOf(h)!==-1?d=z1:["crossentropy","ce"].indexOf(h)!==-1&&(d=Sw):this.lossFunctions[a]===zf?["accuracy","acc"].indexOf(h)!==-1?d=Iw:["crossentropy","ce"].indexOf(h)!==-1&&(d=Cw):["accuracy","acc"].indexOf(h)!==-1?d=L1:["crossentropy","ce"].indexOf(h)!==-1&&(d=B1);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),p=d,u=c+g}else p=iB(h),u=c+Vf(h);let f;ol(u,()=>{f=p}),r(a,u,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;H1(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return ts(l)}finally{cl(a[0],e),cl(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),IB(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new H(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new H(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new H("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new ul;if(e instanceof Je&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new H(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new H(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=Ed(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=sl(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new H(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return G(()=>{let s=this.checkNumSamples(e);if(n)throw new We("Verbose predictLoop() is not implemented yet.");let r=q1(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)G(()=>{let l=r[o][0],c=r[o][1],u=Rd(e,l,c),d=[];if(Array.isArray(u))for(let h=0;h<u.length;++h)d.push({key:this.inputs[h],value:u[h]});else d.push({key:this.inputs[0],value:u});let p=new ul(d);return Ed(this.outputs,p)}).forEach((l,c)=>a[c].push(l));return ts(a.map(o=>kt(o,0)))})}predict(e,t={}){let n=Mw(e);Bw(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return H1(s),this.predictLoop(n,s)}finally{cl(n,e)}}predictOnBatch(e){Bw(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new ur("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===zf?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=Lw(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=Lw(t,this.feedOutputNames,r,!1,"target"),EB(e,t,null),RB(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!=0)throw new H(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let c=Dw(s,this.outputNames);l=[];for(let u=0;u<c.length;++u)l.push(await _w(i[u],null,c[u]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return G(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new We("Verbose mode is not implemented yet.");if(r!=null)throw new We("steps mode in testLoop() is not implemented yet");{let i=q1(a,n),l=Zt(cr(0,a));for(let c=0;c<i.length;++c){let u=i[c][0],d=i[c][1],p=il(l,u,d-u),h=j1(t,p),f=e(h);if(c===0)for(let m=0;m<f.length;++m)o.push(Ne(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=ie(o[m],B(d-u,g))}}for(let c=0;c<o.length;++c)o[c]=he(o[c],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;qv(e,s)>1&&(r+=`_${qv(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let u=[];for(let f=0;f<this.inputs.length;++f)u.push({key:this.inputs[f],value:n[f]});let d=new ul(u),p=Ed(this.outputs,d,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let g=this.lossFunctions[f](s[f],p[f]);r[f]!=null&&(g=xB(g,r[f]));let A=Wt(g);t.push(A),f===0?h=g:h=ie(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],A=this.metricsTensors[f][1];m=Wt(g(s[A],p[A]))}hn(m),a.push(m)}return h=Wt(h),this.calculateLosses().forEach(f=>{h=ie(h,f)}),h},i=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>G(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new ul(a),i=Ed(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],u=Wt(c(r[l],i[l]));l===0?n=u:n=ie(n,u),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],u=this.metricsTensors[l][1],d=Wt(c(r[u],i[u]));t.push(d)}return t})}async fit(e,t,n={}){return TB(this,e,t,n)}async fitDataset(e,t){return wB(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let c=await l.data();i.push(c[0])}return Y(o),ts(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Bh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Bh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Qr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Qr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=Qr(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Qr(Vf(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Qr(Vf(e)));{let e={};for(let t in this.metrics)e[t]=Qr(Vf(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Nd(e.optimizer_config),n=hr(t),s;if(typeof e.loss=="string")s=rl(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>rl(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=rl(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>rl(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=rl(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=Yn.getSaveHandlers(e);if(l.length===0)throw new H(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new H(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new H("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Yn.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:DB,generatedBy:`TensorFlow.js tfjs-layers v${U1}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:c,specs:u}=await Yn.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...u),n.data=Yn.concatenateArrayBuffers([n.data,c])}if(this.userDefinedMetadata!=null){let l=!0;Nw(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){Nw(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};ea.className="Model";le.registerClass(ea);var Ww=class extends ea{};Ww.className="Functional";le.registerClass(Ww);async function _B(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=Nd(n),r=hr(s,t);if(e.weightsManifest!=null){let a=await Yn.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),Y(a)}return r}async function PB(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Yn.getLoadHandlers(e,t);if(n.length===0)n.push(Yn.browserHTTPRequest(e,t));else if(n.length>1)throw new H(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return FB(e,void 0,t)}async function FB(e,t,n){if(n==null&&(n={}),e.load==null)throw new H("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=hr(Nd(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new H("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=OB(s.weightData,s.weightSpecs);i.loadWeights(c,a),i.optimizer!=null&&u.length>0&&await i.optimizer.setWeights(u),Y(c),Y(u.map(d=>d.tensor))}return i}function OB(e,t){let n=Yn.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var K1=class extends ea{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Df("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new H(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof K1||e instanceof ea,n;if(t){if(n=e,n.outputs.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new H("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new H("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=fw({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new H(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=hw(this.outputs[0])}this.inboundNodes=[],new Ff({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:sl(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ft(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new ea({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new ur("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new ur("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new ur("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new ur("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new H("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof K1))throw new We(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let c=hr(i,void 0,s);s&&c.setFastWeightInitDuringBuild(!0),o.add(c)}return o}set stopTraining(e){if(this.model==null)throw new H("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new H("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}},Gf=K1;Gf.className="Sequential";le.registerClass(Gf);function MB(e){return new ea(e)}function zB(e){return new Gf(e)}function LB(e,t){return t==null&&(t={}),PB(e,t)}function Vw(e){return fw(e)}function BB(e,t){F1.registerCallbackConstructor(e,t)}var ss=class extends le.Serializable{getConfig(){return{}}},Uw=class extends ss{apply(e,t=1){return pL(e,t)}};Uw.className="elu";le.registerClass(Uw);var Gw=class extends ss{apply(e){return Y2(e)}};Gw.className="selu";le.registerClass(Gw);var Hw=class extends ss{apply(e){return Nr(e)}};Hw.className="relu";le.registerClass(Hw);var jw=class extends ss{apply(e){return G(()=>fd(6,Nr(e)))}};jw.className="relu6";le.registerClass(jw);var qw=class extends ss{apply(e){return e}};qw.className="linear";le.registerClass(qw);var Xw=class extends ss{apply(e){return ls(e)}};Xw.className="sigmoid";le.registerClass(Xw);var Kw=class extends ss{apply(e){return fL(e)}};Kw.className="hardSigmoid";le.registerClass(Kw);var Zw=class extends ss{apply(e){return Iu(e)}};Zw.className="softplus";le.registerClass(Zw);var Yw=class extends ss{apply(e){return hL(e)}};Yw.className="softsign";le.registerClass(Yw);var Jw=class extends ss{apply(e){return bu(e)}};Jw.className="tanh";le.registerClass(Jw);var Z1=class extends ss{apply(e,t=-1){return Ru(e,t)}};Z1.className="softmax";le.registerClass(Z1);var Qw=class extends ss{apply(e,t=-1){return B2(e,t)}};Qw.className="logSoftmax";le.registerClass(Qw);var ek=class extends ss{apply(e,t=1){return G(()=>B(ls(B(e,t)),e))}};ek.className="swish";le.registerClass(ek);var tk=class extends ss{apply(e){return G(()=>B(e,bu(Iu(e))))}};tk.className="mish";le.registerClass(tk);function _o(e){return e.getClassName()}function Y1(e,t={}){return vd(e,le.SerializationMap.getMap().classNameMap,t,"activation")}function Po(e){if(e==null){let t={};return t.className="linear",t.config={},Y1(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Y1(t)}else return e instanceof ss?e:Y1(e)}function J1(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var nk=class extends le.Serializable{},$d=class extends nk{constructor(e){super();J1(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return G(()=>{let t=Ht([1]);return this.hasL1&&(t=ie(t,ke(B(this.l1,rn(e))))),this.hasL2&&(t=ie(t,ke(B(this.l2,Id(e))))),V(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};$d.className="L1L2";le.registerClass($d);function WB(e){return J1(e),new $d({l1:e!=null?e.l1:null,l2:0})}function VB(e){return J1(e),new $d({l2:e!=null?e.l2:null,l1:0})}var sk={l1l2:"L1L2"};function xt(e){return h1(e)}function rk(e,t={}){return vd(e,le.SerializationMap.getMap().classNameMap,t,"regularizer")}function Rt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in sk?sk[e]:e,config:{}};return rk(n)}else return e instanceof nk?e:rk(e)}var Q1=class extends st{constructor(e){super(e??{});this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Ve(e);let n=Nr(e);return this.maxValue!=null&&(n=us(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Q1.className="ReLU";le.registerClass(Q1);var eA=class extends st{constructor(e){super(e??{});this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ve(e);return Kh(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};eA.className="LeakyReLU";le.registerClass(eA);var tA=class extends st{constructor(e){super(e??{});if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Et(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Rt(e.alphaRegularizer),this.alphaConstraint=ln(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new H(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ft(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new Yt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Ve(e),sf(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Mt(this.alphaInitializer),alphaRegularizer:xt(this.alphaRegularizer),alphaConstraint:on(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};tA.className="PReLU";le.registerClass(tA);var nA=class extends st{constructor(e){super(e??{});if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new We(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ve(e);return pd(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};nA.className="ELU";le.registerClass(nA);var sA=class extends st{constructor(e){super(e??{});this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Ve(e);return B(n,pe(cs(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};sA.className="ThresholdedReLU";le.registerClass(sA);var rA=class extends st{constructor(e){super(e??{});this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new Z1().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Ve(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};rA.className="Softmax";le.registerClass(rA);function Mu(e,t,n){if(typeof e=="number")return sl(e,t);if(e.length!==t)throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!lL(r))throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function fr(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function _r(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+$o([n-t,0]);else if(s==="same")e=e*t;else throw new H(`Unsupport padding mode: ${s}.`);return e}function aA(e,t){return G(()=>(jt(t),t==="channelsFirst"?tt(e,[0,2,3,1]):e))}function ak(e,t){return G(()=>(jt(t),t==="channelsFirst"?tt(e,[0,2,3,4,1]):e))}function UB(e,t,n,s=1,r="valid",a,o=1){return G(()=>{if(a==null&&(a=lr()),jt(a),e.shape.length!==3)throw new H(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new H(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new H(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=tt(e,[0,2,1])),r==="causal")throw new We("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=D2(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=dr(i,n)),i})}function ok(e,t,n,s=[1,1],r="valid",a,o,i=null){return G(()=>{if(a==null&&(a=lr()),jt(a),e.rank!==3&&e.rank!==4)throw new H(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new H(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=aA(e,a);if(r==="causal")throw new We("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=To.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=tt(l,[0,3,1,2])),l})}function GB(e,t,n,s=[1,1,1],r="valid",a,o){return G(()=>{if(a==null&&(a=lr()),jt(a),e.rank!==4&&e.rank!==5)throw new H(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new H(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=ak(e,a);if(r==="causal")throw new We("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=F2(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=dr(i,n)),a==="channelsFirst"&&(i=tt(i,[0,4,1,2,3])),i})}var oA=class extends st{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",oA.verifyArgs(t),this.rank=e,fn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new We(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Mu(t.kernelSize,e,"kernelSize"),this.strides=Mu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Es(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,jt(this.dataFormat),this.activation=Po(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Et(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=ln(t.biasConstraint),this.biasRegularizer=Rt(t.biasRegularizer),this.activityRegularizer=Rt(t.activityRegularizer),this.dilationRate=Mu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new H(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new H(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new H(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Er("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!m1(e.kernelSize,"number",1,3))throw new H(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:_o(this.activation),useBias:this.useBias,biasInitializer:Mt(this.biasInitializer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),biasConstraint:on(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Dd=class extends oA{constructor(e,t){super(e,t);this.kernel=null,Dd.verifyArgs(t),this.filters=t.filters,fn(this.filters,"filters"),this.kernelInitializer=Et(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=ln(t.kernelConstraint),this.kernelRegularizer=Rt(t.kernelRegularizer)}build(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return G(()=>{e=Ve(e);let n,s=this.bias==null?null:this.bias.read(),r=Kv(this.activation.getClassName());if(r!=null&&this.rank===2)n=ok(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=UB(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=ok(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=GB(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new We("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=ft(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=fr(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:Mt(this.kernelInitializer),kernelRegularizer:xt(this.kernelRegularizer),kernelConstraint:on(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new H(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},ik=class extends Dd{constructor(e){super(2,e);ik.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!m1(e.kernelSize,"number",1,2))throw new H(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}},Hf=ik;Hf.className="Conv2D";le.registerClass(Hf);var lk=class extends Dd{constructor(e){super(3,e);lk.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new H(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}},jf=lk;jf.className="Conv3D";le.registerClass(jf);var iA=class extends Hf{constructor(e){super(e);if(this.inputSpec=[new Yt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ft(e),e.length!==4)throw new H("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Yt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return G(()=>{let n=Ve(e);if(n.shape.length!==4)throw new H(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],c=this.kernelSize[0],u=this.kernelSize[1],d=this.strides[0],p=this.strides[1],h=_r(i,d,c,this.padding),f=_r(l,p,u,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=tt(n,[0,2,3,1]));let g=P2(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=tt(g,[0,3,1,2])),this.bias!=null&&(g=dr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=ft(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=_r(t[s],i,a,this.padding),t[r]=_r(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};iA.className="Conv2DTranspose";le.registerClass(iA);var lA=class extends jf{constructor(e){super(e);if(this.inputSpec=[new Yt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ft(e),e.length!==5)throw new H("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Yt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return G(()=>{let n=Ve(e);if(n.shape.length!==5)throw new H(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],c=s[a],u=s[o],d=this.kernelSize[0],p=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],A=_r(l,f,d,this.padding),x=_r(c,m,p,this.padding),y=_r(u,g,h,this.padding),b=[r,A,x,y,this.filters];this.dataFormat!=="channelsLast"&&(n=tt(n,[0,2,3,4,1]));let w=L3(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=tt(w,[0,4,1,2,3])),this.bias!==null&&(w=dr(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=ft(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],u=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[s]=_r(t[s],c,o,this.padding),t[r]=_r(t[r],u,i,this.padding),t[a]=_r(t[a],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};lA.className="Conv3DTranspose";le.registerClass(lA);var uk=class extends Dd{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new H("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new H("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new H(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Et(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Rt(t.depthwiseRegularizer),this.depthwiseConstraint=ln(t.depthwiseConstraint),this.pointwiseInitializer=Et(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Rt(t.pointwiseRegularizer),this.pointwiseConstraint=ln(t.pointwiseConstraint)}build(e){if(e=ft(e),e.length<this.rank+2)throw new H(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Yt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return G(()=>{e=Ve(e);let n;if(this.rank===1)throw new We("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=tt(e,[0,2,3,1])),n=iv(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=dr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=tt(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Mt(this.depthwiseInitializer),e.pointwiseInitializer=Mt(this.pointwiseInitializer),e.depthwiseRegularizer=xt(this.depthwiseRegularizer),e.pointwiseRegularizer=xt(this.pointwiseRegularizer),e.depthwiseConstraint=on(this.depthwiseConstraint),e.pointwiseConstraint=on(this.pointwiseConstraint),e}};uk.className="SeparableConv";var uA=class extends uk{constructor(e){super(2,e)}};uA.className="SeparableConv2D";le.registerClass(uA);var ck=class extends Dd{constructor(e){super(1,e);ck.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!m1(e.kernelSize,"number",1,1))throw new H(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}},cA=ck;cA.className="Conv1D";le.registerClass(cA);var dA=class extends st{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return G(()=>{if(e=Ve(e),this.dataFormat==="channelsLast"){let n=wf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return wf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=wf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return wf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};dA.className="Cropping2D";le.registerClass(dA);var pA=class extends st{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,aL(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return G(()=>{let n=Ve(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=tt(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?$e.resizeNearestNeighbor(n,[r,a]):$e.resizeBilinear(n,[r,a]);return tt(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?$e.resizeNearestNeighbor(n,[r,a]):$e.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};pA.className="UpSampling2D";le.registerClass(pA);function HB(e,t,n=[1,1],s="valid",r,a){return G(()=>{r==null&&(r=lr()),jt(r);let o=aA(e,r);if(e.rank!==4)throw new H(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new H(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=dd(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=tt(o,[0,3,1,2])),o})}var hA=class extends oA{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Et(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=ln(e.depthwiseConstraint),this.depthwiseRegularizer=Rt(e.depthwiseRegularizer)}build(e){if(e=ft(e),e.length<4)throw new H(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return G(()=>{e=Ve(e);let n=HB(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=dr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=fr(t,this.kernelSize[0],this.padding,this.strides[0]),a=fr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Mt(this.depthwiseInitializer),e.depthwiseRegularizer=xt(this.depthwiseRegularizer),e.depthwiseConstraint=on(this.depthwiseRegularizer),e}};hA.className="DepthwiseConv2D";le.registerClass(hA);function dk(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new H("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function pk(e,t,n,s=!1,r,a,o=!1,i=!1){return G(()=>{let l=t.shape.length;if(l<3)throw new H(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(cr(2,l));if(t=tt(t,c),a!=null)throw new We("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=pe(pe(r,"bool"),"float32"),r.rank===l-1&&(r=Kt(r,-1)),r=tt(r,c)),s&&(t=Ns(t,0),r!=null&&(r=Ns(r,0)));let u=[],d,p=n,h=t.shape[0],f=es(t),m;r!=null&&(m=es(r));for(let A=0;A<h;++A){let x=f[A],y=G(()=>e(x,p));if(r==null)d=y[0],p=y[1];else{let b=G(()=>{let w=m[A],S=xe(Ts(w),w),C=ie(B(y[0],w),B(p[0],S)),E=p.map((D,O)=>ie(B(y[1][O],w),B(D,S)));return{output:C,newStates:E}});d=b.output,p=b.newStates}i&&u.push(d)}let g;return i&&(g=$n(u,1)),[d,g,p]})}var hk=class extends st{constructor(e){super(e);let t;if(e.cell==null)throw new H("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Kf({cells:e.cell}):t=e.cell,t.stateSize==null)throw new H("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Yt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return cr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){D1(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return G(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new We("Constants support is not implemented in RNN yet.");D1(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new Yt({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new We("Constants support is not implemented in RNN yet.");this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new H(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new Yt({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){G(()=>{if(!this.stateful)throw new Jr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Ht([n,s])):this.states_=[Ht([n,this.cell.stateSize])];else if(e==null)Y(this.states_),this.keptStates!=null&&(Y(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Ht([n,s])):this.states_[0]=Ht([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Y(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!v.arraysEqual(r.shape,o))throw new H(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>hn(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=dk(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new Yt({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof pr){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return G(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=Ve(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new H(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=pk((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),c=l[0],u=l[1],d=l[2];this.stateful&&this.resetStates(d,s);let p=this.returnSequences?u:c;return this.returnState?[p].concat(d):p})}getInitialState(e){return G(()=>{let t=Ht(e.shape);return t=ke(t,[1,2]),t=Sd(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?k1(t,[1,n]):t):this.cell.stateSize>1?[k1(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===hk.className&&(t.cell={className:this.cell.getClassName(),config:n}),{...n,...e,...t}}static fromConfig(e,t,n={}){let s=t.cell,r=hr(s,n);return new e(Object.assign(t,{cell:r}))}},ta=hk;ta.className="RNN";le.registerClass(ta);var _d=class extends st{},qf=class extends _d{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,fn(this.units,"units"),this.activation=Po(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Et(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Et(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Et(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Rt(e.kernelRegularizer),this.recurrentRegularizer=Rt(e.recurrentRegularizer),this.biasRegularizer=Rt(e.biasRegularizer),this.kernelConstraint=ln(e.kernelConstraint),this.recurrentConstraint=ln(e.recurrentConstraint),this.biasConstraint=ln(e.biasConstraint),this.dropout=_u([1,$o([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=_u([1,$o([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ft(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return G(()=>{if(e=e,e.length!==2)throw new H(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Fo({ones:()=>Ts(e),rate:this.dropout,training:s,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Fo({ones:()=>Ts(n),rate:this.recurrentDropout,training:s,dropoutFunc:this.dropoutFunc}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=Rr(B(e,a),this.kernel.read()):r=Rr(e,this.kernel.read()),this.bias!=null&&(r=dr(r,this.bias.read())),o!=null&&(n=B(n,o));let i=ie(r,Rr(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:_o(this.activation),useBias:this.useBias,kernelInitializer:Mt(this.kernelInitializer),recurrentInitializer:Mt(this.recurrentInitializer),biasInitializer:Mt(this.biasInitializer),kernelRegularizer:xt(this.kernelRegularizer),recurrentRegularizer:xt(this.recurrentRegularizer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),kernelConstraint:on(this.kernelConstraint),recurrentConstraint:on(this.recurrentConstraint),biasConstraint:on(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return{...e,...t}}};qf.className="SimpleRNNCell";le.registerClass(qf);var fA=class extends ta{constructor(e){e.cell=new qf(e);super(e)}call(e,t){return G(()=>{this.cell.dropoutMask!=null&&(Y(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Y(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};fA.className="SimpleRNN";le.registerClass(fA);var Xf=class extends _d{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new H("GRUCell does not support reset_after parameter set to true.");this.units=e.units,fn(this.units,"units"),this.activation=Po(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Po(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Et(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Et(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Et(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Rt(e.kernelRegularizer),this.recurrentRegularizer=Rt(e.recurrentRegularizer),this.biasRegularizer=Rt(e.biasRegularizer),this.kernelConstraint=ln(e.kernelConstraint),this.recurrentConstraint=ln(e.recurrentConstraint),this.biasConstraint=ln(e.biasConstraint),this.dropout=_u([1,$o([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=_u([1,$o([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ft(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return G(()=>{if(e=e,e.length!==2)throw new H(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Fo({ones:()=>Ts(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Fo({ones:()=>Ts(s),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=B(e,r[0]));let c=Rr(e,this.kernel.read());this.useBias&&(c=dr(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=B(s,a[0]));let u=this.recurrentKernel.read(),[d,p]=vn(u,[2*this.units,this.units],u.rank-1),h=Rr(s,d),[f,m,g]=vn(c,3,c.rank-1),[A,x]=vn(h,2,h.rank-1);o=this.recurrentActivation.apply(ie(f,A)),i=this.recurrentActivation.apply(ie(m,x));let y=Rr(B(i,s),p);l=this.activation.apply(ie(g,y));let b=ie(B(o,s),B(ie(1,Ot(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:_o(this.activation),recurrentActivation:_o(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Mt(this.kernelInitializer),recurrentInitializer:Mt(this.recurrentInitializer),biasInitializer:Mt(this.biasInitializer),kernelRegularizer:xt(this.kernelRegularizer),recurrentRegularizer:xt(this.recurrentRegularizer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),kernelConstraint:on(this.kernelConstraint),recurrentConstraint:on(this.recurrentConstraint),biasConstraint:on(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return{...e,...t}}};Xf.className="GRUCell";le.registerClass(Xf);var mA=class extends ta{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Xf(e);super(e)}call(e,t){return G(()=>{this.cell.dropoutMask!=null&&(Y(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Y(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};mA.className="GRU";le.registerClass(mA);var Pd=class extends _d{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,fn(this.units,"units"),this.activation=Po(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Po(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Et(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Et(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Et(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Rt(e.kernelRegularizer),this.recurrentRegularizer=Rt(e.recurrentRegularizer),this.biasRegularizer=Rt(e.biasRegularizer),this.kernelConstraint=ln(e.kernelConstraint),this.recurrentConstraint=ln(e.recurrentConstraint),this.biasConstraint=ln(e.biasConstraint),this.dropout=_u([1,$o([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=_u([1,$o([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ft(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends Xs{apply(o,i){let l=r.apply([a]),c=new Sf().apply([a]),u=r.apply([a*2]);return rw(rw(l,c),u)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return G(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new H(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Fo({ones:()=>Ts(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Fo({ones:()=>Ts(s),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,c,u;0<this.dropout&&this.dropout<1&&(e=B(e,a[0]));let d=Rr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=B(s,o[0])),d=ie(d,Rr(s,this.recurrentKernel.read())),this.useBias&&(d=dr(d,this.bias.read()));let[p,h,f,m]=vn(d,4,d.rank-1);i=this.recurrentActivation.apply(p),l=this.recurrentActivation.apply(h),c=ie(B(l,r),B(i,this.activation.apply(f))),u=this.recurrentActivation.apply(m);let g=B(u,this.activation.apply(c));return[g,g,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:_o(this.activation),recurrentActivation:_o(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Mt(this.kernelInitializer),recurrentInitializer:Mt(this.recurrentInitializer),biasInitializer:Mt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:xt(this.kernelRegularizer),recurrentRegularizer:xt(this.recurrentRegularizer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),kernelConstraint:on(this.kernelConstraint),recurrentConstraint:on(this.recurrentConstraint),biasConstraint:on(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return{...e,...t}}};Pd.className="LSTMCell";le.registerClass(Pd);var gA=class extends ta{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Pd(e);super(e)}call(e,t){return G(()=>{this.cell.dropoutMask!=null&&(Y(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Y(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};gA.className="LSTM";le.registerClass(gA);var Kf=class extends _d{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return G(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){D1(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{ol(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return{...e,...s}}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(hr(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return _1(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}P1(t)}};Kf.className="StackedRNNCells";le.registerClass(Kf);function Fo(e){let{ones:t,rate:n,training:s=!1,count:r=1,dropoutFunc:a}=e,o=()=>a!=null?a(t(),n):ow(t(),n),i=()=>Cd(o,t,s);return!r||r<=1?hn(i().clone()):Array(r).fill(void 0).map(i).map(c=>hn(c.clone()))}var fk=class extends ta{constructor(e){if(e.unroll)throw new We("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new We("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Yt({ndim:5})]}call(e,t){return G(()=>{if(this.cell.dropoutMask!=null&&(Y(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Y(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new H("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return G(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Ht(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){G(()=>{if(!this.stateful)throw new Jr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ht(r)):this.states_=[Ht(r)];else if(e==null)Y(this.states_),this.keptStates!=null&&(Y(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ht(r)):this.states_[0]=Ht(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Y(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!v.arraysEqual(i.shape,l))throw new H(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>hn(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],c=e[i?4:3],u=fr(l,s[0],r,a[0],o[0]),d=fr(c,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,u,d]:[u,d,n]]}};fk.className="ConvRNN2D";var Zf=class extends Pd{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super({...e,units:t});this.filters=t,fn(this.filters,"filters"),this.kernelSize=Mu(n,2,"kernelSize"),this.kernelSize.forEach(i=>fn(i,"kernelSize")),this.strides=Mu(s||1,2,"strides"),this.strides.forEach(i=>fn(i,"strides")),this.padding=r||"valid",Es(this.padding),this.dataFormat=a||"channelsLast",jt(this.dataFormat),this.dilationRate=Mu(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>fn(i,"dilationRate"))}build(e){var t;e=ft(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;i=new(t=class extends Xs{apply(u,d){let p=l.apply([c]),h=ds([c]),f=l.apply([c*2]);return w1([p,h,f])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return G(()=>{if(e.length!==3)throw new H(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Fo({ones:()=>Ts(s),rate:this.dropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,l=(J,te,ne)=>!te||!te[ne]?J:B(te[ne],J),c=l(s,i,0),u=l(s,i,1),d=l(s,i,2),p=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Fo({ones:()=>Ts(r),rate:this.recurrentDropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=l(r,h,0),m=l(r,h,1),g=l(r,h,2),A=l(r,h,3),x=3,[y,b,w,S]=vn(this.kernel.read(),o,x),[C,E,D,O]=this.useBias?vn(this.bias.read(),o):[null,null,null,null];c=this.inputConv(c,y,C,this.padding),u=this.inputConv(u,b,E,this.padding),d=this.inputConv(d,w,D,this.padding),p=this.inputConv(p,S,O,this.padding);let[_,F,T,M]=vn(this.recurrentKernel.read(),o,x);f=this.recurrentConv(f,_),m=this.recurrentConv(m,F),g=this.recurrentConv(g,T),A=this.recurrentConv(A,M);let U=this.recurrentActivation.apply(ie(c,f)),q=this.recurrentActivation.apply(ie(u,m)),j=ie(B(q,a),B(U,this.activation.apply(ie(d,g)))),X=B(this.recurrentActivation.apply(ie(p,A)),this.activation.apply(j));return[X,X,j]})}getConfig(){let{units:e,...t}=super.getConfig(),n={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return{...t,...n}}inputConv(e,t,n,s){let r=Io(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?dr(r,n,this.dataFormat):r}recurrentConv(e,t){return Io(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Zf.className="ConvLSTM2DCell";le.registerClass(Zf);var AA=class extends fk{constructor(e){let t=new Zf(e);super({...e,cell:t})}static fromConfig(e,t){return new e(t)}};AA.className="ConvLSTM2D";le.registerClass(AA);var Yf=class extends st{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Ve(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Cd(()=>ow(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Yf.className="Dropout";le.registerClass(Yf);var yA=class extends Yf{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};yA.className="SpatialDropout1D";le.registerClass(yA);var xA=class extends st{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,fn(this.units,"units"),this.activation=Po(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Et(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Et(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=ln(e.kernelConstraint),this.biasConstraint=ln(e.biasConstraint),this.kernelRegularizer=Rt(e.kernelRegularizer),this.biasRegularizer=Rt(e.biasRegularizer),this.activityRegularizer=Rt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ft(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ft(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Ve(e),s=Kv(this.activation.getClassName()),r;return s!=null?r=Rr(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=Rr(n,this.kernel.read()),this.bias!=null&&(r=dr(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:_o(this.activation),useBias:this.useBias,kernelInitializer:Mt(this.kernelInitializer),biasInitializer:Mt(this.biasInitializer),kernelRegularizer:xt(this.kernelRegularizer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),kernelConstraint:on(this.kernelConstraint),biasConstraint:on(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};xA.className="Dense";le.registerClass(xA);var bA=class extends st{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ft(e);for(let t of e.slice(1))if(t==null)throw new H(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Ro(e,1)]}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Ve(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=tt(n,s)}return dL(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};bA.className="Flatten";le.registerClass(bA);var vA=class extends st{constructor(e){super(e);this.supportsMasking=!0,this.activation=Po(e.activation)}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Ve(e);return this.activation.apply(n)})}getConfig(){let e={activation:_o(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};vA.className="Activation";le.registerClass(vA);var wA=class extends st{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return G(()=>(e=Ve(e),uL(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};wA.className="RepeatVector";le.registerClass(wA);var kA=class extends st{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new H("Can only specifiy one unknown dimension.");else r*=l}let o=Ro(e);if(a!==null){if(r===0||o%r!=0)throw new H(n);s[a]=o/r}else if(o!==r)throw new H(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Ve(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return V(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};kA.className="Reshape";le.registerClass(kA);var SA=class extends st{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=cr(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Yt({ndim:this.dims.length+1})]}computeOutputShape(e){e=ft(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return tt(Ve(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};SA.className="Permute";le.registerClass(SA);var IA=class extends st{constructor(e){super(e??{});this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Ve(e),s=-1;return Uh(Cu(n,this.maskValue),s)}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Ve(e),s=-1,r=!0,a=Uh(Cu(n,this.maskValue),s,r);return B(n,pe(a,n.dtype))})}};IA.className="Masking";le.registerClass(IA);var CA=class extends st{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(It(e.inputLength))}this.inputDim=e.inputDim,fn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,fn(this.outputDim,"outputDim"),this.embeddingsInitializer=Et(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Rt(e.embeddingsRegularizer),this.activityRegularizer=Rt(e.activityRegularizer),this.embeddingsConstraint=ln(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return G(()=>this.maskZero?(e=Ve(e),Cu(e,nt(e))):null)}computeOutputShape(e){if(e=ft(e),this.inputLength==null)return[...e,this.outputDim];let t=It(this.inputLength);if(t.length!==e.length-1)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Ve(e);n.dtype!=="int32"&&(n=vf(n,"int32"));let s=aw(this.embeddings.read(),V(n,[n.size]));return V(s,ft(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Mt(this.embeddingsInitializer),embeddingsRegularizer:xt(this.embeddingsRegularizer),activityRegularizer:xt(this.activityRegularizer),embeddingsConstraint:on(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};CA.className="Embedding";le.registerClass(CA);var dl=class extends st{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new We}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new H("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[ft(e)]),e=e,e.length<2)throw new H(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Eo(t),t.length>1)throw new H(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&Eo(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return G(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=$o(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=Sd(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let c=i.shape,u=c[0],d=c.slice(1).concat([u]),p=V(i,[u].concat(Ro(c.slice(1))));p=tt(p,[1,0]),p=V(p,d),n.push(p),r=!0}else if(l>1){let c=cr(1,l).concat([0]);n.push(tt(i,c)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,c=i[l-1],u=[c].concat(i.slice(0,i.length-1));a=V(tt(V(a,[-1,c]),[1,0]),u)}else if(o>1){let i=[o-1].concat(cr(0,o-1));a=tt(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=Eo(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return G(()=>{if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an Array");if(!Array.isArray(e))throw new H("`inputs` should be an Array");if(t.length!==e.length)throw new H(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Kt(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=or(n,t[s]);return n})}},TA=class extends dl{constructor(e){super(e)}mergeFunction(e){return G(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ie(t,e[n]);return t})}};TA.className="Add";le.registerClass(TA);var NA=class extends dl{constructor(e){super(e)}mergeFunction(e){return G(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=B(t,e[n]);return t})}};NA.className="Multiply";le.registerClass(NA);var EA=class extends dl{constructor(e){super(e)}mergeFunction(e){return G(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ie(t,e[n]);return B(1/e.length,t)})}};EA.className="Average";le.registerClass(EA);var RA=class extends dl{constructor(e){super(e)}mergeFunction(e){return G(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Kr(t,e[n]);return t})}};RA.className="Maximum";le.registerClass(RA);var $A=class extends dl{constructor(e){super(e)}mergeFunction(e){return G(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=fd(t,e[n]);return t})}};$A.className="Minimum";le.registerClass($A);var DA=class extends dl{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new H("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(v.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new H("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return G(()=>w1(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new H("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new H("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new H(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return G(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(pe(Ts(e[a]),"bool")):t[a].rank<e[a].rank?s.push(Kt(t[a],-1)):s.push(t[a]);let r=kt(s,this.axis);return T2(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};DA.className="Concatenate";le.registerClass(DA);function Fd(e,t){for(;e<0;)e+=t;return e}function jB(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new We("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new We("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return G(()=>{let o;if(s>r){o=s-r;let l=[];for(let c=0;c<o;++c)l.push(1);t=V(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let c=0;c<o;++c)l.push(1);e=V(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=ke(B(e,t),a[0]):i=ke(B(tt(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,c=a[1]===t.shape.length-1;i=He(e,t,l,c)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let c=[];for(let u=l;u<l+o;++u)c.push(u);i=ct(i,c)}return i.shape.length===1&&(i=Kt(i,1)),i})}var _A=class extends dl{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new We("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new H(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new H(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>Fd(r,e[a].shape.length)):s=[Fd(this.axes,t.shape.length),Fd(this.axes,n.shape.length)],this.normalize&&(t=Of(t,s[0]),n=Of(n,s[1])),jB(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Fd(this.axes,e.length),Fd(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new We("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};_A.className="Dot";le.registerClass(_A);var PA=class extends st{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Ve(e);return Cd(()=>ie(kf(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};PA.className="GaussianNoise";le.registerClass(PA);var FA=class extends st{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Ve(e);return this.rate>0&&this.rate<1?Cd(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return B(n,kf(n.shape,1,r))},()=>n,t.training||!1):n})}};FA.className="GaussianDropout";le.registerClass(FA);var OA=class extends st{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Ve(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return G(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Cd(()=>{let r=Ve(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=Qi(Tu(n),this.rate);l=vf(l,"float32");let c=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-c*i*this.rate,d=ie(B(r,l),B(ie(l,-1),i));return ie(B(d,c),u)},()=>Ve(e),t.training||!1)}return e})}};OA.className="AlphaDropout";le.registerClass(OA);function Od(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=R3(e,t,n,s,r,a);else if(e.rank===3)o=$3(e,t,n,s,r,a);else if(e.rank===4)o=D3(e,t,n,s,r,a);else throw new We(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function qB(e,t,n,s,r=.001){return G(()=>{let a=tf(e,s),o=a.mean,i=a.variance;return[Od(e,o,i,n,t,r),o,i]})}function XB(e,t,n,s,r=.001){return G(()=>{let a=tf(e,s),o=a.mean,i=a.variance,l=[];for(let f of cr(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let c=V(o,l),u=V(i,l),d=t==null?null:V(t,l),p=n==null?null:V(n,l);return[Od(e,c,u,p,d,r),o,i]})}function KB(e,t,n,s,r=.001){return v.arraysEqual(s.slice().sort(),cr(0,e.rank-1))?qB(e,t,n,s,r):XB(e,t,n,s,r)}var MA=class extends st{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Et(e.betaInitializer||"zeros"),this.gammaInitializer=Et(e.gammaInitializer||"ones"),this.movingMeanInitializer=Et(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Et(e.movingVarianceInitializer||"ones"),this.betaConstraint=ln(e.betaConstraint),this.gammaConstraint=ln(e.gammaConstraint),this.betaRegularizer=Rt(e.betaRegularizer),this.gammaRegularizer=Rt(e.gammaRegularizer)}build(e){e=ft(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new H(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Yt({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return G(()=>{let n=t.training==null?!1:t.training,s=Ve(e),r=s.shape,a=r.length,o=cr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=sl(1,a);l[i]=r[i];let c=o.slice();c.sort();let u=!v.arraysEqual(c,cr(0,a).slice(0,a-1)),d=()=>{if(u){let A=V(this.movingMean.read(),l),x=V(this.movingVariance.read(),l),y=this.center?V(this.beta.read(),l):null,b=this.scale?V(this.gamma.read(),l):null;return Od(s,A,x,y,b,this.epsilon)}else return Od(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[p,h,f]=KB(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(A,x,y)=>{G(()=>{let b=1-y,w=A.read(),S=B(xe(w,x),b);A.write(xe(w,S))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Mt(this.betaInitializer),gammaInitializer:Mt(this.gammaInitializer),movingMeanInitializer:Mt(this.movingMeanInitializer),movingVarianceInitializer:Mt(this.movingVarianceInitializer),betaRegularizer:xt(this.betaRegularizer),gammaRegularizer:xt(this.gammaRegularizer),betaConstraint:on(this.betaConstraint),gammaConstraint:on(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};MA.className="BatchNormalization";le.registerClass(MA);var zA=class extends st{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Et(e.betaInitializer||"zeros"),this.gammaInitializer=Et(e.gammaInitializer||"ones"),this.betaRegularizer=Rt(e.betaRegularizer),this.gammaRegularizer=Rt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ft(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Eo(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=Ve(e),s=n.shape,r=s.length;return G(()=>{let a=!0,{mean:o,variance:i}=tf(n,this.axis,a),l=sl(1,r);for(let f of this.axis)l[f]=s[f];let c=f=>f!=null&&f.shape.length!==r?V(f,l):f,u=c(this.gamma.read()),d=c(this.beta.read()),p=[],h=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(p.push(s[f]),h.push(1)):(p.push(1),h.push(s[f]));return o=Gs(o,p),i=Gs(i,p),u=Gs(u,h),d=Gs(d,h),Od(n,o,i,d,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Mt(this.betaInitializer),gammaInitializer:Mt(this.gammaInitializer),betaRegularizer:xt(this.betaRegularizer),gammaRegularizer:xt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};zA.className="LayerNormalization";le.registerClass(zA);function ZB(e,t,n){return G(()=>{if(e.rank!==4)throw new H(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new H("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=lr()),n!=="channelsLast"&&n!=="channelsFirst")throw new H(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],Hs(e,s)})}var LA=class extends st{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?lr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new H(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new H(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new H(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Yt({ndim:4})]}computeOutputShape(e){e=ft(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return G(()=>ZB(Ve(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};LA.className="ZeroPadding2D";le.registerClass(LA);function Jf(e,t,n,s,r,a){return G(()=>{jt(r),Qv(a),Es(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=lr()),a==null&&(a="max"),e=aA(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=Qh(e,t,n,i):o=Hh(e,t,n,i),r==="channelsFirst"&&(o=tt(o,[0,3,1,2])),o})}function mk(e,t,n,s,r,a){return G(()=>{jt(r),Qv(a),Es(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=lr()),a==null&&(a="max"),e=ak(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=G2(e,t,n,i):o=R2(e,t,n,i),r==="channelsFirst"&&(o=tt(o,[0,4,1,2,3])),o})}var gk=class extends st{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new H(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(fn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new H(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);fn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Es(this.padding),this.inputSpec=[new Yt({ndim:3})]}computeOutputShape(e){e=ft(e);let t=fr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return G(()=>{this.invokeCallHook(e,t),e=Sd(Ve(e),2);let n=this.poolingFunction(Ve(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return ct(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},BA=class extends gk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return jt(r),Es(s),Jf(e,t,n,s,r,"max")}};BA.className="MaxPooling1D";le.registerClass(BA);var WA=class extends gk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return jt(r),Es(s),Jf(e,t,n,s,r,"avg")}};WA.className="AveragePooling1D";le.registerClass(WA);var Ak=class extends st{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new H(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];fn(this.poolSize,"poolSize"),fn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),Es(this.padding),this.inputSpec=[new Yt({ndim:4})]}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=fr(t,this.poolSize[0],this.padding,this.strides[0]),n=fr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return G(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ve(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},VA=class extends Ak{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return jt(r),Es(s),Jf(e,t,n,s,r,"max")}};VA.className="MaxPooling2D";le.registerClass(VA);var UA=class extends Ak{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return jt(r),Es(s),Jf(e,t,n,s,r,"avg")}};UA.className="AveragePooling2D";le.registerClass(UA);var yk=class extends st{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new H(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];fn(this.poolSize,"poolSize"),fn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),Es(this.padding),this.inputSpec=[new Yt({ndim:5})]}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=fr(t,this.poolSize[0],this.padding,this.strides[0]),n=fr(n,this.poolSize[1],this.padding,this.strides[1]),s=fr(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return G(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ve(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},GA=class extends yk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return jt(r),Es(s),mk(e,t,n,s,r,"max")}};GA.className="MaxPooling3D";le.registerClass(GA);var HA=class extends yk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return jt(r),Es(s),mk(e,t,n,s,r,"avg")}};HA.className="AveragePooling3D";le.registerClass(HA);var xk=class extends st{constructor(e){super(e);this.inputSpec=[new Yt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new We}},jA=class extends xk{constructor(e){super(e||{})}call(e,t){return G(()=>{let n=Ve(e);return Wt(n,1)})}};jA.className="GlobalAveragePooling1D";le.registerClass(jA);var qA=class extends xk{constructor(e){super(e||{})}call(e,t){return G(()=>{let n=Ve(e);return Qn(n,1)})}};qA.className="GlobalMaxPooling1D";le.registerClass(qA);var bk=class extends st{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),this.inputSpec=[new Yt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new We}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},XA=class extends bk{call(e,t){return G(()=>{let n=Ve(e);return this.dataFormat==="channelsLast"?Wt(n,[1,2]):Wt(n,[2,3])})}};XA.className="GlobalAveragePooling2D";le.registerClass(XA);var KA=class extends bk{call(e,t){return G(()=>{let n=Ve(e);return this.dataFormat==="channelsLast"?Qn(n,[1,2]):Qn(n,[2,3])})}};KA.className="GlobalMaxPooling2D";le.registerClass(KA);var vk=class extends st{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=hr(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},ZA=class extends vk{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=ft(e),e.length<3)throw new H(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ft(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return G(()=>(e=Ve(e),pk((a,o)=>[Ve(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};ZA.className="TimeDistributed";le.registerClass(ZA);function YB(e){al(rL,"BidirectionalMergeMode",e)}var JB="concat",YA=class extends vk{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=hr(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=hr(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?JB:e.mergeMode,YB(this.mergeMode),e.weights)throw new We("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):ts(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=dk(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new H("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let c=n.map(u=>new Yt({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),o.push(...c)}if(s!=null)throw new We("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof pr;for(let l of a)if(l instanceof pr!==i)throw new H("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return G(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=Ns(r,1));let o;return this.mergeMode==="concat"?o=w1([s,r]):this.mergeMode==="sum"?o=ie(s,r):this.mergeMode==="ave"?o=B(.5,ie(s,r)):this.mergeMode==="mul"?o=B(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){ol(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),ol(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=hr(t.layer);if(delete t.layer,t.numConstants!=null)throw new We("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};YA.className="Bidirectional";le.registerClass(YA);function QB(e){return new Pu(e)}function eW(e){return new nA(e)}function tW(e){return new Q1(e)}function nW(e){return new eA(e)}function sW(e){return new tA(e)}function rW(e){return new rA(e)}function aW(e){return new sA(e)}function oW(e){return new cA(e)}function iW(e){return new Hf(e)}function lW(e){return new iA(e)}function uW(e){return new jf(e)}function cW(e){return new lA(e)}function dW(e){return new uA(e)}function pW(e){return new dA(e)}function hW(e){return new pA(e)}function fW(e){return new hA(e)}function mW(e){return new vA(e)}function gW(e){return new xA(e)}function AW(e){return new Yf(e)}function yW(e){return new yA(e)}function xW(e){return new bA(e)}function bW(e){return new wA(e)}function vW(e){return new kA(e)}function wW(e){return new SA(e)}function kW(e){return new CA(e)}function SW(e){return new TA(e)}function IW(e){return new EA(e)}function CW(e){return new DA(e)}function TW(e){return new RA(e)}function NW(e){return new $A(e)}function EW(e){return new NA(e)}function RW(e){return new _A(e)}function $W(e){return new MA(e)}function DW(e){return new zA(e)}function _W(e){return new LA(e)}function JA(e){return new WA(e)}function PW(e){return JA(e)}function FW(e){return JA(e)}function QA(e){return new UA(e)}function OW(e){return QA(e)}function MW(e){return QA(e)}function ey(e){return new HA(e)}function zW(e){return ey(e)}function LW(e){return ey(e)}function BW(e){return new jA(e)}function WW(e){return new XA(e)}function wk(e){return new qA(e)}function kk(e){return new KA(e)}function Sk(e){return new BA(e)}function Ik(e){return new VA(e)}function VW(e){return new GA(e)}function UW(e){return new mA(e)}function GW(e){return new Xf(e)}function HW(e){return new gA(e)}function jW(e){return new Pd(e)}function qW(e){return new fA(e)}function XW(e){return new qf(e)}function KW(e){return new AA(e)}function ZW(e){return new Zf(e)}function YW(e){return new ta(e)}function JW(e){return new Kf(e)}function QW(e){return new YA(e)}function eV(e){return new ZA(e)}var tV=wk,nV=kk,sV=Sk,rV=Ik;function aV(e){return new PA(e)}function oV(e){return new FA(e)}function iV(e){return new OA(e)}function lV(e){return new IA(e)}var Ck={};Me(Ck,{MAPE:()=>xV,MSE:()=>wV,binaryAccuracy:()=>uV,binaryCrossentropy:()=>cV,categoricalAccuracy:()=>pV,categoricalCrossentropy:()=>hV,cosineProximity:()=>gV,mape:()=>bV,meanAbsoluteError:()=>AV,meanAbsolutePercentageError:()=>yV,meanSquaredError:()=>vV,mse:()=>kV,precision:()=>fV,recall:()=>mV,sparseCategoricalAccuracy:()=>dV});function uV(e,t){return z1(e,t)}function cV(e,t){return Sw(e,t)}function dV(e,t){return Iw(e,t)}function pV(e,t){return L1(e,t)}function hV(e,t){return B1(e,t)}function fV(e,t){return kw(e,t)}function mV(e,t){return QL(e,t)}function gV(e,t){return O1(e,t)}function AV(e,t){return Mf(e,t)}function yV(e,t){return Ou(e,t)}function xV(e,t){return Ou(e,t)}function bV(e,t){return Ou(e,t)}function vV(e,t){return ll(e,t)}function wV(e,t){return ll(e,t)}function kV(e,t){return ll(e,t)}var Tk={};Me(Tk,{modelFromJSON:()=>_B});var Nk={};Me(Nk,{l1:()=>IV,l1l2:()=>SV,l2:()=>CV});function SV(e){return new $d(e)}function IV(e){return WB(e)}function CV(e){return VB(e)}var Ek=class extends Fu{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof ea))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Qf(e,t){return e<t}function Rk(e,t){return e>t}var $k=class extends Ek{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new We("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Qf:this.mode==="max"?this.monitorFunc=Rk:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Rk:this.monitorFunc=Qf,this.monitorFunc===Qf&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Qf?1/0:-1/0}async onEpochEnd(e,t){await Do(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function TV(e){return new $k(e)}var NV={earlyStopping:TV},mr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(mr||(mr={}));var Dk;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Dk||(Dk={}));var ty={};function EV(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};ty[e]=n}function _k(e){return ty[e]}function RV(e){delete ty[e]}function k(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return Ln(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(p=>Ln(p,n,s,r));let c=Ln(t.inputNames.slice(i)[0],n,s,r),u=c.dataSync();return a.type==="number"?u[0]:v.toNestedArray(c.shape,u)}let o=t.attrParams[e];return o&&o.value}function Ln(e,t,n,s){let[r,a]=ps(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[em(r,i)]);return o!==void 0?t[em(r,o)][a]:void 0}function $V(e,t,n){return t[em(e,n.currentContextId)]}function na(e,t){let[n,s,r]=ps(e);return[em(n,t&&t.currentContextId),s,r]}function em(e,t){return t?`${e}-${t}`:e}function ps(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function tm(e,t,n){let s=k("pad",e,t,n);if(s==="explicit"){s=k("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function sa(e){return e.kept?e:rr(e)}var Pk={};Me(Pk,{json:()=>DV});var DV=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Fk={};Me(Fk,{json:()=>_V});var _V=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Ok={};Me(Ok,{json:()=>PV});var PV=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],Mk={};Me(Mk,{json:()=>FV});var FV=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],zk={};Me(zk,{json:()=>OV});var OV=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],Lk={};Me(Lk,{json:()=>MV});var MV=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Bk={};Me(Bk,{json:()=>zV});var zV=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],Wk={};Me(Wk,{json:()=>LV});var LV=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Vk={};Me(Vk,{json:()=>BV});var BV=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],Uk={};Me(Uk,{json:()=>WV});var WV=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],Gk={};Me(Gk,{json:()=>VV});var VV=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Hk={};Me(Hk,{json:()=>UV});var UV=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],jk={};Me(jk,{json:()=>GV});var GV=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],qk={};Me(qk,{json:()=>HV});var HV=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],Xk={};Me(Xk,{json:()=>jV});var jV=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],Kk={};Me(Kk,{json:()=>qV});var qV=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],Zk={};Me(Zk,{json:()=>XV});var XV=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],Yk={};Me(Yk,{json:()=>KV});var KV=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],Jk={};Me(Jk,{json:()=>ZV});var ZV=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],Qk=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Pk,Fk,Ok,Mk,zk,Lk,Bk,Wk,Vk,Uk,Gk,Hk,jk,qk,Xk,Kk,Zk,Yk,Jk],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((g,A)=>{let[x,,y]=na(g),b=o[x];if(b.outputs!=null){let w=b.outputs.indexOf(y);if(w!==-1){let S=`${x}:${w}`;m.inputNames[A]=S}}m.inputs.push(b),b.children.push(m)})}),Object.keys(u).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(u).forEach(f=>{let[m]=na(f),g=o[m];g!=null&&(g.signatureKey=u[f],l.push(g))}),Object.keys(c).length>0?Object.keys(c).forEach(f=>{let[m]=na(f),g=o[m];g&&(g.signatureKey=c[f],i.push(g))}):i=s;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:p};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=_k(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.substr(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=ny(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ny(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=cy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=cy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=ry(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=ry(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=uy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=uy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=sy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=sy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=py(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=py(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=ly(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ly(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=dy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=dy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=oy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=oy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=iy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=iy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=t7(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=t7(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&s.push(u[d.name]),u),{}));let a=[],o=[];e.signature.inputArg.forEach(u=>{let[d]=na(u.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:ay(u.type),type:"dtype"}},children:[]};p.signatureKey=u.name,a.push(p),r[d]=p}),Object.keys(r).forEach(u=>{let d=r[u];d.inputNames.forEach((p,h)=>{let[f,,m]=na(p),g=r[f];if(g.outputs!=null){let A=g.outputs.indexOf(m);if(A!==-1){let x=`${f}:${A}`;d.inputNames[h]=x}}d.inputs.push(g),g.children.push(d)})});let l=e.ret;e.signature.outputArg.forEach(u=>{let[d,p]=na(l[u.name]),h=r[d];h!=null&&(h.defaultOutput=p,o.push(h))});let c=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function YV(e){let t=K().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function e7(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):YV(e);return t?n:n.toLowerCase()}function ny(e,t,n,s=!1){let r=e[t];return r!=null?e7(r.s,s):n}function sy(e,t,n){let s=e[t];return s?s.b:n}function ry(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function ay(e){switch(typeof e=="string"&&(e=mr[e]),e){case mr.DT_FLOAT:return"float32";case mr.DT_INT32:case mr.DT_INT64:case mr.DT_INT8:case mr.DT_UINT8:return"int32";case mr.DT_BOOL:return"bool";case mr.DT_DOUBLE:return"float32";case mr.DT_STRING:return"string";default:return null}}function t7(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function oy(e,t,n){let s=e[t];return s&&s.type?ay(s.type):n}function iy(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>ay(r)):n}function n7(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function ly(e,t,n){let s=e[t];return s&&s.shape?n7(s.shape):n}function uy(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function cy(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>e7(a,s)):n}function dy(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>n7(r)):n}function py(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var JV=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return Ln(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Ln(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return ry(this.node.rawAttrs,e,t);if(n.s!=null)return ny(this.node.rawAttrs,e,t);if(n.b!=null)return sy(this.node.rawAttrs,e,t);if(n.shape!=null)return ly(this.node.rawAttrs,e,t);if(n.type!=null)return oy(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return uy(this.node.rawAttrs,e,t);if(n.list.s!=null)return cy(this.node.rawAttrs,e,t);if(n.list.shape!=null)return dy(this.node.rawAttrs,e,t);if(n.list.b!=null)return py(this.node.rawAttrs,e,t);if(n.list.type!=null)return iy(this.node.rawAttrs,e,t)}return t}},QV=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ie(k("a",e,t,n),k("b",e,t,n))];case"AddN":return[Vh(k("tensors",e,t,n))];case"FloorMod":case"Mod":return[sv(k("a",e,t,n),k("b",e,t,n))];case"Mul":return[B(k("a",e,t,n),k("b",e,t,n))];case"RealDiv":case"Div":return[he(k("a",e,t,n),k("b",e,t,n))];case"DivNoNan":return[U3(k("a",e,t,n),k("b",e,t,n))];case"FloorDiv":return[C2(k("a",e,t,n),k("b",e,t,n))];case"Sub":return[xe(k("a",e,t,n),k("b",e,t,n))];case"Minimum":return[fd(k("a",e,t,n),k("b",e,t,n))];case"Maximum":return[Kr(k("a",e,t,n),k("b",e,t,n))];case"Pow":return[Co(k("a",e,t,n),k("b",e,t,n))];case"SquaredDifference":return[n1(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},eU=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[rn(k("x",e,t,n))];case"Acos":return[x3(k("x",e,t,n))];case"Acosh":return[b3(k("x",e,t,n))];case"Asin":return[w3(k("x",e,t,n))];case"Asinh":return[k3(k("x",e,t,n))];case"Atan":return[S3(k("x",e,t,n))];case"Atan2":return[I3(k("x",e,t,n),k("y",e,t,n))];case"Atanh":return[C3(k("x",e,t,n))];case"Ceil":return[P3(k("x",e,t,n))];case"Complex":return[bo(k("real",e,t,n),k("imag",e,t,n))];case"Cos":return[qh(k("x",e,t,n))];case"Cosh":return[O2(k("x",e,t,n))];case"Elu":return[pd(k("x",e,t,n))];case"Erf":return[H3(k("x",e,t,n))];case"Exp":return[Is(k("x",e,t,n))];case"Expm1":return[j3(k("x",e,t,n))];case"Floor":return[hd(k("x",e,t,n))];case"Log":return[Cs(k("x",e,t,n))];case"Log1p":return[Zh(k("x",e,t,n))];case"Imag":return[Xh(k("x",e,t,n))];case"Neg":return[Ot(k("x",e,t,n))];case"Reciprocal":return[ov(k("x",e,t,n))];case"Real":return[md(k("x",e,t,n))];case"Relu":return[Nr(k("x",e,t,n))];case"Round":return[K2(k("x",e,t,n))];case"Selu":return[Y2(k("x",e,t,n))];case"Sigmoid":return[ls(k("x",e,t,n))];case"Sin":return[J2(k("x",e,t,n))];case"Sign":return[uv(k("x",e,t,n))];case"Sinh":return[Q2(k("x",e,t,n))];case"Softplus":return[Iu(k("x",e,t,n))];case"Sqrt":return[Rn(k("x",e,t,n))];case"Square":return[yt(k("x",e,t,n))];case"Tanh":return[bu(k("x",e,t,n))];case"Tan":return[dv(k("x",e,t,n))];case"ClipByValue":return[us(k("x",e,t,n),k("clipValueMin",e,t,n),k("clipValueMax",e,t,n))];case"Relu6":return[X2(k("x",e,t,n))];case"Rsqrt":return[Z2(Ln(e.inputNames[0],t,n))];case"Prod":return[H2(k("x",e,t,n),k("axes",e,t,n))];case"LeakyRelu":return[Kh(k("x",e,t,n),k("alpha",e,t,n))];case"Prelu":return[sf(k("x",e,t,n),k("alpha",e,t,n))];case"IsNan":return[q3(Ln(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ks(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];v.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function s7(e){return!(typeof e=="number"||e.some(t=>t<0))}function Md(e,t,n){let s=hy(e,n),r=!s7(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=hy(a.shape,s)}),!s7(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function hy(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var tU=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Ne(0),hn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Ks(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,hn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return Gt([],[0].concat(this.elementShape));let n=this.readMany(e);return Ks(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),$n(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Gt([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return Ks(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),kt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,es(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];G(()=>{t=V(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],c=[0,l,0],u=[1,e[i],r];a[i]=V(_e(t,c,u),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},zd=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Ks(t,r.shape,"TensorList shape mismatch: "),hn(r)}),this.idTensor=Ne(0),this.maxNumElements=s,hn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new zd([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Ks(e,this.elementShape,"TensorList shape mismatch: ");let s=Md(this.elementShape,this.tensors,e);return G(()=>{let r=this.tensors.map(a=>V(a,s));return $n(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Md(this.elementShape,this.tensors,e),s=this.tensors.pop();return Ks(s.shape,e,"TensorList shape mismatch: "),V(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Ks(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");hn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Ks(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=Md(this.elementShape,this.tensors,t);return V(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Ks(this.elementShape,t.shape,"TensorList shape mismatch: "),hn(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Ks(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=Md(this.elementShape,this.tensors,n);return e.length===0?Gt([],[0].concat(s)):G(()=>{let r=e.map(a=>V(this.tensors[a],s));return $n(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Ks(this.elementShape,t,"TensorList shape mismatch: ");let n=Md(this.elementShape,this.tensors,t);return this.size()===0?Gt([],[0].concat(n)):G(()=>{let s=this.tensors.map(r=>V(r,n));return kt(s,0)})}};function nU(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Ks(r,t,"TensorList shape mismatch: ");let a=es(e);return new zd(a,t,s)}function sU(e,t,n){return new zd([],e,t,n)}function rU(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new zd([],n,e.dtype,s),o=es(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function aU(e,t,n){let s=0,r=t.map(u=>(s+=u,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=hy(a,n),i=s===0?0:e.size/s,l=G(()=>{let u=[];e=V(e,[1,s,i]);for(let d=0;d<t.length;++d){let p=d===0?0:r[d-1],h=[0,p,0],f=[1,t[d],i];u[d]=V(_e(e,h,f),o)}return e.dispose(),u}),c=new zd([],n,e.dtype,t.length);for(let u=0;u<l.length;u++)c.setItem(u,l[u]);return c}var oU=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=k("thenBranch",e,t,n),r=k("elseBranch",e,t,n),a=k("cond",e,t,n),o=k("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=k("body",e,t,n),r=k("cond",e,t,n),a=k("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(u=>u.id),l=await o[0].data();o.forEach(u=>{!u.kept&&i.indexOf(u.id)===-1&&u.dispose()});let c=a;for(;l[0];){let u=c;c=await n.functionMap[s].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let d=c.map(h=>h.id);u.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let p=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await p[0].data(),p.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return c}case"LoopCond":{let s=k("pred",e,t,n);return[sa(s)]}case"Switch":{let s=k("pred",e,t,n),r=k("data",e,t,n);return r.kept||(r=sa(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>Ln(r,t,n)!==void 0);if(s){let r=Ln(s,t,n);return[sa(r)]}return}case"Enter":{let s=k("frameName",e,t,n),r=k("tensor",e,t,n);return n.enterFrame(s),[sa(r)]}case"Exit":{let s=k("tensor",e,t,n);return n.exitFrame(),[sa(s)]}case"NextIteration":{let s=k("tensor",e,t,n);return n.nextIteration(),[sa(s)]}case"TensorArrayV3":{let s=k("size",e,t,n),r=k("dtype",e,t,n),a=k("elementShape",e,t,n),o=k("dynamicSize",e,t,n),i=k("clearAfterRead",e,t,n),l=k("identicalElementShapes",e,t,n),c=k("name",e,t,n),u=new tU(c,r,s,a,l,o,i);return n.addTensorArray(u),[u.idTensor,Ne(1)]}case"TensorArrayWriteV3":{let s=k("tensorArrayId",e,t,n),r=k("index",e,t,n),a=k("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=k("tensorArrayId",e,t,n),r=k("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),a=k("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),a=k("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=k("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=k("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=k("tensorArrayId",e,t,n),r=k("tensor",e,t,n),a=k("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=k("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Ne(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=k("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=k("tensorListId",e,t,n),r=k("index",e,t,n),a=k("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=k("tensorListId",e,t,n),r=k("index",e,t,n),a=k("elementShape",e,t,n),o=k("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=k("indices",e,t,n),r=k("tensor",e,t,n),a=k("elementShape",e,t,n),o=k("numElements",e,t,n),i=rU(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=k("elementShape",e,t,n),r=k("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=k(a,e,t,n),i=sU(s,r,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let s=k("tensorListId",e,t,n),r=k("indices",e,t,n),a=k("elementShape",e,t,n),o=k("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),a=k("elementDType",e,t,n),o=k("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=k("tensor",e,t,n),r=k("elementShape",e,t,n),a=k("elementDType",e,t,n),o=nU(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let s=k("tensorListId",e,t,n),r=n.getTensorList(s.id),a=k("dtype",e,t,n),o=k("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=k("tensorListId",e,t,n),r=k("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),a=k("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=k("tensor",e,t,n),r=k("elementShape",e,t,n),a=k("lengths",e,t,n),o=aU(s,a,r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function r7(e,t,n){let[s,r]=k("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",c=k("numArgs",e,t,n);if(a){if(i&&c!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&c!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let u=k("strides",e,t,n),d=tm(e,t,n),p=k("dataFormat",e,t,n).toUpperCase(),h=k("dilations",e,t,n),[f,m]=k("args",e,t,n);o&&(m=f,f=void 0);let g=k("leakyreluAlpha",e,t,n);return{stride:u,pad:d,dataFormat:p,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var iU=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=k("stride",e,t,n),r=k("pad",e,t,n),a=k("dataFormat",e,t,n).toUpperCase(),o=k("dilation",e,t,n);return[D2(k("x",e,t,n),k("filter",e,t,n),s,r,a,o)]}case"Conv2D":{let s=k("strides",e,t,n),r=tm(e,t,n),a=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[Io(k("x",e,t,n),k("filter",e,t,n),[s[1],s[2]],r,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=r7(e,t,n);return[To.conv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=r7(e,t,n);return[To.depthwiseConv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=k("outputShape",e,t,n),r=k("strides",e,t,n),a=tm(e,t,n);return[P2(k("x",e,t,n),k("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=k("strides",e,t,n),r=tm(e,t,n),a=k("dilations",e,t,n),o=k("dataFormat",e,t,n).toUpperCase();return[dd(k("input",e,t,n),k("filter",e,t,n),[s[1],s[2]],r,o,[a[1],a[2]])]}case"Conv3D":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[F2(k("x",e,t,n),k("filter",e,t,n),[s[1],s[2],s[3]],r,a,[o[1],o[2],o[3]])]}case"AvgPool":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("kernelSize",e,t,n);return[Hh(k("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("kernelSize",e,t,n);return[Qh(k("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("kernelSize",e,t,n),o=k("includeBatchInIndex",e,t,n),{result:i,indexes:l}=tv(k("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,o);return[i,l]}case"AvgPool3D":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("kernelSize",e,t,n);return[R2(k("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("kernelSize",e,t,n);return[G2(k("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("dilations",e,t,n),o=s[1],i=s[2],l=a[1],c=a[2];return[V3(k("x",e,t,n),k("filter",e,t,n),[o,i],r,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},lU=(e,t,n)=>{switch(e.op){case"Fill":{let s=k("shape",e,t,n),r=k("dtype",e,t,n),a=k("value",e,t,n);return[ku(s,a,r)]}case"LinSpace":{let s=k("start",e,t,n),r=k("stop",e,t,n),a=k("num",e,t,n);return[X3(s,r,a)]}case"Multinomial":{let s=k("logits",e,t,n),r=k("numSamples",e,t,n),a=k("seed",e,t,n);return[rv(s,r,a)]}case"OneHot":{let s=k("indices",e,t,n),r=k("depth",e,t,n),a=k("onValue",e,t,n),o=k("offValue",e,t,n);return[ld(s,r,a,o)]}case"Ones":return[ds(k("shape",e,t,n),k("dtype",e,t,n))];case"OnesLike":return[Ts(k("x",e,t,n))];case"RandomUniform":return[Tu(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("dtype",e,t,n))];case"Range":{let s=k("start",e,t,n),r=k("stop",e,t,n),a=k("step",e,t,n);return[Nu(s,r,a,k("dtype",e,t,n))]}case"TruncatedNormal":{let s=k("shape",e,t,n),r=k("mean",e,t,n),a=k("stdDev",e,t,n),o=k("seed",e,t,n);return[lf(s,r,a,k("dtype",e,t,n),o)]}case"Zeros":return[Ht(k("shape",e,t,n),k("dtype",e,t,n))];case"ZerosLike":return[nt(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function fy(e,t,n){let s=k("boxes",e,t,n),r=k("scores",e,t,n),a=k("maxOutputSize",e,t,n),o=k("iouThreshold",e,t,n),i=k("scoreThreshold",e,t,n),l=k("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var uU=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=fy(e,t,n),c=await $e.nonMaxSuppressionWithScoreAsync(s,r,a,o,i,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=fy(e,t,n),l=k("padToMaxOutputSize",e,t,n),c=await $e.nonMaxSuppressionPaddedAsync(s,r,a,o,i,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=fy(e,t,n);return[await $e.nonMaxSuppressionAsync(s,r,a,o,i)]}case"Where":{let s=pe(k("condition",e,t,n),"bool"),r=[await r1(s)];return s.dispose(),r}case"ListDiff":return lv(k("x",e,t,n),k("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},cU=(e,t,n)=>{switch(e.op){case"TopKV2":{let s=k("x",e,t,n),r=k("k",e,t,n),a=k("sorted",e,t,n),o=pv(s,r,a);return[o.values,o.indices]}case"Unique":{let s=k("x",e,t,n),r=s1(s);return[r.values,r.indices]}case"UniqueV2":{let s=k("x",e,t,n),r=k("axis",e,t,n),a=s1(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},dU=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=k("default",e,t,n);return[Ln(e.name,t,n)||s];case"Placeholder":return[Ln(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=k("x",e,t,n);return[sa(c)]}case"IdentityN":return k("x",e,t,n).map(c=>sa(c));case"Snapshot":let r=k("x",e,t,n);return[sa(r)];case"Shape":return[Zt(k("x",e,t,n).shape,"int32")];case"ShapeN":return k("x",e,t,n).map(c=>Zt(c.shape));case"Size":return[Ne(k("x",e,t,n).size,"int32")];case"Rank":return[Ne(k("x",e,t,n).rank,"int32")];case"NoOp":return[Ne(1)];case"Print":let a=k("x",e,t,n),o=k("data",e,t,n),i=k("message",e,t,n),l=k("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let c=0;c<o.length;c++)console.log(Array.prototype.slice.call(o[c].dataSync()).slice(0,l));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},pU=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Ne(0),this.tensorMap=new Map,hn(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ne(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),G(()=>{let s=es(t),r=n.length,a=s.length;v.