mirror of https://github.com/vladmandic/human
5546 lines
1.3 MiB
5546 lines
1.3 MiB
/*
|
|
Human
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
(()=>{var d5=Object.defineProperty;var W9=e=>d5(e,"__esModule",{value:!0});var Mm=typeof require!="undefined"?require:e=>{throw new Error('Dynamic require of "'+e+'" is not supported')};var p5=(e,t)=>{W9(e);for(var n in t)d5(e,n,{get:t[n],enumerable:!0})};var c5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var fn=(e,t,n)=>(c5(e,t,"read from private field"),n?n.call(e):t.get(e)),aa=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},Ma=(e,t,n,a)=>(c5(e,t,"write to private field"),a?a.call(e,n):t.set(e,n),n);function gt(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${r} Expecting JSON file`);return r}function ue(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var Ye=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function mn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,a)=>(Object.keys(a||{}).forEach(r=>{let s=n[r],i=a[r];Array.isArray(s)&&Array.isArray(i)?n[r]=s.concat(...i):t(s)&&t(i)?n[r]=mn(s,i):n[r]=i}),n),{})}var Fm={backend:"webgl",modelBasePath:"../models/",wasmPath:"",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,skipFrame:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:15,skipFrames:15,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:11,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:17,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:1,minConfidence:.2,skipFrames:1},hand:{enabled:!0,rotation:!0,skipFrames:18,minConfidence:.8,iouThreshold:.2,maxDetected:1,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:19},segmentation:{enabled:!1,modelPath:"selfie.json"}};function h5(){let e="",t="";if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);if(n&&n[0]){let a=n[0].match(/\(([^()]+)\)/g);e=a&&a[0]?a[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var op={};p5(op,{Abs:()=>Io,Acos:()=>So,Acosh:()=>To,AdadeltaOptimizer:()=>gh,AdagradOptimizer:()=>Ah,AdamOptimizer:()=>yh,AdamaxOptimizer:()=>xh,Add:()=>Vr,AddN:()=>Cs,All:()=>No,Any:()=>Co,ArgMax:()=>Es,ArgMin:()=>_u,Asin:()=>Eo,Asinh:()=>Ro,Atan:()=>Mo,Atan2:()=>$o,Atanh:()=>Fo,AvgPool:()=>Rs,AvgPool3D:()=>Du,AvgPool3DGrad:()=>Zp,AvgPoolGrad:()=>Kp,BackendWasm:()=>W8,BatchMatMul:()=>Ms,BatchToSpaceND:()=>Oo,Bincount:()=>Yp,BroadcastArgs:()=>Lm,BroadcastTo:()=>F5,Callback:()=>Pv,CallbackList:()=>R3,Cast:()=>Fs,Ceil:()=>$s,ClipByValue:()=>Ur,Complex:()=>Jp,ComplexAbs:()=>Pu,Concat:()=>zo,Conv2D:()=>Os,Conv2DBackpropFilter:()=>Qp,Conv2DBackpropInput:()=>zs,Conv3D:()=>Lu,Conv3DBackpropFilterV2:()=>ec,Conv3DBackpropInputV2:()=>tc,Cos:()=>_s,Cosh:()=>Ds,CropAndResize:()=>_o,Cumsum:()=>Ps,CustomCallback:()=>F3,DataStorage:()=>Hp,DenseBincount:()=>nc,DepthToSpace:()=>Do,DepthwiseConv2dNative:()=>Ls,DepthwiseConv2dNativeBackpropFilter:()=>ac,DepthwiseConv2dNativeBackpropInput:()=>rc,Diag:()=>sc,Dilation2D:()=>Wu,Dilation2DBackpropFilter:()=>oc,Dilation2DBackpropInput:()=>ic,ENV:()=>ra,EarlyStopping:()=>Wv,Einsum:()=>lc,Elu:()=>Bs,EluGrad:()=>uc,Environment:()=>R5,Equal:()=>Lo,Erf:()=>Po,Exp:()=>Vs,ExpandDims:()=>Wo,Expm1:()=>Bo,FFT:()=>dc,Fill:()=>Bu,FlipLeftRight:()=>Vo,Floor:()=>Us,FloorDiv:()=>Hs,FromPixels:()=>Mc,FusedBatchNorm:()=>js,FusedConv2D:()=>Si,FusedDepthwiseConv2D:()=>Ti,GPGPUContext:()=>v0,GatherNd:()=>Ho,GatherV2:()=>Uo,GraphModel:()=>y7,Greater:()=>jo,GreaterEqual:()=>Gs,History:()=>M3,IFFT:()=>pc,Identity:()=>qs,Imag:()=>cc,InputSpec:()=>Pt,IsFinite:()=>Go,IsInf:()=>qo,IsNan:()=>Xo,KernelBackend:()=>$u,LRN:()=>Hu,LRNGrad:()=>fc,LayerVariable:()=>S3,LayersModel:()=>Nr,LeakyRelu:()=>Xs,Less:()=>Ko,LessEqual:()=>Zo,LinSpace:()=>hc,Log:()=>Ks,Log1p:()=>Yo,LogSoftmax:()=>$5,LogicalAnd:()=>Jo,LogicalNot:()=>Vu,LogicalOr:()=>Uu,MathBackendCPU:()=>i0,MathBackendWebGL:()=>uu,Max:()=>Zs,MaxPool:()=>Js,MaxPool3D:()=>ju,MaxPool3DGrad:()=>gc,MaxPoolGrad:()=>mc,MaxPoolWithArgmax:()=>Ac,Maximum:()=>Ys,Mean:()=>Qs,Min:()=>ei,Minimum:()=>ti,MirrorPad:()=>ni,Mod:()=>Qo,MomentumOptimizer:()=>bh,Multinomial:()=>yc,Multiply:()=>ai,Neg:()=>el,NonMaxSuppressionV3:()=>nl,NonMaxSuppressionV4:()=>al,NonMaxSuppressionV5:()=>rl,NotEqual:()=>tl,OP_SCOPE_SUFFIX:()=>X5,OneHot:()=>ri,OnesLike:()=>sl,Optimizer:()=>Ir,Pack:()=>il,PadV2:()=>si,Pool:()=>HI,Pow:()=>ii,Prelu:()=>oi,Prod:()=>ol,RMSPropOptimizer:()=>vh,RNN:()=>lr,Range:()=>Gu,Rank:()=>Hm,Real:()=>xc,RealDiv:()=>Ws,Reciprocal:()=>ll,Reduction:()=>bn,Relu:()=>li,Relu6:()=>di,Reshape:()=>ul,ResizeBilinear:()=>ui,ResizeBilinearGrad:()=>vc,ResizeNearestNeighbor:()=>qu,ResizeNearestNeighborGrad:()=>bc,Reverse:()=>pi,RotateWithOffset:()=>Il,Round:()=>ci,Rsqrt:()=>hi,SGDOptimizer:()=>bd,ScatterNd:()=>dl,Select:()=>pl,Selu:()=>cl,Sequential:()=>Kl,Sigmoid:()=>mi,Sign:()=>ml,Sin:()=>fi,Sinh:()=>fl,Slice:()=>hl,Softmax:()=>yi,Softplus:()=>gl,SpaceToBatchND:()=>Al,SparseFillEmptyRows:()=>wc,SparseReshape:()=>kc,SparseSegmentMean:()=>Ic,SparseSegmentSum:()=>Sc,SparseToDense:()=>Tc,SplitV:()=>yl,Sqrt:()=>gi,Square:()=>Xu,SquaredDifference:()=>xi,Step:()=>jr,StridedSlice:()=>xl,StringNGrams:()=>Nc,StringSplit:()=>Cc,StringToHashBucketFast:()=>Ec,Sub:()=>bi,Sum:()=>Ai,SymbolicTensor:()=>Ba,Tan:()=>vi,Tanh:()=>wi,Tensor:()=>je,TensorBuffer:()=>Ut,Tile:()=>Hr,TopK:()=>bl,Transform:()=>vl,Transpose:()=>ki,Unique:()=>Rc,Unpack:()=>wl,UnsortedSegmentSum:()=>Ku,Variable:()=>ad,ZerosLike:()=>kl,_FusedMatMul:()=>Ii,abs:()=>Ht,acos:()=>$x,acosh:()=>Ox,add:()=>re,addN:()=>Uc,all:()=>x1,any:()=>Hc,argMax:()=>Qa,argMin:()=>zx,asin:()=>_x,asinh:()=>Dx,atan:()=>Px,atan2:()=>Lx,atanh:()=>Wx,avgPool:()=>Gc,avgPool3d:()=>w1,backend:()=>Fx,backend_util:()=>R,basicLSTMCell:()=>CN,batchNorm:()=>zl,batchNorm2d:()=>Hx,batchNorm3d:()=>jx,batchNorm4d:()=>Gx,batchToSpaceND:()=>qc,bincount:()=>k1,booleanMaskAsync:()=>BR,broadcastArgs:()=>qx,broadcastTo:()=>dd,browser:()=>ia,buffer:()=>Be,callbacks:()=>aL,cast:()=>de,ceil:()=>Xx,clipByValue:()=>Hn,clone:()=>Oa,complex:()=>qr,concat:()=>ht,concat1d:()=>Kx,concat2d:()=>_l,concat3d:()=>Zx,concat4d:()=>Yx,constraints:()=>r3,conv1d:()=>I1,conv2d:()=>Jr,conv2dTranspose:()=>T1,conv3d:()=>N1,conv3dTranspose:()=>Qx,copyRegisteredKernels:()=>qI,cos:()=>Xc,cosh:()=>C1,cosineWindow:()=>Q1,cumsum:()=>E1,customGrad:()=>tr,data:()=>x7,denseBincount:()=>eb,deprecationWarn:()=>g1,depthToSpace:()=>tb,depthwiseConv2d:()=>pd,deregisterOp:()=>sL,device_util:()=>sd,diag:()=>rC,dilation2d:()=>nb,disableDeprecationWarnings:()=>BT,dispose:()=>K,disposeVariables:()=>VT,div:()=>ce,divNoNan:()=>ab,dot:()=>cC,dropout:()=>$b,einsum:()=>rb,elu:()=>cd,enableDebugMode:()=>WT,enableProdMode:()=>LT,enclosingPowerOfTwo:()=>Ob,engine:()=>vr,env:()=>te,equal:()=>oa,erf:()=>sb,exp:()=>la,expandDims:()=>zt,expm1:()=>ib,eye:()=>R1,fft:()=>lh,fill:()=>Dl,findBackend:()=>A1,findBackendFactory:()=>KT,floor:()=>hd,floorDiv:()=>y1,forceHalfFloat:()=>j6,fused:()=>ts,gather:()=>Pl,gatherND:()=>Fb,gather_util:()=>u1,getBackend:()=>qT,getGradient:()=>Wm,getKernel:()=>Fc,getKernelsForBackend:()=>Tl,gpgpu_util:()=>x6,grad:()=>DC,grads:()=>PC,greater:()=>jn,greaterEqual:()=>zi,ifft:()=>Ad,imag:()=>Kc,image:()=>Me,inTopKAsync:()=>JR,initializers:()=>p3,input:()=>tv,io:()=>Fn,irfft:()=>q1,isFinite:()=>NC,isInf:()=>EC,isNaN:()=>ob,keep:()=>Jt,kernel_impls:()=>ar,layers:()=>w3,leakyRelu:()=>Zc,less:()=>M1,lessEqual:()=>_i,linalg:()=>Hb,linspace:()=>lb,loadGraphModel:()=>ft,loadLayersModel:()=>hD,localResponseNormalization:()=>ub,log:()=>ua,log1p:()=>Yc,logSigmoid:()=>HC,logSoftmax:()=>F1,logSumExp:()=>fb,logicalAnd:()=>za,logicalNot:()=>Qc,logicalOr:()=>z1,logicalXor:()=>nE,losses:()=>_F,matMul:()=>Ve,math:()=>cx,max:()=>da,maxPool:()=>eh,maxPool3d:()=>_1,maxPoolWithArgmax:()=>mb,maximum:()=>wr,mean:()=>Mt,memory:()=>Vc,meshgrid:()=>lE,metrics:()=>zv,min:()=>th,minimum:()=>fd,mirrorPad:()=>gb,mod:()=>Ab,model:()=>pD,models:()=>_v,moments:()=>nh,movingAverage:()=>HR,mul:()=>L,multiRNNCell:()=>gE,multinomial:()=>yb,neg:()=>Nt,nextFrame:()=>wh,norm:()=>Y1,notEqual:()=>Wl,oneHot:()=>ld,ones:()=>Gn,onesLike:()=>pa,op:()=>W,outerProduct:()=>vE,pad:()=>Qr,pad1d:()=>IE,pad2d:()=>TE,pad3d:()=>CE,pad4d:()=>RE,pool:()=>zE,pow:()=>es,prelu:()=>rh,print:()=>ix,prod:()=>D1,profile:()=>UT,rand:()=>WE,randomGamma:()=>HE,randomNormal:()=>xb,randomUniform:()=>Bl,range:()=>Vl,ready:()=>GT,real:()=>md,reciprocal:()=>bb,registerBackend:()=>Fl,registerCallbackConstructor:()=>fD,registerGradient:()=>O5,registerKernel:()=>Ni,registerOp:()=>rL,regularizers:()=>Dv,relu:()=>nr,relu6:()=>W1,removeBackend:()=>XT,reshape:()=>B,reverse:()=>ca,reverse1d:()=>QE,reverse2d:()=>tR,reverse3d:()=>aR,reverse4d:()=>sR,rfft:()=>uh,round:()=>B1,rsqrt:()=>V1,scalar:()=>ke,scatterND:()=>Mb,scatter_util:()=>d1,selu:()=>U1,separableConv2d:()=>vb,sequential:()=>cD,serialization:()=>se,setBackend:()=>jT,setPlatform:()=>ZT,setWasmPath:()=>Poe,setWasmPaths:()=>Loe,setWebGLContext:()=>c0,setdiff1dAsync:()=>wb,shared:()=>uy,sigmoid:()=>Un,sign:()=>kb,signal:()=>zF,sin:()=>H1,sinh:()=>j1,slice:()=>Re,slice1d:()=>sh,slice2d:()=>G1,slice3d:()=>ih,slice4d:()=>gd,slice_util:()=>yn,softmax:()=>oh,softplus:()=>Ll,spaceToBatchND:()=>ah,sparse:()=>xd,sparseToDense:()=>J1,spectral:()=>OF,split:()=>sn,sqrt:()=>cn,square:()=>ut,squaredDifference:()=>X1,squeeze:()=>lt,stack:()=>$n,step:()=>yd,stridedSlice:()=>Ib,string:()=>mh,sub:()=>fe,sum:()=>be,sumOutType:()=>Dc,tan:()=>Sb,tanh:()=>Ol,tensor:()=>pn,tensor1d:()=>Dt,tensor2d:()=>_a,tensor3d:()=>Wc,tensor4d:()=>MR,tensor5d:()=>FR,tensor6d:()=>$R,tensor_util:()=>Fa,test_util:()=>Cx,tidy:()=>H,tile:()=>Ta,time:()=>HT,topk:()=>Tb,train:()=>Li,transpose:()=>Xe,truncatedNormal:()=>dh,unique:()=>K1,unregisterGradient:()=>GI,unregisterKernel:()=>jI,unsortedSegmentSum:()=>Nb,unstack:()=>ha,upcastType:()=>Sa,util:()=>w,valueAndGrad:()=>LC,valueAndGrads:()=>WC,variable:()=>Cb,variableGrads:()=>db,version:()=>Voe,version_converter:()=>lW,version_core:()=>Mx,version_cpu:()=>XB,version_layers:()=>Og,version_wasm:()=>Woe,version_webgl:()=>vK,webgl:()=>wK,webgl_util:()=>Uw,where:()=>xn,whereAsync:()=>Z1,zeros:()=>_t,zerosLike:()=>Ke});var B9=Object.create,Up=Object.defineProperty,V9=Object.getOwnPropertyDescriptor,U9=Object.getOwnPropertyNames,H9=Object.getPrototypeOf,j9=Object.prototype.hasOwnProperty,f5=e=>Up(e,"__esModule",{value:!0}),vo=typeof Mm!="undefined"?Mm:e=>{throw new Error('Dynamic require of "'+e+'" is not supported')},vt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),_e=(e,t)=>{f5(e);for(var n in t)Up(e,n,{get:t[n],enumerable:!0})},G9=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of U9(t))!j9.call(e,a)&&a!=="default"&&Up(e,a,{get:()=>t[a],enumerable:!(n=V9(t,a))||n.enumerable});return e},Ss=e=>G9(f5(Up(e!=null?B9(H9(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),q9=vt((e,t)=>{t.exports=a;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(I){}function a(I,_,D){this.low=I|0,this.high=_|0,this.unsigned=!!D}a.prototype.__isLong__,Object.defineProperty(a.prototype,"__isLong__",{value:!0});function r(I){return(I&&I.__isLong__)===!0}a.isLong=r;var s={},i={};function o(I,_){var D,V,q;return _?(I>>>=0,(q=0<=I&&I<256)&&(V=i[I],V)?V:(D=u(I,(I|0)<0?-1:0,!0),q&&(i[I]=D),D)):(I|=0,(q=-128<=I&&I<128)&&(V=s[I],V)?V:(D=u(I,I<0?-1:0,!1),q&&(s[I]=D),D))}a.fromInt=o;function l(I,_){if(isNaN(I))return _?v:x;if(_){if(I<0)return v;if(I>=g)return E}else{if(I<=-A)return z;if(I+1>=A)return C}return I<0?l(-I,_).neg():u(I%f|0,I/f|0,_)}a.fromNumber=l;function u(I,_,D){return new a(I,_,D)}a.fromBits=u;var d=Math.pow;function p(I,_,D){if(I.length===0)throw Error("empty string");if(I==="NaN"||I==="Infinity"||I==="+Infinity"||I==="-Infinity")return x;if(typeof _=="number"?(D=_,_=!1):_=!!_,D=D||10,D<2||36<D)throw RangeError("radix");var V;if((V=I.indexOf("-"))>0)throw Error("interior hyphen");if(V===0)return p(I.substring(1),_,D).neg();for(var q=l(d(D,8)),G=x,Q=0;Q<I.length;Q+=8){var J=Math.min(8,I.length-Q),ne=parseInt(I.substring(Q,Q+J),D);if(J<8){var ee=l(d(D,J));G=G.mul(ee).add(l(ne))}else G=G.mul(q),G=G.add(l(ne))}return G.unsigned=_,G}a.fromString=p;function c(I,_){return typeof I=="number"?l(I,_):typeof I=="string"?p(I,_):u(I.low,I.high,typeof _=="boolean"?_:I.unsigned)}a.fromValue=c;var h=1<<16,m=1<<24,f=h*h,g=f*f,A=g/2,y=o(m),x=o(0);a.ZERO=x;var v=o(0,!0);a.UZERO=v;var b=o(1);a.ONE=b;var k=o(1,!0);a.UONE=k;var N=o(-1);a.NEG_ONE=N;var C=u(4294967295|0,2147483647|0,!1);a.MAX_VALUE=C;var E=u(4294967295|0,4294967295|0,!0);a.MAX_UNSIGNED_VALUE=E;var z=u(0,2147483648|0,!1);a.MIN_VALUE=z;var F=a.prototype;F.toInt=function(){return this.unsigned?this.low>>>0:this.low},F.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},F.toString=function(I){if(I=I||10,I<2||36<I)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(z)){var _=l(I),D=this.div(_),V=D.mul(_).sub(this);return D.toString(I)+V.toInt().toString(I)}else return"-"+this.neg().toString(I);for(var q=l(d(I,6),this.unsigned),G=this,Q="";;){var J=G.div(q),ne=G.sub(J.mul(q)).toInt()>>>0,ee=ne.toString(I);if(G=J,G.isZero())return ee+Q;for(;ee.length<6;)ee="0"+ee;Q=""+ee+Q}},F.getHighBits=function(){return this.high},F.getHighBitsUnsigned=function(){return this.high>>>0},F.getLowBits=function(){return this.low},F.getLowBitsUnsigned=function(){return this.low>>>0},F.getNumBitsAbs=function(){if(this.isNegative())return this.eq(z)?64:this.neg().getNumBitsAbs();for(var I=this.high!=0?this.high:this.low,_=31;_>0&&(I&1<<_)==0;_--);return this.high!=0?_+33:_+1},F.isZero=function(){return this.high===0&&this.low===0},F.eqz=F.isZero,F.isNegative=function(){return!this.unsigned&&this.high<0},F.isPositive=function(){return this.unsigned||this.high>=0},F.isOdd=function(){return(this.low&1)==1},F.isEven=function(){return(this.low&1)==0},F.equals=function(I){return r(I)||(I=c(I)),this.unsigned!==I.unsigned&&this.high>>>31==1&&I.high>>>31==1?!1:this.high===I.high&&this.low===I.low},F.eq=F.equals,F.notEquals=function(I){return!this.eq(I)},F.neq=F.notEquals,F.ne=F.notEquals,F.lessThan=function(I){return this.comp(I)<0},F.lt=F.lessThan,F.lessThanOrEqual=function(I){return this.comp(I)<=0},F.lte=F.lessThanOrEqual,F.le=F.lessThanOrEqual,F.greaterThan=function(I){return this.comp(I)>0},F.gt=F.greaterThan,F.greaterThanOrEqual=function(I){return this.comp(I)>=0},F.gte=F.greaterThanOrEqual,F.ge=F.greaterThanOrEqual,F.compare=function(I){if(r(I)||(I=c(I)),this.eq(I))return 0;var _=this.isNegative(),D=I.isNegative();return _&&!D?-1:!_&&D?1:this.unsigned?I.high>>>0>this.high>>>0||I.high===this.high&&I.low>>>0>this.low>>>0?-1:1:this.sub(I).isNegative()?-1:1},F.comp=F.compare,F.negate=function(){return!this.unsigned&&this.eq(z)?z:this.not().add(b)},F.neg=F.negate,F.add=function(I){r(I)||(I=c(I));var _=this.high>>>16,D=this.high&65535,V=this.low>>>16,q=this.low&65535,G=I.high>>>16,Q=I.high&65535,J=I.low>>>16,ne=I.low&65535,ee=0,ie=0,Z=0,le=0;return le+=q+ne,Z+=le>>>16,le&=65535,Z+=V+J,ie+=Z>>>16,Z&=65535,ie+=D+Q,ee+=ie>>>16,ie&=65535,ee+=_+G,ee&=65535,u(Z<<16|le,ee<<16|ie,this.unsigned)},F.subtract=function(I){return r(I)||(I=c(I)),this.add(I.neg())},F.sub=F.subtract,F.multiply=function(I){if(this.isZero())return x;if(r(I)||(I=c(I)),n){var _=n.mul(this.low,this.high,I.low,I.high);return u(_,n.get_high(),this.unsigned)}if(I.isZero())return x;if(this.eq(z))return I.isOdd()?z:x;if(I.eq(z))return this.isOdd()?z:x;if(this.isNegative())return I.isNegative()?this.neg().mul(I.neg()):this.neg().mul(I).neg();if(I.isNegative())return this.mul(I.neg()).neg();if(this.lt(y)&&I.lt(y))return l(this.toNumber()*I.toNumber(),this.unsigned);var D=this.high>>>16,V=this.high&65535,q=this.low>>>16,G=this.low&65535,Q=I.high>>>16,J=I.high&65535,ne=I.low>>>16,ee=I.low&65535,ie=0,Z=0,le=0,oe=0;return oe+=G*ee,le+=oe>>>16,oe&=65535,le+=q*ee,Z+=le>>>16,le&=65535,le+=G*ne,Z+=le>>>16,le&=65535,Z+=V*ee,ie+=Z>>>16,Z&=65535,Z+=q*ne,ie+=Z>>>16,Z&=65535,Z+=G*J,ie+=Z>>>16,Z&=65535,ie+=D*ee+V*ne+q*J+G*Q,ie&=65535,u(le<<16|oe,ie<<16|Z,this.unsigned)},F.mul=F.multiply,F.divide=function(I){if(r(I)||(I=c(I)),I.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&I.low===-1&&I.high===-1)return this;var _=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,I.low,I.high);return u(_,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?v:x;var D,V,q;if(this.unsigned){if(I.unsigned||(I=I.toUnsigned()),I.gt(this))return v;if(I.gt(this.shru(1)))return k;q=v}else{if(this.eq(z)){if(I.eq(b)||I.eq(N))return z;if(I.eq(z))return b;var G=this.shr(1);return D=G.div(I).shl(1),D.eq(x)?I.isNegative()?b:N:(V=this.sub(I.mul(D)),q=D.add(V.div(I)),q)}else if(I.eq(z))return this.unsigned?v:x;if(this.isNegative())return I.isNegative()?this.neg().div(I.neg()):this.neg().div(I).neg();if(I.isNegative())return this.div(I.neg()).neg();q=x}for(V=this;V.gte(I);){D=Math.max(1,Math.floor(V.toNumber()/I.toNumber()));for(var Q=Math.ceil(Math.log(D)/Math.LN2),J=Q<=48?1:d(2,Q-48),ne=l(D),ee=ne.mul(I);ee.isNegative()||ee.gt(V);)D-=J,ne=l(D,this.unsigned),ee=ne.mul(I);ne.isZero()&&(ne=b),q=q.add(ne),V=V.sub(ee)}return q},F.div=F.divide,F.modulo=function(I){if(r(I)||(I=c(I)),n){var _=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,I.low,I.high);return u(_,n.get_high(),this.unsigned)}return this.sub(this.div(I).mul(I))},F.mod=F.modulo,F.rem=F.modulo,F.not=function(){return u(~this.low,~this.high,this.unsigned)},F.and=function(I){return r(I)||(I=c(I)),u(this.low&I.low,this.high&I.high,this.unsigned)},F.or=function(I){return r(I)||(I=c(I)),u(this.low|I.low,this.high|I.high,this.unsigned)},F.xor=function(I){return r(I)||(I=c(I)),u(this.low^I.low,this.high^I.high,this.unsigned)},F.shiftLeft=function(I){return r(I)&&(I=I.toInt()),(I&=63)===0?this:I<32?u(this.low<<I,this.high<<I|this.low>>>32-I,this.unsigned):u(0,this.low<<I-32,this.unsigned)},F.shl=F.shiftLeft,F.shiftRight=function(I){return r(I)&&(I=I.toInt()),(I&=63)===0?this:I<32?u(this.low>>>I|this.high<<32-I,this.high>>I,this.unsigned):u(this.high>>I-32,this.high>=0?0:-1,this.unsigned)},F.shr=F.shiftRight,F.shiftRightUnsigned=function(I){if(r(I)&&(I=I.toInt()),I&=63,I===0)return this;var _=this.high;if(I<32){var D=this.low;return u(D>>>I|_<<32-I,_>>>I,this.unsigned)}else return I===32?u(_,0,this.unsigned):u(_>>>I-32,0,this.unsigned)},F.shru=F.shiftRightUnsigned,F.shr_u=F.shiftRightUnsigned,F.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},F.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},F.toBytes=function(I){return I?this.toBytesLE():this.toBytesBE()},F.toBytesLE=function(){var I=this.high,_=this.low;return[_&255,_>>>8&255,_>>>16&255,_>>>24,I&255,I>>>8&255,I>>>16&255,I>>>24]},F.toBytesBE=function(){var I=this.high,_=this.low;return[I>>>24,I>>>16&255,I>>>8&255,I&255,_>>>24,_>>>16&255,_>>>8&255,_&255]},a.fromBytes=function(I,_,D){return D?a.fromBytesLE(I,_):a.fromBytesBE(I,_)},a.fromBytesLE=function(I,_){return new a(I[0]|I[1]<<8|I[2]<<16|I[3]<<24,I[4]|I[5]<<8|I[6]<<16|I[7]<<24,_)},a.fromBytesBE=function(I,_){return new a(I[4]<<24|I[5]<<16|I[6]<<8|I[7],I[0]<<24|I[1]<<16|I[2]<<8|I[3],_)}}),X9=vt(()=>{}),K9=vt((e,t)=>{(function(n,a,r){function s(u){var d=this,p=l();d.next=function(){var c=2091639*d.s0+d.c*23283064365386963e-26;return d.s0=d.s1,d.s1=d.s2,d.s2=c-(d.c=c|0)},d.c=1,d.s0=p(" "),d.s1=p(" "),d.s2=p(" "),d.s0-=p(u),d.s0<0&&(d.s0+=1),d.s1-=p(u),d.s1<0&&(d.s1+=1),d.s2-=p(u),d.s2<0&&(d.s2+=1),p=null}function i(u,d){return d.c=u.c,d.s0=u.s0,d.s1=u.s1,d.s2=u.s2,d}function o(u,d){var p=new s(u),c=d&&d.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,p),h.state=function(){return i(p,{})}),h}function l(){var u=4022871197,d=function(p){p=p.toString();for(var c=0;c<p.length;c++){u+=p.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Z9=vt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:d+=l;for(var p=0;p<d.length+64;p++)u.x^=d.charCodeAt(p)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Y9=vt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:d+=l;for(var p=0;p<d.length+64;p++)u.x^=d.charCodeAt(p)|0,p==d.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),J9=vt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.x,c=u.i,h,m,f;return h=p[c],h^=h>>>7,m=h^h<<24,h=p[c+1&7],m^=h^h>>>10,h=p[c+3&7],m^=h^h>>>3,h=p[c+4&7],m^=h^h<<7,h=p[c+7&7],h=h^h<<13,m^=h^h<<9,p[c]=m,u.i=c+1&7,m};function d(p,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}d(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.x&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Q9=vt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.w,c=u.X,h=u.i,m,f;return u.w=p=p+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(p^p>>>16)|0};function d(p,c){var h,m,f,g,A,y=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g<x;++g)c&&(m^=c.charCodeAt((g+32)%c.length)),g===0&&(A=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(A=A+1640531527|0,h=y[g&127]^=m+A,f=h==0?f+1:0);for(f>=128&&(y[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=y[f+34&127],h=y[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,y[f]=m^h;p.w=A,p.X=y,p.i=f}d(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.X&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),eI=vt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):d+=l;for(var p=0;p<d.length+20;p++)u.b^=d.charCodeAt(p)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),m5=vt(()=>{}),tI=vt((e,t)=>{(function(n,a){var r=this,s=256,i=6,o=52,l="random",u=a.pow(s,i),d=a.pow(2,o),p=d*2,c=s-1,h;function m(b,k,N){var C=[];k=k==!0?{entropy:!0}:k||{};var E=y(A(k.entropy?[b,v(n)]:b==null?x():b,3),C),z=new f(C),F=function(){for(var I=z.g(i),_=u,D=0;I<d;)I=(I+D)*s,_*=s,D=z.g(1);for(;I>=p;)I/=2,_/=2,D>>>=1;return(I+D)/_};return F.int32=function(){return z.g(4)|0},F.quick=function(){return z.g(4)/4294967296},F.double=F,y(v(z.S),n),(k.pass||N||function(I,_,D,V){return V&&(V.S&&g(V,z),I.state=function(){return g(z,{})}),D?(a[l]=I,_):I})(F,E,"global"in k?k.global:this==a,k.state)}a["seed"+l]=m;function f(b){var k,N=b.length,C=this,E=0,z=C.i=C.j=0,F=C.S=[];for(N||(b=[N++]);E<s;)F[E]=E++;for(E=0;E<s;E++)F[E]=F[z=c&z+b[E%N]+(k=F[E])],F[z]=k;(C.g=function(I){for(var _,D=0,V=C.i,q=C.j,G=C.S;I--;)_=G[V=c&V+1],D=D*s+G[c&(G[V]=G[q=c&q+_])+(G[q]=_)];return C.i=V,C.j=q,D})(s)}function g(b,k){return k.i=b.i,k.j=b.j,k.S=b.S.slice(),k}function A(b,k){var N=[],C=typeof b,E;if(k&&C=="object")for(E in b)try{N.push(A(b[E],k-1))}catch(z){}return N.length?N:C=="string"?b:b+"\0"}function y(b,k){for(var N=b+"",C,E=0;E<N.length;)k[c&E]=c&(C^=k[c&E]*19)+N.charCodeAt(E++);return v(k)}function x(){try{var b;return h&&(b=h.randomBytes)?b=b(s):(b=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(b)),v(b)}catch(C){var k=r.navigator,N=k&&k.plugins;return[+new Date,r,N,r.screen,v(n)]}}function v(b){return String.fromCharCode.apply(0,b)}if(y(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{h=m5()}catch(b){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),g5=vt((e,t)=>{var n=K9(),a=Z9(),r=Y9(),s=J9(),i=Q9(),o=eI(),l=tI();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),nI=vt((e,t)=>{(function(n,a,r){function s(u){var d=this,p=l();d.next=function(){var c=2091639*d.s0+d.c*23283064365386963e-26;return d.s0=d.s1,d.s1=d.s2,d.s2=c-(d.c=c|0)},d.c=1,d.s0=p(" "),d.s1=p(" "),d.s2=p(" "),d.s0-=p(u),d.s0<0&&(d.s0+=1),d.s1-=p(u),d.s1<0&&(d.s1+=1),d.s2-=p(u),d.s2<0&&(d.s2+=1),p=null}function i(u,d){return d.c=u.c,d.s0=u.s0,d.s1=u.s1,d.s2=u.s2,d}function o(u,d){var p=new s(u),c=d&&d.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,p),h.state=function(){return i(p,{})}),h}function l(){var u=4022871197,d=function(p){p=String(p);for(var c=0;c<p.length;c++){u+=p.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),aI=vt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:d+=l;for(var p=0;p<d.length+64;p++)u.x^=d.charCodeAt(p)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),rI=vt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:d+=l;for(var p=0;p<d.length+64;p++)u.x^=d.charCodeAt(p)|0,p==d.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),sI=vt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.x,c=u.i,h,m,f;return h=p[c],h^=h>>>7,m=h^h<<24,h=p[c+1&7],m^=h^h>>>10,h=p[c+3&7],m^=h^h>>>3,h=p[c+4&7],m^=h^h<<7,h=p[c+7&7],h=h^h<<13,m^=h^h<<9,p[c]=m,u.i=c+1&7,m};function d(p,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}d(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.x&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),iI=vt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.w,c=u.X,h=u.i,m,f;return u.w=p=p+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(p^p>>>16)|0};function d(p,c){var h,m,f,g,A,y=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g<x;++g)c&&(m^=c.charCodeAt((g+32)%c.length)),g===0&&(A=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(A=A+1640531527|0,h=y[g&127]^=m+A,f=h==0?f+1:0);for(f>=128&&(y[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=y[f+34&127],h=y[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,y[f]=m^h;p.w=A,p.X=y,p.i=f}d(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.X&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),oI=vt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):d+=l;for(var p=0;p<d.length+20;p++)u.b^=d.charCodeAt(p)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),lI=vt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),d=r.pow(2,o),p=d*2,c=s-1,h;function m(b,k,N){var C=[];k=k==!0?{entropy:!0}:k||{};var E=y(A(k.entropy?[b,v(a)]:b==null?x():b,3),C),z=new f(C),F=function(){for(var I=z.g(i),_=u,D=0;I<d;)I=(I+D)*s,_*=s,D=z.g(1);for(;I>=p;)I/=2,_/=2,D>>>=1;return(I+D)/_};return F.int32=function(){return z.g(4)|0},F.quick=function(){return z.g(4)/4294967296},F.double=F,y(v(z.S),a),(k.pass||N||function(I,_,D,V){return V&&(V.S&&g(V,z),I.state=function(){return g(z,{})}),D?(r[l]=I,_):I})(F,E,"global"in k?k.global:this==r,k.state)}function f(b){var k,N=b.length,C=this,E=0,z=C.i=C.j=0,F=C.S=[];for(N||(b=[N++]);E<s;)F[E]=E++;for(E=0;E<s;E++)F[E]=F[z=c&z+b[E%N]+(k=F[E])],F[z]=k;(C.g=function(I){for(var _,D=0,V=C.i,q=C.j,G=C.S;I--;)_=G[V=c&V+1],D=D*s+G[c&(G[V]=G[q=c&q+_])+(G[q]=_)];return C.i=V,C.j=q,D})(s)}function g(b,k){return k.i=b.i,k.j=b.j,k.S=b.S.slice(),k}function A(b,k){var N=[],C=typeof b,E;if(k&&C=="object")for(E in b)try{N.push(A(b[E],k-1))}catch(z){}return N.length?N:C=="string"?b:b+"\0"}function y(b,k){for(var N=b+"",C,E=0;E<N.length;)k[c&E]=c&(C^=k[c&E]*19)+N.charCodeAt(E++);return v(k)}function x(){try{var b;return h&&(b=h.randomBytes)?b=b(s):(b=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(b)),v(b)}catch(C){var k=n.navigator,N=k&&k.plugins;return[+new Date,n,N,n.screen,v(a)]}}function v(b){return String.fromCharCode.apply(0,b)}if(y(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=m5()}catch(b){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),A5=vt((e,t)=>{var n=nI(),a=aI(),r=rI(),s=sI(),i=iI(),o=oI(),l=lI();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),y5=vt(()=>{}),Fu=vt(()=>{}),uI=vt(()=>{}),dI=vt(()=>{}),pI=vt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return Z.buffer!=He&&an(Z.buffer),Nn}function i(){return Z.buffer!=He&&an(Z.buffer),St}function o(){return Z.buffer!=He&&an(Z.buffer),Cn}function l(){return Z.buffer!=He&&an(Z.buffer),ta}function u(){return Z.buffer!=He&&an(Z.buffer),hn}var d=typeof r!="undefined"?r:{},p,c;d.ready=new Promise(function(T,$){p=T,c=$});var h={},m;for(m in d)d.hasOwnProperty(m)&&(h[m]=d[m]);var f=[],g="./this.program",A=function(T,$){throw $},y=!1,x=!1,v=!1,b=!1;y=typeof window=="object",x=typeof importScripts=="function",v=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",b=!y&&!v&&!x;var k=d.ENVIRONMENT_IS_PTHREAD||!1;k&&(He=d.buffer);var N="";function C(T){return d.locateFile?d.locateFile(T,N):N+T}var E,z,F,I,_,D;if(v){x?N=Fu().dirname(N)+"/":N=__dirname+"/",E=function(T,$){return _||(_=vo("fs")),D||(D=Fu()),T=D.normalize(T),_.readFileSync(T,$?null:"utf8")},F=function(T){var $=E(T,!0);return $.buffer||($=new Uint8Array($)),ge($.buffer),$},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(T){if(!(T instanceof Mu))throw T}),process.on("unhandledRejection",gr),A=function(T){process.exit(T)},d.inspect=function(){return"[Emscripten Module object]"};var V;try{V=uI()}catch(T){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),T}global.Worker=V.Worker}else b?(typeof read!="undefined"&&(E=function(T){return read(T)}),F=function(T){var $;return typeof readbuffer=="function"?new Uint8Array(readbuffer(T)):($=read(T,"binary"),ge(typeof $=="object"),$)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(A=function(T){quit(T)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(y||x)&&(x?N=self.location.href:typeof document!="undefined"&&document.currentScript&&(N=document.currentScript.src),typeof a!="undefined"&&a&&(N=a),N.indexOf("blob:")!==0?N=N.substr(0,N.lastIndexOf("/")+1):N="",v?(E=function(T,$){return _||(_=vo("fs")),D||(D=Fu()),T=D.normalize(T),_.readFileSync(T,$?null:"utf8")},F=function(T){var $=E(T,!0);return $.buffer||($=new Uint8Array($)),ge($.buffer),$}):(E=function(T){var $=new XMLHttpRequest;return $.open("GET",T,!1),$.send(null),$.responseText},x&&(F=function(T){var $=new XMLHttpRequest;return $.open("GET",T,!1),$.responseType="arraybuffer",$.send(null),new Uint8Array($.response)}),z=function(T,$,U){var X=new XMLHttpRequest;X.open("GET",T,!0),X.responseType="arraybuffer",X.onload=function(){if(X.status==200||X.status==0&&X.response){$(X.response);return}U()},X.onerror=U,X.send(null)}),I=function(T){document.title=T});v&&typeof performance=="undefined"&&(global.performance=dI().performance);var q=d.print||console.log.bind(console),G=d.printErr||console.warn.bind(console);for(m in h)h.hasOwnProperty(m)&&(d[m]=h[m]);h=null,d.arguments&&(f=d.arguments),d.thisProgram&&(g=d.thisProgram),d.quit&&(A=d.quit);var Q=Atomics.load,J=Atomics.store,ne=Atomics.compareExchange,ee;d.wasmBinary&&(ee=d.wasmBinary);var ie=d.noExitRuntime||!0;typeof WebAssembly!="object"&&gr("no native wasm support detected");var Z,le,oe=!1,ye;function ge(T,$){T||gr("Assertion failed: "+$)}function Se(T){var $=d["_"+T];return ge($,"Cannot call unknown function "+T+", make sure it is exported"),$}function Te(T,$,U,X,me){var pe={string:function(Mn){var bo=0;if(Mn!=null&&Mn!==0){var u5=(Mn.length<<2)+1;bo=Ao(u5),at(Mn,bo,u5)}return bo},array:function(Mn){var bo=Ao(Mn.length);return Qe(Mn,bo),bo}};function he(Mn){return $==="string"?Oe(Mn):$==="boolean"?Boolean(Mn):Mn}var ve=Se(T),rt=[],Kt=0;if(X)for(var Vt=0;Vt<X.length;Vt++){var Lr=pe[U[Vt]];Lr?(Kt===0&&(Kt=Ru()),rt[Vt]=Lr(X[Vt])):rt[Vt]=X[Vt]}var xo=ve.apply(null,rt);return xo=he(xo),Kt!==0&&go(Kt),xo}function $e(T,$,U,X){U=U||[];var me=U.every(function(he){return he==="number"}),pe=$!=="string";return pe&&me&&!X?Se(T):function(){return Te(T,$,U,arguments,X)}}function De(T,$,U){for(var X=$+U,me="";!($>=X);){var pe=T[$++];if(!pe)return me;if(!(pe&128)){me+=String.fromCharCode(pe);continue}var he=T[$++]&63;if((pe&224)==192){me+=String.fromCharCode((pe&31)<<6|he);continue}var ve=T[$++]&63;if((pe&240)==224?pe=(pe&15)<<12|he<<6|ve:pe=(pe&7)<<18|he<<12|ve<<6|T[$++]&63,pe<65536)me+=String.fromCharCode(pe);else{var rt=pe-65536;me+=String.fromCharCode(55296|rt>>10,56320|rt&1023)}}return me}function Oe(T,$){return T?De(i(),T,$):""}function nt(T,$,U,X){if(!(X>0))return 0;for(var me=U,pe=U+X-1,he=0;he<T.length;++he){var ve=T.charCodeAt(he);if(ve>=55296&&ve<=57343){var rt=T.charCodeAt(++he);ve=65536+((ve&1023)<<10)|rt&1023}if(ve<=127){if(U>=pe)break;$[U++]=ve}else if(ve<=2047){if(U+1>=pe)break;$[U++]=192|ve>>6,$[U++]=128|ve&63}else if(ve<=65535){if(U+2>=pe)break;$[U++]=224|ve>>12,$[U++]=128|ve>>6&63,$[U++]=128|ve&63}else{if(U+3>=pe)break;$[U++]=240|ve>>18,$[U++]=128|ve>>12&63,$[U++]=128|ve>>6&63,$[U++]=128|ve&63}}return $[U]=0,U-me}function at(T,$,U){return nt(T,i(),$,U)}function ot(T){for(var $=0,U=0;U<T.length;++U){var X=T.charCodeAt(U);X>=55296&&X<=57343&&(X=65536+((X&1023)<<10)|T.charCodeAt(++U)&1023),X<=127?++$:X<=2047?$+=2:X<=65535?$+=3:$+=4}return $}function Qe(T,$){s().set(T,$)}function mt(T,$){return T%$>0&&(T+=$-T%$),T}var He,Nn,St,ea,nn,Cn,ta,Vn,hn;function an(T){He=T,d.HEAP8=Nn=new Int8Array(T),d.HEAP16=ea=new Int16Array(T),d.HEAP32=Cn=new Int32Array(T),d.HEAPU8=St=new Uint8Array(T),d.HEAPU16=nn=new Uint16Array(T),d.HEAPU32=ta=new Uint32Array(T),d.HEAPF32=Vn=new Float32Array(T),d.HEAPF64=hn=new Float64Array(T)}var Xa=d.INITIAL_MEMORY||16777216;if(k)Z=d.wasmMemory,He=d.buffer;else if(d.wasmMemory)Z=d.wasmMemory;else if(Z=new WebAssembly.Memory({initial:Xa/65536,maximum:2147483648/65536,shared:!0}),!(Z.buffer instanceof SharedArrayBuffer))throw G("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),v&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Z&&(He=Z.buffer),Xa=He.byteLength,an(He);var va,wa=[],$r=[],fr=[],Or=[],uo=[],Ka=!1,vp=!1;k||$r.push({func:function(){_p()}});function rf(){if(!k){if(d.preRun)for(typeof d.preRun=="function"&&(d.preRun=[d.preRun]);d.preRun.length;)kp(d.preRun.shift());co(wa)}}function vu(){Ka=!0,!k&&co($r)}function sf(){k||co(fr)}function wp(){k||(vp=!0)}function En(){if(!k){if(d.postRun)for(typeof d.postRun=="function"&&(d.postRun=[d.postRun]);d.postRun.length;)of(d.postRun.shift());co(uo)}}function kp(T){wa.unshift(T)}function of(T){uo.unshift(T)}var mr=0,zr=null,ws=null;function lf(T){ge(!k,"addRunDependency cannot be used in a pthread worker"),mr++,d.monitorRunDependencies&&d.monitorRunDependencies(mr)}function uf(T){if(mr--,d.monitorRunDependencies&&d.monitorRunDependencies(mr),mr==0&&(zr!==null&&(clearInterval(zr),zr=null),ws)){var $=ws;ws=null,$()}}d.preloadedImages={},d.preloadedAudios={};function gr(T){d.onAbort&&d.onAbort(T),k&&console.error("Pthread aborting at "+new Error().stack),T+="",G(T),oe=!0,ye=1,T="abort("+T+"). Build with -s ASSERTIONS=1 for more info.";var $=new WebAssembly.RuntimeError(T);throw c($),$}function Ip(T,$){return String.prototype.startsWith?T.startsWith($):T.indexOf($)===0}var po="data:application/octet-stream;base64,";function Sp(T){return Ip(T,po)}var df="file://";function Tp(T){return Ip(T,df)}var Rn="tfjs-backend-wasm-threaded-simd.wasm";Sp(Rn)||(Rn=C(Rn));function Np(T){try{if(T==Rn&&ee)return new Uint8Array(ee);if(F)return F(T);throw"both async and sync fetching of the wasm failed"}catch($){gr($)}}function pf(){if(!ee&&(y||x)){if(typeof fetch=="function"&&!Tp(Rn))return fetch(Rn,{credentials:"same-origin"}).then(function(T){if(!T.ok)throw"failed to load wasm binary file at '"+Rn+"'";return T.arrayBuffer()}).catch(function(){return Np(Rn)});if(z)return new Promise(function(T,$){z(Rn,function(U){T(new Uint8Array(U))},$)})}return Promise.resolve().then(function(){return Np(Rn)})}function cf(){var T={a:nm};function $(he,ve){var rt=he.exports;if(d.asm=rt,va=d.asm.F,le=ve,!k){var Kt=Ie.unusedWorkers.length;Ie.unusedWorkers.forEach(function(Vt){Ie.loadWasmModuleToWorker(Vt,function(){--Kt||uf("wasm-instantiate")})})}}k||lf("wasm-instantiate");function U(he){$(he.instance,he.module)}function X(he){return pf().then(function(ve){return WebAssembly.instantiate(ve,T)}).then(he,function(ve){G("failed to asynchronously prepare wasm: "+ve),gr(ve)})}function me(){return!ee&&typeof WebAssembly.instantiateStreaming=="function"&&!Sp(Rn)&&!Tp(Rn)&&typeof fetch=="function"?fetch(Rn,{credentials:"same-origin"}).then(function(he){var ve=WebAssembly.instantiateStreaming(he,T);return ve.then(U,function(rt){return G("wasm streaming compile failed: "+rt),G("falling back to ArrayBuffer instantiation"),X(U)})}):X(U)}if(d.instantiateWasm)try{var pe=d.instantiateWasm(T,$);return pe}catch(he){return G("Module.instantiateWasm callback failed with error: "+he),!1}return me().catch(c),{}}var hf={10024:function(){throw"Canceled!"},10042:function(T,$){setTimeout(function(){a5(T,$)},0)}};function Cp(){Ie.initRuntime()}function co(T){for(;T.length>0;){var $=T.shift();if(typeof $=="function"){$(d);continue}var U=$.func;typeof U=="number"?$.arg===void 0?va.get(U)():va.get(U)($.arg):U($.arg===void 0?null:$.arg)}}function wu(T,$){if(T<=0||T>s().length||T&!0||$<0)return-28;if($==0)return 0;$>=2147483647&&($=1/0);var U=Atomics.load(o(),yo>>2),X=0;if(U==T){var me=Atomics.compareExchange(o(),yo>>2,U,0);if(me==U&&(--$,X=1,$<=0))return 1}var pe=Atomics.notify(o(),T>>2,$);if(pe>=0)return pe+X;throw"Atomics.notify returned an unexpected value "+pe}d._emscripten_futex_wake=wu;function ff(T){if(k)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!T)throw"Internal Error! Null pthread_ptr in killThread!";o()[T+12>>2]=0;var $=Ie.pthreads[T];$.worker.terminate(),Ie.freeThreadData($),Ie.runningWorkers.splice(Ie.runningWorkers.indexOf($.worker),1),$.worker.pthread=void 0}function mf(T){if(k)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!T)throw"Internal Error! Null pthread_ptr in cancelThread!";var $=Ie.pthreads[T];$.worker.postMessage({cmd:"cancel"})}function gf(T){if(k)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!T)throw"Internal Error! Null pthread_ptr in cleanupThread!";var $=Ie.pthreads[T];if($){o()[T+12>>2]=0;var U=$.worker;Ie.returnWorkerToPool(U)}}var Ie={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var T=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),$=0;$<T;++$)Ie.allocateUnusedWorker()},initRuntime:function(){for(var T=Is(228),$=0;$<228/4;++$)l()[T/4+$]=0;o()[T+12>>2]=T;var U=T+152;o()[U>>2]=U;for(var X=Is(512),$=0;$<128;++$)l()[X/4+$]=0;Atomics.store(l(),T+100>>2,X),Atomics.store(l(),T+40>>2,T),Em(T,!x,1),n5(T)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Ie.threadExitHandlers.length>0;)Ie.threadExitHandlers.pop()();k&&mo()&&t5()},runExitHandlersAndDeinitThread:function(T,$){Atomics.store(l(),T+56>>2,1),Atomics.store(l(),T+60>>2,0),Ie.runExitHandlers(),Atomics.store(l(),T+4>>2,$),Atomics.store(l(),T+0>>2,1),wu(T+0,2147483647),Em(0,0,0)},threadExit:function(T){var $=mo();$&&(Ie.runExitHandlersAndDeinitThread($,T),k&&postMessage({cmd:"exit"}))},threadCancel:function(){Ie.runExitHandlersAndDeinitThread(mo(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var T in Ie.pthreads){var $=Ie.pthreads[T];$&&$.worker&&Ie.returnWorkerToPool($.worker)}Ie.pthreads={};for(var U=0;U<Ie.unusedWorkers.length;++U){var X=Ie.unusedWorkers[U];X.terminate()}Ie.unusedWorkers=[];for(var U=0;U<Ie.runningWorkers.length;++U){var X=Ie.runningWorkers[U],$=X.pthread;Ie.freeThreadData($),X.terminate()}Ie.runningWorkers=[]},freeThreadData:function(T){if(T){if(T.threadInfoStruct){var $=o()[T.threadInfoStruct+100>>2];o()[T.threadInfoStruct+100>>2]=0,Eu($),Eu(T.threadInfoStruct)}T.threadInfoStruct=0,T.allocatedOwnStack&&T.stackBase&&Eu(T.stackBase),T.stackBase=0,T.worker&&(T.worker.pthread=null)}},returnWorkerToPool:function(T){Ie.runWithoutMainThreadQueuedCalls(function(){delete Ie.pthreads[T.pthread.threadInfoStruct],Ie.unusedWorkers.push(T),Ie.runningWorkers.splice(Ie.runningWorkers.indexOf(T),1),Ie.freeThreadData(T.pthread),T.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(T){o()[l5>>2]=0;try{T()}finally{o()[l5>>2]=1}},receiveObjectTransfer:function(T){},loadWasmModuleToWorker:function(T,$){T.onmessage=function(U){var X=U.data,me=X.cmd;if(T.pthread&&(Ie.currentProxiedOperationCallerThread=T.pthread.threadInfoStruct),X.targetThread&&X.targetThread!=mo()){var pe=Ie.pthreads[X.targetThread];pe?pe.worker.postMessage(U.data,X.transferList):console.error('Internal error! Worker sent a message "'+me+'" to target pthread '+X.targetThread+", but that thread no longer exists!"),Ie.currentProxiedOperationCallerThread=void 0;return}if(me==="processQueuedMainThreadWork")Nm();else if(me==="spawnThread")Op(U.data);else if(me==="cleanupThread")gf(X.thread);else if(me==="killThread")ff(X.thread);else if(me==="cancelThread")mf(X.thread);else if(me==="loaded")T.loaded=!0,$&&$(T),T.runPthread&&(T.runPthread(),delete T.runPthread);else if(me==="print")q("Thread "+X.threadId+": "+X.text);else if(me==="printErr")G("Thread "+X.threadId+": "+X.text);else if(me==="alert")alert("Thread "+X.threadId+": "+X.text);else if(me==="exit"){var he=T.pthread&&Atomics.load(l(),T.pthread.threadInfoStruct+64>>2);he&&Ie.returnWorkerToPool(T)}else if(me==="exitProcess")try{L9(X.returnCode)}catch(ve){if(ve instanceof Mu)return;throw ve}else me==="cancelDone"?Ie.returnWorkerToPool(T):me==="objectTransfer"?Ie.receiveObjectTransfer(U.data):U.data.target==="setimmediate"?T.postMessage(U.data):G("worker sent an unknown command "+me);Ie.currentProxiedOperationCallerThread=void 0},T.onerror=function(U){G("pthread sent an error! "+U.filename+":"+U.lineno+": "+U.message)},v&&(T.on("message",function(U){T.onmessage({data:U})}),T.on("error",function(U){T.onerror(U)}),T.on("exit",function(U){})),T.postMessage({cmd:"load",urlOrBlob:d.mainScriptUrlOrBlob||a,wasmMemory:Z,wasmModule:le})},allocateUnusedWorker:function(){var T=C("tfjs-backend-wasm-threaded-simd.worker.js");Ie.unusedWorkers.push(new Worker(T))},getNewWorker:function(){return Ie.unusedWorkers.length==0&&(Ie.allocateUnusedWorker(),Ie.loadWasmModuleToWorker(Ie.unusedWorkers[0])),Ie.unusedWorkers.length>0?Ie.unusedWorkers.pop():null},busySpinWait:function(T){for(var $=performance.now()+T;performance.now()<$;);}};function Af(T,$){i5(T,$),go(T)}d.establishStackSpace=Af;function yf(){return ie}d.getNoExitRuntime=yf;function xf(T,$){return va.get(T)($)}d.invokeEntryPoint=xf;function bf(T,$,U,X){gr("Assertion failed: "+Oe(T)+", at: "+[$?Oe($):"unknown filename",U,X?Oe(X):"unknown function"])}function vf(T,$){var U=_main(T,$)}var ks;v?ks=function(){var T=process.hrtime();return T[0]*1e3+T[1]/1e6}:k?ks=function(){return performance.now()-d.__performance_now_clock_drift}:typeof dateNow!="undefined"?ks=dateNow:ks=function(){return performance.now()};function wf(T){return o()[Q2()>>2]=T,T}function kf(T,$){if(k)return _r(1,1,T,$)}function If(T,$){if(T==$)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:T,cmd:"processThreadQueue"});else{var U=Ie.pthreads[T],X=U&&U.worker;if(!X)return;X.postMessage({cmd:"processThreadQueue"})}return 1}function Sf(){gr()}function Tf(T,$,U){var X=Mf($,U);return hf[T].apply(null,X)}function Nf(T,$){}function Cf(T,$,U){if(T<=0||T>s().length||T&!0)return-28;if(y){if(Atomics.load(o(),T>>2)!=$)return-6;for(var X=performance.now(),me=X+U,pe=Atomics.exchange(o(),yo>>2,T);;){if(X=performance.now(),X>me)return pe=Atomics.exchange(o(),yo>>2,0),-73;if(pe=Atomics.exchange(o(),yo>>2,0),pe==0)break;if(Nm(),Atomics.load(o(),T>>2)!=$)return-6;pe=Atomics.exchange(o(),yo>>2,T)}return 0}else{var he=Atomics.wait(o(),T>>2,$,U);if(he==="timed-out")return-73;if(he==="not-equal")return-6;if(he==="ok")return 0;throw"Atomics.wait returned an unexpected value "+he}}function Ef(T,$,U){i().copyWithin(T,$,$+U)}function Rf(){return v?vo("os").cpus().length:navigator.hardwareConcurrency}function _r(T,$){for(var U=arguments.length-2,X=Ru(),me=U,pe=Ao(me*8),he=pe>>3,ve=0;ve<U;ve++){var rt=arguments[2+ve];u()[he+ve]=rt}var Kt=s5(T,me,pe,$);return go(X),Kt}var ku=[],Iu=[];function Mf(T,$){Iu.length=0;var U;for($>>=2;U=i()[T++];){var X=U<105;X&&$&1&&$++,Iu.push(X?u()[$++>>1]:o()[$]),++$}return Iu}function Ff(T,$,U){ku.length=$;for(var X=U>>3,me=0;me<$;me++)ku[me]=u()[X+me];var pe=T<0,he=pe?hf[-T-1]:tm[T];return he.apply(null,ku)}function $f(){return i().length}function Of(T){try{return Z.grow(T-He.byteLength+65535>>>16),an(Z.buffer),1}catch($){}}function zf(T){var $=$f();if(T<=$)return!1;var U=2147483648;if(T>U)return!1;for(var X=1;X<=4;X*=2){var me=$*(1+.2/X);me=Math.min(me,T+100663296);var pe=Math.min(U,mt(Math.max(T,me),65536)),he=Of(pe);if(he)return!0}return!1}var Le={inEventHandler:0,removeAllEventListeners:function(){for(var T=Le.eventHandlers.length-1;T>=0;--T)Le._removeHandler(T);Le.eventHandlers=[],Le.deferredCalls=[]},registerRemoveEventListeners:function(){Le.removeEventListenersRegistered||(Or.push(Le.removeAllEventListeners),Le.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(T,$,U){function X(he,ve){if(he.length!=ve.length)return!1;for(var rt in he)if(he[rt]!=ve[rt])return!1;return!0}for(var me in Le.deferredCalls){var pe=Le.deferredCalls[me];if(pe.targetFunction==T&&X(pe.argsList,U))return}Le.deferredCalls.push({targetFunction:T,precedence:$,argsList:U}),Le.deferredCalls.sort(function(he,ve){return he.precedence<ve.precedence})},removeDeferredCalls:function(T){for(var $=0;$<Le.deferredCalls.length;++$)Le.deferredCalls[$].targetFunction==T&&(Le.deferredCalls.splice($,1),--$)},canPerformEventHandlerRequests:function(){return Le.inEventHandler&&Le.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Le.canPerformEventHandlerRequests())for(var T=0;T<Le.deferredCalls.length;++T){var $=Le.deferredCalls[T];Le.deferredCalls.splice(T,1),--T,$.targetFunction.apply(null,$.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(T,$){for(var U=0;U<Le.eventHandlers.length;++U)Le.eventHandlers[U].target==T&&(!$||$==Le.eventHandlers[U].eventTypeString)&&Le._removeHandler(U--)},_removeHandler:function(T){var $=Le.eventHandlers[T];$.target.removeEventListener($.eventTypeString,$.eventListenerFunc,$.useCapture),Le.eventHandlers.splice(T,1)},registerOrRemoveHandler:function(T){var $=function(X){++Le.inEventHandler,Le.currentEventHandler=T,Le.runDeferredCalls(),T.handlerFunc(X),Le.runDeferredCalls(),--Le.inEventHandler};if(T.callbackfunc)T.eventListenerFunc=$,T.target.addEventListener(T.eventTypeString,$,T.useCapture),Le.eventHandlers.push(T),Le.registerRemoveEventListeners();else for(var U=0;U<Le.eventHandlers.length;++U)Le.eventHandlers[U].target==T.target&&Le.eventHandlers[U].eventTypeString==T.eventTypeString&&Le._removeHandler(U--)},queueEventHandlerOnThread_iiii:function(T,$,U,X,me){var pe=Ru(),he=Ao(12);o()[he>>2]=U,o()[he+4>>2]=X,o()[he+8>>2]=me,Cm(0,T,637534208,$,X,he),go(pe)},getTargetThreadForEventCallback:function(T){switch(T){case 1:return 0;case 2:return Ie.currentProxiedOperationCallerThread;default:return T}},getNodeNameForTarget:function(T){return T?T==window?"#window":T==screen?"#screen":T&&T.nodeName?T.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function _f(T){var $=ot(T)+1,U=Is($);return at(T,U,$),U}function Df(T,$,U,X){var me=Ru(),pe=Ao(12),he=0;$&&(he=_f($)),o()[pe>>2]=he,o()[pe+4>>2]=U,o()[pe+8>>2]=X,Cm(0,T,657457152,0,he,pe),go(me)}function Pf(T,$,U,X){$=$?Oe($):"",Df(T,$,U,X)}function Lf(T){return T>2?Oe(T):T}var Wf=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Bf(T){T=Lf(T);var $=Wf[T]||(typeof document!="undefined"?document.querySelector(T):void 0);return $}function Su(T){return Bf(T)}function Ep(T,$,U){var X=Su(T);if(!X)return-4;if(X.canvasSharedPtr&&(o()[X.canvasSharedPtr>>2]=$,o()[X.canvasSharedPtr+4>>2]=U),X.offscreenCanvas||!X.controlTransferredOffscreen){X.offscreenCanvas&&(X=X.offscreenCanvas);var me=!1;if(X.GLctxObject&&X.GLctxObject.GLctx){var pe=X.GLctxObject.GLctx.getParameter(2978);me=pe[0]===0&&pe[1]===0&&pe[2]===X.width&&pe[3]===X.height}X.width=$,X.height=U,me&&X.GLctxObject.GLctx.viewport(0,0,$,U)}else if(X.canvasSharedPtr){var he=o()[X.canvasSharedPtr+8>>2];return Pf(he,T,$,U),1}else return-4;return 0}function Rp(T,$,U){return k?_r(2,1,T,$,U):Ep(T,$,U)}function Vf(T,$,U){var X=Su(T);return X?Ep(T,$,U):Rp(T,$,U)}function Uf(T){}function Hf(T,$){}function jf(T){var $=T.getExtension("ANGLE_instanced_arrays");if($)return T.vertexAttribDivisor=function(U,X){$.vertexAttribDivisorANGLE(U,X)},T.drawArraysInstanced=function(U,X,me,pe){$.drawArraysInstancedANGLE(U,X,me,pe)},T.drawElementsInstanced=function(U,X,me,pe,he){$.drawElementsInstancedANGLE(U,X,me,pe,he)},1}function Gf(T){var $=T.getExtension("OES_vertex_array_object");if($)return T.createVertexArray=function(){return $.createVertexArrayOES()},T.deleteVertexArray=function(U){$.deleteVertexArrayOES(U)},T.bindVertexArray=function(U){$.bindVertexArrayOES(U)},T.isVertexArray=function(U){return $.isVertexArrayOES(U)},1}function qf(T){var $=T.getExtension("WEBGL_draw_buffers");if($)return T.drawBuffers=function(U,X){$.drawBuffersWEBGL(U,X)},1}function Xf(T){return!!(T.multiDrawWebgl=T.getExtension("WEBGL_multi_draw"))}var tt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(T){tt.lastError||(tt.lastError=T)},getNewId:function(T){for(var $=tt.counter++,U=T.length;U<$;U++)T[U]=null;return $},getSource:function(T,$,U,X){for(var me="",pe=0;pe<$;++pe){var he=X?o()[X+pe*4>>2]:-1;me+=Oe(o()[U+pe*4>>2],he<0?void 0:he)}return me},createContext:function(T,$){var U=T.getContext("webgl",$);if(!U)return 0;var X=tt.registerContext(U,$);return X},registerContext:function(T,$){var U=Is(8);o()[U+4>>2]=mo();var X={handle:U,attributes:$,version:$.majorVersion,GLctx:T};return T.canvas&&(T.canvas.GLctxObject=X),tt.contexts[U]=X,(typeof $.enableExtensionsByDefault=="undefined"||$.enableExtensionsByDefault)&&tt.initExtensions(X),U},makeContextCurrent:function(T){return tt.currentContext=tt.contexts[T],d.ctx=Dr=tt.currentContext&&tt.currentContext.GLctx,!(T&&!Dr)},getContext:function(T){return tt.contexts[T]},deleteContext:function(T){tt.currentContext===tt.contexts[T]&&(tt.currentContext=null),typeof Le=="object"&&Le.removeAllHandlersOnTarget(tt.contexts[T].GLctx.canvas),tt.contexts[T]&&tt.contexts[T].GLctx.canvas&&(tt.contexts[T].GLctx.canvas.GLctxObject=void 0),Eu(tt.contexts[T].handle),tt.contexts[T]=null},initExtensions:function(T){if(T||(T=tt.currentContext),!T.initExtensionsDone){T.initExtensionsDone=!0;var $=T.GLctx;jf($),Gf($),qf($),$.disjointTimerQueryExt=$.getExtension("EXT_disjoint_timer_query"),Xf($);var U=$.getSupportedExtensions()||[];U.forEach(function(X){X.indexOf("lose_context")<0&&X.indexOf("debug")<0&&$.getExtension(X)})}},populateUniformTable:function(T){for(var $=tt.programs[T],U=tt.programInfos[T]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},X=U.uniforms,me=Dr.getProgramParameter($,35718),pe=0;pe<me;++pe){var he=Dr.getActiveUniform($,pe),ve=he.name;U.maxUniformLength=Math.max(U.maxUniformLength,ve.length+1),ve.slice(-1)=="]"&&(ve=ve.slice(0,ve.lastIndexOf("[")));var rt=Dr.getUniformLocation($,ve);if(rt){var Kt=tt.getNewId(tt.uniforms);X[ve]=[he.size,Kt],tt.uniforms[Kt]=rt;for(var Vt=1;Vt<he.size;++Vt){var Lr=ve+"["+Vt+"]";rt=Dr.getUniformLocation($,Lr),Kt=tt.getNewId(tt.uniforms),tt.uniforms[Kt]=rt}}}}},Kf=["default","low-power","high-performance"];function Zf(T,$){var U=$>>2,X=o()[U+(24>>2)],me={alpha:!!o()[U+(0>>2)],depth:!!o()[U+(4>>2)],stencil:!!o()[U+(8>>2)],antialias:!!o()[U+(12>>2)],premultipliedAlpha:!!o()[U+(16>>2)],preserveDrawingBuffer:!!o()[U+(20>>2)],powerPreference:Kf[X],failIfMajorPerformanceCaveat:!!o()[U+(28>>2)],majorVersion:o()[U+(32>>2)],minorVersion:o()[U+(36>>2)],enableExtensionsByDefault:o()[U+(40>>2)],explicitSwapControl:o()[U+(44>>2)],proxyContextToMainThread:o()[U+(48>>2)],renderViaOffscreenBackBuffer:o()[U+(52>>2)]},pe=Su(T);if(!pe||me.explicitSwapControl)return 0;var he=tt.createContext(pe,me);return he}function Yf(T,$){return Zf(T,$)}var ho={mappings:{},buffers:[null,[],[]],printChar:function(T,$){var U=ho.buffers[T];$===0||$===10?((T===1?q:G)(De(U,0)),U.length=0):U.push($)},varargs:void 0,get:function(){ho.varargs+=4;var T=o()[ho.varargs-4>>2];return T},getStr:function(T){var $=Oe(T);return $},get64:function(T,$){return T}};function Mp(T){return k?_r(3,1,T):0}function Fp(T,$,U,X,me){if(k)return _r(4,1,T,$,U,X,me)}function $p(T,$,U,X){if(k)return _r(5,1,T,$,U,X);for(var me=0,pe=0;pe<U;pe++){for(var he=o()[$+pe*8>>2],ve=o()[$+(pe*8+4)>>2],rt=0;rt<ve;rt++)ho.printChar(T,i()[he+rt]);me+=ve}return o()[X>>2]=me,0}function Jf(T){var $=Ie.threadExitHandlers.pop();T&&$()}function Qf(T,$){Ie.threadExitHandlers.push(function(){va.get(T)($)})}function Op(T){if(k)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var $=Ie.getNewWorker();if($.pthread!==void 0)throw"Internal error!";if(!T.pthread_ptr)throw"Internal error, no pthread ptr!";Ie.runningWorkers.push($);for(var U=Is(128*4),X=0;X<128;++X)o()[U+X*4>>2]=0;var me=T.stackBase+T.stackSize,pe=Ie.pthreads[T.pthread_ptr]={worker:$,stackBase:T.stackBase,stackSize:T.stackSize,allocatedOwnStack:T.allocatedOwnStack,threadInfoStruct:T.pthread_ptr},he=pe.threadInfoStruct>>2;Atomics.store(l(),he+(64>>2),T.detached),Atomics.store(l(),he+(100>>2),U),Atomics.store(l(),he+(40>>2),pe.threadInfoStruct),Atomics.store(l(),he+(80>>2),T.stackSize),Atomics.store(l(),he+(76>>2),me),Atomics.store(l(),he+(104>>2),T.stackSize),Atomics.store(l(),he+(104+8>>2),me),Atomics.store(l(),he+(104+12>>2),T.detached);var ve=e5(),rt=ve+40;Atomics.store(l(),he+(172>>2),rt),$.pthread=pe;var Kt={cmd:"run",start_routine:T.startRoutine,arg:T.arg,threadInfoStruct:T.pthread_ptr,stackBase:T.stackBase,stackSize:T.stackSize};$.runPthread=function(){Kt.time=performance.now(),$.postMessage(Kt,T.transferList)},$.loaded&&($.runPthread(),delete $.runPthread)}function em(T,$,U,X){if(typeof SharedArrayBuffer=="undefined")return G("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!T)return G("pthread_create called with a null thread pointer!"),28;var me=[],pe=0;if(k&&(me.length===0||pe))return r5(687865856,T,$,U,X);if(pe)return pe;var he=0,ve=0,rt=0;$&&$!=-1?(he=o()[$>>2],he+=81920,ve=o()[$+8>>2],rt=o()[$+12>>2]!==0):he=2097152;var Kt=ve==0;Kt?ve=o5(16,he):(ve-=he,ge(ve>0));for(var Vt=Is(228),Lr=0;Lr<228>>2;++Lr)l()[(Vt>>2)+Lr]=0;o()[T>>2]=Vt,o()[Vt+12>>2]=Vt;var xo=Vt+152;o()[xo>>2]=xo;var Mn={stackBase:ve,stackSize:he,allocatedOwnStack:Kt,detached:rt,startRoutine:U,pthread_ptr:Vt,arg:X,transferList:me};return k?(Mn.cmd="spawnThread",postMessage(Mn,me)):Op(Mn),0}function zp(T){if(k)return _r(6,1,T);switch(T){case 30:return 16384;case 85:var $=2147483648;return $/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return wf(28),-1}k||Ie.initMainThreadBlock();var Dr,tm=[null,kf,Rp,Mp,Fp,$p,zp],nm={e:bf,r:vf,x:If,b:Sf,y:Tf,j:Nf,c:Cf,d:wu,f:ks,p:Ef,z:Rf,u:Ff,q:zf,v:Vf,i:Uf,t:Hf,w:Yf,m:Mp,n:Fp,g:$p,o:Cp,a:Z||d.wasmMemory,k:Jf,l:Qf,h:em,s:zp},J2=cf(),_p=d.___wasm_call_ctors=function(){return(_p=d.___wasm_call_ctors=d.asm.A).apply(null,arguments)},am=d._init=function(){return(am=d._init=d.asm.B).apply(null,arguments)},rm=d._register_tensor=function(){return(rm=d._register_tensor=d.asm.C).apply(null,arguments)},sm=d._dispose_data=function(){return(sm=d._dispose_data=d.asm.D).apply(null,arguments)},im=d._dispose=function(){return(im=d._dispose=d.asm.E).apply(null,arguments)},om=d._Abs=function(){return(om=d._Abs=d.asm.G).apply(null,arguments)},lm=d._Add=function(){return(lm=d._Add=d.asm.H).apply(null,arguments)},um=d._AddN=function(){return(um=d._AddN=d.asm.I).apply(null,arguments)},dm=d._All=function(){return(dm=d._All=d.asm.J).apply(null,arguments)},pm=d._Any=function(){return(pm=d._Any=d.asm.K).apply(null,arguments)},cm=d._ArgMax=function(){return(cm=d._ArgMax=d.asm.L).apply(null,arguments)},hm=d._AvgPool=function(){return(hm=d._AvgPool=d.asm.M).apply(null,arguments)},fm=d._BatchMatMul=function(){return(fm=d._BatchMatMul=d.asm.N).apply(null,arguments)},mm=d._Ceil=function(){return(mm=d._Ceil=d.asm.O).apply(null,arguments)},gm=d._ClipByValue=function(){return(gm=d._ClipByValue=d.asm.P).apply(null,arguments)},Am=d._Conv2D=function(){return(Am=d._Conv2D=d.asm.Q).apply(null,arguments)},ym=d._Conv2DBackpropInput=function(){return(ym=d._Conv2DBackpropInput=d.asm.R).apply(null,arguments)},xm=d._Cos=function(){return(xm=d._Cos=d.asm.S).apply(null,arguments)},bm=d._Cosh=function(){return(bm=d._Cosh=d.asm.T).apply(null,arguments)},vm=d._CropAndResize=function(){return(vm=d._CropAndResize=d.asm.U).apply(null,arguments)},wm=d._Cumsum=function(){return(wm=d._Cumsum=d.asm.V).apply(null,arguments)},km=d._DepthToSpace=function(){return(km=d._DepthToSpace=d.asm.W).apply(null,arguments)},Im=d._DepthwiseConv2dNative=function(){return(Im=d._DepthwiseConv2dNative=d.asm.X).apply(null,arguments)},Sm=d._Elu=function(){return(Sm=d._Elu=d.asm.Y).apply(null,arguments)},Dp=d._Equal=function(){return(Dp=d._Equal=d.asm.Z).apply(null,arguments)},Pp=d._Exp=function(){return(Pp=d._Exp=d.asm._).apply(null,arguments)},Lp=d._FlipLeftRight=function(){return(Lp=d._FlipLeftRight=d.asm.