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];hn(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return G(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return $n(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n??t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},hU=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=k("keyDType",e,t,n),a=k("valueDType",e,t,n),o=new pU(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=k("tableHandle",e,t,n,s),a=k("keys",e,t,n),o=k("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=k("tableHandle",e,t,n,s),a=k("keys",e,t,n),o=k("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=k("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},fU=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=k("images",e,t,n),r=k("size",e,t,n),a=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[$e.resizeBilinear(s,[r[0],r[1]],a,o)]}case"ResizeNearestNeighbor":{let s=k("images",e,t,n),r=k("size",e,t,n),a=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[$e.resizeNearestNeighbor(s,[r[0],r[1]],a,o)]}case"CropAndResize":{let s=k("image",e,t,n),r=k("boxes",e,t,n),a=k("boxInd",e,t,n),o=k("cropSize",e,t,n),i=k("method",e,t,n),l=k("extrapolationValue",e,t,n);return[$e.cropAndResize(s,r,a,o,i,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},mU=(e,t,n)=>{switch(e.op){case"Equal":return[Ss(k("a",e,t,n),k("b",e,t,n))];case"NotEqual":return[Cu(k("a",e,t,n),k("b",e,t,n))];case"Greater":return[cs(k("a",e,t,n),k("b",e,t,n))];case"GreaterEqual":return[Qi(k("a",e,t,n),k("b",e,t,n))];case"Less":return[L2(k("a",e,t,n),k("b",e,t,n))];case"LessEqual":return[el(k("a",e,t,n),k("b",e,t,n))];case"LogicalAnd":return[or(k("a",e,t,n),k("b",e,t,n))];case"LogicalNot":return[Jh(k("a",e,t,n))];case"LogicalOr":return[U2(k("a",e,t,n),k("b",e,t,n))];case"Select":case"SelectV2":return[Mn(k("condition",e,t,n),k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},gU=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[He(k("a",e,t,n),k("b",e,t,n),k("transposeA",e,t,n),k("transposeB",e,t,n))];case"Einsum":return[G3(k("equation",e,t,n),...k("tensors",e,t,n))];case"Transpose":return[tt(k("x",e,t,n),k("perm",e,t,n))];case"_FusedMatMul":let[s,r]=k("fusedOps",e,t,n),a=s==="biasadd",o=r==="prelu",i=k("numArgs",e,t,n),l=k("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=k("args",e,t,n);return[To.matMul({a:k("a",e,t,n),b:k("b",e,t,n),transposeA:k("transposeA",e,t,n),transposeB:k("transposeB",e,t,n),bias:c,activation:r,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},AU=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[vu(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"FusedBatchNormV3":return[vu(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"LRN":return[K3(k("x",e,t,n),k("radius",e,t,n),k("bias",e,t,n),k("alpha",e,t,n),k("beta",e,t,n))];case"Softmax":return[Ru(k("x",e,t,n))];case"LogSoftmax":return[B2(k("x",e,t,n))];case"SparseToDense":return[o1(k("sparseIndices",e,t,n),k("outputShape",e,t,n),k("sparseValues",e,t,n),k("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},yU=(e,t,n)=>{switch(e.op){case"Max":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[Qn(k("x",e,t,n),o,i)]}case"Mean":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[Wt(k("x",e,t,n),o,i)]}case"Min":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[ef(k("x",e,t,n),o,i)]}case"Sum":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[ke(k("x",e,t,n),o,i)]}case"All":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[T2(k("x",e,t,n),o,i)]}case"Any":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[Uh(k("x",e,t,n),o,i)]}case"ArgMax":{let o=k("axis",e,t,n);return[Us(k("x",e,t,n),o)]}case"ArgMin":{let o=k("axis",e,t,n);return[v3(k("x",e,t,n),o)]}case"Prod":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[H2(k("x",e,t,n),o,i)]}case"Cumsum":{let o=k("axis",e,t,n),i=k("exclusive",e,t,n),l=k("reverse",e,t,n);return[M2(k("x",e,t,n),o,i,l)]}case"Bincount":let s=k("x",e,t,n),r=k("weights",e,t,n),a=k("size",e,t,n);return[$2(s,r,a)];case"DenseBincount":{let o=k("x",e,t,n),i=k("weights",e,t,n),l=k("size",e,t,n),c=k("binaryOutput",e,t,n);return[B3(o,i,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},xU=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=k("n",e,t,n),r=k("axis",e,t,n),a=k("tensors",e,t,n);return a=a.slice(0,s),[kt(a,r)]}case"Gather":{let s=k("x",e,t,n),r=k("indices",e,t,n);return[Su(s,pe(r,"int32"),0)]}case"GatherV2":{let s=k("axis",e,t,n),r=k("batchDims",e,t,n),a=k("x",e,t,n),o=k("indices",e,t,n);return[Su(a,pe(o,"int32"),s,r)]}case"Reverse":{let s=k("dims",e,t,n),r=[];for(let o=0;o<s.length;o++)s[o]&&r.push(o);let a=k("x",e,t,n);return[Ns(a,r)]}case"ReverseV2":{let s=k("axis",e,t,n),r=k("x",e,t,n);return[Ns(r,s)]}case"Slice":{let s=k("begin",e,t,n),r=k("size",e,t,n);return[_e(k("x",e,t,n),s,r)]}case"StridedSlice":{let s=k("begin",e,t,n),r=k("end",e,t,n),a=k("strides",e,t,n),o=k("beginMask",e,t,n),i=k("endMask",e,t,n),l=k("ellipsisMask",e,t,n),c=k("newAxisMask",e,t,n),u=k("shrinkAxisMask",e,t,n),d=k("x",e,t,n);return[cv(d,s,r,a,o,i,l,c,u)]}case"Pack":return G(()=>{let s=k("axis",e,t,n),r=k("tensors",e,t,n),a=r[0].shape,o=ct(r[0]).shape,i=r.map(l=>{let c=v.arraysEqual(l.shape,a);if(!c&&!v.arraysEqual(ct(l).shape,o))throw new Error("the input tensors shape does not match");return c?l:V(l,a)});return[$n(i,s)]});case"Unpack":{let s=k("axis",e,t,n),r=k("tensor",e,t,n);return es(r,s)}case"Tile":{let s=k("reps",e,t,n);return[Gs(k("x",e,t,n),s)]}case"Split":case"SplitV":{let s=k("axis",e,t,n),r=k("numOrSizeSplits",e,t,n),a=k("x",e,t,n);return vn(a,r,s)}case"ScatterNd":{let s=k("indices",e,t,n),r=k("values",e,t,n),a=k("shape",e,t,n);return[Av(s,r,a)]}case"GatherNd":{let s=k("x",e,t,n),r=k("indices",e,t,n);return[yv(s,r)]}case"SparseToDense":{let s=k("sparseIndices",e,t,n),r=k("outputShape",e,t,n),a=k("sparseValues",e,t,n),o=k("defaultValue",e,t,n);return[o1(s,a,r,a.dtype===o.dtype?o:pe(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},bU=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:o}=xd.sparseFillEmptyRows(k("indices",e,t,n),k("values",e,t,n),k("denseShape",e,t,n),k("defaultValue",e,t,n));return[s,r,a,o]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=xd.sparseReshape(k("inputIndices",e,t,n),k("inputShape",e,t,n),k("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[xd.sparseSegmentMean(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];case"SparseSegmentSum":return[xd.sparseSegmentSum(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},vU=(e,t,n)=>{switch(e.op){case"FFT":return[af(k("x",e,t,n))];case"IFFT":return[Ad(k("x",e,t,n))];case"RFFT":return[of(k("x",e,t,n))];case"IRFFT":return[t1(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},wU=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=hf.stringNGrams(k("data",e,t,n),k("dataSplits",e,t,n),k("separator",e,t,n),k("nGramWidths",e,t,n),k("leftPad",e,t,n),k("rightPad",e,t,n),k("padWidth",e,t,n),k("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=hf.stringSplit(k("input",e,t,n),k("delimiter",e,t,n),k("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[hf.stringToHashBucketFast(k("input",e,t,n),k("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},kU=(e,t,n)=>{switch(e.op){case"Cast":return[pe(k("x",e,t,n),k("dtype",e,t,n))];case"ExpandDims":{let s=k("axis",e,t,n);return[Kt(k("x",e,t,n),s)]}case"Squeeze":{let s=k("axis",e,t,n);return[ct(k("x",e,t,n),s)]}case"Reshape":return[V(k("x",e,t,n),k("shape",e,t,n))];case"MirrorPad":return[nv(k("x",e,t,n),k("padding",e,t,n),k("mode",e,t,n))];case"PadV2":case"Pad":return[Hs(k("x",e,t,n),k("padding",e,t,n),k("constantValue",e,t,n))];case"SpaceToBatchND":{let s=k("blockShape",e,t,n),r=k("paddings",e,t,n);return[nf(k("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=k("blockShape",e,t,n),r=k("crops",e,t,n);return[jh(k("x",e,t,n),s,r)]}case"DepthToSpace":{let s=k("blockSize",e,t,n),r=k("dataFormat",e,t,n).toUpperCase();return[W3(k("x",e,t,n),s,r)]}case"BroadcastTo":return[cd(k("x",e,t,n),k("shape",e,t,n))];case"BroadcastArgs":return[_3(k("s0",e,t,n),k("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function a7(e,t,n,s){let r=((a,o,i)=>{switch(a.category){case"arithmetic":return G(()=>QV(a,o,i));case"basic_math":return G(()=>eU(a,o,i));case"control":return oU(a,o,i);case"convolution":return G(()=>iU(a,o,i));case"creation":return G(()=>lU(a,o,i));case"dynamic":return uU(a,o,i);case"evaluation":return G(()=>cU(a,o,i));case"image":return G(()=>fU(a,o,i));case"graph":return G(()=>dU(a,o,i));case"logical":return G(()=>mU(a,o,i));case"matrices":return G(()=>gU(a,o,i));case"normalization":return G(()=>AU(a,o,i));case"reduction":return G(()=>yU(a,o,i));case"slice_join":return G(()=>xU(a,o,i));case"sparse":return G(()=>bU(a,o,i));case"spectral":return G(()=>vU(a,o,i));case"string":return G(()=>wU(a,o,i));case"transformation":return G(()=>kU(a,o,i));case"hash_table":return hU(a,o,i,s);case"custom":let l=_k(a.op);if(l&&l.customExecutor)return l.customExecutor(new JV(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var o7=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function i7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,c=Object.keys(e).map(p=>ps(p)[0]),u=[];s!=null&&(u=s.map(p=>ps(p.name)[0]));let d=[...t];for(;d.length>0;){let p=d.pop();if((l7(p)||NU(p)||EU(p))&&o==null&&(o=p,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(p.name),n[p.name]==null&&c.indexOf(p.name)===-1&&u.indexOf(p.name)===-1){if(p.inputs.length===0){a.push(p.name);continue}p.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function SU(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(u=>ps(u)[0]).map(u=>e.nodes[u]),i=e.initNodes;o.forEach(u=>{s.has(u.name)&&a.push(u)}),e.weights.forEach(u=>{s.has(u.name)&&a.push(u)}),i!=null&&i.forEach(u=>{s.has(u.name)&&a.push(u)});let l=new Set,c=[];for(;a.length>0;){let u=a.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(d=>{!l.has(d.name)&&s.has(d.name)&&d.inputs.every(p=>l.has(p.name))&&a.push(d)})}return c}var IU=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],CU=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],TU=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function l7(e){return IU.indexOf(e.op)>=0}function NU(e){return CU.indexOf(e.op)>=0}function EU(e){return TU.indexOf(e.op)>=0}var my=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new my(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=i7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return SU(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(u=>this.graph.nodes[ps(u)[0]]),r=t.map(u=>ps(u)[0]),a=r.map(u=>this.graph.nodes[u]);a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},c={};return G(()=>{let u=new o7(this.weightMap,l,c,this.functionExecutorMap),d={...this.weightMap};Object.keys(e).forEach(f=>{let[m,g]=ps(f),A=[];A[g]=e[f],d[m]=A});let p=this.getFrozenTensorIds(d),h={};for(let f=0;f<i.length;f++){let m=i[f];if(!d[m.name]){let g=a7(m,d,u,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);d[m.name]=g,this.checkTensorForDisposal(m.name,m,d,u,p,r,h)}}return this.parent==null&&u.dispose(p),t.map(f=>Ln(f,d,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=$V(i.name,n,s);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!r.has(c.id)){let u=o[c.id];u===1?(c.dispose(),delete o[c.id]):u!=null&&o[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new o7(this.weightMap,s,r,this.functionExecutorMap),o=await this.executeWithControlFlow(e,a,t,n),i=t.map(d=>Ln(d,o,a)),l=i.map(d=>d.id),c=Object.keys(e).map(d=>e[d].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(o).forEach(d=>{o[d].forEach(h=>{h&&!h.kept&&!h.isDisposed&&!u.has(h.id)&&h.dispose()})}),this.parent==null&&a.dispose(u),i}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(x=>this.graph.nodes[ps(x)[0]]),o=n.map(x=>ps(x)[0]),i=o.map(x=>this.graph.nodes[x]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:d}=i7(e,i,this.weightMap,this._initNodes),p=[...a,...this.graph.weights,...this._initNodes||[]].map(x=>({node:x,contexts:t.currentContext})),h={...this.weightMap};Object.keys(e).forEach(x=>{let[y,b]=ps(x),w=[];w[b]=e[x],h[y]=w});let f={},m=this.getFrozenTensorIds(h),g={};for(;p.length>0;){let x=this.processStack(a,p,t,h,g,m,o,f,l);await Promise.all(x)}u==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let A=i.filter(x=>!l7(x)&&!Ln(x.name,h,t)).map(x=>x.name);if(A.length>0){let x="";throw u!=null&&(x=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${A}] from the provided inputs [${r}]. Consider providing the following inputs: [${c}]. ${x}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let d="";if(u.node.op==="Enter"&&k("isConstant",u.node,s,n)&&([d]=na(u.node.name,n)),s[u.node.name]==null){let p=a7(u.node,s,n,this._resourceManager);d||([d]=na(u.node.name,n));let h=n.currentContext;v.isPromise(p)?c.push(p.then(f=>(s[d]=f,n.currentContext=h,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l),f))):(s[d]=p,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l))}else this.processChildNodes(u.node,t,n,s,r,l)}return c}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=na(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!Ln(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!Ln(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=ps(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);v.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=ps(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=ps(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},RU=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},$U="?tfjs-format=file",DU="model.json",u7=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new RU}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Yn.browserHTTPRequest(e,this.loadOptions);else{let t=Yn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Yn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=Yn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new my(Qk.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=Qk.Instance.transformGraph(e.modelInitializer);this.initializer=new my(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Yn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Je)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function rt(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${DU}${$U}`);let n=new u7(e,t);return await n.load(),n}var _U="0.0.0",c7={};Me(c7,{CSVDataset:()=>S7,Dataset:()=>Lu,FileDataSource:()=>$7,TextLineDataset:()=>v7,URLDataSource:()=>D7,array:()=>nG,csv:()=>hG,func:()=>fG,generator:()=>mG,microphone:()=>AG,version_data:()=>yG,webcam:()=>gG,zip:()=>sG});var PU=Qo(Zp()),FU=Qo(Zp());function OU(e,t){return nm(e,t)}function nm(e,t,n=new Map,s=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(zu(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=nm(i,t,n,s);a[o]=l}return s.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function MU(e,t=p7){return d7(e,t)}function d7(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(zu(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(c=>c[o]),l=d7(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function p7(e){return e===null?null:zu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function h7(e,t){let n=new Map;nm(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(v.isPromise(a)){let o=await a;n.set(r,o)}}return nm(e,t,n)}function zu(e){let t=!1;if(K().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=s5();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Je)&&!(e instanceof Promise)&&!t)}function zU(e){return e==null||LU(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Je||v.isTypedArray(e)}function LU(e){return e===null||typeof e!="object"&&typeof e!="function"}function BU(e){return OU(e,WU)}function WU(e){return e instanceof Je?{value:e.clone(),recurse:!1}:zu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var f7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},m7=class extends f7{constructor(){super(m7.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}},g7=m7;g7.INITIAL_CAPACITY=32;function A7(e){return new GU(e)}function gy(e){return new HU(e)}function VU(e,t){return new x7(e,t)}function UU(e,t=sm.FAIL){return new eG(e,t)}var mn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new JU(this,e)}filter(e){return new ZU(this,e)}map(e){return new YU(this,e)}mapAsync(e){return new y7(this,e)}serialMapAsync(e){return new y7(this,e).serial()}flatmap(e){return new QU(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new KU(this,e,t)}columnMajorBatch(e,t=!0,n=p7){return this.rowMajorBatch(e,t).map(r=>MU(r,n))}concatenate(e,t){return new x7(A7([this,e]),t)}take(e){return e<0||e==null?this:new XU(this,e)}skip(e){return e<0||e==null?this:new qU(this,e)}prefetch(e){return new b7(this,e)}shuffle(e,t){return new tG(this,e,t)}serial(){return new jU(this)}},GU=class extends mn{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:BU(e),done:!1}}},HU=class extends mn{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},jU=class extends mn{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},qU=class extends mn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Y(e.value)}return this.upstream.next()}},XU=class extends mn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},KU=class extends mn{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},ZU=class extends mn{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Y(e.value)}}},YU=class extends mn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=nr.getTensorsInContainer(e.value),n=this.transform(e.value),s=nr.getTensorsInContainer(n);for(let r of t)nr.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},JU=class extends mn{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},y7=class extends mn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=nr.getTensorsInContainer(e.value),n=await this.transform(e.value),s=nr.getTensorsInContainer(n);for(let r of t)nr.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},Ay=class extends mn{constructor(){super();this.outputQueue=new g7,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},QU=class extends Ay{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=nr.getTensorsInContainer(e.value),n=this.transform(e.value),s=nr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)nr.isTensorInList(r,s)||r.dispose();return!0}},x7=class extends mn{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},sm;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(sm||(sm={}));var eG=class extends mn{constructor(e,t=0){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof mn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await h7(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case 0:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case 1:return{value:null,done:!0};case 2:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},b7=class extends mn{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new f7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},tG=class extends b7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=FU.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Lu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),hs(async()=>(await n.iterator()).columnMajorBatch(e,t,rG),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,hs(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,hs(async()=>(await t.iterator()).filter(s=>G(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return hs(async()=>(await t.iterator()).map(n=>G(()=>e(n))),this.size)}mapAsync(e){let t=this;return hs(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return hs(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,hs(async()=>{let s=gy(async()=>({value:await t.iterator(),done:!1}));return VU(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,hs(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=PU.alea(t||v.now().toString());return hs(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,hs(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Lu.MAX_BUFFER_SIZE=1e4;function hs(e,t=null){return new class extends Lu{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function nG(e){return hs(async()=>A7(e),e.length)}function sG(e){if(!zu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return hs(async()=>{let n=await h7(e,s=>{if(s instanceof Lu)return{value:s.iterator(),recurse:!1};if(zu(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return UU(n,sm.SHORTEST)},t)}function rG(e){if(e===null)return null;let t=e[0];return zU(t)?{value:aG(e),recurse:!1}:{value:null,recurse:!0}}function aG(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Je?$n(e):Gt(e)}var v7=class extends Lu{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},rm='"',Ld=Symbol("out"),w7=Symbol("field"),am=Symbol("quote"),yy=Symbol("quoteafterquote"),k7=Symbol("quoteinquote"),S7=class extends Lu{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new v7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let c=Number(i);if(isNaN(c))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=c;else switch(o.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(i);break;default:l=c}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=Ld;for(let o=0;o<r;o++)switch(a){case Ld:switch(e.charAt(o)){case rm:s=o+1,a=am;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=Ld;break;default:a=w7,s=o;break}break;case w7:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=Ld,s=o+1;break;default:}break;case am:switch(e.charAt(o)){case rm:a=yy;break;default:}break;case yy:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=Ld,s=o+1;break;case rm:a=am;break;default:a=k7;break}break;case k7:switch(e.charAt(o)){case rm:a=am;break;default:}break;default:}if(a===yy?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},I7=class extends mn{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(K().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new I7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),Gt(n,t)}},C7=class extends mn{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Zt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=ir([a,r,i,o],[1,4])}else this.cropBox=ir([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(K().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new C7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Vs.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return G(()=>{let t=Kt(pe(e,"float32"),0),n;n=$e.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return V(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},T7=class{},N7=class extends mn{split(e){return new oG(this,e)}},oG=class extends N7{constructor(e,t){super();this.upstream=e,this.impl=new iG(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},iG=class extends Ay{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},lG=class extends mn{decodeUTF8(){return new uG(this)}},uG=class extends N7{constructor(e){super();this.upstream=e,this.impl=new cG(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},cG=class extends Ay{constructor(e){super();if(this.upstream=e,K().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=s5();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return K().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},E7=class extends lG{constructor(e,t={}){super();this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(K().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function dG(e,t={},n){let s,r;typeof e=="string"?s=e:(s=e.url,r=pG(e));let a=await(n||v.fetch)(s,r);if(a.ok){let o=new Uint8Array(await a.arrayBuffer());return new E7(o,t)}else throw new Error(a.statusText)}var pG=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function R7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var $7=class extends T7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(R7(this.input)&&K().get("IS_NODE")){let e=Ls("fs");this.input=e.readFileSync(this.input.substr(7))}return new E7(this.input,this.options)}},D7=class extends T7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return R7(this.url)?new $7(this.url,this.fileOptions).iterator():dG(this.url,this.fileOptions)}};function hG(e,t={}){return new S7(new D7(e),t)}function fG(e){let t=gy(e);return hs(async()=>t)}function mG(e){return hs(async()=>{let t=await e();return gy(()=>t.next())})}async function gG(e,t){return C7.create(e,t)}async function AG(e){return I7.create(e)}var yG="0.0.0";function Te(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var xG=js.whereImpl,_7=class extends Ll{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new _c(this,Jn())}nextDataId(){return _7.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,K().get("IS_NODE")&&N.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return N.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch{throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}makeOutput(e,t,n){let s=this.write(e,t,n);return Jn().makeTensorFromDataId(s,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Te([e],"where");let t=this.readSync(e.dataId);return xG(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},xy=_7;xy.nextDataId=0;var om={};Me(om,{addImpl:()=>F7,bincountImpl:()=>vy,bincountReduceImpl:()=>O7,ceilImpl:()=>M7,concatImpl:()=>wy,equalImpl:()=>z7,expImpl:()=>B7,expm1Impl:()=>V7,floorImpl:()=>U7,gatherNdImpl:()=>G7,gatherV2Impl:()=>H7,greaterEqualImpl:()=>q7,greaterImpl:()=>j7,lessEqualImpl:()=>K7,lessImpl:()=>X7,linSpaceImpl:()=>Z7,logImpl:()=>Y7,maxImpl:()=>J7,maximumImpl:()=>Q7,minimumImpl:()=>eS,multiplyImpl:()=>ky,negImpl:()=>tS,notEqualImpl:()=>nS,prodImpl:()=>sS,rangeImpl:()=>Iy,rsqrtImpl:()=>rS,sigmoidImpl:()=>iH,simpleAbsImpl:()=>P7,sliceImpl:()=>um,sparseFillEmptyRowsImpl:()=>oS,sparseReshapeImpl:()=>iS,sparseSegmentReductionImpl:()=>Cy,sqrtImpl:()=>cH,squaredDifferenceImpl:()=>lS,stridedSliceImpl:()=>uS,stringNGramsImpl:()=>cS,stringSplitImpl:()=>dS,stringToHashBucketFastImpl:()=>pS,subImpl:()=>hS,tileImpl:()=>fS,topKImpl:()=>gS,transposeImpl:()=>Sy,uniqueImpl:()=>AS});function P7(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var bG=e=>{let{x:t}=e.inputs,n=e.backend;Te(t,"abs");let s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=P7(r),n.makeOutput(s,t.shape,t.dtype)},vG={kernelName:ni,backendName:"cpu",kernelFunc:bG};function Jt(e){return(t,n,s,r,a)=>{let o=N.assertAndGetBroadcastShape(t,n),i=o.length,l=v.computeStrides(o),c=v.sizeFromShape(o),u=v.getTypedArrayFromDType(a,c),d=t.length,p=n.length,h=v.computeStrides(t),f=v.computeStrides(n),m=N.getBroadcastDims(t,o),g=N.getBroadcastDims(n,o);if(m.length+g.length===0)for(let A=0;A<u.length;++A)u[A]=e(s[A%s.length],r[A%r.length]);else for(let A=0;A<u.length;++A){let x=v.indexToLoc(A,i,l),y=x.slice(-d);m.forEach(C=>y[C]=0);let b=v.locToIndex(y,d,h),w=x.slice(-p);g.forEach(C=>w[C]=0);let S=v.locToIndex(w,p,f);u[A]=e(s[b],r[S])}return[u,o]}}function fs(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var wG={kernelName:Mc,backendName:"cpu",kernelFunc:fs};function im(e,t,n="float32"){if(n==="complex64"){let r=im(e,t,"float32"),a=im(e,t,"float32");return fs({inputs:{real:r,imag:a},backend:e})}let s=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function Pr(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var kG={kernelName:Wa,backendName:"cpu",kernelFunc:Pr};function pl(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var SG={kernelName:jc,backendName:"cpu",kernelFunc:pl};function Oo(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Pr({inputs:{x:r},backend:n});let o=im(n,r.shape,r.dtype),i=Oo({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=fs({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=pl({inputs:{input:r},backend:n}),i=Oo({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Pr({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=v.toTypedArray([0],r.dtype),[l,c]=Jt((u,d)=>u!==d?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var IG={kernelName:Ta,backendName:"cpu",kernelFunc:Oo};function gn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Te([o,i],e);let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=o.dtype==="string"?N.fromUint8ToStringArray(c):c,p=o.dtype==="string"?N.fromUint8ToStringArray(u):u,h=s||o.dtype,[f,m]=t(o.shape,i.shape,d,p,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let c=Oo({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),d=u.complexTensorInfos.real,p=u.complexTensorInfos.imag,h=l.data.get(d.dataId).values,f=l.data.get(p.dataId).values,m=Oo({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),A=g.complexTensorInfos.real,x=g.complexTensorInfos.imag,y=l.data.get(A.dataId).values,b=l.data.get(x.dataId).values,[w,S,C]=n(o.shape,i.shape,h,f,y,b),E=l.makeTensorInfo(C,"float32",w),D=l.makeTensorInfo(C,"float32",S),O=fs({inputs:{real:E,imag:D},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(D),O}else{let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=s||o.dtype,[p,h]=t(o.shape,i.shape,c,u,d);return l.makeTensorInfo(h,d,p)}}}function by(e){return(t,n,s,r,a,o)=>{let i=N.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(i),c=i.length,u=v.computeStrides(i),d=v.getTypedArrayFromDType("float32",l),p=v.getTypedArrayFromDType("float32",l),h=N.getBroadcastDims(t,i),f=N.getBroadcastDims(n,i),m=N.mergeRealAndImagArrays(s,r),g=N.mergeRealAndImagArrays(a,o),A=t.length,x=v.computeStrides(t),y=n.length,b=v.computeStrides(n);if(h.length+f.length===0)for(let w=0;w<d.length;w++){let S=w%m.length,C=w%g.length,E=e(m[S*2],m[S*2+1],g[C*2],g[C*2+1]);d[w]=E.real,p[w]=E.imag}else for(let w=0;w<d.length;w++){let S=v.indexToLoc(w,c,u),C=S.slice(-A);h.forEach(F=>C[F]=0);let E=v.locToIndex(C,A,x),D=S.slice(-y);f.forEach(F=>D[F]=0);let O=v.locToIndex(D,y,b),_=e(m[E*2],m[E*2+1],g[O*2],g[O*2+1]);d[w]=_.real,p[w]=_.imag}return[d,p,i]}}var F7=Jt((e,t)=>e+t),CG=by((e,t,n,s)=>({real:e+n,imag:t+s})),Bd=gn(Ur,F7,CG),TG={kernelName:Ur,backendName:"cpu",kernelFunc:Bd};function vy(e,t,n,s,r){let a=v.sizeFromShape(s),o=v.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function O7(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=Be([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let c=e.get(i,l);if(c<0)throw new Error("Input x must be non-negative!");c>=n||(s?o.set(1,i,c):t.size>0?o.set(o.get(i,c)+t.get(i,l),i,c):o.set(o.get(i,c)+1,i,c))}return o}function Mo(e){return(t,n,s)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function mt(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Te(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=v.sizeFromShape(o.shape),u=n||o.dtype,d=v.getArrayFromDType(u,c);for(let p=0;p<c;++p)d[p]=t(l[p],r);return i.makeTensorInfo(o.shape,u,d)}}function Bu(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Te(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=n||o.dtype,u=t(l,c,r);return i.makeTensorInfo(o.shape,c,u)}}var M7=Mo(e=>Math.ceil(e)),NG=Bu(Na,M7),EG={kernelName:Na,backendName:"cpu",kernelFunc:NG};function wy(e,t,n,s){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=v.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?N.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let c=0;c<o.shape[0];++c){let u=c*t[1]+a;for(let d=0;d<o.shape[1];++d)r[u+d]=i[l++]}a+=o.shape[1]})}return r}var z7=Jt((e,t)=>e===t?1:0),L7=gn(li,z7,null,"bool"),RG={kernelName:li,backendName:"cpu",kernelFunc:L7},B7=Mo(e=>Math.exp(e)),W7=Bu(Oa,B7,"float32"),$G={kernelName:Oa,backendName:"cpu",kernelFunc:W7},V7=Mo(e=>Math.expm1(e)),DG=Bu(ci,V7),_G={kernelName:ci,backendName:"cpu",kernelFunc:DG},U7=Mo(e=>Math.floor(e)),PG=Bu(Ma,U7),FG={kernelName:Ma,backendName:"cpu",kernelFunc:PG};function G7(e,t,n,s,r,a,o,i,l){let c=Be([s,a],n);for(let u=0;u<s;u++){let d=[],p=0;for(let h=0;h<r;h++){let f=e[u*r+h];p+=f*o[h],d.push(f)}if(p<0||p>=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let h=0;h<a;h++)c.values[u*a+h]=t.get(...t.indexToLoc(p*a+h))}return c}function H7(e,t,n){let s=Be(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],c=t.locToIndex([i,l]);o[2]=t.values[c];let u=e.locToIndex(o);s.values[r]=e.values[u]}return s}var j7=Jt((e,t)=>e>t?1:0),OG=gn(fi,j7,null,"bool"),MG={kernelName:fi,backendName:"cpu",kernelFunc:OG},q7=Jt((e,t)=>e>=t?1:0),zG=gn(Ba,q7,null,"bool"),LG={kernelName:Ba,backendName:"cpu",kernelFunc:zG},X7=Jt((e,t)=>e<t?1:0),BG=gn(gi,X7,null,"bool"),WG={kernelName:gi,backendName:"cpu",kernelFunc:BG},K7=Jt((e,t)=>e<=t?1:0),VG=gn(Ai,K7,null,"bool"),UG={kernelName:Ai,backendName:"cpu",kernelFunc:VG};function Z7(e,t,n){let s=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var Y7=Mo(e=>Math.log(e)),GG=Bu(Va,Y7),HG={kernelName:Va,backendName:"cpu",kernelFunc:GG};function J7(e,t,n,s){let r=v.getTypedArrayFromDType(s,v.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let c=e[o+l];(Number.isNaN(c)||c>i)&&(i=c)}r[a]=i}return r}var Q7=Jt((e,t)=>Math.max(e,t)),jG=gn(Ga,Q7),qG={kernelName:Ga,backendName:"cpu",kernelFunc:jG},eS=Jt((e,t)=>Math.min(e,t)),XG=gn(Xa,eS),KG={kernelName:Xa,backendName:"cpu",kernelFunc:XG},ky=Jt((e,t)=>e*t),ZG=by((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),lm=gn(Za,ky,ZG),YG={kernelName:Za,backendName:"cpu",kernelFunc:lm};function tS(e,t,n){let s=v.createScalarValue(-1,n);return ky([],t,s,e,n)}function JG(e){let{inputs:t,backend:n}=e,{x:s}=t;Te(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=tS(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var QG={kernelName:xi,backendName:"cpu",kernelFunc:JG},nS=Jt((e,t)=>e!==t?1:0),eH=gn(bi,nS,null,"bool"),tH={kernelName:bi,backendName:"cpu",kernelFunc:eH};function Sy(e,t,n,s,r){let a=t.length,o=v.sizeFromShape(t),i=v.computeStrides(t),l=v.computeStrides(r),c=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let u=0;u<o;++u){let d=v.indexToLoc(u,a,i),p=new Array(d.length);for(let f=0;f<p.length;f++)p[f]=d[s[f]];let h=v.locToIndex(p,a,l);c[h]=e[u]}return c}function Rs(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;Te(r,"transpose");let o=r.shape.length,i=new Array(o);for(let d=0;d<i.length;d++)i[d]=r.shape[a[d]];let l=s.data.get(r.dataId).values,c=Sy(l,r.shape,r.dtype,a,i);return{dataId:s.write(c,i,r.dtype),shape:i,dtype:r.dtype}}var nH={kernelName:ho,backendName:"cpu",kernelFunc:Rs};function sS(e,t,n,s){let[r,a]=N.computeOutAndReduceShapes(e,s),o=On(t,"int32"),i=v.makeZerosTypedArray(v.sizeFromShape(r),o),l=v.sizeFromShape(a);for(let c=0;c<i.length;++c){let u=c*l,d=1;for(let p=0;p<l;++p)d*=n[u+p];i[c]=d}return{outVals:i,outShape:r,outDtype:o}}function sH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"prod");let i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=N.getAxesPermutation(l,i),u=l,d=r,p=[];c!=null&&(d=Rs({inputs:{x:r},backend:n,attrs:{perm:c}}),p.push(d),u=N.getInnerMostAxes(u.length,i));let h=n.data.get(d.dataId).values,{outVals:f,outShape:m,outDtype:g}=sS(d.shape,d.dtype,h,u),A=m;return o&&(A=N.expandShapeToKeepDim(m,l)),p.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.makeTensorInfo(A,g,f)}var rH={kernelName:Ci,backendName:"cpu",kernelFunc:sH};function Iy(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return v.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}var rS=Mo(e=>1/Math.sqrt(e)),aH=Bu(so,rS),oH={kernelName:so,backendName:"cpu",kernelFunc:aH},iH=Mo(e=>1/(1+Math.exp(-e))),aS=mt(ao,e=>1/(1+Math.exp(-e))),lH={kernelName:ao,backendName:"cpu",kernelFunc:aS};function um(e,t,n,s,r){let a=Ft.isSliceContinous(s,t,n),o=v.sizeFromShape(n),i=v.computeStrides(s);if(a){let d=Ft.computeFlatOffset(t,i);return r==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=r==="string"?N.fromUint8ToStringArray(e):e,c=Be(s,r,l),u=Be(n,r);for(let d=0;d<u.size;++d){let p=u.indexToLoc(d),h=p.map((f,m)=>f+t[m]);u.set(c.get(...h),...p)}return r==="string"?N.fromStringArrayToUint8(u.values):u.values}function hl(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Te(r,"slice");let[i,l]=Ft.parseSliceParams(r,a,o);Ft.assertParamsValid(r,i,l);let c=n.data.get(r.dataId).values,u=um(c,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,u)}var uH={kernelName:Di,backendName:"cpu",kernelFunc:hl};function oS(e,t,n,s,r,a,o){let i=t[0],l=a[0],c=new Array(l),u=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${i}`);let g=v.getArrayFromDType(n,0),A=v.getArrayFromDType(r,0);return[g,[0,d],A,c,u]}let p=!0,h=0,f=new Array(l).fill(0);for(let g=0;g<i;++g){let A=e[g*d];if(A<0)throw new Error(`indices(${g}, 0) is invalid: ${A} < 0`);if(A>=l)throw new Error(`indices(${g}, 0) is invalid: ${A} >= ${l}`);++f[A],p=p&&A>=h,h=A}let m=!0;for(let g=0;g<l;++g){let A=f[g]===0;c[g]=A,m=m&&!A,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&p){let g=e,A=s;for(let x=0;x<i;++x)u[x]=x;return[g,[i,d],A,c,u]}else{let g=f[l-1],A=v.getArrayFromDType(n,g*d),x=v.getArrayFromDType(r,g),y=new Array(l).fill(0);for(let b=0;b<i;++b){let w=e[b*d],S=y[w],C=(w===0?0:f[w-1])+S;y[w]++;for(let E=0;E<d;++E)A[C*d+E]=e[b*d+E];x[C]=s[b],u[b]=C}for(let b=0;b<l;++b)if(y[b]===0){let S=b===0?0:f[b-1];A[S*d+0]=b;for(let C=1;C<d;++C)A[S*d+C]=0;x[S]=o}return[A,[g,d],x,c,u]}}function iS(e,t,n,s,r){let a=v.sizeFromShape(s),o=t[0],i=r.length,l=[],c=1,u=-1;for(let g=0;g<i;++g){let A=r[g];if(A===-1){if(u!==-1)throw new Error(`only one output dimension may be -1, not both ${u} and ${g}`);u=g,l.push(1)}else{if(A<0)throw new Error(`size ${g} must be non-negative, not ${A}`);c*=A,l.push(A)}}if(u!==-1){if(c<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let g=Math.trunc(a/c);if(c*g!==a)throw new Error(`Input to reshape is a SparseTensor with ${a}
|
|
dense values, but the requested shape requires a multiple of ${c}. inputShape=${s} outputShape= ${l}`);l[u]=g}let d=v.sizeFromShape(l);if(d!==a)throw new Error(`Input to reshape is a tensor with ${a} dense values, but the requested shape has ${d}. inputShape=${s} outputShape=${l}`);let p=s.length,h=[];if(p>0){h[p-1]=1;for(let g=p-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=v.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let A=0;for(let x=0;x<p;++x)A+=e[g*p+x]*h[x];for(let x=0;x<i;++x)m[g*i+x]=Math.trunc(A/f[x]),A%=f[x]}return[m,[o,i],l]}function Cy(e,t,n,s,r,a=!1,o=0){let i=s.length;if(i!==r.length)throw new Error("segmentIds and indices should have same size.");let l=[t[0],e.length/t[0]],c=l[1],d=i>0?r[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let p=t.slice();p[0]=d;let h=p.reduce((y,b)=>y*b,1),f=v.getArrayFromDType(n,h);if(i===0)return d>0&&f.fill(o),[f,p];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,g=1,A=0,x=r[m];for(;;){let y=0;if(g<i){if(y=r[g],x===y){++g;continue}if(x>=y)throw new Error("segment ids are not increasing")}if(x<0||x>=d)throw new Error(`Segment id ${x} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);x>A&&f.fill(o,A*c,x*c);for(let b=m;b<g;++b){let w=s[b];if(w<0||w>=l[0])throw new Error(`Bad: indices[${b}] == ${s[b]} out of range [0, ${l[0]})`);for(let S=0;S<c;S++)f[x*c+S]+=e[w*c+S]}if(a)for(let b=0;b<c;b++)f[x*c+b]/=g-m;if(m=g,++g,A=x+1,x=y,g>i)break}return A<d&&f.fill(o,A*c,d*c),[f,p]}var cH=Mo(e=>Math.sqrt(e)),dH=mt(oo,e=>Math.sqrt(e)),pH={kernelName:oo,backendName:"cpu",kernelFunc:dH},lS=Jt((e,t)=>{let n=e-t;return n*n}),hH=gn(uo,lS),fH={kernelName:uo,backendName:"cpu",kernelFunc:hH};function uS(e,t,n,s){let r=Be(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var mH=class{constructor(e,t,n,s,r,a){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(n),this.rightPad=v.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),c=Math.max(0,i-(r-(o+1))),u=a-(l+c),d=t+(l>0?0:o-i),p=0;p+=l*this.leftPad.length;for(let A=0;A<u;++A)p+=e[d+A].length;p+=c*this.rightPad.length,p+=(l+c+u-1)*this.separator.length,n[s+o]=new Uint8Array(p);let f=n[s+o],m=0,g=A=>A.forEach(x=>f[m++]=x);for(let A=0;A<l;++A)g(this.leftPad),g(this.separator);for(let A=0;A<u-1;++A)g(e[d+A]),g(this.separator);if(u>0){g(e[d+u-1]);for(let A=0;A<c;++A)g(this.separator),g(this.rightPad)}else{for(let A=0;A<c-1;++A)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let c=t[l]>=i;if(c=c&&t[l]<=n,!c)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=v.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],c=0;this.nGramWidths.forEach(u=>{c+=this.getNumNGrams(l,u)}),this.preserveShort&&l>0&&c===0&&(c=1),a[i]=a[i-1]+c}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],c=a[i];if(this.nGramWidths.forEach(u=>{let d=t[i+1]-t[i],p=this.getNumNGrams(d,u);this.createNGrams(e,l,o,c,p,u),c+=p}),this.preserveShort&&c===a[i]){let u=t[i+1]-t[i];if(u===0)continue;let d=u+2*this.padWidth,p=1;this.createNGrams(e,l,o,c,p,d)}}return[o,a]}};function cS(e,t,n,s,r,a,o,i){return new mH(n,s,r,a,o,i).compute(e,t)}function gH(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&s.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}}function dS(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let p=0;p<s;++p){let h=r.length;gH(e[p],t,n,r);let f=r.length-h;i[p]=f,a+=f,o=Math.max(o,f)}let l=v.getArrayFromDType("int32",a*2),c=new Array(a),u=[s,o],d=0;for(let p=0;p<s;++p)for(let h=0;h<i[p];++h)l[d*2]=p,l[d*2+1]=h,c[d]=r[d],++d;return[l,c,u]}function pS(e,t){let n=v.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=v.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var hS=Jt((e,t)=>e-t),AH=by((e,t,n,s)=>({real:e-n,imag:t-s})),Ty=gn(co,hS,AH),yH={kernelName:co,backendName:"cpu",kernelFunc:Ty};function fS(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=Be(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var Wd=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function mS(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,c=Math.log(i),u=.5*Math.exp(2*c/3),d=.5*Math.sqrt(c*u*(i-u)/i)*Math.sign(l-i/2),p=Math.max(n,Math.floor(t-l*u/i+d)),h=Math.min(s,Math.floor(t+(i-l)*u/i+d));mS(e,t,p,h)}let r=e[t],a=n,o=s;for(v.swap(e,n,t),Wd(e[s],r)>0&&v.swap(e,n,s);a<o;){for(v.swap(e,a,o),a++,o--;Wd(e[a],r)<0;)a=a+1;for(;Wd(e[o],r)>0;)o=o-1}Wd(e[n],r)===0?v.swap(e,n,o):(o=o+1,v.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function gS(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=v.getTypedArrayFromDType(n,o*s),c=v.getTypedArrayFromDType("int32",o*s);for(let d=0;d<o;d++){let p=d*i,h=e.subarray(p,p+i),f=new Array(h.length);h.forEach((x,y)=>f[y]={value:x,index:y}),s<f.length&&(mS(f,s),f=f.slice(0,s)),r&&f.sort(Wd);let m=d*s,g=l.subarray(m,m+s),A=c.subarray(m,m+s);for(let x=0;x<s;x++)g[x]=f[x].value,A[x]=f[x].index}let u=t.slice();return u[u.length-1]=s,[Be(u,n,l),Be(u,"int32",c)]}function AS(e,t,n,s){let r=v.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[r]),l=new sn(a,s,e),c=[],u=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(u)m=e[f].toString();else{let g=[];for(let A=0;A<a[0];A++)for(let x=0;x<a[2];x++)g.push(l.get(A,f,x));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,c.push(f)}}let d=a.slice();d[1]=Object.keys(o).length;let p=new sn(d,s);c.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let A=0;A<a[2];A++)p.set(l.get(g,f,A),g,m,A)});let h=n.slice();return h[r]=d[1],{outputValues:p.values,outputShape:h,indices:i}}var xH="0.0.0";Yi("cpu",()=>new xy,1);var yS=mt(Fa,e=>e>=0?e:Math.exp(e)-1),bH={kernelName:Fa,backendName:"cpu",kernelFunc:yS};function xS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Te([r],"leakyRelu");let o=v.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",o);for(let c=0;c<i.length;c++)l[c]=i[c]<0?a*i[c]:i[c];return n.makeTensorInfo(r.shape,"float32",l)}var vH={kernelName:mi,backendName:"cpu",kernelFunc:xS},wH=Jt((e,t)=>e<0?t*e:e);function bS(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Te([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=wH(s.shape,r.shape,a,o,"float32");return n.makeTensorInfo(l,"float32",i)}var kH={kernelName:Qa,backendName:"cpu",kernelFunc:bS},vS=mt(eo,e=>Math.max(0,e)),SH={kernelName:eo,backendName:"cpu",kernelFunc:vS},wS=mt(no,e=>Math.min(Math.max(0,e),6)),IH={kernelName:no,backendName:"cpu",kernelFunc:wS};function Ny(e,t,n,s,r){if(n==="linear")return Pr({inputs:{x:t},backend:e});if(n==="relu")return vS({inputs:{x:t},backend:e});if(n==="elu")return yS({inputs:{x:t},backend:e});if(n==="relu6")return wS({inputs:{x:t},backend:e});if(n==="prelu")return bS({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return xS({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return aS({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function $t(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=v.sizeFromShape(r.shape),i=v.inferFromImplicitShape(a,o),l=v.sizeFromShape(i);v.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let c=n.data.get(r.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,d=c.complexTensorInfos.imag;u.shape=i,d.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var CH={kernelName:Ti,backendName:"cpu",kernelFunc:$t};function kS(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Te([r,a],"matMul");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),A=v.sizeFromShape(m),y=Xi.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([p,h]);v.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,u,p]:[g,p,u],w=i?[A,h,d]:[A,d,h],S=$t({inputs:{x:r},backend:n,attrs:{shape:b}}),C=$t({inputs:{x:a},backend:n,attrs:{shape:w}}),E=o?S.shape[1]:S.shape[2],D=o?S.shape[2]:S.shape[1],O=i?C.shape[1]:C.shape[2],_=Math.max(g,A),F=n.data.get(S.dataId).values,T=n.data.get(C.dataId).values,M=v.computeStrides(S.shape),U=v.computeStrides(C.shape),[q,j,X]=o?[M[0],1,M[1]]:[M[0],M[1],1],[J,te,ne]=i?[1,U[1],U[0]]:[U[1],1,U[0]],ae=D*O,se=Be([_,D,O],S.dtype),re=se.values,ue=n.blockSize;for(let ye=0;ye<_;ye++)for(let ve=0;ve<D;ve+=ue)for(let Ie=0;Ie<O;Ie+=ue)for(let Ee=0;Ee<E;Ee+=ue){let ze=Math.min(ve+ue,D),Ue=Math.min(Ie+ue,O),qe=Math.min(Ee+ue,E);for(let Ye=ve;Ye<ze;Ye++)for(let pt=Ie;pt<Ue;pt++){let ht=0;for(let it=Ee;it<qe;it++){let St=Math.min(ye,g-1)*q,gt=Math.min(ye,A-1)*ne,Tt=F[St+Ye*j+it*X],_t=T[it*J+pt*te+gt];ht+=Tt*_t}re[ye*ae+(Ye*O+pt)]+=ht}}return n.disposeIntermediateTensorInfo(S),n.disposeIntermediateTensorInfo(C),n.makeTensorInfo(y,se.dtype,se.values)}var TH={kernelName:Ca,backendName:"cpu",kernelFunc:kS};function NH(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s,p,h,f,m=[];p=kS({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:c},backend:n}),o&&(h=Bd({inputs:{a:p,b:o},backend:n}),m.push(p),p=h),u&&(f=Ny(n,p,u,i,d),m.push(p),p=f);for(let A of m)n.disposeIntermediateTensorInfo(A);return p}var EH={kernelName:mo,backendName:"cpu",kernelFunc:NH},RH=mt(Vl,e=>Math.acos(e)),$H={kernelName:Vl,backendName:"cpu",kernelFunc:RH},DH=mt(Ul,e=>Math.acosh(e)),_H={kernelName:Ul,backendName:"cpu",kernelFunc:DH};function PH(e){let{inputs:t,backend:n}=e,s=t;Te(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=Be(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let c=0;c<o.length;c++)o[c]+=l[c]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var FH={kernelName:ka,backendName:"cpu",kernelFunc:PH};function OH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"all");let i=v.parseAxisParam(a,r.shape),l=i,c=N.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Rs({inputs:{x:r},backend:n,attrs:{perm:c}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("all",l,u.shape.length);let[d,p]=N.computeOutAndReduceShapes(u.shape,l),h=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let x=A*h,y=m[x];for(let b=0;b<h;++b){let w=m[x+b];y=y&&w}f[A]=y}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=N.expandShapeToKeepDim(d,i),x=$t({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),x}return g}var MH={kernelName:Gl,backendName:"cpu",kernelFunc:OH};function zH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"any");let i=v.parseAxisParam(a,r.shape),l=i,c=N.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Rs({inputs:{x:r},backend:n,attrs:{perm:c}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("any",l,u.shape.length);let[d,p]=N.computeOutAndReduceShapes(u.shape,l),h=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let x=A*h,y=m[x];for(let b=0;b<h;++b){let w=m[x+b];y=y||w}f[A]=y}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=N.expandShapeToKeepDim(d,i),x=$t({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),x}return g}var LH={kernelName:Hl,backendName:"cpu",kernelFunc:zH};function BH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Te(r,"argMax");let o=v.parseAxisParam(a,r.shape),i=N.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Rs({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=N.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],N.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[u,d]=N.computeOutAndReduceShapes(l.shape,o),p=v.sizeFromShape(u),h=v.makeZerosTypedArray(p,"int32"),f=v.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,x=m[A],y=0;for(let b=0;b<f;++b){let w=m[A+b];w>x&&(x=w,y=b)}h[g]=y}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var WH={kernelName:Sa,backendName:"cpu",kernelFunc:BH};function VH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Te(r,"argMin");let o=v.parseAxisParam(a,r.shape),i=N.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Rs({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=N.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],N.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[u,d]=N.computeOutAndReduceShapes(l.shape,o),p=v.sizeFromShape(u),h=v.makeZerosTypedArray(p,"int32"),f=v.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,x=m[A],y=0;for(let b=0;b<f;++b){let w=m[A+b];w<x&&(x=w,y=b)}h[g]=y}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var UH={kernelName:jl,backendName:"cpu",kernelFunc:VH},GH=mt(ql,e=>Math.asin(e)),HH={kernelName:ql,backendName:"cpu",kernelFunc:GH},jH=mt(Xl,e=>Math.asinh(e)),qH={kernelName:Xl,backendName:"cpu",kernelFunc:jH},XH=mt(Kl,e=>Math.atan(e)),KH={kernelName:Kl,backendName:"cpu",kernelFunc:XH},ZH=Jt((e,t)=>Math.atan2(e,t)),YH=gn(Yl,ZH),JH={kernelName:Yl,backendName:"cpu",kernelFunc:YH},QH=mt(Zl,e=>Math.atanh(e)),ej={kernelName:Zl,backendName:"cpu",kernelFunc:QH};function Ey(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,c=r.dilationWidth,u=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Be(r.outShape,n),g=m.values,A=r.outShape[1]*r.outShape[2]*r.outShape[3],x=r.outShape[2]*r.outShape[3],y=r.outShape[3];for(let b=0;b<r.batchSize;++b){let w=b*A,S=b*s[0];for(let C=0;C<r.inChannels;++C)for(let E=0;E<r.outHeight;++E){let D=E*o-p,O=Math.max(0,D),_=Math.min(r.inHeight,u+D),F=w+E*x;for(let T=0;T<r.outWidth;++T){let M=T*i-h,U=Math.max(0,M),q=Math.min(r.inWidth,d+M),j=f,X=0,J=0;for(let ne=O;ne<_;ne+=l){let ae=S+ne*s[1];for(let se=U;se<q;se+=c){let re=ae+se*s[2],ue=e[re+C];a==="max"&&ue>j?j=ue:a==="avg"&&(X+=ue,J++)}if(isNaN(j))break}let te=F+T*y+C;g[te]=a==="avg"?X/J:j}}}return m}function SS(e,t,n,s,r=!1,a=!1){let o=Be(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,c=s.dilationHeight,u=s.dilationWidth,d=s.effectiveFilterHeight,p=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=Be(t,n,e);for(let g=0;g<s.batchSize;++g)for(let A=0;A<s.inChannels;++A)for(let x=0;x<s.outHeight;++x){let y=x*i-h,b=y;for(;b<0;)b+=c;let w=Math.min(s.inHeight,d+y);for(let S=0;S<s.outWidth;++S){let C=S*l-f,E=C;for(;E<0;)E+=u;let D=Math.min(s.inWidth,p+C),O=Number.NEGATIVE_INFINITY,_=-1;for(let F=b;F<w;F+=c){let T=F-y;for(let M=E;M<D;M+=u){let U=M-C,q=m.get(g,F,M,A);q>O&&(O=q,r?_=a?((g*s.inHeight+F)*s.inWidth+M)*s.inChannels+A:(F*s.inWidth+M)*s.inChannels+A:_=T*p+U)}}o.set(_,g,x,S,A)}}return o}function IS(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,c=r.dilationDepth,u=r.dilationHeight,d=r.dilationWidth,p=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,A=r.padInfo.left,x=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,y=Be(r.outShape,n),b=y.values,w=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[2]*r.outShape[3]*r.outShape[4],C=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let D=0;D<r.batchSize;++D){let O=D*w,_=D*s[0];for(let F=0;F<r.inChannels;++F)for(let T=0;T<r.outDepth;++T){let M=T*o-m,U=M;for(;U<0;)U+=c;let q=Math.min(r.inDepth,p+M),j=O+T*S;for(let X=0;X<r.outHeight;++X){let J=X*i-g,te=J;for(;te<0;)te+=u;let ne=Math.min(r.inHeight,h+J),ae=j+X*C;for(let se=0;se<r.outWidth;++se){let re=se*l-A,ue=re;for(;ue<0;)ue+=d;let ye=Math.min(r.inWidth,f+re),ve=ae+se*E,Ie=x,Ee=0,ze=0;for(let qe=U;qe<q;qe+=c){let Ye=_+qe*s[1];for(let pt=te;pt<ne;pt+=u){let ht=Ye+pt*s[2];for(let it=ue;it<ye;it+=d){let St=ht+it*s[3],gt=e[St+F];if(a==="max"&>>Ie?Ie=gt:a==="avg"&&(Ee+=gt,ze++),isNaN(Ie))break}if(isNaN(Ie))break}if(isNaN(Ie))break}let Ue=ve+F;b[Ue]=a==="avg"?Ee/ze:Ie}}}}return y}function tj(e,t){let n=Be(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,d=t.effectiveFilterWidth,p=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let A=0;A<t.outDepth;++A){let x=A*s-p,y=x;for(;y<0;)y+=o;let b=Math.min(t.inDepth,c+x);for(let w=0;w<t.outHeight;++w){let S=w*r-h,C=S;for(;C<0;)C+=i;let E=Math.min(t.inHeight,u+S);for(let D=0;D<t.outWidth;++D){let O=D*a-f,_=O;for(;_<0;)_+=l;let F=Math.min(t.inWidth,d+O),T=Number.NEGATIVE_INFINITY,M=-1;for(let U=y;U<b;U+=o){let q=U-x;for(let j=C;j<E;j+=i){let X=j-S;for(let J=_;J<F;J+=l){let te=J-O,ne=e.get(m,U,j,J,g);ne>=T&&(T=ne,M=q*u*d+X*u+te)}}}n.set(M,m,A,w,D,g)}}}return n}function nj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Te(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(N.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=N.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))d=Pr({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=Ey(p,r.shape,r.dtype,h,u,"avg");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var sj={kernelName:Ia,backendName:"cpu",kernelFunc:nj};function rj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Te(r,"avgPool3d");let u=N.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=IS(d,r.shape,r.dtype,v.computeStrides(r.shape),u,"avg");return n.makeTensorInfo(p.shape,"float32",p.values)}var aj={kernelName:Oc,backendName:"cpu",kernelFunc:rj};function oj(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Te([r,a],"avgPool3DGrad");let u=N.computePool3DInfo(a.shape,o,i,1,l,c),d=u.strideDepth,p=u.strideHeight,h=u.strideWidth,f=u.filterDepth,m=u.filterHeight,g=u.filterWidth,A=u.dilationDepth,x=u.dilationHeight,y=u.dilationWidth,b=u.effectiveFilterDepth,w=u.effectiveFilterHeight,S=u.effectiveFilterWidth,C=b-1-u.padInfo.front,E=S-1-u.padInfo.left,D=w-1-u.padInfo.top,O=Be(a.shape,"float32"),_=1/(f*m*g),F=n.bufferSync(r);for(let T=0;T<u.batchSize;++T)for(let M=0;M<u.inChannels;++M)for(let U=0;U<u.inDepth;++U)for(let q=0;q<u.inHeight;++q)for(let j=0;j<u.inWidth;++j){let X=U-C,J=q-D,te=j-E,ne=0;for(let ae=0;ae<b;ae+=A){let se=(X+ae)/d;if(!(se<0||se>=u.outDepth||Math.floor(se)!==se))for(let re=0;re<w;re+=x){let ue=(J+re)/p;if(!(ue<0||ue>=u.outHeight||Math.floor(ue)!==ue))for(let ye=0;ye<S;ye+=y){let ve=(te+ye)/h;if(ve<0||ve>=u.outWidth||Math.floor(ve)!==ve)continue;ne+=F.get(T,se,ue,ve,M)}}}O.set(ne*_,T,U,q,j,M)}return n.makeTensorInfo(O.shape,O.dtype,O.values)}var ij={kernelName:nh,backendName:"cpu",kernelFunc:oj};function lj(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Te([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=N.computePool2DInfo(o.shape,i,l,1,c),d=u.strideHeight,p=u.strideWidth,h=u.filterHeight,f=u.filterWidth,m=u.dilationHeight,g=u.dilationWidth,A=u.effectiveFilterHeight,x=u.effectiveFilterWidth,y=x-1-u.padInfo.left,b=A-1-u.padInfo.top,w=Be(o.shape,"float32"),S=1/(h*f),C=n.data.get(r.dataId).values,E=Be(r.shape,"float32",C);for(let D=0;D<u.batchSize;++D)for(let O=0;O<u.inChannels;++O)for(let _=0;_<u.inHeight;++_)for(let F=0;F<u.inWidth;++F){let T=_-b,M=F-y,U=0;for(let q=0;q<A;q+=m){let j=(T+q)/d;if(!(j<0||j>=u.outHeight||Math.floor(j)!==j))for(let X=0;X<x;X+=g){let J=(M+X)/p;if(J<0||J>=u.outWidth||Math.floor(J)!==J)continue;U+=E.get(D,j,J,O)}}w.set(U*S,D,_,F,O)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var uj={kernelName:th,backendName:"cpu",kernelFunc:lj};function cj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;v.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Te([r,i,l,a,o],"batchNorm");let{varianceEpsilon:c}=s;c==null&&(c=.001);let u=n.data.get(r.dataId).values,d=n.data.get(i.dataId).values,p=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(u.length),g=f.length,A=h.length,x=p.length,y=d.length,b=0,w=0,S=0,C=0;for(let E=0;E<u.length;++E)m[E]=f[b++]+(u[E]-d[w++])*h[S++]/Math.sqrt(p[C++]+c),b>=g&&(b=0),w>=y&&(w=0),S>=A&&(S=0),C>=x&&(C=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var dj={kernelName:La,backendName:"cpu",kernelFunc:cj};function pj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Te([r],"batchToSpaceND");let i=a.reduce((A,x)=>A*x),l=N.getReshaped(r.shape,a,i),c=N.getPermuted(l.length,a.length),u=N.getReshapedPermuted(r.shape,a,i),d=N.getSliceBeginCoords(o,a.length),p=N.getSliceSize(u,o,a.length),h=$t({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Rs({inputs:{x:h},backend:n,attrs:{perm:c}}),m=$t({inputs:{x:f},backend:n,attrs:{shape:u}}),g=hl({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var hj={kernelName:si,backendName:"cpu",kernelFunc:pj};function fj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=vy(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var mj={kernelName:sh,backendName:"cpu",kernelFunc:fj};function gj(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=N.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var Aj={kernelName:rh,backendName:"cpu",kernelFunc:gj},yj=mt(Gr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),xj={kernelName:Gr,backendName:"cpu",kernelFunc:yj},bj=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let c=0;c<i.length;c++){let u=i[c],d=l[c];s[c]=Math.hypot(u,d)}return n.makeOutput(s,t.shape,"float32")},vj={kernelName:zc,backendName:"cpu",kernelFunc:bj};function Wu(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var wj={kernelName:Vc,backendName:"cpu",kernelFunc:Wu};function Vu(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=N.computeOutShape(t.map(m=>m.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>v.sizeFromShape(m.shape)>0);if(i.length===1)return Pr({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(N.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>pl({inputs:{input:b},backend:n})),g=i.map(b=>Wu({inputs:{input:b},backend:n})),A=Vu({inputs:m,backend:n,attrs:{axis:a}}),x=Vu({inputs:g,backend:n,attrs:{axis:a}}),y=fs({inputs:{real:A,imag:x},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(x),y}let c=i.map(m=>{let g=v.sizeFromShape(m.shape.slice(a));return $t({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),u=c.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=N.computeOutShape(c.map(m=>m.shape),1);let d=c[0].shape[0]===1,p=wy(u,o,t[0].dtype,d),h=N.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,p);return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var kj={kernelName:ri,backendName:"cpu",kernelFunc:Vu};function CS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s;Te([r,a],"conv2d");let d=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,A=p.padInfo.left,x=p.padInfo.top,y=p.dataFormat==="channelsLast",b=new sn(p.outShape,r.dtype),w=v.computeStrides(r.shape),S=v.computeStrides(a.shape),C=w[0],E=y?w[1]:w[2],D=y?w[2]:1,O=y?1:w[1],_=b.strides[0],F=y?b.strides[1]:b.strides[2],T=y?b.strides[2]:1,M=y?1:b.strides[1],U=n.data.get(r.dataId).values,q=n.data.get(a.dataId).values,j=b.values;for(let X=0;X<p.batchSize;++X){let J=X*C,te=X*_;for(let ne=0;ne<p.outHeight;++ne){let ae=te+ne*F,se=ne*p.strideHeight-x;for(let re=0;re<h;++re){let ue=se+re*m;if(ue<0||ue>=p.inHeight)continue;let ye=re*S[0],ve=J+ue*E;for(let Ie=0;Ie<p.outWidth;++Ie){let Ee=ae+Ie*T,ze=Ie*p.strideWidth-A;for(let Ue=0;Ue<f;++Ue){let qe=ze+Ue*g;if(qe<0||qe>=p.inWidth)continue;let Ye=ye+Ue*S[1],pt=ve+qe*D,ht=Ye;for(let it=0;it<p.inChannels;++it){let St=U[pt+it*O];for(let gt=0;gt<p.outChannels;++gt)j[Ee+gt*M]+=St*q[ht+gt];ht+=p.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,j)}var Sj={kernelName:Ea,backendName:"cpu",kernelFunc:CS};function Ij(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,filterShape:u}=s;Te([r,a],"conv2dBackpropFilter");let d=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(r.shape,u,o,1,i,c,!1,d),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=p,A=p.dataFormat==="channelsLast",x=new sn(p.filterShape,"float32"),y=p.padInfo.left,b=p.padInfo.top,w=n.data.get(r.dataId).values,S=n.data.get(a.dataId).values,C=new sn(r.shape,r.dtype,w),E=new sn(a.shape,a.dtype,S);for(let D=0;D<m;++D){let O=Math.max(0,Math.ceil((b-D)/h)),_=Math.min(p.outHeight,(p.inHeight+b-D)/h);for(let F=0;F<g;++F){let T=Math.max(0,Math.ceil((y-F)/f)),M=Math.min(p.outWidth,(p.inWidth+y-F)/f);for(let U=0;U<p.inChannels;++U)for(let q=0;q<p.outChannels;++q){let j=0;for(let X=0;X<p.batchSize;++X)for(let J=O;J<_;++J){let te=D+J*h-b;for(let ne=T;ne<M;++ne){let ae=F+ne*f-y;A?j+=C.get(X,te,ae,U)*E.get(X,J,ne,q):j+=C.get(X,U,te,ae)*E.get(X,q,J,ne)}}x.set(j,D,F,U,q)}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var Cj={kernelName:ah,backendName:"cpu",kernelFunc:Ij};function Tj(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s;Te([r,a],"conv2dBackpropInput");let d=v.computeStrides(a.shape),p=v.computeStrides(r.shape),h=N.convertConv2DDataFormat(c),f=N.computeConv2DInfo(o,a.shape,i,1,l,u,!1,h),m=new sn(f.inShape,"float32"),g=m.values,A=n.data.get(r.dataId).values,x=n.data.get(a.dataId).values,[y,b,w]=d,{batchSize:S,filterHeight:C,filterWidth:E,inChannels:D,inHeight:O,inWidth:_,outChannels:F,outHeight:T,outWidth:M,strideHeight:U,strideWidth:q}=f;h=f.dataFormat;let j=C-1-f.padInfo.top,X=E-1-f.padInfo.left,J=h==="channelsLast",te=m.strides[0],ne=J?m.strides[1]:m.strides[2],ae=J?m.strides[2]:1,se=J?1:m.strides[1],re=p[0],ue=J?p[1]:p[2],ye=J?p[2]:1,ve=J?1:p[1];for(let Ie=0;Ie<S;++Ie)for(let Ee=0;Ee<D;++Ee)for(let ze=0;ze<O;++ze){let Ue=ze-j,qe=Math.max(0,Math.ceil(Ue/U)),Ye=Math.min(T,(C+Ue)/U);for(let pt=0;pt<_;++pt){let ht=pt-X,it=Math.max(0,Math.ceil(ht/q)),St=Math.min(M,(E+ht)/q),gt=0;for(let _t=qe;_t<Ye;++_t){let vs=_t*U-Ue;for(let yn=it;yn<St;++yn){let er=yn*q-ht,Dn=re*Ie+ue*_t+ye*yn,os=y*(C-1-vs)+b*(E-1-er)+w*Ee;for(let Ms=0;Ms<F;++Ms){let ws=A[Dn+ve*Ms],xn=x[os+Ms];gt+=ws*xn}}}let Tt=te*Ie+ne*ze+ae*pt+se*Ee;g[Tt]=gt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var Nj={kernelName:Ra,backendName:"cpu",kernelFunc:Tj};function Ej(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;Te([r,a],"conv3d");let c=N.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:u,filterHeight:d,filterWidth:p,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=c,A=g.front,x=g.left,y=g.top,b=new sn(c.outShape,r.dtype),w=n.data.get(r.dataId).values,S=n.data.get(a.dataId).values,C=b.values,E=v.computeStrides(r.shape),D=v.computeStrides(a.shape);for(let O=0;O<c.batchSize;++O){let _=O*E[0],F=O*b.strides[0];for(let T=0;T<c.outDepth;++T){let M=F+T*b.strides[1],U=T*c.strideDepth-A;for(let q=0;q<u;++q){let j=U+q*h;if(j<0||j>=c.inDepth)continue;let X=q*D[0],J=_+j*E[1];for(let te=0;te<c.outHeight;++te){let ne=M+te*b.strides[2],ae=te*c.strideHeight-y;for(let se=0;se<d;++se){let re=ae+se*f;if(re<0||re>=c.inHeight)continue;let ue=X+se*D[1],ye=J+re*E[2];for(let ve=0;ve<c.outWidth;++ve){let Ie=ne+ve*c.outChannels,Ee=ve*c.strideWidth-x;for(let ze=0;ze<p;++ze){let Ue=Ee+ze*m;if(Ue<0||Ue>=c.inWidth)continue;let qe=ue+ze*D[2],Ye=ye+Ue*c.inChannels,pt=qe;for(let ht=0;ht<c.inChannels;++ht){let it=w[Ye+ht];for(let St=0;St<c.outChannels;++St)C[Ie+St]+=it*S[pt+St];pt+=c.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var Rj={kernelName:Lc,backendName:"cpu",kernelFunc:Ej};function $j(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;Te([r,a],"conv3dBackpropFilterV2");let c=v.computeStrides(r.shape),u=v.computeStrides(a.shape),d=N.computeConv3DInfo(r.shape,l,o,1,i),p=d.strideDepth,h=d.strideHeight,f=d.strideWidth,m=d.filterDepth,g=d.filterHeight,A=d.filterWidth,x=new sn(d.filterShape,"float32"),y=x.values,[b,w,S,C]=x.strides,E=n.data.get(a.dataId).values,[D,O,_,F]=u,T=n.data.get(r.dataId).values,[M,U,q,j]=c,X=d.padInfo.front,J=d.padInfo.left,te=d.padInfo.top;for(let ne=0;ne<m;++ne){let ae=Math.max(0,Math.ceil((X-ne)/p)),se=Math.min(d.outDepth,(d.inDepth+X-ne)/p),re=ne*b;for(let ue=0;ue<g;++ue){let ye=Math.max(0,Math.ceil((te-ue)/h)),ve=Math.min(d.outHeight,(d.inHeight+te-ue)/h),Ie=ue*w+re;for(let Ee=0;Ee<A;++Ee){let ze=Math.max(0,Math.ceil((J-Ee)/f)),Ue=Math.min(d.outWidth,(d.inWidth+J-Ee)/f),qe=Ee*S+Ie;for(let Ye=0;Ye<d.inChannels;++Ye){let pt=Ye*C+qe;for(let ht=0;ht<d.outChannels;++ht){let it=0;for(let St=0;St<d.batchSize;++St){let gt=St*M,Tt=St*D;for(let _t=ae;_t<se;++_t){let yn=(ne+_t*p-X)*U+gt,er=_t*O+Tt;for(let Dn=ye;Dn<ve;++Dn){let Ms=(ue+Dn*h-te)*q+yn,ws=Dn*_+er;for(let xn=ze;xn<Ue;++xn){let Tn=(Ee+xn*f-J)*j+Ms,br=xn*F+ws;it+=T[Tn+Ye]*E[br+ht]}}}}y[pt+ht]=it}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var Dj={kernelName:oh,backendName:"cpu",kernelFunc:$j};function _j(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;Te([r],"conv3dBackpropInputV2");let c=v.computeStrides(r.shape),u=v.computeStrides(a.shape),d=N.computeConv3DInfo(l,a.shape,i,1,o),p=new sn(d.inShape,"float32"),h=p.values,[f,m,g,A]=p.strides,x=n.data.get(r.dataId).values,[y,b,w,S]=c,C=n.data.get(a.dataId).values,[E,D,O,_]=u,{batchSize:F,filterDepth:T,filterHeight:M,filterWidth:U,inChannels:q,inDepth:j,inHeight:X,inWidth:J,outChannels:te,outDepth:ne,outHeight:ae,outWidth:se,strideDepth:re,strideHeight:ue,strideWidth:ye}=d,ve=T-1-d.padInfo.front,Ie=M-1-d.padInfo.top,Ee=U-1-d.padInfo.left;for(let ze=0;ze<F;++ze)for(let Ue=0;Ue<q;++Ue)for(let qe=0;qe<j;++qe){let Ye=qe-ve,pt=Math.max(0,Math.ceil(Ye/re)),ht=Math.min(ne,(T+Ye)/re);for(let it=0;it<X;++it){let St=it-Ie,gt=Math.max(0,Math.ceil(St/ue)),Tt=Math.min(ae,(M+St)/ue);for(let _t=0;_t<J;++_t){let vs=_t-Ee,yn=Math.max(0,Math.ceil(vs/ye)),er=Math.min(se,(U+vs)/ye),Dn=0;for(let os=pt;os<ht;++os){let Ms=os*re-Ye;for(let ws=gt;ws<Tt;++ws){let xn=ws*ue-St;for(let xr=yn;xr<er;++xr){let Tn=xr*ye-vs,br=y*ze+b*os+w*ws+S*xr,vr=E*(T-1-Ms)+D*(M-1-xn)+O*(U-1-Tn)+_*Ue;for(let da=0;da<te;++da){let Ac=x[br+da],tr=C[vr+da];Dn+=Ac*tr}}}}h[f*ze+m*qe+g*it+A*_t+Ue]=Dn}}}return n.makeTensorInfo(p.shape,p.dtype,p.values)}var Pj={kernelName:ih,backendName:"cpu",kernelFunc:_j},Fj=mt($a,e=>Math.cos(e)),Oj={kernelName:$a,backendName:"cpu",kernelFunc:Fj},Mj=mt(Da,e=>Math.cosh(e)),zj={kernelName:Da,backendName:"cpu",kernelFunc:Mj};function Lj(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,[u,d,p,h]=r.shape,f=a.shape[0],[m,g]=i,A=Be([f,m,g,h],"float32"),x=n.data.get(a.dataId).values,y=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,w=v.computeStrides(r.shape),S=v.computeStrides(A.shape);for(let C=0;C<f;C++){let E=C*4,D=x[E],O=x[E+1],_=x[E+2],F=x[E+3],T=y[C];if(T>=u)continue;let M=m>1?(_-D)*(d-1)/(m-1):0,U=g>1?(F-O)*(p-1)/(g-1):0;for(let q=0;q<m;q++){let j=m>1?D*(d-1)+q*M:.5*(D+_)*(d-1);if(j<0||j>d-1){for(let X=0;X<g;X++)for(let J=0;J<h;J++){let te=J+X*S[2]+q*S[1]+C*S[0];A.values[te]=c}continue}if(l==="bilinear"){let X=Math.floor(j),J=Math.ceil(j),te=j-X;for(let ne=0;ne<g;ne++){let ae=g>1?O*(p-1)+ne*U:.5*(O+F)*(p-1);if(ae<0||ae>p-1){for(let ye=0;ye<h;ye++){let ve=ye+ne*S[2]+q*S[1]+C*S[0];A.values[ve]=c}continue}let se=Math.floor(ae),re=Math.ceil(ae),ue=ae-se;for(let ye=0;ye<h;ye++){let ve=ye+se*w[2]+X*w[1]+T*w[0],Ie=b[ve];ve=ye+re*w[2]+X*w[1]+T*w[0];let Ee=b[ve];ve=ye+se*w[2]+J*w[1]+T*w[0];let ze=b[ve];ve=ye+re*w[2]+J*w[1]+T*w[0];let Ue=b[ve],qe=Ie+(Ee-Ie)*ue,Ye=ze+(Ue-ze)*ue;ve=ye+ne*S[2]+q*S[1]+C*S[0],A.values[ve]=qe+(Ye-qe)*te}}}else for(let X=0;X<g;++X){let J=g>1?O*(p-1)+X*U:.5*(O+F)*(p-1);if(J<0||J>p-1){for(let ae=0;ae<h;ae++){let se=ae+X*S[2]+q*S[1]+C*S[0];A.values[se]=c}continue}let te=Math.round(J),ne=Math.round(j);for(let ae=0;ae<h;ae++){let se=ae+te*w[2]+ne*w[1]+T*w[0],re=ae+X*S[2]+q*S[1]+C*S[0];A.values[re]=b[se]}}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var Bj={kernelName:oi,backendName:"cpu",kernelFunc:Lj};function Wj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Te(r,"cumsum");let l=N.getAxesPermutation([a],r.shape.length),c=r;l!=null&&(c=Rs({inputs:{x:r},backend:n,attrs:{perm:l}}));let u=N.getInnerMostAxes(1,r.shape.length)[0];if(u!==c.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${c.shape.length-1} but got axis=${u}`);let d=On(c.dtype,"int32"),p=v.makeZerosTypedArray(v.sizeFromShape(c.shape),d),h=n.data.get(c.dataId).values,f=c.shape[c.shape.length-1],m=i?(A,x)=>A+f-x-1:(A,x)=>A+x;for(let A=0;A<h.length;A+=f)for(let x=0;x<f;x++){let y=m(A,x);if(x===0)p[y]=o?0:h[y];else{let b=m(A,x-1);p[y]=o?h[b]+p[b]:h[y]+p[b]}}let g=n.makeTensorInfo(c.shape,d,p);if(l!=null){let A=N.getUndoAxesPermutation(l),x=Rs({inputs:{x:g},backend:n,attrs:{perm:A}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(c),x}return g}var Vj={kernelName:ai,backendName:"cpu",kernelFunc:Wj};function Uj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=vy(l,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(a),u=O7(l,c,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Gj={kernelName:lh,backendName:"cpu",kernelFunc:Uj};function Hj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;v.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`);let i=r.shape[0],l=r.shape[1],c=r.shape[2],u=r.shape[3],d=l*a,p=c*a,h=u/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*d*p*h),g=0;for(let A=0;A<i;++A)for(let x=0;x<d;++x){let y=Math.floor(x/a),b=x%a;for(let w=0;w<p;++w){let S=Math.floor(w/a),C=w%a,E=(b*a+C)*h;for(let D=0;D<h;++D){let _=D+E+u*(S+c*(y+l*A));m[g++]=f[_]}}}return n.makeTensorInfo([i,d,p,h],r.dtype,m)}var jj={kernelName:ii,backendName:"cpu",kernelFunc:Hj};function TS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s;Te([r,a],"depthwiseConv2DNative");let u=v.computeStrides(r.shape),d=v.computeStrides(a.shape),p=l;p==null&&(p=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(o,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${p}'`);let h=N.computeConv2DInfo(r.shape,a.shape,o,p,i,c,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:A,padInfo:x}=h,y=x.left,b=x.top,w=h.outChannels/h.inChannels,S=new sn(h.outShape,r.dtype),C=n.data.get(r.dataId).values,E=n.data.get(a.dataId).values,D=S.values;for(let O=0;O<h.batchSize;++O){let _=O*u[0],F=O*S.strides[0];for(let T=0;T<h.outHeight;++T){let M=F+T*S.strides[1],U=T*h.strideHeight-b;for(let q=0;q<f;++q){let j=U+q*g;if(j<0||j>=h.inHeight)continue;let X=q*d[0],J=_+j*u[1];for(let te=0;te<h.outWidth;++te){let ne=M+te*S.strides[2],ae=te*h.strideWidth-y;for(let se=0;se<m;++se){let re=ae+se*A;if(re<0||re>=h.inWidth)continue;let ue=X+se*d[1],ye=J+re*h.inChannels,ve=ne,Ie=ue;for(let Ee=0;Ee<h.inChannels;++Ee){let ze=C[ye+Ee];for(let Ue=0;Ue<w;++Ue)D[ve+Ue]+=ze*E[Ie+Ue];ve+=w,Ie+=w}}}}}}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var qj={kernelName:_a,backendName:"cpu",kernelFunc:TS};function Xj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,filterShape:u}=s;Te([r,a],"depthwiseConv2dNativeBackpropFilter");let d=N.computeConv2DInfo(r.shape,u,o,i,l,c,!0),{strideHeight:p,strideWidth:h,filterHeight:f,filterWidth:m}=d,g=new sn(d.filterShape,"float32"),A=d.padInfo.left,x=d.padInfo.top,y=d.outChannels/d.inChannels,b=n.data.get(r.dataId).values,w=new sn(r.shape,r.dtype,b),S=n.data.get(a.dataId).values,C=new sn(a.shape,a.dtype,S);for(let E=0;E<f;++E){let D=Math.max(0,Math.ceil((x-E)/p)),O=Math.min(d.outHeight,(d.inHeight+x-E)/p);for(let _=0;_<m;++_){let F=Math.max(0,Math.ceil((A-_)/h)),T=Math.min(d.outWidth,(d.inWidth+A-_)/h);for(let M=0;M<d.outChannels;++M){let U=Math.trunc(M/y),q=M%y,j=0;for(let X=0;X<d.batchSize;++X)for(let J=D;J<O;++J){let te=E+J*p-x;for(let ne=F;ne<T;++ne){let ae=_+ne*h-A;j+=w.get(X,te,ae,U)*C.get(X,J,ne,M)}}g.set(j,E,_,U,q)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var Kj={kernelName:uh,backendName:"cpu",kernelFunc:Xj};function Zj(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,inputShape:u}=s;Te([r,a],"depthwiseConv2DNativeBackpropInput");let d=v.computeStrides(r.shape),p=v.computeStrides(a.shape),h=N.computeConv2DInfo(u,a.shape,o,i,l,c,!0),f=new sn(h.inShape,"float32"),m=f.values,[g,A,x]=f.strides,y=n.data.get(r.dataId).values,[b,w,S]=d,C=n.data.get(a.dataId).values,[E,D,O]=p,{batchSize:_,filterHeight:F,filterWidth:T,inChannels:M,inHeight:U,inWidth:q,outChannels:j,outHeight:X,outWidth:J,strideHeight:te,strideWidth:ne}=h,ae=F-1-h.padInfo.top,se=T-1-h.padInfo.left,re=j/M;for(let ue=0;ue<_;++ue)for(let ye=0;ye<M;++ye)for(let ve=0;ve<U;++ve){let Ie=ve-ae,Ee=Math.max(0,Math.ceil(Ie/te)),ze=Math.min(X,(F+Ie)/te);for(let Ue=0;Ue<q;++Ue){let qe=Ue-se,Ye=Math.max(0,Math.ceil(qe/ne)),pt=Math.min(J,(T+qe)/ne),ht=0;for(let it=Ee;it<ze;++it){let St=it*te-Ie;for(let gt=Ye;gt<pt;++gt){let Tt=gt*ne-qe,_t=b*ue+w*it+S*gt,vs=E*(F-1-St)+D*(T-1-Tt)+O*ye;for(let yn=0;yn<re;++yn){let er=ye*re+yn,Dn=y[_t+er],os=C[vs+yn];ht+=Dn*os}}}m[g*ue+A*ve+x*Ue+ye]=ht}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var Yj={kernelName:ch,backendName:"cpu",kernelFunc:Zj};function Jj(e){let{inputs:t,backend:n}=e,{x:s}=t,r=v.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=Be([r,r],s.dtype),i=o.values;for(let c=0;c<a.length;c++)i[c*r+c]=a[c];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var Qj={kernelName:dh,backendName:"cpu",kernelFunc:Jj},eq={kernelName:Bc,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,c=l.data.get(s.dataId).values,u=s.shape.length,d=l.data.get(r.dataId).values,p=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:A,outWidth:x,padInfo:y,strideHeight:b,strideWidth:w,filterHeight:S,filterWidth:C,dilationHeight:E,dilationWidth:D,outShape:O}=N.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),_=v.sizeFromShape(O),F=O.length,T=v.getArrayFromDType(s.dtype,_);for(let U=0;U<h;++U)for(let q=0;q<A;++q){let j=q*b-y.top;for(let X=0;X<x;++X){let J=X*w-y.left;for(let te=0;te<g;++te){let ne=Number.MIN_SAFE_INTEGER;for(let se=0;se<S;++se){let re=j+se*E;if(re>=0&&re<f)for(let ue=0;ue<C;++ue){let ye=J+ue*D;if(ye>=0&&ye<m){let ve=v.locToIndex([U,re,ye,te],u,v.computeStrides(s.shape)),Ie=v.locToIndex([se,ue,te],p,v.computeStrides(r.shape)),Ee=c[ve]+d[Ie];Ee>ne&&(ne=Ee)}}}let ae=v.locToIndex([U,q,X,te],F,v.computeStrides(O));T[ae]=ne}}}return{dataId:l.write(v.toTypedArray(T,s.dtype),O,s.dtype),shape:O,dtype:s.dtype}}},tq={kernelName:hh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=v.toNestedArray(s.shape,c.data.get(s.dataId).values),d=v.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:x,strideHeight:y,strideWidth:b,filterHeight:w,filterWidth:S,dilationHeight:C,dilationWidth:E,outShape:D}=N.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===D.length,()=>`Error in ${hh}, dy must have the same rank as output ${D.length}, but got ${a.rank}`);let O=v.toNestedArray(D,c.data.get(a.dataId).values),_=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T<p;++T)for(let M=0;M<g;++M){let U=M*y-x.top;for(let q=0;q<A;++q){let j=q*b-x.left;for(let X=0;X<m;++X){let J=Number.MIN_SAFE_INTEGER,te=0,ne=0;for(let ae=0;ae<w;++ae){let se=U+ae*C;if(se>=0&&se<h)for(let re=0;re<S;++re){let ue=j+re*E;if(ue>=0&&ue<f){let ye=u[T][se][ue][X]+d[ae][re][X];ye>J&&(J=ye,te=ae,ne=re)}}}_[te][ne][X]+=O[T][M][q][X]}}}return{dataId:c.write(v.toTypedArray(_,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},nq={kernelName:ph,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=v.toNestedArray(s.shape,c.data.get(s.dataId).values),d=v.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:x,strideHeight:y,strideWidth:b,filterHeight:w,filterWidth:S,dilationHeight:C,dilationWidth:E,outShape:D}=N.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===D.length,()=>`Error in ${ph}, dy must have the same rank as output ${D.length}, but got ${a.rank}`);let O=v.toNestedArray(D,c.data.get(a.dataId).values),_=v.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T<p;++T)for(let M=0;M<g;++M){let U=M*y-x.top;for(let q=0;q<A;++q){let j=q*b-x.left;for(let X=0;X<m;++X){let J=Number.MIN_SAFE_INTEGER,te=U<0?0:U,ne=j<0?0:j;for(let ae=0;ae<w;++ae){let se=U+ae*C;if(se>=0&&se<h)for(let re=0;re<S;++re){let ue=j+re*E;if(ue>=0&&ue<f){let ye=u[T][se][ue][X]+d[ae][re][X];ye>J&&(J=ye,te=se,ne=ue)}}}_[T][te][ne][X]+=O[T][M][q][X]}}}return{dataId:c.write(v.toTypedArray(_,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Vd(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"sum");let i;r.dtype==="bool"?i=Oo({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=Pr({inputs:{x:r},backend:n});let l=i.shape.length,c=v.parseAxisParam(a,i.shape),u=N.getAxesPermutation(c,l),d=c,p=i;u!=null&&(p=Rs({inputs:{x:i},backend:n,attrs:{perm:u}}),d=N.getInnerMostAxes(d.length,l)),N.assertAxesAreInnerMostDims("sum",d,p.shape.length);let[h,f]=N.computeOutAndReduceShapes(p.shape,d),m=N.upcastType(p.dtype,"int32"),g=im(n,h,m),A=v.sizeFromShape(f),x=n.data.get(g.dataId).values,y=n.data.get(p.dataId).values;for(let b=0;b<x.length;++b){let w=b*A,S=0;for(let C=0;C<A;++C)S+=y[w+C];x[b]=S}if(o){let b=N.expandShapeToKeepDim(g.shape,c),w=g;g=$t({inputs:{x:g},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(w)}return n.disposeIntermediateTensorInfo(i),u!=null&&n.disposeIntermediateTensorInfo(p),g}var sq={kernelName:io,backendName:"cpu",kernelFunc:Vd};function rq(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=N.decodeEinsumEquation(r,a.length);N.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=N.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:x}=N.getEinsumPermutation(h,l[g]),y;N.isIdentityPermutation(A)?y=a[g]:(y=Rs({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(y));let b=y.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(y.shape,b)||(y=$t({inputs:{x:y},backend:n,attrs:{shape:b}}),f.push(y)),p===null?p=y:(p=lm({inputs:{a:y,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=Vd({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var aq={kernelName:Wc,backendName:"cpu",kernelFunc:rq};function oq(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Te([s,r],"eluGrad");let a=new Float32Array(v.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let c=o[l];c>=1?a[l]=i[l]:a[l]=i[l]*(c+1)}return n.makeTensorInfo(r.shape,"float32",a)}var iq={kernelName:fh,backendName:"cpu",kernelFunc:oq},lq=N.ERF_P,uq=N.ERF_A1,cq=N.ERF_A2,dq=N.ERF_A3,pq=N.ERF_A4,hq=N.ERF_A5,fq=mt(Jl,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+lq*n);return t*(1-((((hq*s+pq)*s+dq)*s+cq)*s+uq)*s*Math.exp(-n*n))}),mq={kernelName:Jl,backendName:"cpu",kernelFunc:fq};function cm(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),$t({inputs:{x:r},backend:n,attrs:{shape:i}})}var gq={kernelName:ui,backendName:"cpu",kernelFunc:cm},Aq=Jt((e,t)=>e/t),Ry=gn(Pa,Aq),$y={kernelName:Pa,backendName:"cpu",kernelFunc:Ry};function NS(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,c=[r,a],u=v.sizeFromShape(c),d=v.getTypedArrayFromDType("float32",u),p=v.getTypedArrayFromDType("float32",u);for(let g=0;g<r;g++){let A=hl({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),x=hl({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,a]}}),y=fs({inputs:{real:A,imag:x},backend:n}),{real:b,imag:w}=yq(y,t,n),S=N.mergeRealAndImagArrays(b,w);for(let C=0;C<a;C++){let E=N.getComplexWithIndex(S,C);d[g*a+C]=E.real,p[g*a+C]=E.imag}n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(y)}let h=n.makeTensorInfo(c,"float32",d),f=n.makeTensorInfo(c,"float32",p),m=fs({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function yq(e,t,n){let s=v.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if(xq(s)){let i=Dy(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let c=n.makeTensorInfo(l,"float32",i.real),u=n.makeTensorInfo(l,"float32",i.imag),d=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),p=Pr({inputs:{x:d},backend:n}),h=$y.kernelFunc({inputs:{a:c,b:d},backend:n}),f=$y.kernelFunc({inputs:{a:u,b:p},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=N.mergeRealAndImagArrays(a,o),l=bq(i,s,t);return N.splitRealAndImagArrays(l)}}function xq(e){return(e&e-1)==0}function Dy(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=N.mergeRealAndImagArrays(e,t),o=n/2,i=N.complexWithEvenIndex(a),l=i.real,c=i.imag,u=[l.length],d=r.makeTensorInfo(u,"float32",l),p=r.makeTensorInfo(u,"float32",c),h=fs({inputs:{real:d,imag:p},backend:r}),f=N.complexWithOddIndex(a),m=f.real,g=f.imag,A=[m.length],x=r.makeTensorInfo(A,"float32",m),y=r.makeTensorInfo(A,"float32",g),b=fs({inputs:{real:x,imag:y},backend:r}),w=Dy(l,c,o,s,r),S=w.real,C=w.imag,E=[S.length],D=r.makeTensorInfo(E,"float32",S),O=r.makeTensorInfo(E,"float32",C),_=fs({inputs:{real:D,imag:O},backend:r}),F=Dy(m,g,o,s,r),T=F.real,M=F.imag,U=[T.length],q=r.makeTensorInfo(U,"float32",T),j=r.makeTensorInfo(U,"float32",M),X=fs({inputs:{real:q,imag:j},backend:r}),J=N.exponents(n,s),te=[J.real.length],ne=r.makeTensorInfo(te,"float32",J.real),ae=r.makeTensorInfo(te,"float32",J.imag),se=fs({inputs:{real:ne,imag:ae},backend:r}),re=lm({inputs:{a:se,b:X},backend:r}),ue=Bd({inputs:{a:_,b:re},backend:r}),ye=Ty({inputs:{a:_,b:re},backend:r}),ve=pl({inputs:{input:ue},backend:r}),Ie=pl({inputs:{input:ye},backend:r}),Ee=Wu({inputs:{input:ue},backend:r}),ze=Wu({inputs:{input:ye},backend:r}),Ue=Vu({inputs:[ve,Ie],backend:r,attrs:{axis:0}}),qe=Vu({inputs:[Ee,ze],backend:r,attrs:{axis:0}}),Ye=r.data.get(Ue.dataId).values,pt=r.data.get(qe.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(D),r.disposeIntermediateTensorInfo(O),r.disposeIntermediateTensorInfo(_),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(ne),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(se),r.disposeIntermediateTensorInfo(re),r.disposeIntermediateTensorInfo(ue),r.disposeIntermediateTensorInfo(ye),r.disposeIntermediateTensorInfo(ve),r.disposeIntermediateTensorInfo(Ee),r.disposeIntermediateTensorInfo(Ie),r.disposeIntermediateTensorInfo(ze),r.disposeIntermediateTensorInfo(Ue),r.disposeIntermediateTensorInfo(qe),{real:Ye,imag:pt}}function bq(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=N.exponent(r*i,t,n),c=N.getComplexWithIndex(e,i);a+=c.real*l.real-c.imag*l.imag,o+=c.real*l.imag+c.imag*l.real}n&&(a/=t,o/=t),N.assignToTypedArray(s,a,o,r)}return s}function vq(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=$t({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=NS(i,!1,n),c=$t({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var wq={kernelName:mh,backendName:"cpu",kernelFunc:vq};function _y(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||v.inferDtype(r),i=v.getArrayFromDType(o,v.sizeFromShape(s));return Sq(i,r,o),t.makeTensorInfo(s,o,i)}var kq={kernelName:Ql,backendName:"cpu",kernelFunc:_y};function Sq(e,t,n){e.fill(t)}var Iq={kernelName:di,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[o,i,l,c]=s.shape,u=r.data.get(s.dataId).values;for(let p=0;p<o;p++){let h=p*l*i*c;for(let f=0;f<i;f++){let m=f*(l*c);for(let g=0;g<l;g++){let A=g*c;for(let x=0;x<c;x++){let y=Math.round(l-g-1),b=h+m+A+x,w=u[b];if(y>=0&&y<l){let S=y*c,C=h+m+S+x;w=u[C]}a[b]=w}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},Cq=Jt((e,t)=>Math.floor(e/t)),Tq=gn(za,Cq,null,"int32"),Nq={kernelName:za,backendName:"cpu",kernelFunc:Tq};function Eq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=CS({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=Bd({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Ny(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var Rq={kernelName:go,backendName:"cpu",kernelFunc:Eq};function $q(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=TS({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=Bd({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Ny(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var Dq={kernelName:Ao,backendName:"cpu",kernelFunc:$q};function _q(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=v.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,c,u,d]=N.prepareAndValidate(s,r);if(c===0)return n.makeTensorInfo(l,s.dtype,[]);let p=n.data.get(r.dataId).values,h=n.bufferSync(s),f=G7(p,h,s.dtype,c,i,u,d,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var Pq={kernelName:hi,backendName:"cpu",kernelFunc:_q};function Fq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Te([r,a],"gatherV2");let l=v.parseAxisParam(o,r.shape)[0],c=n.data.get(a.dataId).values,u=r.shape[l];for(let b=0;b<c.length;++b){let w=c[b];v.assert(w<=u-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${u-1}]`)}let d=i;i==null&&(d=0);let p=v.sizeFromShape(a.shape),h=N.segment_util.collectGatherOpShapeInfo(r,a,l,d),f=$t({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=$t({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,p/h.batchSize]}}),g=[h.batchSize,h.outerSize,p/h.batchSize,h.sliceSize],A=n.bufferSync(m),x=n.bufferSync(f),y=H7(x,A,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,y.dtype,y.values)}var Oq={kernelName:pi,backendName:"cpu",kernelFunc:Fq};function Mq(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=$t({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=NS(i,!0,n),c=$t({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var zq={kernelName:gh,backendName:"cpu",kernelFunc:Mq},Lq=mt(eu,e=>Number.isFinite(e)?1:0,"bool"),Bq={kernelName:eu,backendName:"cpu",kernelFunc:Lq},Wq=mt(tu,e=>Math.abs(e)===1/0?1:0,"bool"),Vq={kernelName:tu,backendName:"cpu",kernelFunc:Wq},Uq=mt(nu,e=>Number.isNaN(e)?1:0,"bool"),Gq={kernelName:nu,backendName:"cpu",kernelFunc:Uq};function Hq(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=Z7(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var jq={kernelName:Ah,backendName:"cpu",kernelFunc:Hq},qq=mt(su,e=>Math.log1p(e)),Xq={kernelName:su,backendName:"cpu",kernelFunc:qq},Kq=Jt((e,t)=>e&&t),Zq=gn(yi,Kq,null,"bool"),Yq={kernelName:yi,backendName:"cpu",kernelFunc:Zq},Jq=mt(ru,e=>e?0:1,"bool"),Qq={kernelName:ru,backendName:"cpu",kernelFunc:Jq},eX=Jt((e,t)=>e||t),tX=gn(Uc,eX,null,"bool"),nX={kernelName:Uc,backendName:"cpu",kernelFunc:tX};function sX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Te(r,"LRN");let c=r.shape[3],u=c-1,d=n.data.get(r.dataId).values,p=v.sizeFromShape(r.shape),h=new Float32Array(p);function f(m){let g=m%c,A=m-g+Math.max(0,g-a),x=m-g+Math.min(g+a,u),y=0;for(;A<=x;A++){let b=d[A];y+=b*b}return y}for(let m=0;m<p;m++){let g=f(m),A=d[m]*Math.pow(o+i*g,-l);h[m]=A}return n.makeTensorInfo(r.shape,r.dtype,h)}var rX={kernelName:Gc,backendName:"cpu",kernelFunc:sX};function aX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:c,beta:u}=s;Te(o,"LRNGrad");let d=v.sizeFromShape(o.shape),p=o.shape[3],h=n.data.get(o.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(d),A=d;for(let x=0;x<A;x++){let y=x%p,b=x-y+Math.max(0,y-i),w=x-y+Math.min(p,y+i+1),S=0;for(let C=b;C<w;C++)S+=Math.pow(f[C],2);S=c*S+l;for(let C=b;C<w;C++){let E=-2*c*u*f[C]*m[x]/S;x===C&&(E+=Math.pow(S,-u)),E*=h[x],g[C]+=E}}return n.makeTensorInfo(o.shape,r.dtype,g)}var oX={kernelName:yh,backendName:"cpu",kernelFunc:aX};function ES(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,c=l.length,u=v.parseAxisParam(a,l),d=u,p=N.getAxesPermutation(d,c),h=i.data.get(r.dataId).values;if(p!=null){let b=new Array(c);for(let w=0;w<b.length;w++)b[w]=l[p[w]];h=Sy(h,l,r.dtype,p,b),d=N.getInnerMostAxes(d.length,c),l=b}Te(r,"max"),N.assertAxesAreInnerMostDims("max",d,c);let[f,m]=N.computeOutAndReduceShapes(l,d),g=v.sizeFromShape(m),A=J7(h,g,f,r.dtype),x=i.write(A,f,r.dtype),y=f;return o&&(y=N.expandShapeToKeepDim(f,u)),{dataId:x,shape:y,dtype:r.dtype}}var iX={kernelName:Ua,backendName:"cpu",kernelFunc:ES};function lX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Te(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(N.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=N.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))d=Pr({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=Ey(p,r.shape,r.dtype,h,u,"max");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var uX={kernelName:Ha,backendName:"cpu",kernelFunc:lX};function cX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Te(r,"maxPool3d");let u=N.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=IS(d,r.shape,r.dtype,v.computeStrides(r.shape),u,"max");return n.makeTensorInfo(p.shape,"float32",p.values)}var dX={kernelName:Hc,backendName:"cpu",kernelFunc:cX};function pX(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Te([r,a],"maxPool3DGrad");let u=N.computePool3DInfo(a.shape,o,i,1,l,c),d=n.bufferSync(a),p=tj(d,u),h=u.strideDepth,f=u.strideHeight,m=u.strideWidth,g=u.dilationDepth,A=u.dilationHeight,x=u.dilationWidth,y=u.effectiveFilterDepth,b=u.effectiveFilterHeight,w=u.effectiveFilterWidth,S=y-1-u.padInfo.front,C=w-1-u.padInfo.left,E=b-1-u.padInfo.top,D=Be(a.shape,"float32"),O=n.bufferSync(r);for(let _=0;_<u.batchSize;++_)for(let F=0;F<u.inChannels;++F)for(let T=0;T<u.inDepth;++T)for(let M=0;M<u.inHeight;++M)for(let U=0;U<u.inWidth;++U){let q=T-S,j=M-E,X=U-C,J=0;for(let te=0;te<y;te+=g){let ne=(q+te)/h;if(!(ne<0||ne>=u.outDepth||Math.floor(ne)!==ne))for(let ae=0;ae<b;ae+=A){let se=(j+ae)/f;if(!(se<0||se>=u.outHeight||Math.floor(se)!==se))for(let re=0;re<w;re+=x){let ue=(X+re)/m;if(ue<0||ue>=u.outWidth||Math.floor(ue)!==ue)continue;let ye=y*b*w-1-p.get(_,ne,se,ue,F),ve=te*b*w+ae*w+re,Ie=ye===ve?1:0;if(Ie===0)continue;J+=O.get(_,ne,se,ue,F)*Ie}}}D.set(J,_,T,M,U,F)}return n.makeTensorInfo(D.shape,D.dtype,D.values)}var hX={kernelName:bh,backendName:"cpu",kernelFunc:pX};function fX(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Te([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=N.computePool2DInfo(i.shape,l,c,1,u,d),h=n.data.get(i.dataId).values,f=Be(p.outShape,i.dtype,SS(h,i.shape,i.dtype,p).values),m=p.strideHeight,g=p.strideWidth,A=p.dilationHeight,x=p.dilationWidth,y=p.effectiveFilterHeight,b=p.effectiveFilterWidth,w=b-1-p.padInfo.left,S=y-1-p.padInfo.top,C=Be(i.shape,"float32"),E=n.data.get(r.dataId).values,D=Be(r.shape,"float32",E);for(let O=0;O<p.batchSize;++O)for(let _=0;_<p.inChannels;++_)for(let F=0;F<p.inHeight;++F)for(let T=0;T<p.inWidth;++T){let M=F-S,U=T-w,q=0;for(let j=0;j<y;j+=A){let X=(M+j)/m;if(!(X<0||X>=p.outHeight||Math.floor(X)!==X))for(let J=0;J<b;J+=x){let te=(U+J)/g;if(te<0||te>=p.outWidth||Math.floor(te)!==te)continue;let ne=y*b-1-f.get(O,X,te,_),ae=j*b+J,se=ne===ae?1:0;if(se===0)continue;q+=D.get(O,X,te,_)*se}}C.set(q,O,F,T,_)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var mX={kernelName:xh,backendName:"cpu",kernelFunc:fX};function gX(e,t,n,s,r){let a=v.computeStrides(t),o=Ey(e,t,n,a,r,"max"),i=SS(e,t,n,r,!0,s);return[o.values,i.values]}var AX={kernelName:vh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Te(s,"MaxPoolWithArgmax");let c=l.data.get(s.dataId).values,u=N.computePool2DInfo(s.shape,r,a,[1,1],o),[d,p]=gX(c,s.shape,s.dtype,i,u),h=l.write(d,u.outShape,s.dtype),f=l.write(p,u.outShape,s.dtype);return[{dataId:h,shape:u.outShape,dtype:s.dtype},{dataId:f,shape:u.outShape,dtype:"int32"}]}};function yX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=v.parseAxisParam(a,r.shape),c=N.computeOutAndReduceShapes(r.shape,i)[1],u=v.sizeFromShape(c),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([u]));d.push(p);let h=Oo({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(h);let f=Ry({inputs:{a:h,b:p},backend:n});d.push(f);let m=Vd({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var xX={kernelName:ja,backendName:"cpu",kernelFunc:yX};function bX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"min");let i=v.parseAxisParam(a,r.shape),l=i,c=N.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Rs({inputs:{x:r},backend:n,attrs:{perm:c}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("min",l,u.shape.length);let[d,p]=N.computeOutAndReduceShapes(u.shape,l),h=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let x=A*h,y=m[x];for(let b=0;b<h;++b){let w=m[x+b];(Number.isNaN(w)||w<y)&&(y=w)}f[A]=y}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=N.expandShapeToKeepDim(d,i),x=$t({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),x}return g}var vX={kernelName:qa,backendName:"cpu",kernelFunc:bX};function wX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;Te(r,"mirrorPad");let i=a.map((y,b)=>y[0]+r.shape[b]+y[1]),l=a.map(y=>y[0]),c=a.map((y,b)=>y[0]+r.shape[b]),u=o==="reflect"?0:1,d=n.data.get(r.dataId).values,p=r.shape.length,h=v.computeStrides(r.shape),f=v.sizeFromShape(i),m=i.length,g=v.computeStrides(i),A=v.getTypedArrayFromDType(r.dtype,f);for(let y=0;y<f;y++){let b=v.indexToLoc(y,m,g);for(let S=0;S<m;S++)b[S]<l[S]?b[S]=l[S]*2-b[S]-u:b[S]>=c[S]&&(b[S]=(c[S]-1)*2-b[S]+u);b=b.map((S,C)=>S-l[C]);let w=v.locToIndex(b,p,h);A[y]=d[w]}return{dataId:n.write(A,i,r.dtype),shape:i,dtype:r.dtype}}var kX={kernelName:Ka,backendName:"cpu",kernelFunc:wX},SX=Jt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),IX=gn(au,SX),CX={kernelName:au,backendName:"cpu",kernelFunc:IX},TX=Qo(Zp());function RS(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=v.parseAxisParam([i],r.shape),c=ES({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=N.expandShapeToKeepDim(c.shape,l),d=$t({inputs:{x:c},backend:n,attrs:{shape:u}}),p=Ty({inputs:{a:r,b:d},backend:n}),h=W7({inputs:{x:p},backend:n}),f=Vd({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),m=$t({inputs:{x:f},backend:n,attrs:{shape:u}}),g=Ry({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var NX={kernelName:lo,backendName:"cpu",kernelFunc:RS};function EX(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Te(r,"multinomial");let l=i?r:RS({inputs:{logits:r},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],d=n.data.get(l.dataId).values,p=[c,a],h=v.makeZerosTypedArray(v.sizeFromShape(p),"int32");for(let f=0;f<c;++f){let m=f*u,g=new Float32Array(u-1);g[0]=d[m];for(let y=1;y<g.length;++y)g[y]=g[y-1]+d[m+y];let A=TX.alea(o.toString()),x=f*a;for(let y=0;y<a;++y){let b=A();h[x+y]=g.length;for(let w=0;w<g.length;w++)if(b<g[w]){h[x+y]=w;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(p,"int32",h)}var RX={kernelName:wh,backendName:"cpu",kernelFunc:EX},$X=js.nonMaxSuppressionV3Impl;function DX(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;Te(r,"NonMaxSuppression");let c=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,{selectedIndices:d}=$X(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var _X={kernelName:vi,backendName:"cpu",kernelFunc:DX},PX=js.nonMaxSuppressionV4Impl;function FX(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:c}=s;Te(r,"NonMaxSuppressionPadded");let u=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,{selectedIndices:p,validOutputs:h}=PX(u,d,o,i,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var OX={kernelName:ou,backendName:"cpu",kernelFunc:FX},MX=js.nonMaxSuppressionV5Impl;function zX(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s;Te(r,"NonMaxSuppressionWithScore");let u=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=MX(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var LX={kernelName:wi,backendName:"cpu",kernelFunc:zX};function BX(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s;Te(r,"oneHot");let l=v.sizeFromShape(r.shape),c=new Float32Array(l*a);c.fill(i);let u=n.data.get(r.dataId).values;for(let d=0;d<l;++d)u[d]>=0&&u[d]<a&&(c[d*a+u[d]]=o);return n.makeTensorInfo([...r.shape,a],"int32",c)}var WX={kernelName:Si,backendName:"cpu",kernelFunc:BX};function dm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=pl({inputs:{input:s},backend:n}),a=dm({inputs:{x:r},backend:n}),o=Wu({inputs:{input:s},backend:n}),i=dm({inputs:{x:o},backend:n}),l=fs({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return _y({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var VX={kernelName:Wi,backendName:"cpu",kernelFunc:dm};function $S(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=pl({inputs:{input:s},backend:n}),a=$S({inputs:{x:r},backend:n}),o=Wu({inputs:{input:s},backend:n}),i=dm({inputs:{x:o},backend:n}),l=fs({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return _y({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var UX={kernelName:ki,backendName:"cpu",kernelFunc:$S};function DS(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return cm({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=cm({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=Vu({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var GX={kernelName:Ii,backendName:"cpu",kernelFunc:DS};function HX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Te(r,"pad");let i=a.map((x,y)=>x[0]+r.shape[y]+x[1]),l=a.map(x=>x[0]),c=n.data.get(r.dataId).values,u=v.sizeFromShape(r.shape),d=r.shape.length,p=v.computeStrides(r.shape),h=v.sizeFromShape(i),f=i.length,m=v.computeStrides(i),g=v.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let x=0;x<u;x++){let b=v.indexToLoc(x,d,p).map((S,C)=>S+l[C]),w=v.locToIndex(b,f,m);g[w]=c[x]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var _S={kernelName:Ya,backendName:"cpu",kernelFunc:HX},jX=Jt((e,t)=>Math.pow(e,t)),qX=gn(Ja,jX),XX={kernelName:Ja,backendName:"cpu",kernelFunc:qX};function KX(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=Iy(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var ZX={kernelName:iu,backendName:"cpu",kernelFunc:KX},YX=mt(lu,e=>1/e),JX={kernelName:lu,backendName:"cpu",kernelFunc:YX};function QX(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Te(r,"resizeBilinear");let l=v.computeStrides(r.shape),[c,u]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([d,c,u,f])),A=[a&&c>1?p-1:p,a&&u>1?h-1:h],x=[a&&c>1?c-1:c,a&&u>1?u-1:u],y=0,b=A[0]/x[0],w=A[1]/x[1];for(let S=0;S<d;S++)for(let C=0;C<c;C++){let E;o?E=b*(C+.5)-.5:E=b*C;let D=Math.max(0,Math.floor(E)),O=E-D,_=Math.min(p-1,Math.ceil(E)),F=S*l[0]+D*l[1],T=S*l[0]+_*l[1];for(let M=0;M<u;M++){let U;o?U=w*(M+.5)-.5:U=w*M;let q=Math.max(0,Math.floor(U)),j=U-q,X=Math.min(h-1,Math.ceil(U)),J=F+q*l[2],te=T+q*l[2],ne=F+X*l[2],ae=T+X*l[2];for(let se=0;se<f;se++){let re=m[J+se],ue=m[te+se],ye=m[ne+se],ve=m[ae+se],Ie=re+(ye-re)*j,Ee=ue+(ve-ue)*j,ze=Ie+(Ee-Ie)*O;g[y++]=ze}}}return n.makeTensorInfo([d,c,u,f],"float32",g)}var eK={kernelName:to,backendName:"cpu",kernelFunc:QX};function tK(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Te([a,r],"resizeBilinearGrad");let i=v.computeStrides(r.shape),[l,c,u,d]=r.shape,[,p,h]=a.shape,f=new Float32Array(l*c*u*d),m=[o&&p>1?c-1:c,o&&h>1?u-1:u],g=[o&&p>1?p-1:p,o&&h>1?h-1:h],A=m[0]/g[0],x=m[1]/g[1],y=n.data.get(a.dataId).values,b=0;for(let w=0;w<l;w++){let S=w*i[0];for(let C=0;C<p;C++){let E=C*A,D=Math.floor(E),O=Math.min(Math.ceil(E),c-1),_=S+D*i[1],F=S+O*i[1],T=E-D,M=1-T;for(let U=0;U<h;U++){let q=U*x,j=Math.floor(q),X=Math.min(Math.ceil(q),u-1),J=q-j,te=1-J,ne=_+j*i[2],ae=_+X*i[2],se=F+j*i[2],re=F+X*i[2],ue=M*te,ye=M*J,ve=T*te,Ie=T*J;for(let Ee=0;Ee<d;Ee++){let ze=y[b++];f[ne+Ee]+=ze*ue,f[ae+Ee]+=ze*ye,f[se+Ee]+=ze*ve,f[re+Ee]+=ze*Ie}}}}return n.makeTensorInfo([l,u,c,d],"float32",f)}var nK={kernelName:Sh,backendName:"cpu",kernelFunc:tK};function sK(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Te(r,"resizeNearestNeighbor");let l=v.computeStrides(r.shape),[c,u]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(d*c*u*f),A=[a&&c>1?p-1:p,a&&u>1?h-1:h],x=[a&&c>1?c-1:c,a&&u>1?u-1:u],y=A[0]/x[0],b=A[1]/x[1],w=0;for(let S=0;S<d;S++){let C=S*l[0];for(let E=0;E<c;E++){let D=o?y*(E+.5):y*E,O=Math.min(p-1,a?Math.round(D):Math.floor(D));o&&(O=Math.max(0,O));let _=C+O*l[1];for(let F=0;F<u;F++){let T=o?b*(F+.5):b*F,M=Math.min(h-1,a?Math.round(T):Math.floor(T));o&&(M=Math.max(0,M));let U=_+M*l[2];for(let q=0;q<f;q++){let j=m[U+q];g[w++]=j}}}}return n.makeTensorInfo([d,c,u,f],r.dtype,g)}var rK={kernelName:uu,backendName:"cpu",kernelFunc:sK};function aK(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Te([a,r],"resizeNearestNeighborGrad");let i=v.computeStrides(r.shape),l=v.computeStrides(a.shape),[c,u,d,p]=r.shape,[,h,f]=a.shape,m=new Float32Array(c*u*d*p),g=n.data.get(a.dataId).values,A=[o&&h>1?u-1:u,o&&f>1?d-1:d],x=[o&&h>1?h-1:h,o&&f>1?f-1:f],y=A[0]/x[0],b=A[1]/x[1],w=1/y,S=1/b,C=Math.ceil(w)*2+2,E=Math.ceil(S)*2+2;for(let D=0;D<c;D++){let O=D*i[0];for(let _=0;_<u;_++){let F=O+_*i[1],T=Math.floor(_*w),M=Math.floor(T-C/2);for(let U=0;U<d;U++){let q=F+U*i[2],j=Math.floor(U*S),X=Math.floor(j-E/2);for(let J=0;J<p;J++){let te=0;for(let ne=0;ne<C;ne++){let ae=ne+M;if(ae<0||ae>=h)continue;let se=O+ae*l[1],re=ae*y,ue=Math.min(u-1,o?Math.round(re):Math.floor(re));if(_===ue)for(let ye=0;ye<E;ye++){let ve=ye+X;if(ve<0||ve>=f)continue;let Ie=se+ve*l[2],Ee=ve*b,ze=Math.min(d-1,o?Math.round(Ee):Math.floor(Ee));U===ze&&(te+=g[Ie+J])}}m[q+J]=te}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var oK={kernelName:kh,backendName:"cpu",kernelFunc:aK};function iK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Te(r,"reverse");let o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return Pr({inputs:{x:r},backend:n});let l=new sn(r.shape,r.dtype),c=n.bufferSync(r);for(let u=0;u<l.size;u++){let d=l.indexToLoc(u),p=d.slice();i.forEach(h=>p[h]=r.shape[h]-1-p[h]),l.set(c.get(...p),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var lK={kernelName:Ni,backendName:"cpu",kernelFunc:iK},uK={kernelName:Vi,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[c,u,d,p]=s.shape,[h,f]=N.getImageCenter(o,u,d),m=255,g=Math.sin(r),A=Math.cos(r),x=i.data.get(s.dataId).values;for(let b=0;b<c;b++){let w=b*d*u*p;for(let S=0;S<u;S++){let C=S*(d*p);for(let E=0;E<d;E++){let D=E*p;for(let O=0;O<p;O++){let _=[c,S,E,O],F=_[2],T=_[1],M=(F-h)*A-(T-f)*g,U=(F-h)*g+(T-f)*A;M=Math.round(M+h),U=Math.round(U+f);let q=a;if(typeof a!="number"&&(O===3?q=m:q=a[O]),M>=0&&M<d&&U>=0&&U<u){let X=U*(d*p),J=M*p,te=w+X+J+O;q=x[te]}let j=w+C+D+O;l[j]=q}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},cK=mt(Ei,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),dK={kernelName:Ei,backendName:"cpu",kernelFunc:cK};function PS(e,t,n,s,r,a,o,i,l,c){let u=[s/r,r],d=e.values,p=t.values;if(s===0)return Be(n,t.dtype);let h=Be(u,t.dtype);h.values.fill(l);for(let f=0;f<a;f++){let m=[],g=0;for(let A=0;A<o;A++){let x=d[f*o+A];m.push(x),g+=x*i[A]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let A=0;A<r;A++)c?h.values[g*r+A]+=p[f*r+A]:h.values[g*r+A]=t.rank===0?p[0]:p[f*r+A]}return h}function pK(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=N.calculateShapes(a,r,o),p=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=PS(h,f,o,d,c,l,i,u,0,p);return n.makeTensorInfo(o,m.dtype,m.values)}var hK={kernelName:Ri,backendName:"cpu",kernelFunc:pK};function fK(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;Te([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=On(r.dtype,a.dtype),d=v.makeZerosTypedArray(v.sizeFromShape(r.shape),u),p=0,h=o===0||o>1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<h;m++)i[f]===1?d[p++]=l[f]:d[p++]=c[f];return n.makeTensorInfo(r.shape,u,d)}var mK={kernelName:$i,backendName:"cpu",kernelFunc:fK},gK=N.SELU_SCALEALPHA,AK=N.SELU_SCALE,yK=mt(cu,e=>e>=0?AK*e:gK*(Math.exp(e)-1)),xK={kernelName:cu,backendName:"cpu",kernelFunc:yK},bK=mt(du,e=>e<0?-1:e>0?1:0),vK={kernelName:du,backendName:"cpu",kernelFunc:bK},wK=mt(ro,e=>Math.sin(e)),kK={kernelName:ro,backendName:"cpu",kernelFunc:wK},SK=mt(_i,e=>Math.sinh(e)),IK={kernelName:_i,backendName:"cpu",kernelFunc:SK},CK=11920928955078125e-23,FS=Math.log(CK)+2,TK=mt(pu,e=>{let t=e>-FS,n=e<FS,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),NK={kernelName:pu,backendName:"cpu",kernelFunc:TK};function EK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;Te([r],"spaceToBatchND");let i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let S=1+a.length;S<r.shape.length;++S)l.push([0,0]);let c=_S.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=N.getReshaped(c.shape,a,i,!1),d=N.getPermuted(u.length,a.length,!1),p=N.getReshapedPermuted(c.shape,a,i,!1),m=$t({inputs:{x:c},backend:n,attrs:{shape:u}}),x=Rs({inputs:{x:m},backend:n,attrs:{perm:d}}),w=$t({inputs:{x},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(x),w}var RK={kernelName:Pi,backendName:"cpu",kernelFunc:EK};function $K(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=n.data.get(o.dataId).values[0],[d,p,h,f,m]=oS(i,s.shape,s.dtype,l,r.dtype,c,u);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var DK={kernelName:Ih,backendName:"cpu",kernelFunc:$K};function _K(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[c,u,d]=iS(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var PK={kernelName:Ch,backendName:"cpu",kernelFunc:_K};function FK(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=Cy(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var OK={kernelName:Th,backendName:"cpu",kernelFunc:FK};function MK(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=Cy(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var zK={kernelName:Nh,backendName:"cpu",kernelFunc:MK};function LK(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=N.calculateShapes(a,r,i),h=!1,f=n.bufferSync(r),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],A=PS(f,m,i,p,u,c,l,d,g,h);return n.makeTensorInfo(i,A.dtype,A.values)}var BK={kernelName:qc,backendName:"cpu",kernelFunc:LK};function WK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=N.prepareSplitSize(r,a,i),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(d=>{let p=[...u];p[i]=d;let h=hl({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});return c[i]+=d,h})}var VK={kernelName:Fi,backendName:"cpu",kernelFunc:WK},UK={kernelName:hu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Te(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},GK=mt(fo,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),HK={kernelName:fo,backendName:"cpu",kernelFunc:GK};function jK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s;Te(r,"stridedSlice");let{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:A,begin:x,end:y,strides:b}=Ft.sliceInfo(r.shape,a,o,i,l,c,u,d,p),w;if(m)w=$t({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||A){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=Ft.computeOutShape(x,y,b),C=hl({inputs:{x:r},backend:n,attrs:{begin:x,size:S}});w=$t({inputs:{x:C},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(C)}else{let S=n.bufferSync(r),C=uS(h,S,b,x);w=n.makeTensorInfo(f,C.dtype,C.values)}return w}var qK={kernelName:Oi,backendName:"cpu",kernelFunc:jK};function XK(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.data.get(u.dataId).values,h=n.data.get(d.dataId).values,[f,m]=cS(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var KK={kernelName:Xc,backendName:"cpu",kernelFunc:XK};function ZK(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[c,u,d]=dS(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var YK={kernelName:Eh,backendName:"cpu",kernelFunc:ZK};function JK(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=pS(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var QK={kernelName:Rh,backendName:"cpu",kernelFunc:JK},eZ=mt(Mi,e=>Math.tan(e)),tZ={kernelName:Mi,backendName:"cpu",kernelFunc:eZ},nZ=mt(po,e=>Math.tanh(e)),sZ={kernelName:po,backendName:"cpu",kernelFunc:nZ};function rZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Te(r,"tile");let o=fS(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var aZ={kernelName:Hr,backendName:"cpu",kernelFunc:rZ};function oZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Te(r,"topk");let i=n.data.get(r.dataId).values,[l,c]=gS(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var iZ={kernelName:zi,backendName:"cpu",kernelFunc:oZ};function lZ(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=n,[u,d,p,h]=r.shape,[f,m]=c??[d,p],g=[u,f,m,h],A=v.computeStrides(r.shape),x=A[0],y=A[1],b=A[2],w=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));w.fill(l);let S=s.data.get(r.dataId).values,C=s.data.get(a.dataId).values;for(let D=0;D<u;++D){let O=a.shape[0]===1?C:C.subarray(D*8,D*8+8);for(let _=0;_<f;++_)for(let F=0;F<m;++F)for(let T=0;T<h;++T){let M,U=O[6]*F+O[7]*_+1;if(U===0)continue;let q=(O[0]*F+O[1]*_+O[2])/U,j=(O[3]*F+O[4]*_+O[5])/U,X=OS(q,p,i),J=OS(j,d,i);switch(o){case"nearest":M=fZ(S,d,p,x,y,b,D,J,X,T,l);break;case"bilinear":M=mZ(S,d,p,x,y,b,D,J,X,T,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let te=D*x+_*y+F*b+T;w[te]=M}return s.makeTensorInfo(g,r.dtype,w)}return{dataId:s.write(w,g,r.dtype),shape:r.shape,dtype:r.dtype}}var uZ={kernelName:Li,backendName:"cpu",kernelFunc:lZ};function OS(e,t,n){switch(n){case"reflect":return cZ(e,t);case"wrap":return dZ(e,t);case"nearest":return hZ(e,t);case"constant":default:return pZ(e,t)}}function cZ(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return v.clamp(0,n,t-1)}function dZ(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return v.clamp(0,n,t-1)}function pZ(e,t){return e}function hZ(e,t){return v.clamp(0,e,t-1)}function Ud(e,t,n,s,r,a,o,i,l,c,u){let d=o*s+i*r+l*a+c;return 0<=i&&i<t&&0<=l&&l<n?e[d]:u}function fZ(e,t,n,s,r,a,o,i,l,c,u){let d=Math.round(i),p=Math.round(l);return Ud(e,t,n,s,r,a,o,d,p,c,u)}function mZ(e,t,n,s,r,a,o,i,l,c,u){let d=Math.floor(i),p=Math.floor(l),h=d+1,f=p+1,m=(f-l)*Ud(e,t,n,s,r,a,o,d,p,c,u)+(l-p)*Ud(e,t,n,s,r,a,o,d,f,c,u),g=(f-l)*Ud(e,t,n,s,r,a,o,h,p,c,u)+(l-p)*Ud(e,t,n,s,r,a,o,h,f,c,u);return(h-i)*m+(i-d)*g}function gZ(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Te(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:c}=AS(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([c.length],"int32",c)]}var AZ={kernelName:$h,backendName:"cpu",kernelFunc:gZ};function yZ(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),c=0;for(let h=0;h<o;h++)h!==a&&(l[c++]=r.shape[h]);let u=new Array(o).fill(0),d=r.shape.slice();d[a]=1;let p=new Array(i);for(let h=0;h<p.length;h++){u[a]=h;let f=hl({inputs:{x:r},backend:n,attrs:{begin:u,size:d}});p[h]=$t({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return p}var xZ={kernelName:Bi,backendName:"cpu",kernelFunc:yZ};function bZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;Te(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,c=[],u=[],d=i-l,p=a;for(let f=0;f<d;++f){let m=cm({inputs:{input:p},backend:n,attrs:{dim:f+1}});p=m,u.push(m)}for(let f=0;f<o;++f){let m=v.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),A=L7({inputs:{a:g,b:p},backend:n}),x=Oo({inputs:{x:A},backend:n,attrs:{dtype:"float32"}}),y=lm({inputs:{a:x,b:r},backend:n}),b=Vd({inputs:{x:y},backend:n,attrs:{axis:0,keepDims:!1}});c.push(b),u.push(g),u.push(A),u.push(x),u.push(y),u.push(b)}let h=DS({inputs:c,backend:n,attrs:{axis:0}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var vZ={kernelName:Kc,backendName:"cpu",kernelFunc:bZ},wZ=[EH,vG,$H,_H,TG,FH,MH,LH,WH,UH,HH,qH,KH,JH,ej,sj,aj,ij,uj,TH,dj,hj,mj,Aj,IG,EG,xj,wG,vj,kj,Cj,Nj,Sj,Dj,Pj,Rj,Oj,zj,Bj,Vj,Gj,jj,qj,Kj,Yj,Qj,eq,nq,tq,$y,aq,bH,iq,RG,mq,$G,gq,_G,wq,kq,Iq,FG,Nq,Rq,Dq,Pq,Oq,MG,LG,kG,zq,wj,Bq,Vq,Gq,vH,WG,UG,jq,HG,Xq,Yq,Qq,nX,rX,oX,qG,uX,dX,hX,mX,AX,iX,xX,vX,KG,kX,CX,RX,YG,QG,_X,OX,LX,tH,WX,UX,GX,_S,XX,kH,rH,ZX,SG,JX,SH,IH,CH,eK,nK,rK,oK,lK,uK,dK,oH,hK,mK,xK,lH,vK,kK,IK,uH,NX,NK,RK,DK,PK,OK,zK,BK,VK,pH,UK,fH,HK,qK,KK,YK,QK,yH,sq,tZ,sZ,aZ,iZ,nH,uZ,AZ,xZ,vZ,VX];for(let e of wZ)qr(e);var MS={};Me(MS,{assertNotComplex:()=>Gu,bindCanvasToFramebuffer:()=>PZ,bindColorTextureToFramebuffer:()=>mm,bindTextureToProgramUniformSampler:()=>JS,bindTextureUnit:()=>KS,bindVertexBufferToProgramAttribute:()=>Oy,callAndCheck:()=>Se,canBeRepresented:()=>zS,createFragmentShader:()=>WS,createFramebuffer:()=>XS,createProgram:()=>VS,createStaticIndexBuffer:()=>HS,createStaticVertexBuffer:()=>GS,createTexture:()=>jS,createVertexShader:()=>BS,getBatchDim:()=>ml,getExtensionOrThrow:()=>jd,getFramebufferErrorMessage:()=>QS,getMaxTexturesInShader:()=>sI,getNumChannels:()=>DZ,getProgramUniformLocation:()=>YS,getProgramUniformLocationOrThrow:()=>ZS,getRowsCols:()=>gl,getShapeAs3D:()=>gm,getTextureShapeFromLogicalShape:()=>tI,getWebGLDisjointQueryTimerVersion:()=>rI,getWebGLErrorMessage:()=>LS,getWebGLMaxTextureSize:()=>nI,hasExtension:()=>Ds,isCapableOfRenderingToFloatTexture:()=>aI,isDownloadFloatTextureEnabled:()=>oI,isReshapeFree:()=>Xd,isWebGLFenceEnabled:()=>iI,isWebGLVersionEnabled:()=>zy,linkProgram:()=>US,resetMaxTextureSize:()=>FZ,resetMaxTexturesInShader:()=>OZ,unbindColorTextureFromFramebuffer:()=>My,unbindTextureUnit:()=>_Z,validateFramebuffer:()=>qd,validateProgram:()=>fm,validateTextureSize:()=>qS});var fl={},Py={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function pm(e,t){fl[e]=t}function Fr(e){if(!(e in fl)){let n=SZ(e);if(n!==null)fl[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=fl[e];return t.isContextLost()?(delete fl[e],Fr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),fl[e])}function kZ(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function SZ(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=kZ(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete fl[e]},!1),e===1?t.getContext("webgl",Py)||t.getContext("experimental-webgl",Py):t.getContext("webgl2",Py)}var Gd;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Gd||(Gd={}));var $s;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})($s||($s={}));var wn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(wn||(wn={}));function Hd(e,t){return[t,e]}function IZ(e,t){return e*t}function hm(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function Uu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function CZ(e,t){let[n,s]=Uu(e,t);return n*s*4}function Fy(e,t){let n=e,s,r,a,o,i,l,c,u,d,p;return K().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,c=4,u=1,d=n.HALF_FLOAT,p=n.FLOAT):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,c=4,u=4,d=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT),l=e.RGBA,{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:d,textureTypeFloat:p}}function Se(e,t){let n=t();return K().getBool("DEBUG")&&TZ(e),n}function TZ(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+LS(e,t))}var NZ=596e-10,EZ=65504;function zS(e){return!!(K().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||NZ<Math.abs(e)&&Math.abs(e)<EZ)}function LS(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function jd(e,t){return ra(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function BS(e,t){let n=ra(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Se(e,()=>e.shaderSource(n,t)),Se(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function WS(e,t){let n=ra(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Se(e,()=>e.shaderSource(n,t)),Se(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw $Z(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var RZ=/ERROR: [0-9]+:([0-9]+):/g;function $Z(e,t){let n=RZ.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
|
|
`),a=r.length.toString().length+2,o=r.map((d,p)=>v.rightPad((p+1).toString(),a)+d),i=0;for(let d=0;d<o.length;d++)i=Math.max(o[d].length,i);let l=o.slice(0,s-1),c=o.slice(s-1,s),u=o.slice(s);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${v.rightPad(c[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
|
|
`))}function VS(e){return ra(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function US(e,t){if(Se(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function fm(e,t){if(Se(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function GS(e,t){let n=ra(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Se(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function HS(e,t){let n=ra(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Se(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Se(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function DZ(){return K().getNumber("WEBGL_VERSION")===2?1:4}function jS(e){return ra(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function qS(e,t){let n=K().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function XS(e){return ra(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Oy(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),Se(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),Se(e,()=>e.enableVertexAttribArray(i)),!0)}function KS(e,t,n){eI(e,n),Se(e,()=>e.activeTexture(e.TEXTURE0+n)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function _Z(e,t){eI(e,t),Se(e,()=>e.activeTexture(e.TEXTURE0+t)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function ZS(e,t,n){return ra(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function YS(e,t,n){return e.getUniformLocation(t,n)}function JS(e,t,n,s){Se(e,()=>KS(e,t,s)),Se(e,()=>e.uniform1i(n,s))}function PZ(e){Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Se(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),Se(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function mm(e,t,n){Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Se(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function My(e,t){Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Se(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function qd(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+QS(e,t))}function QS(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function ra(e,t,n){let s=Se(e,()=>t());if(s==null)throw new Error(n);return s}function eI(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function ml(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function gl(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function gm(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[ml(e),...gl(e)]),t}function tI(e,t=!1){let n=K().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?v.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let s=v.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=ml(e),a=2,o=2;return e.length&&([a,o]=gl(e)),s=r*(a/2)*(o/2),v.sizeToSquarishShape(s).map(i=>i*2)}return v.sizeToSquarishShape(s)}function Am(e){return e%2==0}function Xd(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||Am(n)&&Am(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Am(e[0])&&Am(t[0])}var ym,xm;function nI(e){if(ym==null){let t=Fr(e);ym=t.getParameter(t.MAX_TEXTURE_SIZE)}return ym}function FZ(){ym=null}function OZ(){xm=null}function sI(e){if(xm==null){let t=Fr(e);xm=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,xm)}function rI(e){if(e===0)return 0;let t,n=Fr(e);return Ds(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Ds(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Ds(e,t){return e.getExtension(t)!=null}function zy(e){try{if(Fr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function aI(e){if(e===0)return!1;let t=Fr(e);if(e===1){if(!Ds(t,"OES_texture_float"))return!1}else if(!Ds(t,"EXT_color_buffer_float"))return!1;return Ly(t)}function oI(e){if(e===0)return!1;let t=Fr(e);if(e===1){if(!Ds(t,"OES_texture_float")||!Ds(t,"WEBGL_color_buffer_float"))return!1}else{if(Ds(t,"EXT_color_buffer_float"))return Ly(t);let s="EXT_color_buffer_half_float";if(Ds(t,s)){let r=t.getExtension(s);return MZ(t,r)}return!1}return Ly(t)}function Ly(e){let t=Fy(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function MZ(e,t){let n=Fy(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function iI(e){return e!==2?!1:Fr(e).fenceSync!=null}function Gu(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var De=K();De.registerFlag("HAS_WEBGL",()=>De.getNumber("WEBGL_VERSION")>0);De.registerFlag("WEBGL_VERSION",()=>zy(2)?2:zy(1)?1:0);De.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);De.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>De.get("WEBGL_VERSION")===2);De.registerFlag("WEBGL_CPU_FORWARD",()=>!0);De.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);De.registerFlag("WEBGL_PACK",()=>De.getBool("HAS_WEBGL"));De.registerFlag("WEBGL_PACK_NORMALIZATION",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_CLIP",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_REDUCE",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_LAZILY_UNPACK",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_CONV_IM2COL",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>nI(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>sI(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=De.getNumber("WEBGL_VERSION");return e===0?0:rI(e)});De.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>De.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!gu.isMobile());De.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>aI(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>De.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:De.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));De.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>oI(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_FENCE_API_ENABLED",()=>iI(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>De.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);De.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});De.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>gu.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});De.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);De.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);De.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);De.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function Bn(){let e,t,n,s,r,a,o,i,l,c;return K().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",c=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,c=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:c}}function Al(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function bm(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function zZ(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function LZ(e,t,n="index"){let s=e.map((a,o)=>o),r=zZ(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function By(e){let t=v.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function Wy(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var lI=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:uI}=N;function BZ(e,t,n){let s=[];if(e.forEach(h=>{let f=v.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=Vy(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
|
|
`),a=e.map(h=>WZ(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),o=t.texShape,i=Bn(),l=GZ(i),c,u,d=qZ(i);return t.isPacked?(c=VZ(t.logicalShape,o,n.enableShapeUniforms),u=jZ(i)):(c=UZ(t.logicalShape,o,n.enableShapeUniforms),u=HZ(i)),n.packedInputs&&(d+=YZ),[d,l,u,r,c,a,n.userCode].join(`
|
|
`)}function Hu(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return uY(e,t);case 1:return dY(e,t);case 2:return hY(e,t);case 3:return mY(e,t);case 4:return AY(e,t);case 5:return yY(e);case 6:return xY(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function cI(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return lY(e);case 1:return cY(e,t);case 2:return pY(e,t);case 3:return fY(e,t);default:return gY(e,t)}}function WZ(e,t,n=!1,s){let r="";n?r+=cI(e,s):r+=Hu(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=bY(e,t):r+=vY(e,t)),r}function VZ(e,t,n){switch(e.length){case 0:return dI();case 1:return JZ(e,t,n);case 2:return oY(e,t,n);case 3:return eY(e,t,n);default:return nY(e,t,n)}}function UZ(e,t,n){switch(e.length){case 0:return dI();case 1:return QZ(e,t,n);case 2:return iY(e,t,n);case 3:return tY(e,t,n);case 4:return sY(e,t,n);case 5:return rY(e,t);case 6:return aY(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function GZ(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function HZ(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function jZ(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function qZ(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${XZ}
|
|
${KZ}
|
|
${ZZ}
|
|
`}var XZ=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,KZ=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,ZZ=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,YZ=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function dI(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function JZ(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${s[1]}.0);
|
|
}
|
|
`:s[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${s[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
|
|
}
|
|
`}function QZ(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function eY(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function tY(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${bm(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let s=Al(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function nY(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let c=2;c<e.length-1;c++)o*=e[e.length-c-1],i=`
|
|
int b${c} = index / ${o};
|
|
index -= b${c} * ${o};
|
|
`+i,l=`b${c}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function sY(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${bm(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let s=Al(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function rY(e,t){let n=Al(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function aY(e,t){let n=Al(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function oY(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function iY(e,t,n){return v.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function yl(e){return`offset${e}`}function lY(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=Bn();return`
|
|
vec4 ${n}() {
|
|
return ${s.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function uY(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${s}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=yl(n);if(t)return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[i,l]=e.shapeInfo.texShape;return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function cY(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=Bn();if(t)return`
|
|
vec4 ${s}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${s}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${o[0]}, ${o[1]}, index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`}function dY(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int index) {
|
|
${ju(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
|
|
float ${s}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=yl(n);return o===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:a===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function pY(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=Bn();if(a!=null&&v.arraysEqual(n,a))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;let c=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],u=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${c[0]}, ${c[1]}, row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`}function hY(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&v.arraysEqual(n,a)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let p=a[0],h=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}let{newShape:o,keptDims:i}=v.squeezeShape(n),l=o;if(l.length<n.length){let p=qu(e,l),h=["row","col"];return`
|
|
${Hu(p,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${Xu(h,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${ju(e)}
|
|
}
|
|
`;let c=a[0],u=a[1],d=yl(s);return u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${c}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:c===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s}Shape[1] + col + ${d};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${c}, ${u}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function fY(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let p=n.slice(1),h=[1,2],f=qu(e,p),m=["b","row","col"];return`
|
|
${cI(f,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${Xu(m,h)});
|
|
}
|
|
`}let i=Bn();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`;let l=o[0],c=o[1],u=Math.ceil(n[2]/2),d=u*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${c}, ${d}, ${u}, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`}function mY(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=v.squeezeShape(n),c=i;if(c.length<n.length){let m=qu(e,c),g=["row","col","depth"];return`
|
|
${Hu(m,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${Xu(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${o}, 1)));
|
|
${ju(e)}
|
|
}
|
|
`;let u=e.shapeInfo.texShape,d=u[0],p=u[1],h=e.shapeInfo.flatOffset;if(p===a&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${s}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(p===o&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let f=yl(s);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${s}Shape[1] * ${s}Shape[2];
|
|
int stride1 = ${s}Shape[2];
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${p}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function gY(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=Bn();if(t)return`
|
|
vec4 ${s}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],c=l[0],u=l[1],d=Math.ceil(a[o-1]/2),p=d*Math.ceil(a[o-2]/2),h="int b, int row, int col",f=`b * ${p} + (row / 2) * ${d} + (col / 2)`;for(let m=2;m<o-1;m++)h=`int b${m}, `+h,p*=a[o-m-1],f=`b${m} * ${p} + `+f;return`
|
|
vec4 ${s}(${h}) {
|
|
int index = ${f};
|
|
int texR = index / ${u};
|
|
int texC = index - texR * ${u};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${u}, ${c});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function AY(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:c}=v.squeezeShape(n);if(l.length<n.length){let x=qu(e,l),y=["row","col","depth","depth2"];return`
|
|
${Hu(x,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${Xu(y,c)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, 1)));
|
|
${ju(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===i&&u==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${o}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(h===a&&u==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let A=yl(s);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${A});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${h}, index + ${A});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function yY(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:c}=v.squeezeShape(t);if(l.length<t.length){let m=qu(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${Hu(m)}
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${s}(${Xu(g,c)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, ${r})) +
|
|
depth3;
|
|
${ju(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1];if(h===i&&u==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${o}, ${a}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&u==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=yl(n);return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} + depth * ${a} +
|
|
depth2 * ${r} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function xY(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=v.squeezeShape(t);if(r.length<t.length){let g=qu(e,r),A=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${Hu(g)}
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${s}(${Xu(A,a)});
|
|
}
|
|
`}let o=t[5],i=t[4]*o,l=t[3]*i,c=t[2]*l,u=t[1]*c;if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${u}, ${c}, ${l}, ${i})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${o}, 1)));
|
|
${ju(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,h=p[0],f=p[1];if(f===u&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${c}, ${l}, ${i}, ${o})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===o&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=yl(n);return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${u} + col * ${c} + depth * ${l} +
|
|
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${h}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function ju(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function bY(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=uI(e.shapeInfo.logicalShape,t.logicalShape),l=bt(o),c=o-a,u,d=["x","y","z","w","u","v"];a===0?u="":o<2&&i.length>=1?u="coords = 0;":u=i.map(x=>`coords.${d[x+c]} = 0;`).join(`
|
|
`);let p="";o<2&&a>0?p="coords":p=e.shapeInfo.logicalShape.map((x,y)=>`coords.${d[y+c]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,A=v.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!A)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!A)o===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(i.length){let x=a-2,y=a-1;i.indexOf(x)>-1&&i.indexOf(y)>-1?h="return vec4(outputValue.x);":i.indexOf(x)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${u}
|
|
vec4 outputValue = get${s}(${p});
|
|
${h}
|
|
}
|
|
`}function vY(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(o,a))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let c=bt(l),u=uI(e.shapeInfo.logicalShape,t.logicalShape),d=l-i,p,h=["x","y","z","w","u","v"];i===0?p="":l<2&&u.length>=1?p="coords = 0;":p=u.map(m=>`coords.${h[m+d]} = 0;`).join(`
|
|
`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+d]}`).join(", "),`
|
|
float ${r}() {
|
|
${c} coords = getOutputCoords();
|
|
${p}
|
|
return get${s}(${f});
|
|
}
|
|
`}function bt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Vy(e,t,n){let{newShape:s,keptDims:r}=v.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!v.arraysEqual(t,n)&&s.length<a||o;return{useSqueezeShape:l,uniformShape:l?i:t,keptDims:r}}function qu(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Xu(e,t){return t.map(n=>e[n]).join(", ")}function wY(e,t,n,s){let r=n.map((y,b)=>{let w={logicalShape:y.shape,texShape:y.isUniform?null:y.texData.texShape,isUniform:y.isUniform,isPacked:y.isUniform?!1:y.texData.isPacked,flatOffset:null};return y.texData!=null&&y.texData.slice!=null&&y.texData.slice.flatOffset>0&&(w.flatOffset=y.texData.slice.flatOffset),{name:t.variableNames[b],shapeInfo:w}}),a=r.map(y=>y.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=BZ(r,o,t),l=e.createProgram(i),c=null,u=e.getUniformLocation(l,"NAN",!1);K().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(l,"INFINITY",!1));let d=!1,p={},h={},f={};for(let y=0;y<t.variableNames.length;y++){let b=t.variableNames[y];p[b]=e.getUniformLocation(l,b,d),p[`offset${b}`]=e.getUniformLocation(l,`offset${b}`,d),t.enableShapeUniforms&&(h[`${b}Shape`]=e.getUniformLocation(l,`${b}Shape`,d),f[`${b}TexShape`]=e.getUniformLocation(l,`${b}TexShape`,d))}let m,g,A;t.enableShapeUniforms&&(m=e.getUniformLocation(l,"outShape",d),A=e.getUniformLocation(l,"outShapeStrides",d),g=e.getUniformLocation(l,"outTexShape",d));let x=[];return t.customUniforms&&t.customUniforms.forEach((y,b)=>{x[b]=e.getUniformLocation(l,y.name,d)}),{program:t,source:i,webGLProgram:l,uniformLocations:p,customUniformLocations:x,inShapeInfos:a,outShapeInfo:o,infLoc:c,nanLoc:u,inShapesLocations:h,inTexShapesLocations:f,outShapeLocation:m,outShapeStridesLocation:A,outTexShapeLocation:g}}function pI(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!v.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!v.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function kY(e,t,n,s,r){t.program.enableShapeUniforms||(pI(t.inShapeInfos,n),pI([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),K().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,c)=>{let u=t.program.variableNames[c],d=t.uniformLocations[u],p=t.uniformLocations[`offset${u}`],h=t.inShapesLocations[`${u}Shape`],f=t.inTexShapesLocations[`${u}TexShape`];if(h){let{uniformShape:m}=Vy(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}l.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture,d,c)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,c)=>{let u=t.customUniformLocations[c],d=r[c];if(l.type==="float")e.gl.uniform1fv(u,d);else if(l.type==="vec2")e.gl.uniform2fv(u,d);else if(l.type==="vec3")e.gl.uniform3fv(u,d);else if(l.type==="vec4")e.gl.uniform4fv(u,d);else if(l.type==="int")e.gl.uniform1iv(u,d);else if(l.type==="ivec2")e.gl.uniform2iv(u,d);else if(l.type==="ivec3")e.gl.uniform3iv(u,d);else if(l.type==="ivec4")e.gl.uniform4iv(u,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function SY(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:c,uniformShape:u,keptDims:d}=Vy(e.packedInputs,o.shape,l),p="",h="",f="";if(u.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];p=`${w[0]>1}_${w[1]>1}`}else if(u.length===2&&!e.packedInputs)h=`${u[0]>1}_${u[1]>1}`;else if(u.length>2&&!e.packedInputs){let w=v.computeStrides(u);f=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let m=o.shape.length,g=u.length===2&&v.arraysEqual(o.shape,l),A=v.sizeFromShape(o.shape)===1,x=N.getBroadcastDims(o.shape,n.shape),y=!e.packedInputs&&m===n.shape.length&&v.arraysEqual(l,n.texData.texShape),b=e.packedInputs||u.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${y}_${c?d:""}_${u.length}_${A}_${x}_${g}_${p}_${h}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${K().getNumber("WEBGL_VERSION")}`,a}function _s(e){return K().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var IY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Gd.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Bn();this.outputShape=e,this.enableShapeUniforms=_s(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?bm(["r","c","d"],e):Al(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},CY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Gd.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Bn();this.outputShape=e,this.enableShapeUniforms=_s(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?bm(["r","c","d"],e):Al(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},TY=class{constructor(e){this.variableNames=["A"],this.outTexUsage=$s.DOWNLOAD;let t=Bn();this.outputShape=e,this.userCode=`
|
|
${lI}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},NY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=$s.DOWNLOAD;let t=Bn();this.outputShape=e,this.userCode=`
|
|
${lI}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},EY=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Bn();this.outputShape=e,this.enableShapeUniforms=_s(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?Wy():By(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${s}, 0., 0., 0.);
|
|
}
|
|
`}},RY=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Bn();this.outputShape=e,this.enableShapeUniforms=_s(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${o};
|
|
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${a};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${i}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${i}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${i}] = values[2];
|
|
} else {
|
|
result[${i}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?Wy():By(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${s}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},hI={};Me(hI,{bindVertexProgramAttributeStreams:()=>wI,createBufferFromOutputTexture:()=>II,createFloat16MatrixTexture:()=>yI,createFloat16PackedMatrixTexture:()=>vI,createFloat32MatrixTexture:()=>AI,createIndexBuffer:()=>gI,createPackedMatrixTexture:()=>bI,createUnsignedBytesMatrixTexture:()=>xI,createVertexBuffer:()=>mI,createVertexShader:()=>fI,downloadByteEncodedFloatMatrixFromOutputTexture:()=>TI,downloadFloat32MatrixFromBuffer:()=>CI,downloadMatrixFromPackedOutputTexture:()=>EI,downloadPackedMatrixFromBuffer:()=>NI,getInternalFormatForFloat16MatrixTexture:()=>Gy,getInternalFormatForFloat16PackedMatrixTexture:()=>qy,getInternalFormatForFloat32MatrixTexture:()=>Uy,getInternalFormatForPackedMatrixTexture:()=>jy,getInternalFormatForUnsignedBytesMatrixTexture:()=>Hy,uploadDenseMatrixToTexture:()=>kI,uploadPixelDataToTexture:()=>SI});function fI(e){let t=Bn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return BS(e,n)}function mI(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return GS(e,t)}function gI(e){let t=new Uint16Array([0,1,2,2,1,3]);return HS(e,t)}function Kd(e,t,n,s,r,a){qS(t,n);let o=jS(e),i=e.TEXTURE_2D;return Se(e,()=>e.bindTexture(i,o)),Se(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Se(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Se(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),Se(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),Se(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function Uy(e){return e.internalFormatFloat}function AI(e,t,n,s){let[r,a]=Hd(t,n);return Kd(e,r,a,Uy(s),s.textureFormatFloat,e.FLOAT)}function Gy(e){return e.internalFormatHalfFloat}function yI(e,t,n,s){let[r,a]=Hd(t,n);return Kd(e,r,a,Gy(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function Hy(e){return e.downloadTextureFormat}function xI(e,t,n,s){let[r,a]=Hd(t,n);return Kd(e,r,a,Hy(s),e.RGBA,e.UNSIGNED_BYTE)}function jy(e){return e.internalFormatPackedFloat}function bI(e,t,n,s){let[r,a]=Uu(t,n);return Kd(e,r,a,jy(s),e.RGBA,e.FLOAT)}function qy(e){return e.internalFormatPackedHalfFloat}function vI(e,t,n,s){let[r,a]=Uu(t,n);return Kd(e,r,a,qy(s),e.RGBA,s.textureTypeHalfFloat)}function wI(e,t,n){let s=0,r=3*4,a=3*4+2*4;return Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Oy(e,t,"clipSpacePos",n,3,a,s)&&Oy(e,t,"uv",n,2,a,r)}function kI(e,t,n,s,r,a){Se(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),Se(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function SI(e,t,n){Se(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Se(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Se(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function II(e,t,n,s){let r=e.createBuffer();Se(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return Se(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),Se(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Se(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function CI(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function TI(e,t,n,s){let[r,a]=Hd(t,n),o=4,i=new Uint8Array(IZ(t*n,o));return Se(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function NI(e,t,n,s,r,a,o,i){let l=e,c=new Float32Array(CZ(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function EI(e,t,n){let s=new Float32Array(t*n*4);return Se(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var vm=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=K().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,pm(t,e)):this.gl=Fr(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(K().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=jd(this.gl,r),Ds(this.gl,a))this.textureHalfFloatExtension=jd(this.gl,a);else if(K().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Ds(this.gl,s))this.colorBufferHalfFloatExtension=jd(this.gl,s);else if(K().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Ds(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Ds(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=mI(this.gl),this.indexBuffer=gI(this.gl),this.framebuffer=XS(this.gl),this.textureConfig=Fy(this.gl,this.textureHalfFloatExtension)}get debug(){return K().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Se(e,()=>e.finish()),Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Se(e,()=>e.deleteFramebuffer(this.framebuffer)),Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Se(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Se(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),AI(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),yI(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),xI(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),SI(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),kI(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),vI(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),bI(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(My(this.gl,this.framebuffer),this.outputTexture=null),Se(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>TI(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return NI(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return CI(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=II(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(K().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>EI(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=WS(t,e);this.vertexShader==null&&(this.vertexShader=fI(t));let s=VS(t);return Se(t,()=>t.attachShader(s,this.vertexShader)),Se(t,()=>t.attachShader(s,n)),US(t,s),this.debug&&fm(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=wI(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Se(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&fm(this.gl,this.program),Se(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?ZS(this.gl,e,t):YS(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Se(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),JS(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=Uu(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&fm(this.gl,this.program),qd(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Se(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Se(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=jd(this.gl,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=$Y(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),mm(this.gl,e,this.framebuffer),this.debug&&qd(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(mm(this.gl,this.outputTexture,this.framebuffer),this.debug&&qd(this.gl)):My(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;mm(s,e,this.framebuffer),this.debug&&qd(s),this.outputTexture=e,Se(s,()=>s.viewport(0,0,t,n)),Se(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),Se(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function $Y(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:DY,bincountImpl:RI,bincountReduceImpl:_Y,ceilImpl:PY,concatImpl:FY,equalImpl:OY,expImpl:MY,expm1Impl:zY,floorImpl:LY,gatherNdImpl:BY,gatherV2Impl:WY,greaterImpl:VY,greaterEqualImpl:UY,lessImpl:GY,lessEqualImpl:HY,linSpaceImpl:jY,logImpl:qY,maxImpl:XY,maximumImpl:KY,minimumImpl:ZY,multiplyImpl:YY,negImpl:JY,notEqualImpl:QY,prodImpl:eJ,rangeImpl:tJ,rsqrtImpl:nJ,sigmoidImpl:sJ,simpleAbsImpl:$I,sliceImpl:rJ,sparseFillEmptyRowsImpl:aJ,sparseReshapeImpl:oJ,sparseSegmentReductionImpl:DI,sqrtImpl:iJ,stridedSliceImpl:lJ,stringNGramsImpl:uJ,stringSplitImpl:cJ,stringToHashBucketFastImpl:dJ,subImpl:pJ,tileImpl:hJ,topKImpl:fJ,transposeImpl:Xy,uniqueImpl:mJ}=om;function _I(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Wn(e,t){return t===1?[e]:_I(e,t)}function gJ(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var AJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=Wn("rc",t),s=bt(t),r=xJ(t,e,n),a=bJ(t,e[e.length-1],e[e.length-2],n),o=vJ(e,n);this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${a}
|
|
|
|
setOutput(vec4(${o}));
|
|
}
|
|
}
|
|
`}}};function yJ(e,t){let n=[];for(let s=0;s<=1;s++)for(let r=0;r<=1;r++){let a=`${s===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let o=2;o<e;o++)a=`${t[t.length-1-o]},`+a;n.push(a)}return n}function xJ(e,t,n){if(e===1)return`rc > ${t[0]}`;let s="";for(let r=e-2;r<e;r++)s+=`${n[r]} >= ${t[r]}`,r<e-1&&(s+="||");return s}function bJ(e,t,n,s){if(e===1)return"";let r=s.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function vJ(e,t){let n=e.length,s=yJ(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${s[0]}),
|
|
cEdge ? 0. : getA(${s[1]}),
|
|
rEdge ? 0. : getA(${s[2]}),
|
|
rEdge || cEdge ? 0. : getA(${s[3]})`}var PI=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=_s(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2==1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${s}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${s>0?"}":""}
|
|
`}this.userCode=`
|
|
${wJ(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?Wy():By(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function wJ(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?LZ(["r","c","d"],"inputShape"):Al(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var kJ=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=OI(t,n),r=MI(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=FI(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===wn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===wn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===wn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===wn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===wn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=OI(n,s),a=MI(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=FI(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=K().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function SJ(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function FI(e,t,n,s,r){let a=IJ(t,s),o;if(r){let[l,c]=Uu(e[0],e[1]);o=l*c}else{let[l,c]=Hd(e[0],e[1]);o=l*c}let i=SJ(n,a);return o*i}function IJ(e,t){switch(e){case wn.PACKED_2X2_FLOAT32:return jy(t);case wn.PACKED_2X2_FLOAT16:return qy(t);case wn.UNPACKED_FLOAT32:return Uy(t);case wn.UNPACKED_FLOAT16:return Gy(t);case wn.PACKED_4X1_UNSIGNED_BYTE:return Hy(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function CJ(e){return K().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?wn.PACKED_2X2_FLOAT32:wn.UNPACKED_FLOAT32:e?wn.PACKED_2X2_FLOAT16:wn.UNPACKED_FLOAT16}function OI(e,t){if(e===$s.UPLOAD)return wn.PACKED_2X2_FLOAT32;if(e===$s.RENDER||e==null)return CJ(t);if(e===$s.DOWNLOAD||e===$s.PIXELS)return wn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function MI(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var zo=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=_s(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},gr="if (isnan(x)) return x;",TJ="return x;",zI="return abs(x);",NJ="return (x >= 0.0) ? x : (exp(x) - 1.0);",EJ=gr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,RJ=gr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,wm="return x;",$J="return 1.0 / (1.0 + exp(-1.0 * x));",DJ="return x;",_J=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,PJ=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,FJ=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,OJ="return 1.0 / (1.0 + exp(-1.0 * x));",Ku=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=_s(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},MJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=Wn("rc",t),s=bt(t),r=gJ(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${o}));
|
|
}
|
|
`}},zJ=js.whereImpl,LJ=1e-7,BJ=1e-4,km={};function WJ(e){return e in km||(km[e]={}),km[e]}var VJ=K().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),UJ=600;function GJ(){return K().global.screen==null?1024:K().global.screen.height*K().global.screen.width*window.devicePixelRatio*UJ/1024/1024}var LI=class extends Ll{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!K().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Fr(K().getNumber("WEBGL_VERSION"));this.binaryCache=WJ(K().getNumber("WEBGL_VERSION")),this.gpgpu=new vm(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new kJ(this.gpgpu),this.numMBBeforeWarning=GJ(),this.texData=new _c(this,Jn())}nextDataId(){return LI.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((K().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||K().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:$s.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(K().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:$s.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new Ku(o,wm):d=new zo(o,wm);let p=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,c;l&&(c=v.now());let u;if(s==="complex64"){let d=this.readSync(r.real.dataId),p=this.readSync(r.imag.dataId);u=N.mergeRealAndImagArrays(d,p)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new Ku(s,wm):h=new zo(s,wm);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(K().getBool("DEBUG")&&!K().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&K().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(a!=="complex64"&&K().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let h=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...hm(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];u=N.mergeRealAndImagArrays(f,m)}else if(l==null)u=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(s);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(c!=null&&this.disposeIntermediateTensorInfo(c),l!=null){let h=this.gpgpu.gl;Se(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,u),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Jn().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch{throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!zS(n))throw K().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=v.sizeFromShape(t);if(K().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),p=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(p.texture,...hm(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let a=K().getBool("WEBGL_PACK")&&s===!0,o=a?gm(t):t,i=a?new NY(o):new TY(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),c=this.texData.get(l.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),u}timerAvailable(){return K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=v.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,c)=>({name:a[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=VJ){return K().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){N.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return zJ(e.shape,t)}packedUnaryOp(e,t,n){let s=new Ku(e.shape,t),r=this.compileAndRun(s,[e],n);return Jn().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=$I(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(K().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,zI,e.dtype);let t=new zo(e.shape,zI),n=this.compileAndRun(t,[e]);return Jn().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:s}=this.makeTensorInfo(e,t,n);return Jn().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){let t=new MJ(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new AJ(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[ml(e.shape),...gl(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[ml(t),...gl(t)],a=new PI(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:s,dtype:r}=t,a=gm(s),o,i=hm(a);n?o=new CY(a):o=new IY(a);let l=!0,c=[i],u=this.runWebGLProgram(o,[{shape:a,dtype:r,dataId:e}],r,c,l);return{dtype:r,shape:s,dataId:u.dataId}}runWebGLProgram(e,t,n,s,r=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===Gd.DENSE){let m=hm(e.outputShape);o.texShape=m.map(g=>g*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),v.sizeFromShape(a.shape)===0)return o.values=v.getTypedArrayFromDType(a.dtype,0),a;let i=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(m.dataId);if(g.texture==null){if(!e.packedInputs&&v.sizeFromShape(m.shape)<=K().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=m.shape)}else if(!!g.isPacked!=!!e.packedInputs)m=g.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),g=this.texData.get(m.dataId);else if(g.isPacked&&!Xd(g.shape,m.shape)){let A=m,x=m.shape;m.shape=g.shape,m=this.packedReshape(m,x),i.push(m),g=this.texData.get(m.dataId),A.shape=x}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let c={shape:a.shape,texData:o,isUniform:!1},u=SY(e,l,c),d=this.getAndSaveBinary(u,()=>wY(this.gpgpu,e,l,c)),p=this.activeTimers!=null,h;p&&(h=this.startTimer()),kY(this.gpgpu,d,l,c,s),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),p&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let f=K().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=v.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!K().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(K().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=G(()=>{if(!K().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=K().getBool("DEBUG");K().set("DEBUG",!1);let t=this.abs(Ne(1e-8)).dataSync()[0];if(K().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?LJ:BJ}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,c;l&&(c=v.now());let u=t.texShape;if(u==null&&(u=tI(n,i),t.texShape=u),r!=null){let d=gm(n),p,h=u[1],f=u[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;i?([h,f]=Uu(u[0],u[1]),p=new RY(d,m)):p=new EY(d,m);let g=this.makeTensorInfo([f,h],s);m?this.texData.get(g.dataId).usage=$s.PIXELS:this.texData.get(g.dataId).usage=$s.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,f,r);let A=[[f,h]],x=!0,y=this.runWebGLProgram(p,[g],s,A,x),b=this.texData.get(y.dataId);t.texture=b.texture,t.texShape=b.texShape,t.isPacked=b.isPacked,t.usage=b.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(y.dataId),t.values=null,l&&(this.uploadWaitMs+=v.now()-c)}else{let d=this.acquireTexture(u,o,s,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=HJ(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}},Zd=LI;Zd.nextDataId=0;function HJ(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var jJ="0.0.0";function BI(){K().set("WEBGL_FORCE_F16_TEXTURES",!0)}gu.isBrowser()&&Yi("webgl",()=>new Zd,2);var qJ={forceHalfFloat:BI},WI=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Zu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=_s(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},Sm=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Yd=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=N.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=_s(r);let a="";if(s)if(r===0||v.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${bt(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?a+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=Wn("coords",r);this.enableShapeUniforms?a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function ms(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var XJ={kernelName:Wa,backendName:"webgl",kernelFunc:ms};function Lo(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=ms({inputs:{x:s},backend:n}),l=ms({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var KJ={kernelName:Mc,backendName:"webgl",kernelFunc:Lo},VI="return (a < 0.) ? b * a : a;",UI=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function ZJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),i=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Yd(UI,r.shape,o.shape):new Zu(VI,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],"float32");return n.disposeIntermediateTensorInfo(o),l}var YJ={kernelName:mi,backendName:"webgl",kernelFunc:ZJ},GI="return (a < 0.) ? b * a : a;",HI=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function JJ(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Yd(HI,s.shape,r.shape):new Zu(GI,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],"float32")}var QJ={kernelName:Qa,backendName:"webgl",kernelFunc:JJ},jI="if (isnan(x)) return x;",eQ=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,tQ=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function ot({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),p=n(d.values,l);return i.makeTensorInfo(o.shape,l,p)}let c=K().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new Ku(o.shape,t):u=new zo(o.shape,e),i.runWebGLProgram(u,[o],l)}}function kn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:c}=o,u=i;if(s&&l.dtype==="complex64"){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[g,A]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(y=>{let[b,w]=y,S={dataId:b.dataId,dtype:b.dtype,shape:l.shape},C={dataId:w.dataId,dtype:w.dtype,shape:c.shape},E=new Zu(e,l.shape,c.shape);return u.runWebGLProgram(E,[S,C],On(b.dtype,w.dtype))}),x=Lo({inputs:{real:g,imag:A},backend:u});return u.disposeIntermediateTensorInfo(g),u.disposeIntermediateTensorInfo(A),x}let d=a||On(l.dtype,c.dtype);if((l.dtype==="string"||c.dtype==="string"||u.shouldExecuteOnCPU([l,c]))&&r!=null){let f=u.texData.get(l.dataId).values,m=u.texData.get(c.dataId).values,g=l.dtype==="string"?N.fromUint8ToStringArray(f):f,A=l.dtype==="string"?N.fromUint8ToStringArray(m):m,[x,y]=r(l.shape,c.shape,g,A,d),b=u.makeTensorInfo(y,d),w=u.texData.get(b.dataId);return w.values=x,b}let p=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return p?h=new Yd(t,l.shape,c.shape,n):h=new Zu(e,l.shape,c.shape),u.runWebGLProgram(h,[l,c],d)}}function Im(e,t=!1){if(e==="linear")return t?DJ:TJ;if(e==="relu")return t?PJ:EJ;if(e==="elu")return t?_J:NJ;if(e==="relu6")return t?FJ:RJ;if(e==="prelu")return t?HI:GI;if(e==="leakyrelu")return t?UI:VI;if(e==="sigmoid")return t?OJ:$J;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var qI=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=_s(this.outputShape.length);let c=s?e[1]:e[2],u=Math.ceil(c/2),d=s?"i * 2, rc.y":"rc.y, i * 2",p=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${o}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${o}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${o}
|
|
}`,g="result = activation(result);");let A=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let x="rc.x",y="rc.x";e[0]<t[0]?x=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(y=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${u}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${u}; i++) {
|
|
int batchA = ${x};
|
|
int batchB = ${y};
|
|
vec4 a = getMatrixA(batchA, ${d});
|
|
vec4 b = getMatrixB(batchB, ${p});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${f[0]});
|
|
result += (${h[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${A}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},XI={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},KI=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},ZI="return a * b;";function Ky(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=N.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),c=new KI(XI.REAL,s.shape,r.shape),u=new KI(XI.IMAG,s.shape,r.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],p=n.runWebGLProgram(c,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=Lo({inputs:{real:p,imag:h},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[c,u]=YY(s.shape,r.shape,i.values,l.values,a),d=n.makeTensorInfo(u,a),p=n.texData.get(d.dataId);return p.values=c,d}let o;return K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new Yd(ZI,s.shape,r.shape):o=new Zu(ZI,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var nQ={kernelName:Za,backendName:"webgl",kernelFunc:Ky};function sQ(e,t,n){let s=[ml(e.shape),...gl(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[ml(t),...gl(t)],o=new PI(a,s),i=!0,l=[s],c=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:c.dataId,shape:t,dtype:c.dtype}}function be(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(a,i),c=v.sizeFromShape(l);v.assert(i===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let u=o.texData.get(r.dataId);return u.isPacked&&!Xd(r.shape,l)&&!(u.texture!==null&&Xd(u.shape,l))?sQ(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var rQ={kernelName:Ti,backendName:"webgl",kernelFunc:be},YI=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${v.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${o}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${o};
|
|