$).apply(null,arguments)},Tu=d._Floor=function(){return(Tu=d._Floor=d.asm.aa).apply(null,arguments)},fo=d._FloorDiv=function(){return(fo=d._FloorDiv=d.asm.ba).apply(null,arguments)},Tm=d._FusedBatchNorm=function(){return(Tm=d._FusedBatchNorm=d.asm.ca).apply(null,arguments)},Nu=d._FusedConv2D=function(){return(Nu=d._FusedConv2D=d.asm.da).apply(null,arguments)},Y=d._FusedDepthwiseConv2D=function(){return(Y=d._FusedDepthwiseConv2D=d.asm.ea).apply(null,arguments)},ae=d._Gather=function(){return(ae=d._Gather=d.asm.fa).apply(null,arguments)},Ne=d._GatherNd=function(){return(Ne=d._GatherNd=d.asm.ga).apply(null,arguments)},et=d._Greater=function(){return(et=d._Greater=d.asm.ha).apply(null,arguments)},Et=d._GreaterEqual=function(){return(Et=d._GreaterEqual=d.asm.ia).apply(null,arguments)},bt=d._LeakyRelu=function(){return(bt=d._LeakyRelu=d.asm.ja).apply(null,arguments)},Ge=d._Less=function(){return(Ge=d._Less=d.asm.ka).apply(null,arguments)},qe=d._LessEqual=function(){return(qe=d._LessEqual=d.asm.la).apply(null,arguments)},rn=d._Log=function(){return(rn=d._Log=d.asm.ma).apply(null,arguments)},Ar=d._LogicalAnd=function(){return(Ar=d._LogicalAnd=d.asm.na).apply(null,arguments)},yr=d._Max=function(){return(yr=d._Max=d.asm.oa).apply(null,arguments)},Wp=d._MaxPool=function(){return(Wp=d._MaxPool=d.asm.pa).apply(null,arguments)},Cu=d._Maximum=function(){return(Cu=d._Maximum=d.asm.qa).apply(null,arguments)},na=d._Mean=function(){return(na=d._Mean=d.asm.ra).apply(null,arguments)},Pr=d._Min=function(){return(Pr=d._Min=d.asm.sa).apply(null,arguments)},Bp=d._Minimum=function(){return(Bp=d._Minimum=d.asm.ta).apply(null,arguments)},Jk=d._MirrorPad=function(){return(Jk=d._MirrorPad=d.asm.ua).apply(null,arguments)},Qk=d._Multiply=function(){return(Qk=d._Multiply=d.asm.va).apply(null,arguments)},e9=d._Neg=function(){return(e9=d._Neg=d.asm.wa).apply(null,arguments)},t9=d._NonMaxSuppressionV3=function(){return(t9=d._NonMaxSuppressionV3=d.asm.xa).apply(null,arguments)},n9=d._NonMaxSuppressionV4=function(){return(n9=d._NonMaxSuppressionV4=d.asm.ya).apply(null,arguments)},a9=d._NonMaxSuppressionV5=function(){return(a9=d._NonMaxSuppressionV5=d.asm.za).apply(null,arguments)},r9=d._NotEqual=function(){return(r9=d._NotEqual=d.asm.Aa).apply(null,arguments)},s9=d._OneHot=function(){return(s9=d._OneHot=d.asm.Ba).apply(null,arguments)},i9=d._PadV2=function(){return(i9=d._PadV2=d.asm.Ca).apply(null,arguments)},o9=d._Pow=function(){return(o9=d._Pow=d.asm.Da).apply(null,arguments)},l9=d._Prelu=function(){return(l9=d._Prelu=d.asm.Ea).apply(null,arguments)},u9=d._Prod=function(){return(u9=d._Prod=d.asm.Fa).apply(null,arguments)},d9=d._RealDiv=function(){return(d9=d._RealDiv=d.asm.Ga).apply(null,arguments)},p9=d._Relu=function(){return(p9=d._Relu=d.asm.Ha).apply(null,arguments)},c9=d._Relu6=function(){return(c9=d._Relu6=d.asm.Ia).apply(null,arguments)},h9=d._ResizeBilinear=function(){return(h9=d._ResizeBilinear=d.asm.Ja).apply(null,arguments)},f9=d._Reverse=function(){return(f9=d._Reverse=d.asm.Ka).apply(null,arguments)},m9=d._RotateWithOffset=function(){return(m9=d._RotateWithOffset=d.asm.La).apply(null,arguments)},g9=d._Round=function(){return(g9=d._Round=d.asm.Ma).apply(null,arguments)},A9=d._Rsqrt=function(){return(A9=d._Rsqrt=d.asm.Na).apply(null,arguments)},y9=d._ScatterNd=function(){return(y9=d._ScatterNd=d.asm.Oa).apply(null,arguments)},x9=d._SelectV2=function(){return(x9=d._SelectV2=d.asm.Pa).apply(null,arguments)},b9=d._Sigmoid=function(){return(b9=d._Sigmoid=d.asm.Qa).apply(null,arguments)},v9=d._Sin=function(){return(v9=d._Sin=d.asm.Ra).apply(null,arguments)},w9=d._Softmax=function(){return(w9=d._Softmax=d.asm.Sa).apply(null,arguments)},k9=d._Sqrt=function(){return(k9=d._Sqrt=d.asm.Ta).apply(null,arguments)},I9=d._Square=function(){return(I9=d._Square=d.asm.Ua).apply(null,arguments)},S9=d._SquaredDifference=function(){return(S9=d._SquaredDifference=d.asm.Va).apply(null,arguments)},T9=d._Step=function(){return(T9=d._Step=d.asm.Wa).apply(null,arguments)},N9=d._StridedSlice=function(){return(N9=d._StridedSlice=d.asm.Xa).apply(null,arguments)},C9=d._Sub=function(){return(C9=d._Sub=d.asm.Ya).apply(null,arguments)},E9=d._Sum=function(){return(E9=d._Sum=d.asm.Za).apply(null,arguments)},R9=d._Tan=function(){return(R9=d._Tan=d.asm._a).apply(null,arguments)},M9=d._Tanh=function(){return(M9=d._Tanh=d.asm.$a).apply(null,arguments)},F9=d._Tile=function(){return(F9=d._Tile=d.asm.ab).apply(null,arguments)},$9=d._TopK=function(){return($9=d._TopK=d.asm.bb).apply(null,arguments)},O9=d._Transform=function(){return(O9=d._Transform=d.asm.cb).apply(null,arguments)},z9=d._Transpose=function(){return(z9=d._Transpose=d.asm.db).apply(null,arguments)},_9=d.__FusedMatMul=function(){return(_9=d.__FusedMatMul=d.asm.eb).apply(null,arguments)},Is=d._malloc=function(){return(Is=d._malloc=d.asm.fb).apply(null,arguments)},Eu=d._free=function(){return(Eu=d._free=d.asm.gb).apply(null,arguments)},Q2=d.___errno_location=function(){return(Q2=d.___errno_location=d.asm.hb).apply(null,arguments)},e5=d._emscripten_get_global_libc=function(){return(e5=d._emscripten_get_global_libc=d.asm.ib).apply(null,arguments)},mo=d._pthread_self=function(){return(mo=d._pthread_self=d.asm.jb).apply(null,arguments)},t5=d.___pthread_tsd_run_dtors=function(){return(t5=d.___pthread_tsd_run_dtors=d.asm.kb).apply(null,arguments)},Nm=d._emscripten_main_thread_process_queued_calls=function(){return(Nm=d._emscripten_main_thread_process_queued_calls=d.asm.lb).apply(null,arguments)},D9=d._emscripten_current_thread_process_queued_calls=function(){return(D9=d._emscripten_current_thread_process_queued_calls=d.asm.mb).apply(null,arguments)},n5=d._emscripten_register_main_browser_thread_id=function(){return(n5=d._emscripten_register_main_browser_thread_id=d.asm.nb).apply(null,arguments)},a5=d.__emscripten_do_dispatch_to_thread=function(){return(a5=d.__emscripten_do_dispatch_to_thread=d.asm.ob).apply(null,arguments)},r5=d._emscripten_sync_run_in_main_thread_4=function(){return(r5=d._emscripten_sync_run_in_main_thread_4=d.asm.pb).apply(null,arguments)},s5=d._emscripten_run_in_main_runtime_thread_js=function(){return(s5=d._emscripten_run_in_main_runtime_thread_js=d.asm.qb).apply(null,arguments)},Cm=d.__emscripten_call_on_thread=function(){return(Cm=d.__emscripten_call_on_thread=d.asm.rb).apply(null,arguments)},P9=d._emscripten_tls_init=function(){return(P9=d._emscripten_tls_init=d.asm.sb).apply(null,arguments)},Em=d.__emscripten_thread_init=function(){return(Em=d.__emscripten_thread_init=d.asm.tb).apply(null,arguments)},Ru=d.stackSave=function(){return(Ru=d.stackSave=d.asm.ub).apply(null,arguments)},go=d.stackRestore=function(){return(go=d.stackRestore=d.asm.vb).apply(null,arguments)},Ao=d.stackAlloc=function(){return(Ao=d.stackAlloc=d.asm.wb).apply(null,arguments)},i5=d._emscripten_stack_set_limits=function(){return(i5=d._emscripten_stack_set_limits=d.asm.xb).apply(null,arguments)},o5=d._memalign=function(){return(o5=d._memalign=d.asm.yb).apply(null,arguments)},l5=d.__emscripten_allow_main_runtime_queued_calls=10016,yo=d.__emscripten_main_thread_futex=11652;d.cwrap=$e,d.PThread=Ie,d.PThread=Ie,d.wasmMemory=Z,d.ExitStatus=Mu;var Vp;function Mu(T){this.name="ExitStatus",this.message="Program terminated with exit("+T+")",this.status=T}ws=function T(){Vp||Rm(),Vp||(ws=T)};function Rm(T){if(T=T||f,mr>0)return;if(k){p(d),vu(),postMessage({cmd:"loaded"});return}if(rf(),mr>0)return;function $(){Vp||(Vp=!0,d.calledRun=!0,!oe&&(vu(),sf(),p(d),d.onRuntimeInitialized&&d.onRuntimeInitialized(),En()))}d.setStatus?(d.setStatus("Running..."),setTimeout(function(){setTimeout(function(){d.setStatus("")},1),$()},1)):$()}d.run=Rm;function L9(T,$){if(!($&&ie&&T===0)){if(!$&&k)throw postMessage({cmd:"exitProcess",returnCode:T}),new Mu(T);ie||(Ie.terminateAllThreads(),ye=T,wp(),d.onExit&&d.onExit(T),oe=!0),A(T,new Mu(T))}}if(d.preInit)for(typeof d.preInit=="function"&&(d.preInit=[d.preInit]);d.preInit.length>0;)d.preInit.pop()();return k&&(ie=!1,Ie.initWorker()),Rm(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),cI=vt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(Y,ae){i=Y,o=ae});var l={},u;for(u in s)s.hasOwnProperty(u)&&(l[u]=s[u]);var d=[],p="./this.program",c=function(Y,ae){throw ae},h=!1,m=!1,f=!1,g=!1;h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!f&&!m;var A="";function y(Y){return s.locateFile?s.locateFile(Y,A):A+Y}var x,v,b,k,N,C;f?(m?A=Fu().dirname(A)+"/":A=__dirname+"/",x=function(Y,ae){return N||(N=vo("fs")),C||(C=Fu()),Y=C.normalize(Y),N.readFileSync(Y,ae?null:"utf8")},b=function(Y){var ae=x(Y,!0);return ae.buffer||(ae=new Uint8Array(ae)),q(ae.buffer),ae},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),d=process.argv.slice(2),process.on("uncaughtException",function(Y){if(!(Y instanceof Tm))throw Y}),process.on("unhandledRejection",Ka),c=function(Y){process.exit(Y)},s.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(x=function(Y){return read(Y)}),b=function(Y){var ae;return typeof readbuffer=="function"?new Uint8Array(readbuffer(Y)):(ae=read(Y,"binary"),q(typeof ae=="object"),ae)},typeof scriptArgs!="undefined"?d=scriptArgs:typeof arguments!="undefined"&&(d=arguments),typeof quit=="function"&&(c=function(Y){quit(Y)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||m)&&(m?A=self.location.href:typeof document!="undefined"&&document.currentScript&&(A=document.currentScript.src),a&&(A=a),A.indexOf("blob:")!==0?A=A.substr(0,A.lastIndexOf("/")+1):A="",x=function(Y){var ae=new XMLHttpRequest;return ae.open("GET",Y,!1),ae.send(null),ae.responseText},m&&(b=function(Y){var ae=new XMLHttpRequest;return ae.open("GET",Y,!1),ae.responseType="arraybuffer",ae.send(null),new Uint8Array(ae.response)}),v=function(Y,ae,Ne){var et=new XMLHttpRequest;et.open("GET",Y,!0),et.responseType="arraybuffer",et.onload=function(){if(et.status==200||et.status==0&&et.response){ae(et.response);return}Ne()},et.onerror=Ne,et.send(null)},k=function(Y){document.title=Y});var E=s.print||console.log.bind(console),z=s.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(s[u]=l[u]);l=null,s.arguments&&(d=s.arguments),s.thisProgram&&(p=s.thisProgram),s.quit&&(c=s.quit);var F;s.wasmBinary&&(F=s.wasmBinary);var I=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Ka("no native wasm support detected");var _,D=!1,V;function q(Y,ae){Y||Ka("Assertion failed: "+ae)}function G(Y){var ae=s["_"+Y];return q(ae,"Cannot call unknown function "+Y+", make sure it is exported"),ae}function Q(Y,ae,Ne,et,Et){var bt={string:function(na){var Pr=0;if(na!=null&&na!==0){var Bp=(na.length<<2)+1;Pr=Tu(Bp),le(na,Pr,Bp)}return Pr},array:function(na){var Pr=Tu(na.length);return oe(na,Pr),Pr}};function Ge(na){return ae==="string"?ie(na):ae==="boolean"?Boolean(na):na}var qe=G(Y),rn=[],Ar=0;if(et)for(var yr=0;yr<et.length;yr++){var Wp=bt[Ne[yr]];Wp?(Ar===0&&(Ar=Pp()),rn[yr]=Wp(et[yr])):rn[yr]=et[yr]}var Cu=qe.apply(null,rn);return Cu=Ge(Cu),Ar!==0&&Lp(Ar),Cu}function J(Y,ae,Ne,et){Ne=Ne||[];var Et=Ne.every(function(Ge){return Ge==="number"}),bt=ae!=="string";return bt&&Et&&!et?G(Y):function(){return Q(Y,ae,Ne,arguments,et)}}var ne=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ee(Y,ae,Ne){for(var et=ae+Ne,Et=ae;Y[Et]&&!(Et>=et);)++Et;if(Et-ae>16&&Y.subarray&&ne)return ne.decode(Y.subarray(ae,Et));for(var bt="";ae<Et;){var Ge=Y[ae++];if(!(Ge&128)){bt+=String.fromCharCode(Ge);continue}var qe=Y[ae++]&63;if((Ge&224)==192){bt+=String.fromCharCode((Ge&31)<<6|qe);continue}var rn=Y[ae++]&63;if((Ge&240)==224?Ge=(Ge&15)<<12|qe<<6|rn:Ge=(Ge&7)<<18|qe<<12|rn<<6|Y[ae++]&63,Ge<65536)bt+=String.fromCharCode(Ge);else{var Ar=Ge-65536;bt+=String.fromCharCode(55296|Ar>>10,56320|Ar&1023)}}return bt}function ie(Y,ae){return Y?ee(Te,Y,ae):""}function Z(Y,ae,Ne,et){if(!(et>0))return 0;for(var Et=Ne,bt=Ne+et-1,Ge=0;Ge<Y.length;++Ge){var qe=Y.charCodeAt(Ge);if(qe>=55296&&qe<=57343){var rn=Y.charCodeAt(++Ge);qe=65536+((qe&1023)<<10)|rn&1023}if(qe<=127){if(Ne>=bt)break;ae[Ne++]=qe}else if(qe<=2047){if(Ne+1>=bt)break;ae[Ne++]=192|qe>>6,ae[Ne++]=128|qe&63}else if(qe<=65535){if(Ne+2>=bt)break;ae[Ne++]=224|qe>>12,ae[Ne++]=128|qe>>6&63,ae[Ne++]=128|qe&63}else{if(Ne+3>=bt)break;ae[Ne++]=240|qe>>18,ae[Ne++]=128|qe>>12&63,ae[Ne++]=128|qe>>6&63,ae[Ne++]=128|qe&63}}return ae[Ne]=0,Ne-Et}function le(Y,ae,Ne){return Z(Y,Te,ae,Ne)}function oe(Y,ae){Se.set(Y,ae)}function ye(Y,ae){return Y%ae>0&&(Y+=ae-Y%ae),Y}var ge,Se,Te,$e,De,Oe,nt,at,ot;function Qe(Y){ge=Y,s.HEAP8=Se=new Int8Array(Y),s.HEAP16=$e=new Int16Array(Y),s.HEAP32=Oe=new Int32Array(Y),s.HEAPU8=Te=new Uint8Array(Y),s.HEAPU16=De=new Uint16Array(Y),s.HEAPU32=nt=new Uint32Array(Y),s.HEAPF32=at=new Float32Array(Y),s.HEAPF64=ot=new Float64Array(Y)}var mt=s.INITIAL_MEMORY||16777216,He,Nn=[],St=[],ea=[],nn=[],Cn=!1;St.push({func:function(){Cp()}});function ta(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Xa(s.preRun.shift());zr(Nn)}function Vn(){Cn=!0,zr(St)}function hn(){zr(ea)}function an(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)va(s.postRun.shift());zr(nn)}function Xa(Y){Nn.unshift(Y)}function va(Y){nn.unshift(Y)}var wa=0,$r=null,fr=null;function Or(Y){wa++,s.monitorRunDependencies&&s.monitorRunDependencies(wa)}function uo(Y){if(wa--,s.monitorRunDependencies&&s.monitorRunDependencies(wa),wa==0&&($r!==null&&(clearInterval($r),$r=null),fr)){var ae=fr;fr=null,ae()}}s.preloadedImages={},s.preloadedAudios={};function Ka(Y){s.onAbort&&s.onAbort(Y),Y+="",z(Y),D=!0,V=1,Y="abort("+Y+"). Build with -s ASSERTIONS=1 for more info.";var ae=new WebAssembly.RuntimeError(Y);throw o(ae),ae}function vp(Y,ae){return String.prototype.startsWith?Y.startsWith(ae):Y.indexOf(ae)===0}var rf="data:application/octet-stream;base64,";function vu(Y){return vp(Y,rf)}var sf="file://";function wp(Y){return vp(Y,sf)}var En="tfjs-backend-wasm.wasm";vu(En)||(En=y(En));function kp(Y){try{if(Y==En&&F)return new Uint8Array(F);if(b)return b(Y);throw"both async and sync fetching of the wasm failed"}catch(ae){Ka(ae)}}function of(){if(!F&&(h||m)){if(typeof fetch=="function"&&!wp(En))return fetch(En,{credentials:"same-origin"}).then(function(Y){if(!Y.ok)throw"failed to load wasm binary file at '"+En+"'";return Y.arrayBuffer()}).catch(function(){return kp(En)});if(v)return new Promise(function(Y,ae){v(En,function(Ne){Y(new Uint8Array(Ne))},ae)})}return Promise.resolve().then(function(){return kp(En)})}function mr(){var Y={a:cf};function ae(Ge,qe){var rn=Ge.exports;s.asm=rn,_=s.asm.i,Qe(_.buffer),He=s.asm.o,uo("wasm-instantiate")}Or("wasm-instantiate");function Ne(Ge){ae(Ge.instance)}function et(Ge){return of().then(function(qe){return WebAssembly.instantiate(qe,Y)}).then(Ge,function(qe){z("failed to asynchronously prepare wasm: "+qe),Ka(qe)})}function Et(){return!F&&typeof WebAssembly.instantiateStreaming=="function"&&!vu(En)&&!wp(En)&&typeof fetch=="function"?fetch(En,{credentials:"same-origin"}).then(function(Ge){var qe=WebAssembly.instantiateStreaming(Ge,Y);return qe.then(Ne,function(rn){return z("wasm streaming compile failed: "+rn),z("falling back to ArrayBuffer instantiation"),et(Ne)})}):et(Ne)}if(s.instantiateWasm)try{var bt=s.instantiateWasm(Y,ae);return bt}catch(Ge){return z("Module.instantiateWasm callback failed with error: "+Ge),!1}return Et().catch(o),{}}function zr(Y){for(;Y.length>0;){var ae=Y.shift();if(typeof ae=="function"){ae(s);continue}var Ne=ae.func;typeof Ne=="number"?ae.arg===void 0?He.get(Ne)():He.get(Ne)(ae.arg):Ne(ae.arg===void 0?null:ae.arg)}}function ws(){Ka()}function lf(Y,ae,Ne){Te.copyWithin(Y,ae,ae+Ne)}function uf(){return Te.length}function gr(Y){try{return _.grow(Y-ge.byteLength+65535>>>16),Qe(_.buffer),1}catch(ae){}}function Ip(Y){var ae=uf(),Ne=2147483648;if(Y>Ne)return!1;for(var et=1;et<=4;et*=2){var Et=ae*(1+.2/et);Et=Math.min(Et,Y+100663296);var bt=Math.min(Ne,ye(Math.max(Y,Et),65536)),Ge=gr(bt);if(Ge)return!0}return!1}var po={mappings:{},buffers:[null,[],[]],printChar:function(Y,ae){var Ne=po.buffers[Y];ae===0||ae===10?((Y===1?E:z)(ee(Ne,0)),Ne.length=0):Ne.push(ae)},varargs:void 0,get:function(){po.varargs+=4;var Y=Oe[po.varargs-4>>2];return Y},getStr:function(Y){var ae=ie(Y);return ae},get64:function(Y,ae){return Y}};function Sp(Y){return 0}function df(Y,ae,Ne,et,Et){}function Tp(Y,ae,Ne,et){for(var Et=0,bt=0;bt<Ne;bt++){for(var Ge=Oe[ae+bt*8>>2],qe=Oe[ae+(bt*8+4)>>2],rn=0;rn<qe;rn++)po.printChar(Y,Te[Ge+rn]);Et+=qe}return Oe[et>>2]=Et,0}function Rn(){return 6}function Np(Y){return Oe[Dp()>>2]=Y,Y}function pf(Y){switch(Y){case 30:return 16384;case 85:var ae=2147483648;return ae/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Np(28),-1}var cf={a:ws,d:lf,e:Ip,f:Sp,c:df,b:Tp,g:Rn,h:pf},hf=mr(),Cp=s.___wasm_call_ctors=function(){return(Cp=s.___wasm_call_ctors=s.asm.j).apply(null,arguments)},co=s._init=function(){return(co=s._init=s.asm.k).apply(null,arguments)},wu=s._register_tensor=function(){return(wu=s._register_tensor=s.asm.l).apply(null,arguments)},ff=s._dispose_data=function(){return(ff=s._dispose_data=s.asm.m).apply(null,arguments)},mf=s._dispose=function(){return(mf=s._dispose=s.asm.n).apply(null,arguments)},gf=s._Abs=function(){return(gf=s._Abs=s.asm.p).apply(null,arguments)},Ie=s._Add=function(){return(Ie=s._Add=s.asm.q).apply(null,arguments)},Af=s._AddN=function(){return(Af=s._AddN=s.asm.r).apply(null,arguments)},yf=s._All=function(){return(yf=s._All=s.asm.s).apply(null,arguments)},xf=s._Any=function(){return(xf=s._Any=s.asm.t).apply(null,arguments)},bf=s._ArgMax=function(){return(bf=s._ArgMax=s.asm.u).apply(null,arguments)},vf=s._AvgPool=function(){return(vf=s._AvgPool=s.asm.v).apply(null,arguments)},ks=s._BatchMatMul=function(){return(ks=s._BatchMatMul=s.asm.w).apply(null,arguments)},wf=s._Ceil=function(){return(wf=s._Ceil=s.asm.x).apply(null,arguments)},kf=s._ClipByValue=function(){return(kf=s._ClipByValue=s.asm.y).apply(null,arguments)},If=s._Conv2D=function(){return(If=s._Conv2D=s.asm.z).apply(null,arguments)},Sf=s._Conv2DBackpropInput=function(){return(Sf=s._Conv2DBackpropInput=s.asm.A).apply(null,arguments)},Tf=s._Cos=function(){return(Tf=s._Cos=s.asm.B).apply(null,arguments)},Nf=s._Cosh=function(){return(Nf=s._Cosh=s.asm.C).apply(null,arguments)},Cf=s._CropAndResize=function(){return(Cf=s._CropAndResize=s.asm.D).apply(null,arguments)},Ef=s._Cumsum=function(){return(Ef=s._Cumsum=s.asm.E).apply(null,arguments)},Rf=s._DepthToSpace=function(){return(Rf=s._DepthToSpace=s.asm.F).apply(null,arguments)},_r=s._DepthwiseConv2dNative=function(){return(_r=s._DepthwiseConv2dNative=s.asm.G).apply(null,arguments)},ku=s._Elu=function(){return(ku=s._Elu=s.asm.H).apply(null,arguments)},Iu=s._Equal=function(){return(Iu=s._Equal=s.asm.I).apply(null,arguments)},Mf=s._Exp=function(){return(Mf=s._Exp=s.asm.J).apply(null,arguments)},Ff=s._FlipLeftRight=function(){return(Ff=s._FlipLeftRight=s.asm.K).apply(null,arguments)},$f=s._Floor=function(){return($f=s._Floor=s.asm.L).apply(null,arguments)},Of=s._FloorDiv=function(){return(Of=s._FloorDiv=s.asm.M).apply(null,arguments)},zf=s._FusedBatchNorm=function(){return(zf=s._FusedBatchNorm=s.asm.N).apply(null,arguments)},Le=s._FusedConv2D=function(){return(Le=s._FusedConv2D=s.asm.O).apply(null,arguments)},_f=s._FusedDepthwiseConv2D=function(){return(_f=s._FusedDepthwiseConv2D=s.asm.P).apply(null,arguments)},Df=s._Gather=function(){return(Df=s._Gather=s.asm.Q).apply(null,arguments)},Pf=s._GatherNd=function(){return(Pf=s._GatherNd=s.asm.R).apply(null,arguments)},Lf=s._Greater=function(){return(Lf=s._Greater=s.asm.S).apply(null,arguments)},Wf=s._GreaterEqual=function(){return(Wf=s._GreaterEqual=s.asm.T).apply(null,arguments)},Bf=s._LeakyRelu=function(){return(Bf=s._LeakyRelu=s.asm.U).apply(null,arguments)},Su=s._Less=function(){return(Su=s._Less=s.asm.V).apply(null,arguments)},Ep=s._LessEqual=function(){return(Ep=s._LessEqual=s.asm.W).apply(null,arguments)},Rp=s._Log=function(){return(Rp=s._Log=s.asm.X).apply(null,arguments)},Vf=s._LogicalAnd=function(){return(Vf=s._LogicalAnd=s.asm.Y).apply(null,arguments)},Uf=s._Max=function(){return(Uf=s._Max=s.asm.Z).apply(null,arguments)},Hf=s._MaxPool=function(){return(Hf=s._MaxPool=s.asm._).apply(null,arguments)},jf=s._Maximum=function(){return(jf=s._Maximum=s.asm.$).apply(null,arguments)},Gf=s._Mean=function(){return(Gf=s._Mean=s.asm.aa).apply(null,arguments)},qf=s._Min=function(){return(qf=s._Min=s.asm.ba).apply(null,arguments)},Xf=s._Minimum=function(){return(Xf=s._Minimum=s.asm.ca).apply(null,arguments)},tt=s._MirrorPad=function(){return(tt=s._MirrorPad=s.asm.da).apply(null,arguments)},Kf=s._Multiply=function(){return(Kf=s._Multiply=s.asm.ea).apply(null,arguments)},Zf=s._Neg=function(){return(Zf=s._Neg=s.asm.fa).apply(null,arguments)},Yf=s._NonMaxSuppressionV3=function(){return(Yf=s._NonMaxSuppressionV3=s.asm.ga).apply(null,arguments)},ho=s._NonMaxSuppressionV4=function(){return(ho=s._NonMaxSuppressionV4=s.asm.ha).apply(null,arguments)},Mp=s._NonMaxSuppressionV5=function(){return(Mp=s._NonMaxSuppressionV5=s.asm.ia).apply(null,arguments)},Fp=s._NotEqual=function(){return(Fp=s._NotEqual=s.asm.ja).apply(null,arguments)},$p=s._OneHot=function(){return($p=s._OneHot=s.asm.ka).apply(null,arguments)},Jf=s._PadV2=function(){return(Jf=s._PadV2=s.asm.la).apply(null,arguments)},Qf=s._Pow=function(){return(Qf=s._Pow=s.asm.ma).apply(null,arguments)},Op=s._Prelu=function(){return(Op=s._Prelu=s.asm.na).apply(null,arguments)},em=s._Prod=function(){return(em=s._Prod=s.asm.oa).apply(null,arguments)},zp=s._RealDiv=function(){return(zp=s._RealDiv=s.asm.pa).apply(null,arguments)},Dr=s._Relu=function(){return(Dr=s._Relu=s.asm.qa).apply(null,arguments)},tm=s._Relu6=function(){return(tm=s._Relu6=s.asm.ra).apply(null,arguments)},nm=s._ResizeBilinear=function(){return(nm=s._ResizeBilinear=s.asm.sa).apply(null,arguments)},J2=s._Reverse=function(){return(J2=s._Reverse=s.asm.ta).apply(null,arguments)},_p=s._RotateWithOffset=function(){return(_p=s._RotateWithOffset=s.asm.ua).apply(null,arguments)},am=s._Round=function(){return(am=s._Round=s.asm.va).apply(null,arguments)},rm=s._Rsqrt=function(){return(rm=s._Rsqrt=s.asm.wa).apply(null,arguments)},sm=s._ScatterNd=function(){return(sm=s._ScatterNd=s.asm.xa).apply(null,arguments)},im=s._SelectV2=function(){return(im=s._SelectV2=s.asm.ya).apply(null,arguments)},om=s._Sigmoid=function(){return(om=s._Sigmoid=s.asm.za).apply(null,arguments)},lm=s._Sin=function(){return(lm=s._Sin=s.asm.Aa).apply(null,arguments)},um=s._Softmax=function(){return(um=s._Softmax=s.asm.Ba).apply(null,arguments)},dm=s._Sqrt=function(){return(dm=s._Sqrt=s.asm.Ca).apply(null,arguments)},pm=s._Square=function(){return(pm=s._Square=s.asm.Da).apply(null,arguments)},cm=s._SquaredDifference=function(){return(cm=s._SquaredDifference=s.asm.Ea).apply(null,arguments)},hm=s._Step=function(){return(hm=s._Step=s.asm.Fa).apply(null,arguments)},fm=s._StridedSlice=function(){return(fm=s._StridedSlice=s.asm.Ga).apply(null,arguments)},mm=s._Sub=function(){return(mm=s._Sub=s.asm.Ha).apply(null,arguments)},gm=s._Sum=function(){return(gm=s._Sum=s.asm.Ia).apply(null,arguments)},Am=s._Tan=function(){return(Am=s._Tan=s.asm.Ja).apply(null,arguments)},ym=s._Tanh=function(){return(ym=s._Tanh=s.asm.Ka).apply(null,arguments)},xm=s._Tile=function(){return(xm=s._Tile=s.asm.La).apply(null,arguments)},bm=s._TopK=function(){return(bm=s._TopK=s.asm.Ma).apply(null,arguments)},vm=s._Transform=function(){return(vm=s._Transform=s.asm.Na).apply(null,arguments)},wm=s._Transpose=function(){return(wm=s._Transpose=s.asm.Oa).apply(null,arguments)},km=s.__FusedMatMul=function(){return(km=s.__FusedMatMul=s.asm.Pa).apply(null,arguments)},Im=s._malloc=function(){return(Im=s._malloc=s.asm.Qa).apply(null,arguments)},Sm=s._free=function(){return(Sm=s._free=s.asm.Ra).apply(null,arguments)},Dp=s.___errno_location=function(){return(Dp=s.___errno_location=s.asm.Sa).apply(null,arguments)},Pp=s.stackSave=function(){return(Pp=s.stackSave=s.asm.Ta).apply(null,arguments)},Lp=s.stackRestore=function(){return(Lp=s.stackRestore=s.asm.Ua).apply(null,arguments)},Tu=s.stackAlloc=function(){return(Tu=s.stackAlloc=s.asm.Va).apply(null,arguments)};s.cwrap=J;var fo;function Tm(Y){this.name="ExitStatus",this.message="Program terminated with exit("+Y+")",this.status=Y}fr=function Y(){fo||Nu(),fo||(fr=Y)};function Nu(Y){if(Y=Y||d,wa>0||(ta(),wa>0))return;function ae(){fo||(fo=!0,s.calledRun=!0,!D&&(Vn(),hn(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),an()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ae()},1)):ae()}if(s.run=Nu,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return Nu(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),hI="3.9.0",fI="3.9.0",mI="3.9.0",gI="3.9.0",AI="3.9.0",yI="3.9.0",xI="3.9.0",bI="3.9.0",vI=1e-7,wI=1e-4,Hp=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},$u=class{refCount(e){return ka("refCount")}incRef(e){return ka("incRef")}timerAvailable(){return!0}time(e){return ka("time")}read(e){return ka("read")}readSync(e){return ka("readSync")}numDataIds(){return ka("numDataIds")}disposeData(e,t){return ka("disposeData")}write(e,t,n){return ka("write")}move(e,t,n,a,r){return ka("move")}memory(){return ka("memory")}floatPrecision(){return ka("floatPrecision")}epsilon(){return this.floatPrecision()===32?vI:wI}dispose(){return ka("dispose")}};function ka(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function x5(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,jp(e,t,n)}function kI(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a=0;for(;n>0;)a=Math.random()*n|0,n--,jp(e,n,a),jp(t,n,a)}function Ou(e,t,n){return Math.max(e,Math.min(t,n))}function II(e){return e%2==0?e:e+1}function jp(e,t,n){let a=e[t];e[t]=e[n],e[n]=a}function SI(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function TI(e,t){let n=Math.random();return t*n+(1-n)*e}function NI(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function O(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function gn(e,t,n=""){O(xr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Ts(e){O(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Ns(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||dn(e)&&!n)for(let a=0;a<e.length;++a)Ns(e[a],t,n);else t.push(e);return t}function $t(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function CI(e){return e.length===0}function xr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Zt(e){return e%1==0}function EI(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function RI(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function MI(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return x5(t),t}function zu(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function FI(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function $I(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function Ia(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),O(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),O(e.every(a=>Zt(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function b5(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:Ia(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function v5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function w5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function k5(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function I5(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function OI(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function dn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function $m(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function S5(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Wr(e){return typeof e=="string"||e instanceof String}function T5(e){return typeof e=="boolean"}function N5(e){return typeof e=="number"}function Gp(e){return Array.isArray(e)?Gp(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":N5(e)?"float32":Wr(e)?"string":T5(e)?"bool":"float32"}function Br(e){return!!(e&&e.constructor&&e.call&&e.apply)}function qp(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function wo(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function C5(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(a?2:1);for(let l=0;l<s;l++)r[l]=C5(e+l*o,i,n,a)}return r}function ko(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return C5(0,e,t,n)}function Om(e,t){let n=Xp(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function Xp(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function zI(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return ko(e,new Float32Array(n));if(t==="int32")return ko(e,new Int32Array(n));if(t==="bool")return ko(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function zm(e){e.forEach(t=>{O(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function _I(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function DI(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function _m(e){return e&&e.then&&typeof e.then=="function"}function Za(...e){te().getBool("IS_TEST")||te().getBool("PROD")||console.warn(...e)}function PI(...e){te().getBool("IS_TEST")||te().getBool("PROD")||console.log(...e)}var E5="tfjsflags",R5=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=LI,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&Za(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];Za(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(_m(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);E5 in e&&e[E5].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=BI(n,a)})}};function LI(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(WI(t,a[0],a[1]),a.join("="))),t}function WI(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function BI(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function te(){return ra}var ra=null;function VI(e){ra=e}var Dm;function M5(){if(Dm==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Dm=e}return Dm}function UI(){let e=M5();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Pm(e,t){let n=UI();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var Io="Abs",So="Acos",To="Acosh",Vr="Add",Cs="AddN",No="All",Co="Any",Es="ArgMax",_u="ArgMin",Eo="Asin",Ro="Asinh",Mo="Atan",Fo="Atanh",$o="Atan2",Rs="AvgPool",Kp="AvgPoolGrad",Du="AvgPool3D",Zp="AvgPool3DGrad",Ms="BatchMatMul",Oo="BatchToSpaceND",Yp="Bincount",F5="BroadcastTo",Lm="BroadcastArgs",Fs="Cast",$s="Ceil",Ur="ClipByValue",Jp="Complex",Pu="ComplexAbs",zo="Concat",Os="Conv2D",Qp="Conv2DBackpropFilter",zs="Conv2DBackpropInput",Lu="Conv3D",ec="Conv3DBackpropFilterV2",tc="Conv3DBackpropInputV2",_s="Cos",Ds="Cosh",Ps="Cumsum",_o="CropAndResize",nc="DenseBincount",Do="DepthToSpace",Ls="DepthwiseConv2dNative",ac="DepthwiseConv2dNativeBackpropFilter",rc="DepthwiseConv2dNativeBackpropInput",sc="Diag",Wu="Dilation2D",ic="Dilation2DBackpropInput",oc="Dilation2DBackpropFilter",Ws="RealDiv",lc="Einsum",Bs="Elu",uc="EluGrad",Po="Erf",Lo="Equal",Vs="Exp",Wo="ExpandDims",Bo="Expm1",dc="FFT",Bu="Fill",Vo="FlipLeftRight",Us="Floor",Hs="FloorDiv",js="FusedBatchNorm",Uo="GatherV2",Ho="GatherNd",jo="Greater",Gs="GreaterEqual",qs="Identity",pc="IFFT",cc="Imag",Go="IsFinite",qo="IsInf",Xo="IsNan",Xs="LeakyRelu",Ko="Less",Zo="LessEqual",hc="LinSpace",Ks="Log",Yo="Log1p",Jo="LogicalAnd",Vu="LogicalNot",Uu="LogicalOr",$5="LogSoftmax",Hu="LRN",fc="LRNGrad",Zs="Max",Ys="Maximum",Js="MaxPool",mc="MaxPoolGrad",ju="MaxPool3D",gc="MaxPool3DGrad",Ac="MaxPoolWithArgmax",Qs="Mean",ei="Min",ti="Minimum",ni="MirrorPad",Qo="Mod",yc="Multinomial",ai="Multiply",el="Neg",tl="NotEqual",nl="NonMaxSuppressionV3",al="NonMaxSuppressionV4",rl="NonMaxSuppressionV5",sl="OnesLike",ri="OneHot",il="Pack",si="PadV2",HI="Pool",ii="Pow",oi="Prelu",ol="Prod",Gu="Range",xc="Real",ll="Reciprocal",li="Relu",ul="Reshape",qu="ResizeNearestNeighbor",bc="ResizeNearestNeighborGrad",ui="ResizeBilinear",vc="ResizeBilinearGrad",di="Relu6",pi="Reverse",ci="Round",hi="Rsqrt",dl="ScatterNd",pl="Select",cl="Selu",hl="Slice",fi="Sin",fl="Sinh",ml="Sign",mi="Sigmoid",gl="Softplus",gi="Sqrt",Ai="Sum",Al="SpaceToBatchND",yl="SplitV",yi="Softmax",wc="SparseFillEmptyRows",kc="SparseReshape",Ic="SparseSegmentMean",Sc="SparseSegmentSum",Tc="SparseToDense",xi="SquaredDifference",Xu="Square",xl="StridedSlice",Nc="StringNGrams",Cc="StringSplit",Ec="StringToHashBucketFast",bi="Sub",vi="Tan",wi="Tanh",Hr="Tile",bl="TopK",vl="Transform",ki="Transpose",Rc="Unique",wl="Unpack",Ku="UnsortedSegmentSum",kl="ZerosLike",jr="Step",Mc="FromPixels",Il="RotateWithOffset",Ii="_FusedMatMul",Si="FusedConv2D",Ti="FusedDepthwiseConv2D",Sl=Pm("kernelRegistry",()=>new Map),Zu=Pm("gradRegistry",()=>new Map);function Fc(e,t){let n=Bm(e,t);return Sl.get(n)}function Wm(e){return Zu.get(e)}function Tl(e){let t=Sl.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function Ni(e){let{kernelName:t,backendName:n}=e,a=Bm(t,n);Sl.has(a)&&Za(`The kernel '${t}' for backend '${n}' is already registered`),Sl.set(a,e)}function O5(e){let{kernelName:t}=e;Zu.has(t)&&te().getBool("DEBUG")&&Za(`Overriding the gradient for '${t}'`),Zu.set(t,e)}function jI(e,t){let n=Bm(e,t);if(!Sl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Sl.delete(n)}function GI(e){if(!Zu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Zu.delete(e)}function qI(e,t){Tl(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});Ni(a)})}function Bm(e,t){return`${t}_${e}`}var w={};_e(w,{arraysEqual:()=>xr,assert:()=>O,assertNonNegativeIntegerDimensions:()=>zm,assertNonNull:()=>Ts,assertShapesMatch:()=>gn,bytesFromStringArray:()=>S5,bytesPerElement:()=>$m,checkConversionForErrors:()=>k5,clamp:()=>Ou,computeStrides:()=>wo,createScalarValue:()=>QI,createShuffledIndices:()=>MI,decodeString:()=>zc,distSquared:()=>NI,encodeString:()=>Qu,fetch:()=>tS,fingerPrint64:()=>JI,flatten:()=>Ns,getArrayFromDType:()=>w5,getTypedArrayFromDType:()=>v5,hasEncodingLoss:()=>OI,hexToLong:()=>Yu,indexToLoc:()=>DI,inferDtype:()=>Gp,inferFromImplicitShape:()=>$I,isBoolean:()=>T5,isFunction:()=>Br,isInt:()=>Zt,isNumber:()=>N5,isPromise:()=>_m,isScalarShape:()=>CI,isString:()=>Wr,isTypedArray:()=>dn,isValidDtype:()=>I5,locToIndex:()=>_I,makeOnesTypedArray:()=>Om,makeZerosNestedTypedArray:()=>zI,makeZerosTypedArray:()=>Xp,nearestDivisor:()=>qp,nearestLargerEven:()=>II,now:()=>Ju,parseAxisParam:()=>Ia,randUniform:()=>TI,repeatedTry:()=>FI,rightPad:()=>zu,shuffle:()=>x5,shuffleCombo:()=>kI,sizeFromShape:()=>$t,sizeToSquarishShape:()=>RI,squeezeShape:()=>b5,sum:()=>SI,swap:()=>jp,tanh:()=>EI,toNestedArray:()=>ko,toTypedArray:()=>Oc});var z5=Ss(q9()),Ci=z5.default||z5;function Yu(e){return Ci.fromString(e,!0,16)}var _5=Yu("c3a5c85c97cb3127"),Ei=Yu("b492b66fbe98f273"),An=Yu("9ae16a3b2f90404f");function Vm(e){return e.xor(e.shru(47))}function D5(e,t,n){let a=e.slice(t,t+n);return Ci.fromBytes(Array.from(a),!0,!0)}function ct(e,t){return D5(e,t,8)}function P5(e,t){return D5(e,t,4)}function Yt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Gr(e,t,n=Yu("9ddfea08eb382d69")){let a=e.xor(t).mul(n);a=a.xor(a.shru(47));let r=t.xor(a).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function XI(e,t,n,a,r,s){r=r.add(e),s=Yt(s.add(r).add(a),21);let i=r;return r=r.add(t),r=r.add(n),s=s.add(Yt(r,44)),[r.add(a),s.add(i)]}function $c(e,t,n,a){return XI(ct(e,t),ct(e,t+8),ct(e,t+16),ct(e,t+24),n,a)}function KI(e,t=e.length){if(t>=8){let n=An.add(t*2),a=ct(e,0).add(An),r=ct(e,t-8),s=Yt(r,37).mul(n).add(a),i=Yt(a,25).add(r).mul(n);return Gr(s,i,n)}if(t>=4){let n=An.add(t*2),a=P5(e,0);return Gr(a.shl(3).add(t),P5(e,t-4),n)}if(t>0){let n=e[0],a=e[t>>1],r=e[t-1],s=n+(a<<8),i=t+(r<<2);return Vm(An.mul(s).xor(_5.mul(i))).mul(An)}return An}function ZI(e,t=e.length){let n=An.add(t*2),a=ct(e,0).mul(Ei),r=ct(e,8),s=ct(e,t-8).mul(n),i=ct(e,t-16).mul(An);return Gr(Yt(a.add(r),43).add(Yt(s,30)).add(i),a.add(Yt(r.add(An),18)).add(s),n)}function YI(e,t=e.length){let n=An.add(t*2),a=ct(e,0).mul(An),r=ct(e,8),s=ct(e,t-8).mul(n),i=ct(e,t-16).mul(An),o=Yt(a.add(r),43).add(Yt(s,30)).add(i),l=Gr(o,a.add(Yt(r.add(An),18)).add(s),n),u=ct(e,16).mul(n),d=ct(e,24),p=o.add(ct(e,t-32)).mul(n),c=l.add(ct(e,t-24)).mul(n);return Gr(Yt(u.add(d),43).add(Yt(p,30)).add(c),u.add(Yt(d.add(a),18)).add(p),n)}function JI(e,t=e.length){let n=Ci.fromNumber(81,!0);if(t<=32)return t<=16?KI(e,t):ZI(e,t);if(t<=64)return YI(e,t);let a=n,r=n.mul(Ei).add(113),s=Vm(r.mul(An).add(113)).mul(An),i=[Ci.UZERO,Ci.UZERO],o=[Ci.UZERO,Ci.UZERO];a=a.mul(An).add(ct(e,0));let l=0,u=(t-1>>6)*64,d=u+(t-1&63)-63;do a=Yt(a.add(r).add(i[0]).add(ct(e,l+8)),37).mul(Ei),r=Yt(r.add(i[1]).add(ct(e,l+48)),42).mul(Ei),a=a.xor(o[1]),r=r.add(i[0]).add(ct(e,l+40)),s=Yt(s.add(o[0]),33).mul(Ei),i=$c(e,l,i[1].mul(Ei),a.add(o[0])),o=$c(e,l+32,s.add(o[1]),r.add(ct(e,l+16))),[s,a]=[a,s],l+=64;while(l!==u);let p=Ei.add(s.and(255).shl(1));return l=d,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),a=Yt(a.add(r).add(i[0]).add(ct(e,l+8)),37).mul(p),r=Yt(r.add(i[1]).add(ct(e,l+48)),42).mul(p),a=a.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(ct(e,l+40))),s=Yt(s.add(o[0]),33).mul(p),i=$c(e,l,i[1].mul(p),a.add(o[0])),o=$c(e,l+32,s.add(o[1]),r.add(ct(e,l+16))),[s,a]=[a,s],Gr(Gr(i[0],o[0],p).add(Vm(r).mul(_5)).add(s),Gr(i[1],o[1],p).add(a),p)}function QI(e,t){return t==="string"?Qu(e):Oc([e],t)}function eS(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Oc(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Ns(e)),te().getBool("DEBUG")&&k5(e,t),eS(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Ju(){return te().platform.now()}function tS(e,t){return te().platform.fetch(e,t)}function Qu(e,t="utf-8"){return t=t||"utf-8",te().platform.encode(e,t)}function zc(e,t="utf-8"){return t=t||"utf-8",te().platform.decode(e,t)}var nS=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new rS)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=Ju();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:Ju()-i})}if(te().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(u=>{aS(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function aS(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var rS=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?zu(`${a}ms`,9):a.error,o=zu(e,25),l=t.rank,u=t.size,d=zu(t.shape.toString(),14),p="";for(let c in r){let h=r[c];if(h!=null){let m=h.shape||t.shape,f=m.length;p+=`${c}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${d} %c${u} %c${p} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function sS(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],d=u.inputs;for(let p in d){let c=d[p],h=!1;for(let m=0;m<t.length;m++)if(a[c.id]){u.outputs.forEach(f=>a[f.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],d=u.inputs;for(let p=0;p<u.outputs.length;p++)if(s[u.outputs[p].id]){for(let c in d)s[d[c].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let d={};for(let c in u.inputs){let h=u.inputs[c];a[h.id]&&(d[c]=h)}let p=Object.assign({},u);p.inputs=d,p.outputs=u.outputs,o.push(p)}}return o}function iS(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let d=s.inputs[l];if(!xr(u.shape,d.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${d.shape}'`);if(e[d.id]==null)e[d.id]=u;else{let p=e[d.id];e[d.id]=a(p,u),p.dispose()}}}}var L5=20,ed=3,Um=7;function oS(e,t,n,a){let r=wo(t),s=lS(e,t,n,r),i=t.length,o=_c(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function lS(e,t,n,a){let r=$t(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?nd(e):e;if(o>1)for(let u=0;u<r/s;u++){let d=u*s;for(let p=0;p<s;p++)i[p]=Math.max(i[p],td(l[d+p],0,n).length)}return i}function td(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(Um))} + ${parseFloat(e[1].toFixed(Um))}j`:Wr(e)?a=`'${e}'`:n==="bool"?a=W5(e):a=parseFloat(e.toFixed(Um)).toString(),zu(a,t)}function W5(e){return e===0?"false":"true"}function _c(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=nd(e);return[td(f[0],0,n)]}return n==="bool"?[W5(e[0])]:[e[0].toString()]}if(l===1){if(o>L5){let g=ed*i,A=Array.from(e.slice(0,g)),y=Array.from(e.slice((o-ed)*i,o*i));return n==="complex64"&&(A=nd(A),y=nd(y)),["["+A.map((x,v)=>td(x,r[v],n)).join(", ")+", ..., "+y.map((x,v)=>td(x,r[o-ed+v],n)).join(", ")+"]"]}let f=n==="complex64"?nd(e):Array.from(e);return["["+f.map((g,A)=>td(g,r[A],n)).join(", ")+"]"]}let u=t.slice(1),d=a.slice(1),p=a[0]*i,c=[];if(o>L5){for(let f=0;f<ed;f++){let g=f*p,A=g+p;c.push(..._c(e.slice(g,A),u,n,d,r,!1))}c.push("...");for(let f=o-ed;f<o;f++){let g=f*p,A=g+p;c.push(..._c(e.slice(g,A),u,n,d,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*p,A=g+p;c.push(..._c(e.slice(g,A),u,n,d,r,f===o-1))}let h=l===2?",":"";c[0]="["+c[0]+h;for(let f=1;f<c.length-1;f++)c[f]=" "+c[f]+h;let m=`,
|
|
`;for(let f=2;f<l;f++)m+=`
|
|
`;return c[c.length-1]=" "+c[c.length-1]+"]"+(s?"":m),c}function nd(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Ut=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=$t(e),n!=null){let a=n.length;O(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||w5(t,this.size),this.strides=wo(e)}set(e,...t){t.length===0&&(t=[0]),O(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Ya().makeTensor(this.values,this.shape,this.dtype)}},Ya=null,Nl=null,uS=null;function dS(e){Ya=e}function pS(e){Nl=e}function cS(e){uS=e}var je=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=$t(e),this.strides=wo(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Nl.buffer(this.shape,this.dtype,e)}bufferSync(){return Nl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return ko(this.shape,e,this.dtype==="complex64")}arraySync(){return ko(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Ya().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>zc(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Ya().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>zc(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Ya().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Ya().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Nl.print(this,e)}clone(){return this.throwIfDisposed(),Nl.clone(this)}toString(e=!1){let t=this.dataSync();return oS(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Nl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Ya().makeVariable(this,e,t,n)}};Object.defineProperty(je,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function hS(){return Pm("Tensor",()=>je)}hS();var ad=class extends je{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!xr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Ya().disposeTensor(this),this.dataId=e.dataId,Ya().incRef(this,null)}dispose(){Ya().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(ad,Symbol.hasInstance,{value:e=>e instanceof je&&e.assign!=null&&e.assign instanceof Function});var Fa={};_e(Fa,{assertTypesMatch:()=>B5,getTensorsInContainer:()=>Km,isTensorInList:()=>mS,makeTypesMatch:()=>Tt});var Hm;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Hm||(Hm={}));var jm;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(jm||(jm={}));var Gm;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Gm||(Gm={}));var qm;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(qm||(qm={}));var Xm;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Xm||(Xm={}));var fS={float32:qm,int32:jm,bool:Gm,complex64:Xm};function Sa(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return fS[e][t]}function Dc(e){return Sa(e,"int32")}function Tt(e,t){if(e.dtype===t.dtype)return[e,t];let n=Sa(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function B5(e,t){O(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function mS(e,t){return t.some(n=>n.id===e.id)}function Km(e){let t=[],n=new Set;return V5(e,t,n),t}function V5(e,t,n){if(e==null)return;if(e instanceof je){t.push(e);return}if(!gS(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),V5(s,t,n))}}function gS(e){return Array.isArray(e)||typeof e=="object"}function Zm(e){return e.kernelName!=null}var U5=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},rd=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new U5}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(Za(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new nS(this.backendInstance),!0}setupRegisteredKernels(){Tl(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Tl(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof $u)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,Za(`Initialization of backend ${e} failed`),Za(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return Za(`Initialization of backend ${e} failed`),Za(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return rd.nextTensorId++}nextVariableId(){return rd.nextVariableId++}clone(e){let t=P.runKernel(qs,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return P.runKernel(Fs,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,Fc(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Zm(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Zm(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=Fc(h,this.backendName);O(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let A=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let y=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,A,y);let x=y.map(v=>{if(v.rank!=null)return v;let{dataId:b,shape:k,dtype:N}=v;return this.makeTensorFromDataId(b,k,N)});if(a){let v=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:u,attrs:d}=e,p=Zm(e)?null:e.backwardsFunc,c;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(c=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(c),t=c.outputs)}),a&&this.addTapeNode(l,u,t,p,n,d),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:c.timeMs,extraInfo:c.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=Wm(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(O(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&Wr(e[0])&&(r=e.map(o=>Qu(o)));let s=a.write(r,t,n),i=new je(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=S5(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r=new je(t,n,e,this.nextTensorId());return this.trackTensor(r,a),r}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new ad(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*$m(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof ad||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*$m(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=Wm(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((u,d)=>{if(u==null){let p=n[d],c=Xp(p.size,p.dtype);return this.makeTensor(c,p.shape,p.dtype)}return u}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Km(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(O(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));O(r instanceof je,()=>"The result y returned by f() must be a tensor.");let s=sS(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?AS(r.shape):n,iS(i,s,l=>this.tidy(l),yS);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return O(Br(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{O(t.every(i=>i instanceof je),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),O(n.value instanceof je,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),O(Br(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];O(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),O(u.every(p=>p instanceof je),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let d={};return u.forEach((p,c)=>{d[c]=()=>p}),d};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Ju(),n=await this.backend.time(e);return n.wallMs=Ju()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new U5;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};rd.nextTensorId=0;rd.nextVariableId=0;function AS(e){let t=Om($t(e),"float32");return P.makeTensor(t,e,"float32")}function H5(){let e=M5();if(e._tfengine==null){let t=new R5(e);e._tfengine=new rd(t)}return VI(e._tfengine.ENV),dS(()=>e._tfengine),e._tfengine}var P=H5();function yS(e,t){let n={a:e,b:t};return P.runKernel(Vr,n)}var sd={};_e(sd,{isBrowser:()=>j5,isMobile:()=>bS});function xS(){return typeof navigator!="undefined"&&navigator!=null}function bS(e){if(e||xS()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function j5(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var $a=te();$a.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});$a.registerFlag("IS_BROWSER",()=>j5());$a.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");$a.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));$a.registerFlag("PROD",()=>!1);$a.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>$a.getBool("DEBUG"));$a.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);$a.registerFlag("IS_TEST",()=>!1);$a.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);$a.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Ja(e,t){let n=e;if(dn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||dn(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&te().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&G5(e,a,[]),a}function G5(e,t,n){if(n=n||[],!Array.isArray(e)&&!dn(e)){O(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}O(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),O(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)G5(e[r],a,n.concat(r))}function q5(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function M(e,t,n,a="numeric"){if(e instanceof je)return q5(a,e.dtype,t,n),e;let r=Gp(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),q5(a,r,t,n),e==null||!dn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Ja(e,r);!dn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Oc(e,r):Ns(e,[],!0);return P.makeTensor(i,s,r)}function id(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>M(r,`${t}[${s}]`,n,a))}var X5="__op";function W(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+X5;let r=(...s)=>{P.startScope(n);try{let i=a(...s);return _m(i)&&console.error("Cannot return a Promise inside of tidy."),P.endScope(i),i}catch(i){throw P.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function vS(e,t){let n=M(e,"real","complex"),a=M(t,"imag","complex");gn(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return P.runKernel(Jp,r)}var qr=W({complex_:vS});function Xr(e,t,n,a){if(a==null&&(a=Gp(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!dn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){zm(t);let r=$t(t),s=$t(n);O(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==$t(t.slice(i)):!0;O(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!dn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?Oc(e,a):Ns(e,[],!0),P.makeTensor(e,t,a)}function pn(e,t,n){let a=Ja(e,n);return Xr(e,t,a,n)}var Ym={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Pc=4;async function wS(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let d=new Promise(async p=>{let c=await l.bytes(),h=c.reduce((g,A)=>g+A.length,0)+Pc*c.length,m=new Uint8Array(h),f=0;for(let g=0;g<c.length;g++){let A=c[g],y=new Uint8Array(new Uint32Array([A.length]).buffer);m.set(y,f),f+=Pc,m.set(A,f),f+=A.length}p(m)});a.push(d)}else a.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(a);return{data:kS(s),specs:n}}function K5(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=$t(l),d;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let c=Ym[p.dtype],h=e.slice(r,r+u*c),m=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){d=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];d[f]=g*p.scale+p.min}}else if(p.dtype==="float16")a===void 0&&(a=ES()),d=a(m);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(o==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);d=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];d[f]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*c}else if(o==="string"){let p=$t(s.shape);d=[];for(let c=0;c<p;c++){let h=new Uint32Array(e.slice(r,r+Pc))[0];r+=Pc;let m=new Uint8Array(e.slice(r,r+h));d.push(m),r+=h}}else{let p=Ym[o],c=e.slice(r,r+u*p);if(o==="float32")d=new Float32Array(c);else if(o==="int32")d=new Int32Array(c);else if(o==="bool")d=new Uint8Array(c);else if(o==="complex64"){d=new Float32Array(c);let h=new Float32Array(d.length/2),m=new Float32Array(d.length/2);for(let A=0;A<h.length;A++)h[A]=d[A*2],m[A]=d[A*2+1];let f=pn(h,l,"float32"),g=pn(m,l,"float32");n[i]=qr(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*p}o!=="complex64"&&(n[i]=pn(d,l,o))}return n}function kS(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var Jm=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Z5(e){return Jm?Buffer.byteLength(e):new Blob([e]).size}function IS(e){if(Jm)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function SS(e){if(Jm){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function Qm(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function Y5(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function J5(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function e1(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[a,r]=await t(e.weightsManifest);n.weightSpecs=a,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function od(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Z5(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Z5(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function TS(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)==0;)r-=8388608,a<<=1;return a&=~8388608,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function NS(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function CS(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function ES(){let e=TS(),t=NS(),n=CS();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var Rt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Rt.instance==null&&(Rt.instance=new Rt),Rt.instance}static registerSaveRouter(e){Rt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Rt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Rt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Rt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?Rt.getInstance().loadRouters:Rt.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},RS=e=>Rt.registerSaveRouter(e),MS=e=>Rt.registerLoadRouter(e),FS=e=>Rt.getSaveHandlers(e),$S=(e,t)=>Rt.getLoadHandlers(e,t),t1="tensorflowjs",n1=1,Ri="models_store",Kr="model_info_store";function Q5(){if(!te().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function a1(e){let t=e.result;t.createObjectStore(Ri,{keyPath:"modelPath"}),t.createObjectStore(Kr,{keyPath:"modelPath"})}var Mi=class{constructor(e){if(this.indexedDB=Q5(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(t1,n1);r.onupgradeneeded=()=>a1(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(Ri,"readonly"),o=i.objectStore(Ri).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=od(t),o=s.transaction(Kr,"readwrite"),l=o.objectStore(Kr),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),d;u.onsuccess=()=>{d=s.transaction(Ri,"readwrite");let p=d.objectStore(Ri).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});p.onsuccess=()=>n({modelArtifactsInfo:i}),p.onerror=c=>{l=o.objectStore(Kr);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(p.error)),h.onerror=m=>(s.close(),a(p.error))}},u.onerror=p=>(s.close(),a(u.error)),o.oncomplete=()=>{d==null?s.close():d.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};Mi.URL_SCHEME="indexeddb://";var ex=e=>te().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Mi.URL_SCHEME)?OS(e.slice(Mi.URL_SCHEME.length)):null;Rt.registerSaveRouter(ex);Rt.registerLoadRouter(ex);function OS(e){return new Mi(e)}function zS(e){return e.startsWith(Mi.URL_SCHEME)?e.slice(Mi.URL_SCHEME.length):e}var _S=class{constructor(){this.indexedDB=Q5()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(t1,n1);n.onupgradeneeded=()=>a1(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(Kr,"readonly"),s=r.objectStore(Kr).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=zS(e),new Promise((t,n)=>{let a=this.indexedDB.open(t1,n1);a.onupgradeneeded=()=>a1(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(Kr,"readwrite"),i=s.objectStore(Kr),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),d=()=>{l=r.transaction(Ri,"readwrite");let p=l.objectStore(Ri).delete(e);p.onsuccess=()=>t(o.result.modelArtifactsInfo),p.onerror=c=>n(o.error)};u.onsuccess=d,u.onerror=p=>(d(),r.close(),n(o.error))}},o.onerror=u=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},br="/",Cl="tensorflowjs_models",tx="info",DS="model_topology",PS="weight_specs",LS="weight_data",WS="model_metadata";function nx(e){return{info:[Cl,e,tx].join(br),topology:[Cl,e,DS].join(br),weightSpecs:[Cl,e,PS].join(br),weightData:[Cl,e,LS].join(br),modelMetadata:[Cl,e,WS].join(br)}}function ax(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function BS(e){let t=e.split(br);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(br)}function VS(e){return e.startsWith(Fi.URL_SCHEME)?e.slice(Fi.URL_SCHEME.length):e}var Fi=class{constructor(e){if(!te().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=nx(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=od(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,IS(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw ax(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=SS(s),t}};Fi.URL_SCHEME="localstorage://";var rx=e=>te().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Fi.URL_SCHEME)?US(e.slice(Fi.URL_SCHEME.length)):null;Rt.registerSaveRouter(rx);Rt.registerLoadRouter(rx);function US(e){return new Fi(e)}var HS=class{constructor(){O(te().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),O(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Cl+br,n=br+tx;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=BS(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=VS(e);let t=nx(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return ax(t),n}},El="://",sa=class{constructor(){this.managers={}}static getInstance(){return sa.instance==null&&(sa.instance=new sa),sa.instance}static registerManager(e,t){O(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(El)&&(e=e.slice(0,e.indexOf(El))),O(e.length>0,()=>"scheme must not be an empty string.");let n=sa.getInstance();O(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Lc(e){if(e.indexOf(El)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${sa.getSchemes().join(",")}`);return{scheme:e.split(El)[0],path:e.split(El)[1]}}async function sx(e,t,n=!1){O(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=Rt.getLoadHandlers(e);O(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),O(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=Rt.getSaveHandlers(t);O(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),O(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=Lc(e).scheme,l=Lc(e).path,u=o===Lc(e).scheme,d=await r.load();n&&u&&await sa.getManager(o).removeModel(l);let p=await i.save(d);return n&&!u&&await sa.getManager(o).removeModel(l),p.modelArtifactsInfo}async function jS(){let e=sa.getSchemes(),t={};for(let n of e){let a=await sa.getManager(n).listModels();for(let r in a){let s=n+El+r;t[s]=a[r]}}return t}async function GS(e){let t=Lc(e);return sa.getManager(t.scheme).removeModel(t.path)}async function qS(e,t){return sx(e,t,!1)}async function XS(e,t){return sx(e,t,!0)}var KS=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(te().get("IS_BROWSER")){te().setPlatform("browser",new KS);try{sa.registerManager(Fi.URL_SCHEME,new HS)}catch(e){}try{sa.registerManager(Mi.URL_SCHEME,new _S)}catch(e){}}var ZS={importFetch:()=>X9()},r1,YS=class{constructor(){this.util=vo("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return te().global.fetch!=null?te().global.fetch(e,t):(r1==null&&(r1=ZS.importFetch()),r1(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};te().get("IS_NODE")&&te().setPlatform("node",new YS);function Be(e,t="float32",n){return t=t||"float32",zm(e),new Ut(e,t,n)}function JS(e,t){let n=M(e,"x","cast");if(!I5(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return P.runKernel(Fs,a,r)}var de=W({cast_:JS});function QS(e){let t={x:M(e,"x","clone","string_or_numeric")};return P.runKernel(qs,t)}var Oa=W({clone_:QS});function ix(e,t=!1){console.log(e.toString(t))}H5();var eT={buffer:Be,cast:de,clone:Oa,print:ix};pS(eT);var Fn={};_e(Fn,{browserFiles:()=>oT,browserHTTPRequest:()=>cT,concatenateArrayBuffers:()=>Qm,copyModel:()=>qS,decodeWeights:()=>K5,encodeWeights:()=>wS,fromMemory:()=>fT,getLoadHandlers:()=>$S,getModelArtifactsForJSON:()=>e1,getModelArtifactsInfoForJSON:()=>od,getSaveHandlers:()=>FS,http:()=>o1,isHTTPScheme:()=>i1,listModels:()=>jS,loadWeights:()=>lT,moveModel:()=>XS,registerLoadRouter:()=>MS,registerSaveRouter:()=>RS,removeModel:()=>GS,weightsLoaderFactory:()=>dx,withSaveHandler:()=>mT});var tT="model",nT=".json",aT=".weights.bin";function ox(e){return new Promise(t=>setTimeout(t)).then(e)}var Rl=class{constructor(e){if(!te().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Rl.URL_SCHEME)&&(e=e.slice(Rl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=tT),this.modelJsonFileName=e+nT,this.weightDataFileName=e+aT}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a=J5(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(s.download=this.modelJsonFileName,s.href=r,await ox(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await ox(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:od(e)}}}};Rl.URL_SCHEME="downloads://";var rT=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=a=>{let r=JSON.parse(a.target.result),s=r.modelTopology;if(s==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:s});return}let i=e1(r,o=>this.loadWeights(o));e(i)},n.onerror=a=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let s of e)t.push(...s.weights),n.push(...s.paths);let a=this.checkManifestAndWeightFiles(e),r=n.map(s=>this.loadWeightsFile(s,a[s]));return Promise.all(r).then(s=>[t,Qm(s)])}loadWeightsFile(e,t){return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=s.target.result;n(i)},r.onerror=s=>a(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>Y5(r.name)),a={};for(let r of e)r.paths.forEach(s=>{let i=Y5(s);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),n.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);a[s]=this.weightsFiles[n.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return a}},sT=e=>te().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Rl.URL_SCHEME)?iT(e.slice(Rl.URL_SCHEME.length)):null;Rt.registerSaveRouter(sT);function iT(e="model"){return new Rl(e)}function oT(e){return new rT(e)}function lx(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(u=>{let d=n+ ++r/e.length*(a-n);return t(d),u}),l);function i(l){O(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){O(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),O(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),O(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function ux(e,t){t==null&&(t={});let n=t.fetchFunc==null?te().platform.fetch:t.fetchFunc,a=e.map(u=>n(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await lx(a,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await lx(i,t.onProgress,o,l)}async function lT(e,t="",n,a){return dx(r=>ux(r,{requestInit:a}))(e,t,n)}function dx(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let A="quantization"in g?g.quantization.dtype:g.dtype,y=Ym[A]*$t(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:y})};a!=null?a.forEach((v,b)=>{v===g.name&&(x(),i[b]=!0)}):x(),o.push(g.name),f+=y})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let d=await e(u),p={},c=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=d[c+x].byteLength;let g=new ArrayBuffer(f),A=new Uint8Array(g),y=0;for(let x=0;x<m;x++){let v=new Uint8Array(d[c+x]);A.set(v,y),y+=v.byteLength}s[h].forEach(x=>{let v=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),b=K5(v,[x.manifestEntry]);for(let k in b)p[k]=b[k]}),c+=m}),p}}var uT="application/octet-stream",dT="application/json",s1=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(O(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=te().platform.fetch,O(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&O(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a=J5(e,n);t.body.append("model.json",new Blob([JSON.stringify(a)],{type:dT}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:uT}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:od(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let s=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?s+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":s+=" Please make sure the server is serving valid JSON for this request.",new Error(s)}let n=t.modelTopology,a=t.weightsManifest;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return e1(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=pT(t),r=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let d of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(d)):i.push(r+d+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await ux(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Qm(l)]}};s1.URL_SCHEME_REGEX=/^https?:\/\//;function pT(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function i1(e){return e.match(s1.URL_SCHEME_REGEX)!=null}var px=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>i1(a)):n=i1(e),n)return o1(e,t)}return null};Rt.registerSaveRouter(px);Rt.registerLoadRouter(px);function o1(e,t){return new s1(e,t)}function cT(e,t){return o1(e,t)}var l1=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},hT=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function fT(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new l1(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new l1({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new l1({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function mT(e){return new hT(e)}var cx={};_e(cx,{confusionMatrix:()=>bT});function gT(e,t,n=!1,a=!1){let r=M(e,"a","matMul"),s=M(t,"b","matMul");[r,s]=Tt(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return P.runKernel(Ms,i,o)}var Ve=W({matMul_:gT});function AT(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:M(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return P.runKernel(ri,r,s)}var ld=W({oneHot_:AT});function yT(e,t){let n=M(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{O(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let a={x:n},r={perm:t};return P.runKernel(ki,a,r)}var Xe=W({transpose_:yT});function xT(e,t,n){let a=M(e,"labels","confusionMatrix"),r=M(t,"predictions","confusionMatrix");O(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),O(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),O(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),O(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),O(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=ld(de(a,"int32"),n),i=ld(de(r,"int32"),n),o=Xe(s),l=Ve(o,i);return de(l,"int32")}var bT=W({confusionMatrix_:xT}),ia={};_e(ia,{fromPixels:()=>NT,fromPixelsAsync:()=>ST,toPixels:()=>TT});function Wc(e,t,n){if(Ts(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=Ja(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Xr(e,t,a,n)}var Ml;function hx(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let c=2;if(r&&e.readyState<c)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Fc(Mc,P.backendName)!=null){let c={pixels:e},h={numChannels:t};return P.runKernel(Mc,c,h)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;i?d=e.getContext("2d").getImageData(0,0,l,u).data:a||n?d=e.data:(s||r||o)&&(Ml==null&&(Ml=document.createElement("canvas").getContext("2d")),Ml.canvas.width=l,Ml.canvas.height=u,Ml.drawImage(e,0,0,l,u),d=Ml.getImageData(0,0,l,u).data);let p;if(t===4)p=new Int32Array(d);else{let c=l*u;p=new Int32Array(c*t);for(let h=0;h<c;h++)for(let m=0;m<t;++m)p[h*t+m]=d[h*4+m]}return Wc(p,[u,l,t],"int32")}function vT(e){return e!=null&&e.data instanceof Uint8Array}function wT(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function kT(e){return e!=null&&e.width!==0&&e.height!==0}function IT(e){return wT()&&!(e instanceof ImageBitmap)&&kT(e)&&!vT(e)}async function ST(e,t=3){let n=null;if(te().getBool("WRAP_TO_IMAGEBITMAP")&&IT(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return hx(n,t)}async function TT(e,t){let n=M(e,"img","toPixels");if(!(e instanceof je)){let u=n;n=de(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let u=0;u<a*r;++u){let d=[0,0,0,255];for(let c=0;c<s;c++){let h=i[u*s+c];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(d[0]=h*o,d[1]=h*o,d[2]=h*o):d[c]=h*o}let p=u*4;l[p+0]=Math.round(d[0]),l[p+1]=Math.round(d[1]),l[p+2]=Math.round(d[2]),l[p+3]=Math.round(d[3])}if(t!=null){t.width=r,t.height=a;let u=t.getContext("2d"),d=new ImageData(l,r,a);u.putImageData(d,0,0)}return n!==e&&n.dispose(),l}var NT=W({fromPixels_:hx}),u1={};_e(u1,{prepareAndValidate:()=>fx});function fx(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if($t(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let p=0;p<r.length-1;++p)i*=r[p];let o=e.shape,l=r.slice();l.pop();let u=1;for(let p=s;p<n;++p)u*=o[p],l.push(o[p]);let d=[...wo(e.shape).map(p=>p/u),1].slice(0,s);return[l,i,u,d]}var d1={};_e(d1,{calculateShapes:()=>mx,validateInput:()=>c1,validateUpdateShape:()=>p1});function p1(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function c1(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}p1(n,t,e)}function mx(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let p=r;p<s;++p)i*=n[p];let o=r<1?1:r,l=$t(t.shape)/o,u=[...wo(n.slice(0,r)),1],d=$t(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:d}}var yn={};_e(yn,{assertParamsValid:()=>CT,computeFlatOffset:()=>RT,computeOutShape:()=>gx,getNormalizedAxes:()=>bx,isSliceContinous:()=>ET,maskToAxes:()=>Bc,parseSliceParams:()=>Tx,sliceInfo:()=>MT,startForAxis:()=>Ix,startIndicesWithElidedDims:()=>vx,stopForAxis:()=>Sx,stopIndicesWithElidedDims:()=>wx,stridesForAxis:()=>kx,stridesWithElidedDims:()=>Ax});function CT(e,t,n){let a=e.shape.length;O(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),O(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)O(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function Bc(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function gx(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function Ax(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function yx(e,t,n){return n<=e?n:n-(t-1)}function xx(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function bx(e,t,n,a,r,s,i,o,l){let u=e.length,d=new Array(u),p=new Array(u),c=new Array(u);if(t.length&&n>0){let h=t[0],m=n+1;d=vx(i,h,m,a,e),p=wx(o,h,m,r,e),c=Ax(s,h,m,e)}else for(let h=0;h<u;h++)d[h]=Ix(i,a,s,e,h,l),p[h]=Sx(o,r,s,e,h,l),c[h]=kx(s,h,l);return{begin:d,end:p,strides:c}}function vx(e,t,n,a,r){let s=[...r],i=xx(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=yx(t,n,o),u=a[l];e&1<<l&&(u=0),s[o]=u}return s}function wx(e,t,n,a,r){let s=[...r],i=xx(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=yx(t,n,o),u=a[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=Ou(0,s[o],r[o])}return s}function kx(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function Ix(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=Ou(0,i,l-1),i}function Sx(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=Ou(0,i,l):i=Ou(-1,i,l-1),i}function ET(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function RT(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function Tx(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{O(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(O(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function MT(e,t,n,a,r,s,i,o,l){let u=t.slice(),d=n.slice(),p=a;a==null&&(p=new Array(u.length));let c=Bc(i);if(c.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-u.length,m=Bc(o),f=e.slice();m.forEach(k=>{u[k]=0,d[k]=1,f.splice(k,0,1)});let{begin:g,end:A,strides:y}=bx(f,c,h,u,d,p,r,s,i);u=g,d=A,p=y;let x=Bc(l);x.forEach(k=>{d[k]=u[k]+1,p[k]=1});let v=gx(u,d,p),b=v.filter((k,N)=>x.indexOf(N)===-1);return{nonStrided:p.every(k=>k===1),$begin:u,$end:d,$strides:p,size:v,newShape:f,outShape:b}}var se={};_e(se,{Serializable:()=>Nx,SerializationMap:()=>$i,registerClass:()=>Zr});var Nx=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},$i=class{constructor(){this.classNameMap={}}static getMap(){return $i.instance==null&&($i.instance=new $i),$i.instance}static register(e){$i.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Zr(e){O(e.className!=null,()=>"Class being registered does not have the static className property defined."),O(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),O(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),$i.register(e)}var Cx={};_e(Cx,{TEST_EPSILON_FLOAT16:()=>Ex,encodeStrings:()=>Rx,expectArrayBuffersEqual:()=>PT,expectArraysClose:()=>$T,expectArraysEqual:()=>zT,expectNumbersClose:()=>_T,expectPromiseToFail:()=>OT,expectValuesInRange:()=>DT,testEpsilon:()=>h1});var FT=.001,Ex=.1;function $T(e,t,n){return n==null&&(n=h1()),f1(e,t,(a,r)=>m1(a,r,n))}function h1(){return P.backend.floatPrecision()===32?FT:Ex}function f1(e,t,n){let a=!0;if((dn(e)||dn(t))&&(a=!1),dn(e)&&dn(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Ja(e),o=Ja(t);if(!xr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=dn(e)?e:Ns(e),s=dn(t)?t:Ns(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`)}}function OT(e,t){e().then(()=>t.fail(),()=>t())}function zT(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Wr(e)||Wr(e[0])||Wr(t)||Wr(t[0])?f1(e,n,(a,r)=>a==r):f1(e,t,(a,r)=>m1(a,r,0))}function _T(e,t,n){if(n==null&&(n=h1()),!m1(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function m1(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function DT(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function PT(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function Rx(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?Rx(n):e[t]=Qu(n)}return e}var Mx="3.9.0";function LT(){te().set("PROD",!0)}function WT(){te().set("DEBUG",!0)}function BT(){te().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function g1(e){te().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}cS(g1);function VT(){P.disposeVariables()}function vr(){return P}function Vc(){return P.memory()}function UT(e){return P.profile(e)}function H(e,t){return P.tidy(e,t)}function K(e){Km(e).forEach(t=>t.dispose())}function Jt(e){return P.keep(e)}function HT(e){return P.time(e)}function jT(e){return P.setBackend(e)}function GT(){return P.ready()}function qT(){return P.backendName}function XT(e){P.removeBackend(e)}function A1(e){return P.findBackend(e)}function KT(e){return P.findBackendFactory(e)}function Fl(e,t,n=1){return P.registerBackend(e,t,n)}function Fx(){return P.backend}function ZT(e,t){te().setPlatform(e,t)}function YT(e,t){let n=M(e,"a","add"),a=M(t,"b","add");[n,a]=Tt(n,a);let r={a:n,b:a};return P.runKernel(Vr,r)}var re=W({add_:YT});function JT(e,t){let n=M(e,"a","floorDiv"),a=M(t,"b","floorDiv");[n,a]=Tt(n,a);let r={a:n,b:a};return P.runKernel(Hs,r)}var y1=W({floorDiv_:JT});function QT(e,t){let n=M(e,"a","div"),a=M(t,"b","div");if([n,a]=Tt(n,a),n.dtype==="int32"&&a.dtype==="int32")return y1(n,a);let r={a:n,b:a},s={};return P.runKernel(Ws,r,s)}var ce=W({div_:QT});function eN(e,t){let n=M(e,"a","mul"),a=M(t,"b","mul");[n,a]=Tt(n,a);let r={a:n,b:a};return P.runKernel(ai,r)}var L=W({mul_:eN});function tN(e){let t=M(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return P.runKernel(Pu,n)}else{let n={x:t};return P.runKernel(Io,n)}}var Ht=W({abs_:tN});function nN(e){let t={x:M(e,"x","acos")};return P.runKernel(So,t)}var $x=W({acos_:nN});function aN(e){let t={x:M(e,"x","acosh")};return P.runKernel(To,t)}var Ox=W({acosh_:aN});function rN(e){O(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),O(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>M(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!xr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return P.runKernel(Cs,a)}var Uc=W({addN_:rN});function sN(e,t=null,n=!1){let a={x:M(e,"x","all","bool")},r={axis:t,keepDims:n};return P.runKernel(No,a,r)}var x1=W({all_:sN});function iN(e,t=null,n=!1){let a={x:M(e,"x","any","bool")},r={axis:t,keepDims:n};return P.runKernel(Co,a,r)}var Hc=W({any_:iN});function oN(e,t=0){let n={x:M(e,"x","argMax")},a={axis:t};return P.runKernel(Es,n,a)}var Qa=W({argMax_:oN});function lN(e,t=0){let n={x:M(e,"x","argMin")},a={axis:t};return P.runKernel(_u,n,a)}var zx=W({argMin_:lN});function uN(e){let t={x:M(e,"x","asin")};return P.runKernel(Eo,t)}var _x=W({asin_:uN});function dN(e){let t={x:M(e,"x","asinh")};return P.runKernel(Ro,t)}var Dx=W({asinh_:dN});function pN(e){let t={x:M(e,"x","atan")};return P.runKernel(Mo,t)}var Px=W({atan_:pN});function cN(e,t){let n=M(e,"a","atan2"),a=M(t,"b","atan2");[n,a]=Tt(n,a);let r={a:n,b:a};return P.runKernel($o,r)}var Lx=W({atan2_:cN});function hN(e){let t={x:M(e,"x","atanh")};return P.runKernel(Fo,t)}var Wx=W({atanh_:hN});function fN(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=Ux(r);return ud(e,o,n,s,a,null,null,l)}function Bx(e,t,n,a,r,s,i="channelsLast"){let[o,l]=jc(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return ud(e,u,n,a,r,s,!1,i)}function mN(e,t,n,a,r,s,i="NDHWC"){let[o,l,u]=v1(t),d,p;if(i==="NDHWC")p="channelsLast",d=[o,l,u,e[4],e[4]];else if(i==="NCDHW")p="channelsFirst",d=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Vx(e,d,n,a,r,!1,p,s)}function ud(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,u,d,p]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,d,p]=e;else if(o==="channelsFirst")[l,p,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[c,h,,m]=t,[f,g]=jc(n),[A,y]=jc(a),x=$l(c,A),v=$l(h,y),{padInfo:b,outHeight:k,outWidth:N}=yN(r,u,d,f,g,x,v,s,o),C=i?m*p:m,E;return o==="channelsFirst"?E=[l,C,k,N]:o==="channelsLast"&&(E=[l,k,N,C]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:d,inChannels:p,outHeight:k,outWidth:N,outChannels:C,padInfo:b,strideHeight:f,strideWidth:g,filterHeight:c,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:A,dilationWidth:y,inShape:e,outShape:E,filterShape:t}}function Vx(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,u,d,p,c]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,d,p,c]=e;else if(i==="channelsFirst")[l,c,u,d,p]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[A,y,x]=v1(n),[v,b,k]=v1(a),N=$l(h,v),C=$l(m,b),E=$l(f,k),{padInfo:z,outDepth:F,outHeight:I,outWidth:_}=xN(r,u,d,p,A,y,x,N,C,E,o),D=s?g*c:g,V;return i==="channelsFirst"?V=[l,D,F,I,_]:i==="channelsLast"&&(V=[l,F,I,_,D]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:d,inWidth:p,inChannels:c,outDepth:F,outHeight:I,outWidth:_,outChannels:D,padInfo:z,strideDepth:A,strideHeight:y,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:N,effectiveFilterHeight:C,effectiveFilterWidth:E,dilationDepth:v,dilationHeight:b,dilationWidth:k,inShape:e,outShape:V,filterShape:t}}function gN(e,t,n,a,r){a==null&&(a=b1(e,t,n));let s=e[0],i=e[1],o=Oi((s-t+2*a)/n+1,r),l=Oi((i-t+2*a)/n+1,r);return[o,l]}function AN(e,t,n,a,r,s){r==null&&(r=b1(e,t,a));let i=e[0],o=e[1],l=e[2],u=Oi((i-t+2*r)/a+1,s),d=Oi((o-t+2*r)/a+1,s),p=Oi((l-t+2*r)/a+1,s);return[u,d,p,n]}function b1(e,t,n,a=1){let r=$l(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function jc(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function v1(e){return typeof e=="number"?[e,e,e]:e}function $l(e,t){return t<=1?e:e+(e-1)*(t-1)}function yN(e,t,n,a,r,s,i,o,l){let u,d,p;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let c=gN([t,n],s,a,e,o);d=c[0],p=c[1]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/r);let c=Math.max(0,(d-1)*a+s-t),h=Math.max(0,(p-1)*r+i-n),m=Math.floor(c/2),f=c-m,g=Math.floor(h/2),A=h-g;u={top:m,bottom:f,left:g,right:A,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},d=Math.ceil((t-s+1)/a),p=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let c=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:c,bottom:h,left:m,right:f,type:c===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},d=Oi((t-s+c+h)/a+1,o),p=Oi((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:d,outWidth:p}}function xN(e,t,n,a,r,s,i,o,l,u,d){let p,c,h,m;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=AN([t,n,a,1],o,1,r,e,d);c=f[0],h=f[1],m=f[2]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(c-1)*r+o-t,g=(h-1)*s+l-n,A=(m-1)*i+u-a,y=Math.floor(f/2),x=f-y,v=Math.floor(g/2),b=g-v,k=Math.floor(A/2),N=A-k;p={top:v,bottom:b,left:k,right:N,front:y,back:x,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},c=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:c,outHeight:h,outWidth:m}}function Oi(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Yr(e){let[t,n,a]=jc(e);return t===1&&n===1&&a===1}function er(e,t){return Yr(e)||Yr(t)}function Ux(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function bN(e,t){let n={x:M(e,"x","reshape","string_or_numeric")},a={shape:t};return P.runKernel(ul,n,a)}var B=W({reshape_:bN});function vN(e,t,n,a,r){let s=M(e,"x","avgPool","float32"),i=1;O(er(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=B(s,[1,s.shape[0],s.shape[1],s.shape[2]])),O(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),r!=null&&O(Zt(a),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=P.runKernel(Rs,u,d);return p=de(p,s.dtype),l?B(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Gc=W({avgPool_:vN});function wN(e,t,n,a,r,s="NDHWC"){let i=M(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=B(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),O(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),O(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&O(Zt(a),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=P.runKernel(Du,u,d);return p=de(p,o.dtype),l?B(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var w1=W({avgPool3d_:wN});function kN(e,t=0){O(e.length>=1,()=>"Pass at least one tensor to concat");let n=id(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return Oa(n[0]);let a=n,r={axis:t};return P.runKernel(zo,a,r)}var ht=W({concat_:kN});function IN(e){let t={x:M(e,"x","sigmoid")};return P.runKernel(mi,t)}var Un=W({sigmoid_:IN});function SN(e,t,n){let a=M(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return P.runKernel(hl,r,s)}var Re=W({slice_:SN});function TN(e){let t={x:M(e,"x","tanh")};return P.runKernel(wi,t)}var Ol=W({tanh_:TN});function NN(e,t,n,a,r,s){let i=M(e,"forgetBias","basicLSTMCell"),o=M(t,"lstmKernel","basicLSTMCell"),l=M(n,"lstmBias","basicLSTMCell"),u=M(a,"data","basicLSTMCell"),d=M(r,"c","basicLSTMCell"),p=M(s,"h","basicLSTMCell"),c=ht([u,p],1),h=Ve(c,o),m=re(h,l),f=m.shape[0],g=m.shape[1]/4,A=[f,g],y=Re(m,[0,0],A),x=Re(m,[0,g],A),v=Re(m,[0,g*2],A),b=Re(m,[0,g*3],A),k=re(L(Un(y),Ol(x)),L(d,Un(re(i,v)))),N=L(Ol(k),Un(b));return[k,N]}var CN=W({basicLSTMCell_:NN});function EN(e,t,n){let a=M(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);O(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),O(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),O(a.shape[0]%r==0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return P.runKernel(Oo,s,i)}var qc=W({batchToSpaceND_:EN});function RN(e){let t;return e.rank===0||e.rank===1?t=B(e,[1,1,1,e.size]):e.rank===2?t=B(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=B(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function MN(e,t,n,a,r,s){s==null&&(s=.001);let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;r!=null&&(u=M(r,"scale","batchNorm"));let d;a!=null&&(d=M(a,"offset","batchNorm")),O(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),O(d==null||o.rank===d.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),O(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:RN(i),scale:u,offset:d,mean:o,variance:l},c={varianceEpsilon:s},h=P.runKernel(js,p,c);return B(h,i.shape)}var zl=W({batchNorm_:MN});function FN(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;r!=null&&(u=M(r,"scale","batchNorm"));let d;return a!=null&&(d=M(a,"offset","batchNorm")),O(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),O(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),O(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&O(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),d!=null&&O(d.rank===2||d.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${d.rank}.`),zl(i,o,l,d,u,s)}var Hx=W({batchNorm2d_:FN});function $N(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;r!=null&&(u=M(r,"scale","batchNorm"));let d;return a!=null&&(d=M(a,"offset","batchNorm")),O(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),O(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),O(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&O(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),d!=null&&O(d.rank===3||d.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${d.rank}.`),zl(i,o,l,d,u,s)}var jx=W({batchNorm3d_:$N});function ON(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;r!=null&&(u=M(r,"scale","batchNorm"));let d;return a!=null&&(d=M(a,"offset","batchNorm")),O(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),O(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),O(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&O(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),d!=null&&O(d.rank===4||d.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${d.rank}.`),zl(i,o,l,d,u,s)}var Gx=W({batchNorm4d_:ON});function zN(e,t,n){let a=M(e,"x","bincount"),r=M(t,"weights","bincount");O(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return P.runKernel(Yp,s,i)}var k1=W({bincount_:zN});function _N(e,t){let n=M(e,"s0","broadcastArgs","int32"),a=M(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(a.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${a.rank}`);let r={s0:n,s1:a};return P.runKernel(Lm,r)}var qx=W({broadcastArgs_:_N});function DN(e,t){let n=M(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=B(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Oa(n);let i={x:n},o={reps:s};return P.runKernel(Hr,i,o)}var dd=W({broadcastTo_:DN});function PN(e){let t={x:M(e,"x","ceil")};return P.runKernel($s,t)}var Xx=W({ceil_:PN});function LN(e,t,n){let a=M(e,"x","clipByValue");O(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return P.runKernel(Ur,r,s)}var Hn=W({clipByValue_:LN});function WN(e){return ht(e,0)}var Kx=W({concat1d_:WN});function BN(e,t){return ht(e,t)}var _l=W({concat2d_:BN});function VN(e,t){return ht(e,t)}var Zx=W({concat3d_:VN});function UN(e,t){return ht(e,t)}var Yx=W({concat4d_:UN});function HN(e,t,n,a,r="NHWC",s=[1,1],i){let o=M(e,"x","conv2d"),l=M(t,"filter","conv2d"),u=o,d=!1;o.rank===3&&(d=!0,u=B(o,[1,o.shape[0],o.shape[1],o.shape[2]])),O(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),O(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&O(Zt(a),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p=r==="NHWC"?u.shape[3]:u.shape[1];O(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),O(er(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=P.runKernel(Os,c,h);return d?B(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Jr=W({conv2d_:HN});function jN(e,t,n,a,r="NWC",s=1,i){let o=M(e,"x","conv1d"),l=M(t,"filter","conv1d"),u=o,d=!1;o.rank===2&&(d=!0,u=B(o,[1,o.shape[0],o.shape[1]])),O(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),O(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&O(Zt(a),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),O(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),O(er(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),O(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=B(l,[1,l.shape[0],l.shape[1],l.shape[2]]),c=B(u,[u.shape[0],1,u.shape[1],u.shape[2]]),h=Jr(c,p,[1,n],a,"NHWC",[1,s],i);return d?B(h,[h.shape[2],h.shape[3]]):B(h,[h.shape[0],h.shape[2],h.shape[3]])}var I1=W({conv1d_:jN});function GN(e,t,n,a,r,s="NHWC",i){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=B(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),O(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),O(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),O(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let d=s==="NHWC"?o[3]:o[1],p=s==="NHWC"?l.shape[3]:l.shape[1];O(d===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${d}) must match input depth for filter ${n.shape[2]}.`),O(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),i!=null&&O(Zt(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let c={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=P.runKernel(zs,c,h);return u?B(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var S1=W({conv2DBackpropInput_:GN});function qN(e,t,n,a,r,s){let i=M(e,"x","conv2dTranspose"),o=M(t,"filter","conv2dTranspose");return S1(n,i,o,a,r,"NHWC",s)}var T1=W({conv2dTranspose_:qN});function XN(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=M(e,"x","conv3d"),o=M(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=B(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),O(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),O(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),O(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),O(er(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),O(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let d={x:l,filter:o},p={strides:n,pad:a,dataFormat:r,dilations:s},c=P.runKernel(Lu,d,p);return u?B(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var N1=W({conv3d_:XN});function KN(e,t,n,a,r){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=B(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];O(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),O(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),O(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),O(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),O(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let d={dy:i,filter:n},p={pad:r,strides:a,inputShape:s},c=P.runKernel(tc,d,p);return o?B(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var Jx=W({conv3DBackpropInput_:KN});function ZN(e,t,n,a,r){let s=M(e,"x","conv3dTranspose"),i=M(t,"filter","conv3dTranspose");return Jx(n,s,i,a,r)}var Qx=W({conv3dTranspose_:ZN});function YN(e){let t={x:M(e,"x","cos")};return P.runKernel(_s,t)}var Xc=W({cos_:YN});function JN(e){let t={x:M(e,"x","cosh")};return P.runKernel(Ds,t)}var C1=W({cosh_:JN});function QN(e,t=0,n=!1,a=!1){let r={x:M(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return P.runKernel(Ps,r,s)}var E1=W({cumsum_:QN});function eC(e,t,n,a=!1){let r=M(e,"x","denseBincount"),s=M(t,"weights","denseBincount");O(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),O(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return P.runKernel(nc,i,o)}var eb=W({denseBincount_:eC});function tC(e,t,n="NHWC"){let a=M(e,"x","depthToSpace"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];O(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),O(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),O(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return P.runKernel(Do,o,l)}var tb=W({depthToSpace_:tC});function nC(e,t,n,a,r="NHWC",s=[1,1],i){let o=M(e,"x","depthwiseConv2d"),l=M(t,"filter","depthwiseConv2d"),u=o,d=!1;o.rank===3&&(d=!0,u=B(o,[1,o.shape[0],o.shape[1],o.shape[2]])),O(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),O(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),O(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&O(Zt(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p={x:u,filter:l},c={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},h=P.runKernel(Ls,p,c);return d?B(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var pd=W({depthwiseConv2d_:nC});function aC(e){let t={x:M(e,"x","diag")};return P.runKernel(sc,t)}var rC=W({diag_:aC});function sC(e,t,n,a,r=[1,1],s="NHWC"){let i=M(e,"x","dilation2d"),o=M(t,"filter","dilation2d");O(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),O(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),O(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=B(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let d={x:l,filter:o},p={strides:n,pad:a,dilations:r},c=P.runKernel(Wu,d,p);return u?B(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var nb=W({dilation2d_:sC});function iC(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function jt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function At(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function oC(e,t){let n=M(e,"a","equal","string_or_numeric"),a=M(t,"b","equal","string_or_numeric");[n,a]=Tt(n,a),At(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Lo,r)}var oa=W({equal_:oC});function lC(e,t,n){let a=M(t,"a","where"),r=M(n,"b","where"),s=M(e,"condition","where","bool"),i=At(At(s.shape,a.shape),r.shape),o=dd(s,i),l=dd(a,i),u=dd(r,i),d={condition:o,t:l,e:u};return P.runKernel(pl,d)}var xn=W({where_:lC});function uC(e){let t={x:M(e,"x","zerosLike")};return P.runKernel(kl,t)}var Ke=W({zerosLike_:uC});function dC(e,t){let n=M(e,"a","div"),a=M(t,"b","div");[n,a]=Tt(n,a);let r=ce(n,a),s=Ke(r),i=oa(a,s);return xn(i,s,r)}var ab=W({divNoNan_:dC});function pC(e,t){let n=M(e,"t1","dot"),a=M(t,"t2","dot");O((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(O(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=B(n,[1,-1]),o=B(a,[-1,1]),l=Ve(i,o);return B(l,[])}else if(n.rank===1&&a.rank===2){let i=B(n,[1,-1]),o=B(a,[a.shape[0],a.shape[1]]),l=Ve(i,o);return B(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=B(a,[-1,1]),o=Ve(n,i);return B(o,[o.size])}else{let i=B(a,[a.shape[0],a.shape[1]]);return Ve(n,i)}}var cC=W({dot_:pC});function hC(e,...t){let n=t.map((r,s)=>M(r,`tensors${s}`,"einsum")),a={equation:e};return P.runKernel(lc,n,a)}var rb=W({einsum_:hC});function fC(e){let t={x:M(e,"x","elu")};return P.runKernel(Bs,t)}var cd=W({elu_:fC});function mC(e){let t=M(e,"x","erf");O(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=de(t,"float32"));let n={x:t};return P.runKernel(Po,n)}var sb=W({erf_:mC});function gC(e){let t={x:M(e,"x","exp")};return P.runKernel(Vs,t)}var la=W({exp_:gC});function AC(e,t=0){let n=M(e,"x","expandDims","string_or_numeric");O(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return P.runKernel(Wo,a,r)}var zt=W({expandDims_:AC});function yC(e){let t={x:M(e,"x","expm1")};return P.runKernel(Bo,t)}var ib=W({expm1_:yC});function xC(e,t){let n=M(e,"x","tile","string_or_numeric");O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return P.runKernel(Hr,a,r)}var Ta=W({tile_:xC});function bC(e,t,n,a="float32"){t==null&&(t=e);let r=Be([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=B(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Ta(zt(i,0),[n[0],1,1]);if(n.length===2)return Ta(zt(zt(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Ta(zt(zt(zt(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var R1=W({eye_:bC});function Dl(e,t,n){let a={shape:e,value:t,dtype:n};return P.runKernel(Bu,{},a)}function vC(e){let t={x:M(e,"x","floor")};return P.runKernel(Us,t)}var hd=W({floor_:vC});function wC(e,t,n=0,a=0){let r=M(e,"x","gather"),s=M(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return P.runKernel(Uo,i,o)}var Pl=W({gather_:wC});function kC(e,t){let n=M(e,"a","greater","string_or_numeric"),a=M(t,"b","greater","string_or_numeric");[n,a]=Tt(n,a),At(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(jo,r)}var jn=W({greater_:kC});function IC(e,t){let n=M(e,"a","greaterEqual","string_or_numeric"),a=M(t,"b","greaterEqual","string_or_numeric");[n,a]=Tt(n,a),At(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Gs,r)}var zi=W({greaterEqual_:IC});function SC(e){let t={input:M(e,"input","imag")};return P.runKernel(cc,t)}var Kc=W({imag_:SC});function TC(e){let t={x:M(e,"x","isFinite")};return P.runKernel(Go,t)}var NC=W({isFinite_:TC});function CC(e){let t={x:M(e,"x","isInf")};return P.runKernel(qo,t)}var EC=W({isInf_:CC});function RC(e){let t={x:M(e,"x","isNaN")};return P.runKernel(Xo,t)}var ob=W({isNaN_:RC});function MC(e,t=.2){let n={x:M(e,"x","leakyRelu")},a={alpha:t};return P.runKernel(Xs,n,a)}var Zc=W({leakyRelu_:MC});function FC(e,t){let n=M(e,"a","less","string_or_numeric"),a=M(t,"b","less","string_or_numeric");[n,a]=Tt(n,a),At(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Ko,r)}var M1=W({less_:FC});function $C(e,t){let n=M(e,"a","lessEqual","string_or_numeric"),a=M(t,"b","lessEqual","string_or_numeric");[n,a]=Tt(n,a),At(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Zo,r)}var _i=W({lessEqual_:$C});function lb(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return P.runKernel(hc,{},a)}function OC(e,t=5,n=1,a=1,r=.5){let s=M(e,"x","localResponseNormalization");O(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),O(Zt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=B(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:a,beta:r},d=P.runKernel(Hu,l,u);return o?B(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var ub=W({localResponseNormalization_:OC});function zC(e){let t={x:M(e,"x","log")};return P.runKernel(Ks,t)}var ua=W({log_:zC});function _C(e){let t={x:M(e,"x","log1p")};return P.runKernel(Yo,t)}var Yc=W({log1p_:_C});function DC(e){return O(Br(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=M(t,"x","tf.grad","string_or_numeric"),r=n!=null?M(n,"dy","tf.grad"):null;return P.tidy(()=>{let{value:s,grads:i}=P.gradients(()=>e(a),[a],r);return r!=null&&gn(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Jc(i),i[0]})}}function PC(e){return O(Br(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{O(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=id(t,"args","tf.grads","string_or_numeric"),r=n!=null?M(n,"dy","tf.grads"):null;return P.tidy(()=>{let{value:s,grads:i}=P.gradients(()=>e(...a),a,r);return r!=null&&gn(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Jc(i),i})}}function LC(e){return O(Br(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{O(t instanceof je,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),O(n==null||n instanceof je,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=P.gradients(()=>e(t),[t],n);return Jc(a),{grad:a[0],value:r}}}function WC(e){return O(Br(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{O(Array.isArray(t)&&t.every(r=>r instanceof je),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),O(n==null||n instanceof je,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=P.gradients(()=>e(...t),t,n);return n!=null&&gn(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Jc(a.grads),a}}function db(e,t){O(Br(e),()=>"The f passed in variableGrads(f) must be a function"),O(t==null||Array.isArray(t)&&t.every(u=>u instanceof ad),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in P.registeredVariables)t.push(P.registeredVariables[u])}let a=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),O(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=P.gradients(e,t,null,s);O(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),O(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,d)=>{o[d]!=null&&(l[u.name]=o[d])}),a!=null&&a.forEach(u=>l[u.name]=null),{value:i,grads:l}}function tr(e){return P.customGrad(e)}function Jc(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function BC(e){let t={x:M(e,"x","neg")};return P.runKernel(el,t)}var Nt=W({neg_:BC});function VC(e){let t={x:M(e,"x","softplus")};return P.runKernel(gl,t)}var Ll=W({softplus_:VC});function UC(e){let t=M(e,"x","logSigmoid");return tr(n=>({value:Nt(Ll(Nt(n))),gradFunc:a=>L(a,Un(Nt(n)))}))(t)}var HC=W({logSigmoid_:UC});function jC(e,t=null,n=!1){let a={x:M(e,"x","max")},r={reductionIndices:t,keepDims:n};return P.runKernel(Zs,a,r)}var da=W({max_:jC});function GC(e,t){let n=M(e,"a","sub"),a=M(t,"b","sub");[n,a]=Tt(n,a);let r={a:n,b:a};return P.runKernel(bi,r)}var fe=W({sub_:GC});function qC(e,t=null,n=!1){let a=M(e,"x","sum");a.dtype==="bool"&&(a=de(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return P.runKernel(Ai,r,s)}var be=W({sum_:qC});function XC(e,t=-1){let n=M(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return tr((a,r)=>{let s=!0,i=da(a,t,!0),o=fe(a,i),l=fe(de(o,"float32"),ua(be(la(o),t,s)));return r([l]),{value:l,gradFunc:(u,d)=>{let[p]=d,c=!0,h=la(p);return fe(u,L(be(u,t,c),h))}}})(n)}var F1=W({logSoftmax_:XC});function $1(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function pb(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function cb(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function Di(e,t){let n=t.map(a=>1);return pb(e,n,t)}function KC(e,t,n){O($1(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function hb(e,t){if($1(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function O1(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function ZC(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function YC(e,t=null,n=!1){let a=M(e,"x","logSumExp"),r=Ia(t,a.shape),s=da(a,r,!0),i=fe(a,s),o=la(i),l=be(o,r),u=ua(l),d=re(B(s,u.shape),u);if(n){let p=Di(d.shape,r);return B(d,p)}return d}var fb=W({logSumExp_:YC});function JC(e,t){let n=M(e,"a","logicalAnd","bool"),a=M(t,"b","logicalAnd","bool");At(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Jo,r)}var za=W({logicalAnd_:JC});function QC(e){let t={x:M(e,"x","logicalNot","bool")};return P.runKernel(Vu,t)}var Qc=W({logicalNot_:QC});function eE(e,t){let n=M(e,"a","logicalOr","bool"),a=M(t,"b","logicalOr","bool");At(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Uu,r)}var z1=W({logicalOr_:eE});function tE(e,t){let n=M(e,"a","logicalXor","bool"),a=M(t,"b","logicalXor","bool");return At(n.shape,a.shape),za(z1(e,t),Qc(za(e,t)))}var nE=W({logicalXor_:tE});function aE(e,t,n,a,r){let s=M(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=B(s,[1,s.shape[0],s.shape[1],s.shape[2]])),O(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),O(er(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),r!=null&&O(Zt(a),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=P.runKernel(Js,u,d);return l?B(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var eh=W({maxPool_:aE});function rE(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=M(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=B(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),O(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),O(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&O(Zt(a),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=P.runKernel(ju,u,d);return l?B(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var _1=W({maxPool3d_:rE});function sE(e,t,n,a,r=!1){let s={x:M(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=P.runKernel(Ac,s,i);return{result:o[0],indexes:o[1]}}var mb=W({maxPoolWithArgmax_:sE});function iE(e,t){let n=M(e,"a","maximum"),a=M(t,"b","maximum");[n,a]=Tt(n,a),n.dtype==="bool"&&(n=de(n,"int32"),a=de(a,"int32")),At(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Ys,r)}var wr=W({maximum_:iE});function oE(e,t=null,n=!1){let a={x:M(e,"x","mean")},r={axis:t,keepDims:n};return P.runKernel(Qs,a,r)}var Mt=W({mean_:oE});function _t(e,t="float32"){if(t==="complex64"){let a=_t(e,"float32"),r=_t(e,"float32");return qr(a,r)}let n=Xp($t(e),t);return P.makeTensor(n,e,t)}function Gn(e,t="float32"){if(t==="complex64"){let a=Gn(e,"float32"),r=_t(e,"float32");return qr(a,r)}let n=Om($t(e),t);return P.makeTensor(n,e,t)}function lE(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=M(e,"x","meshgrid",e instanceof je?e.dtype:"float32");if(t===void 0)return[a];let r=M(t,"y","meshgrid",t instanceof je?t.dtype:"float32"),s=$t(a.shape),i=$t(r.shape);return n==="xy"?(a=B(a,[1,-1]),r=B(r,[-1,1]),[Ve(Gn([i,1],a.dtype),a),Ve(r,Gn([1,s],r.dtype))]):(a=B(a,[-1,1]),r=B(r,[1,-1]),[Ve(a,Gn([1,i],a.dtype)),Ve(Gn([s,1],r.dtype),r)])}function uE(e,t=null,n=!1){let a={x:M(e,"x","min")},r={axis:t,keepDims:n};return P.runKernel(ei,a,r)}var th=W({min_:uE});function dE(e,t){let n=M(e,"a","minimum"),a=M(t,"b","minimum");[n,a]=Tt(n,a),n.dtype==="bool"&&(n=de(n,"int32"),a=de(a,"int32")),At(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(ti,r)}var fd=W({minimum_:dE});function pE(e,t,n){O(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=M(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");O(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)O(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),O(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return P.runKernel(ni,i,s)}var gb=W({mirrorPad_:pE});function cE(e,t){let n=M(e,"a","mod"),a=M(t,"b","mod");[n,a]=Tt(n,a);let r={a:n,b:a};return P.runKernel(Qo,r)}var Ab=W({mod_:cE});function hE(e){let t=M(e,"x","square"),n={};return P.runKernel("Square",{x:t},n)}var ut=W({square_:hE});function fE(e,t=null,n=!1){e=M(e,"x","moments");let a=Ia(t,e.shape),r=Mt(e,a,n),s=r.shape;n||(s=Di(r.shape,a));let i=ut(fe(de(e,"float32"),B(r,s))),o=Mt(i,a,n);return{mean:r,variance:o}}var nh=W({moments_:fE});function mE(e,t,n,a){let r=M(t,"data","multiRNNCell"),s=id(n,"c","multiRNNCell"),i=id(a,"h","multiRNNCell"),o=r,l=[];for(let p=0;p<e.length;p++){let c=e[p](o,s[p],i[p]);l.push(c[0]),l.push(c[1]),o=c[1]}let u=[],d=[];for(let p=0;p<l.length;p+=2)u.push(l[p]),d.push(l[p+1]);return[u,d]}var gE=W({multiRNNCell_:mE});function AE(e,t,n,a=!1){let r=M(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?B(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},u=P.runKernel(yc,o,l);return i===1?B(u,[u.size]):u}var yb=W({multinomial_:AE});function yE(e,t){let n=M(e,"a","notEqual","string_or_numeric"),a=M(t,"b","notEqual","string_or_numeric");[n,a]=Tt(n,a),At(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(tl,r)}var Wl=W({notEqual_:yE});function xE(e){let t={x:M(e,"x","onesLike")};return P.runKernel(sl,t)}var pa=W({onesLike_:xE});function bE(e,t){let n=M(e,"v1","outerProduct"),a=M(t,"v2","outerProduct");O(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=B(n,[-1,1]),s=B(a,[1,-1]);return Ve(r,s)}var vE=W({outerProduct_:bE});function wE(e,t,n=0){let a=M(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return P.runKernel(si,s,r)}var Qr=W({pad_:wE});function kE(e,t,n=0){return O(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Qr(e,[t],n)}var IE=W({pad1d_:kE});function SE(e,t,n=0){return O(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Qr(e,t,n)}var TE=W({pad2d_:SE});function NE(e,t,n=0){return O(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Qr(e,t,n)}var CE=W({pad3d_:NE});function EE(e,t,n=0){return O(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Qr(e,t,n)}var RE=W({pad4d_:EE});function ME(e,t,n){let a=M(e,"x","spaceToBatchND");O(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),O(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),O(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return P.runKernel(Al,r,s)}var ah=W({spaceToBatchND_:ME});function FE(e,t,n,a,r,s){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let i=M(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=B(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(er(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let u=Bx(o.shape,t,s,r,a),d=[u.dilationHeight,u.dilationWidth],p;a==="same"?p=OE([u.filterHeight,u.filterWidth],d):p=[[0,0],[0,0]];let c=d[0]===1&&d[1]===1,[h,m]=$E([u.inHeight,u.inWidth],d,p),f=c?a:"valid",g=c?o:ah(o,d,h),A=(n==="avg"?()=>Gc(g,t,s,f):()=>eh(g,t,s,f))(),y=c?A:qc(A,d,m);return l?B(y,[y.shape[1],y.shape[2],y.shape[3]]):y}function $E(e,t,n){let a=n.map(d=>d[0]),r=n.map(d=>d[1]),s=e.concat(a,r),i=t.map((d,p)=>(d-s[p]%d)%d),o=r.map((d,p)=>d+i[p]),l=t.map((d,p)=>[a[p],o[p]]),u=t.map((d,p)=>[0,i[p]]);return[l,u]}function OE(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var zE=W({pool_:FE});function _E(e,t){let n=M(e,"base","pow"),a=M(t,"exp","pow");[n,a]=Tt(n,a);let r={a:n,b:a};return P.runKernel(ii,r)}var es=W({pow_:_E});function DE(e,t){let n=M(e,"x","prelu"),a=M(t,"alpha","prelu"),r={x:n,alpha:a};return P.runKernel(oi,r)}var rh=W({prelu_:DE});function PE(e,t=null,n=!1){let a=M(e,"x","prod");a.dtype==="bool"&&(a=de(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return P.runKernel(ol,r,s)}var D1=W({prod_:PE});function LE(e,t,n){let a=$t(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return P.makeTensor(r,e,n)}var WE=W({rand_:LE}),P1=Ss(g5()),L1=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=P1.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},BE=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=P1.alea(r.toString()),this.randn=new L1(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},VE=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=P1.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function UE(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new BE(t,n,a,r),i=Be(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var HE=W({randomGamma_:UE});function jE(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new L1(t,n,a,!1,r),i=Be(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var xb=W({randomNormal_:jE});function GE(e,t=0,n=1,a="float32",r){let s=Be(e,a),i=new VE(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var Bl=W({randomUniform_:GE});function Vl(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return P.runKernel(Gu,{},r)}function qE(e){let t={input:M(e,"input","real")};return P.runKernel(xc,t)}var md=W({real_:qE});function XE(e){let t={x:M(e,"x","reciprocal")};return P.runKernel(ll,t)}var bb=W({reciprocal_:XE});function KE(e){let t={x:M(e,"x","relu")};return P.runKernel(li,t)}var nr=W({relu_:KE});function ZE(e){let t={x:M(e,"x","relu6")};return P.runKernel(di,t)}var W1=W({relu6_:ZE});function YE(e,t){let n={x:M(e,"x","reverse")},a={dims:t};return P.runKernel(pi,n,a)}var ca=W({reverse_:YE});function JE(e){let t=M(e,"x","reverse");return O(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),ca(t,0)}var QE=W({reverse1d_:JE});function eR(e,t){let n=M(e,"x","reverse");return O(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),ca(n,t)}var tR=W({reverse2d_:eR});function nR(e,t){let n=M(e,"x","reverse");return O(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),ca(n,t)}var aR=W({reverse3d_:nR});function rR(e,t){let n=M(e,"x","reverse");return O(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),ca(n,t)}var sR=W({reverse4d_:rR});function iR(e){let t={x:M(e,"x","round")};return P.runKernel(ci,t)}var B1=W({round_:iR});function oR(e){let t={x:M(e,"x","rsqrt")};return P.runKernel(hi,t)}var V1=W({rsqrt_:oR});function ke(e,t){if((dn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&dn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Xr(e,[],[],t)}function lR(e){let t={x:M(e,"x","selu")};return P.runKernel(cl,t)}var U1=W({selu_:lR});function uR(e,t,n,a,r,s=[1,1],i="NHWC"){let o=M(e,"x","separableConv2d"),l=M(t,"depthwiseFilter","separableConv2d"),u=M(n,"pointwiseFilter","separableConv2d"),d=o,p=!1;if(o.rank===3&&(p=!0,d=B(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");O(d.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${d.rank}.`),O(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),O(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),O(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),O(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let c=l.shape[2],h=l.shape[3];O(u.shape[2]===c*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${c*h}, but got ${u.shape[2]}.`);let m=pd(d,l,a,r,i,s),f=Jr(m,u,1,"valid",i);return p?B(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var vb=W({separableConv2d_:uR});async function dR(e,t){let n=M(e,"x","setdiff1d"),a=M(t,"y","setdiff1d");O(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),O(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),O(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let d=0;d<r.length;d++)i.has(r[d])||o++;let l=new Ut([o],n.dtype),u=new Ut([o],"int32");for(let d=0,p=0;d<r.length;d++)i.has(r[d])||(l.values[p]=r[d],u.values[p]=d,p++);return[l.toTensor(),u.toTensor()]}var wb=dR;function pR(e){let t={x:M(e,"x","sign")};return P.runKernel(ml,t)}var kb=W({sign_:pR});function cR(e){let t={x:M(e,"x","sin")};return P.runKernel(fi,t)}var H1=W({sin_:cR});function hR(e){let t={x:M(e,"x","sinh")};return P.runKernel(fl,t)}var j1=W({sinh_:hR});function fR(e,t,n){let a=M(e,"x","slice1d");return O(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),Re(a,[t],[n])}var sh=W({slice1d_:fR});function mR(e,t,n){let a=M(e,"x","slice2d");return O(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),Re(a,t,n)}var G1=W({slice2d_:mR});function gR(e,t,n){let a=M(e,"x","slice3d");return O(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),Re(a,t,n)}var ih=W({slice3d_:gR});function AR(e,t,n){let a=M(e,"x","slice4d");return O(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),Re(a,t,n)}var gd=W({slice4d_:AR});function yR(e,t=-1){let n=M(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return P.runKernel(yi,a,r)}var oh=W({softmax_:yR});function xR(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return P.runKernel(dc,t)}var lh=W({fft_:xR});function bR(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return P.runKernel(pc,t)}var Ad=W({ifft_:bR});function vR(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=B(e,[n,t]);a=Ad(r)}else{let r=[n,2*(t-1)],s=B(md(e),[n,t]),i=B(Kc(e),[n,t]),o=ca(Re(s,[0,1],[n,t-2]),1),l=L(ca(Re(i,[0,1],[n,t-2]),1),ke(-1)),u=ht([s,o],1),d=ht([i,l],1),p=B(qr(u,d),[r[0],r[1]]);a=Ad(p)}if(a=md(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=B(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var q1=W({irfft_:vR});function wR(e,t,n=0){let a={x:M(e,"x","split")},r={numOrSizeSplits:t,axis:n};return P.runKernel(yl,a,r)}var sn=W({split_:wR});function kR(e,t){O(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=Re(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=ht([e,_t(m)],e.shape.length-1),n=t}else r=e;let s=Ke(r),i=B(qr(r,s),[a,n]),o=lh(i),l=Math.floor(n/2)+1,u=md(o),d=Kc(o),p=sn(u,[l,n-l],u.shape.length-1),c=sn(d,[l,n-l],d.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,B(qr(p[0],c[0]),h)}var uh=W({rfft_:kR});function IR(e){let t={x:M(e,"x","sqrt")};return P.runKernel(gi,t)}var cn=W({sqrt_:IR});function SR(e,t){let n=M(e,"a","squaredDifference"),a=M(t,"b","squaredDifference");[n,a]=Tt(n,a),At(n.shape,a.shape);let r={a:n,b:a},s={};return P.runKernel(xi,r,s)}var X1=W({squaredDifference_:SR});function TR(e,t){let n=M(e,"x","squeeze");return B(n,b5(n.shape,t).newShape)}var lt=W({squeeze_:TR});function NR(e,t=0){let n=id(e,"tensors","stack","string_or_numeric");O(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&O(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return P.runKernel(il,a,r)}var $n=W({stack_:NR});function CR(e,t=0){let n={x:M(e,"x","step")},a={alpha:t};return P.runKernel(jr,n,a)}var yd=W({step_:CR});function ER(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let u={x:M(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return P.runKernel(xl,u,d)}var Ib=W({stridedSlice_:ER});function RR(e){let t={x:M(e,"x","tan")};return P.runKernel(vi,t)}var Sb=W({tan_:RR});function Dt(e,t){Ts(e);let n=Ja(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Xr(e,null,n,t)}function _a(e,t,n){if(Ts(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=Ja(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Xr(e,t,a,n)}function MR(e,t,n){if(Ts(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=Ja(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Xr(e,t,a,n)}function FR(e,t,n){if(Ts(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=Ja(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Xr(e,t,a,n)}function $R(e,t,n){if(Ts(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=Ja(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,Xr(e,t,a,n)}function OR(e,t=1,n=!0){let a=M(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=P.runKernel(bl,s,i);return{values:o,indices:l}}var Tb=W({topk_:OR});function zR(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new L1(t,n,a,!0,r),i=Be(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var dh=W({truncatedNormal_:zR});function _R(e,t=0){let n=M(e,"x","unique","string_or_numeric");O(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=P.runKernel(Rc,a,r);return{values:s,indices:i}}var K1=W({unique_:_R});function DR(e,t,n){let a=M(e,"x","unsortedSegmentSum"),r=M(t,"segmentIds","unsortedSegmentSum","int32");O(Zt(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return P.runKernel(Ku,s,i)}var Nb=W({unsortedSegmentSum_:DR});function PR(e,t=0){let n=M(e,"x","unstack","string_or_numeric");O(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return P.runKernel(wl,a,r)}var ha=W({unstack_:PR});function Cb(e,t=!0,n,a){return P.makeVariable(e,t,n,a)}function Eb(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=Be(e,"int32"),r=Be([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function LR(e){let t=M(e,"condition","whereAsync","bool"),n=await t.data(),a=Eb(t.shape,n);return e!==t&&t.dispose(),a}var Z1=LR;async function WR(e,t,n){let a=M(e,"tensor","boolMask"),r=M(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;O(i>0,()=>"mask cannot be scalar"),gn(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),d=B(a,u),p=B(r,[-1]),c=await Z1(p),h=lt(c,[1]),m=Pl(d,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),d.dispose(),p.dispose(),c.dispose(),m}var BR=WR;function VR(e,t="euclidean",n=null,a=!1){e=M(e,"x","norm");let r=Rb(e,t,n),s=r.shape;if(a){let i=Ia(n,e.shape);s=Di(r.shape,i)}return B(r,s)}function Rb(e,t,n=null){if(e.rank===0)return Ht(e);if(e.rank!