if (${i===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},aQ=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,d=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,p="vec4";t==="all"?(o="1.0",d=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,p="bvec4"):t==="any"&&(o="0.0",d=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,p="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${o});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${u===1}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===2}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===3}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function oQ(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=N.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function xl(e,t,n,s){let r=oQ(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:c}=r[o],u,d;n==="mean"?u=o===0?new YI({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c},i):new YI({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c}):u=new aQ({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c},n),d=a,a=s.runWebGLProgram(u,[a],t),d.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(d)}return a}var iQ=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=bt(this.rank),r=lQ(t);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function lQ(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var uQ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=bt(this.rank),r=_I("rc",this.rank),a=new Array(this.rank);for(let c=0;c<t.length;c++)a[t[c]]=r[c];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${i}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${i}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Cm(e,t,n){let s=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new uQ(e.shape,t):new iQ(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function cQ(e,t,n,s){let r=t,a=e.shape.length,o=v.parseAxisParam(r,e.shape),i=o,l=N.getAxesPermutation(i,a),c=l!=null,u=e;c&&(u=Cm(e,l,s),i=N.getInnerMostAxes(i.length,a)),N.assertAxesAreInnerMostDims("sum",i,a);let[d,p]=N.computeOutAndReduceShapes(u.shape,i),h=d;n&&(h=N.expandShapeToKeepDim(d,o));let f=v.sizeFromShape(p),g=v.sizeFromShape(e.shape)/f,A=be({inputs:{x:u},attrs:{shape:[g,f]},backend:s}),x=ad(e.dtype),y=xl(A,x,"sum",s),b=be({inputs:{x:y},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(A),s.disposeIntermediateTensorInfo(y),c&&s.disposeIntermediateTensorInfo(u),b}function Tm(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return cQ(r,a,o,n)}var dQ={kernelName:io,backendName:"webgl",kernelFunc:Tm};function Vn(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let u=0;u<l.length;u++)l[u]=r.shape[a[u]];let c;if(o.shouldExecuteOnCPU([r])){let d=o.texData.get(r.dataId).values,p=Xy(d,r.shape,r.dtype,a,l);c=o.makeTensorInfo(l,r.dtype);let h=o.texData.get(c.dataId);h.values=p}else c=Cm(r,a,o);return c}var pQ={kernelName:ho,backendName:"webgl",kernelFunc:Vn},JI=1e3;function Nm({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,d=n?e.shape[c-2]:e.shape[c-1],p=s?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],f=s?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),A=v.sizeFromShape(m),x=v.sizeFromShape(g),b=Xi.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[A,d,h]:[A,h,d],S=s?[x,f,p]:[x,p,f],C=be({inputs:{x:e},backend:r,attrs:{shape:w}}),E=be({inputs:{x:t},backend:r,attrs:{shape:S}}),D=[C,E],O=Math.max(A,x),_=n?C.shape[1]:C.shape[2],F=a!=null,T=o!=null,M=l==="leakyrelu",U=l!=null?Im(l,!0):null,q=F||T||M||U!=null,j;if((h===1||f===1)&&_>JI&&q===!1){let J=C,te=E;n&&(J=Vn({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),D.push(J)),s&&(te=Vn({inputs:{x:E},backend:r,attrs:{perm:[0,2,1]}}),D.push(te));let ne=f!==1,ae=f===1,se=J;ne&&(se=be({inputs:{x:J},backend:r,attrs:{shape:[O,_,1]}}),D.push(se));let re=f===1?2:1,ue=te;ae&&(ue=be({inputs:{x:te},backend:r,attrs:{shape:[O,1,_]}}),D.push(ue));let ye=Ky({inputs:{a:se,b:ue},backend:r});j=Tm({inputs:{x:ye},backend:r,attrs:{axis:re,keepDims:!0}}),D.push(ye)}else{let J=On(e.dtype,t.dtype),te=new qI(w,S,[O,h,f],n,s,F,U,T,M),ne=[C,E];if(a!=null&&ne.push(a),T&&ne.push(o),M){let ae=r.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));ne.push(ae),D.push(ae)}j=r.runWebGLProgram(te,ne,J)}let X=be({inputs:{x:j},backend:r,attrs:{shape:b}});D.push(j);for(let J of D)r.disposeIntermediateTensorInfo(J);return X}function hQ(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s;return Nm({a:r,b:a,transposeA:l,transposeB:c,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:u})}var fQ={kernelName:mo,backendName:"webgl",kernelFunc:hQ},QI="return abs(x);";function mQ(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=$I(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return K().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Ku(s.shape,QI):r=new zo(s.shape,QI),n.runWebGLProgram(r,[s],s.dtype)}var gQ={kernelName:ni,backendName:"webgl",kernelFunc:mQ},AQ=gr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,yQ=ot({opSnippet:AQ}),xQ={kernelName:Vl,backendName:"webgl",kernelFunc:yQ},bQ=gr+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,vQ=ot({opSnippet:bQ}),wQ={kernelName:Ul,backendName:"webgl",kernelFunc:vQ},e4="return a + b;",kQ=kn({opSnippet:e4,packedOpSnippet:e4,supportsComplex:!0,cpuKernelImpl:DY}),SQ={kernelName:Ur,backendName:"webgl",kernelFunc:kQ},IQ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}},CQ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}};function Em(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return ms({inputs:{x:s[0]},backend:n});if(s.length>K().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),c=Em({inputs:s.slice(0,l),backend:n}),u=Em({inputs:s.slice(l),backend:n});return Em({inputs:[c,u],backend:n})}let r=s.map(l=>l.dtype).reduce((l,c)=>On(l,c)),a=s.map(l=>l.shape),i=K().getBool("WEBGL_PACK")?new CQ(s[0].shape,a):new IQ(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var TQ={kernelName:ka,backendName:"webgl",kernelFunc:Em};function NQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=N.getAxesPermutation(c,i),d=r;u!=null&&(d=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=N.getInnerMostAxes(c.length,i)),N.assertAxesAreInnerMostDims("all",c,i);let[p,h]=N.computeOutAndReduceShapes(d.shape,c),f=v.sizeFromShape(h),m=be({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=xl(m,m.dtype,"all",n),A;if(o){let x=N.expandShapeToKeepDim(p,l);A=be({inputs:{x:g},backend:n,attrs:{shape:x}})}else A=be({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var EQ={kernelName:Gl,backendName:"webgl",kernelFunc:NQ};function RQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=N.getAxesPermutation(c,i),d=r;u!=null&&(d=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=N.getInnerMostAxes(c.length,i)),N.assertAxesAreInnerMostDims("any",c,i);let[p,h]=N.computeOutAndReduceShapes(d.shape,c),f=v.sizeFromShape(h),m=be({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=xl(m,m.dtype,"any",n),A;if(o){let x=N.expandShapeToKeepDim(p,l);A=be({inputs:{x:g},backend:n,attrs:{shape:x}})}else A=be({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var $Q={kernelName:Hl,backendName:"webgl",kernelFunc:RQ},DQ=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${s};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
int inIdx = ${i};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${o} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},_Q=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=bt(i),c=Wn("coords",i),u,d;if(a===1){d=i+1;let C=bt(d);u=`
|
|
${C} sourceLocR = ${C}(${c.join()}, 0);
|
|
++${c[i-1]};
|
|
${C} sourceLocG = ${C}(${c.join()}, 0);
|
|
++${c[i-2]};
|
|
${C} sourceLocA = ${C}(${c.join()}, 0);
|
|
--${c[i-1]};
|
|
${C} sourceLocB = ${C}(${c.join()}, 0);
|
|
--${c[i-2]};`}else d=i,u=`
|
|
${l} sourceLocR = coords;
|
|
++${c[i-1]};
|
|
${l} sourceLocG = coords;
|
|
++${c[i-2]};
|
|
${l} sourceLocA = coords;
|
|
--${c[i-1]};
|
|
${l} sourceLocB = coords;
|
|
--${c[i-2]};`;let p=["x","y","z","w","u","v"].slice(0,d),h="."+p[d-1],f=p.map(C=>"int "+C),m=Wn("sourceLocR",d-1).concat("inIdx.r"),g=Wn("sourceLocG",d-1).concat("inIdx.g"),A=Wn("sourceLocB",d-1).concat("inIdx.b"),x=Wn("sourceLocA",d-1).concat("inIdx.a"),y=n==="max"?"greaterThan":"lessThan",b=s?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${x.join()})));`,w=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${x.join()}) : 0.)`,S=s?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}
|
|
${S}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${c[i-1]} < ${o[i-1]-1};
|
|
bool hasNextRow = ${c[i-2]} < ${o[i-2]-1};
|
|
${u}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${w};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${w};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${y}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function t4(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=N.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new DQ(i,n,s==null),c=[t];s!=null&&c.push(s);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let d=t4(e,t,n,u);return e.disposeIntermediateTensorInfo(u),d}function n4(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=N.computeOptimalWindowSize(a),i=new _Q(r,o,n,s==null),l=s==null?[t]:[t,s],c=e.runWebGLProgram(i,l,"int32");if(c.shape.length===t.shape.length){let u=n4(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function s4(e,t,n,s){let r=[n];if(N.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!K().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[c,u]=N.computeOutAndReduceShapes(l.shape,r),d=v.sizeFromShape(u),p=be({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});a.push(p);let h=t4(e,p,s);a.push(h);let f=be({inputs:{x:h},backend:e,attrs:{shape:c}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return n4(e,t,s)}function PQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=N.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Vn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=N.getInnerMostAxes(o.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let u=s4(n,l,o[0],"max");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var FQ={kernelName:Sa,backendName:"webgl",kernelFunc:PQ};function OQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=N.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Vn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=N.getInnerMostAxes(o.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let u=s4(n,l,o[0],"min");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var MQ={kernelName:jl,backendName:"webgl",kernelFunc:OQ},zQ=gr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,LQ=ot({opSnippet:zQ}),BQ={kernelName:ql,backendName:"webgl",kernelFunc:LQ},WQ=gr+"return log(x + sqrt(x * x + 1.0));",VQ=ot({opSnippet:WQ}),UQ={kernelName:Xl,backendName:"webgl",kernelFunc:VQ},GQ=gr+`
|
|
return atan(x);
|
|
`,HQ=ot({opSnippet:GQ}),jQ={kernelName:Kl,backendName:"webgl",kernelFunc:HQ},qQ=eQ+`
|
|
return atan(a, b);
|
|
`,XQ=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+tQ+`
|
|
return result;
|
|
`,KQ=kn({opSnippet:qQ,packedOpSnippet:XQ}),ZQ={kernelName:Yl,backendName:"webgl",kernelFunc:KQ},YQ=gr+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,JQ=ot({opSnippet:YQ}),QQ={kernelName:Zl,backendName:"webgl",kernelFunc:JQ},Jd=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,A="0.0";if(f||(A="-1.0 / 1e-20"),n){let C=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${c}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${C} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?m:g:`wR * ${d} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let x="max",y=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(y="avgValue / count");let b=Math.floor(a/4)*4,w=a%4,S=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${x}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${h});
|
|
const float initializationValue = ${A};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${A});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
getValue(batch, xR, xC + 3 * ${c}, d)
|
|
);
|
|
|
|
${S}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${w===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${S}
|
|
} else if (${w===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${S}
|
|
} else if (${w===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${S}
|
|
}
|
|
}
|
|
setOutput(${y});
|
|
}
|
|
`}},Zy=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,d=e.dilationWidth,p=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,A=e.padInfo.left;this.outputShape=e.outShape;let x=t==="avg",y="0.0";if(x||(y="-1.0 / 1e-20"),n){let D=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${d}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${D} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let S=Math.floor(a/4)*4,C=a%4,E=`
|
|
if (${x}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${A});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${S}; wC += 4) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
|
|
);
|
|
|
|
${E}
|
|
}
|
|
|
|
int xC = xCCorner + ${S};
|
|
if (${C===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${C===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${C===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
}
|
|
}
|
|
setOutput(${w});
|
|
}
|
|
}
|
|
`}};function eee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Gu(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(N.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=N.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))return ms({inputs:{x:r},backend:n});let d=new Jd(u,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var tee={kernelName:Ia,backendName:"webgl",kernelFunc:eee};function nee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s,u=[1,1,1],d=N.computePool3DInfo(r.shape,a,o,u,i,l,c),p=new Zy(d,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var see={kernelName:Oc,backendName:"webgl",kernelFunc:nee},ree=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=i-1-e.padInfo.top,u=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${c}, ${u});
|
|
const float avgMultiplier = float(${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${i};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},aee=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,h=u-1-e.padInfo.front,f=d-1-e.padInfo.top,m=p-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${f}, ${m});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${u};
|
|
wD += ${i}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${c}) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function oee(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=N.computePool3DInfo(o.shape,i,l,d,c,u),h=new aee(p);return n.runWebGLProgram(h,[r],o.dtype)}var iee={kernelName:nh,backendName:"webgl",kernelFunc:oee};function lee(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Gu([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=N.computePool2DInfo(o.shape,i,l,1,c),d=new ree(u);return n.runWebGLProgram(d,[r],o.dtype)}var uee={kernelName:th,backendName:"webgl",kernelFunc:lee};function cee(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return Nm({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var dee={kernelName:Ca,backendName:"webgl",kernelFunc:cee},pee=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(N.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${o};
|
|
float scale = ${i};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},hee=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(N.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${o};
|
|
vec4 scale = ${i};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},fee=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;v.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[s,r,a],u=null;o!=null&&(u=o.shape,c.push(o));let d=null;i!=null&&(d=i.shape,c.push(i));let p=K().getBool("WEBGL_PACK_NORMALIZATION")?new hee(s.shape,r.shape,a.shape,u,d,l):new pee(s.shape,r.shape,a.shape,u,d,l);return t.runWebGLProgram(p,c,c[0].dtype)},mee={kernelName:La,backendName:"webgl",kernelFunc:fee},gee=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=bt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=Aee(this.rank),s,r=e.map((a,o)=>`sourceLoc.${Yy[o]} = start[${o}] + coords.${Yy[o]};`);s=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${s}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},Yy=["x","y","z","w","u","v"];function Aee(e){if(e===1)return"sourceLoc";if(e<=6)return Yy.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var yee=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=bt(this.rank),n=Wn("coords",this.rank),s=Wn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
|
|
result.x = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.y = ${a};
|
|
--${s[this.rank-1]};
|
|
}
|
|
`,i=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${s[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${s[u]} = ${n[u]} + start[${u}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${o}
|
|
${i}
|
|
setOutput(result);
|
|
}
|
|
`}};function xee(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=Ft.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function Yu(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Ft.parseSliceParams(r,a,o);if(Ft.assertParamsValid(r,i,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),p=rJ(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}let{isPacked:c}=n.texData.get(r.dataId),u=Ft.isSliceContinous(r.shape,i,l);if(c||!u){let d=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new yee(l):new gee(l),p=[i];return n.runWebGLProgram(d,[r],r.dtype,p)}return n.uploadToGPU(r.dataId),xee(r,i,l,n)}var bee={kernelName:Di,backendName:"webgl",kernelFunc:Yu},vee=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((x,y)=>x*y),l=N.getReshaped(r.shape,a,i),c=N.getPermuted(l.length,a.length),u=N.getReshapedPermuted(r.shape,a,i),d=N.getSliceBeginCoords(o,a.length),p=N.getSliceSize(u,o,a.length),h=[],f=be({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Vn({inputs:{x:f},backend:n,attrs:{perm:c}}),g=be({inputs:{x:m},backend:n,attrs:{shape:u}}),A=Yu({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeIntermediateTensorInfo(x)),A},wee={kernelName:si,backendName:"webgl",kernelFunc:vee};function kee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),c=RI(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var See={kernelName:sh,backendName:"webgl",kernelFunc:kee};function Iee(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.readSync(s.dataId),o=n.readSync(r.dataId),i=N.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var Cee={kernelName:rh,backendName:"webgl",kernelFunc:Iee},Tee="return float(a != b);",r4=kn({opSnippet:Tee,cpuKernelImpl:QY,dtype:"bool"}),Nee={kernelName:bi,backendName:"webgl",kernelFunc:r4};function Qd(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return ms({inputs:{x:r.complexTensorInfos.real},backend:n})}var Eee={kernelName:jc,backendName:"webgl",kernelFunc:Qd},Ree="return float(int(x));";function $ee(e,t){let n=new zo(e.shape,Ree),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function Jy(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return ms({inputs:{x:r},backend:n});let o=Ht(r.shape),i=Jy({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Lo({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=Qd({inputs:{input:r},backend:n}),i=Jy({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=ms({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return $ee(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=r4({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var Dee={kernelName:Ta,backendName:"webgl",kernelFunc:Jy},a4="return ceil(x);",_ee=ot({opSnippet:a4,packedOpSnippet:a4,cpuKernelImpl:PY}),Pee={kernelName:Na,backendName:"webgl",kernelFunc:_ee},Fee=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},Oee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function Mee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;K().getBool("WEBGL_PACK_CLIP")?i=new Oee(r.shape):i=new Fee(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var zee={kernelName:Gr,backendName:"webgl",kernelFunc:Mee},Lee=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function o4(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function Bee(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new Lee(s.shape),o=[o4(s,r.complexTensorInfos.real),o4(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var Wee={kernelName:zc,backendName:"webgl",kernelFunc:Bee},Vee=class{constructor(e){this.outputShape=[],this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},Uee=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=N.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=bt(s),a=Wn("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let l=o[t],c=o.slice(-2),u=o.join(),d=`if (${l} < ${i[0]}) {
|
|
return getChannel(
|
|
getT0(${u}), vec2(${c.join()}));
|
|
}`;for(let f=1;f<i.length;f++){let m=i[f-1];d+=`
|
|
if (${l} < ${i[f]} && ${l} >= ${i[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${Rm(o,l,m)}),
|
|
vec2(${Rm(c,l,m)}));
|
|
}`}let p=i.length,h=i[i.length-1];d+=`
|
|
return getChannel(
|
|
getT${p}(${Rm(o,l,h)}),
|
|
vec2(${Rm(c,l,h)}));`,this.userCode=`
|
|
float getValue(${o.map(f=>"int "+f)}) {
|
|
${d}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[s-1]} = ${a[s-1]} + 1;
|
|
if (${a[s-1]} < ${n[s-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[s-2]} = ${a[s-2]} + 1;
|
|
if (${a[s-2]} < ${n[s-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[s-1]} = ${a[s-1]} - 1;
|
|
if (${a[s-2]} < ${n[s-2]} &&
|
|
${a[s-1]} < ${n[s-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Rm(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function $m(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return ms({inputs:{x:r.complexTensorInfos.imag},backend:n})}var Gee={kernelName:Vc,backendName:"webgl",kernelFunc:$m};function Ju(e,t,n){let s=e[0].dtype;if(s==="complex64"){let u=e.map(m=>Qd({inputs:{input:m},backend:n})),d=e.map(m=>$m({inputs:{input:m},backend:n})),p=Ju(u,t,n),h=Ju(d,t,n),f=Lo({inputs:{real:p,imag:h},backend:n});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let u=e.map(A=>{let x=v.sizeFromShape(A.shape.slice(t));return be({inputs:{x:A},backend:n,attrs:{shape:[-1,x]}})}),d=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),p=N.computeOutShape(u.map(A=>A.shape),1),h=u[0].shape[0]===1,f=FY(d,p,s,h),m=N.computeOutShape(e.map(A=>A.shape),t),g=n.makeTensorInfo(m,s,f);return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),g}if(e.length>K().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),d=Ju(e.slice(0,u),t,n),p=Ju(e.slice(u),t,n),h=Ju([d,p],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),h}if(K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new Uee(e.map(d=>d.shape),t);return n.runWebGLProgram(u,e,s)}let{tensors2D:a,outShape:o}=Hee(e,t,n),i=new Vee(a.map(u=>u.shape)),l=n.runWebGLProgram(i,a,s);a.forEach(u=>n.disposeIntermediateTensorInfo(u));let c=be({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),c}function Hee(e,t,n){let s=N.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>be({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function i4(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=N.computeOutShape(t.map(c=>c.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(c=>v.sizeFromShape(c.shape)>0);if(i.length===1)return ms({inputs:{x:i[0]},backend:n});let l=i.map(c=>c.shape);return N.assertParamsConsistent(l,a),Ju(i,a,n)}var jee={kernelName:ri,backendName:"webgl",kernelFunc:i4},l4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,A=m?2:3,x=m?3:1,y="",b="";n&&(s?y=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?y=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:y=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${y}
|
|
|
|
const ivec2 strides = ivec2(${i}, ${l});
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${x}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${A}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${c};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${w}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},qee=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${a}, ${o});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${s});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${u}; wF++) {
|
|
int xF = xFCorner + wF * ${i};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Xee=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=_s(this.outputShape.length);let{dataFormat:n}=t,s=Bn(),r=n==="channelsLast",a=r?0:1,o=r?1:2,i=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let c=0;c<=1;c++)for(let u=0;u<=1;u++)l+=`
|
|
blockIndex = rc.y + ${u};
|
|
pos = rc.x + ${c};
|
|
|
|
${i}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${a}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${o}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${c*2+u}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${c*2+u}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${s.output} = result;
|
|
}
|
|
`}};function u4({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,c=s.texData.get(e.dataId),u=n.inChannels,d=l[0]*l[1]*l[2],p=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,A=[];if(!((d===1||p===1)&&u>JI)&&c.isPacked&&h&&c.texture!=null&&l[2]%2!=0&&v.arraysEqual(c.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),w={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},S=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,v.assert(Xd(c.shape,w.shape),()=>`packed reshape ${c.shape} to ${w.shape} isn't free`);let C=be({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});A.push(C);let E=Nm({a:w,b:C,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),D=s.texData.get(E.dataId);v.assert(D.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=S,D.shape=n.outShape,g=ms({inputs:{x:E},backend:s}),g.shape=n.outShape,A.push(E)}else{let b=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],w=be({inputs:{x:e},backend:s,attrs:{shape:[1,b,n.inChannels]}}),S=be({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),C=Nm({a:w,b:S,transposeA:f,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=be({inputs:{x:C},backend:s,attrs:{shape:n.outShape}}),A.push(w),A.push(S),A.push(C)}for(let b of A)s.disposeIntermediateTensorInfo(b);return g}function c4({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:d,outHeight:p,dataFormat:h}=n,f=h==="channelsLast",m=l*c*u,g=p*d,A=[m,g],x=!0,y=!1,b=[],w=be({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),S=be({inputs:{x:t},backend:s,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});b.push(w),b.push(S);let C=new Xee(A,n),E=[w.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],D=s.runWebGLProgram(C,[w],"float32",E),O=be({inputs:{x:D},backend:s,attrs:{shape:[1,A[0],A[1]]}});b.push(D),b.push(O);let _=r!=null,F=a!=null,T=i==="leakyrelu",M=i?Im(i,!0):null,U=new qI(O.shape,S.shape,[1,g,n.outChannels],x,y,_,M,F,T),q=[O,S];if(r&&q.push(r),F&&q.push(a),T){let te=s.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));q.push(te),b.push(te)}let j=s.runWebGLProgram(U,q,"float32"),X=f?[1,p,d,n.outChannels]:[1,n.outChannels,p,d],J=be({inputs:{x:j},backend:s,attrs:{shape:X}});b.push(j);for(let te of b)s.disposeIntermediateTensorInfo(te);return J}function Kee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s,d=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))h=u4({x:r,filter:a,convInfo:p,backend:n});else if(K().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=c4({x:r,filter:a,convInfo:p,backend:n});else{let m=new l4(p);h=n.runWebGLProgram(m,[r,a],"float32")}let f=be({inputs:{x:h},backend:n,attrs:{shape:p.outShape}});return n.disposeIntermediateTensorInfo(h),f}var Zee={kernelName:Ea,backendName:"webgl",kernelFunc:Kee},Yee=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Jee=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,c=a?2:3,u=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${u}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Qee=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${s} - ${o};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},ete=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=s-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${i}, ${l}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${s} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function tte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,filterShape:u}=s,d=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(r.shape,u,o,1,i,c,!1,d),h=new Yee(p);return n.runWebGLProgram(h,[r,a],"float32")}var nte={kernelName:ah,backendName:"webgl",kernelFunc:tte};function ste(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s,d=N.convertConv2DDataFormat(c),p=N.computeConv2DInfo(o,a.shape,i,1,l,u,!1,d),h=new Jee(p);return n.runWebGLProgram(h,[r,a],"float32")}var rte={kernelName:Ra,backendName:"webgl",kernelFunc:ste};function ate(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=N.computeConv3DInfo(r.shape,a.shape,o,l,i),u=new qee(c);return n.runWebGLProgram(u,[r,a],"float32")}var ote={kernelName:Lc,backendName:"webgl",kernelFunc:ate};function ite(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,c=N.computeConv3DInfo(r.shape,l,o,1,i),u=new Qee(c);return n.runWebGLProgram(u,[r,a],"float32")}var lte={kernelName:oh,backendName:"webgl",kernelFunc:ite};function ute(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,c=N.computeConv3DInfo(l,a.shape,i,1,o),u=new ete(c);return n.runWebGLProgram(u,[r,a],"float32")}var cte={kernelName:ih,backendName:"webgl",kernelFunc:ute},dte=jI+`
|
|
return cos(x);
|
|
`,pte=ot({opSnippet:dte}),hte={kernelName:$a,backendName:"webgl",kernelFunc:pte},fte=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,mte=ot({opSnippet:fte}),gte={kernelName:Da,backendName:"webgl",kernelFunc:mte},Ate=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[c]=t,[u,d]=n;this.outputShape=[c,u,d,l];let p=s==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,A]=u>1?[`${(o-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[x,y,b]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${x});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${y};
|
|
|
|
float in_y = ${A};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${p} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},yte=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,u=new Ate(r.shape,a.shape,i,l,c);return n.runWebGLProgram(u,[r,a,o],"float32")},xte={kernelName:oi,backendName:"webgl",kernelFunc:yte},d4=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"0.0":`getX(${p4(s,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${bt(s)} coords = getOutputCoords();
|
|
int end = ${h4(s,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${o}) {
|
|
int idx = ${i};
|
|
${h4(s,"coords")} = idx;
|
|
val += getX(${p4(s,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function p4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function h4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function bte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length,c=N.getAxesPermutation([a],l),u=r;c!=null&&(u=Vn({inputs:{x:r},backend:n,attrs:{perm:c}}));let d=N.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let p=u.shape[d],h=ms({inputs:{x:u},backend:n});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new d4(u.shape,!1,i),g=[[f]],A=h;h=n.runWebGLProgram(m,[h],h.dtype,g),n.disposeIntermediateTensorInfo(A)}if(o){let f=new d4(u.shape,o,i),m=h;h=n.runWebGLProgram(f,[h],h.dtype),n.disposeIntermediateTensorInfo(m)}if(c!=null){let f=N.getUndoAxesPermutation(c),m=Vn({inputs:{x:h},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(u),m}return h}var vte={kernelName:ai,backendName:"webgl",kernelFunc:bte};function wte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=RI(l,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(a),u=_Y(l,c,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var kte={kernelName:lh,backendName:"webgl",kernelFunc:wte},Ste=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Ite(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=new Ste(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var Cte={kernelName:ii,backendName:"webgl",kernelFunc:Ite},f4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=_s(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",c="";n&&(s?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,c="result = activation(result);");let u=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${i};
|
|
int q = d2 - d1 * ${i};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${a}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${o}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${u}
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},m4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=_s(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,c=e.filterHeight,u=e.filterWidth,d=u,p=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<u;g++)p+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;p+=`
|
|
for (int r = 0; r < ${c}; r++) {
|
|
`;for(let g=0;g<u;g++)p+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;p+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(d+1)/2;g++){let A=g*2;if(p+=`
|
|
xC = xCCorner + ${A*l};
|
|
`,i===1){if(A<u&&(o%2==1?(p+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
`,l===1&&A>0?p+=`
|
|
xC${A} = vec4(xTexelC${A-2}.zw, xTexelC${A}.xy);
|
|
`:p+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${A} = vec4(previous.zw, xTexelC${A}.xy);
|
|
} else {
|
|
xC${A} = vec4(0.0, 0.0, xTexelC${A}.xy);
|
|
}
|
|
`):p+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
|
|
xC${A} = xTexelC${A};
|
|
`,A+1<u)){let x=o%2==0?v.nearestLargerEven(l):l;l%2==0&&o%2==1||l%2!=0&&o%2!=1?(p+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
`,l>1&&(p+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
`),p+=`
|
|
xC${A+1} = vec4(xTexelC${A}.zw, xTexelC${A+1}.xy);
|
|
`):x===1?p+=`
|
|
xC${A+1} = xTexelC${A};
|
|
`:p+=`
|
|
xCOffset = xC + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
|
|
xC${A+1} = xTexelC${A+1};
|
|
`}}else A<u&&(o%2==1?(p+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
|
|
xC${A} = vec4(xTexelC${A}.zw, xTexelC${A+1}.zw);
|
|
`,A+1<u&&(p+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${A+1} = vec4(xTexelC${A+1}.xy, final.xy);
|
|
`)):(p+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
|
|
xC${A} = vec4(
|
|
xTexelC${A}.xy, xTexelC${A+1}.xy);
|
|
`,A+1<u&&(p+=`
|
|
xC${A+1} = vec4(xTexelC${A}.zw, xTexelC${A+1}.zw);
|
|
`)));A<u&&(p+=`
|
|
wTexel = getW(r, ${A}, d1, q);
|
|
dotProd += xC${A} * vec4(wTexel.xz, wTexel.xz);
|
|
`,A+1<u&&(p+=`
|
|
wTexel = getW(r, ${A+1}, d1, q);
|
|
dotProd += xC${A+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}p+=`
|
|
}
|
|
`,p+=`
|
|
}
|
|
`;let h="",f="";n&&(s?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${a};
|
|
int q = d2 - d1 * ${a};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${p}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};function Tte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s,u=l;u==null&&(u=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(o,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let d=N.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!0),p;K().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?p=new m4(d):p=new f4(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(p,[r,a],"float32",h)}var Nte={kernelName:_a,backendName:"webgl",kernelFunc:Tte},Ete=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Rte=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${i}; dm++) {
|
|
int d2 = d1 * ${i} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function $te(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,filterShape:u}=s,d=N.computeConv2DInfo(r.shape,u,o,i,l,c,!0),p=new Ete(d);return n.runWebGLProgram(p,[r,a],"float32")}var Dte={kernelName:uh,backendName:"webgl",kernelFunc:$te};function _te(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,inputShape:u}=s,d=N.computeConv2DInfo(u,a.shape,o,i,l,c,!0),p=new Rte(d);return n.runWebGLProgram(p,[r,a],"float32")}var Pte={kernelName:ch,backendName:"webgl",kernelFunc:_te},Fte=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function Ote(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=v.sizeFromShape(s.shape),o=be({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new Fte(a),l=n.runWebGLProgram(i,[o],o.dtype),c=be({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var Mte={kernelName:dh,backendName:"webgl",kernelFunc:Ote},zte=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:c}=e,{top:u,left:d}=s;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${a});
|
|
const ivec2 pads = ivec2(${u}, ${d});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${o}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${i}; w++) {
|
|
int wIn = wBeg + w * ${c};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function Lte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=N.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),u,d=new zte(c);u=n.runWebGLProgram(d,[r,a],"float32");let p=be({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),p}var Bte={kernelName:Bc,backendName:"webgl",kernelFunc:Lte};function Wte(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=N.decodeEinsumEquation(r,a.length);N.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=N.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:x}=N.getEinsumPermutation(h,l[g]),y;N.isIdentityPermutation(A)?y=a[g]:(y=Vn({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(y));let b=y.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(y.shape,b)||(y=be({inputs:{x:y},backend:n,attrs:{shape:b}}),f.push(y)),p===null?p=y:(p=Ky({inputs:{a:y,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=Tm({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var Vte={kernelName:Wc,backendName:"webgl",kernelFunc:Wte},Ute="return (x >= 0.0) ? x : (exp(x) - 1.0);",Gte=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,Hte=ot({opSnippet:Ute,packedOpSnippet:Gte}),jte={kernelName:Fa,backendName:"webgl",kernelFunc:Hte},qte="return (b >= 1.0) ? a : a * (b + 1.0);",Xte=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,Kte=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Yd(Xte,s.shape,r.shape):new Zu(qte,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},Zte={kernelName:fh,backendName:"webgl",kernelFunc:Kte},Yte=`
|
|
return vec4(equal(a, b));
|
|
`,Jte="return float(a == b);",Qte=kn({opSnippet:Jte,packedOpSnippet:Yte,dtype:"bool",cpuKernelImpl:OY}),ene={kernelName:li,backendName:"webgl",kernelFunc:Qte},tne=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${N.ERF_P};
|
|
float a1 = ${N.ERF_A1};
|
|
float a2 = ${N.ERF_A2};
|
|
float a3 = ${N.ERF_A3};
|
|
float a4 = ${N.ERF_A4};
|
|
float a5 = ${N.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,nne=ot({opSnippet:tne}),sne={kernelName:Jl,backendName:"webgl",kernelFunc:nne},g4="return exp(x);",A4=ot({opSnippet:g4,packedOpSnippet:g4,cpuKernelImpl:MY,dtype:"float32"}),rne={kernelName:Oa,backendName:"webgl",kernelFunc:A4};function Qy(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),be({inputs:{x:a},backend:s,attrs:{shape:i}})}var ane={kernelName:ui,backendName:"webgl",kernelFunc:Qy},y4="return exp(x) - 1.0;",one=ot({opSnippet:y4,packedOpSnippet:y4,cpuKernelImpl:zY}),ine={kernelName:ci,backendName:"webgl",kernelFunc:one},x4=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${o}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${s});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function b4(e,t,n){let s=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=be({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,c=new x4("real",l,t),u=new x4("imag",l,t),d=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],p=n.runWebGLProgram(c,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=Lo({inputs:{real:p,imag:h},backend:n});n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h);let m=be({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function lne(e){let{inputs:t,backend:n}=e,{input:s}=t;return b4(s,!1,n)}var une={kernelName:mh,backendName:"webgl",kernelFunc:lne},cne=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function ep(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new cne(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var dne={kernelName:Ql,backendName:"webgl",kernelFunc:ep},pne=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},hne={kernelName:di,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new pne(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},v4="return floor(x);",fne=ot({opSnippet:v4,packedOpSnippet:v4,cpuKernelImpl:LY}),mne={kernelName:Ma,backendName:"webgl",kernelFunc:fne},gne=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,Ane=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,yne=kn({opSnippet:gne,packedOpSnippet:Ane,dtype:"int32"}),xne={kernelName:za,backendName:"webgl",kernelFunc:yne},bne=class{constructor(e){this.variableNames=["A"];let t=Bn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},vne=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Bn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},wne={kernelName:Zc,backendName:"webgl",kernelFunc:kne},Qu;function kne(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],u=[c,l],d=[c,l,a];(i||o)&&(Qu==null&&(Qu=document.createElement("canvas").getContext("2d")),Qu.canvas.width=l,Qu.canvas.height=c,Qu.drawImage(r,0,0,l,c),r=Qu.canvas);let p=n.makeTensorInfo(u,"int32");n.texData.get(p.dataId).usage=$s.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),r);let h=K().getBool("WEBGL_PACK")?new vne(d):new bne(d),f=n.runWebGLProgram(h,[p],"int32");return n.disposeData(p.dataId),f}function Sne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=N.convertConv2DDataFormat(u),g=N.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!1,m),A,x=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))A=u4({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(K().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)A=c4({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,w=i!=null,S=h==="leakyrelu",C=h?Im(h,!1):null,E=new l4(g,b,C,w,S),D=[r,a];if(o&&D.push(o),i&&D.push(i),S){let O=n.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));D.push(O),x.push(O)}A=n.runWebGLProgram(E,D,"float32")}let y=be({inputs:{x:A},backend:n,attrs:{shape:g.outShape}});return x.push(A),x.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var Ine={kernelName:go,backendName:"webgl",kernelFunc:Sne};function Cne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:d,activation:p,leakyreluAlpha:h}=s,f=[],m=u;m==null&&(m=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=N.computeConv2DInfo(r.shape,a.shape,l,m,c,d,!0),A=K().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,x=p?Im(p,A):null,y=[r,a],b=o!=null,w=i!=null,S=p==="leakyrelu";if(b&&y.push(o),w&&y.push(i),S){let O=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));y.push(O),f.push(O)}let C;A?C=new m4(g,b,x,w,S):C=new f4(g,b,x,w,S);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],D=n.runWebGLProgram(C,y,"float32",E);return f.forEach(O=>n.disposeIntermediateTensorInfo(O)),D}var Tne={kernelName:Ao,backendName:"webgl",kernelFunc:Cne},Nne=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=bt(t.length),r=bt(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${s} strides = ${s}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${a};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function Ene(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,c,u,d]=N.prepareAndValidate(s,r),p=be({inputs:{x:r},backend:n,attrs:{shape:[c,o]}}),h=be({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/u,u]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let A=n.readSync(r.dataId),x=n.bufferSync(s),y=BY(A,x,s.dtype,c,o,u,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,y.values)}let f=new Nne(o,d,[c,u]),m=n.runWebGLProgram(f,[h,p],h.dtype),g=be({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var Rne={kernelName:hi,backendName:"webgl",kernelFunc:Ene},$ne=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=bt(this.rank),s=Dne(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function Dne(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("int(getIndices(resRC.x, resRC.z))"):s.push(`${n[r]}`);return s.join()}function w4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],c=n.readSync(a.dataId),u=r.shape[l];for(let b=0;b<c.length;++b){let w=c[b];v.assert(w<=u-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${u-1}]`)}let d=N.segment_util.collectGatherOpShapeInfo(r,a,l,i),p=v.sizeFromShape(a.shape),h=[],f=be({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),m=be({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,p/d.batchSize]}});h.push(f),h.push(m);let g=[d.batchSize,d.outerSize,p/d.batchSize,d.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let b=n.bufferSync(m),w=n.bufferSync(f),S=WY(w,b,g);return h.forEach(C=>n.disposeIntermediateTensorInfo(C)),n.makeTensorInfo(d.outputShape,S.dtype,S.values)}let A=new $ne(f.shape,g),x=n.runWebGLProgram(A,[f,m],f.dtype);h.push(x);let y=be({inputs:{x},backend:n,attrs:{shape:d.outputShape}});return h.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var _ne={kernelName:pi,backendName:"webgl",kernelFunc:w4},Pne="return float(a > b);",Fne=`
|
|
return vec4(greaterThan(a, b));
|
|
`,One=kn({opSnippet:Pne,packedOpSnippet:Fne,cpuKernelImpl:VY,dtype:"bool"}),Mne={kernelName:fi,backendName:"webgl",kernelFunc:One},zne="return float(a >= b);",Lne=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,Bne=kn({opSnippet:zne,packedOpSnippet:Lne,dtype:"bool",cpuKernelImpl:UY}),Wne={kernelName:Ba,backendName:"webgl",kernelFunc:Bne};function Vne(e){let{inputs:t,backend:n}=e,{input:s}=t;return b4(s,!0,n)}var Une={kernelName:gh,backendName:"webgl",kernelFunc:Vne},Gne="return float(!isnan(x) && !isinf(x));",Hne=ot({opSnippet:Gne,dtype:"bool"}),jne={kernelName:eu,backendName:"webgl",kernelFunc:Hne},qne="return float(isinf(x));",Xne=ot({opSnippet:qne,dtype:"bool"}),Kne={kernelName:tu,backendName:"webgl",kernelFunc:Xne},Zne="return float(isnan(x));",Yne=ot({opSnippet:Zne,dtype:"bool"}),Jne={kernelName:nu,backendName:"webgl",kernelFunc:Yne},Qne="return float(a < b);",ese=`
|
|
return vec4(lessThan(a, b));
|
|
`,tse=kn({opSnippet:Qne,packedOpSnippet:ese,cpuKernelImpl:GY,dtype:"bool"}),nse={kernelName:gi,backendName:"webgl",kernelFunc:tse},sse="return float(a <= b);",rse=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,ase=kn({opSnippet:sse,packedOpSnippet:rse,cpuKernelImpl:HY,dtype:"bool"}),ose={kernelName:Ai,backendName:"webgl",kernelFunc:ase};function ise(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=jY(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var lse={kernelName:Ah,backendName:"webgl",kernelFunc:ise},use=`if (x < 0.0) return NAN;
|
|
return log(x);`,cse=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,dse=ot({opSnippet:use,packedOpSnippet:cse,cpuKernelImpl:qY}),pse={kernelName:Va,backendName:"webgl",kernelFunc:dse},hse="return log(1.0 + x);",fse=ot({opSnippet:hse}),mse={kernelName:su,backendName:"webgl",kernelFunc:fse},gse="return float(a >= 1.0 && b >= 1.0);",Ase=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,yse=kn({opSnippet:gse,packedOpSnippet:Ase,dtype:"bool"}),xse={kernelName:yi,backendName:"webgl",kernelFunc:yse},bse="return float(!(x >= 1.0));",vse=ot({opSnippet:bse}),wse={kernelName:ru,backendName:"webgl",kernelFunc:vse},kse="return float(a >= 1.0 || b >= 1.0);",Sse=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,Ise=kn({opSnippet:kse,packedOpSnippet:Sse,dtype:"bool"}),Cse={kernelName:Uc,backendName:"webgl",kernelFunc:Ise},Tse=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${o}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${i};
|
|
setOutput(val);
|
|
}
|
|
`}},Nse=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${i};
|
|
setOutput(result);
|
|
}
|
|
`}},Ese=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,c=K().getBool("WEBGL_PACK_NORMALIZATION")?new Nse(r.shape,a,o,i,l):new Tse(r.shape,a,o,i,l);return n.runWebGLProgram(c,[r],r.dtype)},Rse={kernelName:Gc,backendName:"webgl",kernelFunc:Ese},$se=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${s}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${s})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},Dse=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:c,beta:u}=s,d=new $se(r.shape,i,l,c,u);return n.runWebGLProgram(d,[r,a,o],r.dtype)},_se={kernelName:yh,backendName:"webgl",kernelFunc:Dse};function Pse(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=be({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=xl(i,e.dtype,"max",s),c=be({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}function k4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=N.getAxesPermutation(c,i),d=u!=null,p=n.shouldExecuteOnCPU([r]),h=r;if(d){if(p){let y=n.texData.get(h.dataId).values,b=new Array(i);for(let C=0;C<b.length;C++)b[C]=r.shape[u[C]];let w=Xy(y,r.shape,r.dtype,u,b);h=n.makeTensorInfo(b,r.dtype);let S=n.texData.get(h.dataId);S.values=w}else h=Cm(r,u,n);c=N.getInnerMostAxes(c.length,i)}N.assertAxesAreInnerMostDims("max",c,i);let[f,m]=N.computeOutAndReduceShapes(h.shape,c),g=f;o&&(g=N.expandShapeToKeepDim(f,l));let A;if(p){let y=n.texData.get(h.dataId).values,b=XY(y,v.sizeFromShape(m),g,r.dtype);A=n.makeTensorInfo(g,r.dtype);let w=n.texData.get(A.dataId);w.values=b}else A=Pse(h,m,g,n);return d&&n.disposeIntermediateTensorInfo(h),A}var Fse={kernelName:Ua,backendName:"webgl",kernelFunc:k4},Ose=WI+`
|
|
return max(a, b);
|
|
`,Mse=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Sm+`
|
|
return result;
|
|
`,zse=kn({opSnippet:Ose,packedOpSnippet:Mse,cpuKernelImpl:KY}),Lse={kernelName:Ga,backendName:"webgl",kernelFunc:zse};function Bse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Gu(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(N.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=N.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))return ms({inputs:{x:r},backend:n});let d=new Jd(u,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var Wse={kernelName:Ha,backendName:"webgl",kernelFunc:Bse};function Vse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:c}=s,u=[1,1,1],d=N.computePool3DInfo(r.shape,a,o,u,i,c,l),p=new Zy(d,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var Use={kernelName:Hc,backendName:"webgl",kernelFunc:Vse},Gse=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Hse=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=i-1-e.padInfo.front,d=l-1-e.padInfo.top,p=c-1-e.padInfo.left,h=i*l*c-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${u}, ${d}, ${p});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${i};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${c} +
|
|
wR * ${c} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function jse(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=N.computePool3DInfo(o.shape,i,l,d,c,u),h=new Zy(p,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new Hse(p),g=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var qse={kernelName:bh,backendName:"webgl",kernelFunc:jse};function Xse(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Gu([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=N.computePool2DInfo(i.shape,l,c,1,u,d),h=!0,f=new Jd(p,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new Gse(p),A=n.runWebGLProgram(g,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),A}var Kse={kernelName:xh,backendName:"webgl",kernelFunc:Xse};function Zse(e,t,n,s){let r=new Jd(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new Jd(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var Yse={kernelName:vh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;v.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let c=[1,1];v.assert(N.eitherStridesOrDilationsAreOne(a,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let u=N.computePool2DInfo(s.shape,r,a,c,o),[d,p]=Zse(s,i,u,l);return[d,p]}};function Jse(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=be({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=xl(i,"float32","mean",s),c=be({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}var Qse={kernelName:ja,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=v.parseAxisParam(a,s.shape),c=l,u=N.getAxesPermutation(c,i),d=u!=null,p=o.shouldExecuteOnCPU([s]),h=[],f=s;if(d){if(p){let b=o.texData.get(f.dataId).values,w=new Array(i);for(let E=0;E<w.length;E++)w[E]=s.shape[u[E]];let S=Xy(b,s.shape,s.dtype,u,w);f=o.makeTensorInfo(w,s.dtype);let C=o.texData.get(f.dataId);C.values=S}else f=Cm(s,u,o);h.push(f),c=N.getInnerMostAxes(c.length,i)}N.assertAxesAreInnerMostDims("sum",c,i);let[m,g]=N.computeOutAndReduceShapes(f.shape,c),A=m;r&&(A=N.expandShapeToKeepDim(m,l));let x=Jse(f,g,A,o);for(let y of h)o.disposeIntermediateTensorInfo(y);return x}};function ere(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=N.getAxesPermutation(c,i),d=r;u!=null&&(d=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=N.getInnerMostAxes(c.length,r.shape.length)),N.assertAxesAreInnerMostDims("min",c,i);let[p,h]=N.computeOutAndReduceShapes(d.shape,c),f=v.sizeFromShape(h),m=be({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=xl(m,m.dtype,"min",n),A;if(o){let x=N.expandShapeToKeepDim(p,l);A=be({inputs:{x:g},backend:n,attrs:{shape:x}})}else A=be({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var tre={kernelName:qa,backendName:"webgl",kernelFunc:ere},nre=WI+`
|
|
return min(a, b);
|
|
`,sre=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Sm+`
|
|
return result;
|
|
`,rre=kn({opSnippet:nre,packedOpSnippet:sre,cpuKernelImpl:ZY}),are={kernelName:Xa,backendName:"webgl",kernelFunc:rre},ore=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let s=e.length,r=bt(s),a=t.map(c=>c[0]).join(","),o=t.map((c,u)=>c[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${s}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}},ire=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=bt(s),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=Wn("rc",s),l=Wn("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,p="";if(s===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${d};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${d};
|
|
}
|
|
source -= start;
|
|
`;p=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${u});
|
|
${i[s-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${d}) +
|
|
gte * ((end - 1) * 2 - source + ${d});
|
|
source -= start;
|
|
`;p=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${u});
|
|
${i[s-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${u});
|
|
${i[s-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},lre=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new ire(s.shape,r,a):new ore(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},ure={kernelName:Ka,backendName:"webgl",kernelFunc:lre},cre=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,dre=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+Sm+`
|
|
return result;
|
|
`,pre=kn({opSnippet:cre,packedOpSnippet:dre}),hre={kernelName:au,backendName:"webgl",kernelFunc:pre},fre=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},mre=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,gre=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,S4=kn({opSnippet:mre,packedOpSnippet:gre,checkOutOfBounds:!0}),Are={kernelName:Pa,backendName:"webgl",kernelFunc:S4},I4="return a - b;",C4=kn({opSnippet:I4,packedOpSnippet:I4,supportsComplex:!0,cpuKernelImpl:pJ}),yre={kernelName:co,backendName:"webgl",kernelFunc:C4};function T4(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=k4({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=N.expandShapeToKeepDim(i.shape,o),c=be({inputs:{x:i},backend:n,attrs:{shape:l}}),u=C4({inputs:{a:r,b:c},backend:n}),d=A4({inputs:{x:u},backend:n}),p=Tm({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=be({inputs:{x:p},backend:n,attrs:{shape:l}}),f=S4({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}var xre={kernelName:lo,backendName:"webgl",kernelFunc:T4};function bre(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:T4({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),c=l.shape[0],u=l.shape[1],d=new fre(c,u,a),p=[[o]],h=n.runWebGLProgram(d,[l],"int32",p);return i||n.disposeIntermediateTensorInfo(l),h}var vre={kernelName:wh,backendName:"webgl",kernelFunc:bre},N4="return -x;";function wre(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=JY(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return K().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Ku(s.shape,N4):r=new zo(s.shape,N4),n.runWebGLProgram(r,[s],s.dtype)}var kre={kernelName:xi,backendName:"webgl",kernelFunc:wre},Sre=js.nonMaxSuppressionV3Impl;function Ire(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,c=n.readSync(r.dataId),u=n.readSync(a.dataId),{selectedIndices:d}=Sre(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Cre={kernelName:vi,backendName:"webgl",kernelFunc:Ire},Tre=js.nonMaxSuppressionV4Impl;function Nre(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),{selectedIndices:p,validOutputs:h}=Tre(u,d,o,i,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Ere={kernelName:ou,backendName:"webgl",kernelFunc:Nre},Rre=js.nonMaxSuppressionV5Impl;function $re(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=Rre(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var Dre={kernelName:wi,backendName:"webgl",kernelFunc:$re},_re=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${s}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},Pre=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=v.sizeFromShape(r.shape),c=new _re(l,a,o,i),u=be({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(c,[u],r.dtype);n.disposeIntermediateTensorInfo(u);let p=[...r.shape,a],h=be({inputs:{x:d},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(d),h},Fre={kernelName:Si,backendName:"webgl",kernelFunc:Pre};function Dm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Qd({inputs:{input:s},backend:n}),a=Dm({inputs:{x:r},backend:n}),o=$m({inputs:{input:s},backend:n}),i=Dm({inputs:{x:o},backend:n}),l=Lo({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return ep({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var Ore={kernelName:Wi,backendName:"webgl",kernelFunc:Dm};function E4(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Qd({inputs:{input:s},backend:n}),a=E4({inputs:{x:r},backend:n}),o=$m({inputs:{input:s},backend:n}),i=Dm({inputs:{x:o},backend:n}),l=Lo({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return ep({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var Mre={kernelName:ki,backendName:"webgl",kernelFunc:E4};function zre(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Qy({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=Qy({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=i4({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var Lre={kernelName:Ii,backendName:"webgl",kernelFunc:zre},Bre=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let s=e.length,r=bt(s),a=t.map(l=>l[0]).join(","),o=t.map((l,c)=>l[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
}
|
|
`}},Wre=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=bt(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=Wn("rc",s),l=Wn("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
|
|
if(${c}) {
|
|
`,s===1?"":`}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
|
|
if(${c}) {`],p=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f<m;f++)h+=`
|
|
${d[f]}
|
|
if (${p}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
`;h+=s===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},R4=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(v.sizeFromShape(r.shape)===0){let c=a.map((u,d)=>u[0]+r.shape[d]+u[1]);return ep({backend:n,attrs:{shape:c,value:o,dtype:r.dtype}})}let i=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Wre(r.shape,a,o):new Bre(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},Vre={kernelName:Ya,backendName:"webgl",kernelFunc:R4},Ure=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,Gre=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+Sm+`
|
|
return result;
|
|
`,Hre=kn({opSnippet:Ure,packedOpSnippet:Gre}),jre={kernelName:Ja,backendName:"webgl",kernelFunc:Hre};function qre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],c=v.parseAxisParam(a,r.shape),u=c,d=N.getAxesPermutation(u,i),p=r;d!=null&&(p=Vn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=N.getInnerMostAxes(u.length,i),l.push(p)),N.assertAxesAreInnerMostDims("prod",u,i);let h;if(n.shouldExecuteOnCPU([p])){let f=n.texData.get(p.dataId).values,{outVals:m,outShape:g,outDtype:A}=eJ(p.shape,p.dtype,f,u);h=n.makeTensorInfo(g,A,m)}else{let[f,m]=N.computeOutAndReduceShapes(p.shape,u),g=v.sizeFromShape(m),A=be({inputs:{x:p},backend:n,attrs:{shape:[-1,g]}}),x=ad(r.dtype),y=xl(A,x,"prod",n);h=be({inputs:{x:y},backend:n,attrs:{shape:f}}),l.push(A),l.push(y)}if(o){l.push(h);let f=N.expandShapeToKeepDim(h.shape,c);h=be({inputs:{x:h},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var Xre={kernelName:Ci,backendName:"webgl",kernelFunc:qre},$4=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=tJ(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},Kre={kernelName:iu,backendName:"webgl",kernelFunc:$4},Zre="return 1.0 / x;",Yre=ot({opSnippet:Zre}),Jre={kernelName:lu,backendName:"webgl",kernelFunc:Yre},Qre=gr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,eae=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,tae=ot({opSnippet:Qre,packedOpSnippet:eae}),nae={kernelName:eo,backendName:"webgl",kernelFunc:tae},sae=gr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,rae=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,aae=ot({opSnippet:sae,packedOpSnippet:rae}),oae={kernelName:no,backendName:"webgl",kernelFunc:aae},iae=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},lae=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]},
|
|
${c[1]/u[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function uae(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=K().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new lae(r.shape,l,c,a,o):new iae(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],"float32")}var cae={kernelName:to,backendName:"webgl",kernelFunc:uae},dae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function pae(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new dae(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var hae={kernelName:Sh,backendName:"webgl",kernelFunc:pae},fae=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},mae=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]},
|
|
${c[1]/u[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function gae(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=K().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new mae(r.shape,l,c,a,o):new fae(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],r.dtype)}var Aae={kernelName:uu,backendName:"webgl",kernelFunc:gae},yae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${i[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${i[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function xae(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new yae(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var bae={kernelName:kh,backendName:"webgl",kernelFunc:xae},vae=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=bt(n);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},wae=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=Wn("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=bt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${i(s.slice())};
|
|
if(${r}){
|
|
result.g = ${l(s.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${c(s.slice())};
|
|
if(${r}) {
|
|
result.a = ${u(s.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function i(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function c(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let f=e.map((A,x)=>p(x,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function p(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function kae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return ms({inputs:{x:r},backend:n});let l=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new wae(r.shape,i):new vae(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var Sae={kernelName:Ni,backendName:"webgl",kernelFunc:kae},Iae=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Cae={kernelName:Vi,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Iae(s.shape,a),[c,u]=N.getImageCenter(o,s.shape[1],s.shape[2]),d=[[c,u,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,d)}},Tae=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,Nae=ot({opSnippet:Tae}),Eae={kernelName:Ei,backendName:"webgl",kernelFunc:Nae},Rae="return inversesqrt(x);",$ae=ot({opSnippet:Rae,cpuKernelImpl:nJ}),Dae={kernelName:so,backendName:"webgl",kernelFunc:$ae},D4=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=bt(r.length),l=bt(a.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,d="";s===1?d="i":s===2&&(d="i, coords[1]");let p=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${i} strides = ${i}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${u});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${p};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function _ae(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=N.calculateShapes(a,r,o),p=[d/c,c];if(d===0)return n.makeTensorInfo(o,r.dtype);let h=be({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=be({inputs:{x:a},backend:n,attrs:{shape:[l,c]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new D4(l,i,h.shape.length,f.shape.length,u,p),A=n.runWebGLProgram(g,[f,h,m],f.dtype),x=be({inputs:{x:A},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(m),x}var Pae={kernelName:Ri,backendName:"webgl",kernelFunc:_ae},Fae=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let c=0;c<t.length;c++)l.push(`${o[c]}`),c<e&&i.push(`${o[c]}`);s=i.join(),r=l.join()}let a=bt(n);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${s});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function Oae(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new Fae(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],On(r.dtype,a.dtype))}var Mae={kernelName:$i,backendName:"webgl",kernelFunc:Oae},zae=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${N.SELU_SCALEALPHA};
|
|
float scale = ${N.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,Lae=ot({opSnippet:zae}),Bae={kernelName:cu,backendName:"webgl",kernelFunc:Lae},_4="return 1.0 / (1.0 + exp(-1.0 * x));",Wae=ot({opSnippet:_4,packedOpSnippet:_4,cpuKernelImpl:sJ}),Vae={kernelName:ao,backendName:"webgl",kernelFunc:Wae},Uae=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,Gae=ot({opSnippet:Uae}),Hae={kernelName:du,backendName:"webgl",kernelFunc:Gae},jae=jI+`
|
|
return sin(x);
|
|
`,qae=ot({opSnippet:jae}),Xae={kernelName:ro,backendName:"webgl",kernelFunc:qae},Kae=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Zae=ot({opSnippet:Kae}),Yae={kernelName:_i,backendName:"webgl",kernelFunc:Zae},Jae=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,Qae=ot({opSnippet:Jae}),eoe={kernelName:pu,backendName:"webgl",kernelFunc:Qae},toe=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((A,x)=>A*x),l=[[0,0]];l.push(...o);for(let A=1+a.length;A<r.shape.length;++A)l.push([0,0]);let c=[],u=R4({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=N.getReshaped(u.shape,a,i,!1),p=N.getPermuted(d.length,a.length,!1),h=N.getReshapedPermuted(u.shape,a,i,!1),f=be({inputs:{x:u},backend:n,attrs:{shape:d}}),m=Vn({inputs:{x:f},backend:n,attrs:{perm:p}}),g=be({inputs:{x:m},backend:n,attrs:{shape:h}});return c.push(u),c.push(f),c.push(m),c.forEach(A=>n.disposeIntermediateTensorInfo(A)),g},noe={kernelName:Pi,backendName:"webgl",kernelFunc:toe};function soe(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=n.readSync(o.dataId)[0],[d,p,h,f,m]=aJ(i,s.shape,s.dtype,l,r.dtype,c,u);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var roe={kernelName:Ih,backendName:"webgl",kernelFunc:soe};function aoe(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[c,u,d]=oJ(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var ooe={kernelName:Ch,backendName:"webgl",kernelFunc:aoe};function ioe(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=DI(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var loe={kernelName:Th,backendName:"webgl",kernelFunc:ioe};function uoe(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=DI(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var coe={kernelName:Nh,backendName:"webgl",kernelFunc:uoe};function doe(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,strides:u,outputSize:d}=N.calculateShapes(a,r,i),p=!1,h=new D4(c,l,r.shape.length,a.shape.length,u,[d,1],p),f=n.runWebGLProgram(h,[a,r,o],a.dtype),m=be({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var poe={kernelName:qc,backendName:"webgl",kernelFunc:doe};function hoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=N.prepareSplitSize(r,a,i),c=r.shape.length,u=new Array(c).fill(0),d=r.shape.slice();return l.map(p=>{let h=[...d];h[i]=p;let f=Yu({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=p,f})}var foe={kernelName:Fi,backendName:"webgl",kernelFunc:hoe},P4="return sqrt(x);",moe=ot({opSnippet:P4,packedOpSnippet:P4,cpuKernelImpl:iJ}),goe={kernelName:oo,backendName:"webgl",kernelFunc:moe},Aoe="return x * x;",yoe=ot({opSnippet:Aoe}),xoe={kernelName:hu,backendName:"webgl",kernelFunc:yoe},F4="return (a - b) * (a - b);",boe=kn({opSnippet:F4,packedOpSnippet:F4}),voe={kernelName:uo,backendName:"webgl",kernelFunc:boe};function woe({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=gr+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,a=new zo(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var koe={kernelName:fo,backendName:"webgl",kernelFunc:woe},Soe=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=bt(n.length),a=bt(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,c)=>(i++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${i-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}};function Ioe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:A,begin:x,end:y,strides:b}=Ft.sliceInfo(r.shape,a,o,i,l,c,u,d,p),w;if(m)w=be({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||A){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let C=Ft.computeOutShape(x,y,b),E=Yu({inputs:{x:r},backend:n,attrs:{begin:x,size:C}});w=be({inputs:{x:E},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(E)}else if(n.shouldExecuteOnCPU([r])){let E=n.readSync(r.dataId),D=Be(r.shape,r.dtype,E),O=lJ(h,D,b,x);w=n.makeTensorInfo(f,r.dtype,O.values)}else{let E=new Soe(x,b,h);w=n.runWebGLProgram(E,[r],r.dtype)}let S=be({inputs:{x:w},backend:n,attrs:{shape:f}});return n.disposeIntermediateTensorInfo(w),S}var Coe={kernelName:Oi,backendName:"webgl",kernelFunc:Ioe};function Toe(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.readSync(u.dataId),h=n.readSync(d.dataId),[f,m]=uJ(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Noe={kernelName:Xc,backendName:"webgl",kernelFunc:Toe};function Eoe(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[c,u,d]=cJ(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Roe={kernelName:Eh,backendName:"webgl",kernelFunc:Eoe};function $oe(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=dJ(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var Doe={kernelName:Rh,backendName:"webgl",kernelFunc:$oe},_oe="return tan(x);",Poe=ot({opSnippet:_oe}),Foe={kernelName:Mi,backendName:"webgl",kernelFunc:Poe},Ooe=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,Moe=ot({opSnippet:Ooe}),zoe={kernelName:po,backendName:"webgl",kernelFunc:Moe},Loe=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=bt(this.rank),r=Boe(e);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function Boe(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function O4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),c=r.dtype==="string"?l.map(p=>v.decodeString(p)):l,u=Be(r.shape,r.dtype,c),d=hJ(u,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new Loe(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var Woe={kernelName:Hr,backendName:"webgl",kernelFunc:O4},Voe=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},Uoe=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function bl(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function M4(e){let t=1;for(;t<e;)t*=2;return t}function Goe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=K().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=K().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),c=r.shape,u=c[c.length-1];if(n.shouldExecuteOnCPU([r])||u<i||a>l){let O=n.readSync(r.dataId),[_,F]=fJ(O,c,r.dtype,a,o);return[n.makeTensorInfo(_.shape,_.dtype,_.values),n.makeTensorInfo(F.shape,F.dtype,F.values)]}if(a===0)return c[c.length-1]=0,[n.makeTensorInfo(c,r.dtype,[]),n.makeTensorInfo(c,"int32",[])];if(u===1)return[r,ep({attrs:{shape:c,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),p=d!==null&&d.isPacked,h=p?n.unpackTensor(r):r,m=v.sizeFromShape(c)/u,g=be({inputs:{x:h},attrs:{shape:[m,u]},backend:n});p&&bl(n,h);let A=M4(a),x=M4(u),y=null,b=()=>y===null?[g,g]:[g,y],w=(O,_,F)=>{let T=b(),M=new Voe(F),q=[[u],[y===null?1:0],[Number.NEGATIVE_INFINITY],[O],[_]],j=y;y=n.runWebGLProgram(M,T,"int32",q),bl(n,j)};for(let O=1;O<A;O*=2){let _=O*2;for(let F=O;F>=1;F/=2)w(_,F,[m,x])}for(let O=x;O>A;O/=2){let _=b(),F=new Uoe([m,O/2]),M=[[u],[y===null?1:0],[A]],U=y;y=n.runWebGLProgram(F,_,"int32",M),bl(n,U);let q=A/2,j=q*2;for(let X=q;X>=1;X/=2)w(j,X,y.shape)}let S=y;y=Yu({inputs:{x:y},backend:n,attrs:{begin:0,size:[m,a]}}),bl(n,S);let C=w4({inputs:{x:g,indices:y},backend:n,attrs:{axis:1,batchDims:1}});bl(n,g);let E=c.slice(0,-1);E.push(a),S=y,y=be({inputs:{x:y},attrs:{shape:E},backend:n}),bl(n,S);let D=C;return C=be({inputs:{x:C},attrs:{shape:E},backend:n}),bl(n,D),[C,y]}var Hoe={kernelName:zi,backendName:"webgl",kernelFunc:Goe},joe=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${i} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${o} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function qoe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c??[d,p],g=[u,f,m,h],A=new joe(d,p,o,i,l,g);return n.runWebGLProgram(A,[r,a],"float32")}var Xoe={kernelName:Li,backendName:"webgl",kernelFunc:qoe};function Koe(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Gu(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:c}=mJ(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([c.length],"int32",c)]}var Zoe={kernelName:$h,backendName:"webgl",kernelFunc:Koe};function Yoe(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],c=new Array(i-1),u=0;for(let m=0;m<i;m++)m!==a&&(c[u++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[a]=m;let g=Yu({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),A=be({inputs:{x:g},backend:n,attrs:{shape:c}});f[m]=A,d.push(g)}return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var Joe={kernelName:Bi,backendName:"webgl",kernelFunc:Yoe},Qoe=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,d=`
|
|
sumValue += dot(values, segFilter);
|
|
`,p="";r%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${u===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function eie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],c=0,u=N.getAxesPermutation([c],i),d=r;u!=null&&(d=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(d),c=N.getInnerMostAxes(1,i)[0]);let p=N.segment_util.computeOutShape(d.shape,c,o),h=v.sizeFromShape([d.shape[c]]),f=be({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(f);let m=ad(r.dtype),g=(b,w,S,C,E)=>{let D=b.shape[0],O=b.shape[1],_=N.segment_util.segOpComputeOptimalWindowSize(O,E),F={windowSize:_,inSize:O,batchSize:D,numSegments:E},T=new Qoe(F,w),M=n.compileAndRun(T,[b,S],C);if(l.push(M),M.shape[1]===E)return M;let U=$4({backend:n,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),q=O4({inputs:{x:U},backend:n,attrs:{reps:[O/_]}});return l.push(U),l.push(q),g(M,w,q,C,E)},A=g(f,"unsortedSegmentSum",a,m,o),x=be({inputs:{x:A},backend:n,attrs:{shape:p}}),y=x;if(u!=null){l.push(x);let b=N.getUndoAxesPermutation(u);y=Vn({inputs:{x:y},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var tie={kernelName:Kc,backendName:"webgl",kernelFunc:eie},nie=[Rse,_se,fQ,gQ,xQ,wQ,SQ,TQ,EQ,$Q,FQ,MQ,BQ,UQ,ZQ,jQ,QQ,see,tee,iee,uee,dee,mee,wee,See,Cee,Dee,Pee,zee,Wee,KJ,jee,nte,rte,Zee,lte,cte,ote,hte,gte,xte,vte,kte,Cte,Dte,Pte,Nte,Mte,Bte,Vte,jte,Zte,ene,sne,rne,ane,ine,une,dne,hne,mne,xne,wne,Ine,Tne,Rne,_ne,Mne,Wne,XJ,Une,Gee,jne,Kne,Jne,YJ,nse,ose,lse,mse,pse,xse,wse,Cse,Fse,Use,Wse,qse,Kse,Yse,Lse,Qse,tre,are,ure,hre,vre,nQ,kre,Cre,Ere,Dre,Nee,Fre,Mre,Lre,Vre,jre,QJ,Xre,Kre,Eee,Are,Jre,oae,nae,rQ,cae,hae,Aae,bae,Sae,Cae,Eae,Dae,Pae,Mae,Bae,Vae,Hae,Xae,Yae,bee,xre,eoe,noe,roe,ooe,loe,coe,poe,foe,goe,xoe,voe,koe,Coe,Noe,Roe,Doe,yre,dQ,Foe,zoe,Woe,Hoe,Xoe,pQ,Zoe,Joe,tie,Ore];for(let e of nie)qr(e);var Or=K();Or.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);Or.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);Or.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD",()=>4);Or.registerFlag("WEBGPU_USE_NAIVE_CONV2D",()=>!1);Or.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);Or.registerFlag("WEBGPU_CONV_SEPARATE_IM2COL_SHADER",()=>!1);Or.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);Or.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);Or.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);Or.registerFlag("WEBGPU_USE_IMPORT",()=>!1);function sie(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function Qt(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";throw Error(`GPU for rank ${e} is not yet supported`)}function _m(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function Le(){return`
|
|
let index = getGlobalIndex(globalId, localId);
|
|
`}function Fe(){return`
|
|
[[stage(compute), workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)]]
|
|
fn main([[builtin(local_invocation_id)]] localId : vec3<u32>, [[builtin(global_invocation_id)]] globalId : vec3<u32>)
|
|
`}function rie(e,t,n,s=!1){let r=`
|
|
let workGroupSizeX = ${n.workGroupSize[0]}u;
|
|
let workGroupSizeY = ${n.workGroupSize[1]}u;
|
|
let workGroupSizeZ = ${n.workGroupSize[2]}u;`;if(s===!0){let h=B4(t.shape),f=`
|
|
[[block]] struct Matrix0 {
|
|
numbers: array<${_m(t.dtype,n.isVec4)}>;
|
|
};
|
|
[[block]] struct Uniform {
|
|
size : i32;
|
|
numChannels : i32;
|
|
outShapeStrides : vec2<i32>;
|
|
dispatchSize : vec3<u32>;
|
|
};
|
|
|
|
[[group(0), binding(0)]] var<storage, write> result : Matrix0;
|
|
[[group(0), binding(2)]] var<uniform> uniforms: Uniform;
|
|
`;return[z4,f,r,L4,h,n.getUserCode()].join(`
|
|
`)}let a=[],o="[[block]] struct Uniforms { NAN : f32; ";n.variableNames.forEach((h,f)=>{o+=`${h.charAt(0).toLowerCase()+h.slice(1)}Shape : ${Qt(e[f].shape.length)}; `}),o+=`outShape : ${Qt(t.shape.length)} ; `;let i=t.shape.length-1;o+=`
|
|
outShapeStrides: ${Qt(i)}; `,n.size!=null&&(o+="size : i32; "),o+="dispatchSize : vec3<u32>; ",n.uniforms&&(o+=n.uniforms),o+="};",a.push(o),n.atomic?a.push(`
|
|
[[block]] struct Matrix0 {
|
|
numbers: array<atomic<i32>>;
|
|
};
|
|
|
|
[[group(0), binding(0)]] var<storage, read_write> result : Matrix0;
|
|
`):a.push(`
|
|
[[block]] struct Matrix0 {
|
|
numbers: array<${_m(t.dtype,n.isVec4)}>;
|
|
};
|
|
|
|
[[group(0), binding(0)]] var<storage, write> result : Matrix0;
|
|
`),n.variableNames.forEach((h,f)=>{a.push(`
|
|
[[block]] struct Matrix${1+f} {
|
|
numbers: array<${_m(e[f].dtype,n.isVec4)}>;
|
|
};
|
|
[[group(0), binding(${1+f})]] var<storage, read> ${h} : Matrix${1+f};
|
|
`)}),o!==""&&a.push(`
|
|
[[group(0), binding(${1+n.variableNames.length})]] var<uniform> uniforms : Uniforms;
|
|
`),a.push(r);let[l,c]=cie(t.shape,n.dispatchLayout),u=B4(t.shape),d=[z4,a.join(`
|
|
`),L4,u,l,aie(t.shape.length)];if(n.atomic||d.push(oie(t.shape,t.dtype,n.isVec4)),c===t.shape.length){let h=e.map(f=>iie(f,t.shape,n.isVec4,n.dispatchLayout.x.length===t.shape.length)).join(`
|
|
`);d.push(h)}return d.push(n.getUserCode()),d.join(`
|
|
`)}var z4=`
|
|
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
|
|
var res: i32 = a / b;
|
|
let mod: i32 = a % b;
|
|
if (sign < 0. && mod != 0) {
|
|
res = res - 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
fn isNanCustom(val : f32) -> bool {
|
|
if (val > 0.0) {
|
|
return false;
|
|
}
|
|
if (val < 0.0) {
|
|
return false;
|
|
}
|
|
if (val == 0.0) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
fn isNanCustomVec4F32(val : vec4<f32>) -> vec4<f32> {
|
|
var res = vec4<f32> (0.0);
|
|
for (var i = 0u; i < 4u; i = i + 1u) {
|
|
if (isNanCustom(val[i])) {
|
|
res[i] = 1.0;
|
|
} else {
|
|
res[i] = 0.0;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// Checks whether coordinates lie within the bounds of the shape.
|
|
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
|
|
return all(coord >= vec4<i32>(0)) &&
|
|
all(coord < shape);
|
|
}
|
|
|
|
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
|
|
return all(coord >= vec3<i32>(0)) &&
|
|
all(coord < shape);
|
|
}
|
|
|
|
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
|
|
return all(coord >= vec2<i32>(0)) &&
|
|
all(coord < shape);
|
|
}
|
|
`,L4=`
|
|
fn getFlatIndex1D(coord : i32, shape : i32) -> i32 {
|
|
return coord;
|
|
}
|
|
|
|
fn getFlatIndex2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
|
|
return i32(dot(vec2<f32>(coords), vec2<f32>(f32(shape.y), 1.0)));
|
|
}
|
|
|
|
fn getFlatIndex3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
|
|
return i32(dot(vec3<f32>(coords), vec3<f32>(f32(shape.y) * f32(shape.z), f32(shape.z), 1.0)));
|
|
}
|
|
|
|
fn getFlatIndex4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
|
|
return i32(dot(vec4<f32>(coords), vec4<f32>(
|
|
f32(shape.y) * f32(shape.z) * f32(shape.w), f32(shape.z) * f32(shape.w), f32(shape.w), 1.0)));
|
|
}
|
|
|
|
// Only used when the y/z dimension of workgroup size is 1.