==1&&n===null)return Rb(B(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return be(Ht(e),n);if(t===1/0)return da(Ht(e),n);if(t===-1/0)return th(Ht(e),n);if(t==="euclidean"||t===2)return cn(be(es(Ht(e),ke(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return da(be(Ht(e),n[0]),n[1]-1);if(t===1/0)return da(be(Ht(e),n[1]),n[0]);if(t===-1/0)return th(be(Ht(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return cn(be(ut(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Y1=W({norm_:VR});function UR(e,t,n,a,r=!0){let s=M(e,"v","movingAverage"),i=M(t,"x","movingAverage"),o=M(n,"decay","movingAverage");B5(s,i),O(xr(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=ke(1),u=fe(l,o),d=L(fe(i,s),u);if(r){O(a!=null,()=>"When using zeroDebias: true, step is required.");let p=M(a,"step","movingAverage");d=ce(d,fe(l,es(o,p)))}return re(s,d)}var HR=W({movingAverage_:UR});function jR(e,t,n){let a=M(e,"indices","scatterND","int32"),r=M(t,"updates","scatterND");c1(r,a,n);let s={indices:a,updates:r},i={shape:n};return P.runKernel(dl,s,i)}var Mb=W({scatterND_:jR});function GR(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function qR(e,t,n,a=0){let r=M(e,"sparseIndices","sparseToDense","int32"),s=M(t,"sparseValues","sparseToDense"),i=M(a,"defaultValue","sparseToDense",s.dtype);GR(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return P.runKernel(Tc,o,l)}var J1=W({sparseToDense_:qR});function XR(e,t){let n=M(t,"indices","gatherND","int32"),a={params:M(e,"x","gatherND","string_or_numeric"),indices:n};return P.runKernel(Ho,a)}var Fb=W({gatherND_:XR});function KR(e,t){if(t==null)return e.shape.slice();if(xr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function ZR(e,t,n,a){let r=M(e,"x","dropout");if(O(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),O(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof je?r.clone():r;let s=KR(r,n),i=1-t,o=ce(hd(re(Bl(s,0,1,"float32",a),i)),i);return L(r,o)}var $b=W({dropout_:ZR});function Ob(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Q1(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return Dt(r,"float32")}async function YR(e,t,n=1){let a=M(e,"predictions","inTopK"),r=M(t,"targets","inTopK");O(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),O(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),gn(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];O(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,u]=[i.length/s,s],d=v5("bool",l);for(let p=0;p<l;p++){let c=p*u,h=i.subarray(c,c+u),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,g)=>g.value-f.value),d[p]=0;for(let f=0;f<n;f++)if(m[f].index===o[p]){d[p]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),pn(d,r.shape,"bool")}var JR=YR,ts={};_e(ts,{conv2d:()=>tM,depthwiseConv2d:()=>sM,matMul:()=>oM});function QR(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=B(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=B(t,[1,t.shape[0],t.shape[1],t.shape[2]])),O(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),O(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),O(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],d=s==="NHWC"?l.shape[3]:l.shape[1];O(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),O(d===n[3],()=>`Error in conv2dDerFilter: depth of dy (${d}) must match output depth for filter (${n[3]}).`),i!=null&&O(Zt(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let p={x:o,dy:l},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return P.runKernel(Qp,p,c)}var eg=W({conv2DBackpropFilter_:QR});function ph(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return L(e,yd(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function ch(e,t){let n=t,a=jt(e.shape,t.shape);return a.length>0&&(n=be(n,a)),B(n,e.shape)}function hh(e,t,n,a){if(t==="linear")return e;if(t==="relu")return nr(e);if(t==="elu")return cd(e);if(t==="relu6")return W1(e);if(t==="prelu")return rh(e,n);if(t==="leakyrelu")return Zc(e,a);if(t==="sigmoid")return Un(e);throw new Error(`Unknown fused activation ${t}.`)}var fh=(e,t)=>!(e>0)||t==="linear";function eM({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(l=l||"linear",fh(P.state.gradientDepth,l)===!1){let b=Jr(e,t,n,a,r,s,i);return o!=null&&(b=re(b,o)),hh(b,l,u,d)}let p=M(e,"x","conv2d"),c=M(t,"filter","conv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=B(p,[1,p.shape[0],p.shape[1],p.shape[2]])),O(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),O(c.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${c.rank}.`),i!=null&&O(Zt(a),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),O(h.shape[3]===c.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${c.shape[2]}.`),O(er(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),O(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=ud(h.shape,c.shape,n,s,a,i),g;o!=null&&(g=M(o,"bias","fused conv2d"),[g]=Tt(g,p),At(f.outShape,g.shape));let A;u!=null&&(A=M(u,"prelu weights","fused conv2d"));let y=(b,k)=>{let[N,C,E,z]=k,F=ph(b,E,l);O(Yr(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let I=S1(C.shape,F,N,n,a),_=eg(C,F,N.shape,n,a),D=[I,_];if(z!=null){let V=ch(z,F);D.push(V)}return D},x={x:h,filter:c,bias:g,preluActivationWeights:A},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?tr((b,k,N)=>{let C=P.runKernel(Si,x,v);return N([k,b,C]),m&&(C=B(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:y}})(h,c):tr((b,k,N,C)=>{let E=P.runKernel(Si,x,v);return C([k,b,E,N]),m&&(E=B(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:y}})(h,c,g)}var tM=W({fusedConv2d_:eM});function nM(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=B(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=B(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},d={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return P.runKernel(ac,u,d)}var zb=W({depthwiseConv2dNativeBackpropFilter_:nM});function aM(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=B(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},d={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},p=P.runKernel(rc,u,d);return l?B(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var _b=W({depthwiseConv2dNativeBackpropInput_:aM});function rM({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(fh(P.state.gradientDepth,l)===!1){let b=pd(e,t,n,a,r,s,i);return o!=null&&(b=re(b,o)),hh(b,l,u,d)}let p=M(e,"x","depthwiseConv2d"),c=M(t,"filter","depthwiseConv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=B(p,[1,p.shape[0],p.shape[1],p.shape[2]])),O(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),O(c.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),O(h.shape[3]===c.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),s==null&&(s=[1,1]),O(er(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&O(Zt(a),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${a}.`);let f=ud(h.shape,c.shape,n,s,a,i,!0),g;o!=null&&(g=M(o,"bias","fused conv2d"),[g]=Tt(g,p),At(f.outShape,g.shape));let A;u!=null&&(A=M(u,"prelu weights","fused depthwiseConv2d"));let y=(b,k)=>{O(Yr(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[N,C,E,z]=k,F=ph(b,E,l),I=_b(C.shape,F,N,n,a,s,i),_=zb(C,F,N.shape,n,a,s,i);if(z!=null){let D=ch(g,F);return[I,_,D]}return[I,_]},x={x:h,filter:c,bias:g,preluActivationWeights:A},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?tr((b,k,N)=>{let C=P.runKernel(Ti,x,v);return N([k,b,C]),m&&(C=B(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:y}})(h,c):tr((b,k,N,C)=>{let E=P.runKernel(Ti,x,v);return C([k,b,E,N]),m&&(E=B(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:y}})(h,c,g)}var sM=W({fusedDepthwiseConv2d_:rM});function iM({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(fh(P.state.gradientDepth,s)===!1){let z=Ve(e,t,n,a);return r!=null&&(z=re(z,r)),hh(z,s,i,o)}let l=M(e,"a","fused matMul"),u=M(t,"b","fused matMul");[l,u]=Tt(l,u);let d=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=a?u.shape[u.rank-1]:u.shape[u.rank-2],c=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),g=$t(m),A=$t(f);O(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),O(xr(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),O(d===p,()=>`Error in fused matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${a} must match.`);let y=l.shape.slice(0,-2).concat([c,h]),x=n?B(l,[g,d,c]):B(l,[g,c,d]),v=a?B(u,[A,h,p]):B(u,[A,p,h]),b;r!=null&&(b=M(r,"bias","fused matMul"),[b]=Tt(b,l),At(y,b.shape));let k;i!=null&&(k=M(i,"prelu weights","fused matMul"));let N=(z,F)=>{let[I,_,D,V]=F,q=ph(B(z,D.shape),D,s),G,Q;if(!n&&!a?(G=Ve(q,_,!1,!0),Q=Ve(I,q,!0,!1)):!n&&a?(G=Ve(q,_,!1,!1),Q=Ve(q,I,!0,!1)):n&&!a?(G=Ve(_,q,!1,!0),Q=Ve(I,q,!1,!1)):(G=Ve(_,q,!0,!0),Q=Ve(q,I,!0,!0)),r!=null){let J=ch(V,q);return[G,Q,J]}else return[G,Q]},C={a:x,b:v,bias:b,preluActivationWeights:k},E={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?tr((z,F,I)=>{let _=P.runKernel(Ii,C,E);return I([z,F,_]),{value:B(_,y),gradFunc:N}})(x,v):tr((z,F,I,_)=>{let D=P.runKernel(Ii,C,E);return _([z,F,D,I]),{value:B(D,y),gradFunc:N}})(x,v,b)}var oM=W({fusedMatMul_:iM});function lM(e){return Q1(e,.54,.46)}var uM=W({hammingWindow_:lM});function dM(e){return Q1(e,.5,.5)}var Db=W({hannWindow_:dM});function pM(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Re(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=ht([Re(e,s,t-o),Dl([o],r)]);i.push(l),s+=n}return i.length===0?_a([],[0,t]):B(ht(i),[i.length,t])}var Pb=W({frame_:pM});function cM(e,t,n,a,r=Db){a==null&&(a=Ob(t));let s=Pb(e,t,n),i=L(s,r(t));return uh(i,a)}var hM=W({stft_:cM});function fM(e,t,n,a,r="bilinear",s=0){let i=M(e,"image","cropAndResize"),o=M(t,"boxes","cropAndResize","float32"),l=M(n,"boxInd","cropAndResize","int32"),u=o.shape[0];O(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),O(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),O(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),O(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),O(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),O(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let d={image:i,boxes:o,boxInd:l},p={method:r,extrapolationValue:s,cropSize:a};return P.runKernel(_o,d,p)}var mM=W({cropAndResize_:fM});function gM(e){let t=M(e,"image","flipLeftRight","float32");O(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return P.runKernel(Vo,n,{})}var AM=W({flipLeftRight_:gM});function yM(e){let t=M(e,"image","grayscaleToRGB"),n=t.rank-1,a=t.shape[n];O(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),O(a===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${a}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Ta(t,r)}var xM=W({grayscaleToRGB_:yM});function bM(e,t,n=0,a=.5){let r=M(e,"image","rotateWithOffset","float32");O(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return P.runKernel(Il,s,i)}var vM=W({rotateWithOffset_:bM});function Ul(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),O(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),O(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),O(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),O(t.rank===1,()=>"scores must be a 1D tensor"),O(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),O(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function wM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=M(e,"boxes","nonMaxSuppression"),i=M(t,"scores","nonMaxSuppression"),o=Ul(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return P.runKernel(nl,{boxes:s,scores:i},l)}var kM=W({nonMaxSuppression_:wM});function IM(e,t,n){let a=SM(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function SM(e,t,n){return NM(e,t,n||TM)}function TM(e,t){return e>t?1:e<t?-1:0}function NM(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function Lb(e,t,n,a,r){return tg(e,t,n,a,r,0)}function Wb(e,t,n,a,r,s){return tg(e,t,n,a,r,0,!1,s,!0)}function Bb(e,t,n,a,r,s){return tg(e,t,n,a,r,s,!0)}function tg(e,t,n,a,r,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(Vb);let d=s>0?-.5/s:0,p=[],c=[];for(;p.length<n&&u.length>0;){let g=u.pop(),{score:A,boxIndex:y,suppressBeginIndex:x}=g;if(A<r)break;let v=!1;for(let b=p.length-1;b>=x;--b){let k=CM(e,y,p[b]);if(k>=a){v=!0;break}if(g.score=g.score*EM(a,d,k),g.score<=r)break}g.suppressBeginIndex=p.length,v||(g.score===A?(p.push(y),c.push(g.score)):g.score>r&&IM(u,g,Vb))}let h=p.length,m=n-h;o&&m>0&&(p.push(...new Array(m).fill(0)),c.push(...new Array(m).fill(0)));let f={selectedIndices:p};return i&&(f.selectedScores=c),l&&(f.validOutputs=h),f}function CM(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),u=Math.min(r[0],r[2]),d=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(p-u)*(c-d);if(h<=0||m<=0)return 0;let f=Math.max(s,u),g=Math.max(i,d),A=Math.min(o,p),y=Math.min(l,c),x=Math.max(A-f,0)*Math.max(y-g,0);return x/(h+m-x)}function EM(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function Vb(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function RM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=M(e,"boxes","nonMaxSuppressionAsync"),i=M(t,"scores","nonMaxSuppressionAsync"),o=Ul(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],d=l[1],{selectedIndices:p}=Lb(u,d,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),Dt(p,"int32")}var MM=RM;function FM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=M(e,"boxes","nonMaxSuppression"),o=M(t,"scores","nonMaxSuppression"),l=Ul(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},d={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},p=P.runKernel(rl,u,d);return{selectedIndices:p[0],selectedScores:p[1]}}var $M=W({nonMaxSuppressionWithScore_:FM});async function OM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=M(e,"boxes","nonMaxSuppressionAsync"),o=M(t,"scores","nonMaxSuppressionAsync"),l=Ul(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),d=u[0],p=u[1],{selectedIndices:c,selectedScores:h}=Bb(d,p,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Dt(c,"int32"),selectedScores:Dt(h)}}var zM=OM;function _M(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=M(e,"boxes","nonMaxSuppression"),o=M(t,"scores","nonMaxSuppression"),l=Ul(i,o,n,a,r,null),u=l.maxOutputSize,d=l.iouThreshold,p=l.scoreThreshold,c={boxes:i,scores:o},h={maxOutputSize:u,iouThreshold:d,scoreThreshold:p,padToMaxOutputSize:s},m=P.runKernel(al,c,h);return{selectedIndices:m[0],validOutputs:m[1]}}var DM=W({nonMaxSuppressionPadded_:_M});async function PM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=M(e,"boxes","nonMaxSuppressionAsync"),o=M(t,"scores","nonMaxSuppressionAsync"),l=Ul(i,o,n,a,r,null),u=l.maxOutputSize,d=l.iouThreshold,p=l.scoreThreshold,[c,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=Wb(c,h,u,d,p,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Dt(m,"int32"),validOutputs:ke(f,"int32")}}var LM=PM;function WM(e,t,n=!1,a=!1){let r=M(e,"images","resizeBilinear");O(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),O(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=B(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=P.runKernel(ui,o,l);return i?B(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var BM=W({resizeBilinear_:WM});function VM(e,t,n=!1,a=!1){let r=M(e,"images","resizeNearestNeighbor");O(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),O(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),O(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=B(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=P.runKernel(qu,o,l);return i?B(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var UM=W({resizeNearestNeighbor_:VM});function HM(e,t="binary",n=!1,a=.5){let r=M(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=L(Dt([a]),255),d,p,c,h;if(O(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),O(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),O(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),O(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[d,p,c]=sn(r,[1,1,1],-1);let f=L(d,s),g=L(p,i),A=L(c,o);h=re(re(f,g),A)}else h=e;if(t==="otsu"){let f=k1(de(B1(h),"int32"),pn([]),256);u=jM(f,l)}let m=n?_i(h,u):jn(h,u);return de(L(m,255),"int32")}function jM(e,t){let n=Dt([-1]),a=Dt([0]),r=Dt([0]),s,i,o,l,u,d;for(let p=0;p<e.size-1;p++){s=Re(e,0,p+1),i=Re(e,p+1),u=ce(be(s),t),d=ce(be(i),t);let c=be(L(s,Vl(0,s.size)));o=ce(c,be(s));let h=Dl(i.shape,s.size),m=re(Vl(0,i.size),h),f=L(i,m);l=ce(be(f),be(i));let g=fe(o,l),A=fe(o,l),y=L(u,d);r=L(L(y,g),A);let x=jn(r,a);a=xn(x,r,a),n=xn(x,Dt([p]),n)}return n}var GM=W({threshold_:HM});function qM(e,t,n="nearest",a="constant",r=0,s){let i=M(e,"image","transform","float32"),o=M(t,"transforms","transform","float32");O(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),O(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),O(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return P.runKernel(vl,l,u)}var XM=W({transform_:qM});function KM(e,t,n){O(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),O(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=M(e,"a","bandPart");O(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=B(Vl(0,s,1,"int32"),[-1,1]),l=Vl(0,i,1,"int32"),u=fe(o,l),d=za(_i(u,ke(+t,"int32")),zi(u,ke(-n,"int32"))),p=_t([s,i],a.dtype);return B($n(ha(B(a,[-1,s,i])).map(c=>xn(d,c,p))),r)}var ZM=W({bandPart_:KM});function YM(e){let t;if(Array.isArray(e)){t=!1,O(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)O(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=sn(e,e.shape[0],0).map(r=>lt(r,[0]));O(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(P.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=L(be(L(n[i],s)),n[i]);s=fe(s,o)}return ce(s,Y1(s,"euclidean"))}));return t?$n(n,0):n}var JM=W({gramSchmidt_:YM});function QM(e,t=!1){if(O(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Ub(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),a=ha(B(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[u,d]=Ub(l,t);r.push(u),s.push(d)});let i=B($n(r,0),e.shape),o=B($n(s,0),e.shape);return[i,o]}}function Ub(e,t=!1){return P.tidy(()=>{O(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=R1(n),s=Oa(e),i=_a([[1]],[1,1]),o=Oa(i),l=n>=a?a:n;for(let u=0;u<l;++u){let d=s,p=o,c=r;[o,s,r]=P.tidy(()=>{let h=Re(s,[u,u],[n-u,1]),m=Y1(h),f=Re(s,[u,u],[1,1]),g=xn(jn(f,0),_a([[-1]]),_a([[1]])),A=fe(f,L(g,m)),y=ce(h,A);y.shape[0]===1?o=Oa(i):o=ht([i,Re(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let x=Nt(ce(Ve(g,A),m)),v=Re(s,[u,0],[n-u,a]),b=L(x,o),k=Xe(o);if(u===0)s=fe(v,Ve(b,Ve(k,v)));else{let E=fe(v,Ve(b,Ve(k,v)));s=ht([Re(s,[0,0],[u,a]),E],0)}let N=Xe(b),C=Re(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=fe(C,Ve(Ve(C,o),N));else{let E=fe(C,Ve(Ve(C,o),N));r=ht([Re(r,[0,0],[n,u]),E],1)}return[o,s,r]}),K([d,p,c])}return!t&&n>a&&(r=Re(r,[0,0],[n,a]),s=Re(s,[0,0],[a,a])),[r,s]})}var eF=W({qr_:QM}),bn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(bn||(bn={}));function tF(e,t,n=bn.SUM_BY_NONZERO_WEIGHTS){let a=M(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=M(t,"weights","computeWeightedLoss"));let s=r==null?a:L(a,r);if(n===bn.NONE)return s;if(n===bn.SUM)return be(s);if(n===bn.MEAN){if(r==null)return Mt(s);{let i=a.size/r.size,o=ce(be(s),be(r));return i>1?ce(o,ke(i)):o}}if(n===bn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return ce(be(s),ke(a.size));{let i=L(r,Gn(a.shape)),o=de(be(Wl(i,ke(0))),"float32");return ce(be(s),o)}}throw Error(`Unknown reduction: ${n}`)}var kr=W({computeWeightedLoss_:tF});function nF(e,t,n,a=bn.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","absoluteDifference"),s=M(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=M(n,"weights","absoluteDifference")),gn(r.shape,s.shape,"Error in absoluteDifference: ");let o=Ht(fe(r,s));return kr(o,i,a)}var aF=W({absoluteDifference_:nF});function rF(e,t,n,a,r=bn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","cosineDistance"),i=M(t,"predictions","cosineDistance"),o=null;a!=null&&(o=M(a,"weights","cosineDistance")),gn(s.shape,i.shape,"Error in cosineDistance: ");let l=ke(1),u=fe(l,be(L(s,i),n,!0));return kr(u,o,r)}var sF=W({cosineDistance_:rF});function iF(e,t,n,a=bn.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","hingeLoss"),s=M(t,"predictions","hingeLoss"),i=null;n!=null&&(i=M(n,"weights","hingeLoss")),gn(r.shape,s.shape,"Error in hingeLoss: ");let o=ke(1);r=fe(L(ke(2),r),o);let l=nr(fe(o,L(r,s)));return kr(l,i,a)}var oF=W({hingeLoss_:iF});function lF(e,t,n,a=1,r=bn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","huberLoss"),i=M(t,"predictions","huberLoss"),o=null;n!=null&&(o=M(n,"weights","huberLoss")),gn(s.shape,i.shape,"Error in huberLoss: ");let l=ke(a),u=Ht(fe(i,s)),d=fd(u,l),p=fe(u,d),c=re(L(ke(.5),ut(d)),L(l,p));return kr(c,o,r)}var uF=W({huberLoss_:lF});function dF(e,t,n,a=1e-7,r=bn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","logLoss"),i=M(t,"predictions","logLoss"),o=null;n!=null&&(o=M(n,"weights","logLoss")),gn(s.shape,i.shape,"Error in logLoss: ");let l=ke(1),u=ke(a),d=Nt(L(s,ua(re(i,u)))),p=L(fe(l,s),ua(re(fe(l,i),u))),c=fe(d,p);return kr(c,o,r)}var pF=W({logLoss_:dF});function cF(e,t,n,a=bn.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","meanSquaredError"),s=M(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=M(n,"weights","meanSquaredError")),gn(r.shape,s.shape,"Error in meanSquaredError: ");let o=X1(r,s);return kr(o,i,a)}var hF=W({meanSquaredError_:cF});function fF(e,t){let n=M(e,"labels","sigmoidCrossEntropyWithLogits"),a=M(t,"logits","sigmoidCrossEntropyWithLogits");gn(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=nr(a),s=L(a,n),i=Yc(la(Nt(Ht(a))));return re(fe(r,s),i)}function mF(e,t,n,a=0,r=bn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"multiClassLabels","sigmoidCrossEntropy"),i=M(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=M(n,"weights","sigmoidCrossEntropy")),gn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let u=ke(a),d=ke(1),p=ke(.5);s=re(L(s,fe(d,u)),L(p,u))}let l=fF(s,i);return kr(l,o,r)}var gF=W({sigmoidCrossEntropy_:mF});function AF(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return tr((a,r,s)=>{let i=fb(r,[n],!0),o=fe(de(r,"float32"),i);s([a,o]);let l=Nt(L(o,a));return{value:be(l,[n]),gradFunc:(u,d)=>{let[p,c]=d,h=Di(u.shape,[n]);return[L(B(u,h),fe(de(p,"float32"),la(c))),L(B(u,h),fe(la(c),de(p,"float32")))]}}})(e,t)}function yF(e,t,n,a=0,r=bn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"onehotLabels","softmaxCrossEntropy"),i=M(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=M(n,"weights","softmaxCrossEntropy")),gn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let u=ke(a),d=ke(1),p=ke(s.shape[1]);s=re(L(s,fe(d,u)),ce(u,p))}let l=AF(s,i);return kr(l,o,r)}var xF=W({softmaxCrossEntropy_:yF});function bF(e,t,n,a){let r=M(e,"indices","sparseFillEmptyRows"),s=M(t,"values","sparseFillEmptyRows"),i=M(n,"denseShape","sparseFillEmptyRows"),o=M(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=P.runKernel(wc,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var vF=W({sparseFillEmptyRows_:bF});function wF(e,t,n){let a=M(e,"inputIndices","sparseReshape"),r=M(t,"inputShape","sparseReshape"),s=M(n,"newShape","sparseReshape");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=P.runKernel(kc,i);return{outputIndices:o[0],outputShape:o[1]}}var kF=W({sparseReshape_:wF});function IF(e,t,n){let a=M(e,"data","sparseSegmentMean"),r=M(t,"indices","sparseSegmentMean"),s=M(n,"segmentIds","sparseSegmentMean");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return P.runKernel(Ic,i)}var SF=W({sparseSegmentMean_:IF});function TF(e,t,n){let a=M(e,"data","sparseSegmentSum"),r=M(t,"indices","sparseSegmentSum"),s=M(n,"segmentIds","sparseSegmentSum");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return P.runKernel(Sc,i)}var NF=W({sparseSegmentSum_:TF});function CF(e,t,n,a,r,s,i,o){let l=M(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=M(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let d={separator:n,nGramWidths:a,leftPad:r,rightPad:s,padWidth:i,preserveShortSequences:o},p={data:l,dataSplits:u},c=P.runKernel(Nc,p,d);return{nGrams:c[0],nGramsSplits:c[1]}}var EF=W({stringNGrams_:CF});function RF(e,t,n=!0){let a=M(e,"input","stringSplit","string"),r=M(t,"delimiter","stringSplit","string");if(a.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${a.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let s={skipEmpty:n},i={input:a,delimiter:r},o=P.runKernel(Cc,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var MF=W({stringSplit_:RF});function FF(e,t){let n=M(e,"input","stringToHashBucketFast","string"),a={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return P.runKernel(Ec,r,a)}var $F=W({stringToHashBucketFast_:FF}),OF={fft:lh,ifft:Ad,rfft:uh,irfft:q1},zF={hammingWindow:uM,hannWindow:Db,frame:Pb,stft:hM},Me={flipLeftRight:AM,grayscaleToRGB:xM,resizeNearestNeighbor:UM,resizeBilinear:BM,rotateWithOffset:vM,cropAndResize:mM,nonMaxSuppression:kM,nonMaxSuppressionAsync:MM,nonMaxSuppressionWithScore:$M,nonMaxSuppressionWithScoreAsync:zM,nonMaxSuppressionPadded:DM,nonMaxSuppressionPaddedAsync:LM,threshold:GM,transform:XM},Hb={bandPart:ZM,gramSchmidt:JM,qr:eF},_F={absoluteDifference:aF,computeWeightedLoss:kr,cosineDistance:sF,hingeLoss:oF,huberLoss:uF,logLoss:pF,meanSquaredError:hF,sigmoidCrossEntropy:gF,softmaxCrossEntropy:xF},xd={sparseFillEmptyRows:vF,sparseReshape:kF,sparseSegmentMean:SF,sparseSegmentSum:NF},mh={stringNGrams:EF,stringSplit:MF,stringToHashBucketFast:$F},Ir=class extends Nx{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return K(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return db(e,t)}dispose(){this.iterations_!=null&&K(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ke(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Ir,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var gh=class extends Ir{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=P.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=P.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:H(()=>Ke(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:H(()=>Ke(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;H(()=>{let l=re(L(i,this.rho),L(ut(s),1-this.rho)),u=L(ce(cn(re(o,this.epsilon)),cn(re(i,this.epsilon))),s),d=re(L(o,this.rho),L(ut(u),1-this.rho));i.assign(l),o.assign(d);let p=re(L(u,-this.learningRate),a);a.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(K(this.accumulatedGrads.map(e=>e.variable)),K(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};gh.className="Adadelta";Zr(gh);var Ah=class extends Ir{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=P.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:H(()=>Dl(a.shape,this.initialAccumulatorValue).variable(i))}}let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;H(()=>{let i=re(s,ut(r));s.assign(i);let o=re(L(ce(r,cn(re(i,P.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&K(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Ah.className="Adagrad";Zr(Ah);var yh=class extends Ir{constructor(e,t,n,a=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],H(()=>{this.accBeta1=ke(t).variable(),this.accBeta2=ke(n).variable()}),a==null&&(this.epsilon=P.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=fe(1,this.accBeta1),a=fe(1,this.accBeta2);t.forEach((r,s)=>{let i=P.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:H(()=>Ke(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:H(()=>Ke(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedSecondMoment[s].variable,p=re(L(u,this.beta1),L(l,1-this.beta1)),c=re(L(d,this.beta2),L(ut(l),1-this.beta2)),h=ce(p,n),m=ce(c,a);u.assign(p),d.assign(c);let f=re(L(ce(h,re(cn(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&K(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&K(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),H(()=>{this.accBeta1.assign(es(this.beta1,this.iterations_+1)),this.accBeta2.assign(es(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};yh.className="Adam";Zr(yh);var xh=class extends Ir{constructor(e,t,n,a=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],H(()=>{this.iteration=ke(0).variable(),this.accBeta1=ke(t).variable()}),a==null&&(this.epsilon=P.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=fe(1,this.accBeta1),a=ce(-this.learningRate,re(L(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=P.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Ke(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:Ke(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedWeightedInfNorm[s].variable,p=re(L(u,this.beta1),L(l,1-this.beta1)),c=L(d,this.beta2),h=Ht(l),m=wr(c,h);u.assign(p),d.assign(m);let f=re(L(ce(a,n),ce(p,re(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(re(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&K(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&K(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};xh.className="Adamax";Zr(xh);var bd=class extends Ir{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=P.registeredVariables[t];H(()=>{let s=re(L(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Jt(ke(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};bd.className="SGD";Zr(bd);var bh=class extends bd{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ke(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=P.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:H(()=>Ke(a).variable(i))}}let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&H(()=>{let i,o=re(L(this.m,r),s);this.useNesterov?i=re(L(this.c,re(s,L(o,this.m))),a):i=re(L(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&K(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};bh.className="Momentum";Zr(bh);var vh=class extends Ir{constructor(e,t=.9,n=0,a=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=P.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=P.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:H(()=>Ke(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:H(()=>Ke(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:H(()=>Ke(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;H(()=>{let l=re(L(i,this.decay),L(ut(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,d=re(L(u,this.decay),L(s,1-this.decay)),p=ce(L(s,this.learningRate),cn(fe(l,re(ut(d),this.epsilon)))),c=re(L(o,this.momentum),p);i.assign(l),u.assign(d),o.assign(c);let h=fe(a,c);a.assign(h)}else{let u=re(L(i,this.decay),L(ut(s),1-this.decay)),d=re(L(o,this.momentum),ce(L(s,this.learningRate),cn(re(u,this.epsilon))));i.assign(u),o.assign(d);let p=fe(a,d);a.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&K(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&K(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&K(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};vh.className="RMSProp";Zr(vh);var Pi=class{static sgd(e){return new bd(e)}static momentum(e,t,n=!1){return new bh(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new vh(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new yh(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new gh(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new xh(e,t,n,a,r)}static adagrad(e,t=.1){return new Ah(e,t)}},Li={sgd:Pi.sgd,momentum:Pi.momentum,adadelta:Pi.adadelta,adagrad:Pi.adagrad,rmsprop:Pi.rmsprop,adamax:Pi.adamax,adam:Pi.adam},DF=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function wh(){return new Promise(e=>DF(()=>e()))}var R={};_e(R,{ERF_A1:()=>XF,ERF_A2:()=>KF,ERF_A3:()=>ZF,ERF_A4:()=>YF,ERF_A5:()=>JF,ERF_P:()=>qF,PARALLELIZE_THRESHOLD:()=>ng,SELU_SCALE:()=>Gb,SELU_SCALEALPHA:()=>jb,applyActivation:()=>hh,assertAndGetBroadcastShape:()=>At,assertAxesAreInnerMostDims:()=>KC,assertParamsConsistent:()=>PF,assignToTypedArray:()=>r$,axesAreInnerMostDims:()=>$1,calculateShapes:()=>mx,checkEinsumDimSizes:()=>d$,combineLocations:()=>pb,complexWithEvenIndex:()=>t$,complexWithOddIndex:()=>n$,computeConv2DInfo:()=>ud,computeConv3DInfo:()=>Vx,computeDefaultPad:()=>b1,computeDilation2DInfo:()=>fN,computeOptimalWindowSize:()=>WF,computeOutAndReduceShapes:()=>cb,computeOutShape:()=>LF,computePool2DInfo:()=>Bx,computePool3DInfo:()=>mN,convertConv2DDataFormat:()=>Ux,decodeEinsumEquation:()=>l$,eitherStridesOrDilationsAreOne:()=>er,expandShapeToKeepDim:()=>Di,exponent:()=>i$,exponents:()=>s$,fromStringArrayToUint8:()=>x$,fromUint8ToStringArray:()=>y$,getAxesPermutation:()=>hb,getBroadcastDims:()=>iC,getComplexWithIndex:()=>a$,getEinsumComputePath:()=>p$,getEinsumPermutation:()=>u$,getFusedBiasGradient:()=>ch,getFusedDyActivation:()=>ph,getImageCenter:()=>BF,getInnerMostAxes:()=>ZC,getPermuted:()=>UF,getReductionAxes:()=>jt,getReshaped:()=>VF,getReshapedPermuted:()=>HF,getSliceBeginCoords:()=>jF,getSliceSize:()=>GF,getUndoAxesPermutation:()=>O1,isIdentityPermutation:()=>c$,log:()=>PI,mergeRealAndImagArrays:()=>QF,prepareAndValidate:()=>fx,prepareSplitSize:()=>f$,segment_util:()=>Kb,shouldFuse:()=>fh,slice_util:()=>yn,splitRealAndImagArrays:()=>e$,tupleValuesAreOne:()=>Yr,upcastType:()=>Sa,validateInput:()=>c1,validateUpdateShape:()=>p1,warn:()=>Za});function PF(e,t){let n=e[0].length;e.forEach((r,s)=>{O(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),O(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)O(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function LF(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var ng=30;function WF(e){return e<=ng?e:qp(e,Math.floor(Math.sqrt(e)))}function BF(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function VF(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function UF(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function HF(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function jF(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function GF(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var jb=1.7580993408473768,Gb=1.0507009873554805,qF=.3275911,XF=.254829592,KF=-.284496736,ZF=1.421413741,YF=-1.453152027,JF=1.061405429;function QF(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function e$(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function t$(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function n$(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function a$(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function r$(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function s$(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function i$(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var ag="->",o$=/->/g,qb=",",Xb="...";function l$(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(o$,"").length)/ag.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${ag}").`);let[a,r]=e.split(ag);O(a.indexOf(Xb)===-1,()=>`The ellipsis notation ("${Xb}") is not supported yet.`);let s=a.split(qb),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let c=0;c<r.length;++c){let h=r[c];if(!s.some(m=>m.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let c=0;c<a.length;++c){let h=a[c];o.indexOf(h)===-1&&h!==qb&&o.push(h)}let l=new Array(s.length);for(let c=0;c<i;++c){if(new Set(s[c].split("")).size!==s[c].length)throw new Error(`Found duplicate axes in input component ${s[c]}. Support for duplicate axes in input is not implemented yet.`);l[c]=[];for(let h=0;h<s[c].length;++h)l[c].push(o.indexOf(s[c][h]))}let u=o.length,d=r.length,p=[];for(let c=d;c<u;++c)p.push(c);return{allDims:o,summedDims:p,idDims:l}}function u$(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function d$(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:O(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function p$(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=h$(t,o);for(let u of l)s.indexOf(u)===-1&&(a[i].push(u),s.push(u))}return{path:n,steps:a}}function c$(e){return e.every((t,n)=>t===n)}function h$(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function f$(e,t,n=0){let a=[];if(typeof t=="number")O(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);O(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}O(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}var Kb={};_e(Kb,{collectGatherOpShapeInfo:()=>A$,computeOutShape:()=>g$,segOpComputeOptimalWindowSize:()=>m$});function m$(e,t){let n=!1,a;for(e<=ng?(a=e,n=!0):a=qp(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=qp(e,a+1);return a}function g$(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function A$(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
|
|
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let p=0;p<a;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=e.shape[n],o=[],l=1,u=1,d=1;for(let p=0;p<a;++p)o.push(e.shape[p]),l*=e.shape[p];for(let p=a;p<n;p++)o.push(e.shape[p]),u*=e.shape[p];for(let p=a;p<r;p++)o.push(t.shape[p]);for(let p=n+1;p<s;p++)o.push(e.shape[p]),d*=e.shape[p];return{batchSize:l,sliceSize:d,outerSize:u,dimSize:i,outputShape:o}}function y$(e){try{return e.map(t=>zc(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function x$(e){return e.map(t=>Qu(t))}var ar={};_e(ar,{nonMaxSuppressionV3Impl:()=>Lb,nonMaxSuppressionV4Impl:()=>Wb,nonMaxSuppressionV5Impl:()=>Bb,whereImpl:()=>Eb});var Zb={kernelName:Io,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,yd(de(n,"float32"),-1))}}},b$={kernelName:So,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ut(de(n,"float32")),r=cn(fe(ke(1),a));return Nt(ce(e,r))}}}},v$={kernelName:To,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=cn(fe(ut(de(n,"float32")),1));return ce(e,a)}}}},w$={kernelName:Vr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=At(n.shape,a.shape);return{a:()=>{let s=e,i=jt(n.shape,r);return i.length>0&&(s=be(s,i)),B(s,n.shape)},b:()=>{let s=e,i=jt(a.shape,r);return i.length>0&&(s=be(s,i)),B(s,a.shape)}}}},k$={kernelName:Cs,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},I$={kernelName:Es,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ke(n)}}},S$={kernelName:_u,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ke(n)}}},T$={kernelName:Eo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ce(e,cn(fe(ke(1),ut(de(n,"float32")))))}}},N$={kernelName:Ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=cn(re(ke(1),ut(de(n,"float32"))));return ce(e,a)}}}},C$={kernelName:$o,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=At(n.shape,a.shape);return{a:()=>{let s=re(ut(n),ut(a)),i=L(e,ce(a,s)),o=jt(n.shape,r);return o.length>0&&(i=be(i,o)),B(i,n.shape)},b:()=>{let s=re(ut(n),ut(a)),i=Nt(L(e,ce(n,s))),o=jt(a.shape,r);return o.length>0&&(i=be(i,o)),B(i,a.shape)}}}},E$={kernelName:Mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ce(e,re(ut(de(n,"float32")),1))}}},R$={kernelName:Fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ce(e,fe(ke(1),ut(de(n,"float32"))))}}};function M$(e,t,n,a,r,s){let i=M(e,"dy","avgPool3dGrad"),o=M(t,"input","avgPool3dGrad"),l=i,u=o,d=!1;o.rank===4&&(d=!0,l=B(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=B(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),O(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&O(Zt(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let p={dy:l,input:u},c={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=P.runKernel(Zp,p,c);return d?B(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var F$=W({avgPool3dGrad_:M$}),$$={kernelName:Du,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>F$(e,a,r,s,i,o)}}};function O$(e,t,n,a,r){let s=M(e,"dy","avgPoolGrad"),i=M(t,"input","avgPoolGrad");O(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=B(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=B(s,[1,s.shape[0],s.shape[1],s.shape[2]])),O(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),O(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let d={dy:l,input:o},p={filterSize:n,strides:a,pad:r},c=P.runKernel(Kp,d,p);return u?B(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var z$=W({avgPoolGrad_:O$}),_$={kernelName:Rs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>z$(e,a,r,s,i)}}},D$={kernelName:Ms,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Ve(e,r,!1,!0),b:()=>Ve(a,e,!0,!1)}:!s&&i?{a:()=>Ve(e,r,!1,!1),b:()=>Ve(e,a,!0,!1)}:s&&!i?{a:()=>Ve(r,e,!1,!0),b:()=>Ve(a,e,!1,!1)}:{a:()=>Ve(r,e,!0,!0),b:()=>Ve(e,a,!0,!0)}}},P$={kernelName:Oo,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>ah(e,a,r)}}},L$={kernelName:F5,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>be(e,o,!0)}}},W$={kernelName:Fs,gradFunc:e=>({x:()=>e.clone()})},B$={kernelName:$s,gradFunc:e=>({x:()=>Ke(e)})},V$={kernelName:Ur,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>xn(za(zi(a,r),_i(a,s)),e,Ke(e))}}},U$={kernelName:Pu,inputsToSave:["x"],gradFunc:Zb.gradFunc},H$={kernelName:zo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=Ia(r,t[0].shape)[0],i=a.map(o=>o[s]);return sn(e,i,s).map(o=>()=>o)}},j$={kernelName:Os,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return O(Yr(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>S1(a.shape,e,r,i,o,l),filter:()=>eg(a,e,r.shape,i,o,l)}}},G$={kernelName:zs,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Jr(e,r,s,i,o,1,l),filter:()=>eg(e,a,r.shape,s,i,o,l)}}};function q$(e,t,n,a,r){let s=e;e.rank===4&&(s=B(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=B(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),O(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),O(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),O(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),O(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),O(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return P.runKernel(ec,o,l)}var X$=W({conv3DBackpropFilter_:q$}),K$={kernelName:Lu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;O(Yr(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>Jx(i.shape,e,o,r,s),filter:()=>X$(i,e,o.shape,r,s)}}},Z$={kernelName:_s,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Nt(H1(de(n,"float32"))),e)}}},Y$={kernelName:Ds,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(j1(de(n,"float32")),e)}}},J$={kernelName:Ps,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=hb([r],a.rank),l=E1(e,r,s,!i);return o!=null&&(l=Xe(l,o)),l}}}},Q$={kernelName:Ls,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;O(Yr(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return O(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),O(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),O(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),O(er(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),i!=null&&O(Zt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>_b(l.shape,e,u,r,s,o,i),filter:()=>zb(l,e,u.shape,r,s,o,i)}}},eO={kernelName:Wu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>P.runKernel(ic,s,n),filter:()=>P.runKernel(oc,i,n)}}},tO={kernelName:Bs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>P.runKernel(uc,a)}}},nO={kernelName:Po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=L(la(Nt(ut(n))),2/Math.sqrt(Math.PI));return{x:()=>L(e,a)}}},aO={kernelName:Vs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,n)}}},rO={kernelName:Wo,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>B(e,n.shape)}}},sO={kernelName:Bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,la(n))}}},iO={kernelName:Us,gradFunc:e=>({x:()=>Ke(e)})},oO={kernelName:Hs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=At(n.shape,a.shape);return{a:()=>{let s=ce(e,de(a,"float32")),i=jt(n.shape,r);return i.length>0?B(be(s,i),n.shape):s},b:()=>{let s=L(e,de(n,"float32")),i=jt(a.shape,r);i.length>0&&(s=B(be(s,i),a.shape));let o=ut(a);return Nt(ce(s,de(o,"float32")))}}}},lO={kernelName:js,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?ke(1):o,u=jt(s.shape,r.shape),d=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)d.push(r.shape[f]);d.push(1)}let p=fe(r,s),c=L(e,l),h=V1(re(i,ke(a))),m=L(L(L(h,h),h),ke(-.5));return{x:()=>s.rank===1?B(L(L(e,Ta(B(h,[1,1,1,s.shape[0]]),d)),l),r.shape):B(L(L(e,h),l),r.shape),mean:()=>{let f=L(L(h,ke(-1)),c);return s.rank===1&&(f=be(f,u)),B(f,s.shape)},variance:()=>{let f=L(L(m,p),c);return s.rank===1&&(f=be(f,u)),B(f,s.shape)},scale:()=>{let f=L(p,h),g=L(e,f);return s.rank===1&&(g=be(g,u)),B(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=be(f,u)),B(f,s.shape)}}}},uO={kernelName:Uo,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=Ia(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,u=o.slice(0,i),d=u.length,p=o.slice(s,o.length).slice(1),c=p.length,h=Yb(0,d),m=Yb(d+1,d+1+c),f=Jb([u,[l],p]),g=B(e,f),A=B(r,[l]),y=Jb([[d],h,m]),x=Xe(g,y),v=Nb(x,A,a.shape[i]),b=O1(y);return v=Xe(v,b),v},indices:()=>r}}};function Yb(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function Jb(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var dO={kernelName:Gs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>Ke(n),b:()=>Ke(a)}}},pO={kernelName:qs,gradFunc:e=>({x:()=>de(e,"float32")})},cO={kernelName:Go,gradFunc:e=>({x:()=>Ke(e)})},hO={kernelName:qo,gradFunc:e=>({x:()=>Ke(e)})},fO={kernelName:Xo,gradFunc:e=>({x:()=>Ke(e)})},mO={kernelName:Xs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=jn(a,0);return{x:()=>xn(s,e,L(e,r))}}},gO={kernelName:Yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ce(e,re(n,1))}}},AO={kernelName:Ks,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ce(e,de(n,"float32"))}}},yO={kernelName:$5,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=!0,i=la(a);return fe(e,L(be(e,r,s),i))}}}};function xO(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return P.runKernel(fc,o,l)}var bO=W({localResponseNormalizationBackprop_:xO}),vO={kernelName:Hu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>bO(a,r,e,s,i,o,l)}}};function Qb(e,t,n,a){return t.rank<n.rank&&(t=B(t,Di(t.shape,a))),e.rank<n.rank&&(e=B(e,Di(e.shape,a))),{x:()=>L(e,de(oa(n,t),e.dtype))}}var e3={kernelName:Zs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=Ia(r,s.shape),l=Qb(e,i,s,o);return{x:()=>l.x()}}},wO={kernelName:Ys,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>L(e,de(zi(n,a),"float32")),b:()=>L(e,de(M1(n,a),"float32"))}}};function kO(e,t,n,a,r,s,i){let o=M(e,"dy","maxPool3dGrad"),l=M(t,"input","maxPool3dGrad"),u=M(n,"output","maxPool3dGrad"),d=o,p=l,c=u,h=!1;l.rank===4&&(h=!0,d=B(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),p=B(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),c=B(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),O(d.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${d.rank}.`),O(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),O(c.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${c.rank}.`),i!=null&&O(Zt(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:d,input:p,output:c},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=P.runKernel(gc,m,f);return h?B(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var IO=W({maxPool3dGrad_:kO}),SO={kernelName:ju,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>IO(e,a,r,s,i,o,l)}}};function TO(e,t,n,a,r,s,i){let o=M(e,"dy","maxPoolGrad"),l=M(t,"input","maxPoolGrad"),u=M(n,"output","maxPoolGrad");O(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),O(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),O(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&O(Zt(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let d={dy:o,input:l,output:u},p={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return P.runKernel(mc,d,p)}var NO=W({maxPoolGrad_:TO}),CO={kernelName:Js,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>NO(e,a,r,s,i,o)}}},EO={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=Ia(r,a.shape),i=cb(a.shape,s)[1],o=$t(i);return{x:()=>{let l=a.shape.slice();s.forEach(d=>{l[d]=1});let u=B(e,l);return ce(L(u,Gn(a.shape,"float32")),o)}}}},RO={kernelName:ei,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=Ia(r,s.shape),l=Qb(e,i,s,o);return{x:()=>l.x()}}},MO={kernelName:ti,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>L(e,de(_i(n,a),"float32")),b:()=>L(e,de(jn(n,a),"float32"))}}},FO={kernelName:ni,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Re(e,s,a.shape)}}},$O={kernelName:Qo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=At(n.shape,a.shape);return{a:()=>{let s=jt(n.shape,r);return s.length>0?B(be(e,s),n.shape):e},b:()=>{let s=L(e,Nt(hd(ce(n,a)))),i=jt(a.shape,r);return i.length>0?B(be(s,i),a.shape):s}}}},OO={kernelName:ai,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=At(n.shape,a.shape);return{a:()=>{let s=L(e,de(a,"float32")),i=jt(n.shape,r);return i.length>0?B(be(s,i),n.shape):s},b:()=>{let s=L(e,de(n,"float32")),i=jt(a.shape,r);return i.length>0?B(be(s,i),a.shape):s}}}},zO={kernelName:el,gradFunc:e=>({x:()=>Nt(e)})},_O={kernelName:ri,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>_t(n.shape,"float32")}}},DO={kernelName:sl,gradFunc:e=>({x:()=>Ke(e)})},PO={kernelName:il,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return ha(e,a).map(r=>()=>r)}},t3={kernelName:si,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Re(e,s,a.shape)}}},LO={kernelName:ii,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=At(s.shape,i.shape);return{a:()=>{let l=de(i,"float32"),u=L(e,L(l,es(s,fe(l,ke(1))))),d=jt(s.shape,o);return d.length>0&&(u=be(u,d)),B(u,s.shape)},b:()=>{let l=jn(s,0),u=xn(l,ua(s),Ke(s)),d=L(e,L(r,u)),p=jt(i.shape,o);return p.length>0&&(d=be(d,p)),B(d,i.shape)}}}},WO={kernelName:oi,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=jn(n,0);return{x:()=>xn(r,e,L(e,a)),alpha:()=>{let s=xn(r,Ke(e),L(e,n)),i=jt(a.shape,e.shape);return i.length>0&&(s=be(s,i)),B(s,a.shape)}}}},BO={kernelName:Ws,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=At(n.shape,a.shape);return{a:()=>{let s=ce(e,de(a,"float32")),i=jt(n.shape,r);return i.length>0?B(be(s,i),n.shape):s},b:()=>{let s=L(e,de(n,"float32")),i=jt(a.shape,r);i.length>0&&(s=B(be(s,i),a.shape));let o=ut(a);return Nt(ce(s,de(o,"float32")))}}}},VO={kernelName:ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ce(e,Nt(ut(n)))}}},UO={kernelName:di,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=L(_i(n,6),yd(n));return{x:()=>L(e,de(a,"float32"))}}},HO={kernelName:li,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,de(yd(n),"float32"))}}},jO={kernelName:ul,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,n.shape)}}},GO={kernelName:ui,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>P.runKernel(vc,r,n)}}},qO={kernelName:qu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>P.runKernel(bc,r,n)}}},XO={kernelName:pi,gradFunc:(e,t,n)=>{let{dims:a}=n,r=Ia(a,e.shape);return{x:()=>ca(e,r)}}},KO={kernelName:ci,gradFunc:e=>({x:()=>Ke(e)})},ZO={kernelName:hi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Nt(ce(e,L(es(n,1.5),2)))}}},YO={kernelName:pl,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>de(Ke(n),"float32"),t:()=>L(e,de(n,e.dtype)),e:()=>L(e,de(Qc(n),e.dtype))}}},JO={kernelName:cl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=jn(n,ke(0)),r=ke(jb),s=ke(Gb),i=L(e,s),o=L(L(e,r),la(de(n,"float32")));return xn(a,i,o)}}}},QO={kernelName:mi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(n,fe(ke(1),n)))}}},ez={kernelName:ml,gradFunc:e=>({x:()=>Ke(e)})},tz={kernelName:fi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Xc(de(n,"float32")),e)}}},nz={kernelName:fl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(C1(de(n,"float32")),e)}}},az={kernelName:hl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=Tx(a,r,s),u=[];for(let d=0;d<e.rank;d++)u.push([o[d],i[d]-o[d]-l[d]]);return{x:()=>Qr(e,u)}}},rz={kernelName:yi,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=L(e,a);return{logits:()=>fe(i,L(be(i,[r],s),a))}}},sz={kernelName:gl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Un(n))}}},n3={kernelName:Al,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>qc(e,a,r)}}},a3={kernelName:yl,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>ht(e,a)}}},iz={kernelName:gi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ce(e,L(cn(de(n,"float32")),2))}}},oz={kernelName:Xu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(de(n,"float32"),2))}}},lz={kernelName:xi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ke(2);return{a:()=>L(e,L(r,fe(n,a))),b:()=>L(e,L(r,fe(a,n)))}}},uz={kernelName:jr,gradFunc:e=>({x:()=>Ke(e)})},dz={kernelName:bi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=At(n.shape,a.shape);return{a:()=>{let s=e,i=jt(n.shape,r);return i.length>0&&(s=be(s,i)),B(s,n.shape)},b:()=>{let s=e,i=jt(a.shape,r);return i.length>0&&(s=be(s,i)),B(Nt(s),a.shape)}}}},pz={kernelName:Ai,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;Ia(s,a.shape).forEach(l=>{r[l]=1});let i=B(e,r),o=L(i,Gn(a.shape,"float32"));return{x:()=>o}}},cz={kernelName:vi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ce(e,ut(Xc(n)))}}},hz={kernelName:wi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(fe(ke(1),ut(n)),e)}}},fz={kernelName:Hr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=Ke(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=re(s,Re(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=re(s,Re(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=re(s,Re(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let u=0;u<r[3];++u)s=re(s,Re(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],u*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},mz={kernelName:ki,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=O1(r);return{x:()=>Xe(e,s)}}},gz={kernelName:wl,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>$n(e,r)}}},Az={kernelName:Ku,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>yz(e,n)}}};function yz(e,t){let n=wr(t,Ke(t)),a=Pl(e,n),r=zi(t,ke(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=zt(r,o+1);r=za(r,Gn(a.shape,"bool"));let i=Ke(a);return xn(r,a,i)}var xz={kernelName:kl,gradFunc:e=>({x:()=>Ke(e)})},bz=[Zb,b$,v$,w$,k$,I$,S$,T$,N$,C$,E$,R$,$$,_$,D$,P$,L$,W$,B$,V$,U$,H$,G$,j$,K$,Z$,Y$,J$,Q$,eO,BO,tO,nO,aO,rO,sO,oO,iO,lO,uO,dO,pO,cO,hO,fO,mO,gO,AO,yO,vO,e3,e3,wO,SO,CO,EO,RO,MO,FO,$O,OO,zO,_O,DO,PO,t3,t3,LO,WO,VO,UO,HO,jO,GO,qO,XO,KO,ZO,YO,JO,QO,ez,tz,nz,az,rz,sz,n3,n3,a3,a3,iz,lz,oz,uz,dz,pz,cz,hz,fz,mz,gz,Az,xz];for(let e of bz)O5(e);var r3={};_e(r3,{maxNorm:()=>Iz,minMaxNorm:()=>Nz,nonNeg:()=>Tz,unitNorm:()=>Sz});var rg;function Gt(){return rg==null&&(rg=Fx().epsilon()),rg}function Da(){return"channelsLast"}var Sr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Sr.prototype)}},Pa=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Pa.prototype)}},j=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,j.prototype)}},ze=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ze.prototype)}},s3=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,s3.prototype)}};function Wi(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function rr(e,t){if(!e)throw new s3(t)}function i3(e,t){let n=0;for(let a of e)a===t&&n++;return n}function On(e){return e.length===1?e[0]:e}function yt(e){return Array.isArray(e)?e:[e]}function Tr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Bi(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Na={};function sg(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function ig(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>ig(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:ig(a))}}}function vd(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in Na)i=Na[s];else if(i=t[s],i==null)throw new j(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new j(`${a}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in Na?[o,l]=Na.className:i in t&&([o,l]=t[i]),o==null)throw new j(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(Na))u[h]=Na[h];for(let h of Object.keys(n))u[h]=n[h];let d=s.config;d.customObjects=u;let p=Object.assign({},Na);for(let h of Object.keys(n))Na[h]=n[h];ig(s.config);let c=l(o,s.config,n,r);return Na=Object.assign({},p),c}else{let u=Object.assign({},Na);for(let p of Object.keys(n))Na[p]=n[p];let d=new o(s.config);return Na=Object.assign({},u),d}}}function vz(e,t){return e<t?-1:e>t?1:0}function kh(e,t){return-1*vz(e,t)}function ns(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function wz(e){if(e==null)throw new j(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Vi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new j(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function og(e,t,n=0,a=1/0){return rr(n>=0),rr(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function Qt(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>Qt(n,`element ${a+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${o3(e)}.`)}function o3(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>o3(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function kz(e,t){let n=w.now(),a;return(...r)=>{let s=w.now();return s-n<t||(n=s,a=e(...r)),a}}function l3(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function lg(e,t){return H(()=>cn(be(L(e,e),t,!0)))}var wd=class extends se.Serializable{getConfig(){return{}}},ug=class extends wd{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=lg(e,this.axis),n=Hn(t,0,this.maxValue);return L(e,ce(n,re(Gt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};ug.className="MaxNorm";se.registerClass(ug);var dg=class extends wd{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>ce(e,re(Gt(),lg(e,this.axis))))}getConfig(){return{axis:this.axis}}};dg.className="UnitNorm";se.registerClass(dg);var pg=class extends wd{apply(e){return nr(e)}};pg.className="NonNeg";se.registerClass(pg);var cg=class extends wd{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=lg(e,this.axis),n=re(L(this.rate,Hn(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,ce(n,re(Gt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};cg.className="MinMaxNorm";se.registerClass(cg);var u3={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function qt(e){return sg(e)}function d3(e,t={}){return vd(e,se.SerializationMap.getMap().classNameMap,t,"constraint")}function Xt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in u3?u3[e]:e,config:{}};return d3(t)}else return e instanceof wd?e:d3(e)}function Iz(e){return new ug(e)}function Sz(e){return new dg(e)}function Tz(){return new pg}function Nz(e){return new cg(e)}var p3={};_e(p3,{constant:()=>Zz,glorotNormal:()=>a_,glorotUniform:()=>n_,heNormal:()=>r_,heUniform:()=>s_,identity:()=>e_,leCunNormal:()=>i_,leCunUniform:()=>o_,ones:()=>Kz,orthogonal:()=>l_,randomNormal:()=>Jz,randomUniform:()=>Yz,truncatedNormal:()=>Qz,varianceScaling:()=>t_,zeros:()=>Xz});var Cz=["channelsFirst","channelsLast"],Ez=["nearest","bilinear"],Rz=["valid","same","causal"],Mz=["max","avg"],Fz=["sum","mul","concat","ave"],Hl=new Map;function Ot(e){Vi(Cz,"DataFormat",e)}function $z(e){Vi(Ez,"InterpolationFormat",e)}function fa(e){Vi(Rz,"PaddingMode",e)}function c3(e){Vi(Mz,"PoolMode",e)}var kd=[],h3="/";function Ui(e,t){kd.push(e);try{let n=t();return kd.pop(),n}catch(n){throw kd.pop(),n}}function Oz(){return kd.length===0?"":kd.join(h3)+h3}function f3(e){if(!g3(e))throw new Error("Not a valid tensor name: '"+e+"'");return Oz()+e}function m3(e){if(!g3(e))throw new Error("Not a valid tensor name: '"+e+"'");Hl.has(e)||Hl.set(e,0);let t=Hl.get(e);if(Hl.set(e,Hl.get(e)+1),t>0){let n=`${e}_${t}`;return Hl.set(n,1),n}else return e}var zz=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function g3(e){return!!e.match(zz)}function _z(e){return e===parseInt(e.toString(),10)}function as(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function jl(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a<t&&(t=a)}return t}function rs(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a>t&&(t=a)}return t}function La(e,t){if(t<e)throw new j(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}function Ih(e,t){return de(e,t)}function Id(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),B(e,n)}function Dz(e,t){return H(()=>{if(e.shape.length!==2)throw new j(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Id(e,1);return mg(n,[1,t,1])})}function Pz(e){let t=[as(e.shape)];return B(e,t)}function Lz(e){if(e.rank<=1)throw new j(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],as(e.shape,1)];return B(e,t)}function Hi(e,t,n){return H(()=>{switch(e.rank){case 1:return sh(e,t,n);case 2:return G1(e,[t,0],[n,e.shape[1]]);case 3:return ih(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return gd(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Re(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Re(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new j(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function hg(e,t,n){return H(()=>{switch(e.rank){case 1:return sh(e,t,n);case 2:return G1(e,[0,t],[e.shape[0],n]);case 3:return ih(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return gd(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new j(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Sh(e,t,n,a){return H(()=>{switch(e.rank){case 1:return sh(e,t,n);case 2:switch(a){case 1:return Hi(e,t,n);case 2:return hg(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return Hi(e,t,n);case 2:return ih(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return hg(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return Hi(e,t,n);case 2:return gd(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return gd(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return hg(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${a}`)}default:throw new j(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function fg(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),ht(e,t)}function A3(e,t){switch(e.rank){case 1:return Kx([e,t]);case 2:return _l([e,t],0);case 3:return Zx([e,t],0);case 4:return Yx([e,t],0);default:throw new j(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function mg(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new j(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ta(e,t)}function Th(e,t=0,n=1,a,r){return xb(e,t,n,a,r)}function sr(e,t,n,a){if(e.rank<2||t.rank<2)throw new ze(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new ze(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,s=!1;return ts.matMul({a:e,b:t,transposeA:r,transposeB:s,bias:a?gg(e.rank,a,Da()):null,activation:n})}else{let r=e.shape.slice(),s=r.pop();e=B(e,[-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],d=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=B(Xe(t,d),[l,-1]);let p=[...r,...u],c=!1,h=!1;return B(ts.matMul({a:e,b:t,transposeA:c,transposeB:h,bias:a?gg(e.rank,a,Da()):null,activation:n}),p)}}function y3(e,t,n){return H(()=>(Array.isArray(t)?t=Dt(t,"int32"):t=de(t,"int32"),Pl(e,t,n)))}function Sd(e){return L(e,e)}function gg(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new j(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?B(t,[1,a[0],1,1,1]):B(t,[1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?B(t,[1,1,1,1,a[0]]):B(t,[1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?B(t,[1,a[0],1,1]):B(t,[1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?B(t,[1,1,1,a[0]]):B(t,[1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?B(t,[1,a[0],1]):B(t,[1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?B(t,[1,1,a[0]]):B(t,[1].concat(a))}else if(e<3)return t;throw new j(`Unsupported input rank by biasAdd: ${t.rank}`)}function Wa(e,t,n){return H(()=>(n==null&&(n=Da()),Ot(n),re(e,gg(e.rank,t,n))))}function Wz(e,t=1){if(t!==1)throw new ze(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return cd(e)}function Bz(e){return H(()=>ce(e,re(Ht(e),1)))}function x3(e,t,n,a){return H(()=>$b(e,t,n,a))}function Vz(e){return H(()=>{let t=re(.5,L(.2,e));return Hn(t,0,1)})}function Td(e,t,n=!1){return n?e():t()}var Uz=["fanIn","fanOut","fanAvg"],Hz=["normal","uniform","truncatedNormal"];function jz(e){Vi(Uz,"FanMode",e)}function Gz(e){Vi(Hz,"Distribution",e)}var Ca=class extends se.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Ag=class extends Ca{apply(e,t){return _t(e,t)}};Ag.className="Zeros";se.registerClass(Ag);var Nh=class extends Ca{apply(e,t){return Gn(e,t)}};Nh.className="Ones";se.registerClass(Nh);var yg=class extends Ca{constructor(e){super();if(typeof e!="object")throw new j(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new j(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return H(()=>L(ke(this.value),Gn(e,t)))}getConfig(){return{value:this.value}}};yg.className="Constant";se.registerClass(yg);var xg=class extends Ca{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Bl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};xg.className="RandomUniform";se.registerClass(xg);var bg=class extends Ca{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ze(`randomNormal does not support dType ${t}.`);return Th(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};bg.className="RandomNormal";se.registerClass(bg);var vg=class extends Ca{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ze(`truncatedNormal does not support dType ${t}.`);return dh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};vg.className="TruncatedNormal";se.registerClass(vg);var wg=class extends Ca{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return H(()=>{if(e.length!==2||e[0]!==e[1])throw new j("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,R1(e[0]))})}getConfig(){return{gain:this.gain}}};wg.className="Identity";se.registerClass(wg);function qz(e,t="channelsLast"){let n,a;if(Ot(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=as(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=as(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=as(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var zn=class extends Ca{constructor(e){super();if(e.scale<0)throw new j(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,jz(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,Gz(this.distribution),this.seed=e.seed}apply(e,t){let n=qz(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ze(`${this.getClassName()} does not support dType ${t}.`);return dh(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Bl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};zn.className="VarianceScaling";se.registerClass(zn);var Ch=class extends zn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return zn.className}};Ch.className="GlorotUniform";se.registerClass(Ch);var Eh=class extends zn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return zn.className}};Eh.className="GlorotNormal";se.registerClass(Eh);var Rh=class extends zn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return zn.className}};Rh.className="HeNormal";se.registerClass(Rh);var Mh=class extends zn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return zn.className}};Mh.className="HeUniform";se.registerClass(Mh);var Fh=class extends zn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return zn.className}};Fh.className="LeCunNormal";se.registerClass(Fh);var $h=class extends zn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return zn.className}};$h.className="LeCunNormal";se.registerClass($h);var kg=class extends Ca{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new ze("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return H(()=>{if(e.length<2)throw new ze("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=Th(n,0,1,"float32"),r=Hb.gramSchmidt(a);return e[0]>e[1]&&(r=Xe(r)),L(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};kg.className="Orthogonal";se.registerClass(kg);var b3={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function v3(e,t={}){return vd(e,se.SerializationMap.getMap().classNameMap,t,"initializer")}function Ct(e){return sg(e)}function wt(e){if(typeof e=="string"){let t=e in b3?b3[e]:e;if(t==="GlorotNormal")return new Eh;if(t==="GlorotUniform")return new Ch;if(t==="HeNormal")return new Rh;if(t==="HeUniform")return new Mh;if(t==="LeCunNormal")return new Fh;if(t==="LeCunUniform")return new $h;{let n={};return n.className=t,n.config={},v3(n)}}else return e instanceof Ca?e:v3(e)}function Xz(){return new Ag}function Kz(){return new Nh}function Zz(e){return new yg(e)}function Yz(e){return new xg(e)}function Jz(e){return new bg(e)}function Qz(e){return new vg(e)}function e_(e){return new wg(e)}function t_(e){return new zn(e)}function n_(e){return new Ch(e)}function a_(e){return new Eh(e)}function r_(e){return new Rh(e)}function s_(e){return new Mh(e)}function i_(e){return new Fh(e)}function o_(e){return new $h(e)}function l_(e){return new kg(e)}var w3={};_e(w3,{Layer:()=>Ze,RNN:()=>lr,RNNCell:()=>zd,activation:()=>HD,add:()=>QD,alphaDropout:()=>_P,average:()=>eP,averagePooling1d:()=>BA,averagePooling2d:()=>VA,averagePooling3d:()=>UA,avgPool1d:()=>uP,avgPool2d:()=>pP,avgPool3d:()=>hP,avgPooling1d:()=>dP,avgPooling2d:()=>cP,avgPooling3d:()=>fP,batchNormalization:()=>iP,bidirectional:()=>CP,concatenate:()=>tP,conv1d:()=>zD,conv2d:()=>_D,conv2dTranspose:()=>DD,conv3d:()=>PD,conv3dTranspose:()=>LD,convLstm2d:()=>IP,convLstm2dCell:()=>SP,cropping2D:()=>BD,dense:()=>jD,depthwiseConv2d:()=>UD,dot:()=>sP,dropout:()=>GD,elu:()=>ED,embedding:()=>JD,flatten:()=>XD,gaussianDropout:()=>zP,gaussianNoise:()=>OP,globalAveragePooling1d:()=>mP,globalAveragePooling2d:()=>gP,globalMaxPool1d:()=>RP,globalMaxPool2d:()=>MP,globalMaxPooling1d:()=>Mv,globalMaxPooling2d:()=>Fv,gru:()=>yP,gruCell:()=>xP,input:()=>tv,inputLayer:()=>CD,layerNormalization:()=>oP,leakyReLU:()=>MD,lstm:()=>bP,lstmCell:()=>vP,masking:()=>DP,maxPool1d:()=>FP,maxPool2d:()=>$P,maxPooling1d:()=>$v,maxPooling2d:()=>Ov,maxPooling3d:()=>AP,maximum:()=>nP,minimum:()=>aP,multiply:()=>rP,permute:()=>YD,prelu:()=>FD,reLU:()=>RD,repeatVector:()=>KD,reshape:()=>ZD,rnn:()=>TP,separableConv2d:()=>WD,simpleRNN:()=>wP,simpleRNNCell:()=>kP,softmax:()=>$D,spatialDropout1d:()=>qD,stackedRNNCells:()=>NP,thresholdedReLU:()=>OD,timeDistributed:()=>EP,upSampling2d:()=>VD,zeroPadding2d:()=>lP});var u_=0;function k3(){return u_++}var Oh={};function zh(e=""){return e in Oh||(Oh[e]=0),Oh[e]+=1,e+Oh[e].toString()}function Ig(e){return Array.isArray(e)&&Array.isArray(e[0])}function _h(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Pe(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new j(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function st(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new j(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Dh(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var I3="Variable",S3=class{constructor(e,t="float32",n=I3,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=k3(),n=n==null?I3:n,this.originalName=f3(n),this.name=m3(this.originalName),this.trainable_=a,this.constraint=r,this.val=Cb(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),d_(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function d_(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Sg(e){return e.map(t=>t.read())}function Tg(e){e.forEach(t=>{t[0].write(t[1])})}var Pt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Ba=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=k3(),s!=null&&(this.originalName=f3(s),this.name=m3(this.originalName)),this.rank=t.length}},p_=0,Ph=class{constructor(e,t){this.callArgs=t,this.id=p_++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},c_=0,Ze=class extends se.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=c_++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Tr(n)+"_"+zh(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Pa(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new j(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return On(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return On(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Sr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Sr(`Layer ${this.name} is not connected, no input to return.`);return On(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Sr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Sr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return On(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=yt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=yt(this.inputSpec);if(e.length!==t.length)throw new j(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new j(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),u=r.axes[o],d=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(d)===-1)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=yt(e),a=!0;for(let s of n)if(!(s instanceof Ba)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Ba){r=!1;break}if(a===r)throw new j("Arguments to apply() must be all SymbolicTensors or all Tensors");return Ui(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of yt(e))s.push(i.shape);this.build(On(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=yt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=On(o),this.activityRegularizer!=null)throw new ze("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=h_(e),i=this.computeOutputShape(s),o,l=f_(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,d)=>new Ba(l,u,this,yt(e),t,this.name,d)):o=new Ba(l,i,this,yt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new ze("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Sr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Sr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Pa(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Dh(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Sg(e?this.trainableWeights:this.weights)}setWeights(e){H(()=>{let t=this.weights;if(t.length!==e.length)throw new j(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=Sg(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!w.arraysEqual(s.shape,o.shape))throw new j(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}Tg(n)})}addWeight(e,t,n,a,r,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new j(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=wt("zeros"));let o=a.apply(t,n),l=new S3(o,n,e,s,i);return o.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=yt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=yt(e);t=yt(t),n=yt(n),a=yt(a),r=_h(r),s=_h(s);let l=[],u=[],d=[];for(let p of o)l.push(p.sourceLayer),u.push(p.nodeIndex),d.push(p.tensorIndex);new Ph({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:d,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function h_(e){e=yt(e);let t=[];for(let n of e)t.push(n.shape);return On(t)}function f_(e){return"float32"}function T3(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],u=T3(i,o,l);for(let d of u)r.indexOf(d)===-1&&r.push(d)}return r}}}var Gl=class extends Ze{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:zh("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new j("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new j("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new j("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Ba(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new Ph({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new j(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Gl.className="InputLayer";se.registerClass(Gl);function N3(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new j("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Gl({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function ss(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];K(a)}}function C3(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var E3;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(E3||(E3={}));var m_=125,ql=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},R3=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},g_=class extends ql{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=H(()=>re(this.totals[a],L(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:H(()=>{let a=L(ce(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),Jt(t[n])}))}},M3=class extends ql{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},F3=class extends ql{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=m_),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=kz(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await ss(n),a.push(this.yield(e,t,n))),a.push(wh()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await ss(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await ss(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(wh()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await ss(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await ss(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(wh()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await ss(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await ss(e),await this.trainEnd(e))}};function $3(e,t){return e==null&&(e={}),e instanceof ql?[e]:Array.isArray(e)&&e[0]instanceof ql?e:yt(e).map(n=>new F3(n,t))}var Ea=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Ea.checkForDuplicate(t),Ea.constructors[e]==null&&(Ea.constructors[e]=[]),Ea.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Ea.constructors)Ea.constructors[+t].forEach(n=>{if(n===e)throw new j("Duplicate callback constructor.")})}static clear(){Ea.constructors={}}static createCallbacks(e){let t=[];for(let n in Ea.constructors){let a=+n;e>=a&&t.push(...Ea.constructors[a])}return t.map(n=>new n)}};Ea.constructors={};function O3(e,t,n,a,r,s,i,o,l){let u=new M3,d=[new g_,...Ea.createCallbacks(t)];e!=null&&d.push(...e),d.push(u);let p=new R3(d);return p.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:p,history:u}}function Va(e,t={},n=!1){return vd(e,se.SerializationMap.getMap().classNameMap,t,"layer",n)}function Lh(e,t){return H(()=>{e.dtype!=="float32"&&(e=de(e,"float32"));let n=be(Sd(e),t,!0),a=Dl(n.shape,Gt()),r=cn(wr(n,a));return ce(e,r)})}function ji(e,t){return H(()=>Mt(Sd(fe(t,e)),-1))}function Wh(e,t){return H(()=>Mt(Ht(fe(t,e)),-1))}function Xl(e,t){return H(()=>{let n=fe(e,t),a=Hn(Ht(e),Gt(),Number.MAX_VALUE),r=Ht(ce(n,a));return L(100,Mt(r,-1))})}function A_(e,t){return H(()=>{let n=Hn(t,Gt(),Number.MAX_VALUE),a=ua(re(1,n)),r=Hn(e,Gt(),Number.MAX_VALUE),s=ua(re(1,r));return Mt(Sd(fe(a,s)),-1)})}function y_(e,t){return H(()=>{let n=wr(0,fe(1,L(e,t)));return Mt(Sd(n),-1)})}function x_(e,t){return H(()=>{let n=wr(0,fe(1,L(e,t)));return Mt(n,-1)})}function b_(e,t){return H(()=>{let n=be(L(e,t),-1),a=da(L(fe(1,e),t),-1);return wr(0,re(1,fe(a,n)))})}function v_(e,t){return H(()=>{let n=Math.log(2),a=fe(t,e),r=fe(re(a,Ll(L(-2,a))),n);return Mt(r,-1)})}function Nd(e,t,n=!1){return H(()=>{if(n)t=oh(t);else{let a=be(t,t.shape.length-1,!0);t=ce(t,a)}return t=Hn(t,Gt(),1-Gt()),Nt(be(L(de(e,"float32"),ua(t)),t.shape.length-1))})}function Bh(e,t,n=!1){return H(()=>{let a=de(hd(Pz(e)),"int32");t=Hn(t,Gt(),1-Gt());let r=t.shape,s=B(ld(a,r[r.length-1]),r);return Nd(s,t,n)})}function w_(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new j(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return H(()=>{let n=nr(t),a=Nt(Ht(t));return re(fe(n,L(t,e)),Yc(la(a)))})}function Vh(e,t){return H(()=>{let n;return n=Hn(t,Gt(),1-Gt()),n=ua(ce(n,fe(1,n))),Mt(w_(e,n),-1)})}function k_(e,t){return H(()=>{let n=Hn(e,Gt(),1),a=Hn(t,Gt(),1);return be(L(e,ua(ce(n,a))),-1)})}function I_(e,t){return H(()=>{let n=ua(re(Gt(),t));return Mt(fe(t,L(e,n)),-1)})}function Ng(e,t){return H(()=>{let n=Lh(e,-1),a=Lh(t,-1),r=L(n,a);return Nt(be(r,-1))})}var Uh={meanSquaredError:ji,meanAbsoluteError:Wh,meanAbsolutePercentageError:Xl,meanSquaredLogarithmicError:A_,squaredHinge:y_,hinge:x_,categoricalHinge:b_,logcosh:v_,categoricalCrossentropy:Nd,sparseCategoricalCrossentropy:Bh,binaryCrossentropy:Vh,kullbackLeiblerDivergence:k_,poisson:I_,cosineProximity:Ng};function Cg(e){if(typeof e=="string"){if(e in Uh)return Uh[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new j(t)}else return e}function Eg(e,t){return H(()=>{let n=L(.5,pa(t)),a=Ih(jn(t,n),e.dtype);return Mt(oa(e,a),-1)})}function Rg(e,t){return H(()=>Ih(oa(Qa(e,-1),Qa(t,-1)),"float32"))}function z3(e,t){return H(()=>de(be(za(oa(e,1),oa(t,1))),"float32"))}function S_(e,t){return H(()=>de(be(za(oa(e,1),oa(t,0))),"float32"))}function T_(e,t){return H(()=>de(be(za(oa(e,0),oa(t,1))),"float32"))}function _3(e,t){return H(()=>{let n=z3(e,t),a=T_(e,t),r=re(n,a);return de(xn(jn(r,0),ce(n,r),0),"float32")})}function N_(e,t){return H(()=>{let n=z3(e,t),a=S_(e,t),r=re(n,a);return de(xn(jn(r,0),ce(n,r),0),"float32")})}function D3(e,t){return Vh(e,t)}function P3(e,t){return e.rank===t.rank&&(e=lt(e,[e.rank-1])),t=Qa(t,-1),t.dtype!==e.dtype&&(t=de(t,e.dtype)),de(oa(e,t),"float32")}var C_=ji,E_=ji,R_=Wh,M_=Wh,F_=Xl,$_=Xl,Mg=Nd,O_=Ng,L3=Bh,Hh={binaryAccuracy:Eg,categoricalAccuracy:Rg,precision:_3,categoricalCrossentropy:Mg,sparseCategoricalCrossentropy:L3,mse:C_,MSE:E_,mae:R_,MAE:M_,mape:F_,MAPE:$_,cosine:O_};function z_(e){if(typeof e=="string"&&e in Hh)return Hh[e];if(typeof e!="string"&&e!=null)return e;throw new j(`Unknown metric ${e}`)}function jh(e){if(rr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Uh))if(Uh[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Hh))if(Hh[n]===e){t=n;break}return t!==void 0?t:e.name}}function __(e){let t={Adagrad:()=>Li.adagrad(.01),Adadelta:()=>Li.adadelta(1,.95,Gt()),Adam:()=>Li.adam(.001,.9,.999,Gt()),Adamax:()=>Li.adamax(.002,.9,.999,Gt(),0),RMSProp:()=>Li.rmsprop(.001,.9,0,Gt()),SGD:()=>Li.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new j(`Unknown Optimizer ${e}`)}var W3=1*1024*1024;function B3(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Fg(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>W3&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${W3}.`)}}function Fg(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!Fg(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!Fg(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function D_(e,t,n,a=console.log){let r=L_(e),s=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(d=>Math.floor(t*d)));let i;if(!r){s.push("Receives inputs"),i=[];for(let d in e.nodesByDepth)i.push(...e.nodesByDepth[d])}a("_".repeat(t)),Gh(s,n,a),a("=".repeat(t));let o=e.layers;for(let d=0;d<o.length;++d)r?W_(o[d],n,a):B_(o[d],n,i,a),a((d===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=P_(e),u=Dh(e.nonTrainableWeights);a(`Total params: ${l+u}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${u}`),a("_".repeat(t))}function P_(e){let t;return e.collectedTrainableWeights!=null?t=Dh(e.collectedTrainableWeights):t=Dh(e.trainableWeights),t}function L_(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Gh(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function W_(e,t,n){let a;try{a=JSON.stringify(e.outputShape)}catch(o){a="multiple"}let r=e.name,s=e.getClassName(),i=[`${r} (${s})`,a,e.countParams().toString()];Gh(i,t,n)}function B_(e,t,n,a){let r;try{r=JSON.stringify(e.outputShape)}catch(d){r="multiple"}let s=[];for(let d of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(d)===-1))for(let p=0;p<d.inboundLayers.length;++p){let c=d.inboundLayers[p].name,h=d.nodeIndices[p],m=d.tensorIndices[p];s.push(`${c}[${h}][${m}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],u=[`${i} (${o})`,r,e.countParams().toString(),l];Gh(u,t,a);for(let d=1;d<s.length;++d)Gh(["","","",s[d]],t,a)}function V3(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Cd(e,t){if(e===null)return null;if(typeof e=="string")return Bi(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];V3(t,r,s)?n.push(s):n.push(Cd(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=Bi(a);n[s]=Cd(r,s)}}return n}}function $g(e,t){if(e==null)return null;if(typeof e=="string")return Tr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];V3(t,r,s)?n.push(s):n.push($g(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=Tr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=$g(r,a)}return n}}var Og="3.9.0";function V_(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return de(t,e.dtype)}catch(n){throw new j(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Gi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Gi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=V_(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new j(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Ba){if(this.id2Value[e.id]==null)throw new j(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new j(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Ba){if(this.id2Value[e.id]==null)throw new j(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new j(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&K(this.id2Mask)}},zg={},U3={};function Ed(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-1/0,a.minNumTensors=1/0);let d=o.join(",")+"|"+t.names().join(","),p,c;if(zg[d]==null){let m=U_(i,t);p=m.sorted,c=m.recipientCounts,zg[d]=p,U3[d]=c}p=zg[d],c={},r||Object.assign(c,U3[d]);let h=new Gi(t);for(let m=0;m<p.length;++m){if(a!=null){let E=Vc().numTensors;E>a.maxNumTensors&&(a.maxNumTensors=E),E<a.minNumTensors&&(a.minNumTensors=E)}let f=p[m],g=f.sourceLayer;if(g instanceof Gl)continue;let A=[],y=[],x=[],v=!1;for(let E of f.inputs){let z=h.getValue(E),F=h.getMask(E);A.push(z),y.push(F),F!=null&&(v=!0),r||(c[E.name]--,c[E.name]===0&&!t.hasKey(E)&&o.indexOf(E.name)===-1&&!z.isDisposed&&E.sourceLayer.stateful!==!0&&x.push(z))}v&&(n=n||{},n.mask=y[0]);let b=yt(g.apply(A,n)),k=null;g.supportsMasking&&(k=g.computeMask(A,y));let N=j_(f),C=Array.isArray(N)?N:[N];for(let E=0;E<C.length;++E){h.hasKey(C[E])||h.add(C[E],b[E],Array.isArray(k)?k[0]:k);let z=o.indexOf(C[E].name);z!==-1&&(l[z]=b[E])}r||K(x)}return h.disposeMasks(),s?l:l[0]}function U_(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=H3(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=H3(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(u=>a[l].add(u))}}return{sorted:n,recipientCounts:H_(a)}}function H_(e){let t={};for(let n in e)t[n]=e[n].size;return t}function H3(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:a,recipientMap:r}}function j_(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var ir=class extends Ze{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let A=this.getClassName().toLowerCase();this.name=zh(A)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],ns(this.inputs).length!==this.inputs.length)throw new j(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(A=>A.name)}`);ns(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(A=>A.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let A of this.outputs){let y=A.sourceLayer,x=A.nodeIndex,v=A.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let A of this.inputs){let y=A.sourceLayer,x=A.nodeIndex,v=A.tensorIndex;rr(x===0,"input layer has >1 nodes"),rr(v===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let A=0;A<this.inputLayers.length;A++){let y=this.inputLayers[A];if(!(y instanceof Gl))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${A} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let A of this.outputLayers)this.outputNames.push(A.name);this.internalInputShapes=this.inputs.map(A=>A.shape),this.internalOutputShapes=this.outputs.map(A=>A.shape);let t={},n={},a={},r={},s={},i=[],o=(A,y,x,v,b,k)=>{(v==null||b==null||k==null)&&(v=A.sourceLayer,b=A.nodeIndex,k=A.tensorIndex);let N=v.inboundNodes[b];if(x.indexOf(N)!==-1)throw new Pa(`The tensor ${A.name} at layer "${v.name}" is part of a cycle.`);if(y.indexOf(N)!==-1)return;this.containerNodes.add(ir.nodeKey(v,b)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(N)===-1&&x.push(N);let C=N.inboundLayers.length;for(let E=0;E<C;E++){let z=N.inputTensors[E],F=N.inboundLayers[E],I=N.nodeIndices[E],_=N.tensorIndices[E];o(z,y,x,F,I,_)}for(y.push(N);x.indexOf(N)>=0;)x.splice(x.indexOf(N),1);i.push(N)},l=[],u=[];for(let A of this.outputs)o(A,l,u);let d=i.slice().reverse();for(let A of d){n[A.id]=A,A.id in t||(t[A.id]=0);let y=t[A.id],x=a[A.outboundLayer.id]==null?0:a[A.outboundLayer.id];y=Math.max(y,x),a[A.outboundLayer.id]=y,r[A.outboundLayer.id]=A.outboundLayer,t[A.id]=y;for(let v=0;v<A.inboundLayers.length;v++){let b=A.inboundLayers[v],k=A.nodeIndices[v],N=b.inboundNodes[k],C=t[N.id]==null?0:t[N.id];t[N.id]=Math.max(y+1,C),n[N.id]=N}}let p={};for(let A in t){let y=t[A];y in p||(p[y]=[]),p[y].push(n[A])}let c={};for(let A in a){let y=a[A];y in c||(c[y]=[]),c[y].push(r[A])}let h=Object.keys(c).map(A=>parseInt(A,10)).sort(kh);this.layers=[];for(let A of h){let y=c[A];y.sort((x,v)=>{let b=s[x.id],k=s[v.id];return b<k?-1:b>k?1:0});for(let x of y)x instanceof ir&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=c,h=Object.keys(p).map(A=>parseInt(A,10)).sort(kh);let m=this.inputs.slice(),f=[];for(let A of h)for(let y of p[A]){let x=y.outboundLayer;if(x!=null){for(let v of y.inputTensors)if(m.indexOf(v)===-1)throw new Pa(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let v of y.outputTensors)m.push(v);f.push(x.name)}}this.nodesByDepth=p;let g=this.layers.map(A=>A.name);for(let A of g){let y=g.filter(x=>x===A).length;if(y!==1)throw new Pa(`The name "${A}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Ph({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(A=>null),outputMasks:this.outputs.map(A=>null),inputShapes:this.inputs.map(A=>A.shape),outputShapes:this.outputs.map(A=>A.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new j("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new j(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new j(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new j(`${s.length} of ${a} weights are not set: ${s}`)}Tg(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${Og}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=$g(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return H(()=>{e=yt(e);let n=new Gi;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return Ed(this.outputs,n,t)})}computeMask(e,t){return H(()=>{e=yt(e);let n;return t==null?n=Wi(null,e.length):n=yt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=_h(e);if(t.length!==this.inputLayers.length)throw new j(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(kh);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let d=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],A=l.tensorIndices[m],y=`${f.name}_${g}_${A}`,x=n[y];d.push(x)}let p=u.computeOutputShape(On(d)),c=_h(p),h=u.inboundNodes.indexOf(l);for(let m=0;m<c.length;m++){let f=`${u.name}_${h}_${m}`;n[f]=c[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],d=`${o.name}_${l}_${u}`;s.push(d)}for(let i=0;i<s.length;i++){let o=s[i];rr(o in n),r.push(n[o])}return On(r)}runInternalGraph(e,t){t==null&&(t=Wi(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],d=t[o];n[l.id]=[u,d]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(kh);for(let o of a){let l=this.nodesByDepth[o];for(let u of l){let d=u.outboundLayer,p=u.inputTensors,c=u.outputTensors,h=new Array;for(let m of p)m.id in n&&h.push(n[m.id]);if(h.length===p.length){let m={},f,g,A,y;if(u.callArgs!=null&&(m=u.callArgs),h.length===1){let[x,v]=h[0];m.mask==null&&(m.mask=v),A=yt(d.call(x,m)),y=yt(d.computeMask(x,v)),f=[x],g=[v]}else f=h.map(x=>x[0]),g=h.map(x=>x[1]),m.mask==null&&(m.mask=g),A=yt(d.call(f,m)),y=yt(d.computeMask(f,g));if(d.activityRegularizer)throw new ze("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<c.length;++x){let v=c[x],b=A[x],k=y[x];n[v.id]=[b,k]}}}}let r=[],s=[],i=[];for(let o of this.outputs){rr(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),r.push(l),s.push(u)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof ir?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=ir.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new j(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new j("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new j(`No such layer: ${e}`)}calculateLosses(){return H(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=ir.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let d=0;d<s.inboundNodes.length;d++){let p=s.inboundNodes[d],c=ir.nodeKey(s,d),h={};if(this.containerNodes.has(c)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let m=[];for(let f=0;f<p.inboundLayers.length;f++){let g=p.inboundLayers[f],A=p.nodeIndices[f],y=p.tensorIndices[f],x=ir.nodeKey(g,A),v=t[x];v==null&&(v=0),m.push([g.name,v,y,h])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=ir.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.inputLayersTensorIndices[s];a.push([i.name,u,d])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=ir.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.outputLayersTensorIndices[s];r.push([i.name,u,d])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let A=[],y;for(let x of g){let v=x[0],b=x[1],k=x[2];if(y=x[3]==null?{}:x[3],!(v in r)){i(f,g);return}let N=r[v];if(N.inboundNodes.length<=b){i(f,g);return}let C=N.inboundNodes[b];A.push(C.outputTensors[k])}A.length>0&&f.apply(On(A),y)}function l(f){let g=f.name,A=Va(f,t.customObjects!=null?t.customObjects:{});A.setFastWeightInitDuringBuild(a),r[g]=A,f.inboundNodes.forEach(y=>{if(!(y instanceof Array))throw new j(`Corrupted configuration, expected array for nodeData: ${y}`);i(A,y)})}let u=t.name,d=t.layers;for(let f of d)l(f);for(;!wz(s);)for(let f of d){let g=r[f.name];if(g.name in s){let A=s[g.name];delete s[g.name];for(let y of A)o(g,y)}}let p=[],c=[],h=t.inputLayers;for(let f of h){let g=f[0],A=f[1],y=f[2];rr(g in r);let x=r[g].inboundNodes[A].outputTensors;p.push(x[y])}let m=t.outputLayers;for(let f of m){let g=f[0],A=f[1],y=f[2];rr(g in r);let x=r[g].inboundNodes[A].outputTensors;c.push(x[y])}return new e({inputs:p,outputs:c,name:u})}get stateful(){if(this._stateful)throw new j("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){H(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function G_(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function j3(e,t){return G_(e,t,"classWeight")}async function G3(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=H(()=>{if(e.shape.length===1)return Oa(e);if(e.shape.length===2){if(e.shape[1]>1)return Qa(e,1);if(e.shape[1]===1)return B(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());K(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Dt(i,"float32")}else return null}function q_(e,t){return L(e,t)}var X_=32;function q3(e,t){let n,a,r=t;n=r.xs,a=r.ys,w.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=X3("input",e.inputNames,n),i=X3("output",e.outputNames,a),o=s[0].shape[0];w.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)w.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)w.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function X3(e,t,n){if(n instanceof je)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new j(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function K_(e){if(e.length===3)throw new ze("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function Z_(e,t,n){let a=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(K3(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=K_(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let d=$3(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:c,history:h}=O3(d,p,n.epochs,null,null,Y_(t,n),null,r,u);c.setModel(e),e.history=h,await c.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await c.onEpochBegin(m);let A=0,y=0;for(a||(f=await t.iterator());a?A<n.batchesPerEpoch:!0;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${A} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:v,ys:b}=q3(e,x.value),k={};k.batch=y,k.size=v[0].shape[0],await c.onBatchBegin(y,k);let N=[];if(n.classWeight!=null){let z=j3(n.classWeight,e.outputNames);for(let F=0;F<z.length;++F)N.push(await G3(b[F],null,z[F]))}let C=v.concat(b).concat(N),E=o(C);K(C);for(let z=0;z<l.length;++z){let F=l[z],I=E[z];k[F]=I,Jt(I)}await c.onBatchEnd(y,k),C3(k),y++,A++}if(a?A>=n.batchesPerEpoch:x.done){if(r){let v;K3(n.validationData)?v=yt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=yt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?X_:n.validationBatchSize,verbose:0}));for(let b=0;b<e.metricsNames.length;++b)g[`val_${e.metricsNames[b]}`]=v[b]}break}if(e.stopTraining_)break}if(await c.onEpochEnd(m,g),m++,e.stopTraining_)break}return await c.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function Y_(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function K3(e){return typeof e.iterator=="function"}function J_(e){return typeof e.next=="function"}async function Q_(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new ze("Verbose mode is not implemented yet.");w.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=J_(t)?t:await t.iterator(),o=0,l=0;for(;a?l<n.batches:!0;){let u=await i.next();if(s=H(()=>{if(u.value){let{xs:d,ys:p}=q3(e,u.value),c=d.concat(p),h=H(()=>r(c));if(K(c),l===0)for(let f=0;f<h.length;++f)s.push(ke(0));let m=c[0].shape[0];for(let f=0;f<h.length;++f){let g=h[f],A=s[f];s[f]=H(()=>re(s[f],L(m,g))),l>0&&K(A)}K(h),o+=m,++l}return s}),u.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let d=s[u];s[u]=ce(s[u],o),K(d)}return On(s)}function _g(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Rd(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>Hi(a,t,n-t)):Hi(e,t,n-t)}function Dg(e,t){return H(()=>e==null?null:Array.isArray(e)?e.map(n=>Dg(n,t)):y3(e,t.dtype==="int32"?t:de(t,"int32")))}function Pg(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function eD(e,t,n,a,r,s,i,o,l,u,d,p,c,h,m){r==null&&(r=32),s==null&&(s=1),d==null&&(d=!0),c==null&&(c=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new j("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),A;g!=null&&(A=La(0,g)),i==null&&(i=1);let{callbackList:y,history:x}=O3(o,i,s,c,g,h,r,f,p);y.setModel(e),e.history=x,await y.onTrainBegin(),e.stopTraining_=!1;for(let v=c;v<s;++v){await y.onEpochBegin(v);let b={};if(h!=null)throw new ze("stepsPerEpoch mode is not implemented yet.");{if(d==="batch")throw new ze("batch shuffling is not implemneted yet");d&&w.shuffle(A);let k=Dt(A),N=Pg(g,r);for(let C=0;C<N.length;++C){let E={};if(await y.onBatchBegin(C,E),H(()=>{let z=N[C][0],F=N[C][1],I=Hi(k,z,F-z);E.batch=C,E.size=F-z;let _=Dg(n,I),D=t(_);for(let V=0;V<a.length;++V){let q=a[V],G=D[V];E[q]=G,Jt(G)}if(C===N.length-1&&f){let V=e.testLoop(l,u,r);for(let q=0;q<a.length;++q){let G=a[q],Q=V[q];Jt(Q),b["val_"+G]=Q}}}),await y.onBatchEnd(C,E),C3(E),e.stopTraining_)break}k.dispose()}if(await y.onEpochEnd(v,b),e.stopTraining_)break}return await y.onTrainEnd(),await e.history.syncData(),e.history}async function tD(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,u,d;try{let p=a.batchSize==null?32:a.batchSize;_g(p);let c=!1,h=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,c,p);r=h[0],s=h[1],d=h[2];let m=!1,f;if(a.validationData!=null&&a.validationData.length>0){if(m=!0,a.validationData.length===2)i=a.validationData[0],o=a.validationData[1];else throw a.validationData.length===3?new ze("validationData including sample weights is not supported yet."):new j(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let k=!0,N=await e.standardizeUserData(i,o,null,null,k,p);l=N[0],u=N[1],f=l.concat(u)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){m=!0;let k=Math.floor(r[0].shape[0]*(1-a.validationSplit)),N=r[0].shape[0];l=Rd(r,k,N),r=Rd(r,0,k),u=Rd(s,k,N),s=Rd(s,0,k),f=l.concat(u)}else a.validationSteps!=null&&(m=!0);let g=r.concat(s).concat(d);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),y=e.getDedupedMetricsNames(),x,v;m?(e.makeTestFunction(),x=e.testFunction,v=y.slice().concat(y.map(k=>"val_"+k))):(x=null,f=[],v=y.slice());let b=$3(a.callbacks,a.yieldEvery);return await eD(e,A,g,y,p,a.epochs,a.verbose,b,x,f,a.shuffle,v,a.initialEpoch,null,null)}finally{e.isTraining=!1,qi(r,t),qi(s,n),qi(l,i),qi(u,o),d!=null&&K(d)}}function Z3(e){let t=[];e instanceof je&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(Id(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function qi(e,t){if(e==null)return;let n=[];if(t instanceof je)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof je)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function nD(e){return e instanceof je}function Lg(e){return Array.isArray(e)}function Y3(e){return!nD(e)&&!Lg(e)}function J3(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Lg(e)&&e.length>0)i=!0;else if(Y3(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new j(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(Y3(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new j(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Lg(e)){if(e=e,e.length!==t.length)throw new j(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new j(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=Z3(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new j(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],d=n[i][l];if(d!=null&&d>=0&&u!==d)throw new j(`${r} expected a batch of elements where each example has shape [${n[i].slice(1,n[i].length)}] (i.e.,tensor shape [*,${n[i].slice(1,n[i].length)}]) but the ${r} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return s}function aD(e,t,n){let a=ns(e.map(s=>s.shape[0]));a.sort();let r=ns(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new j(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new j(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!w.arraysEqual(a,r))throw new j(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function rD(e,t,n){let a=[ji,Vh,Nd];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===Nd&&s.shape[s.shape.length-1]===1)throw new j(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let d=0;d<l.length;++d){let p=l[d],c=u[d];if(c!=null&&p!==c)throw new j(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function Q3(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new j(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new j(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new j(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],d=n[i][l];if(d!=null&&d!==u)throw new j(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function sD(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var iD="layers-model",Nr=class extends ir{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new j("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");D_(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=__(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Ir))throw new j("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new j(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(Cg(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new j(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>Cg(s))}else{let s=Cg(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Ui("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=sD(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Ui("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",u,d,p;for(let c of o){if(typeof c=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(c)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===Vh?["accuracy","acc"].indexOf(c)!==-1?d=Eg:["crossentropy","ce"].indexOf(c)!==-1&&(d=D3):this.lossFunctions[s]===Bh?["accuracy","acc"].indexOf(c)!==-1?d=P3:["crossentropy","ce"].indexOf(c)!==-1&&(d=L3):["accuracy","acc"].indexOf(c)!==-1?d=Rg:["crossentropy","ce"].indexOf(c)!==-1&&(d=Mg);let f;["accuracy","acc"].indexOf(c)!==-1?f="acc":["crossentropy","ce"].indexOf(c)!==-1&&(f="ce"),p=d,u=l+f}else p=z_(c),u=l+jh(c);let h;Ui(u,()=>{h=p}),r(s,u,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;_g(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return On(l)}finally{qi(s[0],e),qi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),Q_(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new j(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new j(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new j("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new Gi;if(e instanceof je&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new j(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new j(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Ed(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=Wi(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new j(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return H(()=>{let a=this.checkNumSamples(e);if(n)throw new ze("Verbose predictLoop() is not implemented yet.");let r=Pg(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)H(()=>{let o=r[i][0],l=r[i][1],u=Rd(e,o,l),d=[];if(Array.isArray(u))for(let c=0;c<u.length;++c)d.push({key:this.inputs[c],value:u[c]});else d.push({key:this.inputs[0],value:u});let p=new Gi(d);return Ed(this.outputs,p)}).forEach((o,l)=>s[l].push(o));return On(s.map(i=>ht(i,0)))})}predict(e,t={}){let n=Z3(e);Q3(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return _g(a),this.predictLoop(n,a)}finally{qi(n,e)}}predictOnBatch(e){Q3(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new Pa("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===Bh?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=J3(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=J3(t,this.feedOutputNames,r,!1,"target"),aD(e,t,null),rD(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!=0)throw new j(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let u=j3(a,this.outputNames);l=[];for(let d=0;d<u.length;++d)l.push(await G3(o[d],null,u[d]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return H(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new ze("Verbose mode is not implemented yet.");if(r!=null)throw new ze("steps mode in testLoop() is not implemented yet");{let o=Pg(s,n),l=Dt(La(0,s));for(let u=0;u<o.length;++u){let d=o[u][0],p=o[u][1],c=Hi(l,d,p-d),h=Dg(t,c),m=e(h);if(u===0)for(let f=0;f<m.length;++f)i.push(ke(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=re(i[f],L(p-d,g))}}for(let u=0;u<i.length;++u)i[u]=ce(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;i3(e,a)>1&&(r+=`_${i3(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let h=0;h<this.inputs.length;++h)u.push({key:this.inputs[h],value:n[h]});let d=new Gi(u),p=Ed(this.outputs,d,{training:!0}),c;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h](a[h],p[h]);r[h]!=null&&(m=q_(m,r[h]));let f=Mt(m);t.push(f),h===0?c=m:c=re(c,m)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],g=this.metricsTensors[h][1];m=Mt(f(a[g],p[g]))}Jt(m),s.push(m)}return c=Mt(c),this.calculateLosses().forEach(h=>{c=re(c,h)}),c},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>H(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new Gi(s),o=Ed(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],d=Mt(u(r[l],o[l]));l===0?n=d:n=re(n,d),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],d=this.metricsTensors[l][1],p=Mt(u(r[d],o[d]));t.push(p)}return t})}async fit(e,t,n={}){return tD(this,e,t,n)}async fitDataset(e,t){return Z_(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return K(s),On(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Vc().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Vc().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Tr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Tr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=Tr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Tr(jh(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Tr(jh(e)));{let e={};for(let t in this.metrics)e[t]=Tr(jh(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Cd(e.optimizer_config),n=Va(t),a;if(typeof e.loss=="string")a=Bi(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>Bi(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=Bi(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>Bi(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=Bi(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=Fn.getSaveHandlers(e);if(i.length===0)throw new j(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new j(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new j("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Fn.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:iD,generatedBy:`TensorFlow.js tfjs-layers v${Og}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Fn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=Fn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;B3(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){B3(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Nr.className="Model";se.registerClass(Nr);var ev=class extends Nr{};ev.className="Functional";se.registerClass(ev);async function oD(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=Cd(n),r=Va(a,t);if(e.weightsManifest!=null){let s=await Fn.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),K(s)}return r}async function lD(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Fn.getLoadHandlers(e,t);if(n.length===0)n.push(Fn.browserHTTPRequest(e,t));else if(n.length>1)throw new j(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return uD(e,void 0,t)}async function uD(e,t,n){if(n==null&&(n={}),e.load==null)throw new j("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=Va(Cd(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new j("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:d}=dD(a.weightData,a.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&d.length>0&&await o.optimizer.setWeights(d),K(u),K(d.map(p=>p.tensor))}return o}function dD(e,t){let n=Fn.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var Kl=class extends Nr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:zh("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new j(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Kl||e instanceof Nr,n;if(t){if(n=e,n.outputs.length!==1)throw new j("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new j("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new j("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=N3({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new j(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new j("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=T3(this.outputs[0])}this.inboundNodes=[],new Ph({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Wi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(st(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Nr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Pa("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Pa("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Pa("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Pa("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new j("Legacy serialization format not supported yet.");r=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Kl))throw new ze(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=Va(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new j("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new j("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Kl.className="Sequential";se.registerClass(Kl);function pD(e){return new Nr(e)}function cD(e){return new Kl(e)}function hD(e,t){return t==null&&(t={}),lD(e,t)}function tv(e){return N3(e)}function fD(e,t){Ea.registerCallbackConstructor(e,t)}var _n=class extends se.Serializable{getConfig(){return{}}},nv=class extends _n{apply(e,t=1){return Wz(e,t)}};nv.className="elu";se.registerClass(nv);var av=class extends _n{apply(e){return U1(e)}};av.className="selu";se.registerClass(av);var rv=class extends _n{apply(e){return nr(e)}};rv.className="relu";se.registerClass(rv);var sv=class extends _n{apply(e){return H(()=>fd(6,nr(e)))}};sv.className="relu6";se.registerClass(sv);var iv=class extends _n{apply(e){return e}};iv.className="linear";se.registerClass(iv);var ov=class extends _n{apply(e){return Un(e)}};ov.className="sigmoid";se.registerClass(ov);var lv=class extends _n{apply(e){return Vz(e)}};lv.className="hardSigmoid";se.registerClass(lv);var uv=class extends _n{apply(e){return Ll(e)}};uv.className="softplus";se.registerClass(uv);var dv=class extends _n{apply(e){return Bz(e)}};dv.className="softsign";se.registerClass(dv);var pv=class extends _n{apply(e){return Ol(e)}};pv.className="tanh";se.registerClass(pv);var Wg=class extends _n{apply(e,t=-1){return oh(e,t)}};Wg.className="softmax";se.registerClass(Wg);var cv=class extends _n{apply(e,t=-1){return F1(e,t)}};cv.className="logSoftmax";se.registerClass(cv);var hv=class extends _n{apply(e,t=1){return H(()=>L(Un(L(e,t)),e))}};hv.className="swish";se.registerClass(hv);var fv=class extends _n{apply(e){return H(()=>L(e,Ol(Ll(e))))}};fv.className="mish";se.registerClass(fv);function is(e){return e.getClassName()}function Bg(e,t={}){return vd(e,se.SerializationMap.getMap().classNameMap,t,"activation")}function os(e){if(e==null){let t={};return t.className="linear",t.config={},Bg(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Bg(t)}else return e instanceof _n?e:Bg(e)}function Vg(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var mv=class extends se.Serializable{},Md=class extends mv{constructor(e){super();Vg(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return H(()=>{let t=_t([1]);return this.hasL1&&(t=re(t,be(L(this.l1,Ht(e))))),this.hasL2&&(t=re(t,be(L(this.l2,Sd(e))))),B(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Md.className="L1L2";se.registerClass(Md);function mD(e){return Vg(e),new Md({l1:e!=null?e.l1:null,l2:0})}function gD(e){return Vg(e),new Md({l2:e!=null?e.l2:null,l1:0})}var gv={l1l2:"L1L2"};function dt(e){return sg(e)}function Av(e,t={}){return vd(e,se.SerializationMap.getMap().classNameMap,t,"regularizer")}function kt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in gv?gv[e]:e,config:{}};return Av(t)}else return e instanceof mv?e:Av(e)}var Ug=class extends Ze{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Pe(e);let n=nr(e);return this.maxValue!=null&&(n=Hn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Ug.className="ReLU";se.registerClass(Ug);var Hg=class extends Ze{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Pe(e);return Zc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Hg.className="LeakyReLU";se.registerClass(Hg);var jg=class extends Ze{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=wt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=kt(e.alphaRegularizer),this.alphaConstraint=Xt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new j(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=st(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new Pt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Pe(e),rh(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Ct(this.alphaInitializer),alphaRegularizer:dt(this.alphaRegularizer),alphaConstraint:qt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};jg.className="PReLU";se.registerClass(jg);var Gg=class extends Ze{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new ze(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Pe(e);return cd(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Gg.className="ELU";se.registerClass(Gg);var qg=class extends Ze{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Pe(e);return L(n,de(jn(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};qg.className="ThresholdedReLU";se.registerClass(qg);var Xg=class extends Ze{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new Wg().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Pe(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Xg.className="Softmax";se.registerClass(Xg);function Zl(e,t,n){if(typeof e=="number")return Wi(e,t);if(e.length!