|
|
fn getGlobalIndex(globalId : vec3<u32>, localId : vec3<u32>) -> i32 {
|
|
if (uniforms.dispatchSize.y == 1u && uniforms.dispatchSize.z == 1u) {
|
|
return i32(globalId.x);
|
|
}
|
|
let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +
|
|
localId.y * workGroupSizeX + localId.x;
|
|
let workGroupID = (globalId - localId)/vec3<u32>(
|
|
workGroupSizeX, workGroupSizeY, workGroupSizeZ);
|
|
return i32((workGroupID.z * uniforms.dispatchSize.x * uniforms.dispatchSize.y +
|
|
workGroupID.y * uniforms.dispatchSize.x + workGroupID.x) *
|
|
(workGroupSizeX * workGroupSizeY * workGroupSizeZ) +
|
|
localInvocationIndex);
|
|
}
|
|
`;function aie(e){let t="";switch(e){case 0:case 1:t+=`
|
|
fn getOutputFlatIndex(coords : i32) -> i32 {
|
|
return coords;
|
|
}
|
|
`;break;case 2:t+=`
|
|
fn getOutputFlatIndex(coords : vec2<i32>) -> i32 {
|
|
return i32(dot(vec2<f32>(coords), vec2<f32>(f32(uniforms.outShapeStrides), 1.0)));
|
|
}
|
|
`;break;case 3:t+=`
|
|
fn getOutputFlatIndex(coords : vec3<i32>) -> i32 {
|
|
return i32(dot(vec3<f32>(coords), vec3<f32>(f32(uniforms.outShapeStrides.x), f32(uniforms.outShapeStrides.y), 1.0)));
|
|
}
|
|
`;break;case 4:t+=`
|
|
fn getOutputFlatIndex(coords : vec4<i32>) -> i32 {
|
|
return i32(dot(vec4<f32>(coords), vec4<f32>(
|
|
f32(uniforms.outShapeStrides.x), f32(uniforms.outShapeStrides.y), f32(uniforms.outShapeStrides.z), 1.0)));
|
|
}
|
|
`;break;default:v.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function oie(e,t,n){let s=e.length,r=_m(t,n),a;if(n?a=`fn setOutputFlat(flatIndex : i32, value : vec4<f32>) {
|
|
result.numbers[flatIndex] = ${r}(value);
|
|
}
|
|
fn setOutputFlatI32(flatIndex : i32, value : vec4<i32>) {
|
|
result.numbers[flatIndex] = ${r}(value);
|
|
}`:a=`fn setOutputFlat(flatIndex : i32, value : f32) {
|
|
result.numbers[flatIndex] = ${r}(value);
|
|
}
|
|
fn setOutputFlatI32(flatIndex : i32, value : i32) {
|
|
result.numbers[flatIndex] = ${r}(value);
|
|
}`,s>=2){let o=["d0","d1","d2","d3"].slice(0,s),i=Qt(s);n?a+=`
|
|
fn setOutput(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<f32>) {
|
|
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
|
|
setOutputFlat(flatIndex / 4, value);
|
|
}
|
|
fn setOutputI32(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<i32>) {
|
|
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
|
|
setOutputFlatI32(flatIndex / 4, value);
|
|
}
|
|
`:a+=`
|
|
fn setOutput(${o.map(l=>`${l} : i32`).join(", ")}, value : f32) {
|
|
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
|
|
setOutputFlat(flatIndex, value);
|
|
}
|
|
fn setOutputI32(${o.map(l=>`${l} : i32`).join(", ")}, value : i32) {
|
|
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
|
|
setOutputFlatI32(flatIndex, value);
|
|
}
|
|
`}return a}function iie(e,t,n,s){let r=lie(e,n);return e.shape.length<=t.length&&(r+=uie(e,t,n,s)),r}function lie(e,t){let n=e.name,s=e.shape.length,r=Qt(s),a="get"+n.charAt(0).toUpperCase()+n.slice(1),o=["d0","d1","d2","d3"].slice(0,s),i=o.map(u=>`${u} : i32`).join(", ");if(s<1)return t?`
|
|
fn ${a}() -> vec4<f32> {
|
|
return vec4<f32>(${n}.numbers[0]);
|
|
}
|
|
`:`
|
|
fn ${a}() ->f32 {
|
|
return f32(${n}.numbers[0]);
|
|
}
|
|
`;let l=`uniforms.${n.charAt(0).toLowerCase()+n.slice(1)}Shape`,c=`${s}D`;return s===0&&(c="1D"),t?`
|
|
fn ${a}(${i}) -> vec4<f32> {
|
|
return vec4<f32>(${n}.numbers[getFlatIndex${c}(${r}(${o.join(",")}),
|
|
${l}) / 4]);
|
|
}
|
|
`:`
|
|
fn ${a}(${i}) -> f32 {
|
|
return f32(${n}.numbers[getFlatIndex${c}(${r}(${o.join(",")}),
|
|
${l})]);
|
|
}
|
|
`}function uie(e,t,n,s){let r=e.name,a=r.charAt(0).toUpperCase()+r.slice(1),o="get"+a+"AtOutCoords",i=e.shape.length,l=t.length,c=Qt(l);if(v.arraysEqual(e.shape,t)&&s)return n?`
|
|
fn ${o}ByGlobalId(globalId : vec3<u32>, globalIndex : i32) -> vec4<f32> {
|
|
return vec4<f32>(${r}.numbers[globalIndex]);
|
|
}
|
|
|
|
fn ${o}ByCoords(coords : ${c}) -> vec4<f32> {
|
|
return vec4<f32>(${r}.numbers[${l>1?"getOutputFlatIndex(coords)":"coords"} / 4]);
|
|
}
|
|
`:`
|
|
fn ${o}ByGlobalId(globalId : vec3<u32>, globalIndex : i32) -> f32 {
|
|
return f32(${r}.numbers[globalIndex]);
|
|
}
|
|
|
|
fn ${o}ByCoords(coords : ${c}) -> f32 {
|
|
return f32(${r}.numbers[${l>1?"getOutputFlatIndex(coords)":"coords"}]);
|
|
}
|
|
`;let u=N.getBroadcastDims(e.shape,t),d=l-i,p="";if(i===0)return n?`
|
|
fn ${o}ByGlobalId(globalId : vec3<u32>, globalIndex : i32) -> vec4<f32> {
|
|
return get${a}();
|
|
}
|
|
|
|
fn ${o}ByCoords(coords : ${c}) -> vec4<f32> {
|
|
return get${a}();
|
|
}
|
|
`:`
|
|
fn ${o}ByGlobalId(globalId : vec3<u32>, globalIndex : i32) -> f32{
|
|
return get${a}();
|
|
}
|
|
|
|
fn ${o}ByCoords(coords : ${c}) -> f32{
|
|
return get${a}();
|
|
}
|
|
`;l<2&&u.length>=1?p="coords = 0;":p=u.map(g=>`coords[${g+d}] = 0;`).join(`
|
|
`);let h="";if(l<2&&i>0)h="coords";else if(l>1){let g=Qt(i),A=e.shape.map((x,y)=>`coords[${y+d}]`).join(", ");h=`${g}(${A})`}else h="coords";let f=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,m=`${i}D`;return n?`
|
|
fn ${o}ByGlobalId(globalId : vec3<u32>, globalIndex : i32) -> vec4<f32> {
|
|
var coords = getOutputCoords(globalId, globalIndex);
|
|
${p}
|
|
return ${r}.numbers[getFlatIndex${m}(${h}, ${f}) / 4];
|
|
}
|
|
|
|
fn ${o}ByCoords(coordsIn : ${c}) -> vec4<f32> {
|
|
var coords = coordsIn;
|
|
${p}
|
|
return ${r}.numbers[getFlatIndex${m}(${h}, ${f}) / 4];
|
|
}
|
|
`:`
|
|
fn ${o}ByGlobalId(globalId : vec3<u32>, globalIndex : i32) -> f32 {
|
|
var coords = getOutputCoords(globalId, globalIndex);
|
|
${p}
|
|
return f32(${r}.numbers[getFlatIndex${m}(${h}, ${f})]);
|
|
}
|
|
|
|
fn ${o}ByCoords(coordsIn : ${c}) -> f32 {
|
|
var coords = coordsIn;
|
|
${p}
|
|
return f32(${r}.numbers[getFlatIndex${m}(${h}, ${f})]);
|
|
}
|
|
`}function cie(e,t){let{x:n,y:s=[],z:r=[]}=t,a=e.length;if(n.length===a)return[`fn getOutputCoords(globalId : vec3<u32>, globalIndex : i32) -> ${Qt(a)}{
|
|
return getCoordsFromFlatIndex(i32(globalIndex));
|
|
}
|
|
`,a];let o="",i=[n,s,r],l=0;for(let p=0;p<i.length;p++){let h=i[p];if(h.length!==0)if(l+=h.length,h.length===1)o+=`let d${h[0]} = i32(globalId[${p}]);`;else{let f=sie(h,"uniforms.outShape");o+=`var index${p} = i32(globalId[${p}]);`;for(let m=0;m<f.length;m++)o+=`let d${h[m]} = index${p} / ${f[m]};`,m===f.length-1?o+=`let d${h[m+1]} = index${p} - d${h[m]} * ${f[m]};`:o+=`index${p} = index${p} - d${h[m]} * ${f[m]};`}}let c=[];for(let p=0;p<l;p++)c.push(`d${p}`);let u=Qt(l),d=`fn getOutputCoords(globalId : vec3<u32>, globalIndex : i32) -> ${u} {
|
|
${o}
|
|
`;return c.length===0?d+=`return ${u}(0); }`:d+=`return ${u}(${c.join(",")}); }`,[d,l]}function B4(e){let t=e.length;if(t<=1)return"fn getCoordsFromFlatIndex(index : i32) -> i32 { return index; }";let n=v.computeStrides(e),s=Qt(t),r=[];for(let o=0;o<t;o++)r.push(`d${o}`);if(n.length===1)return` fn getCoordsFromFlatIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
|
|
return vec2<i32>(d0, d1);
|
|
}`;let a="var index2 = index;"+n.map((o,i)=>{let l=`let ${r[i]} = index2 / uniforms.outShapeStrides[${i}]`,c=i===n.length-1?`let ${r[i+1]} = index2 - ${r[i]} * uniforms.outShapeStrides[${i}]`:`index2 = index2 - ${r[i]} * uniforms.outShapeStrides[${i}]`;return`${l}; ${c};`}).join("");return`
|
|
fn getCoordsFromFlatIndex(index : i32) -> ${s} {
|
|
${a}
|
|
return ${s}(${r.join(",")});
|
|
}
|
|
`}var W4={};Me(W4,{ArrayBufferToTypedArray:()=>V4,GPUBytesPerElement:()=>sx,computeDispatch:()=>Oe,computeWorkGroupSizeForConv2d:()=>ex,computeWorkGroupSizeForMatMul:()=>tx,computeWorkPerThreadForConv2d:()=>nx,flatDispatchLayout:()=>Xe,isWebGPUSupported:()=>rx,tilesFitEvenlyIntoShape:()=>aa});var ec=65535,vl=e=>{let t=1;for(let n=0;n<e.length;n++)t*=e[n];return t};function aa(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((n,s)=>n%e[s]==0)}function Oe(e,t,n=[1,1,1],s=[1,1,1]){let[r,a,o]=[Math.ceil(vl(e.x.map(l=>t[l]))/(n[0]*s[0])),e.y?Math.ceil(vl(e.y.map(l=>t[l]))/(n[1]*s[1])):1,e.z?Math.ceil(vl(e.z.map(l=>t[l]))/(n[2]*s[2])):1];if(r<=ec&&a<=ec&&o<=ec)return[r,a,o];v.assert(r>ec&&e.y===void 0&&e.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let i=Math.ceil(Math.sqrt(r));return i>ec?(i=Math.ceil(Math.cbrt(r)),v.assert(i<=ec,()=>"Total dispatch size exceeds WebGPU maximum."),[i,i,i]):[i,i,1]}function ex(e,t){let n=vl(e.x.map(r=>t[r])),s=vl(e.y.map(r=>t[r]));return n<=4?[4,16,1]:s<=4?[16,4,1]:[16,16,1]}function tx(e,t,n){return e===1?[32,1,1]:n===1?[1,32,1]:[8,8,1]}function nx(e,t){let n=vl(e.x.map(r=>t[r])),s=vl(e.y.map(r=>t[r]));return n<=4?[1,2,1]:s<=4?[2,1,1]:[2,2,1]}function Xe(e){return{x:e.map((t,n)=>n)}}function sx(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function V4(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string"){let n=new Int32Array(e),s=new ArrayBuffer(n.length),r=new Uint8Array(s);for(let a=0;a<n.length;a++)r[a]=n[a];return r}else throw new Error(`Unknown dtype ${t}`)}function rx(){return!!navigator.gpu}var Vt;(function(e){e[e.MUL=0]="MUL",e[e.ADD=1]="ADD",e[e.SUB=2]="SUB",e[e.DIV=3]="DIV",e[e.EQUAL=4]="EQUAL",e[e.GREATER=5]="GREATER",e[e.GREATER_EQUAL=6]="GREATER_EQUAL",e[e.LESS=7]="LESS",e[e.LESS_EQUAL=8]="LESS_EQUAL",e[e.LOGICAL_AND=9]="LOGICAL_AND",e[e.NOT_EQUAL=10]="NOT_EQUAL",e[e.SQUARED_DIFFERENCE=11]="SQUARED_DIFFERENCE",e[e.INT_DIV=12]="INT_DIV",e[e.POW=13]="POW",e[e.PRELU=14]="PRELU",e[e.MAX=15]="MAX",e[e.MIN=16]="MIN",e[e.COMPLEX_MULTIPLY_REAL=17]="COMPLEX_MULTIPLY_REAL",e[e.COMPLEX_MULTIPLY_IMAG=18]="COMPLEX_MULTIPLY_IMAG"})(Vt||(Vt={}));var die="return a + b;",pie="return areal * breal - aimag * bimag;",hie="return areal * bimag + aimag * breal;",fie="return a / b;",mie="return a * b;",gie="return (a - b) * (a - b);",Aie="return a - b;",yie="return f32(a == b);",xie="return vec4<f32>(a == b);",bie="return f32(a > b);",vie="return vec4<f32>(a > b);",wie="return f32(a >= b);",kie="return vec4<f32>(a >= b);",Sie="return f32(a < b);",Iie="return vec4<f32>(a < b);",Cie="return f32(a <= b);",Tie="return vec4<f32>(a <= b);",Nie="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",Eie=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
|
|
vec4<f32>(b >= vec4<f32>(1.0)));`,Rie=`
|
|
if (isNanCustom(a)) { return a; }
|
|
if (isNanCustom(b)) { return b; }
|
|
`,U4=`
|
|
if (isNaN.r > 0.) {
|
|
resultTemp.r = uniforms.NAN;
|
|
}
|
|
if (isNaN.g > 0.) {
|
|
resultTemp.g = uniforms.NAN;
|
|
}
|
|
if (isNaN.b > 0.) {
|
|
resultTemp.b = uniforms.NAN;
|
|
}
|
|
if (isNaN.a > 0.) {
|
|
resultTemp.a = uniforms.NAN;
|
|
}
|
|
`,$ie=`
|
|
let s = sign(a) * sign(b);
|
|
let ia = i32(round(a));
|
|
let ib = i32(round(b));
|
|
return f32(idiv(ia, ib, s));
|
|
`,Die=`
|
|
let ia = vec4<i32>(round(a));
|
|
let ib = vec4<i32>(round(b));
|
|
let cond = ib != vec4<i32>(0);
|
|
var resultTemp = vec4<i32>(0);
|
|
let s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4<f32>(resultTemp);
|
|
`,_ie="return f32(a != b);",Pie="return vec4<f32>(a != b);",Fie=`
|
|
if(a < 0.0 && floor(b) < b) {
|
|
return uniforms.NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
if (round(abs(b) % 2.0) != 1.0) {
|
|
return pow(abs(a), b);
|
|
}
|
|
return sign(a) * pow(abs(a), b);
|
|
`,Oie=`
|
|
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
|
|
let isModRound1 = vec4<f32>(isModRound1Bool);
|
|
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
|
|
var resultTemp = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
let isExpZero = b == vec4<f32>(0.0);
|
|
if (isExpZero.r) {
|
|
resultTemp.r = 1.0;
|
|
}
|
|
if (isExpZero.g) {
|
|
resultTemp.g = 1.0;
|
|
}
|
|
if (isExpZero.b) {
|
|
resultTemp.b = 1.0;
|
|
}
|
|
if (isExpZero.a) {
|
|
resultTemp.a = 1.0;
|
|
}
|
|
let isNaN = vec4<f32>(a < vec4<f32>(0.0)) * vec4<f32>(floor(b) < b);
|
|
${U4}
|
|
return resultTemp;
|
|
`,Mie="if (a < 0.0) { return b * a; } return a;",zie=`
|
|
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
|
|
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
|
|
`;function G4(e,t){let n=t?U4:Rie;return t?`
|
|
var resultTemp = vec4<f32>(${e}(a, b));
|
|
let isNaN = min(vec4<f32>(isNanCustomVec4F32(a)) + vec4<f32>(isNanCustomVec4F32(b)), vec4<f32>(1.0));
|
|
`+n+`
|
|
return resultTemp;
|
|
`:n+`
|
|
return ${e}(a, b);
|
|
`}function tp(e,t){switch(e){case 0:return mie;case 1:return die;case 2:return Aie;case 3:return fie;case 4:return t?xie:yie;case 5:return t?vie:bie;case 6:return t?kie:wie;case 7:return t?Iie:Sie;case 8:return t?Tie:Cie;case 9:return t?Eie:Nie;case 10:return t?Pie:_ie;case 11:return gie;case 12:return t?Die:$ie;case 14:return t?zie:Mie;case 15:return G4("max",t);case 16:return G4("min",t);case 13:return t?Oie:Fie;case 17:return pie;case 18:return hie;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var vt;(function(e){e[e.ABS=0]="ABS",e[e.CEIL=1]="CEIL",e[e.COS=2]="COS",e[e.COSH=3]="COSH",e[e.ELU=4]="ELU",e[e.EXP=5]="EXP",e[e.EXPM1=6]="EXPM1",e[e.FLOOR=7]="FLOOR",e[e.LINEAR=8]="LINEAR",e[e.LOG=9]="LOG",e[e.LOGICAL_NOT=10]="LOGICAL_NOT",e[e.NEG=11]="NEG",e[e.PRELU=12]="PRELU",e[e.RELU=13]="RELU",e[e.RELU6=14]="RELU6",e[e.RSQRT=15]="RSQRT",e[e.SIN=16]="SIN",e[e.SINH=17]="SINH",e[e.SIGMOID=18]="SIGMOID",e[e.SQRT=19]="SQRT",e[e.SQUARE=20]="SQUARE",e[e.TANH=21]="TANH",e[e.TO_INT=22]="TO_INT"})(vt||(vt={}));var Lie="return abs(a);",Bie="return ceil(a);",Wie="return cos(a);",Vie=`
|
|
let e2x = exp(-a);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,Uie="return exp(a) - 1.0;",Gie="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",Hie=`
|
|
var resFloat = exp(a) - vec4<f32>(1.0);
|
|
if (a.r >= 0.0) {
|
|
resFloat.r = a.r;
|
|
}
|
|
if (a.g >= 0.0) {
|
|
resFloat.g = a.g;
|
|
}
|
|
if (a.b >= 0.0) {
|
|
resFloat.b = a.b;
|
|
}
|
|
if (a.a >= 0.0) {
|
|
resFloat.a = a.a;
|
|
}
|
|
return resFloat;
|
|
`,jie="return exp(a);",qie="return floor(a);",Xie="return a;",Kie=`if (a < 0.0) { return 1.0/0.0; }
|
|
return log(a);`,Zie="return f32(!(a >= 1.0));",Yie="return -a;",Jie="return (a < 0.0) ? b * a : a;",Qie="return max(a, 0.0);",ele="return clamp(a, 0.0, 6.0);",tle="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",nle=`
|
|
var resFloat = a * vec4<f32>(a >= vec4<f32>(0.0));
|
|
let isNaN = isNan(a);
|
|
|
|
if (isNaN.r) {
|
|
resFloat.r = a.r;
|
|
}
|
|
if (isNaN.g) {
|
|
resFloat.g = a.g;
|
|
}
|
|
if (isNaN.b) {
|
|
resFloat.b = a.b;
|
|
}
|
|
if (isNaN.a) {
|
|
resFloat.a = a.a;
|
|
}
|
|
return resFloat;
|
|
`,sle="return 1.0/sqrt(a);",rle="return 1.0 / (1.0 + exp(-1.0 * a));",ale="return sin(a);",ole=`
|
|
let e2x = exp(a);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,ile="return sqrt(a);",lle="return a * a;",ule=`
|
|
let e2x = exp(-2.0 * abs(a));
|
|
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,cle="return f32(i32((a)));";function tc(e,t){switch(e){case 0:return Lie;case 2:return Wie;case 3:return Vie;case 1:return Bie;case 4:return t?Hie:Gie;case 5:return jie;case 6:return Uie;case 7:return qie;case 8:return Xie;case 9:return Kie;case 10:return Zie;case 11:return Yie;case 12:return Jie;case 13:return t?nle:Qie;case 14:return t?tle:ele;case 15:return sle;case 18:return rle;case 16:return ale;case 17:return ole;case 19:return ile;case 20:return lle;case 21:return ule;case 22:return cle;default:throw new Error(`BinaryType ${e} is not implemented!`)}}function oa(e,t=!1){if(e===null)return null;if(e==="linear")return tc(vt.LINEAR);if(e==="relu")return tc(vt.RELU,t);if(e==="elu")return tc(vt.ELU,t);if(e==="relu6")return tc(vt.RELU6,t);if(e==="prelu")return tp(Vt.PRELU,t);if(e==="sigmoid")return tc(vt.SIGMOID);throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`)}function H4(e,t){let n={RowPerThread:e[1],ColPerThread:e[0],TileAOuter:t[1]*e[1],TileBOuter:t[0]*e[0],TileInner:t[0]*e[0]};return`
|
|
var<workgroup> mm_Asub : array<array<vec4<f32>, ${n.TileInner/n.ColPerThread}>, ${n.TileAOuter}>;
|
|
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${n.TileBOuter/n.ColPerThread}>, ${n.TileInner}>;
|
|
|
|
let RowPerThread = ${n.RowPerThread};
|
|
let ColPerThread = ${n.ColPerThread}; // only support ColPerThread = 4
|
|
let TileAOuter = ${n.TileAOuter};
|
|
let TileBOuter = ${n.TileBOuter};
|
|
let TileInner = ${n.TileInner};
|
|
|
|
${Fe()} {
|
|
|
|
let tileRow = i32(localId.y) * RowPerThread;
|
|
let tileCol = i32(localId.x);
|
|
|
|
let globalRow = i32(globalId.y) * RowPerThread;
|
|
let globalCol = i32(globalId.x);
|
|
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
|
|
|
|
var acc: array<vec4<f32>, ${n.RowPerThread}>;
|
|
var ACached : vec4<f32>;
|
|
var BCached : array<vec4<f32>, 4>;
|
|
|
|
// Loop over shared dimension.
|
|
var globalColA = tileCol;
|
|
let RowPerThreadB = TileInner / ${t[1]};
|
|
let tileRowB = i32(localId.y) * RowPerThreadB;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Asub[inputRow][inputCol] = mm_readA(globalRow + innerRow, globalColA, globalId);
|
|
}
|
|
globalColA = globalColA + TileInner / ColPerThread;
|
|
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(t * TileInner + inputRow, globalCol, globalId);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileInner / ColPerThread; k = k + 1) {
|
|
BCached[0] = mm_Bsub[k * ColPerThread][tileCol];
|
|
BCached[1] = mm_Bsub[k * ColPerThread + 1][tileCol];
|
|
BCached[2] = mm_Bsub[k * ColPerThread + 2][tileCol];
|
|
BCached[3] = mm_Bsub[k * ColPerThread + 3][tileCol];
|
|
|
|
for (var i = 0; i < RowPerThread; i = i + 1) {
|
|
ACached = mm_Asub[tileRow + i][k];
|
|
acc[i] = BCached[0] * ACached.x + acc[i];
|
|
acc[i] = BCached[1] * ACached.y + acc[i];
|
|
acc[i] = BCached[2] * ACached.z + acc[i];
|
|
acc[i] = BCached[3] * ACached.w + acc[i];
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol,
|
|
acc[innerRow], globalId);
|
|
}
|
|
}`}function dle(e){return`
|
|
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
|
|
let tileSize = ${e[0]*4};
|
|
${Fe()} {
|
|
let tileCol = i32(localId.x);
|
|
let globalCol = i32(globalId.x);
|
|
let globalRow = i32(globalId.y);
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / tileSize + 1;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
var acc = vec4<f32>(0.0);
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
let colA = t * tileSize / 4 + tileCol;
|
|
mm_Asub[tileCol] = mm_readA(globalRow, colA, globalId);
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < tileSize / 4; k = k + 1) {
|
|
let rowB = t * tileSize + k * 4;
|
|
let BCached0 = mm_readB(rowB, globalCol, globalId);
|
|
let BCached1 = mm_readB(rowB + 1, globalCol, globalId);
|
|
let BCached2 = mm_readB(rowB + 2, globalCol, globalId);
|
|
let BCached3 = mm_readB(rowB + 3, globalCol, globalId);
|
|
|
|
let ACached = mm_Asub[k];
|
|
acc = acc + BCached0 * ACached.x;
|
|
acc = acc + BCached1 * ACached.y;
|
|
acc = acc + BCached2 * ACached.z;
|
|
acc = acc + BCached3 * ACached.w;
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
|
|
mm_write(globalRow, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var ple=class{constructor(e,t,n,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[16,16,1],this.isVec4=!0,this.vecSize=4,this.outputShape=t,this.workGroupSize=tx(t[1],e[2],t[2]),this.dispatchLayout={x:[2],y:[1],z:[0]},t[1]===1&&(n=1),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.vecSize,n,1]);let o=s!=null,i=a!=null;o&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.aShape=e,this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`matMulPackedVec4_${n}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}`}getShapeFit(){let e=this.aShape[2],t=this.outputShape[2],n=[this.outputShape[0],e,t],s=this.workGroupSize[1]*this.workPerThread,r=this.workGroupSize[0]*this.vecSize,a=r,o=[s,a],i=[a,r];return[aa(o,this.aShape.slice(1)),aa(i,n.slice(1))]}getUserCode(){let e=this.fitA?"return A.numbers[batch * batchASize + row * uniforms.dimInner / 4 + col]":`if (coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A.numbers[batch * batchASize + row * uniforms.dimInner / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,t=this.fitB?"return B.numbers[batch * batchBSize + row * uniforms.dimBOuter / 4 + col]":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,n="",s="";if(this.activation){let o=oa(this.activation,this.isVec4);this.hasPreluActivationWeights?n=`fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
|
|
${o}
|
|
}`:n=`
|
|
fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
${o}
|
|
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
|
|
${n}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2] / ${this.vecSize};
|
|
let batch = i32(globalId.z);
|
|
${e};
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2] / ${this.vecSize};
|
|
let batch = i32(globalId.z);
|
|
${t};
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : vec4<f32>, globalId : vec3<u32>) {
|
|
if (row < uniforms.aShape[1] && col * 4 < uniforms.bShape[2])
|
|
{
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col * 4);
|
|
${r}
|
|
${s}
|
|
setOutput(outCoord[0], outCoord[1], outCoord[2], value);
|
|
}
|
|
}
|
|
${this.outputShape[1]>1?H4([this.vecSize,this.workPerThread,1],this.workGroupSize):dle(this.workGroupSize)}
|
|
|
|
`}};function ax(e,t){let n=t[1]*e[1],s=t[0]*e[0],r=n>s?n:s;return`
|
|
var<workgroup> mm_Asub : array<array<f32, ${r}>, ${n}>;
|
|
var<workgroup> mm_Bsub : array<array<f32, ${s}>, ${r}>;
|
|
${Fe()} {
|
|
let tileRow = i32(localId.y) * ${e[1]};
|
|
let tileCol = i32(localId.x) * ${e[0]};
|
|
|
|
let globalRow = i32(globalId.y) * ${e[1]};
|
|
let globalCol = i32(globalId.x) * ${e[0]};
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / ${r} + 1;
|
|
|
|
var acc : array<array<f32, ${e[0]}>, ${e[1]}>;
|
|
var ACached : f32;
|
|
var BCached : array<f32, ${e[0]}>;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = 0.0;
|
|
}
|
|
}
|
|
|
|
let ColPerThreadA = ${r} / ${t[0]};
|
|
let tileColA = i32(localId.x) * ColPerThreadA;
|
|
let RowPerThreadB = ${r} / ${t[1]};
|
|
let tileRowB = i32(localId.y) * RowPerThreadB;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ColPerThreadA; innerCol = innerCol + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileColA + innerCol;
|
|
|
|
mm_Asub[inputRow][inputCol] = mm_readA(
|
|
globalRow + innerRow,
|
|
t * ${r} + inputCol, globalId);
|
|
}
|
|
}
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol + innerCol;
|
|
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(
|
|
t * ${r} + inputRow,
|
|
globalCol + innerCol, globalId);
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${r}; k = k + 1) {
|
|
for (var inner = 0; inner < ${e[0]}; inner = inner + 1) {
|
|
BCached[inner] = mm_Bsub[k][tileCol + inner];
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
ACached = mm_Asub[tileRow + innerRow][k];
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
|
|
}
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
|
|
if ((globalCol + innerCol) < uniforms.dimBOuter &&
|
|
(globalRow + innerRow) < uniforms.dimAOuter) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol + innerCol,
|
|
acc[innerRow][innerCol], globalId);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`}function hle(e){return`
|
|
let TileSize = ${e[0]*4};
|
|
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
|
|
|
|
${Fe()} {
|
|
let tileCol = i32(localId.x);
|
|
let globalCol = i32(globalId.x);
|
|
let globalRow = i32(globalId.y);
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / TileSize + 1;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
var acc = 0.0;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
let colA = t * TileSize + tileCol * 4;
|
|
mm_Asub[tileCol] = vec4<f32>(mm_readA(globalRow, colA, globalId),
|
|
mm_readA(globalRow, colA + 1, globalId),
|
|
mm_readA(globalRow, colA + 2, globalId),
|
|
mm_readA(globalRow, colA + 3, globalId));
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileSize / 4; k = k + 1) {
|
|
let rowB = t * TileSize + k * 4;
|
|
let BCached = vec4<f32>(mm_readB(rowB, globalCol, globalId),
|
|
mm_readB(rowB + 1, globalCol, globalId),
|
|
mm_readB(rowB + 2, globalCol, globalId),
|
|
mm_readB(rowB + 3, globalCol, globalId));
|
|
|
|
let ACached = mm_Asub[k];
|
|
acc = acc + dot(ACached, BCached);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
|
|
mm_write(globalRow, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var j4=class{constructor(e,t,n,s=!1,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[16,16,1],this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let l=s?e[1]:e[2];this.workGroupSize=tx(t[1],l,t[2]),(t[1]===1||t[2]===1)&&(n=1),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]),v.arraysEqual(this.dispatch,[1,1,1])&&(n=1,this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]));let c=a!=null,u=i!=null;c&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.aShape=e,this.transposeA=s,this.transposeB=r,this.addBias=c,this.activation=o,this.hasPreluActivationWeights=u;let d=this.outputShape[2],p=this.transposeB?[this.outputShape[0],d,l]:[this.outputShape[0],l,d];[this.fitA,this.fitB]=this.getShapeFit(p),this.shaderKey=`matMulPacked_${this.workPerThread}_${s}_${r}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}`}getShapeFit(e){let t=this.workGroupSize[1]*this.workPerThread,n=this.workGroupSize[0]*this.workPerThread,s=t>n?t:n;this.outputShape[1]===1&&(s*=4),v.assert(s%this.workGroupSize[0]==0&&s%this.workGroupSize[1]==0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let r=[t,s],a=[s,n];return[aa(r,this.aShape.slice(1)),aa(a,e.slice(1))]}getUserCode(){let e;this.transposeA===!1?e=this.fitA?"return A.numbers[batch * batchASize + row * uniforms.dimInner + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A.numbers[batch * batchASize + row * uniforms.dimInner + col];
|
|
}
|
|
return 0.0;`:e=this.fitA?"return A.numbers[batch * batchASize + col * uniforms.dimAOuter + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A.numbers[batch* batchASize + col * uniforms.dimAOuter + row];
|
|
}
|
|
return 0.0;`;let t;this.transposeB===!1?t=this.fitB?"return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;`:t=this.fitB?"return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];
|
|
}
|
|
return 0.0;`;let n="",s="";if(this.activation){let o=oa(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
|
|
${o}
|
|
}`:n=`
|
|
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${o}
|
|
}
|
|
`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = i32(globalId.z);
|
|
${e}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
${r}
|
|
${s}
|
|
setOutput(batch, row, col, value);
|
|
}
|
|
${this.outputShape[1]>1?ax([this.workPerThread,this.workPerThread,1],this.workGroupSize):hle(this.workGroupSize)}
|
|
`}};function fle(){return`
|
|
var<workgroup> sumValues : array<f32, workGroupSizeX>;
|
|
${Fe()} {
|
|
${Le()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
let batch = coords[0];
|
|
let row = coords[1];
|
|
let col = coords[2];
|
|
var sum = 0.0;
|
|
let Length = uniforms.dimInner;
|
|
for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) {
|
|
let dataA = mm_readA(batch, row, k);
|
|
let dataB = mm_readB(batch, k, col);
|
|
sum = sum + dataA * dataB;
|
|
}
|
|
sumValues[localId.x] = sum;
|
|
workgroupBarrier();
|
|
|
|
for(var currentSize = workGroupSizeX / 2u; currentSize > 1u;
|
|
currentSize = currentSize / 2u) {
|
|
if (localId.x < currentSize)
|
|
{
|
|
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u) {
|
|
sum = sumValues[0] + sumValues[1];
|
|
mm_write(batch, row, col, sum);
|
|
}
|
|
}
|
|
`}var mle=class{constructor(e,t=!1,n=!1,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize);let o=s!=null,i=a!=null;o&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),this.transposeA=t,this.transposeB=n,this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,this.shaderKey=`matMulReduce_${this.activation}_${t}_${n}`}getUserCode(){let e;this.transposeA===!1?e="return A.numbers[batch * batchASize + row * uniforms.dimInner + col];":e="return A.numbers[batch * batchASize + col * uniforms.dimAOuter + row];";let t;this.transposeB===!1?t="return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];":t="return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];";let n="",s="";if(this.activation){let o=oa(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
|
|
${o}
|
|
}`:n=`
|
|
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${o}
|
|
}
|
|
`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(batch: i32, row : i32, col : i32) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
${e}
|
|
}
|
|
|
|
fn mm_readB(batch: i32, row : i32, col : i32) -> f32 {
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
|
|
fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) {
|
|
var value = valueIn;
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
${r}
|
|
${s}
|
|
setOutput(batch, row, col, value);
|
|
}
|
|
${fle()}
|
|
`}};function gle(e){let t=e[1]/2,n=e[0],s=t>n?t:n;return`
|
|
var<workgroup> mm_Asub1 : array<array<f32, ${s}>, ${t}>;
|
|
var<workgroup> mm_Bsub1 : array<array<f32, ${n}>, ${s}>;
|
|
var<workgroup> mm_Asub2 : array<array<f32, ${s}>, ${t}>;
|
|
var<workgroup> mm_Bsub2 : array<array<f32, ${n}>, ${s}>;
|
|
|
|
// If the output size is small for matrix multiplication, avoid to use vec4
|
|
// and handle some elements per thread to optimally utilize the ALU.
|
|
// Introduces two shared memory buffers, some logical threads could handle
|
|
// arithmetic operations and others handle IO operations between barrier api,
|
|
// makes ALUs and load/store units work simultaneously, could improves
|
|
// the performance.
|
|
${Fe()} {
|
|
let tileRow = i32(localId.y);
|
|
let tileCol = i32(localId.x);
|
|
let globalRow = i32(globalId.y);
|
|
let globalCol = i32(globalId.x);
|
|
|
|
// uniforms.dimInner should be greater than 0.
|
|
let numTiles = (uniforms.dimInner - 1) / ${s} + 1;
|
|
var acc = 0.0;
|
|
|
|
var globalColA = tileCol;
|
|
var globalRowB = tileRow;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
if (t == 0) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
}
|
|
} else {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${s}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub2[subRow][k] * mm_Bsub2[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
if (t != 0) {
|
|
t = t + 1;
|
|
}
|
|
|
|
if (t < numTiles) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub2[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub2[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${s}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub1[subRow][k] * mm_Bsub1[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
let writeCol = (globalRow - tileRow) / 2 + tileRow - ${t};
|
|
if (tileRow >= ${t} && writeCol >= 0) {
|
|
mm_write(writeCol, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var Ale=class{constructor(e,t,n,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[8,16,1],v.assert(e[1]<=16||t[2]<=16,()=>"This program can be only used when A width or B Height are small"),this.outputShape=n,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(n[2]/this.workGroupSize[0]),Math.ceil(n[1]*2/this.workGroupSize[1]),n[0]];let o=s!=null;o&&this.variableNames.push("bias");let i=a!=null;i&&this.variableNames.push("preluActivationWeights"),this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,this.shaderKey=`matMulSmallOutputSize_${this.activation}`}getUserCode(){let e=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A.numbers[batch * batchASize + row * uniforms.dimInner + col];
|
|
}
|
|
return 0.0;`,t=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;`,n="",s="";if(this.activation){let o=oa(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
|
|
${o}
|
|
}`:n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${o}
|
|
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = i32(globalId.z);
|
|
${e}
|
|
}
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimBOuter))) {
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
var value = valueIn;
|
|
${r}
|
|
${s}
|
|
setOutput(batch, row, col, value);
|
|
}
|
|
}
|
|
${gle(this.workGroupSize)}
|
|
`}};function Ke(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a),i=v.sizeFromShape(o);return v.assert(a===i,()=>`The new shape (${o}) has ${i} elements and the old shape (${s.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var yle={kernelName:Ti,backendName:"webgpu",kernelFunc:Ke};function ox({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,d=n?e.shape[c-2]:e.shape[c-1],p=s?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],f=s?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),A=v.sizeFromShape(m),x=v.sizeFromShape(g),b=Xi.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[A,d,h]:[A,h,d],S=s?[x,f,p]:[x,p,f],C=Ke({inputs:{x:e},backend:r,attrs:{shape:w}}),E=Ke({inputs:{x:t},backend:r,attrs:{shape:S}}),D=[C,E],O=Math.max(A,x),_=d%4==0&&f%4==0&&!n&&!s&&f>=32,F;h*f<=32?F=new mle([O,h,f],n,s,a,l,o):!n&&!s&&(h<=16&&(f<=512||p>=2*f)||f<=16&&(h<=512||d>=2*h))?F=new Ale(w,S,[O,h,f],a,l,o):_?F=new ple(w,[O,h,f],K().get("WEBGPU_MATMUL_WORK_PER_THREAD"),a,l,o):F=new j4(w,[O,h,f],K().get("WEBGPU_MATMUL_WORK_PER_THREAD"),n,s,a,l,o);let T=[C,E];a&&T.push(a),o&&T.push(o);let M=[{type:"int32",data:[h]},{type:"int32",data:[f]},{type:"int32",data:[d]}],U=r.runWebGPUProgram(F,T,e.dtype,M),q=Ke({inputs:{x:U},backend:r,attrs:{shape:b}});D.push(U);for(let j of D)r.disposeData(j.dataId);return q}function xle(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s;return ox({a:r,b:a,transposeA:l,transposeB:c,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:u})}var ble={kernelName:mo,backendName:"webgpu",kernelFunc:xle},q4=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e,this.size=v.sizeFromShape(this.outputShape)}getUserCode(){return`
|
|
fn binaryOpComplex(
|
|
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
|
|
${tp(this.op,!1)}
|
|
}
|
|
|
|
${Fe()} {
|
|
${Le()}
|
|
if(index < uniforms.size) {
|
|
let areal = getARealAtOutCoordsByGlobalId(globalId, index);
|
|
let aimag = getAImagAtOutCoordsByGlobalId(globalId, index);
|
|
let breal = getBRealAtOutCoordsByGlobalId(globalId, index);
|
|
let bimag = getBImagAtOutCoordsByGlobalId(globalId, index);
|
|
setOutputFlat(index, binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
}
|
|
`}},vle=class{constructor(e,t,n,s){this.variableNames=["A","B"];let r=256;this.workGroupSize=[r,1,1],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Xe(this.outputShape),this.lastDimensionSize=s?n[0]:t[0],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4,this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.useSharedMemoryWithB=s,this.op=e,this.size=v.sizeFromShape(this.outputShape),this.sizeFit=this.size%(this.workGroupSize[0]*this.workPerThread)==0,this.shaderKey=`binaryShared_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}_${this.sizeFit}`}getUserCode(){let e=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",t=this.useSharedMemoryWithB?`let a = getAAtOutCoordsByCoords(coords);
|
|
let b = sharedBuf[${e}];`:`let a = sharedBuf[${e}];
|
|
let b = getBAtOutCoordsByCoords(coords);`,n=this.sizeFit?`let coords = getCoordsFromFlatIndex(flatIndex);
|
|
|
|
${t}
|
|
setOutputFlat(flatIndex, binaryOperation(a, b));`:`if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromFlatIndex(flatIndex);
|
|
|
|
${t}
|
|
setOutputFlat(flatIndex, binaryOperation(a, b));
|
|
}`;return`
|
|
fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${tp(this.op,!1)}
|
|
}
|
|
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
|
|
${Fe()} {
|
|
${Le()}
|
|
|
|
// Fill in the shared memory buffer. Here we need a loop to make sure
|
|
// that all data in A|B are uploaded when |sharedMemorySize| is larger
|
|
// than work group size.
|
|
for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {
|
|
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}.numbers[localIndex]);
|
|
}
|
|
workgroupBarrier();
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
|
|
${n}
|
|
}
|
|
}
|
|
`}},wle=class{constructor(e,t,n){this.variableNames=["A","B"],this.workPerThread=4,this.isVec4=!0;let s=128;this.workGroupSize=[s,1,1],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.op=e,this.fitShape=this.size%this.workGroupSize[0]==0,this.shaderKey=`binaryVec4_${e}_${this.fitShape}`,this.size=v.sizeFromShape(this.outputShape)/this.workPerThread}getUserCode(){let e,n=`fn binaryOperation(a : vec4<f32>, b : vec4<f32>) -> vec4<f32> {
|
|
${tp(this.op,this.isVec4)}
|
|
}`;return this.fitShape?e=`
|
|
${n}
|
|
${Fe()} {
|
|
${Le()}
|
|
let a = vec4<f32>(A.numbers[index]);
|
|
let b = vec4<f32>(B.numbers[index]);
|
|
setOutputFlat(index, binaryOperation(a, b));
|
|
}
|
|
`:e=`
|
|
${n}
|
|
${Fe()} {
|
|
${Le()}
|
|
if (index < uniforms.size) {
|
|
let a = vec4<f32>(A.numbers[index]);
|
|
let b = vec4<f32>(B.numbers[index]);
|
|
setOutputFlat(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`,e}},X4=class{constructor(e,t,n){this.variableNames=["A","B"];let s=128;this.workGroupSize=[s,1,1],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Xe(this.outputShape),this.size=v.sizeFromShape(this.outputShape),this.sizeFit=this.size%s==0,this.shapesFit=v.arraysEqual(t,n)&&this.sizeFit,this.workPerThread=this.sizeFit||this.shapesFit?1:2,this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey=`binary_${e}_${this.sizeFit}_${this.shapesFit}`,this.op=e}getUserCode(){let e,n=` fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${tp(this.op,!1)}
|
|
}`;return this.shapesFit?e=`
|
|
${n}
|
|
${Fe()} {
|
|
${Le()}
|
|
|
|
let a = f32(A[index]);
|
|
let b = f32(B[index]);
|
|
setOutputFlat(index, binaryOperation(a, b));
|
|
}
|
|
`:this.sizeFit?e=`
|
|
${n}
|
|
${Fe()} {
|
|
${Le()}
|
|
|
|
let coords = getCoordsFromFlatIndex(index);
|
|
|
|
let a = getAAtOutCoordsByCoords(coords);
|
|
let b = getBAtOutCoordsByCoords(coords);
|
|
setOutputFlat(index, binaryOperation(a, b));
|
|
}
|
|
`:e=`
|
|
${n}
|
|
${Fe()} {
|
|
${Le()}
|
|
for (var i = 0; i < ${this.workPerThread}; i = i + 1 ) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromFlatIndex(flatIndex);
|
|
|
|
let a = getAAtOutCoordsByCoords(coords);
|
|
let b = getBAtOutCoordsByCoords(coords);
|
|
setOutputFlat(flatIndex, binaryOperation(a, b));
|
|
}
|
|
}
|
|
}
|
|
`,e}};function K4(e,t,n){if(v.arraysEqual(t,n)&&v.sizeFromShape(t)%4==0)return new wle(e,t,n);let r=t.length===1&&n.length>1&&t[0]<1024,a=n.length===1&&t.length>1&&n[0]<1024;return r||a?new vle(e,t,n,a):new X4(e,t,n)}function Zs(e){let{inputs:t}=e,{x:n}=t;return e.backend.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var kle={kernelName:Wa,backendName:"webgpu",kernelFunc:Zs};function nc(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.tensorMap.get(a.dataId),i=Zs({inputs:{x:s},backend:n}),l=Zs({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var Sle={kernelName:Mc,backendName:"webgpu",kernelFunc:nc},Pm=class{constructor(e,t){this.variableNames=["A"];let n=128;this.workGroupSize=[n,1,1],this.outputShape=e,this.size=v.sizeFromShape(this.outputShape),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
|
|
fn unaryOperation(a : f32) -> f32 {
|
|
${tc(this.op,!1)}
|
|
}
|
|
${Fe()} {
|
|
${Le()}
|
|
if (index < uniforms.size) {
|
|
let a = getAAtOutCoordsByGlobalId(globalId, index);
|
|
setOutputFlat(index, unaryOperation(a));
|
|
}
|
|
}
|
|
`}};function Sn({opType:e,cpuKernelImpl:t,dtype:n}){return({inputs:s,backend:r})=>{let{x:a}=s,o=r,i=n||a.dtype;if(o.shouldExecuteOnCPU([a])&&t!=null){let c=o.tensorMap.get(a.dataId),u=t(c.values,i);return o.makeTensorInfo(a.shape,i,u)}let l=new Pm(a.shape,e);return o.runWebGPUProgram(l,[a],i)}}function Un({opSnippet:e,cpuKernelImpl:t,supportsComplex:n=!1,dtype:s}){return({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(n&&o.dtype==="complex64"){let d=l.tensorMap.get(o.dataId),p=l.tensorMap.get(i.dataId),h,f;if(e!==Vt.MUL)[h,f]=[[d.complexTensorInfos.real,p.complexTensorInfos.real],[d.complexTensorInfos.imag,p.complexTensorInfos.imag]].map(g=>{let[A,x]=g,y={dataId:A.dataId,dtype:A.dtype,shape:o.shape},b={dataId:x.dataId,dtype:x.dtype,shape:i.shape},w=K4(e,o.shape,i.shape);return l.runWebGPUProgram(w,[y,b],On(A.dtype,x.dtype))});else{let g=new q4(Vt.COMPLEX_MULTIPLY_REAL,o.shape,i.shape),A=new q4(Vt.COMPLEX_MULTIPLY_IMAG,o.shape,i.shape),x=[{dataId:d.complexTensorInfos.real.dataId,dtype:d.complexTensorInfos.real.dtype,shape:o.shape},{dataId:d.complexTensorInfos.imag.dataId,dtype:d.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:i.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:i.shape}];h=l.runWebGPUProgram(g,x,"float32"),f=l.runWebGPUProgram(A,x,"float32")}let m=nc({inputs:{real:h,imag:f},backend:l});return l.disposeData(h.dataId),l.disposeData(f.dataId),m}let c=s||On(o.dtype,i.dtype);if((o.dtype==="string"||i.dtype==="string"||l.shouldExecuteOnCPU([o,i]))&&t!=null){let d=l.tensorMap.get(o.dataId).values,p=l.tensorMap.get(i.dataId).values,h=o.dtype==="string"?N.fromUint8ToStringArray(d):d,f=o.dtype==="string"?N.fromUint8ToStringArray(p):p,[m,g]=t(o.shape,i.shape,h,f,c);return l.makeTensorInfo(g,c,m)}let u=K4(e,o.shape,i.shape);return l.runWebGPUProgram(u,[o,i],c)}}var{addImpl:Ile,ceilImpl:Cle,concatImpl:Tle,equalImpl:Nle,expImpl:Ele,expm1Impl:Rle,floorImpl:$le,gatherNdImpl:Dle,gatherV2Impl:_le,greaterEqualImpl:Ple,greaterImpl:Fle,lessEqualImpl:Ole,lessImpl:Mle,logImpl:zle,maxImpl:Lle,maximumImpl:Ble,minimumImpl:Wle,multiplyImpl:Vle,negImpl:Ule,notEqualImpl:Gle,prodImpl:Hle,rangeImpl:jle,rsqrtImpl:qle,simpleAbsImpl:Xle,sliceImpl:Kle,stridedSliceImpl:Zle,stringNGramsImpl:Yle,subImpl:Jle,tileImpl:Qle,topKImpl:eue,transposeImpl:tue,uniqueImpl:l2e}=om,nue=Sn({opType:vt.ABS,cpuKernelImpl:Xle}),sue={kernelName:ni,backendName:"webgpu",kernelFunc:nue},rue=Un({opSnippet:Vt.ADD,cpuKernelImpl:Ile,supportsComplex:!0}),aue={kernelName:Ur,backendName:"webgpu",kernelFunc:rue},oue=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.outputShape=e[0],this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=[];this.variableNames.forEach(s=>{e.push(`let v${s} = get${s}AtOutCoordsByCoords(coords);`)});let t=this.variableNames.map(s=>`v${s}`).join(" + ");return`
|
|
${Fe()} {
|
|
${Le()}
|
|
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromFlatIndex(flatIndex);
|
|
${e.join(`
|
|
`)}
|
|
setOutputFlat(flatIndex, ${t});
|
|
}
|
|
}
|
|
}
|
|
`}};function iue(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Zs({inputs:{x:s[0]},backend:n});let r=s.map(i=>i.dtype).reduce((i,l)=>On(i,l)),a=s.map(i=>i.shape),o=new oue(a);return n.runWebGPUProgram(o,s,r)}var lue={kernelName:ka,backendName:"webgpu",kernelFunc:iue},Z4=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="axis : i32;";let s=[t];N.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),s,e.length),this.op=n==="min"?"<":">";let[r,a]=N.computeOutAndReduceShapes(e,s);this.outputShape=r.length===0?[1]:r;let o=v.sizeFromShape(a);this.reductionFactor=2;let i=256,l=Math.min(Math.ceil(o/this.reductionFactor),i);this.workGroupSize=[l,1,1],this.dispatchLayout={x:[],y:this.outputShape.map((c,u)=>u)},this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.inputShape=e,this.shaderKey=`argMinMax${this.op}`}getUserCode(){let e=this.workGroupSize[0]>1,t=`
|
|
var<workgroup> xBestIndices : array<i32, ${this.workGroupSize[0]}>;
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`,n=`
|
|
xBestIndices[localId.x] = bestIndex;
|
|
xBestValues[localId.x] = bestValue;
|
|
|
|
for(var currentSize = WorkGroupSize; currentSize > 1; currentSize = DIV_CEIL(currentSize, ${this.reductionFactor})) {
|
|
workgroupBarrier();
|
|
|
|
for (var w = 0; w < ${this.reductionFactor}; w = w + 1) {
|
|
let i = i32(localId.x) * ${this.reductionFactor} + w;
|
|
if (i < currentSize) {
|
|
let candidateIndex = xBestIndices[i];
|
|
let candidate = xBestValues[i];
|
|
if(candidate ${this.op} bestValue && !isNanCustom(candidate)) {
|
|
bestValue = candidate;
|
|
bestIndex = candidateIndex;
|
|
}
|
|
}
|
|
}
|
|
|
|
xBestIndices[localId.x] = bestIndex;
|
|
xBestValues[localId.x] = bestValue;
|
|
}
|
|
|
|
if (localId.x == 0u) {
|
|
setOutputFlatI32(flatOutputIndex, i32(bestIndex));
|
|
}
|
|
`,s=Qt(this.outputShape.length),r=(i,l)=>this.outputShape.length===1?i:`${i}[${l}]`,a=i=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape[${i}]`;return`
|
|
fn DIV_CEIL(a : i32, b : i32) -> i32 {
|
|
return ((a - 1) / b + 1);
|
|
}
|
|
|
|
let WorkGroupSize = ${this.workGroupSize[0]};
|
|
|
|
${e?t:""}
|
|
|
|
// In order to get a flattened index into the input tensor, we need to
|
|
// add back the index along the reduced dimension to |outputCoords|.
|
|
// This function outputs the offset to the first value along
|
|
// |axis| and the stride to get the next value of the input along |axis|.
|
|
fn getInputCoordInfo(globalId : vec3<u32>, globalIndex : i32) -> vec2<i32>{
|
|
let outputCoords : ${s} = getOutputCoords(globalId, globalIndex);
|
|
var i = ${this.outputShape.length-1};
|
|
|
|
var stride = 1;
|
|
var inputStride = 1;
|
|
var offset = 0;
|
|
|
|
for (var r = 1; r <= ${this.inputShape.length}; r = r + 1) {
|
|
let length = ${a(`${this.inputShape.length} - r`)};
|
|
if (${this.inputShape.length} - r == uniforms.axis) {
|
|
inputStride = stride;
|
|
} else {
|
|
offset = offset + ${r("outputCoords","i")} * stride;
|
|
i = i - 1;
|
|
}
|
|
stride = stride * length;
|
|
}
|
|
|
|
return vec2<i32>(offset, inputStride);
|
|
}
|
|
|
|
fn getInputIndex(coordInfo : vec2<i32>, index : i32) -> i32{
|
|
return coordInfo[0] + coordInfo[1] * index;
|
|
}
|
|
|
|
${Fe()} {
|
|
${Le()}
|
|
let coordInfo = getInputCoordInfo(globalId, index);
|
|
|
|
var bestIndex = 0;
|
|
var bestValue = f32(x.numbers[getInputIndex(coordInfo, bestIndex)]);
|
|
|
|
let Length = ${a("uniforms.axis")};
|
|
let WorkPerThread = DIV_CEIL(Length, WorkGroupSize);
|
|
|
|
for (var w = 0; w < WorkPerThread; w = w + 1) {
|
|
let i = i32(globalId.x) * WorkPerThread + w;
|
|
if (i < Length) {
|
|
let candidate = f32(x.numbers[getInputIndex(coordInfo, i)]);
|
|
if (candidate ${this.op} bestValue && !isNanCustom(f32(candidate))) {
|
|
bestValue = candidate;
|
|
bestIndex = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
let flatOutputIndex = i32(globalId.y);
|
|
${e?n:"setOutputFlatI32(flatOutputIndex, bestIndex);"}
|
|
}
|
|
`}},uue=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout={x:[0],y:[1]},this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return`
|
|
let TILE_DIM = ${this.workGroupSize[0]};
|
|
var<workgroup> tile : array<array<f32, ${this.workGroupSize[0]+1}>, ${this.workGroupSize[0]}>;
|
|
${Fe()} {
|
|
${Le()}
|
|
let workGroupID = (globalId - localId)/vec3<u32>(${this.workGroupSize[0]}u, ${this.workGroupSize[1]}u, ${this.workGroupSize[2]}u);
|
|
var x = i32(workGroupID.x) * TILE_DIM + i32(localId.x);
|
|
var y = i32(workGroupID.y) * TILE_DIM + i32(localId.y);
|
|
let width = uniforms.outShape[0];
|
|
let height = uniforms.outShape[1];
|
|
if (x < width && y < height) {
|
|
tile[localId.y][localId.x] =
|
|
A.numbers[y * width + x];
|
|
}
|
|
workgroupBarrier();
|
|
|
|
x = i32(workGroupID.y) * TILE_DIM + i32(localId.x);
|
|
y = i32(workGroupID.x) * TILE_DIM + i32(localId.y);
|
|
if (x < height && y < width) {
|
|
setOutputFlat((y * height + x), tile[localId.x]
|
|
[localId.y]);
|
|
}
|
|
}
|
|
`}},cue=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`,this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=Qt(this.outputShape.length),t=due(this.newDim);return`
|
|
${Fe()} {
|
|
${Le()}
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let resRC = getCoordsFromFlatIndex(flatIndex);
|
|
setOutputFlat(flatIndex, A.numbers[getFlatIndex${this.outputShape.length}D(
|
|
${e}(${t}), uniforms.aShape)]);
|
|
}
|
|
}
|
|
}
|
|
`}};function due(e){let t=e.length;if(t>4)throw Error(`Transpose for rank ${t} is not yet supported`);let n=new Array(t);for(let s=0;s<e.length;s++)n[e[s]]=`resRC[${s}]`;return n.join()}function wl(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let u=0;u<l.length;u++)l[u]=r.shape[a[u]];if(n.shouldExecuteOnCPU([r])){let d=o.tensorMap.get(r.dataId).values,p=tue(d,r.shape,r.dtype,a,l);return n.makeTensorInfo(l,r.dtype,p)}if(r.shape.length===2&&v.arraysEqual(a,[1,0])){let u=new uue(r.shape,a);return o.runWebGPUProgram(u,[r],r.dtype)}let c=new cue(r.shape,a);return o.runWebGPUProgram(c,[r],r.dtype)}var pue={kernelName:ho,backendName:"webgpu",kernelFunc:wl};function hue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=N.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=wl({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=N.getInnerMostAxes(o.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let u=new Z4(l.shape,o[0],"max"),d=[{type:"int32",data:[o[0]]}],p=n.runWebGPUProgram(u,[l],"int32",d);return c.forEach(h=>n.disposeData(h.dataId)),p}var fue={kernelName:Sa,backendName:"webgpu",kernelFunc:hue};function mue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=N.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=wl({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=N.getInnerMostAxes(o.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let u=new Z4(l.shape,o[0],"min"),d=[{type:"int32",data:[o[0]]}],p=n.runWebGPUProgram(u,[l],"int32",d);return c.forEach(h=>n.disposeData(h.dataId)),p}var gue={kernelName:jl,backendName:"webgpu",kernelFunc:mue},Y4=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>; pad : vec2<i32>; dilation : vec2<i32>; convDims : vec2<i32>; filterDims : vec2<i32>;",this.workGroupSize=[128,1,1],this.outputShape=e.outShape,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
|
|
${Fe()} {
|
|
${Le()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
|
|
var count = 0.0;
|
|
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
|
|
let xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= uniforms.convDims.x) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
|
|
let xC = xCCorner + wC;
|
|
if (xC < 0 || xC >= uniforms.convDims.y) {
|
|
continue;
|
|
}
|
|
|
|
let value = getX(batch, xR, xC, coords[3]);
|
|
${e}
|
|
}
|
|
}
|
|
|
|
setOutput(batch, coords[1], coords[2], coords[3], ${t});
|
|
}
|
|
}
|
|
`}},J4=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>;",this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
|
|
${Fe()} {
|
|
${Le()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
let batch = coords[0];
|
|
let d = coords[3];
|
|
|
|
if (all(coords < uniforms.outShape)) {
|
|
let xRCCorner = coords.yz * uniforms.stride;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
let value = getX(batch, xRCorner, xCCorner, d);
|
|
setOutput(batch, coords[1], coords[2], d, value);
|
|
}
|
|
}
|
|
`}};function Aue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1,u=N.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))return Zs({inputs:{x:r},backend:n});let d,p=[{type:"int32",data:[u.strideHeight,u.strideWidth]}];return u.filterHeight===1&&u.filterWidth===1?d=new J4(u):(d=new Y4(u,"avg"),p.push({type:"int32",data:[u.padInfo.top,u.padInfo.left]},{type:"int32",data:[u.dilationHeight,u.dilationWidth]},{type:"int32",data:[u.inHeight,u.inWidth]},{type:"int32",data:[u.effectiveFilterHeight,u.effectiveFilterWidth]})),n.runWebGPUProgram(d,[r],r.dtype,p)}var yue={kernelName:Ia,backendName:"webgpu",kernelFunc:Aue};function xue(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return ox({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var bue={kernelName:Ca,backendName:"webgpu",kernelFunc:xue},vue=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.outputShape=t,this.rank=t.length,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${Qt(e.length)}; `,this.shaderKey="slice",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=Qt(this.rank),t=wue(this.rank),n;return this.start.length===1?n=this.outputShape.map((r,a)=>"sourceLoc = uniforms.start + coords;"):n=this.outputShape.map((r,a)=>`sourceLoc.${ix[a]} = uniforms.start[${a}] + coords.${ix[a]};`),`
|
|
${Fe()} {
|
|
${Le()}
|
|
if (index < uniforms.size) {
|
|
var sourceLoc : ${e};
|
|
let coords = getOutputCoords(globalId, index);
|
|
${n.join(`
|
|
`)}
|
|
setOutputFlat(index, getSource(${t}));
|
|
}
|
|
}
|
|
`}},ix=["x","y","z","w","u","v"];function wue(e){if(e===1)return"sourceLoc";if(e<=6)return ix.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function sc(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Ft.parseSliceParams(r,a,o);if(Ft.assertParamsValid(r,i,l),n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.tensorMap.get(r.dataId),p=Kle(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}if(v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);let c=new vue(i,l),u=[{type:"int32",data:i}];return n.runWebGPUProgram(c,[r],r.dtype,u)}var kue={kernelName:Di,backendName:"webgpu",kernelFunc:sc},Sue=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((x,y)=>x*y),l=N.getReshaped(r.shape,a,i),c=N.getPermuted(l.length,a.length),u=N.getReshapedPermuted(r.shape,a,i),d=N.getSliceBeginCoords(o,a.length),p=N.getSliceSize(u,o,a.length),h=[],f=Ke({inputs:{x:r},backend:n,attrs:{shape:l}}),m=wl({inputs:{x:f},backend:n,attrs:{perm:c}}),g=Ke({inputs:{x:m},backend:n,attrs:{shape:u}}),A=sc({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeData(x.dataId)),A},Iue={kernelName:si,backendName:"webgpu",kernelFunc:Sue},Q4=Un({opSnippet:Vt.NOT_EQUAL,dtype:"bool",cpuKernelImpl:Gle}),Cue={kernelName:bi,backendName:"webgpu",kernelFunc:Q4};function np(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return Zs({inputs:{x:r.complexTensorInfos.real},backend:n})}var Tue={kernelName:jc,backendName:"webgpu",kernelFunc:np};function Nue(e,t){let n=new Pm(e.shape,vt.TO_INT),s=t.runWebGPUProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function lx(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Zs({inputs:{x:r},backend:n});let o=Ht(r.shape),i=lx({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=nc({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeData(i.dataId),l}if(r.dtype==="complex64"){let o=np({inputs:{input:r},backend:n}),i=lx({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeData(o.dataId),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Zs({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return Nue(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=Q4({inputs:{a:r,b:o},backend:n});return n.disposeData(o.dataId),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var Eue={kernelName:Ta,backendName:"webgpu",kernelFunc:lx},Rue=Sn({opType:vt.CEIL,cpuKernelImpl:Cle}),$ue={kernelName:Na,backendName:"webgpu",kernelFunc:Rue},Due=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32; maxVal : f32;",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4",this.size=v.sizeFromShape(this.outputShape)/4}getUserCode(){return`
|
|
${Fe()} {
|
|
${Le()}
|
|
if(index < uniforms.size) {
|
|
let value = getAAtOutCoordsByGlobalId(globalId, index);
|
|
var clampedValue : vec4<f32>;
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
if (isNanCustom(value[i])) {
|
|
clampedValue[i] = value[i];
|
|
} else {
|
|
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
|
|
}
|
|
}
|
|
|
|
setOutputFlat(index, clampedValue);
|
|
}
|
|
}
|
|
`}},_ue=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32; maxVal : f32;",this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){return`
|
|
${Fe()} {
|
|
${Le()}
|
|
if(index < uniforms.size) {
|
|
let value = getAAtOutCoordsByGlobalId(globalId, index);
|
|
if (isNanCustom(value)) {
|
|
setOutputFlat(index, value);
|
|
return;
|
|
}
|
|
setOutputFlat(index, clamp(value, uniforms.minVal, uniforms.maxVal));
|
|
}
|
|
}
|
|
`}};function Pue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i,l=[{type:"float32",data:[a]},{type:"float32",data:[o]}];return v.sizeFromShape(r.shape)%4==0?i=new Due(r.shape):i=new _ue(r.shape),n.runWebGPUProgram(i,[r],r.dtype,l)}var Fue={kernelName:Gr,backendName:"webgpu",kernelFunc:Pue},Oue=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shapes=e,this.shaderKey=`concat${e}`,this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=new Array(this.shapes.length-1),t=[];if(e.length>0){e[0]=this.shapes[0][1];for(let a=1;a<e.length;a++)e[a]=e[a-1]+this.shapes[a][1];t.push(`if (yC < ${e[0]}){ setOutput(coords.x, coords.y, getT0(yR, yC)); }`);for(let a=1;a<e.length;a++){let o=e[a-1];t.push(`elseif (yC < ${e[a]}){ setOutput(coords.x, coords.y, getT${a}(yR, yC - ${o})); }`)}let s=e.length,r=e[e.length-1];t.push(`else { setOutput(coords.x, coords.y, getT${s}(yR, yC - ${r})); }`)}else t.push("setOutput(coords.x, coords.y, getT0(yR, yC));");return`
|
|
${Fe()} {
|
|
${Le()}
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromFlatIndex(flatIndex);
|
|
let yR = coords.x;
|
|
let yC = coords.y;
|
|
|
|
${t.join(`
|
|
`)}
|
|
}
|
|
}
|
|
}
|
|
`}};function Fm(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return Zs({inputs:{x:r.complexTensorInfos.imag},backend:n})}var Mue={kernelName:Vc,backendName:"webgpu",kernelFunc:Fm};function ux(e,t,n){let s=e[0].dtype;if(s==="complex64"){let u=e.map(m=>np({inputs:{input:m},backend:n})),d=e.map(m=>Fm({inputs:{input:m},backend:n})),p=ux(u,t,n),h=ux(d,t,n),f=nc({inputs:{real:p,imag:h},backend:n});return u.forEach(m=>n.disposeData(m.dataId)),d.forEach(m=>n.disposeData(m.dataId)),n.disposeData(p.dataId),n.disposeData(h.dataId),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let u=e.map(A=>{let x=v.sizeFromShape(A.shape.slice(t));return Ke({inputs:{x:A},backend:n,attrs:{shape:[-1,x]}})}),d=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),p=N.computeOutShape(u.map(A=>A.shape),1),h=u[0].shape[0]===1,f=Tle(d,p,s,h),m=N.computeOutShape(e.map(A=>A.shape),t),g=n.makeTensorInfo(m,s,f);return u.forEach(A=>n.disposeData(A.dataId)),g}let{tensors2D:a,outShape:o}=zue(e,t,n),i=new Oue(a.map(u=>u.shape)),l=n.runWebGPUProgram(i,a,a[0].dtype);a.forEach(u=>n.disposeData(u.dataId));let c=Ke({inputs:{x:l},backend:n,attrs:{shape:o}});return n.disposeData(l.dataId),c}function zue(e,t,n){let s=N.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>Ke({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape.slice(0,t)),v.sizeFromShape(a.shape.slice(t))]}})),outShape:s}}function eC(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=N.computeOutShape(t.map(c=>c.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(c=>v.sizeFromShape(c.shape)>0);if(i.length===1)return Zs({inputs:{x:i[0]},backend:n});let l=i.map(c=>c.shape);return N.assertParamsConsistent(l,a),ux(i,a,n)}var Lue={kernelName:ri,backendName:"webgpu",kernelFunc:eC},Bue=class{constructor(e,t){this.variableNames=["A"],this.uniforms=`pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; outWidth : i32; itemsPerBlockRow : i32;
|
|
inChannels : i32;`,this.workPerThread=4,this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.isChannelsLast=t,this.shaderKey=`im2col_${this.isChannelsLast}`,this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=this.isChannelsLast?0:1,t=this.isChannelsLast?1:2;return`
|
|
${Fe()} {
|
|
${Le()}
|
|
|
|
for(var i = 0; i<${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
|
|
let rc = getCoordsFromFlatIndex(flatIndex);
|
|
|
|
if(flatIndex < uniforms.size) {
|
|
let blockIndex = rc[0];
|
|
let pos = rc[1];
|
|
|
|
let offsetY = blockIndex / uniforms.outWidth * uniforms.stride[1] - uniforms.pad[1];
|
|
let d0 = offsetY + uniforms.dilation[1] * pos / uniforms.itemsPerBlockRow;
|
|
var value = 0.0;
|
|
if(d0 < uniforms.aShape[${e}] && d0 >= 0) {
|
|
let offsetX = (blockIndex % uniforms.outWidth) * uniforms.stride[0] -
|
|
uniforms.pad[0];
|
|
let d1 = offsetX + uniforms.dilation[0] * ((pos %
|
|
uniforms.itemsPerBlockRow) / uniforms.inChannels);
|
|
let ch = pos % uniforms.inChannels;
|
|
if(d1 < uniforms.aShape[${t}] && d1 >= 0) {
|
|
value = getA(d0, d1, ch);
|
|
}
|
|
}
|
|
setOutputFlat(flatIndex, value);
|
|
}
|
|
}
|
|
}
|
|
`}};function tC({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,c=n.dataFormat==="channelsLast",u=!1,d=!1,p=c?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],h=Ke({inputs:{x:e},backend:s,attrs:{shape:[1,p,n.inChannels]}}),f=Ke({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),m=ox({a:h,b:f,transposeA:u,transposeB:d,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),g=Ke({inputs:{x:m},backend:s,attrs:{shape:n.outShape}});return s.disposeData(h.dataId),s.disposeData(f.dataId),s.disposeData(m.dataId),g}function Wue({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:c,inChannels:u,strideWidth:d,strideHeight:p,padInfo:h,outWidth:f,outHeight:m,dilationWidth:g,dilationHeight:A,dataFormat:x}=n,y=x==="channelsLast",b=l*c*u,w=m*f,S=[w,b],C=!1,E=!1,D=[],O=Ke({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),_=Ke({inputs:{x:t},backend:s,attrs:{shape:[1,b,-1]}});D.push(O),D.push(_);let F=new Bue(S,y),T=[{type:"int32",data:[h.left,h.top]},{type:"int32",data:[d,p]},{type:"int32",data:[g,A]},{type:"int32",data:[f]},{type:"int32",data:[u*l]},{type:"int32",data:[u]}],M=s.runWebGPUProgram(F,[O],O.dtype,T),U=Ke({inputs:{x:M},backend:s,attrs:{shape:[1,S[0],S[1]]}});D.push(M),D.push(U);let q=[1,S[0],S[1]],j=new j4(q,[1,w,n.outChannels],K().get("WEBGPU_MATMUL_WORK_PER_THREAD"),C,E),X=q[1],J=q[2],te=n.outChannels,ne=[{type:"int32",data:[X]},{type:"int32",data:[te]},{type:"int32",data:[J]}],ae=s.runWebGPUProgram(j,[U,_],U.dtype,ne),se=y?[1,m,f,n.outChannels]:[1,n.outChannels,m,f],re=Ke({inputs:{x:ae},backend:s,attrs:{shape:se}});D.push(ae);for(let ue of D)s.disposeData(ue.dataId);return re}var nC=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.uniforms=`filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>;
|
|
dimAOuter : i32; dimBOuter : i32; dimInner : i32;`,this.isVec4=!0,this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=[8,8,1];let a=[4,4,1];this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,a),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,this.hasLeakyreluAlpha=r,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.hasLeakyreluAlpha&&this.variableNames.push("leakyreluAlpha"),[this.fitA,this.fitB]=this.getShapeFit(a),this.shaderKey=`conv2DMMVec4_${this.activation}_${this.fitA}_${this.fitB}`}getShapeFit(e){let t=this.workGroupSize[1]*e[1],n=this.workGroupSize[0]*e[0],s=n,r=[t,s],a=[s,n],o=this.outputShape[1]*this.outputShape[2],i=this.outputShape[3],l=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[aa(r,[o,l]),aa(a,[l,i])]}getSampleAWithRemainder(e){return`let flatIndex${e} = getFlatIndex4D(coord, uniforms.xShape);
|
|
let divBy4Remainder${e} = flatIndex${e} % 4;
|
|
let divBy4Index${e} = flatIndex${e} / 4;
|
|
let curData${e} = x.numbers[divBy4Index${e}];
|
|
if (divBy4Remainder${e} == 0) {
|
|
temp = curData${e};
|
|
} else {
|
|
// TODO: This could end up being a redundant load with another one in
|
|
// the same shader invocation. Perhaps there's an opportunity for
|
|
// optimization
|
|
let nextData${e} = x.numbers[divBy4Index${e} + 1];
|
|
if (divBy4Remainder${e} == 1) {
|
|
temp = vec4<f32>(curData${e}.yzw, nextData${e}.x);
|
|
} elseif (divBy4Remainder${e} == 2) {
|
|
temp = vec4<f32>(curData${e}.zw, nextData${e}.xy);
|
|
} elseif (divBy4Remainder${e} == 3) {
|
|
temp = vec4<f32>(curData${e}.w, nextData${e}.xyz);
|
|
}
|
|
}
|
|
`}getUserCode(){let t=H4([4,4,1],this.workGroupSize),r=`let outRow = r / uniforms.outShape[2];
|
|
let outCol = r % uniforms.outShape[2];
|
|
let WRow = c / (uniforms.filterDims[1] * uniforms.xShape[3]);
|
|
let WCol = c / uniforms.xShape[3] % uniforms.filterDims[1];
|
|
let inChCoord = c % uniforms.xShape[3];
|
|
var coord = vec4<i32>(
|
|
batch,
|
|
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
|
|
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
|
|
inChCoord);
|
|
var resData = vec4<f32>(0.0);
|
|
${this.convInfo.inChannels%4===0?`// The bounds checking is always needed since we use it to pad zero for
|
|
// the 'same' padding type.
|
|
if (coordsInBounds4D(coord, uniforms.xShape)) {
|
|
resData = x.numbers[getFlatIndex4D(coord, uniforms.xShape) / 4];
|
|
} else {
|
|
resData = vec4<f32>(0.0); }`:`var temp = vec4<f32>(0.0);
|
|
${this.getSampleAWithRemainder(1)}
|
|
resData = temp;
|
|
if (WCol == (uniforms.filterDims[1] - 1)) {
|
|
coord = vec4<i32>(
|
|
coord.x, coord.y + 1, coord.z + 1 - uniforms.filterDims[1], 0);
|
|
${this.getSampleAWithRemainder(2)}
|
|
if (inChCoord == 0) {
|
|
resData = vec4<f32>(resData.xyz, temp.x);
|
|
} elseif (inChCoord == 1) {
|
|
resData = vec4<f32>(resData.xy, temp.xy);
|
|
} else {
|
|
resData = vec4<f32>(resData.x, temp.xyz);
|
|
}
|
|
}
|
|
`}
|
|
return resData;`,a=this.fitA?`${r}`:`if (r < uniforms.dimAOuter && c < uniforms.dimInner) {
|
|
${r}
|
|
}
|
|
return vec4<f32>(0.0);
|
|
`,o=this.fitB?"return W.numbers[row * uniforms.dimBOuter / 4 + col];":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return W.numbers[row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0);
|
|
`,i="",l="";if(this.activation){let d=oa(this.activation,this.isVec4);if(this.hasPreluActivationWeights)i=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
|
|
${d}
|
|
}`;else{if(this.hasLeakyreluAlpha)throw i=`fn activation(a: vec4<f32>) -> vec4<f32> {
|
|
let b = getLeakyreluAlphaAtOutCoords();
|
|
${d}
|
|
}`,new Error("Leakyrelu is not supported.");i=`
|
|
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
${d}
|
|
}`}l="value = activation(value, outCoord);"}let c=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
|
|
${i}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let r = row;
|
|
let c = col * 4;
|
|
var batch = i32(globalId.z);
|
|
${a}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
${o}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : vec4<f32>, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
if (row < uniforms.dimAOuter && col * 4 < uniforms.dimBOuter)
|
|
{
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col * 4);
|
|
${c}
|
|
${l}
|
|
setOutput(outCoord[0], outCoord[1], outCoord[2], outCoord[3],
|
|
value);
|
|
}
|
|
}
|
|
${t}
|
|
`}},sC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=ex(this.dispatchLayout,this.outputShape),this.elementsPerThread=nx(this.dispatchLayout,this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}_${this.fitA}_${this.fitB}`}getShapeFit(){let e=this.workGroupSize[1]*this.elementsPerThread[1],t=this.workGroupSize[0]*this.elementsPerThread[0],n=e>t?e:t;v.assert(n%this.workGroupSize[0]==0&&n%this.workGroupSize[1]==0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let s=[e,n],r=[n,t],a=this.outputShape[1]*this.outputShape[2],o=this.outputShape[3],i=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[aa(s,[a,i]),aa(r,[i,o])]}getUserCode(){let e=ax(this.elementsPerThread,this.workGroupSize),t=`
|
|
let outRow = row / uniforms.outShape[2];
|
|
let outCol = row % uniforms.outShape[2];
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * uniforms.xShape[3]);
|
|
let WCol = col / uniforms.xShape[3] % uniforms.filterDims[1];
|
|
let coord = vec4<i32>(
|
|
batch,
|
|
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
|
|
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
|
|
col % uniforms.xShape[3]);
|
|
// The bounds checking is always needed since we use it to pad zero for the
|
|
// 'same' padding type.
|
|
if(coordsInBounds4D(coord, uniforms.xShape)) {
|
|
return x.numbers[getFlatIndex4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;`,n=this.fitA?`${t}`:`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
${t}
|
|
}
|
|
return 0.0;
|
|
`,s=this.fitB?"return W.numbers[row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return W.numbers[row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;
|
|
`,r="",a="";if(this.activation){let l=oa(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a: f32, outCoord : vec4<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
|
|
${l}
|
|
}`:r=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
${l}
|
|
}
|
|
`,a="value = activation(value, outCoord);"}let o=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
|
|
${r}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
${n}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${s}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col);
|
|
${o}
|
|
${a}
|
|
result.numbers[getFlatIndex4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
${e}
|
|
`}},rC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>;",this.workGroupSize=[128,1,1],this.outputShape=e.outShape,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,this.shaderKey=`conv2DNaive_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let r=oa(this.activation);this.hasPreluActivationWeights?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32{
|
|
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
|
|
${r}
|
|
}`:e=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32{
|
|
${r}
|
|
}
|
|
`,t="value = activation(value, outCoord);"}let n=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
|
|
${e}
|
|
fn readInp(batch : i32, row : i32, col : i32, chan : i32) -> f32 {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if(coordsInBounds4D(coord, uniforms.xShape)) {
|
|
return getX(batch, row, col, chan);
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn readFilt(row : i32, col : i32, xChannel : i32, outChannel : i32) -> f32{
|
|
let coord = vec4<i32>(row, col, xChannel, outChannel);
|
|
if(coordsInBounds4D(coord, uniforms.wShape)) {
|
|
return getW(row, col, xChannel, outChannel);
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn writeResult(batch : i32, row : i32, col : i32, chan : i32, value : f32) {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if (coordsInBounds4D(coord, uniforms.outShape)) {
|
|
${n}
|
|
${t}
|
|
setOutput(batch, row, col, chan, value);
|
|
}
|
|
}
|
|
|
|
${Fe()} {
|
|
${Le()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
let batch = coords[0];
|
|
let outChannel = coords[3];
|
|
|
|
var acc = 0.0;
|
|
|
|
for (var row = 0; row < uniforms.filterDims[0]; row = row + 1) {
|
|
for (var col = 0; col < uniforms.filterDims[1]; col = col + 1) {
|
|
for (var xChannel = 0; xChannel < uniforms.xShape[3]; xChannel = xChannel + 1) {
|
|
let coordRow = coords[1] * uniforms.stride[0] + uniforms.dilation[0] * row - uniforms.pad[0];
|
|
let coordCol = coords[2] * uniforms.stride[1] + uniforms.dilation[1] * col - uniforms.pad[1];
|
|
let v = readInp(batch, coordRow, coordCol, xChannel);
|
|
let f = readFilt(row, col, xChannel, outChannel);
|
|
acc = acc + v * f;
|
|
}
|
|
}
|
|
}
|
|
|
|
writeResult(batch, coords[1], coords[2], outChannel, acc);
|
|
}
|
|
`}};function Vue(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=n,d=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d);if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))return tC({x:r,filter:a,convInfo:p,backend:s});if(K().getBool("WEBGPU_CONV_SEPARATE_IM2COL_SHADER")&&r.shape[0]===1)return Wue({x:r,filter:a,convInfo:p,backend:s});let h,f=[p.padInfo.top,p.padInfo.left],m=[{type:"int32",data:[p.filterHeight,p.filterWidth]},{type:"int32",data:[...f]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.dilationHeight,p.dilationWidth]}],g=K().getBool("WEBGPU_USE_NAIVE_CONV2D");if(g?h=new rC(p):(p.inChannels%4==0||p.inChannels===3&&p.padInfo.type==="VALID")&&p.outChannels%4==0&&p.outChannels>=64?h=new nC(p):h=new sC(p),!g){let A=p.outShape[1]*p.outShape[2],x=p.outShape[3],y=p.filterHeight*p.filterWidth*p.inShape[3];m.push({type:"int32",data:[A]},{type:"int32",data:[x]},{type:"int32",data:[y]})}return s.runWebGPUProgram(h,[r,a],r.dtype,m)}var Uue={kernelName:Ea,backendName:"webgpu",kernelFunc:Vue},Gue=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pads : vec2<i32>; stride : vec2<i32>; outBackprop : vec4<i32>; dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.outputShape=e.inShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=ex(this.dispatchLayout,this.outputShape),this.elementsPerThread=nx(this.dispatchLayout,this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.shaderKey=`conv2DDerInputMM_${this.elementsPerThread}`}getUserCode(){return`
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
|
|
let outRow = row / uniforms.outShape[2];
|
|
let outCol = row % uniforms.outShape[2];
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
|
|
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
|
|
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
|
|
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
let coord = vec4<i32>(
|
|
batch,
|
|
i32(xR),
|
|
i32(xC),
|
|
col % uniforms.outBackprop[3]);
|
|
return x.numbers[getFlatIndex4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let coordX = uniforms.filterDims.x - 1 -
|
|
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let coordY = uniforms.filterDims.y - 1 -
|
|
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
|
|
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
|
|
coordX >= 0 && coordY >= 0) {
|
|
let coord = vec4<i32>(coordX, coordY, col,
|
|
row % uniforms.outBackprop[3]);
|
|
return W.numbers[getFlatIndex4D(coord, uniforms.wShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col);
|
|
result.numbers[getFlatIndex4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
|
|
${ax(this.elementsPerThread,this.workGroupSize)}
|
|
`}},Hue=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>; pads : vec2<i32>; stride : vec2<i32>; outBackprop : vec4<i32>;",this.workGroupSize=[64,1,1],this.outputShape=e.inShape,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,n=this.isChannelsLast?3:1;return`
|
|
${Fe()} {
|
|
${Le()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
let batch = coords[0];
|
|
let d1 = coords[${n}];
|
|
|
|
let dyCorner = vec2<i32>(coords[${e}]), coords[${t}]) - uniforms.pads;
|
|
let dyRCorner = dyCorner.x;
|
|
let dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
|
|
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
|
|
let wRPerm = uniforms.filterDims.x - 1 - wR;
|
|
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
|
|
wRPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyR = dyR;
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
|
|
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
|
|
let wCPerm = uniforms.filterDims.y - 1 - wC;
|
|
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
|
|
fract(dyC) > 0.0 || wCPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyC = dyC;
|
|
|
|
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
|
|
if (${this.isChannelsLast}) {
|
|
let xValue = getDy(batch, idyR, idyC, d2);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
} else {
|
|
let xValue = getDy(batch, d2, idyR, idyC);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(coords[0], coords[1], coords[2], coords[3], dotProd);
|
|
}
|
|
}
|
|
`}};function jue(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s,d=N.convertConv2DDataFormat(c),p=N.computeConv2DInfo(o,a.shape,i,1,l,u,!1,d),h=[{type:"int32",data:[p.filterHeight,p.filterWidth]},{type:"int32",data:[p.filterHeight-1-p.padInfo.top,p.filterWidth-1-p.padInfo.left]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.batchSize,p.outHeight,p.outWidth,p.outChannels]}],f;if(K().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new Hue(p);else{f=new Gue(p);let m=p.inShape[1]*p.inShape[2],g=p.inShape[3],A=p.filterHeight*p.filterWidth*p.outChannels;h.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[A]})}return n.runWebGPUProgram(f,[r,a],"float32",h)}var que={kernelName:Ra,backendName:"webgpu",kernelFunc:jue},Xue=Sn({opType:vt.COS}),Kue={kernelName:$a,backendName:"webgpu",kernelFunc:Xue},Zue=Sn({opType:vt.COSH}),Yue={kernelName:Da,backendName:"webgpu",kernelFunc:Zue},Jue=class{constructor(e,t,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32;",this.workGroupSize=[64,1,1];let[r]=t;this.outputShape=[r,n[0],n[1],e],this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=s==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[n,s,r]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[a,o,i]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
|
|
fn writeResult(coords : vec4<i32>, value : f32) {
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
setOutput(coords[0], coords[1], coords[2], coords[3], value);
|
|
}
|
|
}
|
|
${Fe()} {
|
|
${Le()}
|
|
let height_ratio = f32(${n});
|
|
let width_ratio = f32(${a});
|
|
let coords = getOutputCoords(globalId, index);
|
|
let b = coords[0];
|
|
let y = coords[1];
|
|
let x = coords[2];
|
|
let d = coords[3];
|
|
// get box vals
|
|
let y1 = getBoxes(b, 0);
|
|
let x1 = getBoxes(b, 1);
|
|
let y2 = getBoxes(b, 2);
|
|
let x2 = getBoxes(b, 3);
|
|
// get image in batch index
|
|
let bInd = i32(round(getBoxInd(b)));
|
|
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
|
|
return;
|
|
}
|
|
let height_scale = ${s};
|
|
let width_scale = ${o};
|
|
let in_y = ${r};
|
|
if( in_y < 0.0 || in_y > ${e} ) {
|
|
writeResult(coords, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let in_x = ${i};
|
|
if( in_x < 0.0 || in_x > ${t} ) {
|
|
writeResult(coords, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
|
|
if(${this.methodId} == 1) {
|
|
// Compute the four integer indices.
|
|
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
|
|
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
|
|
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
|
|
let top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
let newValue = top + (bottom - top) * fracCR.y;
|
|
writeResult(coords, newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let sourceNearestCR = vec2<i32>(floor(
|
|
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
|
|
let newValue = getImage(
|
|
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
writeResult(coords,newValue);
|
|
}
|
|
}
|
|
`}},Que=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,u=new Jue(r.shape[3],a.shape,i,l),d=[{type:"float32",data:[c]}];return n.runWebGPUProgram(u,[r,a,o],"float32",d)},ece={kernelName:oi,backendName:"webgpu",kernelFunc:Que},tce=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.uniforms="blockSize : i32;",this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.size=v.sizeFromShape(this.outputShape),this.dataFormat=t}getUserCode(){return`
|
|
${Fe()} {
|
|
${Le()}
|
|
if (index < uniforms.size) {
|
|
let coords = getOutputCoords(globalId, index);
|
|
let b = coords[0];
|
|
let h = ${this.getHeightCoordString()};
|
|
let w = ${this.getWidthCoordString()};
|
|
let d = ${this.getDepthCoordString()};
|
|
|
|
let in_h = h / uniforms.blockSize;
|
|
let offset_h = h % uniforms.blockSize;
|
|
let in_w = w / uniforms.blockSize;
|
|
let offset_w = w % uniforms.blockSize;
|
|
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
let in_d = d + offset_d;
|
|
|
|
let rlt = ${this.getInputSamplingString()};
|
|
setOutputFlat(index, rlt);
|
|
}
|
|
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function nce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=[{type:"int32",data:[a]}],g=new tce(f,o);return n.runWebGPUProgram(g,[r],r.dtype,m)}var sce={kernelName:ii,backendName:"webgpu",kernelFunc:nce},aC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; inDims : vec2<i32>;",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[0,1],y:[2],z:[3]},this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,4,4]),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise3x3_${n}`}getUserCode(){let e="",t="";if(this.activation){let r=oa(this.activation,this.isVec4);this.hasPreluActivation?e=`fn activation(a : vec4<f32>, globalId : vec3<u32>, globalIndex : i32) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsAtOutCoordsByGlobalId(globalId, globalIndex);
|
|
${r}
|
|
}`:e=`
|
|
fn activation(a : vec4<f32>, globalId : vec3<u32>, globalIndex : i32) -> vec4<f32> {
|
|
${r}
|
|
}
|
|
`,t="dotProd[i] = activation(dotProd[i], globalId, index);"}let n=this.addBias?"dotProd[i] = dotProd[i] + getBiasAtOutCoordsByCoords(coords);":"";return`
|
|
${e}
|
|
|
|
${Fe()} {
|
|
${Le()}
|
|
let batch = 0;
|
|
let r = i32(globalId.x);
|
|
let c = i32(globalId.y) * 4;
|
|
let d2 = i32(globalId.z) * 4;
|
|
let xRCCorner = vec2<i32>(r, c) * uniforms.stride - uniforms.pad;
|
|
let d1 = d2;
|
|
let q = 0;
|
|
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var wVals : array<vec4<f32>, 9>;
|
|
wVals[0] = getW(0, 0, d1, q);
|
|
wVals[1] = getW(0, 1, d1, q);
|
|
wVals[2] = getW(0, 2, d1, q);
|
|
wVals[3] = getW(1, 0, d1, q);
|
|
wVals[4] = getW(1, 1, d1, q);
|
|
wVals[5] = getW(1, 2, d1, q);
|
|
wVals[6] = getW(2, 0, d1, q);
|
|
wVals[7] = getW(2, 1, d1, q);
|
|
wVals[8] = getW(2, 2, d1, q);
|
|
|
|
var xVals : array<array<vec4<f32>, 6>, 3>;
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
let xR = xRCorner + wR * uniforms.dilation[0];
|
|
for (var wC = 0; wC < 6; wC = wC + 1) {
|
|
let xC = xCCorner + wC * uniforms.dilation[1];
|
|
if (xR < 0 || xR >= uniforms.inDims[0] || xC < 0 || xC >= uniforms.inDims[1]) {
|
|
xVals[wR][wC] = vec4<f32>(0.0);
|
|
} else {
|
|
xVals[wR][wC] = getX(batch, xR, xC, d1);
|
|
}
|
|
}
|
|
}
|
|
|
|
var dotProd : array<vec4<f32>, 4>;
|
|
dotProd[0] = vec4<f32>(0.0);
|
|
dotProd[1] = vec4<f32>(0.0);
|
|
dotProd[2] = vec4<f32>(0.0);
|
|
dotProd[3] = vec4<f32>(0.0);
|
|
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
for (var wC = 0; wC < 3; wC = wC + 1) {
|
|
let indexW = wR * 3 + wC;
|
|
dotProd[0] = dotProd[0] + xVals[wR][0 + wC] * wVals[indexW];
|
|
dotProd[1] = dotProd[1] + xVals[wR][1 + wC] * wVals[indexW];
|
|
dotProd[2] = dotProd[2] + xVals[wR][2 + wC] * wVals[indexW];
|
|
dotProd[3] = dotProd[3] + xVals[wR][3 + wC] * wVals[indexW];
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
let coords = vec4<i32>(batch, r, c + i, d2);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
${n}
|
|
${t}
|
|
setOutput(coords[0], coords[1], coords[2], coords[3], dotProd[i]);
|
|
}
|
|
}
|
|
}
|
|
`}},oC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; inDims : vec2<i32>;",this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise_${this.convInfo.filterHeight}_${this.convInfo.filterWidth}_${this.activation}_${this.convInfo.outChannels/this.convInfo.inChannels}`}getUserCode(){let e=this.convInfo.outChannels/this.convInfo.inChannels,t="",n="";if(this.activation){let a=oa(this.activation,!1);this.hasPreluActivation?t=`fn activation(a : f32, globalId : vec3<u32>, index : i32) -> f32 {
|
|
let b = getPreluActivationWeightsAtOutCoordsByGlobalId(globalId, index);
|
|
${a}
|
|
}`:t=`
|
|
fn activation(a : f32, globalId : vec3<u32>, index : i32) -> f32 {
|
|
${a}
|
|
}
|
|
`,n="dotProd = activation(dotProd, globalId, index);"}let s=this.addBias?"dotProd = dotProd + getBiasAtOutCoordsByGlobalId(globalId, index);":"";return`
|
|
${t}
|
|
|
|
fn writeResult(batch : i32, row : i32, col : i32, chan : i32, value : f32) {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if (coordsInBounds4D(coord, uniforms.outShape)) {
|
|
setOutput(batch, row, col, chan, value);
|
|
}
|
|
}
|
|
|
|
${Fe()} {
|
|
${Le()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let d2 = coords[3];
|
|
let d1 = d2 / ${e};
|
|
let q = d2 - d1 * ${e};
|
|
|
|
let inputRowStart = xRCCorner.x;
|
|
let inputColStart = xRCCorner.y;
|
|
let inputRowEnd = inputRowStart + ${this.convInfo.filterHeight} * uniforms.dilation[0];
|
|
let inputColEnd = inputColStart + ${this.convInfo.filterWidth} * uniforms.dilation[1];
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
|
|
// Extract if checking out of for loop for performance.
|
|
if (inputRowStart >= 0 && inputColStart >= 0 &&
|
|
inputRowEnd < uniforms.inDims[0] && inputColEnd < uniforms.inDims[1]) {
|
|
// Here using a constant value |this.convInfo.filterHeight| instead
|
|
// of uniform value is in order to loop unrolling.
|
|
for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
} else {
|
|
for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
if (xR < 0 || xR >= uniforms.inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
if (xC < 0 || xC >= uniforms.inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
}
|
|
|
|
${s}
|
|
${n}
|
|
writeResult(batch, coords[1], coords[2], d2, dotProd);
|
|
}
|
|
`}};function rce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s,u=l;u==null&&(u=[1,1]);let d=N.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!0),p;d.batchSize===1&&d.inHeight===d.outHeight&&d.inWidth===d.outWidth&&d.strideHeight===1&&d.strideWidth===1&&d.filterHeight===d.filterWidth&&d.inChannels===d.outChannels&&d.filterHeight===3&&d.inChannels%4==0?p=new aC(d):p=new oC(d);let h=[{type:"int32",data:[d.padInfo.top,d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.dilationHeight,d.dilationWidth]},{type:"int32",data:[d.inHeight,d.inWidth]}];return n.runWebGPUProgram(p,[r,a],r.dtype,h)}var ace={kernelName:_a,backendName:"webgpu",kernelFunc:rce},iC=Un({opSnippet:Vt.MUL,cpuKernelImpl:Vle,supportsComplex:!0}),oce={kernelName:Za,backendName:"webgpu",kernelFunc:iC},ice=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="reduceSize : i32;",this.inputShape=[e.batchSize,e.inSize];let[s]=N.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=s.length===0?[1]:s,this.reductionFactor=2;let r=256,a=Math.min(Math.ceil(e.inSize/this.reductionFactor),r);this.workGroupSize=[a,1,1],this.dispatchLayout={x:[],y:this.outputShape.map((o,i)=>i)},this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.reduceType=t,this.shaderKey=`reduce_${t}_${n}`}getUserCode(){let e=this.workGroupSize[0]>1,t="",n="0.0";this.reduceType==="min"||this.reduceType==="max"?(t=`
|
|
if (isNanCustom(candidate)) {
|
|
bestValue = uniforms.NAN;
|
|
} elseif (candidate ${this.reduceType==="min"?"<":">"}
|
|
bestValue)
|
|
{ bestValue = candidate; }`,n="f32(x.numbers[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?t=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(t=" bestValue = bestValue * candidate; ",n="1.0");let s=this.reduceType==="mean"?"setOutputFlat(flatOutputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputFlat(flatOutputIndex, bestValue);",r=`
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`,a=`
|
|
xBestValues[localId.x] = bestValue;
|
|
${this.reduceType==="sum"||this.reduceType==="mean"||this.reduceType==="prod"?`bestValue = ${n};`:" "}
|
|
var currentSize = WorkGroupSize;
|
|
for(; currentSize > 1;) {
|
|
workgroupBarrier();
|
|
for (var w = 0; w < ${this.reductionFactor}; w = w + 1) {
|
|
let i = i32(localId.x) * ${this.reductionFactor} + w;
|
|
if (i < currentSize) {
|
|
let candidate = xBestValues[i];
|
|
${t}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
xBestValues[localId.x] = bestValue;
|
|
currentSize = DIV_CEIL(currentSize, ${this.reductionFactor});
|
|
${this.reduceType==="sum"||this.reduceType==="mean"||this.reduceType==="prod"?`if(currentSize > 1) { bestValue = ${n}; }`:""}
|
|
}
|
|
if (localId.x == 0u) {
|
|
${s}
|
|
}
|
|
`;return`
|
|
fn DIV_CEIL(a : i32, b : i32) -> i32 {
|
|
return ((a - 1) / b + 1);
|
|
}
|
|
let WorkGroupSize = ${this.workGroupSize[0]};
|
|
${e?r:""}
|
|
fn getOffset(globalId : vec3<u32>, index : i32) -> i32 {
|
|
let outputCoords = getOutputCoords(globalId, index);
|
|
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
|
|
return offset;
|
|
}
|
|
${Fe()} {
|
|
${Le()}
|
|
let offset= getOffset(globalId, index);
|
|
var bestValue = ${n};
|
|
let Length = uniforms.reduceSize;
|
|
let WorkPerThread = DIV_CEIL(Length, WorkGroupSize);
|
|
for (var w = 0; w < WorkPerThread; w = w + 1) {
|
|
let i = i32(globalId.x) * WorkPerThread + w;
|
|
if (i < Length) {
|
|
let candidate = f32(x.numbers[offset + i]);
|
|
${t}
|
|
}
|
|
}
|
|
let flatOutputIndex = i32(globalId.y);
|
|
${e?a:s}
|
|
}
|
|
`}};function sp(e,t,n,s,r){let a=e.shape.length,o=[],i=v.parseAxisParam(t,e.shape),l=i,c=N.getAxesPermutation(l,a),u=e;c!=null&&(u=wl({inputs:{x:e},attrs:{perm:c},backend:r}),l=N.getInnerMostAxes(l.length,a),o.push(u)),N.assertAxesAreInnerMostDims(s,l,a);let[d,p]=N.computeOutAndReduceShapes(u.shape,l),h=d;n&&(h=N.expandShapeToKeepDim(d,i));let f;if((s==="max"||s==="prod")&&r.shouldExecuteOnCPU([u])){let m=r.tensorMap.get(u.dataId).values;switch(s){case"max":let g=Lle(m,v.sizeFromShape(p),h,e.dtype);f=r.makeTensorInfo(h,e.dtype,g);break;case"prod":let{outVals:A,outShape:x,outDtype:y}=Hle(u.shape,u.dtype,m,l);f=r.makeTensorInfo(x,y,A);break;default:throw new Error(`${s} CPU implementation is not yet supported.`)}}else{let m=v.sizeFromShape(p),A=v.sizeFromShape(u.shape)/m,x={windowSize:m,inSize:m,batchSize:A,outSize:1},y=s==="mean"?"float32":ad(e.dtype),b=[{type:"int32",data:[m]}],w=new ice(x,s,y),S=r.runWebGPUProgram(w,[u],y,b);o.push(S),f=Ke({inputs:{x:S},attrs:{shape:h},backend:r})}return o.forEach(m=>r.disposeData(m.dataId)),f}function cx(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return sp(r,a,o,"sum",n)}var lce={kernelName:io,backendName:"webgpu",kernelFunc:cx};function uce(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=N.decodeEinsumEquation(r,a.length);N.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=N.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:x}=N.getEinsumPermutation(h,l[g]),y;N.isIdentityPermutation(A)?y=a[g]:(y=wl({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(y));let b=y.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(y.shape,b)||(y=Ke({inputs:{x:y},backend:n,attrs:{shape:b}}),f.push(y)),p===null?p=y:(p=iC({inputs:{a:y,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=cx({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeData(m.dataId);return p}var cce={kernelName:Wc,backendName:"webgpu",kernelFunc:uce},dce=Sn({opType:vt.ELU}),pce={kernelName:Fa,backendName:"webgpu",kernelFunc:dce},hce=Un({opSnippet:Vt.EQUAL,dtype:"bool",cpuKernelImpl:Nle}),fce={kernelName:li,backendName:"webgpu",kernelFunc:hce},lC=Sn({opType:vt.EXP,cpuKernelImpl:Ele,dtype:"float32"}),mce={kernelName:Oa,backendName:"webgpu",kernelFunc:lC};function dx(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),Ke({inputs:{x:a},backend:s,attrs:{shape:i}})}var gce={kernelName:ui,backendName:"webgpu",kernelFunc:dx},Ace=Sn({opType:vt.EXPM1,cpuKernelImpl:Rle}),yce={kernelName:ci,backendName:"webgpu",kernelFunc:Ace},xce=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32;",this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){return`
|
|
${Fe()} {
|
|
${Le()}
|
|
if (index < uniforms.size) {
|
|
setOutputFlat(index, uniforms.value);
|
|
}
|
|
}
|
|
`}};function rc(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new xce(s),i=[{type:"float32",data:[r]}];return t.runWebGPUProgram(o,[],a,i)}}var bce={kernelName:Ql,backendName:"webgpu",kernelFunc:rc},vce=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){return`
|
|
${Fe()} {
|
|
${Le()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getOutputCoords(globalId, index);
|
|
let coordX = uniforms.xShape[2] - coords[2] - 1;
|
|
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
|
|
setOutputFlat(index, outputValue);
|
|
}
|
|
}
|
|
`}},wce={kernelName:di,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new vce(n.shape);return s.runWebGPUProgram(r,[n],n.dtype)}},kce=Sn({opType:vt.FLOOR,cpuKernelImpl:$le}),Sce={kernelName:Ma,backendName:"webgpu",kernelFunc:kce},Ice=Un({opSnippet:Vt.INT_DIV,dtype:"int32"}),Cce={kernelName:za,backendName:"webgpu",kernelFunc:Ice},Tce=(e,t,n,s,r)=>{let a=[s,...n];return r&&a.push(r),e.createBindGroup({layout:t,entries:a.map((o,i)=>({binding:i,resource:o}))})},uC=(e,t,n,s,r,a=!1)=>{let o={dtype:r.dtype,shape:r.shape},i=rie(s,o,t,a),l=e.createShaderModule({code:i});return e.createComputePipeline({layout:n,compute:{module:l,entryPoint:"main"}})};function cC(e,t,n,s="",r=""){return(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(o=>o.length).join(",")+n.join(",")+e.variableNames.join(",")+s+r+e.shaderKey}function dC(e){let{externalImage:t,backend:n,attrs:s,outShape:r,useImport:a}=e,{numChannels:o}=s,i=v.sizeFromShape(r),l=v.computeStrides(r),c=n.makeTensorInfo(r,"int32"),u=n.getFromPixelsProgram(a?"import":"copyExternal");u.updateOutputShape(r);let d=[c.shape],p=[c.dtype,a?"import":"copyExternal"],h=cC(u,d,p),f=u.getLayout(n.device),m=n.getAndSavePipeline(h,()=>uC(n.device,u,f.pipelineLayout,[],c,!0));u.setPipeline(m),a||n.queue.copyExternalImageToTexture({source:t,origin:{x:0,y:0}},{texture:u.makeInputTexture(n.device,r[1],r[0])},[r[1],r[0]]);let g=n.tensorMap.get(c.dataId);g.bufferInfo.buffer=n.acquireBuffer(g.bufferInfo.byteSize);let A=[i,o,...l,...u.dispatch];u.setUniform(n.device,A);let x;if(a){let y={source:t};x=n.device.importExternalTexture(y)}else x=u.inputTexture.createView();return n.runFromPixelsProgram(u,g.bufferInfo.buffer,f,x,c.dataId),c}var Nce={kernelName:Zc,backendName:"webgpu",kernelFunc:Ece},ac;function Ece(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s;if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,l=typeof HTMLCanvasElement!="undefined"&&r instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&r instanceof OffscreenCanvas,c=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[u,d]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[d,u,a];if(K().getBool("WEBGPU_USE_IMPORT")&&o)return dC({externalImage:r,backend:n,attrs:s,outShape:p,useImport:!0});if((o||i)&&(ac==null&&(ac=document.createElement("canvas").getContext("2d")),ac.canvas.width=u,ac.canvas.height=d,ac.drawImage(r,0,0,u,d),r=ac.canvas),c||l||o||i)return dC({externalImage:r,backend:n,attrs:s,outShape:p,useImport:!1});let h=r.data,f=h;if(a!=null&&a!==4){f=new Uint8Array(r.width*r.height*a);let A=h.length,x=0;for(let y=0;y<A;y++)y%4<a&&(f[x++]=h[y])}let m=n.makeTensorInfo(p,"int32"),g=n.tensorMap.get(m.dataId);return g.values=new Int32Array(f),n.maybeReleaseBuffer(m.dataId),n.uploadToGPU(m.dataId),m}var Rce=class{constructor(e,t,n,s,r){this.uniforms="varianceEpsilon : f32;",this.workGroupSize=[128,1,1],this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n),this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),s!=null&&(N.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset")),r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale")),this.offsetShape=s,this.scaleShape=r,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetAtOutCoordsByGlobalId(globalId, index)");let t="1.0";this.scaleShape!=null&&(t="getScaleAtOutCoordsByGlobalId(globalId, index)");let n=this.outputShape.length,s=Qt(n),r="setOutput(coords[0], coords[1], coords[2], coords[3], value);";return n===2&&(r="setOutput(coords[0], coords[1], value);"),n===3&&(r="setOutput(coords[0], coords[1], coords[2], value);"),`
|
|
fn writeResult(coords : ${s}, value : f32) {
|
|
if (coordsInBounds${n}D(coords, uniforms.outShape)) {
|
|
${r}
|
|
}
|
|
}
|
|
${Fe()} {
|
|
${Le()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
let xValue = getXAtOutCoordsByGlobalId(globalId, index);
|
|
let meanValue = getMeanAtOutCoordsByGlobalId(globalId, index);
|
|
let varianValue = getVarianceAtOutCoordsByGlobalId(globalId, index);
|
|
let offsetValue = ${e};
|
|
let scaleValue = ${t};
|
|
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
|
|
writeResult(coords,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
|
|
}
|
|
`}},$ce={kernelName:La,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s,scale:r,offset:a,mean:o,variance:i}=e,{varianceEpsilon:l}=t,c=n,u=[s,o,i],d=null;a!=null&&(d=a.shape,u.push(a));let p=null;r!=null&&(p=r.shape,u.push(r));let h=new Rce(s.shape,o.shape,i.shape,d,p),f=[{type:"float32",data:[l]}];return c.runWebGPUProgram(h,u,s.dtype,f)}};function Dce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=N.convertConv2DDataFormat(u),g=N.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!1,m),A=o!=null,x=i!=null,y;if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))return tC({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});let b=K().getBool("WEBGPU_USE_NAIVE_CONV2D"),w=g.inChannels%4==0&&g.outChannels%4==0,S=[g.padInfo.top,g.padInfo.left],C=[{type:"int32",data:[g.filterHeight,g.filterWidth]},{type:"int32",data:[...S]},{type:"int32",data:[g.strideHeight,g.strideWidth]},{type:"int32",data:[g.dilationHeight,g.dilationWidth]}];if(b)y=new rC(g,A,h,x);else{w?y=new nC(g,A,h,x):y=new sC(g,A,h,x);let D=g.outShape[1]*g.outShape[2],O=g.outShape[3],_=g.filterHeight*g.filterWidth*g.inShape[3];C.push({type:"int32",data:[D]},{type:"int32",data:[O]},{type:"int32",data:[_]})}let E=[r,a];return A&&E.push(o),x&&E.push(i),n.runWebGPUProgram(y,E,r.dtype,C)}var _ce={kernelName:go,backendName:"webgpu",kernelFunc:Dce};function Pce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:d,activation:p}=s,h=u;h==null&&(h=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(l,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${h}'`);let f=N.computeConv2DInfo(r.shape,a.shape,l,h,c,d,!0),m=[r,a],g=o!=null,A=i!=null;g&&m.push(o),A&&m.push(i);let x;f.batchSize===1&&f.inHeight===f.outHeight&&f.inWidth===f.outWidth&&f.strideHeight===1&&f.strideWidth===1&&f.filterHeight===f.filterWidth&&f.inChannels===f.outChannels&&f.filterHeight===3&&f.inChannels%4==0?x=new aC(f,g,p,A):x=new oC(f,g,p,A);let y=[{type:"int32",data:[f.padInfo.top,f.padInfo.left]},{type:"int32",data:[f.strideHeight,f.strideWidth]},{type:"int32",data:[f.dilationHeight,f.dilationWidth]},{type:"int32",data:[f.inHeight,f.inWidth]}];return n.runWebGPUProgram(x,m,"float32",y)}var Fce={kernelName:Ao,backendName:"webgpu",kernelFunc:Pce},Oce=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.outputShape=t,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.size=v.sizeFromShape(this.outputShape),this.sliceDim=e,this.uniforms=`sliceDim : i32; strides : ${Qt(e)};`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
|
|
${Fe()} {
|
|
${Le()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
var flattenIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexTemp = i32(round(getIndices(coords[0], j)));
|
|
let strideNum = ${e};
|
|
flattenIndex = flattenIndex + indexTemp * strideNum;
|
|
}
|
|
if (index < uniforms.size) {
|
|
setOutputFlat(index, getA(flattenIndex, coords[1]));
|
|
}
|
|
}
|
|
`}};function Mce(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,c,u,d]=N.prepareAndValidate(s,r),p=Ke({inputs:{x:r},backend:n,attrs:{shape:[c,o]}}),h=Ke({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/u,u]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let x=n.readSync(r.dataId),y=n.bufferSync(s),b=Dle(x,y,s.dtype,c,o,u,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,b.values)}let f=new Oce(o,[c,u]),m=[{type:"int32",data:[o]},{type:"int32",data:d}],g=n.runWebGPUProgram(f,[h,p],h.dtype,m),A=Ke({inputs:{x:g},backend:n,attrs:{shape:l}});return n.disposeData(p.dataId),n.disposeData(h.dataId),n.disposeData(g.dataId),A}var zce={kernelName:hi,backendName:"webgpu",kernelFunc:Mce},Lce=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=Bce(this.aShape,"i32");return`
|
|
${Fe()} {
|
|
${Le()}
|
|
let resRC = getOutputCoords(globalId, index);
|
|
if (index < uniforms.size) {
|
|
setOutputFlat(index, getA(${e}));
|
|
}
|
|
}
|
|
`}};function Bce(e,t="int"){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push(`${t}(getIndices(resRC.x, resRC.z))`):s.push(`${n[r]}`);return s.join()}function pC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],c=N.segment_util.collectGatherOpShapeInfo(r,a,l,i),u=v.sizeFromShape(a.shape),d=[],p=Ke({inputs:{x:r},backend:n,attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]}}),h=Ke({inputs:{x:a},backend:n,attrs:{shape:[c.batchSize,u/c.batchSize]}});d.push(p),d.push(h);let f=[c.batchSize,c.outerSize,u/c.batchSize,c.sliceSize];if(n.shouldExecuteOnCPU([r,a])){let y=n.tensorMap.get(h.dataId).values,b=Be(h.shape,h.dtype,y),S=n.tensorMap.get(p.dataId).values,C=Be(p.shape,p.dtype,S),E=_le(C,b,f);return d.forEach(D=>n.disposeData(D.dataId)),n.makeTensorInfo(c.outputShape,E.dtype,E.values)}let m=new Lce(p.shape,f),g=n.runWebGPUProgram(m,[p,h],p.dtype);d.push(g);let A=Ke({inputs:{x:g},backend:n,attrs:{shape:c.outputShape}});return d.forEach(x=>n.disposeData(x.dataId)),A}var Wce={kernelName:pi,backendName:"webgpu",kernelFunc:pC},Vce=Un({opSnippet:Vt.GREATER,cpuKernelImpl:Fle,dtype:"bool"}),Uce={kernelName:fi,backendName:"webgpu",kernelFunc:Vce},Gce=Un({opSnippet:Vt.GREATER_EQUAL,dtype:"bool",cpuKernelImpl:Ple}),Hce={kernelName:Ba,backendName:"webgpu",kernelFunc:Gce},jce=Un({opSnippet:Vt.LESS,dtype:"bool",cpuKernelImpl:Mle}),qce={kernelName:gi,backendName:"webgpu",kernelFunc:jce},Xce=Un({opSnippet:Vt.LESS_EQUAL,dtype:"bool",cpuKernelImpl:Ole}),Kce={kernelName:Ai,backendName:"webgpu",kernelFunc:Xce},Zce=Sn({opType:vt.LOG,cpuKernelImpl:zle}),Yce={kernelName:Va,backendName:"webgpu",kernelFunc:Zce},Jce=Un({opSnippet:Vt.LOGICAL_AND,dtype:"bool"}),Qce={kernelName:yi,backendName:"webgpu",kernelFunc:Jce},ede=Sn({opType:vt.LOGICAL_NOT}),tde={kernelName:ru,backendName:"webgpu",kernelFunc:ede};function hC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s;return sp(r,a,o,"max",n)}var nde={kernelName:Ua,backendName:"webgpu",kernelFunc:hC},sde=Un({opSnippet:Vt.MAX,cpuKernelImpl:Ble}),rde={kernelName:Ga,backendName:"webgpu",kernelFunc:sde};function ade(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1,u=N.computePool2DInfo(r.shape,a,o,c,i,l),d,p=[];if(u.filterHeight===1&&u.filterWidth===1){if(v.arraysEqual(u.inShape,u.outShape))return Zs({inputs:{x:r},backend:n});d=new J4(u),p.push({type:"int32",data:[u.strideHeight,u.strideWidth]})}else d=new Y4(u,"max"),p.push({type:"int32",data:[u.strideHeight,u.strideWidth]},{type:"int32",data:[u.padInfo.top,u.padInfo.left]},{type:"int32",data:[u.dilationHeight,u.dilationWidth]},{type:"int32",data:[u.inHeight,u.inWidth]},{type:"int32",data:[u.effectiveFilterHeight,u.effectiveFilterWidth]});return n.runWebGPUProgram(d,[r],r.dtype,p)}var ode={kernelName:Ha,backendName:"webgpu",kernelFunc:ade};function ide(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{keepDims:a,axis:o}=s;return sp(r,o,a,"mean",n)}var lde={kernelName:ja,backendName:"webgpu",kernelFunc:ide};function ude(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return sp(r,a,o,"min",n)}var cde={kernelName:qa,backendName:"webgpu",kernelFunc:ude},dde=Un({opSnippet:Vt.MIN,cpuKernelImpl:Wle}),pde={kernelName:Xa,backendName:"webgpu",kernelFunc:dde},hde=class{constructor(e,t,n){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.outputShape=t.map((s,r)=>s[0]+e[r]+s[1]),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((s,r)=>{this.uniforms+=` pad${r} : vec2<i32>;`}),this.offset=n==="reflect"?0:1,this.shaderKey=`mirrorPad_${n}`,this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,c)=>`uniforms.pad${c}[0]`).join(","),n=this.xShape.map((l,c)=>`uniforms.pad${c}[0] + uniforms.xShape${e>1?`[${c}]`:""}`).join(","),s=e===1?"start":"start[i]",r=e===1?"end":"end[i]",a=e===1?"outC":"outC[i]",o=Qt(e),i=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${Fe()} {
|
|
${Le()}
|
|
let start = ${o}(${t});
|
|
let end = ${o}(${n});
|
|
var outC = getOutputCoords(globalId, index);
|
|
if (index < uniforms.size) {
|
|
for (var i = 0; i < ${e}; i = i + 1) {
|
|
if (${a} < ${s}) {
|
|
${a} = ${s} * 2 - ${a} - ${this.offset};
|
|
} elseif(${a} >= ${r}) {
|
|
${a} = (${r} - 1) * 2 - ${a} + ${this.offset};
|
|
}
|
|
}
|
|
let coords = outC - start;
|
|
setOutputFlat(index, getX(${i}));
|
|
}
|
|
}
|
|
`}},fde={kernelName:Ka,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{paddings:r,mode:a}=t,o=n,i=r.map(u=>({type:"int32",data:[u[0],u[1]]})),l=new hde(s.shape,r,a);return o.runWebGPUProgram(l,[s],s.dtype,i)}};function mde(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.tensorMap.get(s.dataId),[o,i]=Ule(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r=new Pm(s.shape,vt.NEG);return n.runWebGPUProgram(r,[s],s.dtype)}var gde={kernelName:xi,backendName:"webgpu",kernelFunc:mde};function Ade(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,c=n.readSync(r.dataId),u=n.readSync(a.dataId),{selectedIndices:d}=js.nonMaxSuppressionV3Impl(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var yde={kernelName:vi,backendName:"webgpu",kernelFunc:Ade};function xde(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=js.nonMaxSuppressionV5Impl(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var bde={kernelName:wi,backendName:"webgpu",kernelFunc:xde};function Om(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=np({inputs:{input:s},backend:n}),a=Om({inputs:{x:r},backend:n}),o=Fm({inputs:{input:s},backend:n}),i=Om({inputs:{x:o},backend:n}),l=nc({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return rc({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var vde={kernelName:Wi,backendName:"webgpu",kernelFunc:Om};function fC(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=np({inputs:{input:s},backend:n}),a=fC({inputs:{x:r},backend:n}),o=Fm({inputs:{input:s},backend:n}),i=Om({inputs:{x:o},backend:n}),l=nc({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return rc({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var wde={kernelName:ki,backendName:"webgpu",kernelFunc:fC};function kde(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return dx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=dx({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=eC({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeData(u.dataId)),c}var Sde={kernelName:Ii,backendName:"webgpu",kernelFunc:kde},Ide=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32;",this.workGroupSize=[64,1,1],this.outputShape=t.map((n,s)=>n[0]+e[s]+n[1]),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((n,s)=>{this.uniforms+=` pad${s} : vec2<i32>;`}),this.xShape=e,this.shaderKey="pad",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=this.xShape.length,t=Qt(e),n=this.xShape.map((u,d)=>`uniforms.pad${d}[0]`).join(","),s=this.xShape.map((u,d)=>`uniforms.pad${d}[0] + uniforms.xShape${e>1?`[${d}]`:""}`).join(","),r=e>1?`${t}(${n})`:`${n}`,a=e>1?`${t}(${s})`:`${s}`,o=e>1?"any(outC < start)":"outC < start",i=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${Fe()} {
|
|
${Le()}
|
|
let start = ${r};
|
|
let end = ${a};
|
|
if (index < uniforms.size) {
|
|
let outC = getOutputCoords(globalId, index);
|
|
|
|
if (${o} || ${i}) {
|
|
setOutputFlat(index, uniforms.constantValue);
|
|
} else {
|
|
let coords = outC - start;
|
|
setOutputFlat(index, getX(${l}));
|
|
}
|
|
}
|
|
}
|
|
`}},mC=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(a.every(c=>v.arraysEqual(c,[0,0])))return Zs({inputs:{x:r},backend:n});if(v.sizeFromShape(r.shape)===0){let c=a.map((u,d)=>u[0]+r.shape[d]+u[1]);return rc({backend:n,attrs:{shape:c,value:o,dtype:r.dtype}})}let i=[{type:"float32",data:[o]}];a.map(c=>i.push({type:"int32",data:[c[0],c[1]]}));let l=new Ide(r.shape,a);return n.runWebGPUProgram(l,[r],r.dtype,i)},Cde={kernelName:Ya,backendName:"webgpu",kernelFunc:mC},Tde=Un({opSnippet:Vt.POW}),Nde={kernelName:Ja,backendName:"webgpu",kernelFunc:Tde};function Ede(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=new X4(Vt.PRELU,s.shape,r.shape);return n.runWebGPUProgram(a,[s,r],"float32")}var Rde={kernelName:Qa,backendName:"webgpu",kernelFunc:Ede};function $de(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return sp(r,a,o,"prod",n)}var Dde={kernelName:Ci,backendName:"webgpu",kernelFunc:$de},_de=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=jle(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},Pde={kernelName:iu,backendName:"webgpu",kernelFunc:_de},gC=Un({opSnippet:Vt.DIV}),Fde={kernelName:Pa,backendName:"webgpu",kernelFunc:gC},Ode=Sn({opType:vt.RELU}),Mde={kernelName:eo,backendName:"webgpu",kernelFunc:Ode},zde=Sn({opType:vt.RELU6}),Lde={kernelName:no,backendName:"webgpu",kernelFunc:zde},Bde=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.alignCorners=s,this.halfPixelCenters=r,this.shaderKey=`resizeBilinear_${s}_${r}_${this.outputShape[1]>1}_${this.outputShape[2]>1}`}getUserCode(){let e=this.alignCorners&&this.outputShape[1]>1,t=this.alignCorners&&this.outputShape[2]>1;return`
|
|
${Fe()} {
|
|
${Le()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
if (all(coords < uniforms.outShape)) {
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
${e?"f32(uniforms.xShape.y) - 1.0":"f32(uniforms.xShape.y)"},
|
|
${t?"f32(uniforms.xShape.z) - 1.0":"f32(uniforms.xShape.z)"});
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
${e?"f32(uniforms.outShape.y) - 1.0":"f32(uniforms.outShape.y)"},
|
|
${t?"f32(uniforms.outShape.z) - 1.0":"f32(uniforms.outShape.z)"});
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC = ${this.halfPixelCenters?"(vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC - vec2<f32>(0.5)":"vec2<f32>(rc) * effectiveInputOverOutputRatioRC"};
|
|
|
|
// Compute the four integer indices.
|
|
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
|
|
let sourceCeilRC = vec2<i32>(
|
|
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
|
|
|
|
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
|
|
|
|
let top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
let newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(b, coords[1], coords[2], d, newValue);
|
|
}
|
|
}
|
|
`}};function Wde(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,size:o,halfPixelCenters:i}=s,[l,c]=o,u=new Bde(r.shape,l,c,a,i);return n.runWebGPUProgram(u,[r],"float32")}var Vde={kernelName:to,backendName:"webgpu",kernelFunc:Wde},Ude=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.alignCorners=s,this.halfPixelCenters=r,this.shaderKey=`resizeNearest_${s}_${this.outputShape[1]>1}_${this.outputShape[2]>1}_${r}`}getUserCode(){let e=this.alignCorners?"0.5":"0.0",t;this.halfPixelCenters?t="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":t="vec2<f32>(rc) * effectiveInputOverOutputRatioRC";let n=this.alignCorners&&this.outputShape[1]>1,s=this.alignCorners&&this.outputShape[2]>1;return`
|
|
${Fe()} {
|
|
${Le()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
if (all(coords < uniforms.outShape)) {
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
${n?"f32(uniforms.xShape.y) - 1.0":"f32(uniforms.xShape.y)"},
|
|
${s?"f32(uniforms.xShape.z) - 1.0":"f32(uniforms.xShape.z)"});
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
${n?"f32(uniforms.outShape.y) - 1.0":"f32(uniforms.outShape.y)"},
|
|
${s?"f32(uniforms.outShape.z) - 1.0":"f32(uniforms.outShape.z)"});
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC = ${t};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
|
|
let sourceNearestRC = vec2<i32>(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${e})));
|
|
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(b, coords[1], coords[2], d, newValue);
|
|
}
|
|
}
|
|
`}};function Gde(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=new Ude(r.shape,l,c,a,o);return n.runWebGPUProgram(u,[r],r.dtype)}var Hde={kernelName:uu,backendName:"webgpu",kernelFunc:Gde},jde=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32; centerY : f32; sinRadians : f32;
|
|
cosRadians : f32;`,this.shaderKey="rotate",this.size=v.sizeFromShape(this.outputShape),this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32;",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>;",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
|
|
${Fe()} {
|
|
${Le()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getOutputCoords(globalId, index);
|
|
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.sinRadians;
|
|
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.cosRadians;
|
|
let coordX = i32(round(coordXFloat + uniforms.centerX));
|
|
let coordY = i32(round(coordYFloat + uniforms.centerY));
|
|
${this.fillSnippet}
|
|
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
|
|
coordY < uniforms.xShape[1]) {
|
|
outputValue = getX(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutputFlat(index, outputValue);
|
|
}
|
|
}
|
|
`}},qde={kernelName:Vi,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new jde(s.shape,a),[c,u]=N.getImageCenter(o,s.shape[1],s.shape[2]),d=[{type:"float32",data:[c]},{type:"float32",data:[u]},{type:"float32",data:[Math.sin(r)]},{type:"float32",data:[Math.cos(r)]}];return typeof a=="number"?d.push({type:"float32",data:[Number.parseFloat(a.toFixed(2))]}):d.push({type:"float32",data:a}),i.runWebGPUProgram(l,[s],s.dtype,d)}},Xde=Sn({opType:vt.RSQRT,cpuKernelImpl:qle}),Kde={kernelName:so,backendName:"webgpu",kernelFunc:Xde},Zde=class{constructor(e,t,n,s,r,a,o){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=a,this.type=o,this.dispatchLayout=Xe(e),this.dispatch=Oe(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${n}_${s}_${this.sliceDimGreaterThanOne}_${o}`,this.size=v.sizeFromShape(e);let i=Qt(r.length);this.uniforms=`sliceDim : i32; strides: ${i};`,this.updatesRank=s,this.indicesRank=n}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,n=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",s="",r="",a="";this.updatesRank===1?(s="coords[0]",r="flattenedIndex",a=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
|
|
return index;
|
|
}
|
|
`):this.updatesRank===2&&(s="coords[0], coords[1]",r="vec2<i32>(flattenedIndex, coords[1])",a=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.updatesShape[1];
|
|
let d1 = index - d0 * uniforms.updatesShape[1];
|
|
return vec2<i32>(d0, d1);
|
|
}
|
|
`);let o=`getUpdates(${s})`,i=this.type==="int32"?"ignore(atomicAdd(&(result.numbers[flatIndex]), i32(updateValue)));":`
|
|
var oldI32 = atomicLoad(&(result.numbers[flatIndex]));
|
|
var assumed = oldI32 - 1;
|
|
for (; assumed != oldI32;) {
|
|
assumed = oldI32;
|
|
let new = bitcast<f32>(assumed) + updateValue;
|
|
let newI32 = bitcast<i32>(new);
|
|
oldI32 = atomicCompareExchangeWeak(&(result.numbers[flatIndex]), assumed, newI32)[0];
|
|
}
|
|
`;return`
|
|
${a}
|
|
|
|
${Fe()} {
|
|
${Le()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getUpdatesCoordsFromFlatIndex(index);
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${t}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${n};
|
|
}
|
|
let updateValue = ${o};
|
|
let flatIndex = getOutputFlatIndex(${r});
|
|
|
|
${i}
|
|
}
|
|
}`}};function Yde(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=N.calculateShapes(a,r,o),p=[d/c,c];if(d===0)return n.makeTensorInfo(o,r.dtype);let h=Ke({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=Ke({inputs:{x:a},backend:n,attrs:{shape:[l,c]}}),m=f.dtype,g=rc({backend:n,attrs:{shape:p,value:0,dtype:m}}),A=[{type:"int32",data:[i]},{type:"int32",data:u}],x=new Zde(f.shape,i,h.shape.length,f.shape.length,u,p,m),y=n.runWebGPUProgram(x,[f,h],m,A,g),b=Ke({inputs:{x:y},backend:n,attrs:{shape:o}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(y.dataId),b}var Jde={kernelName:Ri,backendName:"webgpu",kernelFunc:Yde},Qde=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.outputShape=t,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=n,this.shaderKey="select",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let s=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[],a=[];for(let o=0;o<this.outputShape.length;o++)a.push(`${s[o]}`),o<this.cRank&&r.push(`${s[o]}`);e=r.join(),t=a.join()}return`
|
|
${Fe()} {
|
|
${Le()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getOutputCoords(globalId, index);
|
|
let cVal = getC(${e});
|
|
if (cVal >= 1.0) {
|
|
setOutputFlat(index, getA(${t}));
|
|
} else {
|
|
setOutputFlat(index, getB(${t}));
|
|
}
|
|
}
|
|
}
|
|
`}};function epe(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new Qde(s.shape.length,r.shape,r.shape.length);return n.runWebGPUProgram(o,[s,r,a],On(r.dtype,a.dtype))}var tpe={kernelName:$i,backendName:"webgpu",kernelFunc:epe},npe=Sn({opType:vt.SIGMOID}),spe={kernelName:ao,backendName:"webgpu",kernelFunc:npe},rpe=Sn({opType:vt.SIN}),ape={kernelName:ro,backendName:"webgpu",kernelFunc:rpe},ope=Sn({opType:vt.SINH}),ipe={kernelName:_i,backendName:"webgpu",kernelFunc:ope},AC=Un({opSnippet:Vt.SUB,cpuKernelImpl:Jle,supportsComplex:!0}),lpe={kernelName:co,backendName:"webgpu",kernelFunc:AC};function upe(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=hC({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=N.expandShapeToKeepDim(i.shape,o),c=Ke({inputs:{x:i},backend:n,attrs:{shape:l}}),u=AC({inputs:{a:r,b:c},backend:n}),d=lC({inputs:{x:u},backend:n}),p=cx({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=Ke({inputs:{x:p},backend:n,attrs:{shape:l}}),f=gC({inputs:{a:d,b:h},backend:n});return n.disposeData(i.dataId),n.disposeData(c.dataId),n.disposeData(u.dataId),n.disposeData(d.dataId),n.disposeData(p.dataId),n.disposeData(h.dataId),f}var cpe={kernelName:lo,backendName:"webgpu",kernelFunc:upe},dpe=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((A,x)=>A*x),l=[[0,0]];l.push(...o);for(let A=1+a.length;A<r.shape.length;++A)l.push([0,0]);let c=[],u=mC({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=N.getReshaped(u.shape,a,i,!1),p=N.getPermuted(d.length,a.length,!1),h=N.getReshapedPermuted(u.shape,a,i,!1),f=Ke({inputs:{x:u},backend:n,attrs:{shape:d}}),m=wl({inputs:{x:f},backend:n,attrs:{perm:p}}),g=Ke({inputs:{x:m},backend:n,attrs:{shape:h}});return c.push(u),c.push(f),c.push(m),c.forEach(A=>n.disposeData(A.dataId)),g},ppe={kernelName:Pi,backendName:"webgpu",kernelFunc:dpe},hpe=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.workGroupSize=[64,1,1],this.workPerThread=4,this.outputShape=a,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let i=t>1;this.shaderKey=`scatter_${n}_${s}_${i}`,this.size=v.sizeFromShape(this.outputShape);let l=Qt(r.length);this.uniforms=`updateSize : i32; sliceDim : i32; strides: ${l};`;let c="";n===1?c="i":n===2&&(c="i, j"),this.indicesSnippet=`getIndices(${c})`;let u="";s===1?u="i":s===2&&(u="i, coords[1]"),this.updatesSnippet=`getUpdates(${u})`,this.strideString=i?"uniforms.strides[j]":"uniforms.strides"}getUserCode(){return`
|
|
${Fe()} {
|
|
${Le()}
|
|
|
|
let globalIndex = index * ${this.workPerThread};
|
|
if (globalIndex < uniforms.size) {
|
|
var sum = vec4<f32>(0.0);
|
|
var found = vec4<bool>(false);
|
|
for (var i = 0; i < uniforms.updateSize; i = i + 1) {
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${this.indicesSnippet}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${this.strideString};
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
let coords = getCoordsFromFlatIndex(curIndex);
|
|
if (flattenedIndex == coords[0]) {
|
|
sum[innerIndex] = sum[innerIndex] + ${this.updatesSnippet};
|
|
found[innerIndex] = true;
|
|
}
|
|
}
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
if (curIndex < uniforms.size)
|
|
{
|
|
setOutputFlat(curIndex, mix(getDefaultValue(), sum[innerIndex], f32(found[innerIndex])));
|
|
}
|
|
}
|
|
}
|
|
}`}};function fpe(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,strides:u,outputSize:d}=N.calculateShapes(a,r,i),p=!1,h=[{type:"int32",data:[c]},{type:"int32",data:[l]},{type:"int32",data:u}],f=new hpe(c,l,r.shape.length,a.shape.length,u,[d,1],p),m=n.runWebGPUProgram(f,[a,r,o],a.dtype,h),g=Ke({inputs:{x:m},backend:n,attrs:{shape:i}});return n.disposeData(m.dataId),g}var mpe={kernelName:qc,backendName:"webgpu",kernelFunc:fpe};function gpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=N.prepareSplitSize(r,a,i),c=r.shape.length,u=new Array(c).fill(0),d=r.shape.slice();return l.map(p=>{let h=[...d];h[i]=p;let f=sc({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=p,f})}var Ape={kernelName:Fi,backendName:"webgpu",kernelFunc:gpe},ype=Sn({opType:vt.SQRT}),xpe={kernelName:oo,backendName:"webgpu",kernelFunc:ype},bpe={kernelName:hu,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t,r=new Pm(n.shape,vt.SQUARE);return s.runWebGPUProgram(r,[n],n.dtype)}},vpe=Un({opSnippet:Vt.SQUARED_DIFFERENCE}),wpe={kernelName:uo,backendName:"webgpu",kernelFunc:vpe},kpe=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=Qt(this.outputShape.length);this.uniforms=`begin : ${t}; strides : ${t}; `,this.shaderKey="stridedSlice",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let s=0;t=this.outputShape.map((r,a)=>(s++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${s-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
|
|
${Fe()} {
|
|
${Le()}
|
|
if (index < uniforms.size) {
|
|
let coords = getOutputCoords(globalId, index);
|
|
setOutputFlat(index, getX(${t}));
|
|
}
|
|
}
|
|
`}};function Spe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:A,begin:x,end:y,strides:b}=Ft.sliceInfo(r.shape,a,o,i,l,c,u,d,p),w;if(m)w=Ke({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||A){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=Ft.computeOutShape(x,y,b),C=sc({inputs:{x:r},backend:n,attrs:{begin:x,size:S}});w=Ke({inputs:{x:C},backend:n,attrs:{shape:f}}),n.disposeData(C)}else if(n.shouldExecuteOnCPU([r])){let C=n.readSync(r.dataId),E=Be(r.shape,r.dtype,C),D=Zle(h,E,b,x);w=n.makeTensorInfo(f,r.dtype,D.values)}else{let C=new kpe(h),E=[{type:"int32",data:x},{type:"int32",data:b}];w=n.runWebGPUProgram(C,[r],r.dtype,E)}return w}var Ipe={kernelName:Oi,backendName:"webgpu",kernelFunc:Spe};function Cpe(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.readSync(u.dataId),h=n.readSync(d.dataId),[f,m]=Yle(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Tpe={kernelName:Xc,backendName:"webgpu",kernelFunc:Cpe},Npe=Sn({opType:vt.TANH}),Epe={kernelName:po,backendName:"webgpu",kernelFunc:Npe},Rpe=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.rank=this.outputShape.length,this.size=v.sizeFromShape(this.outputShape),this.shaderKey="tile"}getUserCode(){let e=$pe(this.rank,"uniforms.");return`
|
|
${Fe()} {
|
|
${Le()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getOutputCoords(globalId, index);
|
|
setOutputFlat(index, getA(${e}));
|
|
}
|
|
}
|
|
`}};function $pe(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e;r++)s.push(`(${n[r]} % ${t}aShape[${r}])`);return s.join()}function Dpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(n.shouldExecuteOnCPU([r])||r.dtype==="string"||r.shape.length>=5){let l=n.readSync(r.dataId),c=r.dtype==="string"?l.map(p=>v.decodeString(p)):l,u=Be(r.shape,r.dtype,c),d=Qle(u,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new Rpe(r.shape,a);return n.runWebGPUProgram(o,[r],r.dtype)}var _pe={kernelName:Hr,backendName:"webgpu",kernelFunc:Dpe},Ppe=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32; firstPass : i32; negativeInf : f32;
|
|
dir : i32; inc : i32;`,this.shaderKey="swap",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){return`
|
|
${Fe()} {
|
|
${Le()}
|
|
if (index < uniforms.size) {
|
|
let outC = getOutputCoords(globalId, index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced
|
|
// above, Figure5(a) shows that element[1] is in the second half of
|
|
// the group when group size is 2, but it is in the first half of
|
|
// the group when group size is 4.
|
|
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
|
|
var i = 0;
|
|
if (isFirstInPair) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx - uniforms.inc;
|
|
}
|
|
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.inc;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.inc));
|
|
}
|
|
|
|
var x0 = f32(0.0);
|
|
var x1 = f32(0.0);
|
|
if (i0 < uniforms.inputSize) {
|
|
x0 = getX(batch, i0);
|
|
} else {
|
|
x0 = uniforms.negativeInf;
|
|
}
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = uniforms.negativeInf;
|
|
}
|
|
|
|
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
|
|
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) {
|
|
// Elements in opposite order of direction
|
|
let iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutputFlat(index, f32(i0));
|
|
} else {
|
|
setOutputFlat(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}},Fpe=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32; firstPass : i32; k : i32;",this.shaderKey="merge",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){return`
|
|
${Fe()} {
|
|
${Le()}
|
|
if (index < uniforms.size) {
|
|
let outC = getOutputCoords(globalId, index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
|
|
// (k=4), we only need to output the indices at positions |, the
|
|
// indices at positions _ can be thrown away, see Figure5(b) After
|
|
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
|
|
// above.
|
|
// For example, the paper shows we only need to output the orange
|
|
// bars. The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back to
|
|
// the previous sequence to find the corresponding value, we need
|
|
// to double the index. When we double the index, we basically
|
|
// interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
|
|
// position of each 2k positions by - elemIdx % k. E.g. for output
|
|
// at index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
var i = 0;
|
|
if (elemIdx < uniforms.k) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx * 2 - elemIdx % uniforms.k;
|
|
}
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.k;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.k));
|
|
}
|
|
|
|
let x0 = getX(batch, i0);
|
|
var x1 = f32(0.0);
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = x0;
|
|
}
|
|
|
|
if (x0 >= x1) {
|
|
setOutputFlat(index, f32(i0));
|
|
} else {
|
|
setOutputFlat(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}};function oc(e,t){t!==null&&e.disposeData(t.dataId)}function yC(e){let t=1;for(;t<e;)t*=2;return t}function Ope(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=r.shape,l=i[i.length-1];if(n.shouldExecuteOnCPU([r])){let w=n.readSync(r.dataId),[S,C]=eue(w,i,r.dtype,a,o);return[n.makeTensorInfo(S.shape,S.dtype,S.values),n.makeTensorInfo(C.shape,C.dtype,C.values)]}if(a===0)return i[i.length-1]=0,[n.makeTensorInfo(i,r.dtype,[]),n.makeTensorInfo(i,"int32",[])];if(l===1)return[r,rc({attrs:{shape:i,dtype:"int32",value:0},backend:n})];let u=v.sizeFromShape(i)/l,d=Ke({inputs:{x:r},attrs:{shape:[u,l]},backend:n}),p=yC(a),h=yC(l),f=null,m=()=>f===null?[d,d]:[d,f],g=(w,S,C)=>{let E=m(),D=new Ppe(C),_=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[w]},{type:"int32",data:[S]}],F=f;f=n.runWebGPUProgram(D,E,"int32",_),oc(n,F)};for(let w=1;w<p;w*=2){let S=w*2;for(let C=w;C>=1;C/=2)g(S,C,[u,h])}for(let w=h;w>p;w/=2){let S=m(),C=new Fpe([u,w/2]),D=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"int32",data:[p]}],O=f;f=n.runWebGPUProgram(C,S,"int32",D),oc(n,O);let _=p/2,F=_*2;for(let T=_;T>=1;T/=2)g(F,T,f.shape)}let A=f;f=sc({inputs:{x:f},backend:n,attrs:{begin:0,size:[u,a]}}),oc(n,A);let x=pC({inputs:{x:d,indices:f},backend:n,attrs:{axis:1,batchDims:1}});oc(n,d);let y=i.slice(0,-1);y.push(a),A=f,f=Ke({inputs:{x:f},attrs:{shape:y},backend:n}),oc(n,A);let b=x;return x=Ke({inputs:{x},attrs:{shape:y},backend:n}),oc(n,b),[x,f]}var Mpe={kernelName:zi,backendName:"webgpu",kernelFunc:Ope},zpe=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32; fillModeId : i32; fillValue : f32;",this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return`
|
|
fn mapCoord(outCoord : f32, len : f32) -> f32{
|
|
var inCoord = outCoord;
|
|
if(uniforms.fillModeId == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
if (inCoord < -len) {
|
|
inCoord = inCoord + sz2;
|
|
} else {
|
|
inCoord = -inCoord - 1.0;
|
|
}
|
|
}
|
|
} elseif (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} elseif (uniforms.fillModeId == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
|
|
}
|
|
} elseif (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} elseif (uniforms.fillModeId == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
}
|
|
return outCoord;
|
|
}
|
|
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
|
|
channel : i32) -> f32 {
|
|
var outputValue : f32;
|
|
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = uniforms.fillValue;
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
${Fe()} {
|
|
${Le()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
var outputValue : f32;
|
|
let batch = coords[0];
|
|
let x = coords[2];
|
|
let y = coords[1];
|
|
let channel = coords[3];
|
|
let xf = f32(x);
|
|
let yf = f32(y);
|
|
let a1 = getTransforms(batch, 0);
|
|
let a2 = getTransforms(batch, 1);
|
|
let a3 = getTransforms(batch, 2);
|
|
let b1 = getTransforms(batch, 3);
|
|
let b2 = getTransforms(batch, 4);
|
|
let b3 = getTransforms(batch, 5);
|
|
let c1 = getTransforms(batch, 6);
|
|
let c2 = getTransforms(batch, 7);
|
|
let projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = uniforms.fillValue;
|
|
} else {
|
|
let inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
let inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
|
|
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
|
|
|
|
if (uniforms.interpolationModeId == 1) {
|
|
let coordY = i32(round(mapY));
|
|
let coordX = i32(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
let yFloor = floor(mapY);
|
|
let xFloor = floor(mapX);
|
|
let yCeil = yFloor + 1.0;
|
|
let xCeil = xFloor + 1.0;
|
|
let valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
|
|
let valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(coords[0], coords[1], coords[2], coords[3], outputValue);
|
|
}
|
|
}
|
|
`}};function Lpe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c??[d,p],g=[u,f,m,h],A=new zpe(g),x=o==="nearest"?1:2,y;switch(i){case"constant":y=1;break;case"reflect":y=2;break;case"wrap":y=3;break;case"nearest":y=4;break;default:y=1;break}let b=[{type:"int32",data:[x]},{type:"int32",data:[y]},{type:"float32",data:[l]}];return n.runWebGPUProgram(A,[r,a],"float32",b)}var Bpe={kernelName:Li,backendName:"webgpu",kernelFunc:Lpe};function Wpe(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],c=new Array(i-1),u=0;for(let m=0;m<i;m++)m!==a&&(c[u++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[a]=m;let g=sc({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),A=Ke({inputs:{x:g},backend:n,attrs:{shape:c}});f[m]=A,d.push(g)}return d.forEach(m=>n.disposeData(m.dataId)),f}var Vpe={kernelName:Bi,backendName:"webgpu",kernelFunc:Wpe},Upe=[ble,sue,aue,lue,fue,gue,yue,bue,Iue,Eue,$ue,Fue,Sle,Lue,Uue,que,Kue,Yue,ece,sce,ace,cce,pce,fce,gce,mce,yce,bce,wce,Nce,Sce,Cce,$ce,_ce,Fce,zce,Wce,Uce,Hce,kle,Mue,qce,Kce,Yce,Qce,tde,nde,rde,ode,lde,cde,pde,fde,oce,gde,yde,bde,Cue,wde,Sde,Cde,Rde,Dde,Nde,Pde,Tue,Fde,Mde,Lde,yle,Vde,Hde,qde,Kde,Jde,tpe,spe,ape,ipe,kue,Ipe,Tpe,cpe,ppe,Ape,mpe,xpe,bpe,wpe,lpe,lce,Epe,_pe,Mpe,Bpe,pue,Vpe,vde];for(let e of Upe)qr(e);var Gpe=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireBuffer(e,t){let n=xC(e,t);if(this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.usedBuffers.has(n)||this.usedBuffers.set(n,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(n).length>0){this.numFreeBuffers--;let r=this.freeBuffers.get(n).shift();return this.usedBuffers.get(n).push(r),r}this.numBytesAllocated+=e;let s=this.device.createBuffer({size:e,usage:t});return this.usedBuffers.get(n).push(s),s}releaseBuffer(e,t,n){if(this.freeBuffers==null)return;let s=xC(t,n);this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.freeBuffers.get(s).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let r=this.usedBuffers.get(s),a=r.indexOf(e);if(a<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");r.splice(a,1),this.numBytesUsed-=t}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}reset(){this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}dispose(){this.freeBuffers==null&&this.usedBuffers==null||(this.freeBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeBuffers=null,this.usedBuffers=null,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0)}};function xC(e,t){return`${e}_${t}`}var bC=class{constructor(){this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.lastUniformData=[],this.inputTexture=null,this.layout=null,this.lastPixelSize={width:0,height:0},this.disposed=!1,this.shaderKey="fromPixels",this.useImport=!1}updateOutputShape(e){v.arraysEqual(this.outputShape,e)||(this.outputShape=e,this.workPerThread=e[2],this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]))}makeFromPixelsSource(){let e=this.useImport?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
|
|
[[binding(1), group(0)]] var src: ${this.useImport?"texture_external":"texture_2d<f32>"};
|
|
|
|
${Fe()} {
|
|
${Le()}
|
|
let flatIndexBase = index * uniforms.numChannels;
|
|
let coords = getCoordsFromFlatIndex(flatIndexBase);
|
|
let values = ${e};
|
|
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
|
|
let flatIndex = flatIndexBase + i;
|
|
if (flatIndex < uniforms.size) {
|
|
result.numbers[flatIndex] = i32(floor(255.0 * values[i]));
|
|
}
|
|
}
|
|
}
|
|
`}getUserCode(){return this.makeFromPixelsSource()}setPipeline(e){this.pipeline=e}setUniform(e,t){if(!this.uniform){let n=e.createBuffer({size:t.length*4,usage:GPUBufferUsage.UNIFORM|GPUBufferUsage.COPY_DST});this.uniform=n}!t||t.length===this.lastUniformData.length&&t.every((n,s)=>n===this.lastUniformData[s])||(e.queue.writeBuffer(this.uniform,0,new Uint32Array(t)),this.lastUniformData=t)}makeInputTexture(e,t,n){return(!this.inputTexture||this.lastPixelSize.width!==t||this.lastPixelSize.height!==n)&&(this.inputTexture&&this.inputTexture.destroy(),this.inputTexture=e.createTexture({size:[t,n],format:"rgba8unorm",usage:GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING}),this.lastPixelSize.width=t,this.lastPixelSize.height=n),this.inputTexture}dispose(){this.disposed||(this.uniform&&this.uniform.destroy(),this.inputTexture&&this.inputTexture.destroy(),this.disposed=!0)}getLayout(e){return this.layout===null&&(this.layout=this.createTextureLayout(e)),this.layout}createTextureLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,texture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=e.createBindGroupLayout({entries:t}),s=e.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}},Hpe=class extends bC{constructor(){super(...arguments);this.layout=null,this.useImport=!0}getUserCode(){return this.makeFromPixelsSource()}getLayout(e){return this.layout===null&&(this.layout=this.createTextureImportLayout(e)),this.layout}createTextureImportLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,externalTexture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=e.createBindGroupLayout({entries:t}),s=e.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}},jpe=K().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),vC=class extends Ll{constructor(e,t=!1){super();if(this.commandQueueOwnedIds=new WeakSet,this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.disposed=!1,this.uploadWaitMs=0,this.downloadWaitMs=0,this.dispatchNumberInEncoder=0,!rx())throw new Error("WebGPU is not supported on this device");this.layoutCache={},this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=t,this.bufferManager=new Gpe(this.device),this.tensorMap=new _c(this,Jn()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),K().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return vC.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}flushDisposalQueue(){this.tensorDisposalQueue.forEach(e=>{this.maybeReleaseBuffer(e),this.tensorMap.delete(e)}),this.uniformDisposalQueue.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.byteSize,e.usage)),this.tensorDisposalQueue=[],this.uniformDisposalQueue=[]}disposeData(e,t=!1){if(this.tensorMap.has(e)){let n=this.tensorMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDisposalQueue.push(e),!1;this.maybeReleaseBuffer(e);let{complexTensorInfos:s}=this.tensorMap.get(e);s!=null&&(this.disposeData(s.real.dataId,!0),this.disposeData(s.imag.dataId,!0)),this.tensorMap.delete(e)}return!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}getBufferManager(){return this.bufferManager}acquireBuffer(e,t=this.defaultGpuBufferUsage()){return this.bufferManager.acquireBuffer(e,t)}maybeReleaseBuffer(e){let t=this.tensorMap.get(e);t!=null&&t.bufferInfo.buffer!=null&&(this.bufferManager.releaseBuffer(t.bufferInfo.buffer,t.bufferInfo.byteSize,t.bufferInfo.usage),t.bufferInfo.buffer=null)}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,n){if(n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()},r=v.sizeFromShape(t)*sx(n);return n==="bool"&&e instanceof Uint8Array&&(e=Int32Array.from(e)),this.tensorMap.set(s,{dtype:n,values:e,bufferInfo:{byteSize:r,usage:this.defaultGpuBufferUsage()},refCount:1}),s}move(e,t,n,s,r){if(s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a=v.sizeFromShape(n)*sx(s);this.tensorMap.set(e,{dtype:s,values:t,bufferInfo:{byteSize:a,usage:this.defaultGpuBufferUsage()},refCount:r})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.flushDisposalQueue()}getBuffer(e){return this.uploadToGPU(e),this.tensorMap.get(e).bufferInfo.buffer}getFromPixelsProgram(e){switch(e){case"copyExternal":return this.fromPixelProgram||(this.fromPixelProgram=new bC),this.fromPixelProgram;case"import":return this.fromPixelImportProgram||(this.fromPixelImportProgram=new Hpe),this.fromPixelImportProgram;default:v.assert(!1,()=>"Unsupported fromPixels shape");return}}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.endPass(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e){if(e.values!=null)return e.values;let t=this.acquireBuffer(e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e.bufferInfo.buffer,0,t,0,e.bufferInfo.byteSize),this.submitQueue(),await t.mapAsync(GPUMapMode.READ);let n=t.getMappedRange().slice(0);return t.unmap(),t!=null&&this.bufferManager.releaseBuffer(t,e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),K().getBool("WEBGPU_USE_PROFILE_TOOL")&&(v.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),n}convertAndCacheOnCPU(e,t){let n=this.tensorMap.get(e);return this.maybeReleaseBuffer(e),n.values=t,n.values}readSync(e){let t=this.tensorMap.get(e),{values:n}=t;if(n==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return n}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:n}=t;if(n!=null)return this.convertAndCacheOnCPU(e,n);let s;if(t.dtype==="complex64"){let r=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),a=r[0],o=r[1];s=N.mergeRealAndImagArrays(a,o)}else{let r=await this.getBufferData(t);s=V4(r,t.dtype)}return this.convertAndCacheOnCPU(e,s),s}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch{throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=v.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},i=await Promise.all(r);return o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,c)=>({name:a[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,o}getAndSavePipeline(e,t){return e in this.pipelineCache||(this.pipelineCache[e]=t()),this.pipelineCache[e]}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);return{offset:0,size:t.bufferInfo.byteSize,buffer:t.bufferInfo.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);t.bufferInfo.buffer==null&&(t.bufferInfo.buffer=this.acquireBuffer(t.bufferInfo.byteSize),t.values&&this.queue.writeBuffer(t.bufferInfo.buffer,0,t.values))}makeUniformsDataView(e){let t=this.acquireBuffer(e.byteLength,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);return this.queue.writeBuffer(t,0,e),{offset:0,size:e.byteLength,buffer:t}}arrayToDataView(e,t){let n=4,s=new DataView(new ArrayBuffer(t*n)),r=0;return e.forEach(a=>{let o=a.data;if(a.type!=="int32"&&a.type!=="float32"&&a.type!=="uint32")throw new Error(`${a.type} not supported!`);a.type==="int32"?o.forEach(i=>{s.setInt32(r*n,i,!0),r++}):a.type==="uint32"?o.forEach(i=>{s.setUint32(r*n,i,!0),r++}):o.forEach(i=>{s.setFloat32(r*n,i,!0),r++})}),s}computePadding(e){let t=0,n=0,s=0,r=[];return e.forEach((a,o)=>{a.data.length===0&&(a.data=[1]);let i;switch(a.data.length){case 0:i=1;break;case 1:i=1;break;case 2:i=2;break;case 3:i=4;break;case 4:i=4;break;default:v.assert(!1,()=>`Unsupported ${a.data.length}D shape`)}n=Math.ceil(t/i)*i-t;for(let l=0;l<n;++l)r.push({type:a.type,data:[0]}),s++;r.push({type:a.type,data:a.data}),s=s+a.data.length,t+=a.data.length+n}),this.arrayToDataView(r,s)}createLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}});for(let r=0;r<e;r++)t.push({binding:r+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"read-only-storage"}});t.push({binding:e+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"uniform"}});let n=this.device.createBindGroupLayout({entries:t}),s=this.device.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}getCachedOrCreateLayout(e){return e in this.layoutCache||(this.layoutCache[e]=this.createLayout(e)),this.layoutCache[e]}runWebGPUProgram(e,t,n,s,r){if(!r){if(r=this.makeTensorInfo(e.outputShape,n),v.sizeFromShape(r.shape)===0){let E=this.tensorMap.get(r.dataId);return E.values=v.getTypedArrayFromDType(r.dtype,0),r}this.uploadToGPU(r.dataId)}let a=[{type:"float32",data:[NaN]}],o=t.concat(r).map(E=>E.shape),i="int32";o.map(E=>{a.push({type:i,data:E})});let l=v.computeStrides(r.shape);a.push({type:i,data:l}),e.size!=null&&a.push({type:i,data:[e.size]}),a.push({type:"uint32",data:e.dispatch}),s&&(a=[...a,...s]);let c=null,u=this.computePadding(a),d=u.byteLength;c=this.makeUniformsDataView(u);let p=t.map((E,D)=>{if(E.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(E.dataId),{dtype:this.tensorMap.get(E.dataId).dtype,shape:E.shape,name:e.variableNames[D]}}),h=p.map(E=>E.dtype).concat(r.dtype),f=p.map(E=>N.getBroadcastDims(E.shape,r.shape)),m=p.map(E=>v.arraysEqual(E.shape,r.shape)).join("_"),g=f.map(E=>E.join("_")).join(";"),A=cC(e,o,h,g,m),{bindGroupLayout:x,pipelineLayout:y}=this.getCachedOrCreateLayout(e.variableNames.length),b=this.getAndSavePipeline(A,()=>uC(this.device,e,y,p,r)),w=this.activeTimers!=null,S=Tce(this.device,x,t.map(E=>this.tensorToBinding(E)),this.tensorToBinding(r),c);this.ensureCommandEncoderReady();let C=this.getComputePass();if(w&&this.supportTimeQuery&&C.writeTimestamp(this.querySet,0),C.setPipeline(b),C.setBindGroup(0,S),C.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),w&&this.supportTimeQuery&&C.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(E=>{this.commandQueueOwnedIds.add(E.dataId)}),this.commandQueueOwnedIds.add(r.dataId),c){let E={byteSize:d,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:c.buffer};this.uniformDisposalQueue.push(E)}return K().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),w&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),r}runFromPixelsProgram(e,t,n,s,r){let a=this.device.createBindGroup({layout:n.bindGroupLayout,entries:[{binding:0,resource:{buffer:t}},{binding:1,resource:s},{binding:2,resource:{buffer:e.uniform}}]});this.ensureCommandEncoderReady();let o=this.getComputePass(),i=this.activeTimers!=null;i&&this.supportTimeQuery&&o.writeTimestamp(this.querySet,0),o.setPipeline(e.pipeline),o.setBindGroup(0,a),o.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),i&&this.supportTimeQuery&&o.writeTimestamp(this.querySet,1),this.commandQueueOwnedIds.add(r),this.submitQueue(),i&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)})}async getTimeFromQuerySet(e){let t=this.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),n=this.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,n,0,16),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=new BigUint64Array(n.getMappedRange()),r=Number(s[1]-s[0]);return n.unmap(),this.bufferManager.releaseBuffer(n,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r/1e6}shouldExecuteOnCPU(e,t=jpe){return K().getBool("WEBGPU_CPU_FORWARD")&&e.every(n=>this.tensorMap.get(n.dataId).bufferInfo.buffer==null&&v.sizeFromShape(n.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDisposalQueue.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.fromPixelProgram&&this.fromPixelProgram.dispose(),this.fromPixelImportProgram&&this.fromPixelImportProgram.dispose(),this.disposed=!0)}},px=vC;px.nextDataId=0;var wC={};Me(wC,{WebGPUBackend:()=>px,webgpu_util:()=>W4});gu.isBrowser()&&rx()&&Yi("webgpu",async()=>{K().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:K().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),n={},s=t.features.has("timestamp-query");s?n={requiredFeatures:["timestamp-query"]}:console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.");let r=await t.requestDevice(n);return new px(r,s)},3);var en;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(en||(en={}));var rp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(rp||(rp={}));var kC;function qpe(e){kC=e.wasm.cwrap(mo,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Xpe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s,p=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let E=n.dataIdMap.get(o.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);f=E.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=rp[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let A=l?r.shape[2]:r.shape[1],x=c?a.shape[1]:a.shape[2],y=Xi.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)),b=n.makeOutput([...y,A,x],r.dtype),w=n.dataIdMap.get(b.dataId).id,S=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(a.shape).buffer);return kC(p,S,r.shape.length,h,C,a.shape.length,l,c,g,f,m,d||0,w),b}var Kpe={kernelName:mo,backendName:"wasm",setupFunc:qpe,kernelFunc:Xpe};function In(e,t){let n;function s(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function r(a){let{backend:o,inputs:{x:i}}=a,l=o.dataIdMap.get(i.dataId).id,c=o.makeOutput(i.shape,t||i.dtype),u=o.dataIdMap.get(c.dataId).id;return v.sizeFromShape(c.shape)===0||n(l,en[i.dtype],u),c}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:r}}var Zpe=In(ni);function Gn(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:c,b:u}=l,d=i.dataIdMap.get(c.dataId).id,p=i.dataIdMap.get(u.dataId).id,h=n??c.dtype,f=N.assertAndGetBroadcastShape(c.shape,u.shape),m=i.makeOutput(f,h);if(v.