==t)throw new j(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!_z(r))throw new j(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Ua(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function or(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+rs([n-t,0]);else if(a==="same")e=e*t;else throw new j(`Unsupport padding mode: ${a}.`);return e}function Kg(e,t){return H(()=>(Ot(t),t==="channelsFirst"?Xe(e,[0,2,3,1]):e))}function yv(e,t){return H(()=>(Ot(t),t==="channelsFirst"?Xe(e,[0,2,3,4,1]):e))}function AD(e,t,n,a=1,r="valid",s,i=1){return H(()=>{if(s==null&&(s=Da()),Ot(s),e.shape.length!==3)throw new j(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new j(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new j(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Xe(e,[0,2,1])),r==="causal")throw new ze("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=I1(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Wa(o,n)),o})}function xv(e,t,n,a=[1,1],r="valid",s,i,o=null){return H(()=>{if(s==null&&(s=Da()),Ot(s),e.rank!==3&&e.rank!==4)throw new j(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new j(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Kg(e,s);if(r==="causal")throw new ze("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=ts.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Xe(l,[0,3,1,2])),l})}function yD(e,t,n,a=[1,1,1],r="valid",s,i){return H(()=>{if(s==null&&(s=Da()),Ot(s),e.rank!==4&&e.rank!==5)throw new j(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new j(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=yv(e,s);if(r==="causal")throw new ze("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=N1(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Wa(o,n)),s==="channelsFirst"&&(o=Xe(o,[0,4,1,2,3])),o})}var Zg=class extends Ze{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Zg.verifyArgs(t),this.rank=e,Qt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new ze(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Zl(t.kernelSize,e,"kernelSize"),this.strides=Zl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,fa(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ot(this.dataFormat),this.activation=os(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=wt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Xt(t.biasConstraint),this.biasRegularizer=kt(t.biasRegularizer),this.activityRegularizer=kt(t.activityRegularizer),this.dilationRate=Zl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new j(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new j(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new j(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(rr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!og(e.kernelSize,"number",1,3))throw new j(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:is(this.activation),useBias:this.useBias,biasInitializer:Ct(this.biasInitializer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),biasConstraint:qt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Fd=class extends Zg{constructor(e,t){super(e,t);this.kernel=null,Fd.verifyArgs(t),this.filters=t.filters,Qt(this.filters,"filters"),this.kernelInitializer=wt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Xt(t.kernelConstraint),this.kernelRegularizer=kt(t.kernelRegularizer)}build(e){e=st(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return H(()=>{e=Pe(e);let n,a=this.bias==null?null:this.bias.read(),r=l3(this.activation.getClassName());if(r!=null&&this.rank===2)n=xv(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=AD(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=xv(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=yD(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new ze("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=st(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=Ua(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:Ct(this.kernelInitializer),kernelRegularizer:dt(this.kernelRegularizer),kernelConstraint:qt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new j(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},$d=class extends Fd{constructor(e){super(2,e);$d.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!og(e.kernelSize,"number",1,2))throw new j(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};$d.className="Conv2D";se.registerClass($d);var Od=class extends Fd{constructor(e){super(3,e);Od.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new j(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Od.className="Conv3D";se.registerClass(Od);var Yg=class extends $d{constructor(e){super(e);if(this.inputSpec=[new Pt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new j(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==4)throw new j("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Pt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{let n=Pe(e);if(n.shape.length!==4)throw new j(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],u=this.kernelSize[0],d=this.kernelSize[1],p=this.strides[0],c=this.strides[1],h=or(o,p,u,this.padding),m=or(l,c,d,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Xe(n,[0,2,3,1]));let g=T1(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Xe(g,[0,3,1,2])),this.bias!=null&&(g=Wa(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=st(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=or(t[a],o,s,this.padding),t[r]=or(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Yg.className="Conv2DTranspose";se.registerClass(Yg);var Jg=class extends Od{constructor(e){super(e);if(this.inputSpec=[new Pt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new j(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==5)throw new j("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Pt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{let n=Pe(e);if(n.shape.length!==5)throw new j(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=a[o],u=a[s],d=a[i],p=this.kernelSize[0],c=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],g=this.strides[2],A=or(l,m,p,this.padding),y=or(u,f,c,this.padding),x=or(d,g,h,this.padding),v=[r,A,y,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Xe(n,[0,2,3,4,1]));let b=Qx(n,this.kernel.read(),v,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(b=Xe(b,[0,4,1,2,3])),this.bias!==null&&(b=Wa(b,this.bias.read(),this.dataFormat)),this.activation!==null&&(b=this.activation.apply(b)),b})}computeOutputShape(e){e=st(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],d=this.strides[1],p=this.strides[2];return t[n]=this.filters,t[a]=or(t[a],u,i,this.padding),t[r]=or(t[r],d,o,this.padding),t[s]=or(t[s],p,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Jg.className="Conv3DTranspose";se.registerClass(Jg);var bv=class extends Fd{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new j("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new j("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new j(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=wt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=kt(t.depthwiseRegularizer),this.depthwiseConstraint=Xt(t.depthwiseConstraint),this.pointwiseInitializer=wt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=kt(t.pointwiseRegularizer),this.pointwiseConstraint=Xt(t.pointwiseConstraint)}build(e){if(e=st(e),e.length<this.rank+2)throw new j(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new j(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Pt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{e=Pe(e);let n;if(this.rank===1)throw new ze("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Xe(e,[0,2,3,1])),n=vb(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Wa(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Xe(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.pointwiseInitializer=Ct(this.pointwiseInitializer),e.depthwiseRegularizer=dt(this.depthwiseRegularizer),e.pointwiseRegularizer=dt(this.pointwiseRegularizer),e.depthwiseConstraint=qt(this.depthwiseConstraint),e.pointwiseConstraint=qt(this.pointwiseConstraint),e}};bv.className="SeparableConv";var Qg=class extends bv{constructor(e){super(2,e)}};Qg.className="SeparableConv2D";se.registerClass(Qg);var qh=class extends Fd{constructor(e){super(1,e);qh.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!og(e.kernelSize,"number",1,1))throw new j(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};qh.className="Conv1D";se.registerClass(qh);var eA=class extends Ze{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return H(()=>{if(e=Pe(e),this.dataFormat==="channelsLast"){let n=Sh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Sh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Sh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Sh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};eA.className="Cropping2D";se.registerClass(eA);var tA=class extends Ze{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,$z(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return H(()=>{let n=Pe(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Xe(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?Me.resizeNearestNeighbor(n,[r,s]):Me.resizeBilinear(n,[r,s]);return Xe(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?Me.resizeNearestNeighbor(n,[r,s]):Me.resizeBilinear(n,[r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};tA.className="UpSampling2D";se.registerClass(tA);function xD(e,t,n=[1,1],a="valid",r,s){return H(()=>{r==null&&(r=Da()),Ot(r);let i=Kg(e,r);if(e.rank!==4)throw new j(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new j(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=pd(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Xe(i,[0,3,1,2])),i})}var nA=class extends Zg{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=wt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Xt(e.depthwiseConstraint),this.depthwiseRegularizer=kt(e.depthwiseRegularizer)}build(e){if(e=st(e),e.length<4)throw new j(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new j(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{e=Pe(e);let n=xD(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Wa(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Ua(t,this.kernelSize[0],this.padding,this.strides[0]),s=Ua(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.depthwiseRegularizer=dt(this.depthwiseRegularizer),e.depthwiseConstraint=qt(this.depthwiseRegularizer),e}};nA.className="DepthwiseConv2D";se.registerClass(nA);function vv(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new j("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function wv(e,t,n,a=!1,r,s,i=!1,o=!1){return H(()=>{let l=t.shape.length;if(l<3)throw new j(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(La(2,l));if(t=Xe(t,u),s!=null)throw new ze("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=de(de(r,"bool"),"float32"),r.rank===l-1&&(r=zt(r,-1)),r=Xe(r,u)),a&&(t=ca(t,0),r!=null&&(r=ca(r,0)));let d=[],p,c=n,h=t.shape[0],m=ha(t),f;r!=null&&(f=ha(r));for(let A=0;A<h;++A){let y=m[A],x=H(()=>e(y,c));if(r==null)p=x[0],c=x[1];else{let v=H(()=>{let b=f[A],k=fe(pa(b),b),N=re(L(x[0],b),L(c[0],k)),C=c.map((E,z)=>re(L(x[1][z],b),L(E,k)));return{output:N,newStates:C}});p=v.output,c=v.newStates}o&&d.push(p)}let g;return o&&(g=$n(d,1)),[p,g,c]})}var lr=class extends Ze{constructor(e){super(e);let t;if(e.cell==null)throw new j("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Zh({cells:e.cell}):t=e.cell,t.stateSize==null)throw new j("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Pt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return La(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Ig(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return H(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new ze("Constants support is not implemented in RNN yet.");Ig(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,a=e.slice(2);this.inputSpec[0]=new Pt({shape:[n,null,...a]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new ze("Constants support is not implemented in RNN yet.");this.cell.build(r);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new j(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Pt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new Sr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new j("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>_t([n,a])):this.states_=[_t([n,this.cell.stateSize])];else if(e==null)K(this.states_),this.keptStates!=null&&(K(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>_t([n,a])):this.states_[0]=_t([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new j(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):K(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!w.arraysEqual(r.shape,i))throw new j(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>Jt(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=vv(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Pt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Ba){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let d=super.apply(o,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=Pe(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new j(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=wv((c,h)=>{let m=this.cell.call([c].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],d=o[2];this.stateful&&this.resetStates(d,a);let p=this.returnSequences?u:l;return this.returnState?[p].concat(d):p})}getInitialState(e){return H(()=>{let t=_t(e.shape);return t=be(t,[1,2]),t=Id(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?mg(t,[1,n]):t):this.cell.stateSize>1?[mg(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===lr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=Va(a,n);return new e(Object.assign(t,{cell:r}))}};lr.className="RNN";se.registerClass(lr);var zd=class extends Ze{},Xh=class extends zd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Qt(this.units,"units"),this.activation=os(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=kt(e.kernelRegularizer),this.recurrentRegularizer=kt(e.recurrentRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=jl([1,rs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=jl([1,rs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new j(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ls({ones:()=>pa(e),rate:this.dropout,training:a})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ls({ones:()=>pa(n),rate:this.recurrentDropout,training:a}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=sr(L(e,s),this.kernel.read()):r=sr(e,this.kernel.read()),this.bias!=null&&(r=Wa(r,this.bias.read())),i!=null&&(n=L(n,i));let o=re(r,sr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:is(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),recurrentConstraint:qt(this.recurrentConstraint),biasConstraint:qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Xh.className="SimpleRNNCell";se.registerClass(Xh);var aA=class extends lr{constructor(e){e.cell=new Xh(e);super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(K(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(K(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};aA.className="SimpleRNN";se.registerClass(aA);var Kh=class extends zd{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new j("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Qt(this.units,"units"),this.activation=os(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=os(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=kt(e.kernelRegularizer),this.recurrentRegularizer=kt(e.recurrentRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=jl([1,rs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=jl([1,rs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new j(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ls({ones:()=>pa(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ls({ones:()=>pa(a),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=L(e,r[0]));let u=sr(e,this.kernel.read());this.useBias&&(u=Wa(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=L(a,s[0]));let d=this.recurrentKernel.read(),[p,c]=sn(d,[2*this.units,this.units],d.rank-1),h=sr(a,p),[m,f,g]=sn(u,3,u.rank-1),[A,y]=sn(h,2,h.rank-1);i=this.recurrentActivation.apply(re(m,A)),o=this.recurrentActivation.apply(re(f,y));let x=sr(L(o,a),c);l=this.activation.apply(re(g,x));let v=re(L(i,a),L(re(1,Nt(i)),l));return[v,v]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:is(this.activation),recurrentActivation:is(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),recurrentConstraint:qt(this.recurrentConstraint),biasConstraint:qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Kh.className="GRUCell";se.registerClass(Kh);var rA=class extends lr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Kh(e);super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(K(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(K(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};rA.className="GRU";se.registerClass(rA);var _d=class extends zd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Qt(this.units,"units"),this.activation=os(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=os(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=kt(e.kernelRegularizer),this.recurrentRegularizer=kt(e.recurrentRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=jl([1,rs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=jl([1,rs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=st(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends Ca{apply(i,o){let l=r.apply([s]),u=new Nh().apply([s]),d=r.apply([s*2]);return A3(A3(l,u),d)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new j(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ls({ones:()=>pa(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ls({ones:()=>pa(a),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,d;0<this.dropout&&this.dropout<1&&(e=L(e,s[0]));let p=sr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=L(a,i[0])),p=re(p,sr(a,this.recurrentKernel.read())),this.useBias&&(p=Wa(p,this.bias.read()));let[c,h,m,f]=sn(p,4,p.rank-1);o=this.recurrentActivation.apply(c),l=this.recurrentActivation.apply(h),u=re(L(l,r),L(o,this.activation.apply(m))),d=this.recurrentActivation.apply(f);let g=L(d,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:is(this.activation),recurrentActivation:is(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),recurrentConstraint:qt(this.recurrentConstraint),biasConstraint:qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};_d.className="LSTMCell";se.registerClass(_d);var sA=class extends lr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new _d(e);super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(K(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(K(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};sA.className="LSTM";se.registerClass(sA);var Zh=class extends zd{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return H(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){Ig(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{Ui(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(Va(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Sg(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}Tg(t)}};Zh.className="StackedRNNCells";se.registerClass(Zh);function ls(e){let{ones:t,rate:n,training:a=!1,count:r=1}=e,s=()=>x3(t(),n),i=()=>Td(s,t,a);return!r||r<=1?Jt(i().clone()):Array(r).fill(void 0).map(i).map(o=>Jt(o.clone()))}var bD=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},kv=class extends lr{constructor(e){if(e.unroll)throw new ze("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new ze("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Pt({ndim:5})]}call(e,t){return H(()=>{if(this.cell.dropoutMask!=null&&(K(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(K(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new j("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return H(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=_t(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new Sr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new j("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>_t(r)):this.states_=[_t(r)];else if(e==null)K(this.states_),this.keptStates!=null&&(K(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>_t(r)):this.states_[0]=_t(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new j(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):K(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!w.arraysEqual(i.shape,o))throw new j(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Jt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],d=Ua(l,a[0],r,s[0],i[0]),p=Ua(u,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,d,p]:[d,p,n]]}};kv.className="ConvRNN2D";var Yh=class extends _d{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Qt(this.filters,"filters"),this.kernelSize=Zl(n,2,"kernelSize"),this.kernelSize.forEach(o=>Qt(o,"kernelSize")),this.strides=Zl(a||1,2,"strides"),this.strides.forEach(o=>Qt(o,"strides")),this.padding=r||"valid",fa(this.padding),this.dataFormat=s||"channelsLast",Ot(this.dataFormat),this.dilationRate=Zl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Qt(o,"dilationRate"))}build(e){var t;e=st(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new j(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends Ca{apply(d,p){let c=l.apply([u]),h=Gn([u]),m=l.apply([u*2]);return fg([c,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return H(()=>{if(e.length!==3)throw new j(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ls({ones:()=>pa(a),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(J,ne,ee)=>!ne||!ne[ee]?J:L(ne[ee],J),u=l(a,o,0),d=l(a,o,1),p=l(a,o,2),c=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ls({ones:()=>pa(r),rate:this.recurrentDropout,training:n,count:i}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),A=l(r,h,3),y=3,[x,v,b,k]=sn(this.kernel.read(),i,y),[N,C,E,z]=this.useBias?sn(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,N,this.padding),d=this.inputConv(d,v,C,this.padding),p=this.inputConv(p,b,E,this.padding),c=this.inputConv(c,k,z,this.padding);let[F,I,_,D]=sn(this.recurrentKernel.read(),i,y);m=this.recurrentConv(m,F),f=this.recurrentConv(f,I),g=this.recurrentConv(g,_),A=this.recurrentConv(A,D);let V=this.recurrentActivation.apply(re(u,m)),q=this.recurrentActivation.apply(re(d,f)),G=re(L(q,s),L(V,this.activation.apply(re(p,g)))),Q=L(this.recurrentActivation.apply(re(c,A)),this.activation.apply(G));return[Q,Q,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=bD(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=Jr(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Wa(r,n,this.dataFormat):r}recurrentConv(e,t){return Jr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Yh.className="ConvLSTM2DCell";se.registerClass(Yh);var iA=class extends kv{constructor(e){let t=new Yh(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};iA.className="ConvLSTM2D";se.registerClass(iA);var Jh=class extends Ze{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Pe(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Td(()=>x3(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Jh.className="Dropout";se.registerClass(Jh);var oA=class extends Jh{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};oA.className="SpatialDropout1D";se.registerClass(oA);var lA=class extends Ze{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Qt(this.units,"units"),this.activation=os(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Xt(e.kernelConstraint),this.biasConstraint=Xt(e.biasConstraint),this.kernelRegularizer=kt(e.kernelRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.activityRegularizer=kt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=st(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=st(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Pe(e),a=l3(this.activation.getClassName()),r;return a!=null?r=sr(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=sr(n,this.kernel.read()),this.bias!=null&&(r=Wa(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:is(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),biasConstraint:qt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};lA.className="Dense";se.registerClass(lA);var uA=class extends Ze{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=st(e);for(let t of e.slice(1))if(t==null)throw new j(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],as(e,1)]}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Pe(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=Xe(n,a)}return Lz(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};uA.className="Flatten";se.registerClass(uA);var dA=class extends Ze{constructor(e){super(e);this.supportsMasking=!0,this.activation=os(e.activation)}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Pe(e);return this.activation.apply(n)})}getConfig(){let e={activation:is(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};dA.className="Activation";se.registerClass(dA);var pA=class extends Ze{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return H(()=>(e=Pe(e),Dz(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};pA.className="RepeatVector";se.registerClass(pA);var cA=class extends Ze{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new j("Can only specifiy one unknown dimension.");else r*=l}let i=as(e);if(s!==null){if(r===0||i%r!=0)throw new j(n);a[s]=i/r}else if(i!==r)throw new j(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Pe(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return B(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};cA.className="Reshape";se.registerClass(cA);var hA=class extends Ze{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=La(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Pt({ndim:this.dims.length+1})]}computeOutputShape(e){e=st(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Xe(Pe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};hA.className="Permute";se.registerClass(hA);var fA=class extends Ze{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Pe(e),a=-1;return Hc(Wl(n,this.maskValue),a)}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Pe(e),a=-1,r=!0,s=Hc(Wl(n,this.maskValue),a,r);return L(n,de(s,n.dtype))})}};fA.className="Masking";se.registerClass(fA);var mA=class extends Ze{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(yt(e.inputLength))}this.inputDim=e.inputDim,Qt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Qt(this.outputDim,"outputDim"),this.embeddingsInitializer=wt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=kt(e.embeddingsRegularizer),this.activityRegularizer=kt(e.activityRegularizer),this.embeddingsConstraint=Xt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return H(()=>this.maskZero?(e=Pe(e),Wl(e,Ke(e))):null)}computeOutputShape(e){if(e=st(e),this.inputLength==null)return[...e,this.outputDim];let t=yt(this.inputLength);if(t.length!==e.length-1)throw new j(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new j(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Pe(e);n.dtype!=="int32"&&(n=Ih(n,"int32"));let a=y3(this.embeddings.read(),B(n,[n.size]));return B(a,st(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ct(this.embeddingsInitializer),embeddingsRegularizer:dt(this.embeddingsRegularizer),activityRegularizer:dt(this.activityRegularizer),embeddingsConstraint:qt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};mA.className="Embedding";se.registerClass(mA);var Xi=class extends Ze{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new ze}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new j("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[st(e)]),e=e,e.length<2)throw new j(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=ns(t),t.length>1)throw new j(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&ns(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return H(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=rs(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=Id(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,d=u[0],p=u.slice(1).concat([d]),c=B(o,[d].concat(as(u.slice(1))));c=Xe(c,[1,0]),c=B(c,p),n.push(c),r=!0}else if(l>1){let u=La(1,l).concat([0]);n.push(Xe(o,u)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,u=o[l-1],d=[u].concat(o.slice(0,o.length-1));s=B(Xe(B(s,[-1,u]),[1,0]),d)}else if(i>1){let o=[i-1].concat(La(0,i-1));s=Xe(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=ns(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return H(()=>{if(t==null)return null;if(!Array.isArray(t))throw new j("`mask` should be an Array");if(!Array.isArray(e))throw new j("`inputs` should be an Array");if(t.length!==e.length)throw new j(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:zt(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=za(n,t[a]);return n})}},gA=class extends Xi{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=re(t,e[n]);return t})}};gA.className="Add";se.registerClass(gA);var AA=class extends Xi{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=L(t,e[n]);return t})}};AA.className="Multiply";se.registerClass(AA);var yA=class extends Xi{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=re(t,e[n]);return L(1/e.length,t)})}};yA.className="Average";se.registerClass(yA);var xA=class extends Xi{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=wr(t,e[n]);return t})}};xA.className="Maximum";se.registerClass(xA);var bA=class extends Xi{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=fd(t,e[n]);return t})}};bA.className="Minimum";se.registerClass(bA);var vA=class extends Xi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new j("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(w.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new j("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return H(()=>fg(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new j("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new j("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new j("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new j(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return H(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(de(pa(e[s]),"bool")):t[s].rank<e[s].rank?a.push(zt(t[s],-1)):a.push(t[s]);let r=ht(a,this.axis);return x1(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};vA.className="Concatenate";se.registerClass(vA);function Dd(e,t){for(;e<0;)e+=t;return e}function vD(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new ze("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new ze("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return H(()=>{let i;if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);t=B(t,t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);e=B(e,e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=be(L(e,t),s[0]):o=be(L(Xe(e,[1,0]),t),s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=Ve(e,t,l,u)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let u=[];for(let d=l;d<l+i;++d)u.push(d);o=lt(o,u)}return o.shape.length===1&&(o=zt(o,1)),o})}var wA=class extends Xi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new ze("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new j(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new j(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>Dd(r,e[s].shape.length)):a=[Dd(this.axes,t.shape.length),Dd(this.axes,n.shape.length)],this.normalize&&(t=Lh(t,a[0]),n=Lh(n,a[1])),vD(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Dd(this.axes,e.length),Dd(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new ze("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};wA.className="Dot";se.registerClass(wA);var kA=class extends Ze{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Pe(e);return Td(()=>re(Th(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};kA.className="GaussianNoise";se.registerClass(kA);var IA=class extends Ze{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Pe(e);return this.rate>0&&this.rate<1?Td(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return L(n,Th(n.shape,1,a))},()=>n,t.training||!1):n})}};IA.className="GaussianDropout";se.registerClass(IA);var SA=class extends Ze{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Pe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Td(()=>{let a=Pe(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=zi(Bl(n),this.rate);o=Ih(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate,d=re(L(a,o),L(re(o,-1),i));return re(L(d,l),u)},()=>Pe(e),t.training||!1)}return e})}};SA.className="AlphaDropout";se.registerClass(SA);function Pd(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=Hx(e,t,n,a,r,s);else if(e.rank===3)i=jx(e,t,n,a,r,s);else if(e.rank===4)i=Gx(e,t,n,a,r,s);else throw new ze(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function wD(e,t,n,a,r=.001){return H(()=>{let s=nh(e,a),i=s.mean,o=s.variance;return[Pd(e,i,o,n,t,r),i,o]})}function kD(e,t,n,a,r=.001){return H(()=>{let s=nh(e,a),i=s.mean,o=s.variance,l=[];for(let h of La(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let u=B(i,l),d=B(o,l),p=t==null?null:B(t,l),c=n==null?null:B(n,l);return[Pd(e,u,d,c,p,r),i,o]})}function ID(e,t,n,a,r=.001){return w.arraysEqual(a.slice().sort(),La(0,e.rank-1))?wD(e,t,n,a,r):kD(e,t,n,a,r)}var TA=class extends Ze{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=wt(e.betaInitializer||"zeros"),this.gammaInitializer=wt(e.gammaInitializer||"ones"),this.movingMeanInitializer=wt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=wt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Xt(e.betaConstraint),this.gammaConstraint=Xt(e.gammaConstraint),this.betaRegularizer=kt(e.betaRegularizer),this.gammaRegularizer=kt(e.gammaRegularizer)}build(e){e=st(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new j(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Pt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training,a=Pe(e),r=a.shape,s=r.length,i=La(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=Wi(1,s);l[o]=r[o];let u=i.slice();u.sort();let d=!w.arraysEqual(u,La(0,s).slice(0,s-1)),p=()=>{if(d){let g=B(this.movingMean.read(),l),A=B(this.movingVariance.read(),l),y=this.center?B(this.beta.read(),l):null,x=this.scale?B(this.gamma.read(),l):null;return Pd(a,g,A,y,x,this.epsilon)}else return Pd(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[c,h,m]=ID(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,A,y)=>{H(()=>{let x=1-y,v=g.read(),b=L(fe(v,A),x);g.write(fe(v,b))})};return(()=>{f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum)})(),c})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ct(this.betaInitializer),gammaInitializer:Ct(this.gammaInitializer),movingMeanInitializer:Ct(this.movingMeanInitializer),movingVarianceInitializer:Ct(this.movingVarianceInitializer),betaRegularizer:dt(this.betaRegularizer),gammaRegularizer:dt(this.gammaRegularizer),betaConstraint:qt(this.betaConstraint),gammaConstraint:qt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};TA.className="BatchNormalization";se.registerClass(TA);var NA=class extends Ze{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=wt(e.betaInitializer||"zeros"),this.gammaInitializer=wt(e.gammaInitializer||"ones"),this.betaRegularizer=kt(e.betaRegularizer),this.gammaRegularizer=kt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=st(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==ns(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=Pe(e),a=n.shape,r=a.length;return H(()=>{let s=!0,{mean:i,variance:o}=nh(n,this.axis,s),l=Wi(1,r);for(let m of this.axis)l[m]=a[m];let u=m=>m!=null&&m.shape.length!==r&&this.axis!==[r-1]?B(m,l):m,d=u(this.gamma.read()),p=u(this.beta.read()),c=[],h=[];for(let m=0;m<r;++m)this.axis.indexOf(m)!==-1?(c.push(a[m]),h.push(1)):(c.push(1),h.push(a[m]));return i=Ta(i,c),o=Ta(o,c),d=Ta(d,h),p=Ta(p,h),Pd(n,i,o,p,d,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ct(this.betaInitializer),gammaInitializer:Ct(this.gammaInitializer),betaRegularizer:dt(this.betaRegularizer),gammaRegularizer:dt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};NA.className="LayerNormalization";se.registerClass(NA);function SD(e,t,n){return H(()=>{if(e.rank!==4)throw new j(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new j("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Da()),n!=="channelsLast"&&n!=="channelsFirst")throw new j(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],Qr(e,a)})}var CA=class extends Ze{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?Da():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new j(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new j(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new j(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Pt({ndim:4})]}computeOutputShape(e){e=st(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return H(()=>SD(Pe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};CA.className="ZeroPadding2D";se.registerClass(CA);function Qh(e,t,n,a,r,s){return H(()=>{Ot(r),c3(s),fa(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=Da()),s==null&&(s="max"),e=Kg(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=eh(e,t,n,o):i=Gc(e,t,n,o),r==="channelsFirst"&&(i=Xe(i,[0,3,1,2])),i})}function Iv(e,t,n,a,r,s){return H(()=>{Ot(r),c3(s),fa(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=Da()),s==null&&(s="max"),e=yv(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=_1(e,t,n,o):i=w1(e,t,n,o),r==="channelsFirst"&&(i=Xe(i,[0,4,1,2,3])),i})}var Sv=class extends Ze{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new j(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Qt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new j(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,fa(this.padding),this.inputSpec=[new Pt({ndim:3})]}computeOutputShape(e){e=st(e);let t=Ua(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return H(()=>{this.invokeCallHook(e,t),e=Id(Pe(e),2);let n=this.poolingFunction(Pe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return lt(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},EA=class extends Sv{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),fa(a),Qh(e,t,n,a,r,"max")}};EA.className="MaxPooling1D";se.registerClass(EA);var RA=class extends Sv{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),fa(a),Qh(e,t,n,a,r,"avg")}};RA.className="AveragePooling1D";se.registerClass(RA);var Tv=class extends Ze{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new j(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Qt(this.poolSize,"poolSize"),Qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),fa(this.padding),this.inputSpec=[new Pt({ndim:4})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ua(t,this.poolSize[0],this.padding,this.strides[0]),n=Ua(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(Pe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},MA=class extends Tv{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),fa(a),Qh(e,t,n,a,r,"max")}};MA.className="MaxPooling2D";se.registerClass(MA);var FA=class extends Tv{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),fa(a),Qh(e,t,n,a,r,"avg")}};FA.className="AveragePooling2D";se.registerClass(FA);var Nv=class extends Ze{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new j(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Qt(this.poolSize,"poolSize"),Qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),fa(this.padding),this.inputSpec=[new Pt({ndim:5})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ua(t,this.poolSize[0],this.padding,this.strides[0]),n=Ua(n,this.poolSize[1],this.padding,this.strides[1]),a=Ua(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(Pe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},$A=class extends Nv{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),fa(a),Iv(e,t,n,a,r,"max")}};$A.className="MaxPooling3D";se.registerClass($A);var OA=class extends Nv{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),fa(a),Iv(e,t,n,a,r,"avg")}};OA.className="AveragePooling3D";se.registerClass(OA);var Cv=class extends Ze{constructor(e){super(e);this.inputSpec=[new Pt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new ze}},zA=class extends Cv{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=Pe(e);return Mt(n,1)})}};zA.className="GlobalAveragePooling1D";se.registerClass(zA);var _A=class extends Cv{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=Pe(e);return da(n,1)})}};_A.className="GlobalMaxPooling1D";se.registerClass(_A);var Ev=class extends Ze{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),this.inputSpec=[new Pt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new ze}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},DA=class extends Ev{call(e,t){return H(()=>{let n=Pe(e);return this.dataFormat==="channelsLast"?Mt(n,[1,2]):Mt(n,[2,3])})}};DA.className="GlobalAveragePooling2D";se.registerClass(DA);var PA=class extends Ev{call(e,t){return H(()=>{let n=Pe(e);return this.dataFormat==="channelsLast"?da(n,[1,2]):da(n,[2,3])})}};PA.className="GlobalMaxPooling2D";se.registerClass(PA);var Rv=class extends Ze{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=Va(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},LA=class extends Rv{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=st(e),e.length<3)throw new j(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=st(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return H(()=>(e=Pe(e),wv((n,a)=>[Pe(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};LA.className="TimeDistributed";se.registerClass(LA);function TD(e){Vi(Fz,"BidirectionalMergeMode",e)}var ND="concat",WA=class extends Rv{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Va(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=Va(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?ND:e.mergeMode,TD(this.mergeMode),e.weights)throw new ze("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):On(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=vv(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new j("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(d=>new Pt({shape:d.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(a!=null)throw new ze("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Ba;for(let l of s)if(l instanceof Ba!==o)throw new j("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),d=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=d,p}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=ca(r,1));let i;return this.mergeMode==="concat"?i=fg([a,r]):this.mergeMode==="sum"?i=re(a,r):this.mergeMode==="ave"?i=L(.5,re(a,r)):this.mergeMode==="mul"?i=L(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Ui(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Ui(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Va(t.layer);if(delete t.layer,t.numConstants!=null)throw new ze("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};WA.className="Bidirectional";se.registerClass(WA);function CD(e){return new Gl(e)}function ED(e){return new Gg(e)}function RD(e){return new Ug(e)}function MD(e){return new Hg(e)}function FD(e){return new jg(e)}function $D(e){return new Xg(e)}function OD(e){return new qg(e)}function zD(e){return new qh(e)}function _D(e){return new $d(e)}function DD(e){return new Yg(e)}function PD(e){return new Od(e)}function LD(e){return new Jg(e)}function WD(e){return new Qg(e)}function BD(e){return new eA(e)}function VD(e){return new tA(e)}function UD(e){return new nA(e)}function HD(e){return new dA(e)}function jD(e){return new lA(e)}function GD(e){return new Jh(e)}function qD(e){return new oA(e)}function XD(e){return new uA(e)}function KD(e){return new pA(e)}function ZD(e){return new cA(e)}function YD(e){return new hA(e)}function JD(e){return new mA(e)}function QD(e){return new gA(e)}function eP(e){return new yA(e)}function tP(e){return new vA(e)}function nP(e){return new xA(e)}function aP(e){return new bA(e)}function rP(e){return new AA(e)}function sP(e){return new wA(e)}function iP(e){return new TA(e)}function oP(e){return new NA(e)}function lP(e){return new CA(e)}function BA(e){return new RA(e)}function uP(e){return BA(e)}function dP(e){return BA(e)}function VA(e){return new FA(e)}function pP(e){return VA(e)}function cP(e){return VA(e)}function UA(e){return new OA(e)}function hP(e){return UA(e)}function fP(e){return UA(e)}function mP(e){return new zA(e)}function gP(e){return new DA(e)}function Mv(e){return new _A(e)}function Fv(e){return new PA(e)}function $v(e){return new EA(e)}function Ov(e){return new MA(e)}function AP(e){return new $A(e)}function yP(e){return new rA(e)}function xP(e){return new Kh(e)}function bP(e){return new sA(e)}function vP(e){return new _d(e)}function wP(e){return new aA(e)}function kP(e){return new Xh(e)}function IP(e){return new iA(e)}function SP(e){return new Yh(e)}function TP(e){return new lr(e)}function NP(e){return new Zh(e)}function CP(e){return new WA(e)}function EP(e){return new LA(e)}var RP=Mv,MP=Fv,FP=$v,$P=Ov;function OP(e){return new kA(e)}function zP(e){return new IA(e)}function _P(e){return new SA(e)}function DP(e){return new fA(e)}var zv={};_e(zv,{MAPE:()=>XP,MSE:()=>YP,binaryAccuracy:()=>PP,binaryCrossentropy:()=>LP,categoricalAccuracy:()=>BP,categoricalCrossentropy:()=>VP,cosineProximity:()=>jP,mape:()=>KP,meanAbsoluteError:()=>GP,meanAbsolutePercentageError:()=>qP,meanSquaredError:()=>ZP,mse:()=>JP,precision:()=>UP,recall:()=>HP,sparseCategoricalAccuracy:()=>WP});function PP(e,t){return Eg(e,t)}function LP(e,t){return D3(e,t)}function WP(e,t){return P3(e,t)}function BP(e,t){return Rg(e,t)}function VP(e,t){return Mg(e,t)}function UP(e,t){return _3(e,t)}function HP(e,t){return N_(e,t)}function jP(e,t){return Ng(e,t)}function GP(e,t){return Wh(e,t)}function qP(e,t){return Xl(e,t)}function XP(e,t){return Xl(e,t)}function KP(e,t){return Xl(e,t)}function ZP(e,t){return ji(e,t)}function YP(e,t){return ji(e,t)}function JP(e,t){return ji(e,t)}var _v={};_e(_v,{modelFromJSON:()=>oD});var Dv={};_e(Dv,{l1:()=>eL,l1l2:()=>QP,l2:()=>tL});function QP(e){return new Md(e)}function eL(e){return mD(e)}function tL(e){return gD(e)}var Pv=class extends ql{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Nr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function e0(e,t){return e<t}function Lv(e,t){return e>t}var Wv=class extends Pv{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new ze("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=e0:this.mode==="max"?this.monitorFunc=Lv:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Lv:this.monitorFunc=e0,this.monitorFunc===e0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===e0?1/0:-1/0}async onEpochEnd(e,t){await ss(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function nL(e){return new Wv(e)}var aL={earlyStopping:nL},Ha;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Ha||(Ha={}));var Bv;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Bv||(Bv={}));var HA={};function rL(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};HA[e]=n}function Vv(e){return HA[e]}function sL(e){delete HA[e]}function S(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return vn(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(p=>vn(p,n,a,r));let u=vn(t.inputNames.slice(o)[0],n,a,r),d=u.dataSync();return s.type==="number"?d[0]:w.toNestedArray(u.shape,d)}let i=t.attrParams[e];return i&&i.value}function vn(e,t,n,a){let[r,s]=qn(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[t0(r,o)]);return i!==void 0?t[t0(r,i)][s]:void 0}function iL(e,t,n){return t[t0(e,n.currentContextId)]}function Cr(e,t){let[n,a,r]=qn(e);return[t0(n,t&&t.currentContextId),a,r]}function t0(e,t){return t?`${e}-${t}`:e}function qn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],a=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,a]}function n0(e,t,n){let a=S("pad",e,t,n);if(a==="explicit"){a=S("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function Er(e){return e.kept?e:Oa(e)}var Uv={};_e(Uv,{json:()=>oL});var oL=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Hv={};_e(Hv,{json:()=>lL});var lL=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],jv={};_e(jv,{json:()=>uL});var uL=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],Gv={};_e(Gv,{json:()=>dL});var dL=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],qv={};_e(qv,{json:()=>pL});var pL=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],Xv={};_e(Xv,{json:()=>cL});var cL=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Kv={};_e(Kv,{json:()=>hL});var hL=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],Zv={};_e(Zv,{json:()=>fL});var fL=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Yv={};_e(Yv,{json:()=>mL});var mL=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],Jv={};_e(Jv,{json:()=>gL});var gL=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],Qv={};_e(Qv,{json:()=>AL});var AL=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],e7={};_e(e7,{json:()=>yL});var yL=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],t7={};_e(t7,{json:()=>xL});var xL=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],n7={};_e(n7,{json:()=>bL});var bL=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],a7={};_e(a7,{json:()=>vL});var vL=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],r7={};_e(r7,{json:()=>wL});var wL=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],s7={};_e(s7,{json:()=>kL});var kL=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],i7={};_e(i7,{json:()=>IL});var IL=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],o7={};_e(o7,{json:()=>SL});var SL=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],l7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Uv,Hv,jv,Gv,qv,Xv,Kv,Zv,Yv,Jv,Qv,e7,t7,n7,a7,r7,s7,i7,o7],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},d={};t!=null&&(u=this.mapSignatureEntries(t.inputs),d=this.mapSignatureEntries(t.outputs));let p=Object.keys(i);p.forEach(m=>{let f=i[m];f.inputNames.forEach((g,A)=>{let[y,,x]=Cr(g),v=i[y];if(v.outputs!=null){let b=v.outputs.indexOf(x);if(b!==-1){let k=`${y}:${b}`;f.inputNames[A]=k}}f.inputs.push(v),v.children.push(f)})}),Object.keys(d).length===0?p.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(d).forEach(m=>{let[f]=Cr(m),g=i[f];g!=null&&(g.signatureKey=d[m],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=Cr(m),g=i[f];g&&(g.signatureKey=u[m],o.push(g))}):o=a;let c={};e.library!=null&&e.library.function!=null&&(c=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:c};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=Vv(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.substr(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=jA(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=jA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=QA(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=QA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=qA(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=qA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=JA(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=JA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=GA(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=GA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=ty(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ty(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=YA(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=YA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=ey(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ey(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=KA(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=KA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=ZA(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ZA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=d7(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=d7(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&a.push(u[d.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[d]=Cr(u.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:XA(u.type),type:"dtype"}},children:[]};p.signatureKey=u.name,s.push(p),r[d]=p}),Object.keys(r).forEach(u=>{let d=r[u];d.inputNames.forEach((p,c)=>{let[h,,m]=Cr(p),f=r[h];if(f.outputs!=null){let g=f.outputs.indexOf(m);if(g!==-1){let A=`${h}:${g}`;d.inputNames[c]=A}}d.inputs.push(f),f.children.push(d)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[d,p]=Cr(o[u.name]),c=r[d];c!=null&&(c.defaultOutput=p,i.push(c))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function TL(e){let t=te().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function u7(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):TL(e);return t?n:n.toLowerCase()}function jA(e,t,n,a=!1){let r=e[t];return r!=null?u7(r.s,a):n}function GA(e,t,n){let a=e[t];return a?a.b:n}function qA(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function XA(e){switch(typeof e=="string"&&(e=Ha[e]),e){case Ha.DT_FLOAT:return"float32";case Ha.DT_INT32:case Ha.DT_INT64:case Ha.DT_INT8:case Ha.DT_UINT8:return"int32";case Ha.DT_BOOL:return"bool";case Ha.DT_DOUBLE:return"float32";case Ha.DT_STRING:return"string";default:return null}}function d7(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function KA(e,t,n){let a=e[t];return a&&a.type?XA(a.type):n}function ZA(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>XA(r)):n}function p7(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function YA(e,t,n){let a=e[t];return a&&a.shape?p7(a.shape):n}function JA(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function QA(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>u7(s,a)):n}function ey(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>p7(r)):n}function ty(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var NL=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return vn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return vn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return qA(this.node.rawAttrs,e,t);if(n.s!=null)return jA(this.node.rawAttrs,e,t);if(n.b!=null)return GA(this.node.rawAttrs,e,t);if(n.shape!=null)return YA(this.node.rawAttrs,e,t);if(n.type!=null)return KA(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return JA(this.node.rawAttrs,e,t);if(n.list.s!=null)return QA(this.node.rawAttrs,e,t);if(n.list.shape!=null)return ey(this.node.rawAttrs,e,t);if(n.list.b!=null)return ty(this.node.rawAttrs,e,t);if(n.list.type!=null)return ZA(this.node.rawAttrs,e,t)}return t}},CL=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[re(S("a",e,t,n),S("b",e,t,n))];case"AddN":return[Uc(S("tensors",e,t,n))];case"FloorMod":case"Mod":return[Ab(S("a",e,t,n),S("b",e,t,n))];case"Mul":return[L(S("a",e,t,n),S("b",e,t,n))];case"RealDiv":case"Div":return[ce(S("a",e,t,n),S("b",e,t,n))];case"DivNoNan":return[ab(S("a",e,t,n),S("b",e,t,n))];case"FloorDiv":return[y1(S("a",e,t,n),S("b",e,t,n))];case"Sub":return[fe(S("a",e,t,n),S("b",e,t,n))];case"Minimum":return[fd(S("a",e,t,n),S("b",e,t,n))];case"Maximum":return[wr(S("a",e,t,n),S("b",e,t,n))];case"Pow":return[es(S("a",e,t,n),S("b",e,t,n))];case"SquaredDifference":return[X1(S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},EL=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Ht(S("x",e,t,n))];case"Acos":return[$x(S("x",e,t,n))];case"Acosh":return[Ox(S("x",e,t,n))];case"Asin":return[_x(S("x",e,t,n))];case"Asinh":return[Dx(S("x",e,t,n))];case"Atan":return[Px(S("x",e,t,n))];case"Atan2":return[Lx(S("x",e,t,n),S("y",e,t,n))];case"Atanh":return[Wx(S("x",e,t,n))];case"Ceil":return[Xx(S("x",e,t,n))];case"Complex":return[qr(S("real",e,t,n),S("imag",e,t,n))];case"Cos":return[Xc(S("x",e,t,n))];case"Cosh":return[C1(S("x",e,t,n))];case"Elu":return[cd(S("x",e,t,n))];case"Erf":return[sb(S("x",e,t,n))];case"Exp":return[la(S("x",e,t,n))];case"Expm1":return[ib(S("x",e,t,n))];case"Floor":return[hd(S("x",e,t,n))];case"Log":return[ua(S("x",e,t,n))];case"Log1p":return[Yc(S("x",e,t,n))];case"Imag":return[Kc(S("x",e,t,n))];case"Neg":return[Nt(S("x",e,t,n))];case"Reciprocal":return[bb(S("x",e,t,n))];case"Real":return[md(S("x",e,t,n))];case"Relu":return[nr(S("x",e,t,n))];case"Round":return[B1(S("x",e,t,n))];case"Selu":return[U1(S("x",e,t,n))];case"Sigmoid":return[Un(S("x",e,t,n))];case"Sin":return[H1(S("x",e,t,n))];case"Sign":return[kb(S("x",e,t,n))];case"Sinh":return[j1(S("x",e,t,n))];case"Softplus":return[Ll(S("x",e,t,n))];case"Sqrt":return[cn(S("x",e,t,n))];case"Square":return[ut(S("x",e,t,n))];case"Tanh":return[Ol(S("x",e,t,n))];case"Tan":return[Sb(S("x",e,t,n))];case"ClipByValue":return[Hn(S("x",e,t,n),S("clipValueMin",e,t,n),S("clipValueMax",e,t,n))];case"Relu6":return[W1(S("x",e,t,n))];case"Rsqrt":return[V1(vn(e.inputNames[0],t,n))];case"Prod":return[D1(S("x",e,t,n),S("axes",e,t,n))];case"LeakyRelu":return[Zc(S("x",e,t,n),S("alpha",e,t,n))];case"Prelu":return[rh(S("x",e,t,n),S("alpha",e,t,n))];case"IsNan":return[ob(vn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ra(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];w.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function c7(e){return!