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(c.shape).buffer),A=new Uint8Array(new Int32Array(u.shape).buffer),x=i.dataIdMap.get(m.dataId).id,y=()=>s(d,g,c.shape.length,p,A,u.shape.length,en[c.dtype],x);if(t&&c.dtype==="float32")return y(),m;let b=N.getBroadcastDims(c.shape,f),w=N.getBroadcastDims(u.shape,f),S=b.every((E,D)=>E===D),C=w.every((E,D)=>E===D);if(S&&C)return y(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var Ype=!0,Jpe=Gn(Ur,Ype),SC;function Qpe(e){SC=e.wasm.cwrap(ka,null,["array","number","number","number"])}function ehe(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return SC(a,r.length,en[s.dtype],o),s}var the={kernelName:ka,backendName:"wasm",setupFunc:Qpe,kernelFunc:ehe};function Mm(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var nhe={kernelName:Wa,backendName:"wasm",kernelFunc:Mm},IC;function she(e){IC=e.wasm.cwrap(ho,null,["number","array","number","number","number","array","number"])}function ic(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=ahe(t.x.shape,s.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=rhe(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let f=Mm({inputs:t,backend:n});return f.shape=i,f}let c=n.makeOutput(i,l.dtype),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(c.dataId).id,p=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return IC(u,h,l.shape.length,en[l.dtype],d,p,a.length),c}function rhe(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function ahe(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var ohe={kernelName:ho,backendName:"wasm",kernelFunc:ic,setupFunc:she};function Bo(e,t,n){let s=e.shape,r=e.shape.length,a=v.parseAxisParam(t,s),o=a,i=N.getAxesPermutation(o,r),l=null,c=!1;if(i!=null){let u=new Array(r);for(let h=0;h<u.length;h++)u[h]=s[i[h]];o=N.getInnerMostAxes(o.length,r),l=ic({inputs:{x:e},attrs:{perm:i},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(c=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:c}}var CC;function ihe(e){CC=e.wasm.cwrap(Gl,null,["number, number, number"])}function lhe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Bo(o,r,t);if(h){let y=t.dataIdMap.get(u.dataId).id;c=u,l=y}let f=c.shape.length;N.assertAxesAreInnerMostDims("all",d,f);let[m,g]=N.computeOutAndReduceShapes(c.shape,d),A=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;CC(l,A,y)}if(h&&t.disposeData(u.dataId),a){let y=N.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var uhe={kernelName:Gl,backendName:"wasm",setupFunc:ihe,kernelFunc:lhe},TC;function che(e){TC=e.wasm.cwrap(Hl,null,["number, number, number"])}function dhe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Bo(o,r,t);if(h){let y=t.dataIdMap.get(u.dataId).id;c=u,l=y}let f=c.shape.length;N.assertAxesAreInnerMostDims("any",d,f);let[m,g]=N.computeOutAndReduceShapes(c.shape,d),A=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;TC(l,A,y)}if(h&&t.disposeData(u.dataId),a){let y=N.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var phe={kernelName:Hl,backendName:"wasm",setupFunc:che,kernelFunc:dhe},NC;function hhe(e){NC=e.wasm.cwrap(Sa,null,["number","number","number","number","number"])}function fhe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:c,axes:u,inputWasTransposed:d}=Bo(a,r,t);if(d){let A=t.dataIdMap.get(c.dataId).id;A!==o&&(l=c,i=A)}let p=l.shape.slice(0,-1),h=t.makeOutput(p,"int32"),f=t.dataIdMap.get(h.dataId).id,m=v.sizeFromShape(h.shape),g=l.shape[u[0]];return NC(i,en[l.dtype],m,g,f),d&&t.disposeData(c.dataId),h}var mhe={kernelName:Sa,backendName:"wasm",kernelFunc:fhe,setupFunc:hhe},EC;function ghe(e){EC=e.wasm.cwrap(Ia,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ahe(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=n,u=N.computePool2DInfo(r.shape,o,i,1,l,c),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,A=u.strideHeight,x=u.strideWidth,y=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let b=s.makeOutput(u.outShape,"float32"),w=s.dataIdMap.get(b.dataId).id;return EC(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,x,y,w),b}var yhe={kernelName:Ia,backendName:"wasm",setupFunc:ghe,kernelFunc:Ahe};function rs(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a);return v.assert(a===v.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var xhe={kernelName:Ti,backendName:"wasm",kernelFunc:rs},RC;function bhe(e){RC=e.wasm.cwrap(Ca,null,["number","array","number","number","array","number","number","number","number"])}function vhe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),A=v.sizeFromShape(m),y=Xi.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([p,h]);v.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,u,p]:[g,p,u],w=i?[A,h,d]:[A,d,h],S=rs({inputs:{x:r},backend:n,attrs:{shape:b}}),C=rs({inputs:{x:a},backend:n,attrs:{shape:w}}),E=n.dataIdMap.get(S.dataId).id,D=n.dataIdMap.get(C.dataId).id,O=o?S.shape[2]:S.shape[1],_=i?C.shape[1]:C.shape[2],F=Math.max(g,A),T=n.makeOutput([F,O,_],S.dtype),M=n.dataIdMap.get(T.dataId).id,U=new Uint8Array(new Int32Array(S.shape).buffer),q=new Uint8Array(new Int32Array(C.shape).buffer);return RC(E,U,S.shape.length,D,q,C.shape.length,o,i,M),n.disposeData(S.dataId),n.disposeData(C.dataId),T.shape=y,T}var whe={kernelName:Ca,backendName:"wasm",setupFunc:bhe,kernelFunc:vhe};function ap(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=Ft.parseSliceParams(t,n,s),i=Ft.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),c=r.makeOutput(o,t.dtype),u=v.computeStrides(t.shape),d=r.dataIdMap.get(c.dataId);if(i){let f=Ft.computeFlatOffset(a,u);return t.dtype==="string"?d.stringBytes=l.slice(f,f+v.sizeFromShape(o)):r.typedArrayFromHeap(c).set(l.subarray(f,f+v.sizeFromShape(o))),c}if(t.dtype==="string"){let f=um(l,a,o,t.shape,t.dtype);return d.stringBytes=f,c}let p=r.typedArrayFromHeap(c),h=t.shape.length;if(h===2)khe(l,u[0],p,a,o);else if(h===3)She(l,u[0],u[1],p,a,o);else if(h===4)Ihe(l,u[0],u[1],u[2],p,a,o);else{let f=um(l,a,o,t.shape,t.dtype);p.set(f)}return c}function khe(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let c=o;c<l;c++){let u=c*t+i;n.set(e.subarray(u,u+r[1]),a),a+=r[1]}}function She(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],c=r[2],u=i+a[0],d=l+a[1];for(let p=i;p<u;p++)for(let h=l;h<d;h++){let f=p*t+h*n+c;s.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function Ihe(e,t,n,s,r,a,o){let i=0,l=a[0],c=a[1],u=a[2],d=l+o[0],p=c+o[1],h=u+o[2],f=a[3];for(let m=l;m<d;m++)for(let g=c;g<p;g++)for(let A=u;A<h;A++){let x=m*t+g*n+A*s+f;r.set(e.subarray(x,x+o[3]),i),i+=o[3]}}var Che={kernelName:Di,backendName:"wasm",kernelFunc:ap};function The(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((A,x)=>A*x),l=N.getReshaped(r.shape,a,i),c=N.getPermuted(l.length,a.length),u=N.getReshapedPermuted(r.shape,a,i),d=N.getSliceBeginCoords(o,a.length),p=N.getSliceSize(u,o,a.length),h=rs({inputs:{x:r},backend:n,attrs:{shape:l}}),f=ic({inputs:{x:h},backend:n,attrs:{perm:c}}),m=rs({inputs:{x:f},backend:n,attrs:{shape:u}}),g=ap({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var Nhe={kernelName:si,backendName:"wasm",kernelFunc:The};function op(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var Ehe={kernelName:Ta,backendName:"wasm",kernelFunc:op},Rhe=In(Na),$C;function $he(e){$C=e.wasm.cwrap(Gr,null,["number","number","number","number"])}function Dhe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id;return $C(i,a,o,c),l}var _he={kernelName:Gr,backendName:"wasm",setupFunc:$he,kernelFunc:Dhe};function DC(e){let{inputs:t,backend:n}=e,s=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=N.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>v.sizeFromShape(h.shape)>0);if(a.length===1)return Mm({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(v.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(N.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(y=>{let b=v.sizeFromShape(y.shape.slice(s));return rs({inputs:{x:y},backend:n,attrs:{shape:[-1,b]}})}),f=h.map(y=>({vals:n.readSync(y.dataId),shape:y.shape}));r=N.computeOutShape(h.map(y=>y.shape),1);let m=h[0].shape[0]===1,g=wy(f,r,t[0].dtype,m),A=N.computeOutShape(a.map(y=>y.shape),s);o.shape=A;let x=n.dataIdMap.get(o.dataId);return x.stringBytes=N.fromStringArrayToUint8(g),h.forEach(y=>n.disposeData(y.dataId)),o}let l=v.sizeFromShape(a[0].shape.slice(0,s)),c=0,u=a.map(h=>{let f=v.sizeFromShape(h.shape.slice(s));return c+=f,f}),d=a.map(h=>n.typedArrayFromHeap(h)),p=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let f=h*c;for(let m=0;m<d.length;m++){let g=u[m],A=h*g,x=d[m].subarray(A,A+g);p.set(x,f),f+=g}}return o}var Phe={kernelName:ri,backendName:"wasm",kernelFunc:DC},_C;function Fhe(e){_C=e.wasm.cwrap(Ea,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ohe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:d,dataFormat:p}=n,h=N.convertConv2DDataFormat(p),f=N.computeConv2DInfo(r.shape,a.shape,l,c,u,d,!1,h),m=f.filterHeight,g=f.filterWidth,A=f.padInfo.top,x=f.padInfo.right,y=f.padInfo.bottom,b=f.padInfo.left,w=f.dilationHeight,S=f.dilationWidth,C=f.strideHeight,E=f.strideWidth,D=f.inChannels,O=f.outChannels,_=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let F=s.makeOutput(f.outShape,"float32"),T=s.dataIdMap.get(F.dataId).id;return _C(o,r.shape[0],r.shape[1],r.shape[2],i,m,g,A,x,y,b,_,w,S,C,E,D,O,T),F}var Mhe={kernelName:Ea,backendName:"wasm",setupFunc:Fhe,kernelFunc:Ohe},PC;function zhe(e){PC=e.wasm.cwrap(Ra,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Lhe(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,inputShape:u}=s,d=1,p=N.convertConv2DDataFormat(l),h=N.computeConv2DInfo(u,a.shape,o,d,i,c,!1,p),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:A,inHeight:x,inWidth:y,outChannels:b,outHeight:w,outWidth:S,strideHeight:C,strideWidth:E}=h,D=m-1-h.padInfo.top,O=g-1-h.padInfo.left,_=h.dataFormat==="channelsLast",F=v.computeStrides(h.inShape),T=v.computeStrides(r.shape),[M,U,q]=v.computeStrides(a.shape),j=F[0],X=_?F[1]:F[2],J=_?F[2]:1,te=_?1:F[1],ne=T[0],ae=_?T[1]:T[2],se=_?T[2]:1,re=_?1:T[1],ue=t.makeOutput(h.inShape,"float32"),ye=t.dataIdMap.get(ue.dataId).id,ve=t.dataIdMap.get(r.dataId).id,Ie=t.dataIdMap.get(a.dataId).id;return PC(ve,Ie,f,m,g,x,y,A,w,S,b,C,E,D,O,M,U,q,j,X,J,te,ne,ae,se,re,ye),ue}var Bhe={kernelName:Ra,backendName:"wasm",setupFunc:zhe,kernelFunc:Lhe},Whe=In($a),Vhe=In(Da),hx;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(hx||(hx={}));var FC;function Uhe(e){FC=e.wasm.cwrap(oi,null,["number","number","number","number","array","number","number","number","number","number"])}function Ghe(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:c}=n,u=l.shape[0],[d,p]=o,h=[u,d,p,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=op({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,A=t.dataIdMap.get(l.dataId).id,x=t.dataIdMap.get(c.dataId).id,y=t.makeOutput(h,"float32"),b=t.dataIdMap.get(y.dataId).id,w=new Uint8Array(new Int32Array(i.shape).buffer);return FC(g,A,x,u,w,d,p,hx[r],a,b),m!=null&&t.disposeData(m.dataId),y}var Hhe={kernelName:oi,backendName:"wasm",setupFunc:Uhe,kernelFunc:Ghe},OC;function jhe(e){OC=e.wasm.cwrap(ai,null,["number","number","number","number","number","number"])}function qhe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let c=N.getAxesPermutation([a],l),u=r;c!==null&&(u=ic({inputs:{x:r},attrs:{perm:c},backend:n}));let d=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumsum",[d],l);let p=n.makeOutput(u.shape,u.dtype),h=u.shape[d],f=n.dataIdMap.get(u.dataId).id,m=n.dataIdMap.get(p.dataId).id;OC(f,o?1:0,i?1:0,h,m,en[r.dtype]);let g=p;if(c!==null){let A=N.getUndoAxesPermutation(c);g=ic({inputs:{x:p},attrs:{perm:A},backend:n}),n.disposeData(u.dataId),n.disposeData(p.dataId)}return g}var Xhe={kernelName:ai,backendName:"wasm",setupFunc:jhe,kernelFunc:qhe},MC;function Khe(e){MC=e.wasm.cwrap(ii,null,["number","number","number","array","number","array","array","number","number"])}function Zhe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(r.dataId).id,x=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),w=t.dataIdMap.get(m.dataId).id;return MC(A,a,o==="NHWC"?1:0,x,r.shape.length-1,y,b,f.length,w),m}var Yhe={kernelName:ii,backendName:"wasm",setupFunc:Khe,kernelFunc:Zhe},zC;function Jhe(e){zC=e.wasm.cwrap(_a,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Qhe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:d}=n,p=c??[1,1],h=N.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,A=h.padInfo.right,x=h.padInfo.bottom,y=h.padInfo.left,b=h.dilationHeight,w=h.dilationWidth,S=h.strideHeight,C=h.strideWidth,E=h.inChannels,D=h.outChannels,O=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let _=s.makeOutput(h.outShape,"float32"),F=s.dataIdMap.get(_.dataId).id;return zC(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,A,x,y,O,b,w,S,C,E,D,F),_}var efe={kernelName:_a,backendName:"wasm",setupFunc:Jhe,kernelFunc:Qhe},tfe=In(Fa),nfe=!1,sfe=Gn(li,nfe,"bool"),rfe=In(Oa,"float32");function fx(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),rs({inputs:{x:r},backend:s,attrs:{shape:i}})}var afe={kernelName:ui,backendName:"wasm",kernelFunc:fx};function LC(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var ofe={kernelName:Ql,backendName:"wasm",kernelFunc:LC},BC;function ife(e){BC=e.wasm.cwrap(di,null,["number","number","number","number","number","number"])}function lfe(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,c,u]=s.shape;return BC(a,i,l,c,u,o),r}var ufe={kernelName:di,backendName:"wasm",kernelFunc:lfe,setupFunc:ife},cfe=In(Ma),dfe=!1,pfe=Gn(za,dfe),WC;function hfe(e){WC=e.wasm.cwrap(La,null,["number","number","number","number","number","number","number"])}function ffe(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:c}=n,u=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=c!=null?t.dataIdMap.get(c.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(v.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return WC(u,d,p,h,f,r,g),m}var mfe={kernelName:La,backendName:"wasm",setupFunc:hfe,kernelFunc:ffe},VC;function gfe(e){VC=e.wasm.cwrap(go,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Afe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=N.computeConv2DInfo(r.shape,a.shape,l,u,c,p),g=rp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,y=m.outChannels,b=0;if(o!=null){let se=s.dataIdMap.get(o.dataId);if(se.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${se.shape.length}.`);if(se.shape[0]!==y)throw new Error(`FusedConv2D bias shape (${se.shape}) does not match the number of output channels (${y})`);b=se.id}let w=m.filterHeight,S=m.filterWidth,C=m.padInfo.top,E=m.padInfo.right,D=m.padInfo.bottom,O=m.padInfo.left,_=m.dilationHeight,F=m.dilationWidth,T=m.strideHeight,M=m.strideWidth,U=m.inChannels,q=m.padInfo.type==="SAME"?1:0,j=m.batchSize,X=m.inHeight,J=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let te=s.makeOutput(m.outShape,"float32"),ne=s.dataIdMap.get(te.dataId).id,ae=i==null?0:s.dataIdMap.get(i.dataId).id;return VC(A,j,X,J,x,w,S,b,C,E,D,O,q,_,F,T,M,U,y,g,ae,f||0,ne),te}var yfe={kernelName:go,backendName:"wasm",setupFunc:gfe,kernelFunc:Afe},UC;function xfe(e){UC=e.wasm.cwrap(Ao,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function bfe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=N.computeConv2DInfo(r.shape,a.shape,l,u,c,p,!0),g=rp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,y=m.outChannels,b=0;if(o!=null){let se=s.dataIdMap.get(o.dataId);if(se.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${se.shape.length}.`);if(se.shape[0]!==y)throw new Error(`FusedDepthwiseConv2D bias shape (${se.shape}) does not match the number of output channels (${y})`);b=se.id}let w=m.filterHeight,S=m.filterWidth,C=m.padInfo.top,E=m.padInfo.right,D=m.padInfo.bottom,O=m.padInfo.left,_=m.dilationHeight,F=m.dilationWidth,T=m.strideHeight,M=m.strideWidth,U=m.inChannels,q=m.padInfo.type==="SAME"?1:0,j=m.batchSize,X=m.inHeight,J=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let te=s.makeOutput(m.outShape,"float32"),ne=s.dataIdMap.get(te.dataId).id,ae=i==null?0:s.dataIdMap.get(i.dataId).id;return UC(A,j,X,J,x,w,S,b,C,E,D,O,q,_,F,T,M,U,y,g,ae,f||0,ne),te}var vfe={kernelName:Ao,backendName:"wasm",setupFunc:xfe,kernelFunc:bfe},GC;function wfe(e){GC=e.wasm.cwrap(hi,null,["number","number","number","number","number","number","array","number"])}function kfe(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=g2.prepareAndValidate(s,r),c=t.makeOutput(a,s.dtype);if(o===0)return c;let u=r.shape,d=u[u.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),A=t.dataIdMap.get(c.dataId).id;return GC(h,en[s.dtype],m,o,d,i,g,A),c}var Sfe={kernelName:hi,backendName:"wasm",setupFunc:wfe,kernelFunc:kfe},HC;function Ife(e){HC=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Cfe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],c=t.readSync(a.dataId),u=r.shape[l];for(let D=0;D<c.length;++D){let O=c[D];v.assert(O<=u-1&&O>=0,()=>`GatherV2: the index value ${O} is not in [0, ${u-1}]`)}let d=N.segment_util.collectGatherOpShapeInfo(r,a,l,i),p=rs({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=v.sizeFromShape(a.shape),f=rs({inputs:{x:a},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),m=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(m,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let A=p.shape.length-1,y=t.dataIdMap.get(p.dataId).id,w=t.dataIdMap.get(f.dataId).id,S=t.dataIdMap.get(g.dataId).id,C=new Uint8Array(new Int32Array(v.computeStrides(p.shape)).buffer),E=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer);return HC(y,en[r.dtype],C,A,w,d.batchSize,E,S),t.disposeData(p.dataId),t.disposeData(f.dataId),g.shape=d.outputShape,g}var Tfe={kernelName:pi,backendName:"wasm",setupFunc:Ife,kernelFunc:Cfe},Nfe=!1,Efe=Gn(fi,Nfe,"bool"),Rfe=!1,$fe=Gn(Ba,Rfe,"bool"),jC;function Dfe(e){jC=e.wasm.cwrap(mi,null,["number","number","number","number"])}function _fe(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;jC(r,en[t.dtype],n,o)}return a}var Pfe={kernelName:mi,backendName:"wasm",setupFunc:Dfe,kernelFunc:_fe},Ffe=!1,Ofe=Gn(gi,Ffe,"bool"),Mfe=!1,zfe=Gn(Ai,Mfe,"bool"),Lfe=In(Va),Bfe=!1,Wfe=Gn(yi,Bfe,"bool"),qC;function Vfe(e){qC=e.wasm.cwrap(Ua,null,["number","number","number","number"])}function Ufe(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Bo(o,r,t);if(h){let y=t.dataIdMap.get(u.dataId).id;c=u,l=y}let f=c.shape.length;N.assertAxesAreInnerMostDims("max",d,f);let[m,g]=N.computeOutAndReduceShapes(c.shape,d),A=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;qC(l,en[o.dtype],A,y)}if(h&&t.disposeData(u.dataId),a){let y=N.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var Gfe={kernelName:Ua,backendName:"wasm",setupFunc:Vfe,kernelFunc:Ufe},Hfe=!1,jfe=Gn(Ga,Hfe),XC;function qfe(e){XC=e.wasm.cwrap(Ha,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Xfe(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=n,u=N.computePool2DInfo(r.shape,o,i,1,l,c),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,A=u.dilationHeight,x=u.dilationWidth,y=u.strideHeight,b=u.strideWidth,w=u.inChannels,S=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let C=s.makeOutput(u.outShape,"float32"),E=s.dataIdMap.get(C.dataId).id;return XC(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,x,y,b,w,S,E),C}var Kfe={kernelName:Ha,backendName:"wasm",setupFunc:qfe,kernelFunc:Xfe},KC;function Zfe(e){KC=e.wasm.cwrap(ja,null,["number, number, number"])}function Yfe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Bo(o,r,t),f=d;if(h){let b=t.dataIdMap.get(u.dataId).id;b!==i&&(c=u,l=b,f=N.getInnerMostAxes(f.length,c.shape.length))}N.assertAxesAreInnerMostDims("mean",f,c.shape.length);let[m,g]=N.computeOutAndReduceShapes(c.shape,f),A=v.sizeFromShape(g),x=c;c.dtype!=="float32"&&(x=op({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(x.dataId).id);let y=t.makeOutput(m,"float32");if(v.sizeFromShape(c.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;KC(l,A,b)}if(h&&t.disposeData(u.dataId),a){let b=N.expandShapeToKeepDim(y.shape,p);y.shape=b}return c.dtype!=="float32"&&t.disposeData(x.dataId),y}var Jfe={kernelName:ja,backendName:"wasm",setupFunc:Zfe,kernelFunc:Yfe},ZC;function Qfe(e){ZC=e.wasm.cwrap(qa,null,["number","number","number","number"])}function eme(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Bo(o,r,t);if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(c=u,l=y)}let f=c.shape.length;N.assertAxesAreInnerMostDims("min",d,f);let[m,g]=N.computeOutAndReduceShapes(c.shape,d),A=v.sizeFromShape(g),x=t.makeOutput(m,c.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;ZC(l,en[o.dtype],A,y)}if(h&&t.disposeData(u.dataId),a){let y=N.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var tme={kernelName:qa,backendName:"wasm",setupFunc:Qfe,kernelFunc:eme},nme=!1,sme=Gn(Xa,nme),mx;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(mx||(mx={}));var YC;function rme(e){YC=e.wasm.cwrap(Ka,null,["number","array","number","number","array","array","number","number"])}function ame(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=s.map(f=>f[0]),d=s.map(f=>f[1]),p=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(d).buffer);return YC(o,c,t.shape.length,en[t.dtype],p,h,mx[r],l),i}var ome={kernelName:Ka,backendName:"wasm",kernelFunc:ame,setupFunc:rme},ime=!0,lme=Gn(Za,ime),ume=In(xi);function gx(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var JC;function cme(e){JC=e.wasm.cwrap(vi,"number",["number","number","number","number","number"])}function dme(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,c=t.dataIdMap.get(i.dataId).id,u=t.dataIdMap.get(l.dataId).id,d=JC(c,u,a,r,o),{pSelectedIndices:p,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=gx(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",p)}var pme={kernelName:vi,backendName:"wasm",setupFunc:cme,kernelFunc:dme},QC;function hme(e){QC=e.wasm.cwrap(ou,"number",["number","number","number","number","number","bool"])}function fme(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=QC(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=gx(t,p);t.wasm._free(m);let A=t.makeOutput([f],"int32",h),x=t.makeOutput([],"int32",g);return[A,x]}var mme={kernelName:ou,backendName:"wasm",setupFunc:hme,kernelFunc:fme},e6;function gme(e){e6=e.wasm.cwrap(wi,"number",["number","number","number","number","number","number"])}function Ame(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=e6(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=gx(t,p);t.wasm._free(g);let A=t.makeOutput([f],"int32",h),x=t.makeOutput([f],"float32",m);return[A,x]}var yme={kernelName:wi,backendName:"wasm",setupFunc:gme,kernelFunc:Ame},xme=!1,bme=Gn(bi,xme,"bool"),t6;function vme(e){t6=e.wasm.cwrap(Si,null,["number","number","number","number","number"])}function wme(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),c=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return t6(d,a,o,i,c),l}var kme={kernelName:Si,backendName:"wasm",setupFunc:vme,kernelFunc:wme};function Sme(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var Ime={kernelName:ki,backendName:"wasm",kernelFunc:Sme};function Cme(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return fx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=fx({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=DC({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeData(u.dataId)),c}var Tme={kernelName:Ii,backendName:"wasm",kernelFunc:Cme},n6;function Nme(e){n6=e.wasm.cwrap(Ya,null,["number","array","number","number","array","array","number","number"])}function Eme(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(v.sizeFromShape(t.shape)===0)return LC({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=s.map(m=>m[0]),p=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(d).buffer),f=new Uint8Array(new Int32Array(p).buffer);return n6(o,u,t.shape.length,en[t.dtype],h,f,r,c),i}var s6={kernelName:Ya,backendName:"wasm",kernelFunc:Eme,setupFunc:Nme},Rme=!1,$me=Gn(Ja,Rme),r6;function Dme(e){r6=e.wasm.cwrap(Qa,null,["number","number","number"])}function _me(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=a,l=s,c=l;l.dtype!=="float32"&&(c=op({backend:n,inputs:{x:s},attrs:{dtype:"float32"}}),i=n.dataIdMap.get(c.dataId).id);let u=n.makeOutput(s.shape,"float32"),d=n.dataIdMap.get(u.dataId).id;return r6(i,o,d),l.dtype!=="float32"&&n.disposeData(c.dataId),u}var Pme={kernelName:Qa,backendName:"wasm",setupFunc:Dme,kernelFunc:_me},a6;function Fme(e){a6=e.wasm.cwrap(Ci,null,["number","number","number","number"])}function Ome(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Bo(o,r,t),f=d;if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(c=u,l=y,f=N.getInnerMostAxes(f.length,c.shape.length))}N.assertAxesAreInnerMostDims("prod",f,c.shape.length);let[m,g]=N.computeOutAndReduceShapes(c.shape,f),A=v.sizeFromShape(g),x=t.makeOutput(m,c.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;a6(l,A,en[x.dtype],y)}if(h&&t.disposeData(u.dataId),a){let y=N.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var Mme={kernelName:Ci,backendName:"wasm",setupFunc:Fme,kernelFunc:Ome},zme=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=Iy(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},Lme={kernelName:iu,backendName:"wasm",kernelFunc:zme},Bme=!0,Wme=Gn(Pa,Bme),Vme=In(eo),Ume=In(no),o6;function Gme(e){o6=e.wasm.cwrap(to,null,["number","number","number","number","number","number","number","number","number","number"])}function Hme(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,[u,d,p,h]=r.shape,f=[u,l,c,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=op({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let A=m.id,x=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return x;let y=t.dataIdMap.get(x.dataId).id;return o6(A,u,d,p,h,l,c,a?1:0,o?1:0,y),g!=null&&t.disposeData(g.dataId),x}var jme={kernelName:to,backendName:"wasm",setupFunc:Gme,kernelFunc:Hme},i6;function qme(e){i6=e.wasm.cwrap(Ni,null,["number","array","number","array","number","number"])}function Xme(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=v.parseAxisParam(a,r.shape);if(r.shape.length===0)return Mm({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);i6(l,u,o.length,d,r.shape.length,c);let p=rs({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),p}var Kme={kernelName:Ni,backendName:"wasm",kernelFunc:Xme,setupFunc:qme},l6;function Zme(e){l6=e.wasm.cwrap(Vi,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Yme(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[d,p,h,f]=r.shape,[m,g]=N.getImageCenter(i,p,h),A=o===0,x=255,y=typeof o=="number"?[o,o,o,A?0:x]:[...o,x],b=new Uint8Array(new Int32Array(y).buffer);return l6(c,d,p,h,f,a,m,g,b,y.length,u),l}var Jme={kernelName:Vi,backendName:"wasm",kernelFunc:Yme,setupFunc:Zme},Qme=In(Ei),e0e=In(so),u6;function t0e(e){u6=e.wasm.cwrap(Ri,null,["number","number","number","number","number","number","array","number","number"])}function n0e(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(v.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=A2.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,A=new Uint8Array(new Int32Array(d).buffer),x=t.dataIdMap.get(i.dataId).id;return u6(f,g,en[a.dtype],l,c,u,A,p,x),i}var s0e={kernelName:Ri,backendName:"wasm",setupFunc:t0e,kernelFunc:n0e},c6;function r0e(e){c6=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function a0e(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,c=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(c.dataId).id,d=s.shape.length,p=r.shape.length,h=d===0||d>1||p===1?1:v.sizeFromShape(r.shape.slice(1));return c6(o,i,l,h,u),c}var o0e={kernelName:$i,backendName:"wasm",kernelFunc:a0e,setupFunc:r0e},d6;function i0e(e){d6=e.wasm.cwrap(ao,null,["number","number"])}function l0e(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||d6(s,a),r}var u0e={kernelName:"Sigmoid",backendName:"wasm",setupFunc:i0e,kernelFunc:l0e},c0e=In(ro),p6;function d0e(e){p6=e.wasm.cwrap(lo,null,["number","number","number","number"])}function p0e(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=v.sizeFromShape(n.shape)/i;return v.sizeFromShape(a.shape)===0||p6(r,o,i,l),a}var h0e={kernelName:lo,backendName:"wasm",setupFunc:d0e,kernelFunc:p0e};function f0e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let S=1+a.length;S<r.shape.length;++S)l.push([0,0]);let c=s6.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=N.getReshaped(c.shape,a,i,!1),d=N.getPermuted(u.length,a.length,!1),p=N.getReshapedPermuted(c.shape,a,i,!1),m=rs({inputs:{x:c},backend:n,attrs:{shape:u}}),x=ic({inputs:{x:m},backend:n,attrs:{perm:d}}),w=rs({inputs:{x},backend:n,attrs:{shape:p}});return n.disposeData(c.dataId),n.disposeData(m.dataId),n.disposeData(x.dataId),w}var m0e={kernelName:Pi,backendName:"wasm",kernelFunc:f0e};function g0e(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=v.parseAxisParam(o,r.shape)[0],l=N.prepareSplitSize(r,a,i),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(d=>{let p=[...u];p[i]=d;let h=ap({inputs:{x:r},attrs:{begin:c,size:p},backend:s});return c[i]+=d,h})}var A0e={kernelName:Fi,backendName:"wasm",kernelFunc:g0e},y0e=In(oo),x0e=In(hu),b0e=!0,v0e=Gn(uo,b0e),h6;function w0e(e){h6=e.wasm.cwrap(fo,null,["number","number","number","number"])}function k0e(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return h6(o,r,en[a.dtype],l),i}var S0e={kernelName:fo,backendName:"wasm",setupFunc:w0e,kernelFunc:k0e},f6;function I0e(e){f6=e.wasm.cwrap(Oi,null,["number","array","number","array","array","array","array","array","number","number"])}function C0e(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:A,begin:x,end:y,strides:b}=Ft.sliceInfo(r.shape,a,o,i,l,c,u,d,p),w;if(m)w=rs({inputs:{x:r},backend:t,attrs:{shape:f}});else if(g||A){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=Ft.computeOutShape(x,y,b),C=ap({inputs:{x:r},backend:t,attrs:{begin:x,size:S}});w=rs({inputs:{x:C},backend:t,attrs:{shape:f}}),t.disposeData(C.dataId)}else{let S=t.makeOutput(h,"float32"),C=t.dataIdMap.get(r.dataId).id,E=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),D=new Uint8Array(new Int32Array(x).buffer),O=new Uint8Array(new Int32Array(y).buffer),_=new Uint8Array(new Int32Array(b).buffer),F=new Uint8Array(new Int32Array(h).buffer),T=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),M=t.dataIdMap.get(S.dataId).id;f6(C,E,r.shape.length,D,O,_,F,T,h.length,M),w=rs({inputs:{x:S},backend:t,attrs:{shape:f}}),t.disposeData(S.dataId)}return w}var T0e={kernelName:Oi,backendName:"wasm",setupFunc:I0e,kernelFunc:C0e},N0e=!0,E0e=Gn(co,N0e),m6;function R0e(e){m6=e.wasm.cwrap(io,null,["number","number","number","number"])}function $0e(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Bo(o,r,t),f=d;if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(c=u,l=y,f=N.getInnerMostAxes(f.length,c.shape.length))}N.assertAxesAreInnerMostDims("sum",f,c.shape.length);let[m,g]=N.computeOutAndReduceShapes(c.shape,f),A=v.sizeFromShape(g),x=t.makeOutput(m,c.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;m6(l,A,en[x.dtype],y)}if(h&&t.disposeData(u.dataId),a){let y=N.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var D0e={kernelName:io,backendName:"wasm",setupFunc:R0e,kernelFunc:$0e},_0e=In(Mi),P0e=In(po),g6;function F0e(e){g6=e.wasm.cwrap(Hr,null,["number","array","number","array","number","number"])}function O0e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let p=0;p<i.length;p++)i[p]=r.shape[p]*o[p];let l=new Uint8Array(new Int32Array(r.shape).buffer),c=new Uint8Array(new Int32Array(i).buffer),u=n.makeOutput(i,r.dtype),d=n.dataIdMap.get(u.dataId).id;return g6(a,l,r.shape.length,c,i.length,en[u.dtype],d),u}var M0e={kernelName:Hr,backendName:"wasm",setupFunc:F0e,kernelFunc:O0e},A6;function z0e(e){A6=e.wasm.cwrap(zi,null,["number","array","number","number","number","bool","number","number"])}var L0e=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let c=t.makeOutput(l,s.dtype),u=t.dataIdMap.get(c.dataId).id,d=t.makeOutput(l,"int32"),p=t.dataIdMap.get(d.dataId).id;return A6(o,i,s.shape.length,en[s.dtype],r,a,u,p),[c,d]},B0e={kernelName:zi,backendName:"wasm",setupFunc:z0e,kernelFunc:L0e},y6;function W0e(e){y6=e.wasm.cwrap(Li,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function V0e(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c??[d,p],g=[u,f,m,h],A=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),x=t.makeOutput(g,r.dtype),y=t.dataIdMap.get(x.dataId).id,w=t.dataIdMap.get(r.dataId).id,C=t.dataIdMap.get(a.dataId).id,E=o==="nearest"?1:2,D;switch(i){case"constant":D=1;break;case"reflect":D=2;break;case"wrap":D=3;break;case"nearest":D=4;break;default:D=1;break}return y6(w,C,a.shape[0]>1,u,f,m,h,p,d,A,r.shape.length-1,E,D,l,y),x}var U0e={kernelName:Li,backendName:"wasm",setupFunc:W0e,kernelFunc:V0e};function G0e(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==a&&(l[c++]=r.shape[h]);let u=new Array(o),d=new Array(i).fill(0),p=r.shape.slice();p[a]=1;for(let h=0;h<u.length;h++)d[a]=h,u[h]=ap({inputs:{x:r},attrs:{begin:d,size:p},backend:n});return u.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:l}))}var H0e={kernelName:Bi,backendName:"wasm",kernelFunc:G0e};function j0e(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var q0e={kernelName:Wi,backendName:"wasm",kernelFunc:j0e},X0e=[Zpe,Jpe,the,uhe,phe,mhe,yhe,whe,Nhe,Ehe,Rhe,_he,Phe,Mhe,Bhe,Whe,Vhe,Hhe,Xhe,Yhe,efe,tfe,sfe,rfe,afe,ofe,ufe,cfe,pfe,Kpe,mfe,yfe,vfe,Sfe,Tfe,Efe,$fe,nhe,Pfe,Ofe,zfe,Lfe,Wfe,Gfe,jfe,Kfe,Jfe,tme,sme,ome,lme,ume,pme,mme,yme,bme,kme,Ime,Tme,s6,$me,Pme,Mme,Lme,Wme,Vme,Ume,xhe,jme,Kme,Jme,e0e,Qme,s0e,o0e,u0e,c0e,Che,h0e,m0e,A0e,y0e,x0e,v0e,S0e,T0e,E0e,D0e,_0e,P0e,M0e,B0e,U0e,ohe,H0e,q0e];for(let e of X0e)qr(e);var Ax=K();Ax.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Ax.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Ax.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch{return!1}});var x6=Qo(GN()),K0e='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',Z0e=Qo(HN()),b6=class extends Ll{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(k6),xx=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new _c(this,Jn())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let c=t;this.dataIdMap.set(e,{id:a,stringBytes:c,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=v.sizeFromShape(n),i=o*v.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:s,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let a=this.wasm.HEAPU8.slice(t,t+v.sizeFromShape(s)*v.bytesPerElement(n));return Q0e(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function Y0e(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function v6(e,t,n){if(zm!=null)return zm;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),lp!=null&&lp[s]!=null?lp[s]:n+s}async function J0e(){let[e,t]=await Promise.all([K().getAsync("WASM_HAS_SIMD_SUPPORT"),K().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let c=K0e,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return i.endsWith(".wasm")?v6(e,t,ip??l):l+i},yx&&(r.instantiateWasm=Y0e(v6(e,t,ip??"")));let a=!1;r.onAbort=()=>{if(a||up)return;up=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&zm==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+x6.default.toString()],{type:"text/javascript"}),o=(0,x6.default)(r)):o=(0,Z0e.default)(r),o.then(i=>{a=!0,up=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),initWithThreadsCount:i.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:i.cwrap("get_threads_count","number",[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function Q0e(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var ege=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],zm=null,ip=null,lp={},up=!1,yx=!1;function tge(e,t=!1){if(S2("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),up)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");zm=e,yx=t}function w6(e,t=!1){if(up)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")ip=e;else{lp=e;let n=ege.filter(s=>lp[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}yx=t}var k6=-1,xx=-1;function nge(e){k6=e}function sge(){if(xx===-1)throw new Error("WASM backend not initialized.");return xx}var rge="0.0.0",age=2;Yi("wasm",async()=>{let{wasm:e}=await J0e();return new b6(e)},age);var Wo="3.11.0-20211031",S6={tfjs:Wo,"tfjs-core":Wo,"tfjs-data":Wo,"tfjs-layers":Wo,"tfjs-converter":Wo,"tfjs-backend-cpu":Wo,"tfjs-backend-webgl":Wo,"tfjs-backend-wasm":Wo},cp=S6["tfjs-core"];var I6=`
|
|
precision highp float;
|
|
attribute vec2 pos;
|
|
attribute vec2 uv;
|
|
varying vec2 vUv;
|
|
uniform float flipY;
|
|
void main(void) {
|
|
vUv = uv;
|
|
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
|
|
}
|
|
`;var C6=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
|
|
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
|
|
}
|
|
`,T6=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
|
|
gl_FragColor.a = c.a;
|
|
}
|
|
`,N6=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform vec2 size;
|
|
uniform sampler2D texture;
|
|
vec2 pixelate(vec2 coord, vec2 size) {
|
|
return floor( coord / size ) * size;
|
|
}
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
vec2 coord = pixelate(vUv, size);
|
|
gl_FragColor += texture2D(texture, coord);
|
|
}
|
|
`,E6=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
|
|
}
|
|
`,R6=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
uniform float m[9];
|
|
void main(void) {
|
|
vec4 c11 = texture2D(texture, vUv - px); // top left
|
|
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
|
|
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
|
|
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
|
|
vec4 c22 = texture2D(texture, vUv); // mid center
|
|
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
|
|
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
|
|
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
|
|
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
|
|
gl_FragColor =
|
|
c11 * m[0] + c12 * m[1] + c22 * m[2] +
|
|
c21 * m[3] + c22 * m[4] + c23 * m[5] +
|
|
c31 * m[6] + c32 * m[7] + c33 * m[8];
|
|
gl_FragColor.a = c22.a;
|
|
}
|
|
`;var bx=(e,t,n)=>{let s=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(s,(r,a)=>(n[a]=0,r))},$6=class{constructor(t,n,s){de(this,"uniform",{});de(this,"attribute",{});de(this,"gl");de(this,"id");de(this,"compile",(t,n)=>{let s=this.gl.createShader(n);if(this.gl.shaderSource(s,t),this.gl.compileShader(s),!this.gl.getShaderParameter(s,this.gl.COMPILE_STATUS))throw new Error(`filter: gl compile failed: ${this.gl.getShaderInfoLog(s)}`);return s});this.gl=t;let r=this.compile(n,this.gl.VERTEX_SHADER),a=this.compile(s,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,a),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS))throw new Error(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)}`);this.gl.useProgram(this.id),bx(n,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=this.gl.getAttribLocation(this.id,o);bx(n,"uniform",this.uniform),bx(s,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=this.gl.getUniformLocation(this.id,o)}};function D6(){let e=0,t=null,n=!1,s=-1,r=[null,null],a=[],o=null,i=null,l=Hn(100,100),c={},u={INTERMEDIATE:1},d=l.getContext("webgl");if(!d)throw new Error("filter: cannot get webgl context");function p(x,y){if(!(x===l.width&&y===l.height)){if(l.width=x,l.height=y,!o){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);o=d.createBuffer(),d.bindBuffer(d.ARRAY_BUFFER,o),d.bufferData(d.ARRAY_BUFFER,b,d.STATIC_DRAW),d.pixelStorei(d.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}d.viewport(0,0,l.width,l.height),r=[null,null]}}function h(x,y){let b=d.createFramebuffer();d.bindFramebuffer(d.FRAMEBUFFER,b);let w=d.createRenderbuffer();d.bindRenderbuffer(d.RENDERBUFFER,w);let S=d.createTexture();return d.bindTexture(d.TEXTURE_2D,S),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,x,y,0,d.RGBA,d.UNSIGNED_BYTE,null),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.framebufferTexture2D(d.FRAMEBUFFER,d.COLOR_ATTACHMENT0,d.TEXTURE_2D,S,0),d.bindTexture(d.TEXTURE_2D,null),d.bindFramebuffer(d.FRAMEBUFFER,null),{fbo:b,texture:S}}function f(x){return r[x]=r[x]||h(l.width,l.height),r[x]}function m(x=0){if(!i)return;let y=null,b=null,w=!1;e===0?y=t:y=f(s)?.texture||null,e++,n&&!(x&u.INTERMEDIATE)?(b=null,w=e%2==0):(s=(s+1)%2,b=f(s)?.fbo||null),d.bindTexture(d.TEXTURE_2D,y),d.bindFramebuffer(d.FRAMEBUFFER,b),d.uniform1f(i.uniform.flipY,w?-1:1),d.drawArrays(d.TRIANGLES,0,6)}function g(x){if(c[x])return i=c[x],d.useProgram(i?.id||null),i;i=new $6(d,I6,x);let y=Float32Array.BYTES_PER_ELEMENT,b=4*y;return d.enableVertexAttribArray(i.attribute.pos),d.vertexAttribPointer(i.attribute.pos,2,d.FLOAT,!1,b,0*y),d.enableVertexAttribArray(i.attribute.uv),d.vertexAttribPointer(i.attribute.uv,2,d.FLOAT,!1,b,2*y),c[x]=i,i}let A={colorMatrix:x=>{let y=new Float32Array(x);y[4]/=255,y[9]/=255,y[14]/=255,y[19]/=255;let b=y[18]===1&&y[3]===0&&y[8]===0&&y[13]===0&&y[15]===0&&y[16]===0&&y[17]===0&&y[19]===0?T6:C6,w=g(b);d.uniform1fv(w?.uniform.m,y),m()},brightness:x=>{let y=(x||0)+1;A.colorMatrix([y,0,0,0,0,0,y,0,0,0,0,0,y,0,0,0,0,0,1,0])},saturation:x=>{let y=(x||0)*2/3+1,b=(y-1)*-.5;A.colorMatrix([y,b,b,0,0,b,y,b,0,0,b,b,y,0,0,0,0,0,1,0])},desaturate:()=>{A.saturation(-1)},contrast:x=>{let y=(x||0)+1,b=-128*(y-1);A.colorMatrix([y,0,0,0,b,0,y,0,0,b,0,0,y,0,b,0,0,0,1,0])},negative:()=>{A.contrast(-2)},hue:x=>{x=(x||0)/180*Math.PI;let y=Math.cos(x),b=Math.sin(x),w=.213,S=.715,C=.072;A.colorMatrix([w+y*(1-w)+b*-w,S+y*-S+b*-S,C+y*-C+b*(1-C),0,0,w+y*-w+b*.143,S+y*(1-S)+b*.14,C+y*-C+b*-.283,0,0,w+y*-w+b*-(1-w),S+y*-S+b*S,C+y*(1-C)+b*C,0,0,0,0,0,1,0])},desaturateLuminance:()=>{A.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{A.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{A.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{A.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{A.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{A.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{A.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{A.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:x=>{let y=new Float32Array(x),b=1/l.width,w=1/l.height,S=g(R6);d.uniform1fv(S?.uniform.m,y),d.uniform2f(S?.uniform.px,b,w),m()},detectEdges:()=>{A.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{A.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{A.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:x=>{let y=x||1;A.convolution.call(this,[0,-1*y,0,-1*y,1+4*y,-1*y,0,-1*y,0])},emboss:x=>{let y=x||1;A.convolution.call(this,[-2*y,-1*y,0,-1*y,1,1*y,0,1*y,2*y])},blur:x=>{let y=x/7/l.width,b=x/7/l.height,w=g(E6);d.uniform2f(w?.uniform.px,0,b),m(u.INTERMEDIATE),d.uniform2f(w?.uniform.px,y,0),m()},pixelate:x=>{let y=x/l.width,b=x/l.height,w=g(N6);d.uniform2f(w?.uniform.size,y,b),m()}};this.add=function(x){let y=Array.prototype.slice.call(arguments,1),b=A[x];a.push({func:b,args:y})},this.reset=function(){a=[]},this.get=function(){return a},this.apply=function(x){p(x.width,x.height),e=0,t||(t=d.createTexture()),d.bindTexture(d.TEXTURE_2D,t),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.NEAREST),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.NEAREST),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,d.RGBA,d.UNSIGNED_BYTE,x);for(let y=0;y<a.length;y++){n=y===a.length-1;let b=a[y];b.func.apply(this,b.args||[])}return l},this.draw=function(x){return this.add("brightness",0),this.apply(x)}}var Lm=2048,An=null,Cn=null,lc=null,Dt;function Hn(e,t){let n;if(Ae.browser)if(Ae.worker)n=new OffscreenCanvas(e,t);else{if(typeof document=="undefined")throw new Error("attempted to run in web worker but offscreenCanvas is not supported");n=document.createElement("canvas"),n.width=e,n.height=t}else typeof Ae.Canvas!="undefined"?n=new Ae.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(n=new globalThis.Canvas(e,t));return n}function vx(e,t){let n=t||Hn(e.width,e.height);return n.getContext("2d").drawImage(e,0,0),n}function uc(e,t,n=!0){if(!e)return t.debug&&ee("input is missing"),{tensor:null,canvas:null};if(!(e instanceof Je)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof Ae.Canvas!="undefined"&&e instanceof Ae.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input type is not recognized");if(e instanceof Je){if(e.isDisposedInternal)throw new Error("input tensor is disposed");if(!e.shape||e.shape.length!==4||e.shape[0]!==1||e.shape[3]!==3)throw new Error(`input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);return{tensor:rr(e),canvas:t.filter.return?Cn:null}}else{if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&ee("input stream is not ready"),{tensor:null,canvas:An};let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return t.debug&&ee("cannot determine input dimensions"),{tensor:null,canvas:An};let a=s,o=r;if(a>Lm&&(a=Lm,o=Math.trunc(a*r/s)),o>Lm&&(o=Lm,a=Math.trunc(o*s/r)),(t.filter.width||0)>0?a=t.filter.width:(t.filter.height||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("input cannot determine dimension");(!An||An?.width!==a||An?.height!==o)&&(An=Hn(a,o));let i=An.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,An?.width,An?.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,An?.width,An?.height),(!Cn||An.width!==Cn.width||An?.height!==Cn?.height)&&(Cn=Hn(An.width,An.height)),t.filter.enabled&&Ae.webgl.supported){if(Dt||(Dt=Ae.browser?new D6:null),Ae.filter=!!Dt,!Dt)return{tensor:null,canvas:An};Dt.reset(),t.filter.brightness!==0&&Dt.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Dt.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Dt.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Dt.add("blur",t.filter.blur),t.filter.saturation!==0&&Dt.add("saturation",t.filter.saturation),t.filter.hue!==0&&Dt.add("hue",t.filter.hue),t.filter.negative&&Dt.add("negative"),t.filter.sepia&&Dt.add("sepia"),t.filter.vintage&&Dt.add("brownie"),t.filter.sepia&&Dt.add("sepia"),t.filter.kodachrome&&Dt.add("kodachrome"),t.filter.technicolor&&Dt.add("technicolor"),t.filter.polaroid&&Dt.add("polaroid"),t.filter.pixelate!==0&&Dt.add("pixelate",t.filter.pixelate),Dt.get()>0?Cn=Dt.apply(An):Cn=Dt.draw(An)}else vx(An,Cn),Dt&&(Dt=null),Ae.filter=!!Dt;if(!n)return{tensor:null,canvas:Cn};if(!Cn)throw new Error("cannot create output canvas");let l,c=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(Ae.browser&&Vs)l=Vs?Vs.fromPixels(e):null;else{c=e.data.length/e.height/e.width;let p=new Uint8Array(e.data.buffer);l=Gt(p,[e.height,e.width,c],"int32")}else if((!lc||Cn.width!==lc.width||Cn?.height!==lc?.height)&&(lc=Hn(Cn.width,Cn.height)),Vs&&Ae.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=Vs.fromPixels(Cn):(lc=vx(Cn),l=Vs.fromPixels(lc));else{let f=vx(Cn).getContext("2d").getImageData(0,0,a,o);c=f.data.length/a/o;let m=new Uint8Array(f.data.buffer);l=Gt(m,[a,o,c])}if(c===4){let p=Eu(l,[0,0,0],[-1,-1,3]);Y(l),l=p}if(!l)throw new Error("cannot create tensor from input");let u=pe(l,"float32"),d=Kt(u,0);return Y([l,u]),{tensor:d,canvas:t.filter.return?Cn:null}}}var wx=0,kx=1,Sx=0,oge=async e=>{let t=48,n=$e.resizeBilinear(e,[Math.trunc((e.shape[1]||1)/t),Math.trunc((e.shape[2]||1)/t)]),s=async()=>{let o=ke(n),i=await o.data();return Y(o),i[0]},r=async()=>{let o=await n.data(),i=0;for(let l=0;l<o.length/3;l++)i+=o[3*l+2];return i};if(Sx===0){let o=ce();await r();let i=ce();await s();let l=ce();Sx=i-o<l-i?1:2}let a=Sx===1?await r():await s();return Y(n),a};async function _6(e,t){if(e.cacheSensitivity===0)return!1;let n=await oge(t),s=100*(Math.max(n,wx)/Math.min(n,wx)-1);wx=n;let r=s<Math.max(e.cacheSensitivity,kx);return kx=s>10*e.cacheSensitivity?0:s,r=r&&kx>0,r}var P6=class{constructor(){de(this,"browser");de(this,"node");de(this,"worker");de(this,"platform","");de(this,"agent","");de(this,"backends",[]);de(this,"initial");de(this,"filter");de(this,"tfjs");de(this,"offscreen");de(this,"perfadd",!1);de(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});de(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});de(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});de(this,"cpu",{model:void 0,flags:[]});de(this,"kernels",[]);de(this,"Canvas");de(this,"Image");de(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined",this.tfjs={version:cp},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let n=t[0].match(/\(([^()]+)\)/g);this.platform=n&&n[0]?n[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(Jn().registryFactory),this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&ar()==="wasm"&&(this.wasm.simd=await K().getAsync("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=await K().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let t=Hn(100,100),n=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof n!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(ar()==="webgl"||ar()==="humangl")){let s=Ir().gpgpu!=="undefined"?await Ir().getGPGPUContext().gl:null;s&&(this.webgl.version=s.getParameter(s.VERSION),this.webgl.renderer=s.getParameter(s.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu"),this.webgpu.supported&&(this.webgpu.adapter=(await navigator.gpu.requestAdapter())?.name),this.kernels=jr(ar()).map(s=>s.kernelName.toLowerCase())}async updateCPU(){let t={model:"",flags:[]};if(this.node&&this.platform?.startsWith("linux")){let n=ya("fs");try{let s=n.readFileSync("/proc/cpuinfo").toString();for(let r of s.split(`
|
|
`))r.startsWith("model name")&&(t.model=r.match(/:(.*)/g)[0].replace(":","").trim()),r.startsWith("flags")&&(t.flags=r.match(/:(.*)/g)[0].replace(":","").trim().split(" ").sort())}catch{}}this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},Ae=new P6;var Ix="2.5.0";var Vo;var I2e=Number.MAX_SAFE_INTEGER;async function F6(e){return Ae.initial&&(Vo=null),Vo?e.debug&&ee("cached model:",Vo.modelUrl):(Vo=await rt(at(e.modelBasePath,e.face.agegenderrace.modelPath)),!Vo||!Vo.modelUrl?ee("load model failed:",e.face.agegenderrace.modelPath):e.debug&&ee("load model:",Vo.modelUrl)),Vo}var gs,Bm=[],Cx=Number.MAX_SAFE_INTEGER,O6=0,M6=0;async function z6(e){return Ae.initial&&(gs=null),gs?e.debug&&ee("cached model:",gs.modelUrl):(gs=await rt(at(e.modelBasePath,e.face.antispoof?.modelPath||"")),!gs||!gs.modelUrl?ee("load model failed:",e.face.antispoof?.modelPath):e.debug&&ee("load model:",gs.modelUrl)),gs}async function Tx(e,t,n,s){if(!gs)return null;let r=(t.face.antispoof?.skipTime||0)>ce()-M6,a=Cx<(t.face.antispoof?.skipFrames||0);return t.skipAllowed&&r&&a&&O6===s&&Bm[n]?(Cx++,Bm[n]):(Cx=0,new Promise(async o=>{let i=$e.resizeBilinear(e,[gs?.inputs[0].shape?gs.inputs[0].shape[2]:0,gs?.inputs[0].shape?gs.inputs[0].shape[1]:0],!1),l=gs?.predict(i),c=(await l.data())[0];Bm[n]=Math.round(100*c)/100,O6=s,M6=ce(),Y([i,l]),o(Bm[n])}))}var Mr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Nx={count:468,mouth:13,symmetryLine:[13,Mr.midwayBetweenEyes[0]]},pp={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Ex=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],hp=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],kl=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var lge=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],uge=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],cge=[33,133,362,263,1,78,308],$2e=lge.map(e=>hp[e]),D2e=uge.map(e=>hp[e]),_2e=cge.map(e=>hp[e]);var L6=e=>({startPoint:_e(e,[0,0],[-1,2]),endPoint:_e(e,[0,2],[-1,2])});var fp=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],Wm=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2],Rx=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],$x=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],B6=(e,t)=>{let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s}},Dx=(e,t,n)=>{let s=t.shape[1],r=t.shape[2];return $e.cropAndResize(t,[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]],[0],n)},mp=(e,t=1.5)=>{let n=Wm(e),s=fp(e),r=[t*s[0]/2,t*s[1]/2];return{startPoint:[n[0]-r[0],n[1]-r[1]],endPoint:[n[0]+r[0],n[1]+r[1]],landmarks:e.landmarks}},gp=e=>{let t=Wm(e),n=fp(e),s=Math.max(...n)/2;return{startPoint:[Math.round(t[0]-s),Math.round(t[1]-s)],endPoint:[Math.round(t[0]+s),Math.round(t[1]+s)],landmarks:e.landmarks}},Vm=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return{startPoint:[Math.min(...t),Math.min(...n)],endPoint:[Math.max(...t),Math.max(...n)],landmarks:e}},Um=[[1,0,0],[0,1,0],[0,0,1]],dge=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),pge=(e,t)=>dge(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var W6=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Sl=(e,t)=>{let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n},hge=(e,t)=>{let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n},V6=(e,t)=>{let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(Sl(e[r],hge(t,a)))}return n},U6=(e,t)=>{let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=W6(t[0],t[1]),o=V6(a,r),i=W6(-t[0],-t[1]);return V6(o,i)},fge=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-Sl(t[0],n),-Sl(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]},mge=(e,t)=>[Sl(e,t[0]),Sl(e,t[1])];function G6(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let c=r*(l+.5);for(let u=0;u<o;u++){let d=r*(u+.5);for(let p=0;p<i;p++)n.push([d,c])}}}return n}function H6(e,t,n,s,r){let a=fp({startPoint:t.startPoint,endPoint:t.endPoint}),o=e.map(d=>[a[0]/r*(d[0]-r/2),a[1]/r*(d[1]-r/2),d[2]||0]),i=n!==0?U6(n,[0,0]):Um,l=n!==0?o.map(d=>[...mge(d,i),d[2]]):o,c=n!==0?fge(s):Um,u=[...Wm({startPoint:t.startPoint,endPoint:t.endPoint}),1];return l.map(d=>[Math.round(d[0]+Sl(u,c[0])),Math.round(d[1]+Sl(u,c[1])),Math.round(d[2]||0)])}function _x(e,t,n){let s=e.landmarks.length>=Nx.count?Nx.symmetryLine:pp.symmetryLine,r=pge(e.landmarks[s[0]],e.landmarks[s[1]]),a=Wm({startPoint:e.startPoint,endPoint:e.endPoint}),o=[a[0]/t.shape[2],a[1]/t.shape[1]],i=$e.rotateWithOffset(t,r,0,o),l=U6(-r,a),c=Dx({startPoint:e.startPoint,endPoint:e.endPoint},i,[n,n]),u=he(c,255);return Y(c),Y(i),[r,l,u]}var j6=6,Ar,Px=[],q6=null,Ps=0,Ap=()=>Ps;async function X6(e){return Ae.initial&&(Ar=null),Ar?e.debug&&ee("cached model:",Ar.modelUrl):(Ar=await rt(at(e.modelBasePath,e.face.detector?.modelPath||"")),!Ar||!Ar.modelUrl?ee("load model failed:",e.face.detector?.modelPath):e.debug&&ee("load model:",Ar.modelUrl)),Ps=Ar.inputs[0].shape?Ar.inputs[0].shape[2]:0,Ps===-1&&(Ps=64),Px=G6(Ps),q6=ir(Px),Ar}function gge(e){let t=_e(e,[0,1],[-1,2]),n=ie(t,q6),s=_e(e,[0,3],[-1,2]),r=he(s,Ps),a=he(n,Ps),o=he(r,2),i=xe(a,o),l=ie(a,o),c=B(i,Ps),u=B(l,Ps);return wu([c,u],1)}async function K6(e,t){if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return{boxes:[]};let[n,s,r]=G(()=>{let c=$e.resizeBilinear(e,[Ps,Ps]),u=xe(he(c,127.5),.5),d=Ar?.execute(u),p;if(Array.isArray(d)){let g=d.sort((b,w)=>b.size-w.size),A=kt([g[0],g[2]],2),x=kt([g[1],g[3]],2),y=kt([x,A],1);p=ct(y,0)}else p=ct(d);let h=gge(p),f=_e(p,[0,0],[-1,1]),m=ct(ls(f));return[p,h,m]}),a=await $e.nonMaxSuppressionAsync(s,r,t.face.detector?.maxDetected||0,t.face.detector?.iouThreshold||0,t.face.detector?.minConfidence||0),o=await a.array();Y(a);let i=[],l=await r.data();for(let c=0;c<o.length;c++){let u=l[o[c]];if(u>(t.face.detector?.minConfidence||0)){let d=_e(s,[o[c],0],[1,-1]),p=G(()=>V(ct(_e(n,[o[c],j6-1],[1,-1])),[j6,-1]));i.push({box:L6(d),landmarks:p,anchor:Px[o[c]],confidence:u}),Y(d)}}return Y(n),Y(s),Y(r),{boxes:i,scaleFactor:[e.shape[2]/Ps,e.shape[1]/Ps]}}var Mx={};Ec(Mx,{connected:()=>Ox,kpt:()=>Fx});var Fx=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftThumb","leftHand","rightThumb","rightHand"],Ox={leftLeg:["leftHip","leftKnee","leftAnkle","leftHeel","leftFoot"],rightLeg:["rightHip","rightKnee","rightAnkle","rightHeel","rightFoot"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist","leftPalm"],rightArm:["rightShoulder","rightElbow","rightWrist","rightPalm"],leftHand:[],rightHand:[],head:[]};var Z6={initial:!0},un=[null,null],Uo=[[0,0],[0,0]],zx=Number.MAX_SAFE_INTEGER,Lx,Gm=null,Go=[[0,0],[0,0],[0,0],[0,0]],Y6=0;async function J6(e){if(Z6.initial&&(un[0]=null),!un[0]&&e.body.detector?.modelPath){un[0]=await rt(at(e.modelBasePath,e.body.detector?.modelPath||""));let t=Object.values(un[0].modelSignature.inputs);Uo[0][0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,Uo[0][1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0,!un[0]||!un[0].modelUrl?ee("load model failed:",e.body.detector?.modelPath):e.debug&&ee("load model:",un[0].modelUrl)}else e.debug&&un[0]&&ee("cached model:",un[0].modelUrl);return un[0]}async function Q6(e){if(Z6.initial&&(un[1]=null),un[1])e.debug&&ee("cached model:",un[1].modelUrl);else{un[1]=await rt(at(e.modelBasePath,e.body.modelPath||""));let t=Object.values(un[1].modelSignature.inputs);Uo[1][0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,Uo[1][1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0,e.body.modelPath?.includes("lite")?Lx=["ld_3d","output_segmentation","output_heatmap","world_3d","output_poseflag"]:Lx=["Identity","Identity_2","Identity_3","Identity_4","Identity_1"],!un[1]||!un[1].modelUrl?ee("load model failed:",e.body.modelPath):e.debug&&ee("load model:",un[1].modelUrl)}return un[1]}function Age(e,t){let n=e.map(o=>o.position[0]),s=e.map(o=>o.position[1]),r=[Math.min(...n),Math.min(...s),Math.max(...n)-Math.min(...n),Math.max(...s)-Math.min(...s)],a=[r[0]/t[0],r[1]/t[1],r[2]/t[0],r[3]/t[1]];return{keypointsBox:r,keypointsBoxRaw:a}}async function yge(e){let t={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;Go=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],t.pad=Hs(e,Go),t.resize=$e.resizeBilinear(t.pad,[Uo[1][0],Uo[1][1]]);let n=he(t.resize,255);return Object.keys(t).forEach(s=>Y(t[s])),n}function xge(e,t){for(let n of e)n.position=[n.position[0]*(t[0]+Go[2][0]+Go[2][1])/t[0]-Go[2][0],n.position[1]*(t[1]+Go[1][0]+Go[1][1])/t[1]-Go[1][0],n.position[2]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1],n.position[2]];return e}var e8=e=>1-1/(1+Math.exp(e));async function bge(e,t,n){let s={};s.input=await yge(e),[s.ld,s.segmentation,s.heatmap,s.world,s.poseflag]=await un[1]?.execute(s.input,Lx);let r=(await s.poseflag.data())[0],a=Math.max(0,(r-.8)/(1-.8)),o=await s.ld.data(),i=[],l=5;for(let h=0;h<o.length/l;h++){let f=e8(o[l*h+3]),m=e8(o[l*h+4]),g=Math.trunc(100*f*m*a)/100,A=[o[l*h+0]/Uo[1][0],o[l*h+1]/Uo[1][1],o[l*h+2]+0],x=[Math.trunc(n[0]*A[0]),Math.trunc(n[1]*A[1]),A[2]];i.push({part:Fx[h],positionRaw:A,position:x,score:g})}if(a<(t.body.minConfidence||0))return null;let c=xge(i,n),u=Age(c,[n[0],n[1]]);Object.keys(s).forEach(h=>Y(s[h]));let d={};for(let[h,f]of Object.entries(Ox)){let m=[];for(let g=0;g<f.length-1;g++){let A=c.find(y=>y.part===f[g]),x=c.find(y=>y.part===f[g+1]);A&&x&&A.score>(t.body.minConfidence||0)&&x.score>(t.body.minConfidence||0)&&m.push([A.position,x.position])}d[h]=m}return{id:0,score:Math.trunc(100*a)/100,box:u.keypointsBox,boxRaw:u.keypointsBoxRaw,keypoints:c,annotations:d}}async function Bx(e,t){let n=[e.shape[2]||0,e.shape[1]||0],s=(t.body.skipTime||0)>ce()-Y6,r=zx<(t.body.skipFrames||0);return t.skipAllowed&&s&&r&&Gm!==null?zx++:(Gm=await bge(e,t,n),Y6=ce(),zx=0),Gm?[Gm]:[]}var cc=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var zr,Il=0,Hm=[],t8=0,Wx=Number.MAX_SAFE_INTEGER;async function n8(e){if(Ae.initial&&(zr=null),zr)e.debug&&ee("cached model:",zr.modelUrl);else{dc(["floormod"],e),zr=await rt(at(e.modelBasePath,e.object.modelPath||""));let t=Object.values(zr.modelSignature.inputs);Il=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0,!zr||!zr.modelUrl?ee("load model failed:",e.object.modelPath):e.debug&&ee("load model:",zr.modelUrl)}return zr}async function vge(e,t,n){if(!e)return[];let s=[],r=await e.array(),a=ct(e);Y(e);let o=vn(a,6,1);Y(a);let i=$n([o[1],o[0],o[3],o[2]],1),l=ct(i);Y(i);let c=ct(o[4]),u=ct(o[5]);o.forEach(f=>Y(f));let d=await $e.nonMaxSuppressionAsync(l,c,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);Y(l),Y(c),Y(u);let p=await d.data();Y(d);let h=0;for(let f of p){let m=Math.trunc(100*r[0][f][4])/100,g=r[0][f][5],A=cc[g].label,[x,y]=[r[0][f][0]/Il,r[0][f][1]/Il],b=[x,y,r[0][f][2]/Il-x,r[0][f][3]/Il-y],w=[Math.trunc(b[0]*t[0]),Math.trunc(b[1]*t[1]),Math.trunc(b[2]*t[0]),Math.trunc(b[3]*t[1])];s.push({id:h++,score:m,class:g,label:A,box:w,boxRaw:b})}return s}async function Vx(e,t){let n=(t.object.skipTime||0)>ce()-t8,s=Wx<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&Hm.length>0?(Wx++,Hm):(Wx=0,!Ae.kernels.includes("mod")||!Ae.kernels.includes("sparsetodense")?Hm:new Promise(async r=>{let a=[e.shape[2],e.shape[1]],o=$e.resizeBilinear(e,[Il,Il]),i=t.object.enabled?zr?.execute(o,["tower_0/detections"]):null;t8=ce(),Y(o);let l=await vge(i,a,t);Hm=l,r(l)}))}var Hx={};Ec(Hx,{connected:()=>Gx,kpt:()=>Ux});var Ux=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],Gx={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var jn,s8=0,qn={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},jx=Number.MAX_SAFE_INTEGER;async function qx(e){return Ae.initial&&(jn=null),jn?e.debug&&ee("cached model:",jn.modelUrl):(jn=await rt(at(e.modelBasePath,e.body.modelPath||"")),!jn||!jn.modelUrl?ee("load model failed:",e.body.modelPath):e.debug&&ee("load model:",jn.modelUrl)),jn}function wge(e,t){let[n,s]=e.shape;return G(()=>{let r=(i,l)=>xe(i,B(he(i,Ne(l,"int32")),Ne(l,"int32"))),a=V(e,[s*n]),o=Qn(a,0).dataSync()[0];if(o>t){let i=Us(a,0),l=r(i,n).dataSync()[0],c=he(i,Ne(n,"int32")).dataSync()[0];return[l,c,o]}return[0,0,o]})}async function Xx(e,t){let n=(t.body.skipTime||0)>ce()-s8,s=jx<(t.body.skipFrames||0);return t.skipAllowed&&n&&s&&Object.keys(qn.keypoints).length>0?(jx++,[qn]):(jx=0,new Promise(async r=>{let a=G(()=>{if(!jn?.inputs[0].shape)return null;let d=$e.resizeBilinear(e,[jn.inputs[0].shape[2],jn.inputs[0].shape[1]],!1);return B(d,2).sub(1)}),o;if(t.body.enabled&&(o=await jn?.predict(a)),s8=ce(),Y(a),o){qn.keypoints.length=0;let d=o.squeeze();Y(o);let p=d.unstack(2);Y(d);for(let h=0;h<p.length;h++){let[f,m,g]=wge(p[h],t.body.minConfidence);g>(t.body?.minConfidence||0)&&qn.keypoints.push({score:Math.round(100*g)/100,part:Ux[h],positionRaw:[f/jn.inputs[0].shape[2],m/jn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*f/jn.inputs[0].shape[2]),Math.round(e.shape[1]*m/jn.inputs[0].shape[1])]})}p.forEach(h=>Y(h))}qn.score=qn.keypoints.reduce((d,p)=>p.score>d?p.score:d,0);let i=qn.keypoints.map(d=>d.position[0]),l=qn.keypoints.map(d=>d.position[1]);qn.box=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)];let c=qn.keypoints.map(d=>d.positionRaw[0]),u=qn.keypoints.map(d=>d.positionRaw[1]);qn.boxRaw=[Math.min(...c),Math.min(...u),Math.max(...c)-Math.min(...c),Math.max(...u)-Math.min(...u)];for(let[d,p]of Object.entries(Gx)){let h=[];for(let f=0;f<p.length-1;f++){let m=qn.keypoints.find(A=>A.part===p[f]),g=qn.keypoints.find(A=>A.part===p[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}qn.annotations[d]=h}r([qn])}))}var kge=["angry","disgust","fear","happy","sad","surprise","neutral"],As,jm=[],r8=0,a8=0,Kx=Number.MAX_SAFE_INTEGER,Zx=[.2989,.587,.114];async function o8(e){return Ae.initial&&(As=null),As?e.debug&&ee("cached model:",As.modelUrl):(As=await rt(at(e.modelBasePath,e.face.emotion?.modelPath||"")),!As||!As.modelUrl?ee("load model failed:",e.face.emotion?.modelPath):e.debug&&ee("load model:",As.modelUrl)),As}async function Yx(e,t,n,s){if(!As)return null;let r=Kx<(t.face.emotion?.skipFrames||0),a=(t.face.emotion?.skipTime||0)>ce()-a8;return t.skipAllowed&&a&&r&&r8===s&&jm[n]&&jm[n].length>0?(Kx++,jm[n]):(Kx=0,new Promise(async o=>{let i=[];if(t.face.emotion?.enabled){let l=$e.resizeBilinear(e,[As?.inputs[0].shape?As.inputs[0].shape[2]:0,As?.inputs[0].shape?As.inputs[0].shape[1]:0],!1),[c,u,d]=vn(l,3,3);Y(l);let p=B(c,Zx[0]),h=B(u,Zx[1]),f=B(d,Zx[2]);Y(c),Y(u),Y(d);let m=Vh([p,h,f]);Y(p),Y(h),Y(f);let g=G(()=>B(xe(m,.5),2));Y(m);let A=await As?.predict(g);a8=ce();let x=await A.data();Y(A);for(let y=0;y<x.length;y++)x[y]>(t.face.emotion?.minConfidence||0)&&i.push({score:Math.min(.99,Math.trunc(100*x[y])/100),emotion:kge[y]});i.sort((y,b)=>b.score-y.score),Y(g)}jm[n]=i,r8=s,o(i)}))}var Ys,Ho=0,Sge=2.3,Jx=Mr.leftEyeLower0,Qx=Mr.rightEyeLower0,pc={leftBounds:[Jx[0],Jx[Jx.length-1]],rightBounds:[Qx[0],Qx[Qx.length-1]]},hc={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function i8(e){return Ae.initial&&(Ys=null),Ys?e.debug&&ee("cached model:",Ys.modelUrl):(Ys=await rt(at(e.modelBasePath,e.face.iris?.modelPath||"")),!Ys||!Ys.modelUrl?ee("load model failed:",e.face.iris?.modelPath):e.debug&&ee("load model:",Ys.modelUrl)),Ho=Ys.inputs[0].shape?Ys.inputs[0].shape[2]:0,Ho===-1&&(Ho=64),Ys}function qm(e,t,n,s){for(let r=0;r<Ex.length;r++){let{key:a,indices:o}=Ex[r],i=Mr[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let c=o[l];e[i[l]]=[t[c][0],t[c][1],(t[c][2]+e[i[l]][2])/2]}}}var Ige=e=>{let t=e[pc.leftBounds[0]][2],n=e[pc.rightBounds[0]][2];return t-n},l8=(e,t,n,s,r=!1,a)=>{let o=gp(mp(Vm([e[n],e[s]]),Sge)),i=fp(o),l=$e.cropAndResize(t,[[o.startPoint[1]/a,o.startPoint[0]/a,o.endPoint[1]/a,o.endPoint[0]/a]],[0],[Ho,Ho]);if(r&&Ae.kernels.includes("flipleftright")){let c=$e.flipLeftRight(l);Y(l),l=c}return{box:o,boxSize:i,crop:l}},u8=(e,t,n,s=!1)=>{let r=[];for(let a=0;a<hc.numCoordinates;a++){let o=e[a*3],i=e[a*3+1],l=e[a*3+2];r.push([(s?1-o/Ho:o/Ho)*n[0]+t.startPoint[0],i/Ho*n[1]+t.startPoint[1],l])}return{rawCoords:r,iris:r.slice(hc.index)}},c8=(e,t,n)=>{let s=e[Mr[`${n}EyeUpper0`][hc.upperCenter]][2],r=e[Mr[`${n}EyeLower0`][hc.lowerCenter]][2],a=(s+r)/2;return t.map((o,i)=>{let l=a;return i===2?l=s:i===4&&(l=r),[o[0],o[1],l]})};async function d8(e,t,n,s){if(!Ys)return n.debug&&ee("face mesh iris detection requested, but model is not loaded"),e;let{box:r,boxSize:a,crop:o}=l8(e,t,pc.leftBounds[0],pc.leftBounds[1],!0,s),{box:i,boxSize:l,crop:c}=l8(e,t,pc.rightBounds[0],pc.rightBounds[1],!0,s),u=kt([o,c]);Y(o),Y(c);let d=Ys.predict(u);Y(u);let p=await d.data();Y(d);let h=p.slice(0,hc.numCoordinates*3),{rawCoords:f,iris:m}=u8(h,r,a,!0),g=p.slice(hc.numCoordinates*3),{rawCoords:A,iris:x}=u8(g,i,l),y=Ige(e);Math.abs(y)<30?(qm(e,f,"left",null),qm(e,A,"right",null)):y<1?qm(e,f,"left",["EyeUpper0","EyeLower0"]):qm(e,A,"right",["EyeUpper0","EyeLower0"]);let b=c8(e,m,"left"),w=c8(e,x,"right");return e.concat(b).concat(w)}var Lr=[],Js=null,yr=0,eb=Number.MAX_SAFE_INTEGER,p8=0,h8=0;async function f8(e,t){let n=(t.face.detector?.skipTime||0)>ce()-p8,s=eb<(t.face.detector?.skipFrames||0);if(!t.skipAllowed||!n||!s||h8===0){let i=await K6(e,t);p8=ce(),Lr=[];for(let l of i.boxes){let c=await l.box.startPoint.data(),u=await l.box.endPoint.data(),d=await l.landmarks.array();Lr.push({startPoint:c,endPoint:u,landmarks:d,confidence:l.confidence})}i.boxes.forEach(l=>Y([l.box.startPoint,l.box.endPoint,l.landmarks]));for(let l=0;l<Lr.length;l++){let c=B6({startPoint:Lr[l].startPoint,endPoint:Lr[l].endPoint},i.scaleFactor),u=mp(c),d=gp(u);Lr[l]={...d,confidence:Lr[l].confidence,landmarks:Lr[l].landmarks}}eb=0}else eb++;let r=[],a=[],o=0;for(let i of Lr){let l=0,c,u={id:o++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if(t.face.detector?.rotation&&t.face.mesh?.enabled&&Ae.kernels.includes("rotatewithoffset"))[l,c,u.tensor]=_x(i,e,yr);else{c=Um;let d=Dx({startPoint:i.startPoint,endPoint:i.endPoint},e,t.face.mesh?.enabled?