(typeof e=="number"||e.some(t=>t<0))}function Ld(e,t,n){let a=ny(e,n),r=!c7(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=ny(s.shape,a)}),!c7(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function ny(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var RL=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ke(0),Jt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Ra(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Jt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return pn([],[0].concat(this.elementShape));let n=this.readMany(e);return Ra(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),$n(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return pn([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return Ra(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),ht(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ha(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];H(()=>{t=B(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],u=[0,l,0],d=[1,e[o],r];s[o]=B(Re(t,u,d),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Wd=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Ra(t,r.shape,"TensorList shape mismatch: "),Jt(r)}),this.idTensor=ke(0),this.maxNumElements=a,Jt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Wd([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Ra(e,this.elementShape,"TensorList shape mismatch: ");let a=Ld(this.elementShape,this.tensors,e);return H(()=>{let r=this.tensors.map(s=>B(s,a));return $n(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Ld(this.elementShape,this.tensors,e),a=this.tensors.pop();return Ra(a.shape,e,"TensorList shape mismatch: "),B(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Ra(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Jt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Ra(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=Ld(this.elementShape,this.tensors,t);return B(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Ra(this.elementShape,t.shape,"TensorList shape mismatch: "),Jt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Ra(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=Ld(this.elementShape,this.tensors,n);return e.length===0?pn([],[0].concat(a)):H(()=>{let r=e.map(s=>B(this.tensors[s],a));return $n(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Ra(this.elementShape,t,"TensorList shape mismatch: ");let n=Ld(this.elementShape,this.tensors,t);return this.size()===0?pn([],[0].concat(n)):H(()=>{let a=this.tensors.map(r=>B(r,n));return ht(a,0)})}};function ML(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Ra(r,t,"TensorList shape mismatch: ");let s=ha(e);return new Wd(s,t,a)}function FL(e,t,n){return new Wd([],e,t,n)}function $L(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new Wd([],n,e.dtype,a),i=ha(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function OL(e,t,n){let a=0,r=t.map(d=>(a+=d,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=ny(s,n),o=a===0?0:e.size/a,l=H(()=>{let d=[];e=B(e,[1,a,o]);for(let p=0;p<t.length;++p){let c=p===0?0:r[p-1],h=[0,c,0],m=[1,t[p],o];d[p]=B(Re(e,h,m),i)}return e.dispose(),d}),u=new Wd([],n,e.dtype,t.length);for(let d=0;d<l.length;d++)u.setItem(d,l[d]);return u}var zL=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=S("thenBranch",e,t,n),r=S("elseBranch",e,t,n),s=S("cond",e,t,n),i=S("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=S("body",e,t,n),r=S("cond",e,t,n),s=S("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(d=>d.id),l=await i[0].data();i.forEach(d=>{!d.kept&&o.indexOf(d.id)===-1&&d.dispose()});let u=s;for(;l[0];){let d=u;u=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let p=u.map(h=>h.id);d.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let c=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await c[0].data(),c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let a=S("pred",e,t,n);return[Er(a)]}case"Switch":{let a=S("pred",e,t,n),r=S("data",e,t,n);return r.kept||(r=Er(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>vn(r,t,n)!==void 0);if(a){let r=vn(a,t,n);return[Er(r)]}return}case"Enter":{let a=S("frameName",e,t,n),r=S("tensor",e,t,n);return n.enterFrame(a),[Er(r)]}case"Exit":{let a=S("tensor",e,t,n);return n.exitFrame(),[Er(a)]}case"NextIteration":{let a=S("tensor",e,t,n);return n.nextIteration(),[Er(a)]}case"TensorArrayV3":{let a=S("size",e,t,n),r=S("dtype",e,t,n),s=S("elementShape",e,t,n),i=S("dynamicSize",e,t,n),o=S("clearAfterRead",e,t,n),l=S("identicalElementShapes",e,t,n),u=S("name",e,t,n),d=new RL(u,r,a,s,l,i,o);return n.addTensorArray(d),[d.idTensor,ke(1)]}case"TensorArrayWriteV3":{let a=S("tensorArrayId",e,t,n),r=S("index",e,t,n),s=S("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=S("tensorArrayId",e,t,n),r=S("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),s=S("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),s=S("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=S("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=S("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=S("tensorArrayId",e,t,n),r=S("tensor",e,t,n),s=S("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=S("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[ke(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=S("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=S("tensorListId",e,t,n),r=S("index",e,t,n),s=S("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=S("tensorListId",e,t,n),r=S("index",e,t,n),s=S("elementShape",e,t,n),i=S("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=S("indices",e,t,n),r=S("tensor",e,t,n),s=S("elementShape",e,t,n),i=S("numElements",e,t,n),o=$L(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=S("elementShape",e,t,n),r=S("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=S(s,e,t,n),o=FL(a,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let a=S("tensorListId",e,t,n),r=S("indices",e,t,n),s=S("elementShape",e,t,n),i=S("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),s=S("elementDType",e,t,n),i=S("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=S("tensor",e,t,n),r=S("elementShape",e,t,n),s=S("elementDType",e,t,n),i=ML(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let a=S("tensorListId",e,t,n),r=n.getTensorList(a.id),s=S("dtype",e,t,n),i=S("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=S("tensorListId",e,t,n),r=S("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),s=S("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=S("tensor",e,t,n),r=S("elementShape",e,t,n),s=S("lengths",e,t,n),i=OL(a,s,r);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function h7(e,t,n){let[a,r]=S("fusedOps",e,t,n),s=a==="biasadd",i=!s,o=r==="prelu",l=a==="fusedbatchnorm",u=S("numArgs",e,t,n);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let d=S("strides",e,t,n),p=n0(e,t,n),c=S("dataFormat",e,t,n).toUpperCase(),h=S("dilations",e,t,n),[m,f]=S("args",e,t,n);i&&(f=m,m=void 0);let g=S("leakyreluAlpha",e,t,n);return{stride:d,pad:p,dataFormat:c,dilations:h,biasArg:m,preluArg:f,activationFunc:r,leakyreluAlpha:g}}var _L=(e,t,n)=>{switch(e.op){case"Conv1D":{let a=S("stride",e,t,n),r=S("pad",e,t,n),s=S("dataFormat",e,t,n).toUpperCase(),i=S("dilation",e,t,n);return[I1(S("x",e,t,n),S("filter",e,t,n),a,r,s,i)]}case"Conv2D":{let a=S("strides",e,t,n),r=n0(e,t,n),s=S("dataFormat",e,t,n).toUpperCase(),i=S("dilations",e,t,n);return[Jr(S("x",e,t,n),S("filter",e,t,n),[a[1],a[2]],r,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=h7(e,t,n);return[ts.conv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"FusedDepthwiseConv2dNative":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=h7(e,t,n);return[ts.depthwiseConv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let a=S("outputShape",e,t,n),r=S("strides",e,t,n),s=n0(e,t,n);return[T1(S("x",e,t,n),S("filter",e,t,n),a,[r[1],r[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let a=S("strides",e,t,n),r=n0(e,t,n),s=S("dilations",e,t,n),i=S("dataFormat",e,t,n).toUpperCase();return[pd(S("input",e,t,n),S("filter",e,t,n),[a[1],a[2]],r,i,[s[1],s[2]])]}case"Conv3D":{let a=S("strides",e,t,n),r=S("pad",e,t,n),s=S("dataFormat",e,t,n).toUpperCase(),i=S("dilations",e,t,n);return[N1(S("x",e,t,n),S("filter",e,t,n),[a[1],a[2],a[3]],r,s,[i[1],i[2],i[3]])]}case"AvgPool":{let a=S("strides",e,t,n),r=S("pad",e,t,n),s=S("kernelSize",e,t,n);return[Gc(S("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPool":{let a=S("strides",e,t,n),r=S("pad",e,t,n),s=S("kernelSize",e,t,n);return[eh(S("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPoolWithArgmax":{let a=S("strides",e,t,n),r=S("pad",e,t,n),s=S("kernelSize",e,t,n),i=S("includeBatchInIndex",e,t,n),{result:o,indexes:l}=mb(S("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r,i);return[o,l]}case"AvgPool3D":{let a=S("strides",e,t,n),r=S("pad",e,t,n),s=S("kernelSize",e,t,n);return[w1(S("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"MaxPool3D":{let a=S("strides",e,t,n),r=S("pad",e,t,n),s=S("kernelSize",e,t,n);return[_1(S("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"Dilation2D":{let a=S("strides",e,t,n),r=S("pad",e,t,n),s=S("dilations",e,t,n),i=a[1],o=a[2],l=s[1],u=s[2];return[nb(S("x",e,t,n),S("filter",e,t,n),[i,o],r,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},DL=(e,t,n)=>{switch(e.op){case"Fill":{let a=S("shape",e,t,n),r=S("dtype",e,t,n),s=S("value",e,t,n);return[Dl(a,s,r)]}case"LinSpace":{let a=S("start",e,t,n),r=S("stop",e,t,n),s=S("num",e,t,n);return[lb(a,r,s)]}case"Multinomial":{let a=S("logits",e,t,n),r=S("numSamples",e,t,n),s=S("seed",e,t,n);return[yb(a,r,s)]}case"OneHot":{let a=S("indices",e,t,n),r=S("depth",e,t,n),s=S("onValue",e,t,n),i=S("offValue",e,t,n);return[ld(a,r,s,i)]}case"Ones":return[Gn(S("shape",e,t,n),S("dtype",e,t,n))];case"OnesLike":return[pa(S("x",e,t,n))];case"RandomUniform":return[Bl(S("shape",e,t,n),S("minval",e,t,n),S("maxval",e,t,n),S("dtype",e,t,n))];case"Range":{let a=S("start",e,t,n),r=S("stop",e,t,n),s=S("step",e,t,n);return[Vl(a,r,s,S("dtype",e,t,n))]}case"TruncatedNormal":{let a=S("shape",e,t,n),r=S("mean",e,t,n),s=S("stdDev",e,t,n),i=S("seed",e,t,n);return[dh(a,r,s,S("dtype",e,t,n),i)]}case"Zeros":return[_t(S("shape",e,t,n),S("dtype",e,t,n))];case"ZerosLike":return[Ke(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ay(e,t,n){let a=S("boxes",e,t,n),r=S("scores",e,t,n),s=S("maxOutputSize",e,t,n),i=S("iouThreshold",e,t,n),o=S("scoreThreshold",e,t,n),l=S("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var PL=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=ay(e,t,n),u=await Me.nonMaxSuppressionWithScoreAsync(a,r,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=ay(e,t,n),l=S("padToMaxOutputSize",e,t,n),u=await Me.nonMaxSuppressionPaddedAsync(a,r,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=ay(e,t,n);return[await Me.nonMaxSuppressionAsync(a,r,s,i,o)]}case"Where":{let a=de(S("condition",e,t,n),"bool"),r=[await Z1(a)];return a.dispose(),r}case"ListDiff":return wb(S("x",e,t,n),S("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},LL=(e,t,n)=>{switch(e.op){case"TopKV2":{let a=S("x",e,t,n),r=S("k",e,t,n),s=S("sorted",e,t,n),i=Tb(a,r,s);return[i.values,i.indices]}case"Unique":{let a=S("x",e,t,n),r=K1(a);return[r.values,r.indices]}case"UniqueV2":{let a=S("x",e,t,n),r=S("axis",e,t,n),s=K1(a,r);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},WL=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let a=S("default",e,t,n);return[vn(e.name,t,n)||a];case"Placeholder":return[vn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=S("x",e,t,n);return[Er(u)]}case"IdentityN":return S("x",e,t,n).map(u=>Er(u));case"Snapshot":let r=S("x",e,t,n);return[Er(r)];case"Shape":return[Dt(S("x",e,t,n).shape,"int32")];case"ShapeN":return S("x",e,t,n).map(u=>Dt(u.shape));case"Size":return[ke(S("x",e,t,n).size,"int32")];case"Rank":return[ke(S("x",e,t,n).rank,"int32")];case"NoOp":return[ke(1)];case"Print":let s=S("x",e,t,n),i=S("data",e,t,n),o=S("message",e,t,n),l=S("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},BL=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ke(0),this.tensorMap=new Map,Jt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ke(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),H(()=>{let a=ha(t),r=n.length,s=a.length;w.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];Jt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return H(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return $n(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},VL=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=S("keyDType",e,t,n),s=S("valueDType",e,t,n),i=new BL(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=S("tableHandle",e,t,n,a),s=S("keys",e,t,n),i=S("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=S("tableHandle",e,t,n,a),s=S("keys",e,t,n),i=S("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=S("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},UL=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let a=S("images",e,t,n),r=S("size",e,t,n),s=S("alignCorners",e,t,n),i=S("halfPixelCenters",e,t,n);return[Me.resizeBilinear(a,[r[0],r[1]],s,i)]}case"ResizeNearestNeighbor":{let a=S("images",e,t,n),r=S("size",e,t,n),s=S("alignCorners",e,t,n),i=S("halfPixelCenters",e,t,n);return[Me.resizeNearestNeighbor(a,[r[0],r[1]],s,i)]}case"CropAndResize":{let a=S("image",e,t,n),r=S("boxes",e,t,n),s=S("boxInd",e,t,n),i=S("cropSize",e,t,n),o=S("method",e,t,n),l=S("extrapolationValue",e,t,n);return[Me.cropAndResize(a,r,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},HL=(e,t,n)=>{switch(e.op){case"Equal":return[oa(S("a",e,t,n),S("b",e,t,n))];case"NotEqual":return[Wl(S("a",e,t,n),S("b",e,t,n))];case"Greater":return[jn(S("a",e,t,n),S("b",e,t,n))];case"GreaterEqual":return[zi(S("a",e,t,n),S("b",e,t,n))];case"Less":return[M1(S("a",e,t,n),S("b",e,t,n))];case"LessEqual":return[_i(S("a",e,t,n),S("b",e,t,n))];case"LogicalAnd":return[za(S("a",e,t,n),S("b",e,t,n))];case"LogicalNot":return[Qc(S("a",e,t,n))];case"LogicalOr":return[z1(S("a",e,t,n),S("b",e,t,n))];case"Select":case"SelectV2":return[xn(S("condition",e,t,n),S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},jL=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ve(S("a",e,t,n),S("b",e,t,n),S("transposeA",e,t,n),S("transposeB",e,t,n))];case"Einsum":return[rb(S("equation",e,t,n),...S("tensors",e,t,n))];case"Transpose":return[Xe(S("x",e,t,n),S("perm",e,t,n))];case"_FusedMatMul":let[a,r]=S("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=S("numArgs",e,t,n),l=S("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,d]=S("args",e,t,n);return[ts.matMul({a:S("a",e,t,n),b:S("b",e,t,n),transposeA:S("transposeA",e,t,n),transposeB:S("transposeB",e,t,n),bias:u,activation:r,preluActivationWeights:d,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},GL=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[zl(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"FusedBatchNormV3":return[zl(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"LRN":return[ub(S("x",e,t,n),S("radius",e,t,n),S("bias",e,t,n),S("alpha",e,t,n),S("beta",e,t,n))];case"Softmax":return[oh(S("x",e,t,n))];case"LogSoftmax":return[F1(S("x",e,t,n))];case"SparseToDense":return[J1(S("sparseIndices",e,t,n),S("outputShape",e,t,n),S("sparseValues",e,t,n),S("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},qL=(e,t,n)=>{switch(e.op){case"Max":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[da(S("x",e,t,n),i,o)]}case"Mean":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[Mt(S("x",e,t,n),i,o)]}case"Min":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[th(S("x",e,t,n),i,o)]}case"Sum":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[be(S("x",e,t,n),i,o)]}case"All":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[x1(S("x",e,t,n),i,o)]}case"Any":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[Hc(S("x",e,t,n),i,o)]}case"ArgMax":{let i=S("axis",e,t,n);return[Qa(S("x",e,t,n),i)]}case"ArgMin":{let i=S("axis",e,t,n);return[zx(S("x",e,t,n),i)]}case"Prod":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[D1(S("x",e,t,n),i,o)]}case"Cumsum":{let i=S("axis",e,t,n),o=S("exclusive",e,t,n),l=S("reverse",e,t,n);return[E1(S("x",e,t,n),i,o,l)]}case"Bincount":let a=S("x",e,t,n),r=S("weights",e,t,n),s=S("size",e,t,n);return[k1(a,r,s)];case"DenseBincount":{let i=S("x",e,t,n),o=S("weights",e,t,n),l=S("size",e,t,n),u=S("binaryOutput",e,t,n);return[eb(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},XL=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let a=S("n",e,t,n),r=S("axis",e,t,n),s=S("tensors",e,t,n);return s=s.slice(0,a),[ht(s,r)]}case"Gather":{let a=S("x",e,t,n),r=S("indices",e,t,n);return[Pl(a,de(r,"int32"),0)]}case"GatherV2":{let a=S("axis",e,t,n),r=S("batchDims",e,t,n),s=S("x",e,t,n),i=S("indices",e,t,n);return[Pl(s,de(i,"int32"),a,r)]}case"Reverse":{let a=S("dims",e,t,n),r=[];for(let i=0;i<a.length;i++)a[i]&&r.push(i);let s=S("x",e,t,n);return[ca(s,r)]}case"ReverseV2":{let a=S("axis",e,t,n),r=S("x",e,t,n);return[ca(r,a)]}case"Slice":{let a=S("begin",e,t,n),r=S("size",e,t,n);return[Re(S("x",e,t,n),a,r)]}case"StridedSlice":{let a=S("begin",e,t,n),r=S("end",e,t,n),s=S("strides",e,t,n),i=S("beginMask",e,t,n),o=S("endMask",e,t,n),l=S("ellipsisMask",e,t,n),u=S("newAxisMask",e,t,n),d=S("shrinkAxisMask",e,t,n),p=S("x",e,t,n);return[Ib(p,a,r,s,i,o,l,u,d)]}case"Pack":return H(()=>{let a=S("axis",e,t,n),r=S("tensors",e,t,n),s=r[0].shape,i=lt(r[0]).shape,o=r.map(l=>{let u=w.arraysEqual(l.shape,s);if(!u&&!w.arraysEqual(lt(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:B(l,s)});return[$n(o,a)]});case"Unpack":{let a=S("axis",e,t,n),r=S("tensor",e,t,n);return ha(r,a)}case"Tile":{let a=S("reps",e,t,n);return[Ta(S("x",e,t,n),a)]}case"Split":case"SplitV":{let a=S("axis",e,t,n),r=S("numOrSizeSplits",e,t,n),s=S("x",e,t,n);return sn(s,r,a)}case"ScatterNd":{let a=S("indices",e,t,n),r=S("values",e,t,n),s=S("shape",e,t,n);return[Mb(a,r,s)]}case"GatherNd":{let a=S("x",e,t,n),r=S("indices",e,t,n);return[Fb(a,r)]}case"SparseToDense":{let a=S("sparseIndices",e,t,n),r=S("outputShape",e,t,n),s=S("sparseValues",e,t,n),i=S("defaultValue",e,t,n);return[J1(a,s,r,s.dtype===i.dtype?i:de(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},KL=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:a,outputValues:r,emptyRowIndicator:s,reverseIndexMap:i}=xd.sparseFillEmptyRows(S("indices",e,t,n),S("values",e,t,n),S("denseShape",e,t,n),S("defaultValue",e,t,n));return[a,r,s,i]}case"SparseReshape":{let{outputIndices:a,outputShape:r}=xd.sparseReshape(S("inputIndices",e,t,n),S("inputShape",e,t,n),S("newShape",e,t,n));return[a,r]}case"SparseSegmentMean":return[xd.sparseSegmentMean(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];case"SparseSegmentSum":return[xd.sparseSegmentSum(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},ZL=(e,t,n)=>{switch(e.op){case"FFT":return[lh(S("x",e,t,n))];case"IFFT":return[Ad(S("x",e,t,n))];case"RFFT":return[uh(S("x",e,t,n))];case"IRFFT":return[q1(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},YL=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:a,nGramsSplits:r}=mh.stringNGrams(S("data",e,t,n),S("dataSplits",e,t,n),S("separator",e,t,n),S("nGramWidths",e,t,n),S("leftPad",e,t,n),S("rightPad",e,t,n),S("padWidth",e,t,n),S("preserveShortSequences",e,t,n));return[a,r]}case"StringSplit":{let{indices:a,values:r,shape:s}=mh.stringSplit(S("input",e,t,n),S("delimiter",e,t,n),S("skipEmpty",e,t,n));return[a,r,s]}case"StringToHashBucketFast":return[mh.stringToHashBucketFast(S("input",e,t,n),S("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},JL=(e,t,n)=>{switch(e.op){case"Cast":return[de(S("x",e,t,n),S("dtype",e,t,n))];case"ExpandDims":{let a=S("axis",e,t,n);return[zt(S("x",e,t,n),a)]}case"Squeeze":{let a=S("axis",e,t,n);return[lt(S("x",e,t,n),a)]}case"Reshape":return[B(S("x",e,t,n),S("shape",e,t,n))];case"MirrorPad":return[gb(S("x",e,t,n),S("padding",e,t,n),S("mode",e,t,n))];case"PadV2":case"Pad":return[Qr(S("x",e,t,n),S("padding",e,t,n),S("constantValue",e,t,n))];case"SpaceToBatchND":{let a=S("blockShape",e,t,n),r=S("paddings",e,t,n);return[ah(S("x",e,t,n),a,r)]}case"BatchToSpaceND":{let a=S("blockShape",e,t,n),r=S("crops",e,t,n);return[qc(S("x",e,t,n),a,r)]}case"DepthToSpace":{let a=S("blockSize",e,t,n),r=S("dataFormat",e,t,n).toUpperCase();return[tb(S("x",e,t,n),a,r)]}case"BroadcastTo":return[dd(S("x",e,t,n),S("shape",e,t,n))];case"BroadcastArgs":return[qx(S("s0",e,t,n),S("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function f7(e,t,n,a){let r=((s,i,o)=>{switch(s.category){case"arithmetic":return H(()=>CL(s,i,o));case"basic_math":return H(()=>EL(s,i,o));case"control":return zL(s,i,o);case"convolution":return H(()=>_L(s,i,o));case"creation":return H(()=>DL(s,i,o));case"dynamic":return PL(s,i,o);case"evaluation":return H(()=>LL(s,i,o));case"image":return H(()=>UL(s,i,o));case"graph":return H(()=>WL(s,i,o));case"logical":return H(()=>HL(s,i,o));case"matrices":return H(()=>jL(s,i,o));case"normalization":return H(()=>GL(s,i,o));case"reduction":return H(()=>qL(s,i,o));case"slice_join":return H(()=>XL(s,i,o));case"sparse":return H(()=>KL(s,i,o));case"spectral":return H(()=>ZL(s,i,o));case"string":return H(()=>YL(s,i,o));case"transformation":return H(()=>JL(s,i,o));case"hash_table":return VL(s,i,o,a);case"custom":let l=Vv(s.op);if(l&&l.customExecutor)return l.customExecutor(new NL(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(r)?r.then(s=>[].concat(s)):[].concat(r)}var m7=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function g7(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(c=>qn(c)[0]),d=[];a!=null&&(d=a.map(c=>qn(c.name)[0]));let p=[...t];for(;p.length>0;){let c=p.pop();if((A7(c)||aW(c)||rW(c))&&i==null&&(i=c,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(c.name),n[c.name]==null&&u.indexOf(c.name)===-1&&d.indexOf(c.name)===-1){if(c.inputs.length===0){s.push(c.name);continue}c.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function QL(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(d=>qn(d)[0]).map(d=>e.nodes[d]),o=e.initNodes;i.forEach(d=>{a.has(d.name)&&s.push(d)}),e.weights.forEach(d=>{a.has(d.name)&&s.push(d)}),o!=null&&o.forEach(d=>{a.has(d.name)&&s.push(d)});let l=new Set,u=[];for(;s.length>0;){let d=s.pop();l.add(d.name),t[d.name]||u.push(d),d.children.forEach(p=>{!l.has(p.name)&&a.has(p.name)&&p.inputs.every(c=>l.has(c.name))&&s.push(p)})}return u}var eW=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],tW=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],nW=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function A7(e){return eW.indexOf(e.op)>=0}function aW(e){return tW.indexOf(e.op)>=0}function rW(e){return nW.indexOf(e.op)>=0}var ry=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new ry(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=g7(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return QL(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(d=>this.graph.nodes[qn(d)[0]]),r=t.map(d=>qn(d)[0]),s=r.map(d=>this.graph.nodes[d]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return H(()=>{let d=new m7(this.weightMap,l,u,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,g]=qn(m),A=[];A[g]=e[m],p[f]=A});let c=this.getFrozenTensorIds(p),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!p[f.name]){let g=f7(f,p,d,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);p[f.name]=g,this.checkTensorForDisposal(f.name,f,p,d,c,r,h)}}return this.parent==null&&d.dispose(c),t.map(m=>vn(m,p,d))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=iL(o.name,n,a);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let d=i[u.id];d===1?(u.dispose(),delete i[u.id]):d!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new m7(this.weightMap,a,r,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(p=>vn(p,i,s)),l=o.map(p=>p.id),u=Object.keys(e).map(p=>e[p].id),d=new Set([...l,...u,...this.weightIds]);return Object.keys(i).forEach(p=>{i[p].forEach(c=>{c&&!c.kept&&!c.isDisposed&&!d.has(c.id)&&c.dispose()})}),this.parent==null&&s.dispose(d),o}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(y=>this.graph.nodes[qn(y)[0]]),i=n.map(y=>qn(y)[0]),o=i.map(y=>this.graph.nodes[y]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:d,syncInputs:p}=g7(e,o,this.weightMap,this._initNodes),c=[...s,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(y=>{let[x,v]=qn(y),b=[];b[v]=e[y],h[x]=b});let m={},f=this.getFrozenTensorIds(h),g={};for(;c.length>0;){let y=this.processStack(s,c,t,h,g,f,i,m,l);await Promise.all(y)}d==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let A=o.filter(y=>!A7(y)&&!vn(y.name,h,t)).map(y=>y.name);if(A.length>0){let y="";throw d!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${A}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${y}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let u=[];for(;t.length>0;){let d=t.pop();n.currentContext=d.contexts;let p="";if(d.node.op==="Enter"&&S("isConstant",d.node,a,n)&&([p]=Cr(d.node.name,n)),a[d.node.name]==null){let c=f7(d.node,a,n,this._resourceManager);p||([p]=Cr(d.node.name,n));let h=n.currentContext;w.isPromise(c)?u.push(c.then(m=>(a[p]=m,n.currentContext=h,this.checkTensorForDisposal(p,d.node,a,n,s,i,o),this.processChildNodes(d.node,t,n,a,r,l),m))):(a[p]=c,this.checkTensorForDisposal(p,d.node,a,n,s,i,o),this.processChildNodes(d.node,t,n,a,r,l))}else this.processChildNodes(d.node,t,n,a,r,l)}return u}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=Cr(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!vn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!vn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=qn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);w.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&w.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=qn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=qn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},sW=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},iW="?tfjs-format=file",oW="model.json",y7=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new sW}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Fn.browserHTTPRequest(e,this.loadOptions);else{let t=Fn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Fn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=Fn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new ry(l7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=l7.Instance.transformGraph(e.modelInitializer);this.initializer=new ry(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Fn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof je)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function ft(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${oW}${iW}`);let n=new y7(e,t);return await n.load(),n}var lW="3.9.0",x7={};_e(x7,{CSVDataset:()=>M7,Dataset:()=>Jl,FileDataSource:()=>P7,TextLineDataset:()=>C7,URLDataSource:()=>L7,array:()=>MW,csv:()=>VW,func:()=>UW,generator:()=>HW,microphone:()=>GW,version_data:()=>qW,webcam:()=>jW,zip:()=>FW});var uW=Ss(A5()),dW=Ss(A5());function pW(e,t){return a0(e,t)}function a0(e,t,n=new Map,a=new Set){if(e==null)return null;if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Yl(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=a0(o,t,n,a);s[i]=l}return a.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function cW(e,t=v7){return b7(e,t)}function b7(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Yl(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(u=>u[i]),l=b7(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function v7(e){return e===null?null:Yl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function w7(e,t){let n=new Map;a0(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(w.isPromise(r)){let s=await r;n.set(a,s)}}return a0(e,t,n)}function Yl(e){let t=!1;if(te().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=y5();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof je)&&!(e instanceof Promise)&&!t)}function hW(e){return e==null||fW(e)||Array.isArray(e)||typeof e=="object"&&e instanceof je||w.isTypedArray(e)}function fW(e){return e===null||typeof e!="object"&&typeof e!="function"}function mW(e){return pW(e,gW)}function gW(e){return e instanceof je?{value:e.clone(),recurse:!1}:Yl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var k7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},sy=class extends k7{constructor(){super(sy.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};sy.INITIAL_CAPACITY=32;function I7(e){return new xW(e)}function iy(e){return new bW(e)}function AW(e,t){return new T7(e,t)}function yW(e,t=us.FAIL){return new EW(e,t)}var en=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new NW(this,e)}filter(e){return new SW(this,e)}map(e){return new TW(this,e)}mapAsync(e){return new S7(this,e)}serialMapAsync(e){return new S7(this,e).serial()}flatmap(e){return new CW(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new IW(this,e,t)}columnMajorBatch(e,t=!0,n=v7){return this.rowMajorBatch(e,t).map(a=>cW(a,n))}concatenate(e,t){return new T7(I7([this,e]),t)}take(e){return e<0||e==null?this:new kW(this,e)}skip(e){return e<0||e==null?this:new wW(this,e)}prefetch(e){return new N7(this,e)}shuffle(e,t){return new RW(this,e,t)}serial(){return new vW(this)}},xW=class extends en{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:mW(e),done:!1}}},bW=class extends en{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},vW=class extends en{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},wW=class extends en{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;K(e.value)}return this.upstream.next()}},kW=class extends en{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},IW=class extends en{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},SW=class extends en{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;K(e.value)}}},TW=class extends en{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Fa.getTensorsInContainer(e.value),n=this.transform(e.value),a=Fa.getTensorsInContainer(n);for(let r of t)Fa.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},NW=class extends en{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},S7=class extends en{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Fa.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Fa.getTensorsInContainer(n);for(let r of t)Fa.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},oy=class extends en{constructor(){super();this.outputQueue=new sy,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},CW=class extends oy{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Fa.getTensorsInContainer(e.value),n=this.transform(e.value),a=Fa.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Fa.isTensorInList(r,a)||r.dispose();return!0}},T7=class extends en{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},us;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(us||(us={}));var EW=class extends en{constructor(e,t=us.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof en?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await w7(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case us.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case us.SHORTEST:return{value:null,done:!0};case us.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},N7=class extends en{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new k7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},RW=class extends N7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=dW.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Jl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let a;return this.size===1/0||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Xn(async()=>(await n.iterator()).columnMajorBatch(e,t,$W),a)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Xn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Xn(async()=>(await t.iterator()).filter(a=>H(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Xn(async()=>(await t.iterator()).map(n=>H(()=>e(n))),this.size)}mapAsync(e){let t=this;return Xn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Xn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Xn(async()=>{let a=iy(async()=>({value:await t.iterator(),done:!1}));return AW(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Xn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=uW.alea(t||w.now().toString());return Xn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Xn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Jl.MAX_BUFFER_SIZE=1e4;function Xn(e,t=null){return new class extends Jl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function MW(e){return Xn(async()=>I7(e),e.length)}function FW(e){if(!Yl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Xn(async()=>{let n=await w7(e,a=>{if(a instanceof Jl)return{value:a.iterator(),recurse:!1};if(Yl(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return yW(n,us.SHORTEST)},t)}function $W(e){if(e===null)return null;let t=e[0];return hW(t)?{value:OW(e),recurse:!1}:{value:null,recurse:!0}}function OW(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof je?$n(e):pn(e)}var C7=class extends Jl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},r0='"',Bd=Symbol("out"),E7=Symbol("field"),s0=Symbol("quote"),ly=Symbol("quoteafterquote"),R7=Symbol("quoteinquote"),M7=class extends Jl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new C7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=Bd;for(let i=0;i<r;i++)switch(s){case Bd:switch(e.charAt(i)){case r0:a=i+1,s=s0;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Bd;break;default:s=E7,a=i;break}break;case E7:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=Bd,a=i+1;break;default:}break;case s0:switch(e.charAt(i)){case r0:s=ly;break;default:}break;case ly:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=Bd,a=i+1;break;case r0:s=s0;break;default:s=R7;break}break;case R7:switch(e.charAt(i)){case r0:s=s0;break;default:}break;default:}if(s===ly?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},F7=class extends en{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(te().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new F7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),pn(n,t)}},$7=class extends en{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Dt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=_a([s,r,o,i],[1,4])}else this.cropBox=_a([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(te().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new $7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=ia.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return H(()=>{let t=zt(de(e,"float32"),0),n;n=Me.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return B(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},O7=class{},z7=class extends en{split(e){return new zW(this,e)}},zW=class extends z7{constructor(e,t){super();this.upstream=e,this.impl=new _W(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},_W=class extends oy{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},DW=class extends en{decodeUTF8(){return new PW(this)}},PW=class extends z7{constructor(e){super();this.upstream=e,this.impl=new LW(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},LW=class extends oy{constructor(e){super();if(this.upstream=e,te().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=y5();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return te().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},_7=class extends DW{constructor(e,t={}){super();this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(te().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function WW(e,t={}){let n,a;typeof e=="string"?n=e:(n=e.url,a=BW(e));let r=await w.fetch(n,a);if(r.ok){let s=new Uint8Array(await r.arrayBuffer());return new _7(s,t)}else throw new Error(r.statusText)}var BW=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function D7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var P7=class extends O7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(D7(this.input)&&te().get("IS_NODE")){let e=vo("fs");this.input=e.readFileSync(this.input.substr(7))}return new _7(this.input,this.options)}},L7=class extends O7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return D7(this.url)?new P7(this.url,this.fileOptions).iterator():WW(this.url,this.fileOptions)}};function VW(e,t={}){return new M7(new L7(e),t)}function UW(e){let t=iy(e);return Xn(async()=>t)}function HW(e){return Xn(async()=>{let t=await e();return iy(()=>t.next())})}async function jW(e,t){return $7.create(e,t)}async function GW(e){return F7.create(e)}var qW="3.9.0";function we(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var XW=ar.whereImpl,i0=class extends $u{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Hp(this,vr())}nextDataId(){return i0.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,te().get("IS_NODE")&&R.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(s=>w.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return R.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>w.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}makeOutput(e,t,n){let a=this.write(e,t,n);return vr().makeTensorFromDataId(a,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){we([e],"where");let t=this.readSync(e.dataId);return XW(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};i0.nextDataId=0;var uy={};_e(uy,{addImpl:()=>B7,bincountImpl:()=>py,bincountReduceImpl:()=>V7,ceilImpl:()=>U7,concatImpl:()=>cy,equalImpl:()=>H7,expImpl:()=>G7,expm1Impl:()=>X7,floorImpl:()=>K7,gatherNdImpl:()=>Z7,gatherV2Impl:()=>Y7,greaterEqualImpl:()=>Q7,greaterImpl:()=>J7,lessEqualImpl:()=>tw,lessImpl:()=>ew,linSpaceImpl:()=>nw,logImpl:()=>aw,maxImpl:()=>rw,maximumImpl:()=>sw,minimumImpl:()=>iw,multiplyImpl:()=>hy,negImpl:()=>ow,notEqualImpl:()=>lw,prodImpl:()=>uw,rangeImpl:()=>my,rsqrtImpl:()=>dw,sigmoidImpl:()=>_B,simpleAbsImpl:()=>W7,sliceImpl:()=>u0,sparseFillEmptyRowsImpl:()=>cw,sparseReshapeImpl:()=>hw,sparseSegmentReductionImpl:()=>gy,sqrtImpl:()=>LB,squaredDifferenceImpl:()=>fw,stridedSliceImpl:()=>mw,stringNGramsImpl:()=>gw,stringSplitImpl:()=>Aw,stringToHashBucketFastImpl:()=>yw,subImpl:()=>xw,tileImpl:()=>bw,topKImpl:()=>ww,transposeImpl:()=>fy,uniqueImpl:()=>kw});function W7(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var KW=e=>{let{x:t}=e.inputs,n=e.backend;we(t,"abs");let a=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=W7(r),n.makeOutput(a,t.shape,"float32")},ZW={kernelName:Io,backendName:"cpu",kernelFunc:KW};function Lt(e){return(t,n,a,r,s)=>{let i=R.assertAndGetBroadcastShape(t,n),o=i.length,l=w.computeStrides(i),u=w.sizeFromShape(i),d=w.getTypedArrayFromDType(s,u),p=t.length,c=n.length,h=w.computeStrides(t),m=w.computeStrides(n),f=R.getBroadcastDims(t,i),g=R.getBroadcastDims(n,i);if(f.length+g.length===0)for(let A=0;A<d.length;++A)d[A]=e(a[A%a.length],r[A%r.length]);else for(let A=0;A<d.length;++A){let y=w.indexToLoc(A,o,l),x=y.slice(-p);f.forEach(N=>x[N]=0);let v=w.locToIndex(x,p,h),b=y.slice(-c);g.forEach(N=>b[N]=0);let k=w.locToIndex(b,c,m);d[A]=e(a[v],r[k])}return[d,i]}}function Kn(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var YW={kernelName:Jp,backendName:"cpu",kernelFunc:Kn};function o0(e,t,n="float32"){if(n==="complex64"){let r=o0(e,t,"float32"),s=o0(e,t,"float32");return Kn({inputs:{real:r,imag:s},backend:e})}let a=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function ur(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var JW={kernelName:qs,backendName:"cpu",kernelFunc:ur};function Ki(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var QW={kernelName:xc,backendName:"cpu",kernelFunc:Ki};function ds(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return ur({inputs:{x:r},backend:n});let i=o0(n,r.shape,r.dtype),o=ds({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Kn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=Ki({inputs:{input:r},backend:n}),o=ds({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,s)){let i=ur({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=w.toTypedArray([0],r.dtype),[l,u]=Lt((d,p)=>d!==p?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var eB={kernelName:Fs,backendName:"cpu",kernelFunc:ds};function tn(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;we([i,o],e);let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,p=i.dtype==="string"?R.fromUint8ToStringArray(u):u,c=i.dtype==="string"?R.fromUint8ToStringArray(d):d,h=a||i.dtype,[m,f]=t(i.shape,o.shape,p,c,h);return l.makeTensorInfo(f,h,m)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=ds({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),d=l.data.get(u.dataId),p=d.complexTensorInfos.real,c=d.complexTensorInfos.imag,h=l.data.get(p.dataId).values,m=l.data.get(c.dataId).values,f=ds({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),A=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,x=l.data.get(A.dataId).values,v=l.data.get(y.dataId).values,[b,k,N]=n(i.shape,o.shape,h,m,x,v),C=l.makeTensorInfo(N,"float32",b),E=l.makeTensorInfo(N,"float32",k),z=Kn({inputs:{real:C,imag:E},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(C),l.disposeIntermediateTensorInfo(E),z}else{let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,p=a||i.dtype,[c,h]=t(i.shape,o.shape,u,d,p);return l.makeTensorInfo(h,p,c)}}}function dy(e){return(t,n,a,r,s,i)=>{let o=R.assertAndGetBroadcastShape(t,n),l=w.sizeFromShape(o),u=o.length,d=w.computeStrides(o),p=w.getTypedArrayFromDType("float32",l),c=w.getTypedArrayFromDType("float32",l),h=R.getBroadcastDims(t,o),m=R.getBroadcastDims(n,o),f=R.mergeRealAndImagArrays(a,r),g=R.mergeRealAndImagArrays(s,i),A=t.length,y=w.computeStrides(t),x=n.length,v=w.computeStrides(n);if(h.length+m.length===0)for(let b=0;b<p.length;b++){let k=b%f.length,N=b%g.length,C=e(f[k*2],f[k*2+1],g[N*2],g[N*2+1]);p[b]=C.real,c[b]=C.imag}else for(let b=0;b<p.length;b++){let k=w.indexToLoc(b,u,d),N=k.slice(-A);h.forEach(I=>N[I]=0);let C=w.locToIndex(N,A,y),E=k.slice(-x);m.forEach(I=>E[I]=0);let z=w.locToIndex(E,x,v),F=e(f[C*2],f[C*2+1],g[z*2],g[z*2+1]);p[b]=F.real,c[b]=F.imag}return[p,c,o]}}var B7=Lt((e,t)=>e+t),tB=dy((e,t,n,a)=>({real:e+n,imag:t+a})),Vd=tn(Vr,B7,tB),nB={kernelName:Vr,backendName:"cpu",kernelFunc:Vd};function py(e,t,n,a,r){let s=w.sizeFromShape(a),i=w.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function V7(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=Be([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(a?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function ps(e){return(t,n,a)=>{let r=w.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function it(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(we(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=w.sizeFromShape(i.shape),d=n||i.dtype,p=w.getArrayFromDType(d,u);for(let c=0;c<u;++c)p[c]=t(l[c],r);return o.makeTensorInfo(i.shape,d,p)}}function Ql(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(we(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,d=t(l,u,r);return o.makeTensorInfo(i.shape,u,d)}}var U7=ps(e=>Math.ceil(e)),aB=Ql($s,U7),rB={kernelName:$s,backendName:"cpu",kernelFunc:aB};function cy(e,t,n,a){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=w.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?R.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let d=u*t[1]+s;for(let p=0;p<i.shape[1];++p)r[d+p]=o[l++]}s+=i.shape[1]})}return r}var H7=Lt((e,t)=>e===t?1:0),j7=tn(Lo,H7,null,"bool"),sB={kernelName:Lo,backendName:"cpu",kernelFunc:j7},G7=ps(e=>Math.exp(e)),q7=Ql(Vs,G7),iB={kernelName:Vs,backendName:"cpu",kernelFunc:q7},X7=ps(e=>Math.expm1(e)),oB=Ql(Bo,X7),lB={kernelName:Bo,backendName:"cpu",kernelFunc:oB},K7=ps(e=>Math.floor(e)),uB=Ql(Us,K7),dB={kernelName:Us,backendName:"cpu",kernelFunc:uB};function Z7(e,t,n,a,r,s,i,o,l){let u=Be([a,s],n);for(let d=0;d<a;d++){let p=[],c=0;for(let h=0;h<r;h++){let m=e[d*r+h];c+=m*i[h],p.push(m)}if(c<0||c>=l/s)throw new Error(`Invalid indices: ${p} does not index into ${o}`);for(let h=0;h<s;h++)u.values[d*s+h]=t.get(...t.indexToLoc(c*s+h))}return u}function Y7(e,t,n){let a=Be(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);a.values[r]=e.values[u]}return a}var J7=Lt((e,t)=>e>t?1:0),pB=tn(jo,J7,null,"bool"),cB={kernelName:jo,backendName:"cpu",kernelFunc:pB},Q7=Lt((e,t)=>e>=t?1:0),hB=tn(Gs,Q7,null,"bool"),fB={kernelName:Gs,backendName:"cpu",kernelFunc:hB},ew=Lt((e,t)=>e<t?1:0),mB=tn(Ko,ew,null,"bool"),gB={kernelName:Ko,backendName:"cpu",kernelFunc:mB},tw=Lt((e,t)=>e<=t?1:0),AB=tn(Zo,tw,null,"bool"),yB={kernelName:Zo,backendName:"cpu",kernelFunc:AB};function nw(e,t,n){let a=(t-e)/(n-1),r=w.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var aw=ps(e=>Math.log(e)),xB=Ql(Ks,aw),bB={kernelName:Ks,backendName:"cpu",kernelFunc:xB};function rw(e,t,n,a){let r=w.getTypedArrayFromDType(a,w.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}r[s]=o}return r}var sw=Lt((e,t)=>Math.max(e,t)),vB=tn(Ys,sw),wB={kernelName:Ys,backendName:"cpu",kernelFunc:vB},iw=Lt((e,t)=>Math.min(e,t)),kB=tn(ti,iw),IB={kernelName:ti,backendName:"cpu",kernelFunc:kB},hy=Lt((e,t)=>e*t),SB=dy((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),l0=tn(ai,hy,SB),TB={kernelName:ai,backendName:"cpu",kernelFunc:l0};function ow(e,t,n){let a=w.createScalarValue(-1,n);return hy([],t,a,e,n)}function NB(e){let{inputs:t,backend:n}=e,{x:a}=t;we(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=ow(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var CB={kernelName:el,backendName:"cpu",kernelFunc:NB},lw=Lt((e,t)=>e!==t?1:0),EB=tn(tl,lw,null,"bool"),RB={kernelName:tl,backendName:"cpu",kernelFunc:EB};function fy(e,t,n,a,r){let s=t.length,i=w.sizeFromShape(t),o=w.computeStrides(t),l=w.computeStrides(r),u=w.getTypedArrayFromDType(n,w.sizeFromShape(r));for(let d=0;d<i;++d){let p=w.indexToLoc(d,s,o),c=new Array(p.length);for(let m=0;m<c.length;m++)c[m]=p[a[m]];let h=w.locToIndex(c,s,l);u[h]=e[d]}return u}function ma(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;we(r,"transpose");let i=r.shape.length,o=new Array(i);for(let d=0;d<o.length;d++)o[d]=r.shape[s[d]];let l=a.data.get(r.dataId).values,u=fy(l,r.shape,r.dtype,s,o);return{dataId:a.write(u,o,r.dtype),shape:o,dtype:r.dtype}}var MB={kernelName:ki,backendName:"cpu",kernelFunc:ma};function uw(e,t,n,a){let[r,s]=R.computeOutAndReduceShapes(e,a),i=Sa(t,"int32"),o=w.makeZerosTypedArray(w.sizeFromShape(r),i),l=w.sizeFromShape(s);for(let u=0;u<o.length;++u){let d=u*l,p=1;for(let c=0;c<l;++c)p*=n[d+c];o[u]=p}return{outVals:o,outShape:r,outDtype:i}}function FB(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;we(r,"prod");let o=r.shape.length,l=w.parseAxisParam(s,r.shape),u=R.getAxesPermutation(l,o),d=l,p=r,c=[];u!=null&&(p=ma({inputs:{x:r},backend:n,attrs:{perm:u}}),c.push(p),d=R.getInnerMostAxes(d.length,o));let h=n.data.get(p.dataId).values,{outVals:m,outShape:f,outDtype:g}=uw(p.shape,p.dtype,h,d),A=f;return i&&(A=R.expandShapeToKeepDim(f,l)),c.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(A,g,m)}var $B={kernelName:ol,backendName:"cpu",kernelFunc:FB};function my(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return w.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=w.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var dw=ps(e=>1/Math.sqrt(e)),OB=Ql(hi,dw),zB={kernelName:hi,backendName:"cpu",kernelFunc:OB},_B=ps(e=>1/(1+Math.exp(-e))),pw=it(mi,e=>1/(1+Math.exp(-e))),DB={kernelName:mi,backendName:"cpu",kernelFunc:pw};function u0(e,t,n,a,r){let s=yn.isSliceContinous(a,t,n),i=w.sizeFromShape(n),o=w.computeStrides(a);if(s){let p=yn.computeFlatOffset(t,o);return r==="string"?e.slice(p,p+i):e.subarray(p,p+i)}let l=r==="string"?R.fromUint8ToStringArray(e):e,u=Be(a,r,l),d=Be(n,r);for(let p=0;p<d.size;++p){let c=d.indexToLoc(p),h=c.map((m,f)=>m+t[f]);d.set(u.get(...h),...c)}return r==="string"?R.fromStringArrayToUint8(d.values):d.values}function Zi(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;we(r,"slice");let[o,l]=yn.parseSliceParams(r,s,i);yn.assertParamsValid(r,o,l);let u=n.data.get(r.dataId).values,d=u0(u,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}var PB={kernelName:hl,backendName:"cpu",kernelFunc:Zi};function cw(e,t,n,a,r,s,i){let o=t[0],l=s[0],u=new Array(l),d=new Array(o),p=t[1];if(l===0){if(o!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${o}`);let g=w.getArrayFromDType(n,0),A=w.getArrayFromDType(r,0);return[g,[0,p],A,u,d]}let c=!0,h=0,m=new Array(l).fill(0);for(let g=0;g<o;++g){let A=e[g*p];if(A<0)throw new Error(`indices(${g}, 0) is invalid: ${A} < 0`);if(A>=l)throw new Error(`indices(${g}, 0) is invalid: ${A} >= ${l}`);++m[A],c=c&&A>=h,h=A}let f=!0;for(let g=0;g<l;++g){let A=m[g]===0;u[g]=A,f=f&&!A,m[g]=Math.max(m[g],1),g>0&&(m[g]+=m[g-1])}if(f&&c){let g=e,A=a;for(let y=0;y<o;++y)d[y]=y;return[g,[o,p],A,u,d]}else{let g=m[l-1],A=w.getArrayFromDType(n,g*p),y=w.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let v=0;v<o;++v){let b=e[v*p],k=x[b],N=(b===0?0:m[b-1])+k;x[b]++;for(let C=0;C<p;++C)A[N*p+C]=e[v*p+C];y[N]=a[v],d[v]=N}for(let v=0;v<l;++v)if(x[v]===0){let b=v===0?0:m[v-1];A[b*p+0]=v;for(let k=1;k<p;++k)A[b*p+k]=0;y[b]=i}return[A,[g,p],y,u,d]}}function hw(e,t,n,a,r){let s=w.sizeFromShape(a),i=t[0],o=r.length,l=[],u=1,d=-1;for(let g=0;g<o;++g){let A=r[g];if(A===-1){if(d!==-1)throw new Error(`only one output dimension may be -1, not both ${d} and ${g}`);d=g,l.push(1)}else{if(A<0)throw new Error(`size ${g} must be non-negative, not ${A}`);u*=A,l.push(A)}}if(d!==-1){if(u<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let g=Math.trunc(s/u);if(u*g!==s)throw new Error(`Input to reshape is a SparseTensor with ${s}
|
|