[yr,yr]:[Ap(),Ap()]);u.tensor=he(d,255),Y(d)}if(u.boxScore=Math.round(100*i.confidence)/100,t.face.mesh?.enabled)if(!Js)t.debug&&ee("face mesh detection requested, but model is not loaded");else{let[d,p,h]=Js.execute(u.tensor);Y(d);let f=(await p.data())[0];Y(p);let m=V(h,[-1,3]),g=await m.array();if(Y(h),Y(m),f<(t.face.detector?.minConfidence||1))i.confidence=f;else{t.face.iris?.enabled&&(g=await d8(g,u.tensor,t,yr)),u.mesh=H6(g,i,l,c,yr),u.meshRaw=u.mesh.map(A=>[A[0]/(e.shape[2]||0),A[1]/(e.shape[1]||0),(A[2]||0)/yr]),i={...mp(Vm(u.mesh),1.5),confidence:i.confidence};for(let A of Object.keys(Mr))u.annotations[A]=Mr[A].map(x=>u.mesh[x]);t.face.detector?.rotation&&t.face.mesh.enabled&&t.face.description?.enabled&&Ae.kernels.includes("rotatewithoffset")&&(Y(u.tensor),[l,c,u.tensor]=_x(i,e,yr)),u.box=Rx(i,e),u.boxRaw=$x(i,e),u.score=Math.round(100*f||100*i.confidence||0)/100,u.faceScore=Math.round(100*f)/100,i={...gp(i),confidence:i.confidence,faceConfidence:f}}}else{u.box=Rx(i,e),u.boxRaw=$x(i,e),u.score=Math.round(100*i.confidence||0)/100,u.mesh=i.landmarks.map(d=>[(i.startPoint[0]+i.endPoint[0])/2+(i.endPoint[0]+i.startPoint[0])*d[0]/Ap(),(i.startPoint[1]+i.endPoint[1])/2+(i.endPoint[1]+i.startPoint[1])*d[1]/Ap()]),u.meshRaw=u.mesh.map(d=>[d[0]/(e.shape[2]||0),d[1]/(e.shape[1]||0),(d[2]||0)/yr]);for(let d of Object.keys(pp))u.annotations[d]=[u.mesh[pp[d]]]}r.push(u),a.push(i)}return t.face.mesh?.enabled&&(Lr=a.filter(i=>i.confidence>(t.face.detector?.minConfidence||0))),h8=r.length,r}async function m8(e){return Ae.initial&&(Js=null),Js?e.debug&&ee("cached model:",Js.modelUrl):(Js=await rt(at(e.modelBasePath,e.face.mesh?.modelPath||"")),!Js||!Js.modelUrl?ee("load model failed:",e.face.mesh?.modelPath):e.debug&&ee("load model:",Js.modelUrl)),yr=Js.inputs[0].shape?Js.inputs[0].shape[2]:0,yr===-1&&(yr=64),Js}var g8=kl,A8=hp;var Qs,Xm=[],y8=0,x8=0,tb=Number.MAX_SAFE_INTEGER;async function b8(e){let t=at(e.modelBasePath,e.face.description?.modelPath||"");return Ae.initial&&(Qs=null),Qs?e.debug&&ee("cached model:",t):(Qs=await rt(t),Qs?e.debug&&ee("load model:",t):ee("load model failed:",e.face.description?.modelPath||"")),Qs}function nb(e){return G(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Je))return null;let s=[[.05,.15,.85,.85]];if(!Qs?.inputs[0].shape)return null;let r=n.shape.length===3?$e.cropAndResize(Kt(n,0),s,[0],[Qs.inputs[0].shape[2],Qs.inputs[0].shape[1]]):$e.cropAndResize(n,s,[0],[Qs.inputs[0].shape[2],Qs.inputs[0].shape[1]]);return B(r,255)})}async function sb(e,t,n,s){if(!Qs)return null;let r=tb<(t.face.description?.skipFrames||0),a=(t.face.description?.skipTime||0)>ce()-y8;return t.skipAllowed&&r&&a&&x8===s&&Xm[n]?.age&&Xm[n]?.age>0?(tb++,Xm[n]):(tb=0,new Promise(async o=>{let i={age:0,gender:"unknown",genderScore:0,descriptor:[]};if(t.face.description?.enabled){let l=nb(e),c=await Qs?.predict(l);y8=ce(),Y(l);let d=await(await c.find(y=>y.shape[1]===1)).data(),p=Math.trunc(200*Math.abs(d[0]-.5))/100;p>(t.face.description?.minConfidence||0)&&(i.gender=d[0]<=.5?"female":"male",i.genderScore=Math.min(.99,p));let h=Us(c.find(y=>y.shape[1]===100),1),f=(await h.data())[0];Y(h);let g=await c.find(y=>y.shape[1]===100).data();i.age=Math.round(g[f-1]>g[f+1]?10*f-100*g[f-1]:10*f+100*g[f+1])/10;let A=c.find(y=>y.shape[1]===1024),x=A?await A.data():[];i.descriptor=Array.from(x),c.forEach(y=>Y(y))}Xm[n]=i,x8=s,o(i)}))}function Km(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function yp(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function v8(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return $e.cropAndResize(t,a,[0],n)}function w8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function Zm(e,t=1.5){let n=yp(e),s=Km(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function Ym(e){let t=yp(e),n=Km(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function Cge(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function k8(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Cge(n)}var S8=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function jo(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function Tge(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function I8(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(jo(e[r],Tge(t,a)))}return n}function rb(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=S8(t[0],t[1]),o=I8(a,r),i=S8(-t[0],-t[1]);return I8(o,i)}function C8(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-jo(t[0],n),-jo(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function ab(e,t){return[jo(e,t[0]),jo(e,t[1])]}var T8=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var ob=class{constructor(t){de(this,"model");de(this,"anchors");de(this,"anchorsTensor");de(this,"inputSize");de(this,"inputSizeTensor");de(this,"doubleInputSizeTensor");this.model=t,this.anchors=T8.map(n=>[n.x,n.y]),this.anchorsTensor=ir(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=Zt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Zt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return G(()=>{let n=_e(t,[0,0],[-1,2]),s=_e(t,[0,2],[-1,2]),r=ie(he(n,this.inputSizeTensor),this.anchorsTensor),a=he(s,this.doubleInputSizeTensor),o=B(xe(r,a),this.inputSizeTensor),i=B(ie(r,a),this.inputSizeTensor);return wu([o,i],1)})}normalizeLandmarks(t,n){return G(()=>{let s=ie(he(V(t,[-1,7,2]),this.inputSizeTensor),this.anchors[n]);return B(s,this.inputSizeTensor)})}async getBoxes(t,n){let s={};s.batched=this.model.predict(t),s.predictions=ct(s.batched),s.scores=G(()=>ct(ls(_e(s.predictions,[0,0],[-1,1]))));let r=await s.scores.data();s.boxes=_e(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await $e.nonMaxSuppressionAsync(s.norm,s.scores,3*n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let i of a){let l=_e(s.norm,[i,0],[1,-1]),c=G(()=>V(this.normalizeLandmarks(_e(s.predictions,[i,5],[1,14]),i),[-1,2]));o.push({box:l,palmLandmarks:c,confidence:r[i]})}for(let i of Object.keys(s))Y(s[i]);return o}async estimateHandBounds(t,n){let s=t.shape[1],r=t.shape[2],a=G(()=>xe(he($e.resizeBilinear(t,[this.inputSize,this.inputSize]),127.5),1)),o=await this.getBoxes(a,n);Y(a);let i=[];if(!o||o.length===0)return i;for(let l of o){let c=await l.box.data(),u=c.slice(0,2),d=c.slice(2,4),p=await l.palmLandmarks.array();Y(l.box),Y(l.palmLandmarks),i.push(w8({startPoint:u,endPoint:d,palmLandmarks:p,confidence:l.confidence},[r/this.inputSize,s/this.inputSize]))}return i}};var Nge=5,N8=1.65,E8=[0,5,9,13,17,1,2],Ege=0,Rge=2,R8=0,ib=class{constructor(t,n){de(this,"handDetector");de(this,"handPoseModel");de(this,"inputSize");de(this,"storedBoxes");de(this,"skipped");de(this,"detectedHands");this.handDetector=t,this.handPoseModel=n,this.inputSize=this.handPoseModel&&this.handPoseModel.inputs[0].shape?this.handPoseModel.inputs[0].shape[2]:0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>ab([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return Zm(Ym(r),Nge)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=Zm(Ym(n),N8);s.palmLandmarks=[];for(let r=0;r<E8.length;r++)s.palmLandmarks.push(t[E8[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=Km(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(h=>[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=rb(s,[0,0]),c=i.map(h=>[...ab(h,l),h[2]]),u=C8(r),d=[...yp(n),1],p=[jo(d,u[0]),jo(d,u[1])];return c.map(h=>[Math.trunc(h[0]+p[0]),Math.trunc(h[1]+p[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r,a=(n.hand.skipTime||0)>ce()-R8,o=this.skipped<(n.hand.skipFrames||0);n.skipAllowed&&a&&o&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let i=[];for(let l=0;l<this.storedBoxes.length;l++){let c=this.storedBoxes[l];if(!!c)if(n.hand.landmarks){let u=n.hand.rotation?k8(c.palmLandmarks[Ege],c.palmLandmarks[Rge]):0,d=yp(c),p=[d[0]/t.shape[2],d[1]/t.shape[1]],h=n.hand.rotation&&Ae.kernels.includes("rotatewithoffset")?$e.rotateWithOffset(t,u,0,p):t.clone(),f=rb(-u,d),m=s?this.getBoxForPalmLandmarks(c.palmLandmarks,f):c,g=v8(m,h,[this.inputSize,this.inputSize]),A=he(g,255);Y(g),Y(h);let[x,y]=await this.handPoseModel.predict(A);R8=ce(),Y(A);let b=(await x.data())[0];if(Y(x),b>=n.hand.minConfidence/4){let w=V(y,[-1,3]),S=await w.array();Y(y),Y(w);let C=this.transformRawCoords(S,m,u,f),E=this.getBoxForHandLandmarks(C);this.storedBoxes[l]={...E,confidence:b};let D={landmarks:C,confidence:b,boxConfidence:c.confidence,fingerConfidence:b,box:{topLeft:E.startPoint,bottomRight:E.endPoint}};i.push(D)}else this.storedBoxes[l]=null;Y(y)}else{let u=Zm(Ym(c),N8),d={confidence:c.confidence,boxConfidence:c.confidence,fingerConfidence:0,box:{topLeft:u.startPoint,bottomRight:u.endPoint},landmarks:[]};i.push(d)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=i.length,i.length>n.hand.maxDetected&&(i.length=n.hand.maxDetected),i}};var Ze={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>Ze.nameMapping[e],getPoints:e=>Ze.pointsMapping[e]},as={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>as.nameMapping[e]},je={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>je.nameMapping[e]},Jm=class{constructor(t){de(this,"name");de(this,"curls");de(this,"directions");de(this,"weights");de(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}addCurl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}addDirection(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}setWeight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var qo=new Jm("thumbs up");qo.addCurl(Ze.thumb,as.none,1);qo.addDirection(Ze.thumb,je.verticalUp,1);qo.addDirection(Ze.thumb,je.diagonalUpLeft,.25);qo.addDirection(Ze.thumb,je.diagonalUpRight,.25);for(let e of[Ze.index,Ze.middle,Ze.ring,Ze.pinky])qo.addCurl(e,as.full,1),qo.addDirection(e,je.horizontalLeft,1),qo.addDirection(e,je.horizontalRight,1);var tn=new Jm("victory");tn.addCurl(Ze.thumb,as.half,.5);tn.addCurl(Ze.thumb,as.none,.5);tn.addDirection(Ze.thumb,je.verticalUp,1);tn.addDirection(Ze.thumb,je.diagonalUpLeft,1);tn.addCurl(Ze.index,as.none,1);tn.addDirection(Ze.index,je.verticalUp,.75);tn.addDirection(Ze.index,je.diagonalUpLeft,1);tn.addCurl(Ze.middle,as.none,1);tn.addDirection(Ze.middle,je.verticalUp,1);tn.addDirection(Ze.middle,je.diagonalUpLeft,.75);tn.addCurl(Ze.ring,as.full,1);tn.addDirection(Ze.ring,je.verticalUp,.2);tn.addDirection(Ze.ring,je.diagonalUpLeft,1);tn.addDirection(Ze.ring,je.horizontalLeft,.2);tn.addCurl(Ze.pinky,as.full,1);tn.addDirection(Ze.pinky,je.verticalUp,.2);tn.addDirection(Ze.pinky,je.diagonalUpLeft,1);tn.addDirection(Ze.pinky,je.horizontalLeft,.2);tn.setWeight(Ze.index,2);tn.setWeight(Ze.middle,2);var $8=[qo,tn];var $ge=.7,Cl={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function D8(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function _8(e,t){if(!e||!t)return[0,0];let n=D8(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=D8(e[1],e[2],t[1],t[2]);return[n,s]}function P8(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function Dge(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],c=e[2]-t[2],u=e[2]-n[2],d=t[2]-n[2],p=Math.sqrt(s*s+o*o+c*c),h=Math.sqrt(r*r+i*i+u*u),f=Math.sqrt(a*a+l*l+d*d),m=(f*f+p*p-h*h)/(2*f*p);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let A;return g>Cl.NO_CURL_START_LIMIT?A=as.none:g>Cl.HALF_CURL_START_LIMIT?A=as.half:A=as.full,A}function F8(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=je.horizontalLeft:r=je.horizontalRight:s===Math.abs(t)?t>0?r=je.horizontalLeft:r=je.horizontalRight:n>0?r=je.horizontalLeft:r=je.horizontalRight,r}function O8(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=je.verticalDown:r=je.verticalUp:s===Math.abs(t)?t<0?r=je.verticalDown:r=je.verticalUp:n<0?r=je.verticalDown:r=je.verticalUp,r}function _ge(e,t,n,s,r,a,o,i){let l,c=O8(e,t,n,s),u=F8(r,a,o,i);return c===je.verticalUp?u===je.horizontalLeft?l=je.diagonalUpLeft:l=je.diagonalUpRight:u===je.horizontalLeft?l=je.diagonalDownLeft:l=je.diagonalDownRight,l}function Pge(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],c=t[1]-n[1],u=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),d=Math.max(Math.abs(i),Math.abs(l),Math.abs(c)),p=0,h=0,f=0,m=d/(u+1e-5);m>1.5?p+=Cl.DISTANCE_VOTE_POWER:m>.66?h+=Cl.DISTANCE_VOTE_POWER:f+=Cl.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),A=Math.sqrt(a*a+l*l),x=Math.sqrt(o*o+c*c),y=Math.max(g,A,x),b=e[0],w=e[1],S=n[0],C=n[1];y===g?(S=n[0],C=n[1]):y===x&&(b=t[0],w=t[1]);let O=_8([b,w],[S,C]),_=P8(O,Cl.TOTAL_ANGLE_VOTE_POWER);p+=_[0],h+=_[1],f+=_[2];for(let T of s){let M=P8(T,Cl.SINGLE_ANGLE_VOTE_POWER);p+=M[0],h+=M[1],f+=M[2]}let F;return p===Math.max(p,h,f)?F=O8(l,i,c,d):f===Math.max(h,f)?F=F8(a,r,o,u):F=_ge(l,i,c,d,a,r,o,u),F}function M8(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of Ze.all){let o=Ze.getPoints(a),i=[],l=[];for(let c of o){let u=e[c[0]],d=e[c[1]],p=_8(u,d),h=p[0],f=p[1];i.push(h),l.push(f)}t.push(i),n.push(l)}for(let a of Ze.all){let o=a===Ze.thumb?1:0,i=Ze.getPoints(a),l=e[i[o][0]],c=e[i[o+1][1]],u=e[i[3][1]],d=Dge(l,c,u),p=Pge(l,c,u,t[a].slice(o));s[a]=d,r[a]=p}return{curls:s,directions:r}}function Qm(e){if(!e||e.length===0)return null;let t=M8(e),n={};for(let s of Ze.all)n[Ze.getName(s)]={curl:as.getName(t.curls[s]),direction:je.getName(t.directions[s])};return n}function z8(e){let t=[];if(!e||e.length===0)return t;let n=M8(e);for(let s of $8){let r=s.matchAgainst(n.curls,n.directions);r>=$ge&&t.push({name:s.name,confidence:r})}return t}var L8={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},ia,la,B8;async function lb(e,t){let n=await B8.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let u of Object.keys(L8))a[u]=L8[u].map(d=>n[r].landmarks[d]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let u of o)u[0]<i[0]&&(i[0]=u[0]),u[1]<i[1]&&(i[1]=u[1]),u[0]>i[2]&&(i[2]=u[0]),u[1]>i[3]&&(i[3]=u[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let c=Qm(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,boxScore:Math.round(100*n[r].boxConfidence)/100,fingerScore:Math.round(100*n[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:c})}return s}async function ub(e){Ae.initial&&(ia=null,la=null),!ia||!la?([ia,la]=await Promise.all([e.hand.enabled?rt(at(e.modelBasePath,e.hand.detector?.modelPath||""),{fromTFHub:(e.hand.detector?.modelPath||"").includes("tfhub.dev")}):null,e.hand.landmarks?rt(at(e.modelBasePath,e.hand.skeleton?.modelPath||""),{fromTFHub:(e.hand.skeleton?.modelPath||"").includes("tfhub.dev")}):null]),e.hand.enabled&&(!ia||!ia.modelUrl?ee("load model failed:",e.hand.detector?.modelPath||""):e.debug&&ee("load model:",ia.modelUrl),!la||!la.modelUrl?ee("load model failed:",e.hand.skeleton?.modelPath||""):e.debug&&ee("load model:",la.modelUrl))):(e.debug&&ee("cached model:",ia.modelUrl),e.debug&&ee("cached model:",la.modelUrl));let t=new ob(ia);return B8=new ib(t,la),[ia,la]}function Tl(e,t=[1,1]){let n=[e.map(i=>i[0]),e.map(i=>i[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[s[0],s[1],r[0]-s[0],r[1]-s[1]],o=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:o}}function W8(e,t=[1,1]){let n=[e.map(c=>c[0]),e.map(c=>c[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[(s[0]+r[0])/2,(s[1]+r[1])/2],o=Math.max(a[0]-s[0],a[1]-s[1],-a[0]+r[0],-a[1]+r[1]),i=[Math.trunc(a[0]-o),Math.trunc(a[1]-o),Math.trunc(2*o),Math.trunc(2*o)],l=[i[0]/t[0],i[1]/t[1],i[2]/t[0],i[3]/t[1]];return{box:i,boxRaw:l}}function e0(e,t){let n=[e[2]*t,e[3]*t];return[e[0]-(n[0]-e[2])/2,e[1]-(n[1]-e[3])/2,n[0],n[1]]}function cb(e){return[Math.max(0,e[1]),Math.max(0,e[0]),Math.min(1,e[3]+e[1]),Math.min(1,e[2]+e[0])]}var Ct=[null,null],Fge=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],Xo=[[0,0],[0,0]],Oge=["hand","fist","pinch","point","face","tip","pinchtip"],V8=4,U8=1.6,Mge=512,zge=1.4,t0=Number.MAX_SAFE_INTEGER,db=0,ua=[0,0],qt={boxes:[],hands:[]},G8={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]};async function H8(e){if(Ae.initial&&(Ct[0]=null),Ct[0])e.debug&&ee("cached model:",Ct[0].modelUrl);else{dc(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),Ct[0]=await rt(at(e.modelBasePath,e.hand.detector?.modelPath||""));let t=Object.values(Ct[0].modelSignature.inputs);Xo[0][0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,Xo[0][1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0,!Ct[0]||!Ct[0].modelUrl?ee("load model failed:",e.hand.detector?.modelPath):e.debug&&ee("load model:",Ct[0].modelUrl)}return Ct[0]}async function j8(e){if(Ae.initial&&(Ct[1]=null),Ct[1])e.debug&&ee("cached model:",Ct[1].modelUrl);else{Ct[1]=await rt(at(e.modelBasePath,e.hand.skeleton?.modelPath||""));let t=Object.values(Ct[1].modelSignature.inputs);Xo[1][0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,Xo[1][1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0,!Ct[1]||!Ct[1].modelUrl?ee("load model failed:",e.hand.skeleton?.modelPath):e.debug&&ee("load model:",Ct[1].modelUrl)}return Ct[1]}async function Lge(e,t){let n=[];if(!e||!Ct[0])return n;let s={},r=(e.shape[2]||1)/(e.shape[1]||1),a=Math.min(Math.round((e.shape[1]||0)/8)*8,Mge),o=Math.round(a*r/8)*8;s.resize=$e.resizeBilinear(e,[a,o]),s.cast=pe(s.resize,"int32"),[s.rawScores,s.rawBoxes]=await Ct[0].executeAsync(s.cast,Fge),s.boxes=ct(s.rawBoxes,[0,2]),s.scores=ct(s.rawScores,[0]);let i=es(s.scores,1);Y(i[V8]),i.splice(V8,1),s.filtered=$n(i,1),Y(i),s.max=Qn(s.filtered,1),s.argmax=Us(s.filtered,1);let l=0;s.nms=await $e.nonMaxSuppressionAsync(s.boxes,s.max,t.hand.maxDetected,t.hand.iouThreshold,t.hand.minConfidence);let c=await s.nms.data(),u=await s.max.data(),d=await s.argmax.data();for(let p of Array.from(c)){let h=_e(s.boxes,p,1),f=await h.data();Y(h);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=e0(m,zge),A=cb(g),x=[Math.trunc(m[0]*ua[0]),Math.trunc(m[1]*ua[1]),Math.trunc(m[2]*ua[0]),Math.trunc(m[3]*ua[1])],y=u[p],b=Oge[d[p]],w={id:l++,score:y,box:x,boxRaw:g,boxCrop:A,label:b};n.push(w)}return Object.keys(s).forEach(p=>Y(s[p])),n.sort((p,h)=>h.score-p.score),n.length>(t.hand.maxDetected||1)&&(n.length=t.hand.maxDetected||1),n}async function pb(e,t,n){let s={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&Ct[1]&&n.hand.landmarks&&t.score>(n.hand.minConfidence||0)){let r={};r.crop=$e.cropAndResize(e,[t.boxCrop],[0],[Xo[1][0],Xo[1][1]],"bilinear"),r.cast=pe(r.crop,"float32"),r.div=he(r.cast,255),[r.score,r.keypoints]=Ct[1].execute(r.div,["Identity_1","Identity"]);let a=(await r.score.data())[0],o=(100-Math.trunc(100/(1+Math.exp(a))))/100;if(o>=(n.hand.minConfidence||0)){s.fingerScore=o,r.reshaped=V(r.keypoints,[-1,3]);let c=(await r.reshaped.array()).map(u=>[u[0]/Xo[1][1],u[1]/Xo[1][0],u[2]||0]).map(u=>[u[0]*t.boxRaw[2],u[1]*t.boxRaw[3],u[2]||0]);s.keypoints=c.map(u=>[ua[0]*(u[0]+t.boxRaw[0]),ua[1]*(u[1]+t.boxRaw[1]),u[2]||0]),s.landmarks=Qm(s.keypoints);for(let u of Object.keys(G8))s.annotations[u]=G8[u].map(d=>s.landmarks&&s.keypoints[d]?s.keypoints[d]:null)}Object.keys(r).forEach(i=>Y(r[i]))}return s}async function hb(e,t){if(!Ct[0]||!Ct[1]||!Ct[0]?.inputs[0].shape||!Ct[1]?.inputs[0].shape)return[];ua=[e.shape[2]||0,e.shape[1]||0],t0++;let n=(t.hand.skipTime||0)>ce()-db,s=t0<(t.hand.skipFrames||0);return t.skipAllowed&&n&&s?qt.hands:new Promise(async r=>{let a=3*(t.hand.skipTime||0)>ce()-db,o=t0<3*(t.hand.skipFrames||0);t.skipAllowed&&qt.hands.length===t.hand.maxDetected?qt.hands=await Promise.all(qt.boxes.map(l=>pb(e,l,t))):t.skipAllowed&&a&&o&&qt.hands.length>0?qt.hands=await Promise.all(qt.boxes.map(l=>pb(e,l,t))):(qt.boxes=await Lge(e,t),db=ce(),qt.hands=await Promise.all(qt.boxes.map(l=>pb(e,l,t))),t0=0);let i=[...qt.boxes];if(qt.boxes.length=0,t.cacheSensitivity>0)for(let l=0;l<qt.hands.length;l++){let c=W8(qt.hands[l].keypoints,ua);if(c.box[2]/(e.shape[2]||1)>.05&&c.box[3]/(e.shape[1]||1)>.05&&qt.hands[l].fingerScore&&qt.hands[l].fingerScore>(t.hand.minConfidence||0)){let u=e0(c.box,U8),d=e0(c.boxRaw,U8),p=cb(d);qt.boxes.push({...i[l],box:u,boxRaw:d,boxCrop:p})}}for(let l=0;l<qt.hands.length;l++){let c=Tl(qt.hands[l].keypoints,ua);qt.hands[l].box=c.box,qt.hands[l].boxRaw=c.boxRaw}r(qt.hands)})}var Ab={};Ec(Ab,{connected:()=>s0,horizontal:()=>fb,kpt:()=>n0,relative:()=>gb,vertical:()=>mb});var n0=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],fb=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],mb=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],gb=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],s0={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var q8=.005,ys={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function yb(e){for(let t of fb){let n=e.keypoints.findIndex(r=>r.part===t[0]),s=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[0]<e.keypoints[s].position[0]){let r=e.keypoints[n];e.keypoints[n]=e.keypoints[s],e.keypoints[s]=r}}for(let t of mb){let n=e.keypoints.findIndex(r=>r&&r.part===t[0]),s=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[1]<e.keypoints[s].position[1]&&e.keypoints.splice(n,1)}for(let[t,n]of gb){let s=e.keypoints.findIndex(c=>c&&c.part===t[0]),r=e.keypoints.findIndex(c=>c&&c.part===t[1]),a=e.keypoints.findIndex(c=>c&&c.part===n[0]),o=e.keypoints.findIndex(c=>c&&c.part===n[1]);if(!e.keypoints[a]||!e.keypoints[o])continue;let i=e.keypoints[s]?[Math.abs(e.keypoints[a].position[0]-e.keypoints[s].position[0]),Math.abs(e.keypoints[o].position[0]-e.keypoints[s].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[o].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[a].position[0]-e.keypoints[r].position[0])]:[0,0];if(i[0]>i[1]||l[0]>l[1]){let c=e.keypoints[s];e.keypoints[s]=e.keypoints[r],e.keypoints[r]=c}}}function X8(e){for(let t=0;t<e.length;t++)if(e[t]&&ys.keypoints[t]){let n=[Math.abs(e[t].positionRaw[0]-ys.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-ys.keypoints[t].positionRaw[1])];n[0]<q8&&n[1]<q8?e[t]=ys.keypoints[t]:ys.keypoints[t]=e[t]}else ys.keypoints[t]=e[t];return e}function K8(e,t){let n={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;ys.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],n.pad=Hs(e,ys.padding),n.resize=$e.resizeBilinear(n.pad,[t,t]);let s=pe(n.resize,"int32");return Object.keys(n).forEach(r=>Y(n[r])),s}function Z8(e,t){e.keypoints=e.keypoints.filter(s=>s&&s.position);for(let s of e.keypoints)s.position=[s.position[0]*(t[0]+ys.padding[2][0]+ys.padding[2][1])/t[0]-ys.padding[2][0],s.position[1]*(t[1]+ys.padding[1][0]+ys.padding[1][1])/t[1]-ys.padding[1][0]],s.positionRaw=[s.position[0]/t[0],s.position[1]/t[1]];let n=Tl(e.keypoints.map(s=>s.position),t);return e.box=n.box,e.boxRaw=n.boxRaw,e}var Fs,r0=0,xb=Number.MAX_SAFE_INTEGER,Nl={boxes:[],bodies:[],last:0};async function Y8(e){return Ae.initial&&(Fs=null),Fs?e.debug&&ee("cached model:",Fs.modelUrl):(dc(["size"],e),Fs=await rt(at(e.modelBasePath,e.body.modelPath||"")),!Fs||!Fs.modelUrl?ee("load model failed:",e.body.modelPath):e.debug&&ee("load model:",Fs.modelUrl)),r0=Fs.inputs[0].shape?Fs.inputs[0].shape[2]:0,r0===-1&&(r0=256),Fs}async function Bge(e,t,n,s){let r=e[0][0],a=[],o=0;for(let d=0;d<r.length;d++)if(o=r[d][2],o>t.body.minConfidence){let p=[(s[3]-s[1])*r[d][1]+s[1],(s[2]-s[0])*r[d][0]+s[0]];a.push({score:Math.round(100*o)/100,part:n0[d],positionRaw:p,position:[Math.round((n.shape[2]||0)*p[0]),Math.round((n.shape[1]||0)*p[1])]})}o=a.reduce((d,p)=>p.score>d?p.score:d,0);let i=[],l=Tl(a.map(d=>d.position),[n.shape[2],n.shape[1]]),c={};for(let[d,p]of Object.entries(s0)){let h=[];for(let f=0;f<p.length-1;f++){let m=a.find(A=>A.part===p[f]),g=a.find(A=>A.part===p[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}c[d]=h}let u={id:0,score:o,box:l.box,boxRaw:l.boxRaw,keypoints:a,annotations:c};return yb(u),i.push(u),i}async function Wge(e,t,n,s){let r=[];for(let a=0;a<e[0].length;a++){let o=e[0][a],i=Math.round(100*o[51+4])/100;if(i>t.body.minConfidence){let l=[];for(let p=0;p<17;p++){let h=o[3*p+2];if(h>t.body.minConfidence){let f=[(s[3]-s[1])*o[3*p+1]+s[1],(s[2]-s[0])*o[3*p+0]+s[0]];l.push({part:n0[p],score:Math.round(100*h)/100,positionRaw:f,position:[Math.round((n.shape[2]||0)*f[0]),Math.round((n.shape[1]||0)*f[1])]})}}let c=Tl(l.map(p=>p.position),[n.shape[2],n.shape[1]]),u={};for(let[p,h]of Object.entries(s0)){let f=[];for(let m=0;m<h.length-1;m++){let g=l.find(x=>x.part===h[m]),A=l.find(x=>x.part===h[m+1]);g&&A&&g.score>(t.body.minConfidence||0)&&A.score>(t.body.minConfidence||0)&&f.push([g.position,A.position])}u[p]=f}let d={id:a,score:i,box:c.box,boxRaw:c.boxRaw,keypoints:[...l],annotations:u};yb(d),r.push(d)}}return r.sort((a,o)=>o.score-a.score),r.length>t.body.maxDetected&&(r.length=t.body.maxDetected),r}async function bb(e,t){if(!Fs||!Fs?.inputs[0].shape)return[];t.skipAllowed||(Nl.boxes.length=0),xb++;let n=(t.body.skipTime||0)>ce()-Nl.last,s=xb<(t.body.skipFrames||0);return t.skipAllowed&&n&&s?Nl.bodies:new Promise(async r=>{let a={};xb=0,a.input=K8(e,r0),a.res=await Fs?.predict(a.input),Nl.last=ce();let o=await a.res.array();Nl.bodies=a.res.shape[2]===17?await Bge(o,t,e,[0,0,1,1]):await Wge(o,t,e,[0,0,1,1]);for(let i of Nl.bodies)Z8(i,[e.shape[2]||1,e.shape[1]||1]),X8(i.keypoints);Object.keys(a).forEach(i=>Y(a[i])),r(Nl.bodies)})}var xs,a0=[],J8=0,vb=Number.MAX_SAFE_INTEGER,o0=2.5;async function Q8(e){if(!xs||Ae.initial){xs=await rt(at(e.modelBasePath,e.object.modelPath||""));let t=Object.values(xs.modelSignature.inputs);if(xs.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!xs.inputSize)throw new Error(`cannot determine model inputSize: ${e.object.modelPath}`);!xs||!xs.modelUrl?ee("load model failed:",e.object.modelPath):e.debug&&ee("load model:",xs.modelUrl)}else e.debug&&ee("cached model:",xs.modelUrl);return xs}async function Vge(e,t,n,s){let r=0,a=[];for(let c of[1,2,4])G(async()=>{let u=c*13,d=e.find(g=>g.shape[1]===u**2&&g.shape[2]===cc.length)?.squeeze(),p=e.find(g=>g.shape[1]===u**2&&g.shape[2]<cc.length)?.squeeze(),f=await p.reshape([-1,4,p.shape[1]/4]).argMax(2).array(),m=await d.array();for(let g=0;g<d.shape[0];g++)for(let A=0;A<d.shape[1];A++){let x=m[g][A];if(x>s.object.minConfidence&&A!==61){let y=(.5+Math.trunc(g%u))/u,b=(.5+Math.trunc(g/u))/u,w=f[g].map(T=>T*(u/c/t)),[S,C]=[y-o0/c*w[0],b-o0/c*w[1]],[E,D]=[y+o0/c*w[2]-S,b+o0/c*w[3]-C],O=[S,C,E,D];O=O.map(T=>Math.max(0,Math.min(T,1)));let _=[O[0]*n[0],O[1]*n[1],O[2]*n[0],O[3]*n[1]],F={id:r++,score:Math.round(100*x)/100,class:A+1,label:cc[A].label,box:_.map(T=>Math.trunc(T)),boxRaw:O};a.push(F)}}});e.forEach(c=>Y(c));let o=a.map(c=>[c.boxRaw[1],c.boxRaw[0],c.boxRaw[3],c.boxRaw[2]]),i=a.map(c=>c.score),l=[];if(o&&o.length>0){let c=await $e.nonMaxSuppressionAsync(o,i,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);l=await c.data(),Y(c)}return a=a.filter((c,u)=>l.includes(u)).sort((c,u)=>u.score-c.score),a}async function wb(e,t){let n=(t.object.skipTime||0)>ce()-J8,s=vb<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&a0.length>0?(vb++,a0):(vb=0,!Ae.kernels.includes("mod")||!Ae.kernels.includes("sparsetodense")?a0:new Promise(async r=>{let a=[e.shape[2],e.shape[1]],o=$e.resizeBilinear(e,[xs.inputSize,xs.inputSize],!1),i=he(o,255),l=i.transpose([0,3,1,2]);Y(i),Y(o);let c;t.object.enabled&&(c=await xs.predict(l)),J8=ce(),Y(l);let u=await Vge(c,xs.inputSize,a,t);a0=u,r(u)}))}var xp=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Uge=xp.length,bp=xp.reduce((e,t,n)=>(e[t]=n,e),{}),Gge=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],kAe=Gge.map(([e,t])=>[bp[e],bp[t]]),eT=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function tT(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function nT(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(c,u)=>({id:u,score:c.score,boxRaw:[c.box[0]/r,c.box[1]/s,c.box[2]/r,c.box[3]/s],box:[Math.trunc(c.box[0]*o),Math.trunc(c.box[1]*a),Math.trunc(c.box[2]*o),Math.trunc(c.box[3]*a)],keypoints:c.keypoints.map(({score:d,part:p,position:h})=>({score:d,part:p,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]}))});return e.map((c,u)=>i(c,u))}var kb=class{constructor(t,n){de(this,"priorityQueue");de(this,"numberOfElements");de(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function Sb(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+Uge)}}function Ib(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=Sb(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function Cb(e,t,n){return e<t?t:e>n?n:e}function sT(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function Tb(e,t){return{x:e.x+t.x,y:e.y+t.y}}var bs,Hge=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],i0=1,fc=16,jge=50**2;function rT(e,t,n,s,r,a,o=2){let i=A=>({y:a.get(A.y,A.x,e),x:a.get(A.y,A.x,a.shape[2]/2+e)}),l=(A,x,y)=>({y:Cb(Math.round(A.y/fc),0,x-1),x:Cb(Math.round(A.x/fc),0,y-1)}),[c,u]=s.shape,d=l(t.position,c,u),p=i(d),f=Tb(t.position,p);for(let A=0;A<o;A++){let x=l(f,c,u),y=Sb(x.y,x.x,n,r);f=Tb({x:x.x*fc,y:x.y*fc},{x:y.x,y:y.y})}let m=l(f,c,u),g=s.get(m.y,m.x,n);return{position:f,part:xp[n],score:g}}function qge(e,t,n,s,r){let a=eT.map(([p,h])=>[bp[p],bp[h]]),o=a.map(([,p])=>p),i=a.map(([p])=>p),l=t.shape[2],c=o.length,u=new Array(l),d=Ib(e.part,fc,n);u[e.part.id]={score:e.score,part:xp[e.part.id],position:d};for(let p=c-1;p>=0;--p){let h=o[p],f=i[p];u[h]&&!u[f]&&(u[f]=rT(p,u[h],f,t,n,r))}for(let p=0;p<c;++p){let h=i[p],f=o[p];u[h]&&!u[f]&&(u[f]=rT(p,u[h],f,t,n,s))}return u}function Xge(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-i0,0),c=Math.min(n+i0+1,a);for(let u=l;u<c;++u){let d=Math.max(s-i0,0),p=Math.min(s+i0+1,o);for(let h=d;h<p;++h)if(r.get(u,h,e)>t){i=!1;break}if(!i)break}return i}function Kge(e,t){let[n,s,r]=t.shape,a=new kb(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let c=t.get(o,i,l);c<e||Xge(l,c,o,i,t)&&a.enqueue({score:c,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function aT(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{let a=r[s]?.position;return a?sT(n,t,a.y,a.x)<=jge:!1})}function Zge(e,t){return t.reduce((s,{position:r,score:a},o)=>(aT(e,r,o)||(s+=a),s),0)/t.length}function Yge(e,t,n,s,r,a){let o=[],i=Kge(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),c=Ib(l.part,fc,e);if(aT(o,c,l.part.id))continue;let u=qge(l,t,e,n,s);u=u.filter(h=>h.score>a);let d=Zge(o,u),p=tT(u);d>a&&o.push({keypoints:u,box:p,score:Math.round(100*d)/100})}return o}async function Nb(e,t){let n=G(()=>{if(!bs.inputs[0].shape)return[];let o=$e.resizeBilinear(e,[bs.inputs[0].shape[2],bs.inputs[0].shape[1]]),i=xe(he(pe(o,"float32"),127.5),1),c=bs.execute(i,Hge).map(u=>ct(u,[0]));return c[1]=c[1].sigmoid(),c}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)Y(o);let r=await Yge(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return bs.inputs[0].shape?nT(r,[e.shape[1],e.shape[2]],[bs.inputs[0].shape[2],bs.inputs[0].shape[1]]):[]}async function oT(e){return!bs||Ae.initial?(bs=await rt(at(e.modelBasePath,e.body.modelPath||"")),!bs||!bs.modelUrl?ee("load model failed:",e.body.modelPath):e.debug&&ee("load model:",bs.modelUrl)):e.debug&&ee("cached model:",bs.modelUrl),bs}var Os,Eb=!1;async function Rb(e){return!Os||Ae.initial?(Os=await rt(at(e.modelBasePath,e.segmentation.modelPath||"")),!Os||!Os.modelUrl?ee("load model failed:",e.segmentation.modelPath):e.debug&&ee("load model:",Os.modelUrl)):e.debug&&ee("cached model:",Os.modelUrl),Os}async function iT(e,t,n){if(Eb)return{data:[],canvas:null,alpha:null};Eb=!0,Os||await Rb(n);let s=uc(e,n),r=s.canvas?.width||0,a=s.canvas?.height||0;if(!s.tensor)return{data:[],canvas:null,alpha:null};let o={};o.resize=$e.resizeBilinear(s.tensor,[Os.inputs[0].shape?Os.inputs[0].shape[1]:0,Os.inputs[0].shape?Os.inputs[0].shape[2]:0],!1),Y(s.tensor),o.norm=he(o.resize,255),o.res=Os.predict(o.norm),o.squeeze=ct(o.res,0),o.squeeze.shape[2]===2?(o.softmax=Ru(o.squeeze),[o.bg,o.fg]=es(o.softmax,2),o.expand=Kt(o.fg,2),o.pad=Kt(o.expand,0),o.crop=$e.cropAndResize(o.pad,[[0,0,.5,.5]],[0],[r,a]),o.data=ct(o.crop,0)):o.data=$e.resizeBilinear(o.squeeze,[a,r]);let i=Array.from(await o.data.data());if(Ae.node&&!Ae.Canvas&&typeof ImageData=="undefined")return n.debug&&ee("canvas support missing"),Object.keys(o).forEach(m=>Y(o[m])),{data:i,canvas:null,alpha:null};let l=Hn(r,a);await Vs.toPixels(o.data,l);let c=l.getContext("2d");n.segmentation.blur&&n.segmentation.blur>0&&(c.filter=`blur(${n.segmentation.blur}px)`);let u=c.getImageData(0,0,r,a),d=Hn(r,a),p=d.getContext("2d");s.canvas&&p.drawImage(s.canvas,0,0),p.globalCompositeOperation="darken",n.segmentation.blur&&n.segmentation.blur>0&&(p.filter=`blur(${n.segmentation.blur}px)`),p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none";let h=p.getImageData(0,0,r,a);for(let m=0;m<r*a;m++)h.data[4*m+3]=u.data[4*m+0];p.putImageData(h,0,0);let f=null;if(t&&d){f=Hn(r,a);let m=uc(t,n);Y(m.tensor);let g=f.getContext("2d");g.drawImage(m.canvas,0,0,f.width,f.height),g.drawImage(d,0,0)}return Object.keys(o).forEach(m=>Y(o[m])),Eb=!1,{data:i,canvas:f||d,alpha:l}}var $b=class{constructor(){de(this,"age",null);de(this,"agegenderrace",null);de(this,"blazeposedetect",null);de(this,"blazepose",null);de(this,"centernet",null);de(this,"efficientpose",null);de(this,"embedding",null);de(this,"emotion",null);de(this,"facedetect",null);de(this,"faceiris",null);de(this,"facemesh",null);de(this,"faceres",null);de(this,"gender",null);de(this,"handpose",null);de(this,"handskeleton",null);de(this,"handtrack",null);de(this,"movenet",null);de(this,"nanodet",null);de(this,"posenet",null);de(this,"segmentation",null);de(this,"antispoof",null)}};function Db(e){for(let t of Object.keys(e.models))e.models[t]=null}async function lT(e){Ae.initial&&Db(e),e.config.hand.enabled&&(!e.models.handpose&&e.config.hand.detector?.modelPath?.includes("handdetect")&&([e.models.handpose,e.models.handskeleton]=await ub(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&e.config.hand.detector?.modelPath?.includes("handdetect")&&([e.models.handpose,e.models.handskeleton]=await ub(e.config))),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=X6(e.config)),e.config.face.enabled&&e.config.face.mesh?.enabled&&!e.models.facemesh&&(e.models.facemesh=m8(e.config)),e.config.face.enabled&&e.config.face.iris?.enabled&&!e.models.faceiris&&(e.models.faceiris=i8(e.config)),e.config.face.enabled&&e.config.face.antispoof?.enabled&&!e.models.antispoof&&(e.models.antispoof=z6(e.config)),e.config.hand.enabled&&!e.models.handtrack&&e.config.hand.detector?.modelPath?.includes("handtrack")&&(e.models.handtrack=H8(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&e.config.hand.detector?.modelPath?.includes("handtrack")&&(e.models.handskeleton=j8(e.config)),e.config.body.enabled&&!e.models.posenet&&e.config.body?.modelPath?.includes("posenet")&&(e.models.posenet=oT(e.config)),e.config.body.enabled&&!e.models.efficientpose&&e.config.body?.modelPath?.includes("efficientpose")&&(e.models.efficientpose=qx(e.config)),e.config.body.enabled&&!e.models.blazepose&&e.config.body?.modelPath?.includes("blazepose")&&(e.models.blazepose=Q6(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector?.modelPath&&e.config.body?.modelPath?.includes("blazepose")&&(e.models.blazeposedetect=J6(e.config)),e.config.body.enabled&&!e.models.efficientpose&&e.config.body?.modelPath?.includes("efficientpose")&&(e.models.efficientpose=qx(e.config)),e.config.body.enabled&&!e.models.movenet&&e.config.body?.modelPath?.includes("movenet")&&(e.models.movenet=Y8(e.config)),e.config.object.enabled&&!e.models.nanodet&&e.config.object?.modelPath?.includes("nanodet")&&(e.models.nanodet=Q8(e.config)),e.config.object.enabled&&!e.models.centernet&&e.config.object?.modelPath?.includes("centernet")&&(e.models.centernet=n8(e.config)),e.config.face.enabled&&e.config.face.emotion?.enabled&&!e.models.emotion&&(e.models.emotion=o8(e.config)),e.config.face.enabled&&e.config.face.description?.enabled&&!e.models.faceres&&(e.models.faceres=b8(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=Rb(e.config)),e.config.face.enabled&&e.config.face.agegenderrace?.enabled&&!e.models.agegenderrace&&(e.models.agegenderrace=F6(e.config));for await(let t of Object.keys(e.models))e.models[t]&&typeof e.models[t]!="undefined"&&(e.models[t]=await e.models[t])}async function uT(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let n of Object.keys(e.models))if(e.models[n]){let s=[];Array.isArray(e.models[n])?s=e.models[n].filter(r=>r!==null).map(r=>r&&r.executor?r:r.model):s=[e.models[n]];for(let r of s){if(!r){e.config.debug&&ee("model marked as loaded but not defined:",n);continue}let a=[],o=r?.executor;if(o&&o.graph.nodes)for(let l of Object.values(o.graph.nodes)){let c=l.op.toLowerCase();a.includes(c)||a.push(c)}else!o&&e.config.debug&&ee("model signature not determined:",n);let i=[];for(let l of a)!t.includes(l)&&!e.env.kernels.includes(l)&&!e.env.kernels.includes(l.replace("_",""))&&!e.env.kernels.includes(l.replace("native",""))&&!e.env.kernels.includes(l.replace("v2",""))&&i.push(l);i.length>0&&e.config.debug&&ee("model validation:",n,i)}}}var zt={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Jge(){let e=zt.gl;!e||(zt.extensions=e.getSupportedExtensions())}async function cT(e){if(e.config.backend==="humangl"&&(zt.name in Jn().registry&&(!zt.gl||!zt.gl.getParameter(zt.gl.VERSION))&&(ee("error: humangl backend invalid context"),Db(e)),!I2(zt.name))){try{zt.canvas=await Hn(100,100)}catch(n){ee("error: cannot create canvas:",n);return}try{zt.gl=zt.canvas?.getContext("webgl2",zt.webGLattr),zt.canvas&&(zt.canvas.addEventListener("webglcontextlost",async n=>{throw ee("error: humangl:",n.type),ee("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("browser webgl error")}),zt.canvas.addEventListener("webglcontextrestored",n=>{ee("error: humangl context restored:",n)}),zt.canvas.addEventListener("webglcontextcreationerror",n=>{ee("error: humangl context create:",n)}))}catch(n){ee("error: cannot get WebGL context:",n);return}try{pm(2,zt.gl)}catch(n){ee("error: cannot set WebGL context:",n);return}try{let n=new vm(zt.gl);Yi(zt.name,()=>new Zd(n),zt.priority)}catch(n){ee("error: cannot register WebGL backend:",n);return}try{jr("webgl").forEach(s=>{let r={...s,backendName:zt.name};qr(r)})}catch(n){ee("error: cannot update WebGL backend registration:",n);return}let t=Ir().getGPGPUContext?Ir().getGPGPUContext().gl:null;if(t)ee(`humangl webgl version:${t.getParameter(t.VERSION)} renderer:${t.getParameter(t.RENDERER)}`);else{ee("error: no current gl context:",t,zt.gl);return}try{wr.set("WEBGL_VERSION",2)}catch(n){ee("error: cannot set WebGL backend flags:",n);return}Jge(),ee("backend registered:",zt.name)}}async function l0(e,t=!1){if(e.state="backend",t||Ae.initial||e.config.backend&&e.config.backend.length>0&&ar()!==e.config.backend){let n=ce();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&ee("running inside web worker"),Ae.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&ee("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),Ae.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&ee(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),Ae.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")ee("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();e.config.debug&&ee("enumerated webgpu adapter:",r)}e.config.backend==="humangl"&&await cT(e);let s=Object.keys(Jn().registryFactory);if(e.config.debug&&ee("available backends:",s),s.includes(e.config.backend)||(ee(`error: backend ${e.config.backend} not found in registry`),e.config.backend=Ae.node?"tensorflow":"webgl",e.config.debug&&ee(`override: setting backend ${e.config.backend}`)),e.config.debug&&ee("setting backend:",e.config.backend),e.config.backend==="wasm"){if(e.config.debug&&ee("wasm path:",e.config.wasmPath),typeof dp?.setWasmPaths!="undefined")await w6(e.config.wasmPath);else throw new Error("wasm backend is not loaded");let r=await K().getAsync("WASM_HAS_SIMD_SUPPORT"),a=await K().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&ee(`wasm execution: ${r?"SIMD":"no SIMD"} ${a?"multithreaded":"singlethreaded"}`),e.config.debug&&!r&&ee("warning: wasm simd support is not enabled")}try{await y3(e.config.backend),await Wh()}catch(r){return ee("error: cannot set backend:",e.config.backend,r),!1}}if(ar()==="humangl"&&(wr.set("CHECK_COMPUTATION_FOR_ERRORS",!1),wr.set("WEBGL_CPU_FORWARD",!0),wr.set("WEBGL_USE_SHAPES_UNIFORMS",!0),wr.set("CPU_HANDOFF_SIZE_THRESHOLD",256),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(ee("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),wr.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),Ir().getGPGPUContext)){let s=await Ir().getGPGPUContext().gl;e.config.debug&&ee(`gl version:${s.getParameter(s.VERSION)} renderer:${s.getParameter(s.RENDERER)}`)}ar()==="webgpu",A3(),await Wh(),e.performance.initBackend=Math.trunc(ce()-n),e.config.backend=ar(),Ae.updateBackend()}return!0}function dc(e,t){for(let n of e){let s={kernelName:n,backendName:t.backend,kernelFunc:()=>{t.debug&&ee("kernelFunc",n,t.backend)}};qr(s)}Ae.kernels=jr(ar()).map(n=>n.kernelName.toLowerCase())}var ca={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1},_b=0,El=e=>{if(e&&e.getContext)return e.getContext("2d");throw new Error("invalid canvas")},mc=e=>Math.round(e*180/Math.PI);function Pb(e,t,n,s=0,r){e.fillStyle=r.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function vp(e,t,n,s,r,a){if(e.beginPath(),a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function dT(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t){let r=s[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(s[0],Math.round(s[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function Qge(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){dT(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function pT(e,t,n,s=5){let r,a,o;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(n[0],n[1]),r=Math.atan2(n[1]-t[1],n[0]-t[0]),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.moveTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),e.closePath(),e.stroke(),e.fill()}async function Fb(e,t,n){let s=Nn(ca,n);if(!(!t||!e)&&s.drawGestures){let r=El(e);r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let c=i[1]>0?`#${i[1]}`:"",u=`${i[0]} ${c}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(u,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(u,6,0+a*s.lineHeight),a+=1}}}}async function Ob(e,t,n){let s=Nn(ca,n);if(!t||!e)return;let r=El(e);for(let a of t){if(r.font=s.font,r.strokeStyle=s.color,r.fillStyle=s.color,s.drawBoxes&&vp(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=[];if(o.push(`face: ${Math.trunc(100*a.score)}%`),a.genderScore&&o.push(`${a.gender||""} ${Math.trunc(100*a.genderScore)}%`),a.age&&o.push(`age: ${a.age||""}`),a.iris&&o.push(`distance: ${a.iris}`),a.real&&o.push(`real: ${Math.trunc(100*a.real)}%`),a.emotion&&a.emotion.length>0){let i=a.emotion.map(l=>`${Math.trunc(100*l.score)}% ${l.emotion}`);i.length>3&&(i.length=3),o.push(i.join(" "))}a.rotation&&a.rotation.angle&&a.rotation.gaze&&(a.rotation.angle.roll&&o.push(`roll: ${mc(a.rotation.angle.roll)}\xB0 yaw:${mc(a.rotation.angle.yaw)}\xB0 pitch:${mc(a.rotation.angle.pitch)}\xB0`),a.rotation.gaze.bearing&&o.push(`gaze: ${mc(a.rotation.gaze.bearing)}\xB0`)),o.length===0&&o.push("face"),r.fillStyle=s.color;for(let i=o.length-1;i>=0;i--){let l=Math.max(a.box[0],0),c=i*s.lineHeight+a.box[1];s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o[i],l+5,c+16)),r.fillStyle=s.labelColor,r.fillText(o[i],l+4,c+15)}}if(r.lineWidth=1,a.mesh&&a.mesh.length>0){if(s.drawPoints)for(let o of a.mesh)Pb(r,o[0],o[1],o[2],s);if(s.drawPolygons){if(r.lineWidth=1,a.mesh.length>450)for(let o=0;o<kl.length/3;o++){let i=[kl[o*3+0],kl[o*3+1],kl[o*3+2]].map(l=>a.mesh[l]);dT(r,i,s)}if(a.annotations&&a.annotations.leftEyeIris&&a.annotations.leftEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let o=Math.abs(a.annotations.leftEyeIris[3][0]-a.annotations.leftEyeIris[1][0])/2,i=Math.abs(a.annotations.leftEyeIris[4][1]-a.annotations.leftEyeIris[2][1])/2;r.ellipse(a.annotations.leftEyeIris[0][0],a.annotations.leftEyeIris[0][1],o,i,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(a.annotations&&a.annotations.rightEyeIris&&a.annotations.rightEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let o=Math.abs(a.annotations.rightEyeIris[3][0]-a.annotations.rightEyeIris[1][0])/2,i=Math.abs(a.annotations.rightEyeIris[4][1]-a.annotations.rightEyeIris[2][1])/2;r.ellipse(a.annotations.rightEyeIris[0][0],a.annotations.rightEyeIris[0][1],o,i,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(s.drawGaze&&a.rotation?.angle){r.strokeStyle="pink";let o=a.box[0]+a.box[2]/2-a.box[3]*mc(a.rotation.angle.yaw)/90,i=a.box[1]+a.box[3]/2+a.box[2]*mc(a.rotation.angle.pitch)/90,l=new Path2D(`
|
|
M ${a.box[0]+a.box[2]/2} ${a.box[1]}
|
|
C
|
|
${o} ${a.box[1]},
|
|
${o} ${a.box[1]+a.box[3]},
|
|
${a.box[0]+a.box[2]/2} ${a.box[1]+a.box[3]}
|
|
`),c=new Path2D(`
|
|
M ${a.box[0]} ${a.box[1]+a.box[3]/2}
|
|
C
|
|
${a.box[0]} ${i},
|
|
${a.box[0]+a.box[2]} ${i},
|
|
${a.box[0]+a.box[2]} ${a.box[1]+a.box[3]/2}
|
|
`);r.stroke(c),r.stroke(l)}if(s.drawGaze&&a.rotation?.gaze?.strength&&a.rotation?.gaze?.bearing&&a.annotations.leftEyeIris&&a.annotations.rightEyeIris&&a.annotations.leftEyeIris[0]&&a.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.fillStyle="pink";let o=[a.annotations.leftEyeIris[0][0]+Math.sin(a.rotation.gaze.bearing)*a.rotation.gaze.strength*a.box[3],a.annotations.leftEyeIris[0][1]+Math.cos(a.rotation.gaze.bearing)*a.rotation.gaze.strength*a.box[2]];pT(r,[a.annotations.leftEyeIris[0][0],a.annotations.leftEyeIris[0][1]],[o[0],o[1]],4);let i=[a.annotations.rightEyeIris[0][0]+Math.sin(a.rotation.gaze.bearing)*a.rotation.gaze.strength*a.box[3],a.annotations.rightEyeIris[0][1]+Math.cos(a.rotation.gaze.bearing)*a.rotation.gaze.strength*a.box[2]];pT(r,[a.annotations.rightEyeIris[0][0],a.annotations.rightEyeIris[0][1]],[i[0],i[1]],4)}}}}}async function Mb(e,t,n){let s=Nn(ca,n);if(!t||!e)return;let r=El(e);r.lineJoin="round";for(let a=0;a<t.length;a++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[a].box&&t[a].box?.length===4&&(vp(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[a].score}%`,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[a].score}%`,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2]))),s.drawPoints&&t[a].keypoints)for(let o=0;o<t[a].keypoints.length;o++)r.fillStyle=s.useDepth&&t[a].keypoints[o].position[2]?`rgba(${127.5+2*(t[a].keypoints[o].position[2]||0)}, ${127.5-2*(t[a].keypoints[o].position[2]||0)}, 255, 0.5)`:s.color,Pb(r,t[a].keypoints[o].position[0],t[a].keypoints[o].position[1],0,s);if(s.drawLabels&&t[a].keypoints){r.font=s.font;for(let o of t[a].keypoints)r.fillStyle=s.useDepth&&o.position[2]?`rgba(${127.5+2*o.position[2]}, ${127.5-2*o.position[2]}, 255, 0.5)`:s.color,r.fillText(`${o.part} ${Math.trunc(100*o.score)}%`,o.position[0]+4,o.position[1]+4)}if(s.drawPolygons&&t[a].keypoints&&t[a].annotations)for(let o of Object.values(t[a].annotations))for(let i of o)Qge(r,i,s)}}async function zb(e,t,n){let s=Nn(ca,n);if(!t||!e)return;let r=El(e);r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,vp(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=s.useDepth?`rgba(${127.5+2*(o[2]||0)}, ${127.5-2*(o[2]||0)}, 255, 0.5)`:s.color,Pb(r,o[0],o[1],0,s);if(s.drawLabels&&a.annotations){let o=(i,l)=>{!i||i.length===0||!i[0]||(r.fillStyle=s.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:s.color,r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4))};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons&&a.annotations){let o=i=>{if(!(!i||i.length===0||!i[0]))for(let l=0;l<i.length;l++)r.beginPath(),r.strokeStyle=s.useDepth?`rgba(${127.5+l*i[l][2]}, ${127.5-l*i[l][2]}, 255, 0.5)`:s.color,r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}async function Lb(e,t,n){let s=Nn(ca,n);if(!t||!e)return;let r=El(e);r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,vp(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}async function hT(e,t,n){let s=Nn(ca,n);if(!t||!e)return;let r=El(e);r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,vp(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}async function fT(e,t){if(!e||!t)return;El(t).drawImage(e,0,0)}async function mT(e,t,n){if(!t||!t.performance||!t||!e)return null;let s=ce(),r=Nn(ca,n),a=Promise.all([Ob(e,t.face,r),Mb(e,t.body,r),zb(e,t.hand,r),Lb(e,t.object,r),Fb(e,t.gesture,r)]);return _b=Ae.perfadd?_b+Math.round(ce()-s):Math.round(ce()-s),t.performance.draw=_b,a}var e2e=e=>{let t=(d,p)=>Math.atan2(d[1]-p[1],d[0]-p[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=e.mesh[33][2]>e.mesh[263][2],a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],c=Math.sqrt(l[0]**2+l[1]**2);return c=Math.min(c,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:c}},gT=(e,t)=>{let n=g=>{let A=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=A,g[1]/=A,g[2]/=A,g},s=(g,A)=>{let x=g[0]-A[0],y=g[1]-A[1],b=g[2]-A[2];return[x,y,b]},r=(g,A)=>{let x=g[1]*A[2]-g[2]*A[1],y=g[2]*A[0]-g[0]*A[2],b=g[0]*A[1]-g[1]*A[0];return[x,y,b]},a=g=>{let[A,x,y,b,w,S,C,E,D]=g,O,_,F;return b<1?b>-1?(F=Math.asin(b),_=Math.atan2(-C,A),O=Math.atan2(-S,w)):(F=-Math.PI/2,_=-Math.atan2(E,D),O=0):(F=Math.PI/2,_=Math.atan2(E,D),O=0),isNaN(O)&&(O=0),isNaN(_)&&(_=0),isNaN(F)&&(F=0),{pitch:2*-O,yaw:2*-_,roll:2*-F}},o=g=>{let A=(y,b,w,S)=>Math.atan2(S-b,w-y);return{pitch:A(g[10][1],g[10][2],g[152][1],g[152][2]),yaw:A(g[33][0],g[33][2],g[263][0],g[263][2]),roll:A(g[33][0],g[33][1],g[263][0],g[263][1])}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,c=[i[10],i[152],i[234],i[454]].map(g=>[g[0]*t[0]/l,g[1]*t[1]/l,g[2]]),u=n(s(c[1],c[0])),d=n(s(c[3],c[2])),p=n(r(d,u));d=r(u,p);let h=[d[0],d[1],d[2],u[0],u[1],u[2],p[0],p[1],p[2]],f=a(h),m=i.length===478?e2e(e):{bearing:0,strength:0};return{angle:f,matrix:h,gaze:m}};var Bb=async(e,t)=>{let n,s,r,a,o,i,l,c,u=[];e.state="run:face",n=ce();let d=await f8(t,e.config);if(e.performance.face=Ae.perfadd?(e.performance.face||0)+Math.trunc(ce()-n):Math.trunc(ce()-n),!t.shape||t.shape.length!==4)return[];if(!d)return[];for(let p=0;p<d.length;p++){if(e.analyze("Get Face"),!d[p].tensor||d[p].tensor.isDisposedInternal){ee("Face object is disposed:",d[p].tensor);continue}let h=gT(d[p],[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?o=e.config.face.emotion.enabled?Yx(d[p].tensor||Gt([]),e.config,p,d.length):null:(e.state="run:emotion",n=ce(),o=e.config.face.emotion.enabled?await Yx(d[p].tensor||Gt([]),e.config,p,d.length):null,e.performance.emotion=Ae.perfadd?(e.performance.emotion||0)+Math.trunc(ce()-n):Math.trunc(ce()-n)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?l=e.config.face.antispoof.enabled?Tx(d[p].tensor||Gt([]),e.config,p,d.length):null:(e.state="run:antispoof",n=ce(),l=e.config.face.antispoof.enabled?await Tx(d[p].tensor||Gt([]),e.config,p,d.length):null,e.performance.antispoof=Ae.perfadd?(e.performance.antispoof||0)+Math.trunc(ce()-n):Math.trunc(ce()-n)),e.analyze("End AntiSpoof:"),e.analyze("Start Description:"),e.config.async?c=e.config.face.description.enabled?sb(d[p].tensor||Gt([]),e.config,p,d.length):null:(e.state="run:description",n=ce(),c=e.config.face.description.enabled?await sb(d[p].tensor||Gt([]),e.config,p,d.length):null,e.performance.description=Ae.perfadd?(e.performance.description||0)+Math.trunc(ce()-n):Math.trunc(ce()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,c,r,l]=await Promise.all([s,a,o,i,c,r,l])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&d[p]?.annotations?.leftEyeIris&&d[p]?.annotations?.rightEyeIris&&(delete d[p].annotations.leftEyeIris,delete d[p].annotations.rightEyeIris);let f=d[p].annotations&&d[p].annotations.leftEyeIris&&d[p].annotations.leftEyeIris[0]&&d[p].annotations.rightEyeIris&&d[p].annotations.rightEyeIris[0]&&d[p].annotations.leftEyeIris.length>0&&d[p].annotations.rightEyeIris.length>0&&d[p].annotations.leftEyeIris[0]!==null&&d[p].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(d[p].annotations.leftEyeIris[3][0]-d[p].annotations.leftEyeIris[1][0]),Math.abs(d[p].annotations.rightEyeIris[4][1]-d[p].annotations.rightEyeIris[2][1]))/t.shape[2]:0,m=e.config.face.detector.return?ct(d[p].tensor):null;Y(d[p].tensor),d[p].tensor&&delete d[p].tensor,u.push({...d[p],id:p,age:c?.age,gender:c?.gender,genderScore:c?.genderScore,embedding:c?.descriptor,emotion:o,real:l,iris:f!==0?Math.trunc(500/f/11.7)/100:0,rotation:h,tensor:m}),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),u};var AT=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position[1]<a.position[1]&&r.position[1]<a.position[1]?t.push({body:n,gesture:"i give up"}):a&&s&&s.position[1]<a.position[1]?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position[1]<a.position[1]&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&t.push({body:n,gesture:`leaning ${o.position[1]>i.position[1]?"left":"right"}`})}return t},yT=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>450){let s=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(s)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));o>10&&t.push({face:n,gesture:`mouth ${Math.trunc(o)}% open`});let i=e[n].mesh[152][2];Math.abs(i)>10&&t.push({face:n,gesture:`head ${i<0?"up":"down"}`})}return t},xT=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.leftEyeIris[0]||!e[n].annotations.rightEyeIris||!e[n].annotations.rightEyeIris[0])continue;let s=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],a=Math.abs(s*r),o=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],i=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(o*i),c=!1;Math.abs(a-l)/Math.max(a,l)<.25&&(c=!0,t.push({iris:n,gesture:"facing center"}));let d=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2],p=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2];(p>.06||d>.06)&&(c=!1),p>.06&&t.push({iris:n,gesture:"looking right"}),d>.06&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||h<.01||f>.022||h>.022)&&(c=!1),(f<.01||h<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||h>.022)&&t.push({iris:n,gesture:"looking up"}),c&&t.push({iris:n,gesture:"looking center"})}return t},bT=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];if(e[n].annotations)for(let[r,a]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(a)&&a[0]&&s.push({name:r.toLowerCase(),position:a[0]});if(s&&s.length>0){let r=s.reduce((o,i)=>o.position[2]<i.position[2]?o:i);t.push({hand:n,gesture:`${r.name} forward`});let a=s.reduce((o,i)=>o.position[1]<i.position[1]?o:i);t.push({hand:n,gesture:`${a.name} up`})}if(e[n].keypoints){let r=z8(e[n].keypoints);for(let a of r)t.push({hand:n,gesture:a.name})}}return t};var Pe={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0},Wb=0;function vT(e,t){let n=ce();if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};let s=Date.now()-e.timestamp,r=s<1e3?8-Math.log(s+1):1;if(Pe.canvas=e.canvas,!Pe.body||e.body.length!==Pe.body.length)Pe.body=JSON.parse(JSON.stringify(e.body));else for(let o=0;o<e.body.length;o++){let i=e.body[o].box.map((p,h)=>((r-1)*Pe.body[o].box[h]+p)/r),l=e.body[o].boxRaw.map((p,h)=>((r-1)*Pe.body[o].boxRaw[h]+p)/r),c=e.body[o].keypoints.map((p,h)=>({score:p.score,part:p.part,position:[Pe.body[o].keypoints[h]?((r-1)*Pe.body[o].keypoints[h].position[0]+p.position[0])/r:p.position[0],Pe.body[o].keypoints[h]?((r-1)*Pe.body[o].keypoints[h].position[1]+p.position[1])/r:p.position[1]],positionRaw:[Pe.body[o].keypoints[h]?((r-1)*Pe.body[o].keypoints[h].positionRaw[0]+p.positionRaw[0])/r:p.position[0],Pe.body[o].keypoints[h]?((r-1)*Pe.body[o].keypoints[h].positionRaw[1]+p.positionRaw[1])/r:p.position[1]]})),u={},d={connected:{}};t.body?.modelPath?.includes("efficientpose")?d=Hx:t.body?.modelPath?.includes("blazepose")?d=Mx:t.body?.modelPath?.includes("movenet")&&(d=Ab);for(let[p,h]of Object.entries(d.connected)){let f=[];for(let m=0;m<h.length-1;m++){let g=c.find(x=>x.part===h[m]),A=c.find(x=>x.part===h[m+1]);g&&A&&g.score>(t.body.minConfidence||0)&&A.score>(t.body.minConfidence||0)&&f.push([g.position,A.position])}u[p]=f}Pe.body[o]={...e.body[o],box:i,boxRaw:l,keypoints:c,annotations:u}}if(!Pe.hand||e.hand.length!==Pe.hand.length)Pe.hand=JSON.parse(JSON.stringify(e.hand));else for(let o=0;o<e.hand.length;o++){let i=e.hand[o].box.map((d,p)=>((r-1)*Pe.hand[o].box[p]+d)/r),l=e.hand[o].boxRaw.map((d,p)=>((r-1)*Pe.hand[o].boxRaw[p]+d)/r);Pe.hand[o].keypoints.length!==e.hand[o].keypoints.length&&(Pe.hand[o].keypoints=e.hand[o].keypoints);let c=e.hand[o].keypoints&&e.hand[o].keypoints.length>0?e.hand[o].keypoints.map((d,p)=>d.map((h,f)=>((r-1)*(Pe.hand[o].keypoints[p][f]||1)+(h||0))/r)):[],u={};if(Object.keys(Pe.hand[o].annotations).length!==Object.keys(e.hand[o].annotations).length)Pe.hand[o].annotations=e.hand[o].annotations,u=Pe.hand[o].annotations;else if(e.hand[o].annotations)for(let d of Object.keys(e.hand[o].annotations))u[d]=e.hand[o].annotations[d]&&e.hand[o].annotations[d][0]?e.hand[o].annotations[d].map((p,h)=>p.map((f,m)=>((r-1)*Pe.hand[o].annotations[d][h][m]+f)/r)):null;Pe.hand[o]={...e.hand[o],box:i,boxRaw:l,keypoints:c,annotations:u}}if(!Pe.face||e.face.length!==Pe.face.length)Pe.face=JSON.parse(JSON.stringify(e.face));else for(let o=0;o<e.face.length;o++){let i=e.face[o].box.map((u,d)=>((r-1)*Pe.face[o].box[d]+u)/r),l=e.face[o].boxRaw.map((u,d)=>((r-1)*Pe.face[o].boxRaw[d]+u)/r),c={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};c.matrix=e.face[o].rotation?.matrix,c.angle={roll:((r-1)*(Pe.face[o].rotation?.angle?.roll||0)+(e.face[o].rotation?.angle?.roll||0))/r,yaw:((r-1)*(Pe.face[o].rotation?.angle?.yaw||0)+(e.face[o].rotation?.angle?.yaw||0))/r,pitch:((r-1)*(Pe.face[o].rotation?.angle?.pitch||0)+(e.face[o].rotation?.angle?.pitch||0))/r},c.gaze={bearing:((r-1)*(Pe.face[o].rotation?.gaze?.bearing||0)+(e.face[o].rotation?.gaze?.bearing||0))/r,strength:((r-1)*(Pe.face[o].rotation?.gaze?.strength||0)+(e.face[o].rotation?.gaze?.strength||0))/r},Pe.face[o]={...e.face[o],rotation:c,box:i,boxRaw:l}}if(!Pe.object||e.object.length!==Pe.object.length)Pe.object=JSON.parse(JSON.stringify(e.object));else for(let o=0;o<e.object.length;o++){let i=e.object[o].box.map((c,u)=>((r-1)*Pe.object[o].box[u]+c)/r),l=e.object[o].boxRaw.map((c,u)=>((r-1)*Pe.object[o].boxRaw[u]+c)/r);Pe.object[o]={...e.object[o],box:i,boxRaw:l}}if(e.persons){let o=e.persons;if(!Pe.persons||o.length!==Pe.persons.length)Pe.persons=JSON.parse(JSON.stringify(o));else for(let i=0;i<o.length;i++)Pe.persons[i].box=o[i].box.map((l,c)=>((r-1)*Pe.persons[i].box[c]+l)/r)}e.gesture&&(Pe.gesture=e.gesture);let a=ce();return Wb=Ae.perfadd?Wb+Math.round(a-n):Math.round(a-n),e.performance&&(Pe.performance={...e.performance,interpolate:Wb}),Pe}function u0(e,t,n={order:2,multiplier:20}){let s=0;for(let r=0;r<e.length;r++){let a=!n.order||n.order===2?e[r]-t[r]:Math.abs(e[r]-t[r]);s+=!n.order||n.order===2?a*a:a**n.order}return(n.multiplier||20)*s}function wT(e,t,n={order:2,multiplier:20}){let s=u0(e,t,n),r=!n.order||n.order===2?Math.sqrt(s):s**(1/n.order);return Math.max(0,100-r)/100}function kT(e,t,n={order:2,multiplier:20,threshold:0}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0||e.length!==t[0].length)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let s=Number.MAX_SAFE_INTEGER,r=-1;for(let a=0;a<t.length;a++){let o=u0(e,t[a],n);if(o<s&&(s=o,r=a),s<(n.threshold||0))break}return s=!n.order||n.order===2?Math.sqrt(s):s**(1/n.order),{index:r,distance:s,similarity:Math.max(0,100-s)/100}}function ST(e,t,n,s,r){let a=0,o=[];for(let i of e){let l={id:a++,face:i,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let f of t)i.box[0]>f.box[0]&&i.box[0]<f.box[0]+f.box[2]&&i.box[1]+i.box[3]>f.box[1]&&i.box[1]+i.box[3]<f.box[1]+f.box[3]&&(l.body=f);if(l.body)for(let f of n)f.box[0]+f.box[2]>l.body.box[0]&&f.box[0]+f.box[2]<l.body.box[0]+l.body.box[2]&&f.box[1]+f.box[3]>l.body.box[1]&&f.box[1]+f.box[3]<l.body.box[1]+l.body.box[3]&&l.hands&&(l.hands.left=f),f.box[0]<l.body.box[0]+l.body.box[2]&&f.box[0]>l.body.box[0]&&f.box[1]+f.box[3]>l.body.box[1]&&f.box[1]+f.box[3]<l.body.box[1]+l.body.box[3]&&l.hands&&(l.hands.right=f);for(let f of s)(f.face!==void 0&&f.face===i.id||f.iris!==void 0&&f.iris===i.id||f.body!==void 0&&f.body===l.body?.id||f.hand!==void 0&&f.hand===l.hands?.left?.id||f.hand!==void 0&&f.hand===l.hands?.right?.id)&&l.gestures?.push(f);let c=[],u=[],d=f=>{f&&f.length===4&&(c.push(f[0],f[0]+f[2]),u.push(f[1],f[1]+f[3]))};d(l.face?.box),d(l.body?.box),d(l.hands?.left?.box),d(l.hands?.right?.box);let p=Math.min(...c),h=Math.min(...u);l.box=[p,h,Math.max(...c)-p,Math.max(...u)-h],r&&r[1]&&r[2]&&(l.boxRaw=[l.box[0]/r[2],l.box[1]/r[1],l.box[2]/r[2],l.box[3]/r[1]]),o.push(l)}return o}var c0=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,d0=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;async function t2e(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(c0);break;case"body":case"full":n=await t(d0);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function n2e(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+c0;break;case"full":case"body":n="data:image/jpeg;base64,"+d0;break;default:n=null}let s;typeof Image!="undefined"?s=new Image:Ae.Image&&(s=new Ae.Image),s.onload=async()=>{let r=Hn(s.naturalWidth,s.naturalHeight);if(!r)ee("Warmup: Canvas not found"),t({});else{let a=r.getContext("2d");a&&a.drawImage(s,0,0);let o=await e.image(r),i=await e.detect(o.tensor,e.config);t(i)}},n?s.src=n:t(null)})}async function s2e(e){let t=r=>Buffer.from(r,"base64"),n;if(e.config.warmup==="face"&&(n=t(c0)),(e.config.warmup==="body"||e.config.warmup==="full")&&(n=t(d0)),!n)return null;let s;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&ee("Warmup tfjs-node not loaded");return s}async function IT(e,t){let n=ce();if(e.state="warmup",t&&(e.config=Nn(e.config,t)),!e.config.warmup||e.config.warmup==="none")return{error:"null"};let s;return new Promise(async r=>{typeof createImageBitmap=="function"?s=await t2e(e):typeof Image!="undefined"||Ae.Canvas!==void 0?s=await n2e(e):s=await s2e(e);let a=ce();e.config.debug&&ee("Warmup",e.config.warmup,Math.round(a-n),"ms"),e.emit("warmup"),r(s)})}var gc,wp,kp,p0,TT=class{constructor(t){de(this,"version");de(this,"config");de(this,"result");de(this,"state");de(this,"process");de(this,"tf");de(this,"env");de(this,"draw");de(this,"models");de(this,"events");de(this,"faceTriangulation");de(this,"faceUVMap");de(this,"performance");$c(this,gc,void 0);$c(this,wp,void 0);$c(this,kp,void 0);de(this,"gl");de(this,"analyze",(...t)=>{if(!Rc(this,wp))return;let n=this.tf.engine().state.numTensors,s=Rc(this,gc);Dc(this,gc,n);let r=n-s;r!==0&&ee(...t,r)});$c(this,p0,t=>{if(!Rc(this,kp))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof Je))return"input must be a tensor";try{this.tf.getBackend()}catch{return"backend not loaded"}return null});de(this,"similarity",wT);de(this,"distance",u0);de(this,"match",kT);de(this,"emit",t=>{this.events&&this.events.dispatchEvent&&this.events?.dispatchEvent(new Event(t))});this.env=Ae,xa.wasmPath=cp.includes("-")?"https://vladmandic.github.io/tfjs/dist/":`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${cp}/dist/`,xa.modelBasePath=Ae.browser?"../models/":"file://models/",xa.backend=Ae.browser?"humangl":"tensorflow",this.version=Ix,Object.defineProperty(this,"version",{value:Ix}),this.config=JSON.parse(JSON.stringify(xa)),Object.seal(this.config),t&&(this.config=Nn(this.config,t)),this.tf=dp,this.state="idle",Dc(this,gc,0),Dc(this,wp,!1),Dc(this,kp,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new $b,this.draw={options:ca,canvas:(n,s)=>fT(n,s),face:(n,s,r)=>Ob(n,s,r),body:(n,s,r)=>Mb(n,s,r),hand:(n,s,r)=>zb(n,s,r),gesture:(n,s,r)=>Fb(n,s,r),object:(n,s,r)=>Lb(n,s,r),person:(n,s,r)=>hT(n,s,r),all:(n,s,r)=>mT(n,s,r)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[]},this.process={tensor:null,canvas:null},this.faceTriangulation=g8,this.faceUVMap=A8,this.gl=zt,this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(xa)),this.config.backend=t}validate(t){return Og(xa,t||this.config)}now(){return ce()}image(t,n=!0){return uc(t,this.config,n)}async segmentation(t,n){return iT(t,n,this.config)}enhance(t){return nb(t)}async init(){await l0(this,!0),await this.tf.ready()}async load(t){this.state="load";let n=ce(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=Nn(this.config,t)),this.env.initial&&(this.config.debug&&ee(`version: ${this.version}`),this.config.debug&&ee(`tfjs version: ${this.tf.version_core}`),await l0(this)||ee("error: backend check failed"),await Wh(),this.env.browser&&(this.config.debug&&ee("configuration:",this.config),this.config.debug&&ee("environment:",this.env),this.config.debug&&ee("tf flags:",this.tf.ENV.flags))),await lT(this),this.env.initial&&this.config.debug&&ee("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(await uT(this),this.emit("load"));let a=Math.trunc(ce()-n);a>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+a:a)}next(t=this.result){return vT(t,this.config)}async warmup(t){let n=ce(),s=await IT(this,t),r=ce();return this.performance.warmup=Math.trunc(r-n),s}async detect(t,n){return this.state="detect",new Promise(async s=>{this.state="config";let r;this.config=Nn(this.config,n),this.state="check";let a=Rc(this,p0).call(this,t);a&&(ee(a,t),s({error:a}));let o=ce();await l0(this),await this.load(),r=ce(),this.state="image";let i=uc(t,this.config);if(this.process=i,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(ce()-r):Math.trunc(ce()-r),this.analyze("Get Image:"),!i.tensor){this.config.debug&&ee("could not convert input to tensor"),s({error:"could not convert input to tensor"});return}this.emit("image"),r=ce(),this.config.skipAllowed=await _6(this.config,i.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.inputCheck=this.env.perfadd?(this.performance.inputCheck||0)+Math.trunc(ce()-r):Math.trunc(ce()-r),this.analyze("Check Changed:");let l=[],c=[],u=[],d=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?Bb(this,i.tensor):[],this.performance.face&&delete this.performance.face):(r=ce(),l=this.config.face.enabled?await Bb(this,i.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(ce()-r):Math.trunc(ce()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let p=this.config.body.maxDetected===-1?Nn(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?(this.config.body.modelPath?.includes("posenet")?c=this.config.body.enabled?Nb(i.tensor,p):[]:this.config.body.modelPath?.includes("blazepose")?c=this.config.body.enabled?Bx(i.tensor,p):[]:this.config.body.modelPath?.includes("efficientpose")?c=this.config.body.enabled?Xx(i.tensor,p):[]:this.config.body.modelPath?.includes("movenet")&&(c=this.config.body.enabled?bb(i.tensor,p):[]),this.performance.body&&delete this.performance.body):(r=ce(),this.config.body.modelPath?.includes("posenet")?c=this.config.body.enabled?await Nb(i.tensor,p):[]:this.config.body.modelPath?.includes("blazepose")?c=this.config.body.enabled?await Bx(i.tensor,p):[]:this.config.body.modelPath?.includes("efficientpose")?c=this.config.body.enabled?await Xx(i.tensor,p):[]:this.config.body.modelPath?.includes("movenet")&&(c=this.config.body.enabled?await bb(i.tensor,p):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(ce()-r):Math.trunc(ce()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let h=this.config.hand.maxDetected===-1?Nn(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?(this.config.hand.detector?.modelPath?.includes("handdetect")?u=this.config.hand.enabled?lb(i.tensor,h):[]:this.config.hand.detector?.modelPath?.includes("handtrack")&&(u=this.config.hand.enabled?hb(i.tensor,h):[]),this.performance.hand&&delete this.performance.hand):(r=ce(),this.config.hand.detector?.modelPath?.includes("handdetect")?u=this.config.hand.enabled?await lb(i.tensor,h):[]:this.config.hand.detector?.modelPath?.includes("handtrack")&&(u=this.config.hand.enabled?await hb(i.tensor,h):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(ce()-r):Math.trunc(ce()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?(this.config.object.modelPath?.includes("nanodet")?d=this.config.object.enabled?wb(i.tensor,this.config):[]:this.config.object.modelPath?.includes("centernet")&&(d=this.config.object.enabled?Vx(i.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=ce(),this.config.object.modelPath?.includes("nanodet")?d=this.config.object.enabled?await wb(i.tensor,this.config):[]:this.config.object.modelPath?.includes("centernet")&&(d=this.config.object.enabled?await Vx(i.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(ce()-r):Math.trunc(ce()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,c,u,d]=await Promise.all([l,c,u,d])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(r=ce(),f=[...yT(l),...AT(c),...bT(u),...xT(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(ce()-r):Math.trunc(ce()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(ce()-o):Math.trunc(ce()-o);let m=this.process?.tensor?.shape||[];this.result={face:l,body:c,hand:u,gesture:f,object:d,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),get persons(){return ST(l,c,u,f,m)}},Y(i.tensor),this.emit("detect"),this.state="idle",s(this.result)})}};gc=new WeakMap,wp=new WeakMap,kp=new WeakMap,p0=new WeakMap;return r2e;})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use backend file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* Human main module
|
|
* @default Human Library
|
|
* @summary <https://github.com/vladmandic/human>
|
|
* @author <https://github.com/vladmandic>
|
|
* @copyright <https://github.com/vladmandic>
|
|
* @license MIT
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|