dense values, but the requested shape requires a multiple of ${u}. inputShape=${a} outputShape= ${l}`);l[d]=g}let p=w.sizeFromShape(l);if(p!==s)throw new Error(`Input to reshape is a tensor with ${s} dense values, but the requested shape has ${p}. inputShape=${a} outputShape=${l}`);let c=a.length,h=[];if(c>0){h[c-1]=1;for(let g=c-2;g>=0;--g)h[g]=h[g+1]*a[g+1]}let m=[];if(o>0){m[o-1]=1;for(let g=o-2;g>=0;--g)m[g]=m[g+1]*l[g+1]}let f=w.getArrayFromDType(n,i*o);for(let g=0;g<i;++g){let A=0;for(let y=0;y<c;++y)A+=e[g*c+y]*h[y];for(let y=0;y<o;++y)f[g*o+y]=Math.trunc(A/m[y]),A%=m[y]}return[f,[i,o],l]}function gy(e,t,n,a,r,s=!1,i=0){let o=a.length;if(o!==r.length)throw new Error("segmentIds and indices should have same size.");let l=[t[0],e.length/t[0]],u=l[1],d=o>0?r[o-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let p=t.slice();p[0]=d;let c=p.reduce((y,x)=>y*x,1),h=w.getArrayFromDType(n,c);if(o===0)return d>0&&h.fill(i),[h,p];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,f=1,g=0,A=r[m];for(;;){let y=0;if(f<o){if(y=r[f],A===y){++f;continue}if(A>=y)throw new Error("segment ids are not increasing")}if(A<0||A>=d)throw new Error(`Segment id ${A} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);A>g&&h.fill(i,g*u,A*u);for(let x=m;x<f;++x){let v=a[x];if(v<0||v>=l[0])throw new Error(`Bad: indices[${x}] == ${a[x]} out of range [0, ${l[0]})`);for(let b=0;b<u;b++)h[A*u+b]+=e[v*u+b]}if(s)for(let x=0;x<u;x++)h[A*u+x]/=f-m;if(m=f,++f,g=A+1,A=y,f>o)break}return g<d&&h.fill(i,g*u,d*u),[h,p]}var LB=ps(e=>Math.sqrt(e)),WB=it(gi,e=>Math.sqrt(e)),BB={kernelName:gi,backendName:"cpu",kernelFunc:WB},fw=Lt((e,t)=>{let n=e-t;return n*n}),VB=tn(xi,fw),UB={kernelName:xi,backendName:"cpu",kernelFunc:VB};function mw(e,t,n,a){let r=Be(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var HB=class{constructor(e,t,n,a,r,s){this.separator=w.encodeString(e),this.nGramWidths=t,this.leftPad=w.encodeString(n),this.rightPad=w.encodeString(a),this.padWidth=r,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,a,r,s){for(let i=0;i<r;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(r-(i+1))),d=s-(l+u),p=t+(l>0?0:i-o),c=0;c+=l*this.leftPad.length;for(let g=0;g<d;++g)c+=e[p+g].length;c+=u*this.rightPad.length,c+=(l+u+d-1)*this.separator.length,n[a+i]=new Uint8Array(c);let h=n[a+i],m=0,f=g=>g.forEach(A=>h[m++]=A);for(let g=0;g<l;++g)f(this.leftPad),f(this.separator);for(let g=0;g<d-1;++g)f(e[p+g]),f(this.separator);if(d>0){f(e[p+d-1]);for(let g=0;g<u;++g)f(this.separator),f(this.rightPad)}else{for(let g=0;g<u-1;++g)f(this.rightPad),f(this.separator);f(this.rightPad)}}}compute(e,t){let n=e.length,a=t.length;if(a>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<a;++l){let u=t[l]>=o;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${n}]`);o=t[l]}if(o!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${o}`)}let r=a-1,s=w.getArrayFromDType("int32",a);if(n===0||a===0){let o=new Array(n);for(let l=0;l<=r;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=r;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(d=>{u+=this.getNumNGrams(l,d)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[r]);for(let o=0;o<r;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(d=>{let p=t[o+1]-t[o],c=this.getNumNGrams(p,d);this.createNGrams(e,l,i,u,c,d),u+=c}),this.preserveShort&&u===s[o]){let d=t[o+1]-t[o];if(d===0)continue;let p=d+2*this.padWidth,c=1;this.createNGrams(e,l,i,u,c,p)}}return[i,s]}};function gw(e,t,n,a,r,s,i,o){return new HB(n,a,r,s,i,o).compute(e,t)}function jB(e,t,n,a){if(!e.length)return;if(t.length===0){for(let s=0;s<e.length;++s)a.push(e.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=e.indexOf(s);for(;i!==-1;){let o=e.subarray(0,i);(!n||o.length!==0)&&a.push(o),e=e.subarray(i+1),i=e.indexOf(s)}(!n||e.length!==0)&&a.push(e);return}let r=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(r,s);(!n||i.length!==0)&&a.push(i),r=s+1}}function Aw(e,t,n){let a=e.length,r=[],s=0,i=0,o=new Array(a);for(let c=0;c<a;++c){let h=r.length;jB(e[c],t,n,r);let m=r.length-h;o[c]=m,s+=m,i=Math.max(i,m)}let l=w.getArrayFromDType("int32",s*2),u=new Array(s),d=[a,i],p=0;for(let c=0;c<a;++c)for(let h=0;h<o[c];++h)l[p*2]=c,l[p*2+1]=h,u[p]=r[p],++p;return[l,u,d]}function yw(e,t){let n=w.getArrayFromDType("int32",e.length);for(let a=0;a<e.length;++a)n[a]=w.fingerPrint64(e[a]).modulo(t).getLowBitsUnsigned();return n}var xw=Lt((e,t)=>e-t),GB=dy((e,t,n,a)=>({real:e-n,imag:t-a})),Ay=tn(bi,xw,GB),qB={kernelName:bi,backendName:"cpu",kernelFunc:Ay};function bw(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=Be(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}var Ud=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function vw(e,t,n=0,a=e.length-1){for(;a>n;){if(a-n>600){let o=a-n+1,l=t-n+1,u=Math.log(o),d=.5*Math.exp(2*u/3),p=.5*Math.sqrt(u*d*(o-d)/o)*Math.sign(l-o/2),c=Math.max(n,Math.floor(t-l*d/o+p)),h=Math.min(a,Math.floor(t+(o-l)*d/o+p));vw(e,t,c,h)}let r=e[t],s=n,i=a;for(w.swap(e,n,t),Ud(e[a],r)>0&&w.swap(e,n,a);s<i;){for(w.swap(e,s,i),s++,i--;Ud(e[s],r)<0;)s=s+1;for(;Ud(e[i],r)>0;)i=i-1}Ud(e[n],r)===0?w.swap(e,n,i):(i=i+1,w.swap(e,i,a)),i<=t&&(n=i+1),t<=i&&(a=i-1)}}function ww(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=w.getTypedArrayFromDType(n,i*a),u=w.getTypedArrayFromDType("int32",i*a);for(let p=0;p<i;p++){let c=p*o,h=e.subarray(c,c+o),m=new Array(h.length);h.forEach((y,x)=>m[x]={value:y,index:x}),a<m.length&&(vw(m,a),m=m.slice(0,a)),r&&m.sort(Ud);let f=p*a,g=l.subarray(f,f+a),A=u.subarray(f,f+a);for(let y=0;y<a;y++)g[y]=m[y].value,A[y]=m[y].index}let d=t.slice();return d[d.length-1]=a,[Be(d,n,l),Be(d,"int32",u)]}function kw(e,t,n,a){let r=w.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new Ut(s,a,e),u=[],d=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(d)f=e[m].toString();else{let g=[];for(let A=0;A<s[0];A++)for(let y=0;y<s[2];y++)g.push(l.get(A,m,y));f=g.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let g=Object.keys(i).length;i[f]=g,o[m]=g,u.push(m)}}let p=s.slice();p[1]=Object.keys(i).length;let c=new Ut(p,a);u.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let A=0;A<s[2];A++)c.set(l.get(g,m,A),g,f,A)});let h=n.slice();return h[r]=p[1],{outputValues:c.values,outputShape:h,indices:o}}var XB="3.9.0";Fl("cpu",()=>new i0,1);var Iw=it(Bs,e=>e>=0?e:Math.exp(e)-1),KB={kernelName:Bs,backendName:"cpu",kernelFunc:Iw};function Sw(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;we([r],"leakyRelu");let i=w.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=w.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(r.shape,"float32",l)}var ZB={kernelName:Xs,backendName:"cpu",kernelFunc:Sw},YB=Lt((e,t)=>e<0?t*e:e);function Tw(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;we([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=YB(a.shape,r.shape,s,i,a.dtype);return n.makeTensorInfo(l,a.dtype,o)}var JB={kernelName:oi,backendName:"cpu",kernelFunc:Tw},Nw=it(li,e=>Math.max(0,e)),QB={kernelName:li,backendName:"cpu",kernelFunc:Nw},Cw=it(di,e=>Math.min(Math.max(0,e),6)),eV={kernelName:di,backendName:"cpu",kernelFunc:Cw};function yy(e,t,n,a,r){if(n==="linear")return ur({inputs:{x:t},backend:e});if(n==="relu")return Nw({inputs:{x:t},backend:e});if(n==="elu")return Iw({inputs:{x:t},backend:e});if(n==="relu6")return Cw({inputs:{x:t},backend:e});if(n==="prelu")return Tw({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return Sw({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return pw({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function xt(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=w.sizeFromShape(r.shape),o=w.inferFromImplicitShape(s,i),l=w.sizeFromShape(o);w.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let d=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;d.shape=o,p.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var tV={kernelName:ul,backendName:"cpu",kernelFunc:xt};function Ew(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;we([r,s],"matMul");let l=r.shape.length,u=s.shape.length,d=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=w.sizeFromShape(m),A=w.sizeFromShape(f),y=g===A||g===1||A===1;w.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(g>A?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([c,h]);w.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[g,d,c]:[g,c,d],b=o?[A,h,p]:[A,p,h],k=xt({inputs:{x:r},backend:n,attrs:{shape:v}}),N=xt({inputs:{x:s},backend:n,attrs:{shape:b}}),C=i?k.shape[1]:k.shape[2],E=i?k.shape[2]:k.shape[1],z=o?N.shape[1]:N.shape[2],F=Math.max(g,A),I=n.data.get(k.dataId).values,_=n.data.get(N.dataId).values,D=w.computeStrides(k.shape),V=w.computeStrides(N.shape),[q,G,Q]=i?[D[0],1,D[1]]:[D[0],D[1],1],[J,ne,ee]=o?[1,V[1],V[0]]:[V[1],1,V[0]],ie=E*z,Z=Be([F,E,z],k.dtype),le=Z.values,oe=n.blockSize;for(let ye=0;ye<F;ye++)for(let ge=0;ge<E;ge+=oe)for(let Se=0;Se<z;Se+=oe)for(let Te=0;Te<C;Te+=oe){let $e=Math.min(ge+oe,E),De=Math.min(Se+oe,z),Oe=Math.min(Te+oe,C);for(let nt=ge;nt<$e;nt++)for(let at=Se;at<De;at++){let ot=0;for(let Qe=Te;Qe<Oe;Qe++){let mt=Math.min(ye,g-1)*q,He=Math.min(ye,A-1)*ee,Nn=I[mt+nt*G+Qe*Q],St=_[Qe*J+at*ne+He];ot+=Nn*St}le[ye*ie+(nt*z+at)]+=ot}}return n.disposeIntermediateTensorInfo(k),n.disposeIntermediateTensorInfo(N),n.makeTensorInfo(x,Z.dtype,Z.values)}var nV={kernelName:Ms,backendName:"cpu",kernelFunc:Ew};function aV(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:p}=a,c,h,m,f=[];c=Ew({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(h=Vd({inputs:{a:c,b:i},backend:n}),f.push(c),c=h),d&&(m=yy(n,c,d,o,p),f.push(c),c=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return c}var rV={kernelName:Ii,backendName:"cpu",kernelFunc:aV},sV=it(So,e=>Math.acos(e)),iV={kernelName:So,backendName:"cpu",kernelFunc:sV},oV=it(To,e=>Math.acosh(e)),lV={kernelName:To,backendName:"cpu",kernelFunc:oV};function uV(e){let{inputs:t,backend:n}=e,a=t;we(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=Be(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var dV={kernelName:Cs,backendName:"cpu",kernelFunc:uV};function pV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;we(r,"all");let o=w.parseAxisParam(s,r.shape),l=o,u=R.getAxesPermutation(l,r.shape.length),d=r;u!=null&&(d=ma({inputs:{x:r},backend:n,attrs:{perm:u}}),l=R.getInnerMostAxes(l.length,r.shape.length)),R.assertAxesAreInnerMostDims("all",l,d.shape.length);let[p,c]=R.computeOutAndReduceShapes(d.shape,l),h=w.sizeFromShape(c),m=w.makeZerosTypedArray(w.sizeFromShape(p),d.dtype),f=n.data.get(d.dataId).values;for(let A=0;A<m.length;++A){let y=A*h,x=f[y];for(let v=0;v<h;++v){let b=f[y+v];x=x&&b}m[A]=x}u!=null&&n.disposeIntermediateTensorInfo(d);let g=n.makeTensorInfo(p,d.dtype,m);if(i){let A=R.expandShapeToKeepDim(p,o),y=xt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var cV={kernelName:No,backendName:"cpu",kernelFunc:pV};function hV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;we(r,"any");let o=w.parseAxisParam(s,r.shape),l=o,u=R.getAxesPermutation(l,r.shape.length),d=r;u!=null&&(d=ma({inputs:{x:r},backend:n,attrs:{perm:u}}),l=R.getInnerMostAxes(l.length,r.shape.length)),R.assertAxesAreInnerMostDims("any",l,d.shape.length);let[p,c]=R.computeOutAndReduceShapes(d.shape,l),h=w.sizeFromShape(c),m=w.makeZerosTypedArray(w.sizeFromShape(p),d.dtype),f=n.data.get(d.dataId).values;for(let A=0;A<m.length;++A){let y=A*h,x=f[y];for(let v=0;v<h;++v){let b=f[y+v];x=x||b}m[A]=x}u!=null&&n.disposeIntermediateTensorInfo(d);let g=n.makeTensorInfo(p,d.dtype,m);if(i){let A=R.expandShapeToKeepDim(p,o),y=xt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var fV={kernelName:Co,backendName:"cpu",kernelFunc:hV};function mV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;we(r,"argMax");let i=w.parseAxisParam(s,r.shape),o=R.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=ma({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],R.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[d,p]=R.computeOutAndReduceShapes(l.shape,i),c=w.sizeFromShape(d),h=w.makeZerosTypedArray(c,"int32"),m=w.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*m,y=f[A],x=0;for(let v=0;v<m;++v){let b=f[A+v];b>y&&(y=b,x=v)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(d,"int32",h)}var gV={kernelName:Es,backendName:"cpu",kernelFunc:mV};function AV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;we(r,"argMin");let i=w.parseAxisParam(s,r.shape),o=R.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=ma({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],R.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[d,p]=R.computeOutAndReduceShapes(l.shape,i),c=w.sizeFromShape(d),h=w.makeZerosTypedArray(c,"int32"),m=w.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*m,y=f[A],x=0;for(let v=0;v<m;++v){let b=f[A+v];b<y&&(y=b,x=v)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(d,"int32",h)}var yV={kernelName:_u,backendName:"cpu",kernelFunc:AV},xV=it(Eo,e=>Math.asin(e)),bV={kernelName:Eo,backendName:"cpu",kernelFunc:xV},vV=it(Ro,e=>Math.asinh(e)),wV={kernelName:Ro,backendName:"cpu",kernelFunc:vV},kV=it(Mo,e=>Math.atan(e)),IV={kernelName:Mo,backendName:"cpu",kernelFunc:kV},SV=Lt((e,t)=>Math.atan2(e,t)),TV=tn($o,SV),NV={kernelName:$o,backendName:"cpu",kernelFunc:TV},CV=it(Fo,e=>Math.atanh(e)),EV={kernelName:Fo,backendName:"cpu",kernelFunc:CV};function xy(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,d=r.effectiveFilterHeight,p=r.effectiveFilterWidth,c=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Be(r.outShape,n),g=f.values,A=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let v=0;v<r.batchSize;++v){let b=v*A,k=v*a[0];for(let N=0;N<r.inChannels;++N)for(let C=0;C<r.outHeight;++C){let E=C*i-c,z=Math.max(0,E),F=Math.min(r.inHeight,d+E),I=b+C*y;for(let _=0;_<r.outWidth;++_){let D=_*o-h,V=Math.max(0,D),q=Math.min(r.inWidth,p+D),G=m,Q=0,J=0;for(let ee=z;ee<F;ee+=l){let ie=k+ee*a[1];for(let Z=V;Z<q;Z+=u){let le=ie+Z*a[2],oe=e[le+N];s==="max"&&oe>G?G=oe:s==="avg"&&(Q+=oe,J++)}if(isNaN(G))break}let ne=I+_*x+N;g[ne]=s==="avg"?Q/J:G}}}return f}function Rw(e,t,n,a,r=!1,s=!1){let i=Be(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,u=a.dilationHeight,d=a.dilationWidth,p=a.effectiveFilterHeight,c=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=Be(t,n,e);for(let g=0;g<a.batchSize;++g)for(let A=0;A<a.inChannels;++A)for(let y=0;y<a.outHeight;++y){let x=y*o-h,v=x;for(;v<0;)v+=u;let b=Math.min(a.inHeight,p+x);for(let k=0;k<a.outWidth;++k){let N=k*l-m,C=N;for(;C<0;)C+=d;let E=Math.min(a.inWidth,c+N),z=Number.NEGATIVE_INFINITY,F=-1;for(let I=v;I<b;I+=u){let _=I-x;for(let D=C;D<E;D+=d){let V=D-N,q=f.get(g,I,D,A);q>z&&(z=q,r?F=s?((g*a.inHeight+I)*a.inWidth+D)*a.inChannels+A:(I*a.inWidth+D)*a.inChannels+A:F=_*c+V)}}i.set(F,g,y,k,A)}}return i}function Mw(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,d=r.dilationHeight,p=r.dilationWidth,c=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,A=r.padInfo.left,y=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Be(r.outShape,n),v=x.values,b=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],N=r.outShape[3]*r.outShape[4],C=r.outShape[4];for(let E=0;E<r.batchSize;++E){let z=E*b,F=E*a[0];for(let I=0;I<r.inChannels;++I)for(let _=0;_<r.outDepth;++_){let D=_*i-f,V=D;for(;V<0;)V+=u;let q=Math.min(r.inDepth,c+D),G=z+_*k;for(let Q=0;Q<r.outHeight;++Q){let J=Q*o-g,ne=J;for(;ne<0;)ne+=d;let ee=Math.min(r.inHeight,h+J),ie=G+Q*N;for(let Z=0;Z<r.outWidth;++Z){let le=Z*l-A,oe=le;for(;oe<0;)oe+=p;let ye=Math.min(r.inWidth,m+le),ge=ie+Z*C,Se=y,Te=0,$e=0;for(let Oe=V;Oe<q;Oe+=u){let nt=F+Oe*a[1];for(let at=ne;at<ee;at+=d){let ot=nt+at*a[2];for(let Qe=oe;Qe<ye;Qe+=p){let mt=ot+Qe*a[3],He=e[mt+I];if(s==="max"&&He>Se?Se=He:s==="avg"&&(Te+=He,$e++),isNaN(Se))break}if(isNaN(Se))break}if(isNaN(Se))break}let De=ge+I;v[De]=s==="avg"?Te/$e:Se}}}}return x}function RV(e,t){let n=Be(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,d=t.effectiveFilterHeight,p=t.effectiveFilterWidth,c=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let A=0;A<t.outDepth;++A){let y=A*a-c,x=y;for(;x<0;)x+=i;let v=Math.min(t.inDepth,u+y);for(let b=0;b<t.outHeight;++b){let k=b*r-h,N=k;for(;N<0;)N+=o;let C=Math.min(t.inHeight,d+k);for(let E=0;E<t.outWidth;++E){let z=E*s-m,F=z;for(;F<0;)F+=l;let I=Math.min(t.inWidth,p+z),_=Number.NEGATIVE_INFINITY,D=-1;for(let V=x;V<v;V+=i){let q=V-y;for(let G=N;G<C;G+=o){let Q=G-k;for(let J=F;J<I;J+=l){let ne=J-z,ee=e.get(f,V,G,J,g);ee>=_&&(_=ee,D=q*d*p+Q*d+ne)}}}n.set(D,f,A,b,E,g)}}}return n}function MV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;we(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;w.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=R.computePool2DInfo(r.shape,s,i,u,o,l),p;if(d.filterWidth===1&&d.filterHeight===1&&w.arraysEqual(d.inShape,d.outShape))p=ur({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),m=xy(c,r.shape,r.dtype,h,d,"avg");p=n.makeTensorInfo(d.outShape,r.dtype,m.values)}return p}var FV={kernelName:Rs,backendName:"cpu",kernelFunc:MV};function $V(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;we(r,"avgPool3d");let d=R.computePool3DInfo(r.shape,s,i,1,o,l,u),p=n.data.get(r.dataId).values,c=Mw(p,r.shape,r.dtype,w.computeStrides(r.shape),d,"avg");return n.makeTensorInfo(c.shape,"float32",c.values)}var OV={kernelName:Du,backendName:"cpu",kernelFunc:$V};function zV(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;we([r,s],"avgPool3DGrad");let d=R.computePool3DInfo(s.shape,i,o,1,l,u),p=d.strideDepth,c=d.strideHeight,h=d.strideWidth,m=d.filterDepth,f=d.filterHeight,g=d.filterWidth,A=d.dilationDepth,y=d.dilationHeight,x=d.dilationWidth,v=d.effectiveFilterDepth,b=d.effectiveFilterHeight,k=d.effectiveFilterWidth,N=v-1-d.padInfo.front,C=k-1-d.padInfo.left,E=b-1-d.padInfo.top,z=Be(s.shape,"float32"),F=1/(m*f*g),I=n.bufferSync(r);for(let _=0;_<d.batchSize;++_)for(let D=0;D<d.inChannels;++D)for(let V=0;V<d.inDepth;++V)for(let q=0;q<d.inHeight;++q)for(let G=0;G<d.inWidth;++G){let Q=V-N,J=q-E,ne=G-C,ee=0;for(let ie=0;ie<v;ie+=A){let Z=(Q+ie)/p;if(!(Z<0||Z>=d.outDepth||Math.floor(Z)!==Z))for(let le=0;le<b;le+=y){let oe=(J+le)/c;if(!(oe<0||oe>=d.outHeight||Math.floor(oe)!==oe))for(let ye=0;ye<k;ye+=x){let ge=(ne+ye)/h;ge<0||ge>=d.outWidth||Math.floor(ge)!==ge||(ee+=I.get(_,Z,oe,ge,D))}}}z.set(ee*F,_,V,q,G,D)}return n.makeTensorInfo(z.shape,z.dtype,z.values)}var _V={kernelName:Zp,backendName:"cpu",kernelFunc:zV};function DV(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;we([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,d=R.computePool2DInfo(i.shape,o,l,1,u),p=d.strideHeight,c=d.strideWidth,h=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,g=d.dilationWidth,A=d.effectiveFilterHeight,y=d.effectiveFilterWidth,x=y-1-d.padInfo.left,v=A-1-d.padInfo.top,b=Be(i.shape,"float32"),k=1/(h*m),N=n.data.get(r.dataId).values,C=Be(r.shape,"float32",N);for(let E=0;E<d.batchSize;++E)for(let z=0;z<d.inChannels;++z)for(let F=0;F<d.inHeight;++F)for(let I=0;I<d.inWidth;++I){let _=F-v,D=I-x,V=0;for(let q=0;q<A;q+=f){let G=(_+q)/p;if(!(G<0||G>=d.outHeight||Math.floor(G)!==G))for(let Q=0;Q<y;Q+=g){let J=(D+Q)/c;J<0||J>=d.outWidth||Math.floor(J)!==J||(V+=C.get(E,G,J,z))}}b.set(V*k,E,F,I,z)}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var PV={kernelName:Kp,backendName:"cpu",kernelFunc:DV};function LV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;w.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),we([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=a;u==null&&(u=.001);let d=n.data.get(r.dataId).values,p=n.data.get(o.dataId).values,c=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(d.length),g=m.length,A=h.length,y=c.length,x=p.length,v=0,b=0,k=0,N=0;for(let C=0;C<d.length;++C)f[C]=m[v++]+(d[C]-p[b++])*h[k++]/Math.sqrt(c[N++]+u),v>=g&&(v=0),b>=x&&(b=0),k>=A&&(k=0),N>=y&&(N=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var WV={kernelName:js,backendName:"cpu",kernelFunc:LV};function BV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;we([r],"batchToSpaceND");let o=s.reduce((A,y)=>A*y),l=R.getReshaped(r.shape,s,o),u=R.getPermuted(l.length,s.length),d=R.getReshapedPermuted(r.shape,s,o),p=R.getSliceBeginCoords(i,s.length),c=R.getSliceSize(d,i,s.length),h=xt({inputs:{x:r},backend:n,attrs:{shape:l}}),m=ma({inputs:{x:h},backend:n,attrs:{perm:u}}),f=xt({inputs:{x:m},backend:n,attrs:{shape:d}}),g=Zi({inputs:{x:f},backend:n,attrs:{begin:p,size:c}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var VV={kernelName:Oo,backendName:"cpu",kernelFunc:BV};function UV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=py(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var HV={kernelName:Yp,backendName:"cpu",kernelFunc:UV};function jV(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=R.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var GV={kernelName:Lm,backendName:"cpu",kernelFunc:jV},qV=it(Ur,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),XV={kernelName:Ur,backendName:"cpu",kernelFunc:qV},KV=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let d=o[u],p=l[u];a[u]=Math.hypot(d,p)}return n.makeOutput(a,t.shape,"float32")},ZV={kernelName:Pu,backendName:"cpu",kernelFunc:KV};function eu(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var YV={kernelName:cc,backendName:"cpu",kernelFunc:eu};function tu(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=w.parseAxisParam(r,t[0].shape)[0],i=R.computeOutShape(t.map(f=>f.shape),s);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>w.sizeFromShape(f.shape)>0);if(o.length===1)return ur({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(R.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(v=>Ki({inputs:{input:v},backend:n})),g=o.map(v=>eu({inputs:{input:v},backend:n})),A=tu({inputs:f,backend:n,attrs:{axis:s}}),y=tu({inputs:g,backend:n,attrs:{axis:s}}),x=Kn({inputs:{real:A,imag:y},backend:n});return f.forEach(v=>n.disposeIntermediateTensorInfo(v)),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(y),x}let u=o.map(f=>{let g=w.sizeFromShape(f.shape.slice(s));return xt({inputs:{x:f},backend:n,attrs:{shape:[-1,g]}})}),d=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=R.computeOutShape(u.map(f=>f.shape),1);let p=u[0].shape[0]===1,c=cy(d,i,t[0].dtype,p),h=R.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,c);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var JV={kernelName:zo,backendName:"cpu",kernelFunc:tu};function Fw(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=a;we([r,s],"conv2d");let p=R.convertConv2DDataFormat(l),c=R.computeConv2DInfo(r.shape,s.shape,i,u,o,d,!1,p),h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,g=c.dilationWidth,A=c.padInfo.left,y=c.padInfo.top,x=c.dataFormat==="channelsLast",v=new Ut(c.outShape,r.dtype),b=w.computeStrides(r.shape),k=w.computeStrides(s.shape),N=b[0],C=x?b[1]:b[2],E=x?b[2]:1,z=x?1:b[1],F=v.strides[0],I=x?v.strides[1]:v.strides[2],_=x?v.strides[2]:1,D=x?1:v.strides[1],V=n.data.get(r.dataId).values,q=n.data.get(s.dataId).values,G=v.values;for(let Q=0;Q<c.batchSize;++Q){let J=Q*N,ne=Q*F;for(let ee=0;ee<c.outHeight;++ee){let ie=ne+ee*I,Z=ee*c.strideHeight-y;for(let le=0;le<h;++le){let oe=Z+le*f;if(oe<0||oe>=c.inHeight)continue;let ye=le*k[0],ge=J+oe*C;for(let Se=0;Se<c.outWidth;++Se){let Te=ie+Se*_,$e=Se*c.strideWidth-A;for(let De=0;De<m;++De){let Oe=$e+De*g;if(Oe<0||Oe>=c.inWidth)continue;let nt=ye+De*k[1],at=ge+Oe*E,ot=nt;for(let Qe=0;Qe<c.inChannels;++Qe){let mt=V[at+Qe*z];for(let He=0;He<c.outChannels;++He)G[Te+He*D]+=mt*q[ot+He];ot+=c.outChannels}}}}}}return n.makeTensorInfo(v.shape,v.dtype,G)}var QV={kernelName:Os,backendName:"cpu",kernelFunc:Fw};function eU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=a;we([r,s],"conv2dBackpropFilter");let p=R.convertConv2DDataFormat(l),c=R.computeConv2DInfo(r.shape,d,i,1,o,u,!1,p),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:g}=c,A=c.dataFormat==="channelsLast",y=new Ut(c.filterShape,"float32"),x=c.padInfo.left,v=c.padInfo.top,b=n.data.get(r.dataId).values,k=n.data.get(s.dataId).values,N=new Ut(r.shape,r.dtype,b),C=new Ut(s.shape,s.dtype,k);for(let E=0;E<f;++E){let z=Math.max(0,Math.ceil((v-E)/h)),F=Math.min(c.outHeight,(c.inHeight+v-E)/h);for(let I=0;I<g;++I){let _=Math.max(0,Math.ceil((x-I)/m)),D=Math.min(c.outWidth,(c.inWidth+x-I)/m);for(let V=0;V<c.inChannels;++V)for(let q=0;q<c.outChannels;++q){let G=0;for(let Q=0;Q<c.batchSize;++Q)for(let J=z;J<F;++J){let ne=E+J*h-v;for(let ee=_;ee<D;++ee){let ie=I+ee*m-x;A?G+=N.get(Q,ne,ie,V)*C.get(Q,J,ee,q):G+=N.get(Q,V,ne,ie)*C.get(Q,q,J,ee)}}y.set(G,E,I,V,q)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var tU={kernelName:Qp,backendName:"cpu",kernelFunc:eU};function nU(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=a;we([r,s],"conv2dBackpropInput");let p=w.computeStrides(s.shape),c=w.computeStrides(r.shape),h=R.convertConv2DDataFormat(u),m=R.computeConv2DInfo(i,s.shape,o,1,l,d,!1,h),f=new Ut(m.inShape,"float32"),g=f.values,A=n.data.get(r.dataId).values,y=n.data.get(s.dataId).values,[x,v,b]=p,{batchSize:k,filterHeight:N,filterWidth:C,inChannels:E,inHeight:z,inWidth:F,outChannels:I,outHeight:_,outWidth:D,strideHeight:V,strideWidth:q}=m;h=m.dataFormat;let G=N-1-m.padInfo.top,Q=C-1-m.padInfo.left,J=h==="channelsLast",ne=f.strides[0],ee=J?f.strides[1]:f.strides[2],ie=J?f.strides[2]:1,Z=J?1:f.strides[1],le=c[0],oe=J?c[1]:c[2],ye=J?c[2]:1,ge=J?1:c[1];for(let Se=0;Se<k;++Se)for(let Te=0;Te<E;++Te)for(let $e=0;$e<z;++$e){let De=$e-G,Oe=Math.max(0,Math.ceil(De/V)),nt=Math.min(_,(N+De)/V);for(let at=0;at<F;++at){let ot=at-Q,Qe=Math.max(0,Math.ceil(ot/q)),mt=Math.min(D,(C+ot)/q),He=0;for(let St=Oe;St<nt;++St){let ea=St*V-De;for(let nn=Qe;nn<mt;++nn){let Cn=nn*q-ot,ta=le*Se+oe*St+ye*nn,Vn=x*(N-1-ea)+v*(C-1-Cn)+b*Te;for(let hn=0;hn<I;++hn){let an=A[ta+ge*hn],Xa=y[Vn+hn];He+=an*Xa}}}let Nn=ne*Se+ee*$e+ie*at+Z*Te;g[Nn]=He}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var aU={kernelName:zs,backendName:"cpu",kernelFunc:nU};function rU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;we([r,s],"conv3d");let u=R.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:d,filterHeight:p,filterWidth:c,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:g}=u,A=g.front,y=g.left,x=g.top,v=new Ut(u.outShape,r.dtype),b=n.data.get(r.dataId).values,k=n.data.get(s.dataId).values,N=v.values,C=w.computeStrides(r.shape),E=w.computeStrides(s.shape);for(let z=0;z<u.batchSize;++z){let F=z*C[0],I=z*v.strides[0];for(let _=0;_<u.outDepth;++_){let D=I+_*v.strides[1],V=_*u.strideDepth-A;for(let q=0;q<d;++q){let G=V+q*h;if(G<0||G>=u.inDepth)continue;let Q=q*E[0],J=F+G*C[1];for(let ne=0;ne<u.outHeight;++ne){let ee=D+ne*v.strides[2],ie=ne*u.strideHeight-x;for(let Z=0;Z<p;++Z){let le=ie+Z*m;if(le<0||le>=u.inHeight)continue;let oe=Q+Z*E[1],ye=J+le*C[2];for(let ge=0;ge<u.outWidth;++ge){let Se=ee+ge*u.outChannels,Te=ge*u.strideWidth-y;for(let $e=0;$e<c;++$e){let De=Te+$e*f;if(De<0||De>=u.inWidth)continue;let Oe=oe+$e*E[2],nt=ye+De*u.inChannels,at=Oe;for(let ot=0;ot<u.inChannels;++ot){let Qe=b[nt+ot];for(let mt=0;mt<u.outChannels;++mt)N[Se+mt]+=Qe*k[at+mt];at+=u.outChannels}}}}}}}}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var sU={kernelName:Lu,backendName:"cpu",kernelFunc:rU};function iU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;we([r,s],"conv3dBackpropFilterV2");let u=w.computeStrides(r.shape),d=w.computeStrides(s.shape),p=R.computeConv3DInfo(r.shape,l,i,1,o),c=p.strideDepth,h=p.strideHeight,m=p.strideWidth,f=p.filterDepth,g=p.filterHeight,A=p.filterWidth,y=new Ut(p.filterShape,"float32"),x=y.values,[v,b,k,N]=y.strides,C=n.data.get(s.dataId).values,[E,z,F,I]=d,_=n.data.get(r.dataId).values,[D,V,q,G]=u,Q=p.padInfo.front,J=p.padInfo.left,ne=p.padInfo.top;for(let ee=0;ee<f;++ee){let ie=Math.max(0,Math.ceil((Q-ee)/c)),Z=Math.min(p.outDepth,(p.inDepth+Q-ee)/c),le=ee*v;for(let oe=0;oe<g;++oe){let ye=Math.max(0,Math.ceil((ne-oe)/h)),ge=Math.min(p.outHeight,(p.inHeight+ne-oe)/h),Se=oe*b+le;for(let Te=0;Te<A;++Te){let $e=Math.max(0,Math.ceil((J-Te)/m)),De=Math.min(p.outWidth,(p.inWidth+J-Te)/m),Oe=Te*k+Se;for(let nt=0;nt<p.inChannels;++nt){let at=nt*N+Oe;for(let ot=0;ot<p.outChannels;++ot){let Qe=0;for(let mt=0;mt<p.batchSize;++mt){let He=mt*D,Nn=mt*E;for(let St=ie;St<Z;++St){let ea=(ee+St*c-Q)*V+He,nn=St*z+Nn;for(let Cn=ye;Cn<ge;++Cn){let ta=(oe+Cn*h-ne)*q+ea,Vn=Cn*F+nn;for(let hn=$e;hn<De;++hn){let an=(Te+hn*m-J)*G+ta,Xa=hn*I+Vn;Qe+=_[an+nt]*C[Xa+ot]}}}}x[at+ot]=Qe}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var oU={kernelName:ec,backendName:"cpu",kernelFunc:iU};function lU(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;we([r],"conv3dBackpropInputV2");let u=w.computeStrides(r.shape),d=w.computeStrides(s.shape),p=R.computeConv3DInfo(l,s.shape,o,1,i),c=new Ut(p.inShape,"float32"),h=c.values,[m,f,g,A]=c.strides,y=n.data.get(r.dataId).values,[x,v,b,k]=u,N=n.data.get(s.dataId).values,[C,E,z,F]=d,{batchSize:I,filterDepth:_,filterHeight:D,filterWidth:V,inChannels:q,inDepth:G,inHeight:Q,inWidth:J,outChannels:ne,outDepth:ee,outHeight:ie,outWidth:Z,strideDepth:le,strideHeight:oe,strideWidth:ye}=p,ge=_-1-p.padInfo.front,Se=D-1-p.padInfo.top,Te=V-1-p.padInfo.left;for(let $e=0;$e<I;++$e)for(let De=0;De<q;++De)for(let Oe=0;Oe<G;++Oe){let nt=Oe-ge,at=Math.max(0,Math.ceil(nt/le)),ot=Math.min(ee,(_+nt)/le);for(let Qe=0;Qe<Q;++Qe){let mt=Qe-Se,He=Math.max(0,Math.ceil(mt/oe)),Nn=Math.min(ie,(D+mt)/oe);for(let St=0;St<J;++St){let ea=St-Te,nn=Math.max(0,Math.ceil(ea/ye)),Cn=Math.min(Z,(V+ea)/ye),ta=0;for(let Vn=at;Vn<ot;++Vn){let hn=Vn*le-nt;for(let an=He;an<Nn;++an){let Xa=an*oe-mt;for(let va=nn;va<Cn;++va){let wa=va*ye-ea,$r=x*$e+v*Vn+b*an+k*va,fr=C*(_-1-hn)+E*(D-1-Xa)+z*(V-1-wa)+F*De;for(let Or=0;Or<ne;++Or){let uo=y[$r+Or],Ka=N[fr+Or];ta+=uo*Ka}}}}h[m*$e+f*Oe+g*Qe+A*St+De]=ta}}}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var uU={kernelName:tc,backendName:"cpu",kernelFunc:lU},dU=it(_s,e=>Math.cos(e)),pU={kernelName:_s,backendName:"cpu",kernelFunc:dU},cU=it(Ds,e=>Math.cosh(e)),hU={kernelName:Ds,backendName:"cpu",kernelFunc:cU};function fU(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,[d,p,c,h]=r.shape,m=s.shape[0],[f,g]=o,A=Be([m,f,g,h],"float32"),y=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(r.dataId).values,b=w.computeStrides(r.shape),k=w.computeStrides(A.shape);for(let N=0;N<m;N++){let C=N*4,E=y[C],z=y[C+1],F=y[C+2],I=y[C+3],_=x[N];if(_>=d)continue;let D=f>1?(F-E)*(p-1)/(f-1):0,V=g>1?(I-z)*(c-1)/(g-1):0;for(let q=0;q<f;q++){let G=f>1?E*(p-1)+q*D:.5*(E+F)*(p-1);if(G<0||G>p-1){for(let Q=0;Q<g;Q++)for(let J=0;J<h;J++){let ne=J+Q*k[2]+q*k[1]+N*k[0];A.values[ne]=u}continue}if(l==="bilinear"){let Q=Math.floor(G),J=Math.ceil(G),ne=G-Q;for(let ee=0;ee<g;ee++){let ie=g>1?z*(c-1)+ee*V:.5*(z+I)*(c-1);if(ie<0||ie>c-1){for(let ye=0;ye<h;ye++){let ge=ye+ee*k[2]+q*k[1]+N*k[0];A.values[ge]=u}continue}let Z=Math.floor(ie),le=Math.ceil(ie),oe=ie-Z;for(let ye=0;ye<h;ye++){let ge=ye+Z*b[2]+Q*b[1]+_*b[0],Se=v[ge];ge=ye+le*b[2]+Q*b[1]+_*b[0];let Te=v[ge];ge=ye+Z*b[2]+J*b[1]+_*b[0];let $e=v[ge];ge=ye+le*b[2]+J*b[1]+_*b[0];let De=v[ge],Oe=Se+(Te-Se)*oe,nt=$e+(De-$e)*oe;ge=ye+ee*k[2]+q*k[1]+N*k[0],A.values[ge]=Oe+(nt-Oe)*ne}}}else for(let Q=0;Q<g;++Q){let J=g>1?z*(c-1)+Q*V:.5*(z+I)*(c-1);if(J<0||J>c-1){for(let ie=0;ie<h;ie++){let Z=ie+Q*k[2]+q*k[1]+N*k[0];A.values[Z]=u}continue}let ne=Math.round(J),ee=Math.round(G);for(let ie=0;ie<h;ie++){let Z=ie+ne*b[2]+ee*b[1]+_*b[0],le=ie+Q*k[2]+q*k[1]+N*k[0];A.values[le]=v[Z]}}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var mU={kernelName:_o,backendName:"cpu",kernelFunc:fU};function gU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;we(r,"cumsum");let l=R.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=ma({inputs:{x:r},backend:n,attrs:{perm:l}}));let d=R.getInnerMostAxes(1,r.shape.length)[0];if(d!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${d}`);let p=Sa(u.dtype,"int32"),c=w.makeZerosTypedArray(w.sizeFromShape(u.shape),p),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(A,y)=>A+m-y-1:(A,y)=>A+y;for(let A=0;A<h.length;A+=m)for(let y=0;y<m;y++){let x=f(A,y);if(y===0)c[x]=i?0:h[x];else{let v=f(A,y-1);c[x]=i?h[v]+c[v]:h[x]+c[v]}}let g=n.makeTensorInfo(u.shape,p,c);if(l!=null){let A=R.getUndoAxesPermutation(l),y=ma({inputs:{x:g},backend:n,attrs:{perm:A}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),y}return g}var AU={kernelName:Ps,backendName:"cpu",kernelFunc:gU};function yU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,d=py(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,d)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),d=V7(l,u,i,o);return n.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var xU={kernelName:nc,backendName:"cpu",kernelFunc:yU};function bU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;w.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),w.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],d=r.shape[3],p=l*s,c=u*s,h=d/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*p*c*h),g=0;for(let A=0;A<o;++A)for(let y=0;y<p;++y){let x=Math.floor(y/s),v=y%s;for(let b=0;b<c;++b){let k=Math.floor(b/s),N=b%s,C=(v*s+N)*h;for(let E=0;E<h;++E){let z=E+C+d*(k+u*(x+l*A));f[g++]=m[z]}}}return n.makeTensorInfo([o,p,c,h],r.dtype,f)}var vU={kernelName:Do,backendName:"cpu",kernelFunc:bU};function $w(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a;we([r,s],"depthwiseConv2DNative");let d=w.computeStrides(r.shape),p=w.computeStrides(s.shape),c=l;c==null&&(c=[1,1]),w.assert(R.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=R.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:A,padInfo:y}=h,x=y.left,v=y.top,b=h.outChannels/h.inChannels,k=new Ut(h.outShape,r.dtype),N=n.data.get(r.dataId).values,C=n.data.get(s.dataId).values,E=k.values;for(let z=0;z<h.batchSize;++z){let F=z*d[0],I=z*k.strides[0];for(let _=0;_<h.outHeight;++_){let D=I+_*k.strides[1],V=_*h.strideHeight-v;for(let q=0;q<m;++q){let G=V+q*g;if(G<0||G>=h.inHeight)continue;let Q=q*p[0],J=F+G*d[1];for(let ne=0;ne<h.outWidth;++ne){let ee=D+ne*k.strides[2],ie=ne*h.strideWidth-x;for(let Z=0;Z<f;++Z){let le=ie+Z*A;if(le<0||le>=h.inWidth)continue;let oe=Q+Z*p[1],ye=J+le*h.inChannels,ge=ee,Se=oe;for(let Te=0;Te<h.inChannels;++Te){let $e=N[ye+Te];for(let De=0;De<b;++De)E[ge+De]+=$e*C[Se+De];ge+=b,Se+=b}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var wU={kernelName:Ls,backendName:"cpu",kernelFunc:$w};function kU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=a;we([r,s],"depthwiseConv2dNativeBackpropFilter");let p=R.computeConv2DInfo(r.shape,d,i,o,l,u,!0),{strideHeight:c,strideWidth:h,filterHeight:m,filterWidth:f}=p,g=new Ut(p.filterShape,"float32"),A=p.padInfo.left,y=p.padInfo.top,x=p.outChannels/p.inChannels,v=n.data.get(r.dataId).values,b=new Ut(r.shape,r.dtype,v),k=n.data.get(s.dataId).values,N=new Ut(s.shape,s.dtype,k);for(let C=0;C<m;++C){let E=Math.max(0,Math.ceil((y-C)/c)),z=Math.min(p.outHeight,(p.inHeight+y-C)/c);for(let F=0;F<f;++F){let I=Math.max(0,Math.ceil((A-F)/h)),_=Math.min(p.outWidth,(p.inWidth+A-F)/h);for(let D=0;D<p.outChannels;++D){let V=Math.trunc(D/x),q=D%x,G=0;for(let Q=0;Q<p.batchSize;++Q)for(let J=E;J<z;++J){let ne=C+J*c-y;for(let ee=I;ee<_;++ee){let ie=F+ee*h-A;G+=b.get(Q,ne,ie,V)*N.get(Q,J,ee,D)}}g.set(G,C,F,V,q)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var IU={kernelName:ac,backendName:"cpu",kernelFunc:kU};function SU(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=a;we([r,s],"depthwiseConv2DNativeBackpropInput");let p=w.computeStrides(r.shape),c=w.computeStrides(s.shape),h=R.computeConv2DInfo(d,s.shape,i,o,l,u,!0),m=new Ut(h.inShape,"float32"),f=m.values,[g,A,y]=m.strides,x=n.data.get(r.dataId).values,[v,b,k]=p,N=n.data.get(s.dataId).values,[C,E,z]=c,{batchSize:F,filterHeight:I,filterWidth:_,inChannels:D,inHeight:V,inWidth:q,outChannels:G,outHeight:Q,outWidth:J,strideHeight:ne,strideWidth:ee}=h,ie=I-1-h.padInfo.top,Z=_-1-h.padInfo.left,le=G/D;for(let oe=0;oe<F;++oe)for(let ye=0;ye<D;++ye)for(let ge=0;ge<V;++ge){let Se=ge-ie,Te=Math.max(0,Math.ceil(Se/ne)),$e=Math.min(Q,(I+Se)/ne);for(let De=0;De<q;++De){let Oe=De-Z,nt=Math.max(0,Math.ceil(Oe/ee)),at=Math.min(J,(_+Oe)/ee),ot=0;for(let Qe=Te;Qe<$e;++Qe){let mt=Qe*ne-Se;for(let He=nt;He<at;++He){let Nn=He*ee-Oe,St=v*oe+b*Qe+k*He,ea=C*(I-1-mt)+E*(_-1-Nn)+z*ye;for(let nn=0;nn<le;++nn){let Cn=ye*le+nn,ta=x[St+Cn],Vn=N[ea+nn];ot+=ta*Vn}}}f[g*oe+A*ge+y*De+ye]=ot}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var TU={kernelName:rc,backendName:"cpu",kernelFunc:SU};function NU(e){let{inputs:t,backend:n}=e,{x:a}=t,r=w.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=Be([r,r],a.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*r+u]=s[u];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var CU={kernelName:sc,backendName:"cpu",kernelFunc:NU},EU={kernelName:Wu,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(a.dataId).values,d=a.shape.length,p=l.data.get(r.dataId).values,c=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:A,outWidth:y,padInfo:x,strideHeight:v,strideWidth:b,filterHeight:k,filterWidth:N,dilationHeight:C,dilationWidth:E,outShape:z}=R.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),F=w.sizeFromShape(z),I=z.length,_=w.getArrayFromDType(a.dtype,F);for(let D=0;D<h;++D)for(let V=0;V<A;++V){let q=V*v-x.top;for(let G=0;G<y;++G){let Q=G*b-x.left;for(let J=0;J<g;++J){let ne=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<k;++ie){let Z=q+ie*C;if(Z>=0&&Z<m)for(let le=0;le<N;++le){let oe=Q+le*E;if(oe>=0&&oe<f){let ye=w.locToIndex([D,Z,oe,J],d,w.computeStrides(a.shape)),ge=w.locToIndex([ie,le,J],c,w.computeStrides(r.shape)),Se=u[ye]+p[ge];Se>ne&&(ne=Se)}}}let ee=w.locToIndex([D,V,G,J],I,w.computeStrides(z));_[ee]=ne}}}return{dataId:l.write(w.toTypedArray(_,a.dtype),z,a.dtype),shape:z,dtype:a.dtype}}},RU={kernelName:oc,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,d=w.toNestedArray(a.shape,u.data.get(a.dataId).values),p=w.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:A,padInfo:y,strideHeight:x,strideWidth:v,filterHeight:b,filterWidth:k,dilationHeight:N,dilationWidth:C,outShape:E}=R.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);w.assert(s.rank===E.length,()=>`Error in ${oc}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let z=w.toNestedArray(E,u.data.get(s.dataId).values),F=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let I=0;I<c;++I)for(let _=0;_<g;++_){let D=_*x-y.top;for(let V=0;V<A;++V){let q=V*v-y.left;for(let G=0;G<f;++G){let Q=Number.MIN_SAFE_INTEGER,J=0,ne=0;for(let ee=0;ee<b;++ee){let ie=D+ee*N;if(ie>=0&&ie<h)for(let Z=0;Z<k;++Z){let le=q+Z*C;if(le>=0&&le<m){let oe=d[I][ie][le][G]+p[ee][Z][G];oe>Q&&(Q=oe,J=ee,ne=Z)}}}F[J][ne][G]+=z[I][_][V][G]}}}return{dataId:u.write(w.toTypedArray(F,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},MU={kernelName:ic,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,d=w.toNestedArray(a.shape,u.data.get(a.dataId).values),p=w.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:A,padInfo:y,strideHeight:x,strideWidth:v,filterHeight:b,filterWidth:k,dilationHeight:N,dilationWidth:C,outShape:E}=R.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);w.assert(s.rank===E.length,()=>`Error in ${ic}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let z=w.toNestedArray(E,u.data.get(s.dataId).values),F=w.makeZerosNestedTypedArray(a.shape,a.dtype);for(let I=0;I<c;++I)for(let _=0;_<g;++_){let D=_*x-y.top;for(let V=0;V<A;++V){let q=V*v-y.left;for(let G=0;G<f;++G){let Q=Number.MIN_SAFE_INTEGER,J=D<0?0:D,ne=q<0?0:q;for(let ee=0;ee<b;++ee){let ie=D+ee*N;if(ie>=0&&ie<h)for(let Z=0;Z<k;++Z){let le=q+Z*C;if(le>=0&&le<m){let oe=d[I][ie][le][G]+p[ee][Z][G];oe>Q&&(Q=oe,J=ie,ne=le)}}}F[I][J][ne][G]+=z[I][_][V][G]}}}return{dataId:u.write(w.toTypedArray(F,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function Hd(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;we(r,"sum");let o;r.dtype==="bool"?o=ds({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=ur({inputs:{x:r},backend:n});let l=o.shape.length,u=w.parseAxisParam(s,o.shape),d=R.getAxesPermutation(u,l),p=u,c=o;d!=null&&(c=ma({inputs:{x:o},backend:n,attrs:{perm:d}}),p=R.getInnerMostAxes(p.length,l)),R.assertAxesAreInnerMostDims("sum",p,c.shape.length);let[h,m]=R.computeOutAndReduceShapes(c.shape,p),f=R.upcastType(c.dtype,"int32"),g=o0(n,h,f),A=w.sizeFromShape(m),y=n.data.get(g.dataId).values,x=n.data.get(c.dataId).values;for(let v=0;v<y.length;++v){let b=v*A,k=0;for(let N=0;N<A;++N)k+=x[b+N];y[v]=k}if(i){let v=R.expandShapeToKeepDim(g.shape,u),b=g;g=xt({inputs:{x:g},backend:n,attrs:{shape:v}}),n.disposeIntermediateTensorInfo(b)}return n.disposeIntermediateTensorInfo(o),d!=null&&n.disposeIntermediateTensorInfo(c),g}var FU={kernelName:Ai,backendName:"cpu",kernelFunc:Hd};function $U(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=R.decodeEinsumEquation(r,s.length);R.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=R.getEinsumComputePath(o,l),p=d.length,c=null,h=i.length,m=[];for(let f=0;f<p;++f){for(let g of d[f]){let{permutationIndices:A,expandDims:y}=R.getEinsumPermutation(h,l[g]),x;R.isIdentityPermutation(A)?x=s[g]:(x=ma({inputs:{x:s[g]},backend:n,attrs:{perm:A}}),m.push(x));let v=x.shape.slice();for(let b=0;b<y.length;++b)v.splice(y[b],0,1);w.arraysEqual(x.shape,v)||(x=xt({inputs:{x},backend:n,attrs:{shape:v}}),m.push(x)),c===null?c=x:(c=l0({inputs:{a:x,b:c},backend:n}),m.push(c))}f<p-1&&(u[f]>=0&&(c=Hd({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var OU={kernelName:lc,backendName:"cpu",kernelFunc:$U};function zU(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;we([a,r],"eluGrad");let s=new Float32Array(w.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",s)}var _U={kernelName:uc,backendName:"cpu",kernelFunc:zU},DU=R.ERF_P,PU=R.ERF_A1,LU=R.ERF_A2,WU=R.ERF_A3,BU=R.ERF_A4,VU=R.ERF_A5,UU=it(Po,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+DU*n);return t*(1-((((VU*a+BU)*a+WU)*a+LU)*a+PU)*a*Math.exp(-n*n))}),HU={kernelName:Po,backendName:"cpu",kernelFunc:UU};function d0(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),xt({inputs:{x:r},backend:n,attrs:{shape:o}})}var jU={kernelName:Wo,backendName:"cpu",kernelFunc:d0},GU=Lt((e,t)=>e/t),by=tn(Ws,GU),vy={kernelName:Ws,backendName:"cpu",kernelFunc:by};function Ow(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],d=w.sizeFromShape(u),p=w.getTypedArrayFromDType("float32",d),c=w.getTypedArrayFromDType("float32",d);for(let g=0;g<r;g++){let A=Zi({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,s]}}),y=Zi({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,s]}}),x=Kn({inputs:{real:A,imag:y},backend:n}),{real:v,imag:b}=qU(x,t,n),k=R.mergeRealAndImagArrays(v,b);for(let N=0;N<s;N++){let C=R.getComplexWithIndex(k,N);p[g*s+N]=C.real,c[g*s+N]=C.imag}n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(u,"float32",p),m=n.makeTensorInfo(u,"float32",c),f=Kn({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function qU(e,t,n){let a=w.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(XU(a)){let o=wy(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),d=n.makeTensorInfo(l,"float32",o.imag),p=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),c=ur({inputs:{x:p},backend:n}),h=vy.kernelFunc({inputs:{a:u,b:p},backend:n}),m=vy.kernelFunc({inputs:{a:d,b:c},backend:n}),f=n.data.get(h.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=R.mergeRealAndImagArrays(s,i),l=KU(o,a,t);return R.splitRealAndImagArrays(l)}}function XU(e){return(e&e-1)==0}function wy(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=R.mergeRealAndImagArrays(e,t),i=n/2,o=R.complexWithEvenIndex(s),l=o.real,u=o.imag,d=[l.length],p=r.makeTensorInfo(d,"float32",l),c=r.makeTensorInfo(d,"float32",u),h=Kn({inputs:{real:p,imag:c},backend:r}),m=R.complexWithOddIndex(s),f=m.real,g=m.imag,A=[f.length],y=r.makeTensorInfo(A,"float32",f),x=r.makeTensorInfo(A,"float32",g),v=Kn({inputs:{real:y,imag:x},backend:r}),b=wy(l,u,i,a,r),k=b.real,N=b.imag,C=[k.length],E=r.makeTensorInfo(C,"float32",k),z=r.makeTensorInfo(C,"float32",N),F=Kn({inputs:{real:E,imag:z},backend:r}),I=wy(f,g,i,a,r),_=I.real,D=I.imag,V=[_.length],q=r.makeTensorInfo(V,"float32",_),G=r.makeTensorInfo(V,"float32",D),Q=Kn({inputs:{real:q,imag:G},backend:r}),J=R.exponents(n,a),ne=[J.real.length],ee=r.makeTensorInfo(ne,"float32",J.real),ie=r.makeTensorInfo(ne,"float32",J.imag),Z=Kn({inputs:{real:ee,imag:ie},backend:r}),le=l0({inputs:{a:Z,b:Q},backend:r}),oe=Vd({inputs:{a:F,b:le},backend:r}),ye=Ay({inputs:{a:F,b:le},backend:r}),ge=Ki({inputs:{input:oe},backend:r}),Se=Ki({inputs:{input:ye},backend:r}),Te=eu({inputs:{input:oe},backend:r}),$e=eu({inputs:{input:ye},backend:r}),De=tu({inputs:[ge,Se],backend:r,attrs:{axis:0}}),Oe=tu({inputs:[Te,$e],backend:r,attrs:{axis:0}}),nt=r.data.get(De.dataId).values,at=r.data.get(Oe.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(v),r.disposeIntermediateTensorInfo(E),r.disposeIntermediateTensorInfo(z),r.disposeIntermediateTensorInfo(F),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(G),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(Z),r.disposeIntermediateTensorInfo(le),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(ye),r.disposeIntermediateTensorInfo(ge),r.disposeIntermediateTensorInfo(Te),r.disposeIntermediateTensorInfo(Se),r.disposeIntermediateTensorInfo($e),r.disposeIntermediateTensorInfo(De),r.disposeIntermediateTensorInfo(Oe),{real:nt,imag:at}}function KU(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=R.exponent(r*o,t,n),u=R.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),R.assignToTypedArray(a,s,i,r)}return a}function ZU(e){let{inputs:t,backend:n}=e,{input:a}=t,r=w.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=xt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=Ow(o,!1,n),u=xt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var YU={kernelName:dc,backendName:"cpu",kernelFunc:ZU};function ky(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||w.inferDtype(r),o=w.getArrayFromDType(i,w.sizeFromShape(a));return QU(o,r,i),t.makeTensorInfo(a,i,o)}var JU={kernelName:Bu,backendName:"cpu",kernelFunc:ky};function QU(e,t,n){e.fill(t)}var eH={kernelName:Vo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=w.getTypedArrayFromDType(a.dtype,w.sizeFromShape(a.shape)),[i,o,l,u]=a.shape,d=r.data.get(a.dataId).values;for(let p=0;p<i;p++){let c=p*l*o*u;for(let h=0;h<o;h++){let m=h*(l*u);for(let f=0;f<l;f++){let g=f*u;for(let A=0;A<u;A++){let y=Math.round(l-f-1),x=c+m+g+A,v=d[x];if(y>=0&&y<l){let b=y*u,k=c+m+b+A;v=d[k]}s[x]=v}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},tH=Lt((e,t)=>Math.floor(e/t)),nH=tn(Hs,tH,null,"int32"),aH={kernelName:Hs,backendName:"cpu",kernelFunc:nH};function rH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=Fw({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c}});if(i){let g=f;f=Vd({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=yy(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var sH={kernelName:Si,backendName:"cpu",kernelFunc:rH};function iH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=$w({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c}});if(i){let g=f;f=Vd({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=yy(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var oH={kernelName:Ti,backendName:"cpu",kernelFunc:iH};function lH(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=w.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,u,d,p]=R.prepareAndValidate(a,r);if(u===0)return n.makeTensorInfo(l,a.dtype,[]);let c=n.data.get(r.dataId).values,h=n.bufferSync(a),m=Z7(c,h,a.dtype,u,o,d,p,a.shape,s);return n.makeTensorInfo(l,a.dtype,m.values)}var uH={kernelName:Ho,backendName:"cpu",kernelFunc:lH};function dH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;we([r,s],"gatherV2");let l=o;o==null&&(l=0);let u=w.sizeFromShape(s.shape),d=w.parseAxisParam(i,r.shape)[0],p=R.segment_util.collectGatherOpShapeInfo(r,s,d,l),c=xt({inputs:{x:r},backend:n,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),h=xt({inputs:{x:s},backend:n,attrs:{shape:[p.batchSize,u/p.batchSize]}}),m=[p.batchSize,p.outerSize,u/p.batchSize,p.sliceSize],f=n.bufferSync(h),g=n.bufferSync(c),A=Y7(g,f,m);return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.makeTensorInfo(p.outputShape,A.dtype,A.values)}var pH={kernelName:Uo,backendName:"cpu",kernelFunc:dH};function cH(e){let{inputs:t,backend:n}=e,{input:a}=t,r=w.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=xt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=Ow(o,!0,n),u=xt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var hH={kernelName:pc,backendName:"cpu",kernelFunc:cH},fH=it(Go,e=>Number.isFinite(e)?1:0,"bool"),mH={kernelName:Go,backendName:"cpu",kernelFunc:fH},gH=it(qo,e=>Math.abs(e)===1/0?1:0,"bool"),AH={kernelName:qo,backendName:"cpu",kernelFunc:gH},yH=it(Xo,e=>Number.isNaN(e)?1:0,"bool"),xH={kernelName:Xo,backendName:"cpu",kernelFunc:yH};function bH(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=nw(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var vH={kernelName:hc,backendName:"cpu",kernelFunc:bH},wH=it(Yo,e=>Math.log1p(e)),kH={kernelName:Yo,backendName:"cpu",kernelFunc:wH},IH=Lt((e,t)=>e&&t),SH=tn(Jo,IH,null,"bool"),TH={kernelName:Jo,backendName:"cpu",kernelFunc:SH},NH=it(Vu,e=>e?0:1,"bool"),CH={kernelName:Vu,backendName:"cpu",kernelFunc:NH},EH=Lt((e,t)=>e||t),RH=tn(Uu,EH,null,"bool"),MH={kernelName:Uu,backendName:"cpu",kernelFunc:RH};function FH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;we(r,"LRN");let u=r.shape[3],d=u-1,p=n.data.get(r.dataId).values,c=w.sizeFromShape(r.shape),h=new Float32Array(c);function m(f){let g=f%u,A=f-g+Math.max(0,g-s),y=f-g+Math.min(g+s,d),x=0;for(;A<=y;A++){let v=p[A];x+=v*v}return x}for(let f=0;f<c;f++){let g=m(f),A=p[f]*Math.pow(i+o*g,-l);h[f]=A}return n.makeTensorInfo(r.shape,r.dtype,h)}var $H={kernelName:Hu,backendName:"cpu",kernelFunc:FH};function OH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=a;we(i,"LRNGrad");let p=w.sizeFromShape(i.shape),c=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,g=new Float32Array(p),A=p;for(let y=0;y<A;y++){let x=y%c,v=y-x+Math.max(0,x-o),b=y-x+Math.min(c,x+o+1),k=0;for(let N=v;N<b;N++)k+=Math.pow(m[N],2);k=u*k+l;for(let N=v;N<b;N++){let C=-2*u*d*m[N]*f[y]/k;y===N&&(C+=Math.pow(k,-d)),C*=h[y],g[N]+=C}}return n.makeTensorInfo(i.shape,r.dtype,g)}var zH={kernelName:fc,backendName:"cpu",kernelFunc:OH};function zw(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,u=l.length,d=w.parseAxisParam(s,l),p=d,c=R.getAxesPermutation(p,u),h=o.data.get(r.dataId).values;if(c!=null){let v=new Array(u);for(let b=0;b<v.length;b++)v[b]=l[c[b]];h=fy(h,l,r.dtype,c,v),p=R.getInnerMostAxes(p.length,u),l=v}we(r,"max"),R.assertAxesAreInnerMostDims("max",p,u);let[m,f]=R.computeOutAndReduceShapes(l,p),g=w.sizeFromShape(f),A=rw(h,g,m,r.dtype),y=o.write(A,m,r.dtype),x=m;return i&&(x=R.expandShapeToKeepDim(m,d)),{dataId:y,shape:x,dtype:r.dtype}}var _H={kernelName:Zs,backendName:"cpu",kernelFunc:zw};function DH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;we(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;w.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=R.computePool2DInfo(r.shape,s,i,u,o,l),p;if(d.filterWidth===1&&d.filterHeight===1&&w.arraysEqual(d.inShape,d.outShape))p=ur({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),m=xy(c,r.shape,r.dtype,h,d,"max");p=n.makeTensorInfo(d.outShape,r.dtype,m.values)}return p}var PH={kernelName:Js,backendName:"cpu",kernelFunc:DH};function LH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;we(r,"maxPool3d");let d=R.computePool3DInfo(r.shape,s,i,1,o,l,u),p=n.data.get(r.dataId).values,c=Mw(p,r.shape,r.dtype,w.computeStrides(r.shape),d,"max");return n.makeTensorInfo(c.shape,"float32",c.values)}var WH={kernelName:ju,backendName:"cpu",kernelFunc:LH};function BH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;we([r,s],"maxPool3DGrad");let d=R.computePool3DInfo(s.shape,i,o,1,l,u),p=n.bufferSync(s),c=RV(p,d),h=d.strideDepth,m=d.strideHeight,f=d.strideWidth,g=d.dilationDepth,A=d.dilationHeight,y=d.dilationWidth,x=d.effectiveFilterDepth,v=d.effectiveFilterHeight,b=d.effectiveFilterWidth,k=x-1-d.padInfo.front,N=b-1-d.padInfo.left,C=v-1-d.padInfo.top,E=Be(s.shape,"float32"),z=n.bufferSync(r);for(let F=0;F<d.batchSize;++F)for(let I=0;I<d.inChannels;++I)for(let _=0;_<d.inDepth;++_)for(let D=0;D<d.inHeight;++D)for(let V=0;V<d.inWidth;++V){let q=_-k,G=D-C,Q=V-N,J=0;for(let ne=0;ne<x;ne+=g){let ee=(q+ne)/h;if(!(ee<0||ee>=d.outDepth||Math.floor(ee)!==ee))for(let ie=0;ie<v;ie+=A){let Z=(G+ie)/m;if(!(Z<0||Z>=d.outHeight||Math.floor(Z)!==Z))for(let le=0;le<b;le+=y){let oe=(Q+le)/f;if(oe<0||oe>=d.outWidth||Math.floor(oe)!==oe)continue;let ye=x*v*b-1-c.get(F,ee,Z,oe,I),ge=ne*v*b+ie*b+le,Se=ye===ge?1:0;Se!==0&&(J+=z.get(F,ee,Z,oe,I)*Se)}}}E.set(J,F,_,D,V,I)}return n.makeTensorInfo(E.shape,E.dtype,E.values)}var VH={kernelName:gc,backendName:"cpu",kernelFunc:BH};function UH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;we([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:p}=a,c=R.computePool2DInfo(o.shape,l,u,1,d,p),h=n.data.get(o.dataId).values,m=Be(c.outShape,o.dtype,Rw(h,o.shape,o.dtype,c).values),f=c.strideHeight,g=c.strideWidth,A=c.dilationHeight,y=c.dilationWidth,x=c.effectiveFilterHeight,v=c.effectiveFilterWidth,b=v-1-c.padInfo.left,k=x-1-c.padInfo.top,N=Be(o.shape,"float32"),C=n.data.get(r.dataId).values,E=Be(r.shape,"float32",C);for(let z=0;z<c.batchSize;++z)for(let F=0;F<c.inChannels;++F)for(let I=0;I<c.inHeight;++I)for(let _=0;_<c.inWidth;++_){let D=I-k,V=_-b,q=0;for(let G=0;G<x;G+=A){let Q=(D+G)/f;if(!(Q<0||Q>=c.outHeight||Math.floor(Q)!==Q))for(let J=0;J<v;J+=y){let ne=(V+J)/g;if(ne<0||ne>=c.outWidth||Math.floor(ne)!==ne)continue;let ee=x*v-1-m.get(z,Q,ne,F),ie=G*v+J,Z=ee===ie?1:0;Z!==0&&(q+=E.get(z,Q,ne,F)*Z)}}N.set(q,z,I,_,F)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var HH={kernelName:mc,backendName:"cpu",kernelFunc:UH};function jH(e,t,n,a,r){let s=w.computeStrides(t),i=xy(e,t,n,s,r,"max"),o=Rw(e,t,n,r,!0,a);return[i.values,o.values]}var GH={kernelName:Ac,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;we(a,"MaxPoolWithArgmax");let u=l.data.get(a.dataId).values,d=R.computePool2DInfo(a.shape,r,s,[1,1],i),[p,c]=jH(u,a.shape,a.dtype,o,d),h=l.write(p,d.outShape,a.dtype),m=l.write(c,d.outShape,a.dtype);return[{dataId:h,shape:d.outShape,dtype:a.dtype},{dataId:m,shape:d.outShape,dtype:"int32"}]}};function qH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=w.parseAxisParam(s,r.shape),l=R.computeOutAndReduceShapes(r.shape,o)[1],u=w.sizeFromShape(l),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([u]));d.push(p);let c=ds({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(c);let h=by({inputs:{a:c,b:p},backend:n});d.push(h);let m=Hd({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var XH={kernelName:Qs,backendName:"cpu",kernelFunc:qH};function KH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;we(r,"min");let o=w.parseAxisParam(s,r.shape),l=o,u=R.getAxesPermutation(l,r.shape.length),d=r;u!=null&&(d=ma({inputs:{x:r},backend:n,attrs:{perm:u}}),l=R.getInnerMostAxes(l.length,r.shape.length)),R.assertAxesAreInnerMostDims("min",l,d.shape.length);let[p,c]=R.computeOutAndReduceShapes(d.shape,l),h=w.sizeFromShape(c),m=w.makeZerosTypedArray(w.sizeFromShape(p),d.dtype),f=n.data.get(d.dataId).values;for(let A=0;A<m.length;++A){let y=A*h,x=f[y];for(let v=0;v<h;++v){let b=f[y+v];(Number.isNaN(b)||b<x)&&(x=b)}m[A]=x}u!=null&&n.disposeIntermediateTensorInfo(d);let g=n.makeTensorInfo(p,d.dtype,m);if(i){let A=R.expandShapeToKeepDim(p,o),y=xt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var ZH={kernelName:ei,backendName:"cpu",kernelFunc:KH};function YH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;we(r,"mirrorPad");let o=s.map((y,x)=>y[0]+r.shape[x]+y[1]),l=s.map(y=>y[0]),u=s.map((y,x)=>y[0]+r.shape[x]),d=i==="reflect"?0:1,p=n.data.get(r.dataId).values,c=r.shape.length,h=w.computeStrides(r.shape),m=w.sizeFromShape(o),f=o.length,g=w.computeStrides(o),A=w.getTypedArrayFromDType(r.dtype,m);for(let y=0;y<m;y++){let x=w.indexToLoc(y,f,g);for(let b=0;b<f;b++)x[b]<l[b]?x[b]=l[b]*2-x[b]-d:x[b]>=u[b]&&(x[b]=(u[b]-1)*2-x[b]+d);x=x.map((b,k)=>b-l[k]);let v=w.locToIndex(x,c,h);A[y]=p[v]}return{dataId:n.write(A,o,r.dtype),shape:o,dtype:r.dtype}}var JH={kernelName:ni,backendName:"cpu",kernelFunc:YH},QH=Lt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),ej=tn(Qo,QH),tj={kernelName:Qo,backendName:"cpu",kernelFunc:ej},nj=Ss(g5());function _w(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=w.parseAxisParam([o],r.shape),u=zw({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),d=R.expandShapeToKeepDim(u.shape,l),p=xt({inputs:{x:u},backend:n,attrs:{shape:d}}),c=Ay({inputs:{a:r,b:p},backend:n}),h=q7({inputs:{x:c},backend:n}),m=Hd({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=xt({inputs:{x:m},backend:n,attrs:{shape:d}}),g=by({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var aj={kernelName:yi,backendName:"cpu",kernelFunc:_w};function rj(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;we(r,"multinomial");let l=o?r:_w({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],d=l.shape[1],p=n.data.get(l.dataId).values,c=[u,s],h=w.makeZerosTypedArray(w.sizeFromShape(c),"int32");for(let m=0;m<u;++m){let f=m*d,g=new Float32Array(d-1);g[0]=p[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+p[f+x];let A=nj.alea(i.toString()),y=m*s;for(let x=0;x<s;++x){let v=A();h[y+x]=g.length;for(let b=0;b<g.length;b++)if(v<g[b]){h[y+x]=b;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(c,"int32",h)}var sj={kernelName:yc,backendName:"cpu",kernelFunc:rj},ij=ar.nonMaxSuppressionV3Impl;function oj(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;we(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,{selectedIndices:p}=ij(u,d,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var lj={kernelName:nl,backendName:"cpu",kernelFunc:oj},uj=ar.nonMaxSuppressionV4Impl;function dj(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a;we(r,"NonMaxSuppressionPadded");let d=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:c,validOutputs:h}=uj(d,p,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var pj={kernelName:al,backendName:"cpu",kernelFunc:dj},cj=ar.nonMaxSuppressionV5Impl;function hj(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a;we(r,"NonMaxSuppressionWithScore");let d=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:A}=cj(d,p,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var fj={kernelName:rl,backendName:"cpu",kernelFunc:hj};function mj(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a;we(r,"oneHot");let l=w.sizeFromShape(r.shape),u=new Float32Array(l*s);u.fill(o);let d=n.data.get(r.dataId).values;for(let p=0;p<l;++p)d[p]>=0&&d[p]<s&&(u[p*s+d[p]]=i);return n.makeTensorInfo([...r.shape,s],"int32",u)}var gj={kernelName:ri,backendName:"cpu",kernelFunc:mj};function p0(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=Ki({inputs:{input:a},backend:n}),s=p0({inputs:{x:r},backend:n}),i=eu({inputs:{input:a},backend:n}),o=p0({inputs:{x:i},backend:n}),l=Kn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return ky({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var Aj={kernelName:kl,backendName:"cpu",kernelFunc:p0};function Dw(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=Ki({inputs:{input:a},backend:n}),s=Dw({inputs:{x:r},backend:n}),i=eu({inputs:{input:a},backend:n}),o=p0({inputs:{x:i},backend:n}),l=Kn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return ky({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var yj={kernelName:sl,backendName:"cpu",kernelFunc:Dw};function Pw(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return d0({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{w.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let p=d0({inputs:{input:d},backend:n,attrs:{dim:r}});return o.push(p),p}),u=tu({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var xj={kernelName:il,backendName:"cpu",kernelFunc:Pw};function bj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;we(r,"pad");let o=s.map((A,y)=>A[0]+r.shape[y]+A[1]),l=s.map(A=>A[0]),u=n.data.get(r.dataId).values,d=w.sizeFromShape(r.shape),p=r.shape.length,c=w.computeStrides(r.shape),h=w.sizeFromShape(o),m=o.length,f=w.computeStrides(o),g=w.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let A=0;A<d;A++){let y=w.indexToLoc(A,p,c).map((v,b)=>v+l[b]),x=w.locToIndex(y,m,f);g[x]=u[A]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var Lw={kernelName:si,backendName:"cpu",kernelFunc:bj},vj=Lt((e,t)=>Math.pow(e,t)),wj=tn(ii,vj),kj={kernelName:ii,backendName:"cpu",kernelFunc:wj};function Ij(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=my(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var Sj={kernelName:Gu,backendName:"cpu",kernelFunc:Ij},Tj=it(ll,e=>1/e),Nj={kernelName:ll,backendName:"cpu",kernelFunc:Tj};function Cj(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;we(r,"resizeBilinear");let l=w.computeStrides(r.shape),[u,d]=o,[p,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(w.sizeFromShape([p,u,d,m])),A=[s&&u>1?c-1:c,s&&d>1?h-1:h],y=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=0,v=A[0]/y[0],b=A[1]/y[1];for(let k=0;k<p;k++)for(let N=0;N<u;N++){let C;i?C=v*(N+.5)-.5:C=v*N;let E=Math.max(0,Math.floor(C)),z=C-E,F=Math.min(c-1,Math.ceil(C)),I=k*l[0]+E*l[1],_=k*l[0]+F*l[1];for(let D=0;D<d;D++){let V;i?V=b*(D+.5)-.5:V=b*D;let q=Math.max(0,Math.floor(V)),G=V-q,Q=Math.min(h-1,Math.ceil(V)),J=I+q*l[2],ne=_+q*l[2],ee=I+Q*l[2],ie=_+Q*l[2];for(let Z=0;Z<m;Z++){let le=f[J+Z],oe=f[ne+Z],ye=f[ee+Z],ge=f[ie+Z],Se=le+(ye-le)*G,Te=oe+(ge-oe)*G,$e=Se+(Te-Se)*z;g[x++]=$e}}}return n.makeTensorInfo([p,u,d,m],"float32",g)}var Ej={kernelName:ui,backendName:"cpu",kernelFunc:Cj};function Rj(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;we([s,r],"resizeBilinearGrad");let o=w.computeStrides(r.shape),[l,u,d,p]=r.shape,[,c,h]=s.shape,m=new Float32Array(l*u*d*p),f=[i&&c>1?u-1:u,i&&h>1?d-1:d],g=[i&&c>1?c-1:c,i&&h>1?h-1:h],A=f[0]/g[0],y=f[1]/g[1],x=n.data.get(s.dataId).values,v=0;for(let b=0;b<l;b++){let k=b*o[0];for(let N=0;N<c;N++){let C=N*A,E=Math.floor(C),z=Math.min(Math.ceil(C),u-1),F=k+E*o[1],I=k+z*o[1],_=C-E,D=1-_;for(let V=0;V<h;V++){let q=V*y,G=Math.floor(q),Q=Math.min(Math.ceil(q),d-1),J=q-G,ne=1-J,ee=F+G*o[2],ie=F+Q*o[2],Z=I+G*o[2],le=I+Q*o[2],oe=D*ne,ye=D*J,ge=_*ne,Se=_*J;for(let Te=0;Te<p;Te++){let $e=x[v++];m[ee+Te]+=$e*oe,m[ie+Te]+=$e*ye,m[Z+Te]+=$e*ge,m[le+Te]+=$e*Se}}}}return n.makeTensorInfo([l,d,u,p],"float32",m)}var Mj={kernelName:vc,backendName:"cpu",kernelFunc:Rj};function Fj(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;we(r,"resizeNearestNeighbor");let l=w.computeStrides(r.shape),[u,d]=o,[p,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(p*u*d*m),A=[s&&u>1?c-1:c,s&&d>1?h-1:h],y=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=A[0]/y[0],v=A[1]/y[1],b=0;for(let k=0;k<p;k++){let N=k*l[0];for(let C=0;C<u;C++){let E=i?x*(C+.5):x*C,z=Math.min(c-1,s?Math.round(E):Math.floor(E));i&&(z=Math.max(0,z));let F=N+z*l[1];for(let I=0;I<d;I++){let _=i?v*(I+.5):v*I,D=Math.min(h-1,s?Math.round(_):Math.floor(_));i&&(D=Math.max(0,D));let V=F+D*l[2];for(let q=0;q<m;q++){let G=f[V+q];g[b++]=G}}}}return n.makeTensorInfo([p,u,d,m],r.dtype,g)}var $j={kernelName:qu,backendName:"cpu",kernelFunc:Fj};function Oj(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;we([s,r],"resizeNearestNeighborGrad");let o=w.computeStrides(r.shape),l=w.computeStrides(s.shape),[u,d,p,c]=r.shape,[,h,m]=s.shape,f=new Float32Array(u*d*p*c),g=n.data.get(s.dataId).values,A=[i&&h>1?d-1:d,i&&m>1?p-1:p],y=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=A[0]/y[0],v=A[1]/y[1],b=1/x,k=1/v,N=Math.ceil(b)*2+2,C=Math.ceil(k)*2+2;for(let E=0;E<u;E++){let z=E*o[0];for(let F=0;F<d;F++){let I=z+F*o[1],_=Math.floor(F*b),D=Math.floor(_-N/2);for(let V=0;V<p;V++){let q=I+V*o[2],G=Math.floor(V*k),Q=Math.floor(G-C/2);for(let J=0;J<c;J++){let ne=0;for(let ee=0;ee<N;ee++){let ie=ee+D;if(ie<0||ie>=h)continue;let Z=z+ie*l[1],le=ie*x,oe=Math.min(d-1,i?Math.round(le):Math.floor(le));if(F===oe)for(let ye=0;ye<C;ye++){let ge=ye+Q;if(ge<0||ge>=m)continue;let Se=Z+ge*l[2],Te=ge*v,$e=Math.min(p-1,i?Math.round(Te):Math.floor(Te));V===$e&&(ne+=g[Se+J])}}f[q+J]=ne}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var zj={kernelName:bc,backendName:"cpu",kernelFunc:Oj};function _j(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;we(r,"reverse");let i=r.shape.length,o=w.parseAxisParam(s,r.shape);if(i===0)return ur({inputs:{x:r},backend:n});let l=new Ut(r.shape,r.dtype),u=n.bufferSync(r);for(let d=0;d<l.size;d++){let p=l.indexToLoc(d),c=p.slice();o.forEach(h=>c[h]=r.shape[h]-1-c[h]),l.set(u.get(...c),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var Dj={kernelName:pi,backendName:"cpu",kernelFunc:_j},Pj={kernelName:Il,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=w.getTypedArrayFromDType(a.dtype,w.sizeFromShape(a.shape)),[u,d,p,c]=a.shape,[h,m]=R.getImageCenter(i,d,p),f=255,g=Math.sin(r),A=Math.cos(r),y=o.data.get(a.dataId).values;for(let x=0;x<u;x++){let v=x*p*d*c;for(let b=0;b<d;b++){let k=b*(p*c);for(let N=0;N<p;N++){let C=N*c;for(let E=0;E<c;E++){let z=[u,b,N,E],F=z[2],I=z[1],_=(F-h)*A-(I-m)*g,D=(F-h)*g+(I-m)*A;_=Math.round(_+h),D=Math.round(D+m);let V=s;if(typeof s!="number"&&(E===3?V=f:V=s[E]),_>=0&&_<p&&D>=0&&D<d){let G=D*(p*c),Q=_*c,J=v+G+Q+E;V=y[J]}let q=v+k+C+E;l[q]=V}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},Lj=it(ci,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),Wj={kernelName:ci,backendName:"cpu",kernelFunc:Lj};function Ww(e,t,n,a,r,s,i,o,l,u){let d=[a/r,r],p=e.values,c=t.values;if(a===0)return Be(n,t.dtype);let h=Be(d,t.dtype);h.values.fill(l);for(let m=0;m<s;m++){let f=[],g=0;for(let A=0;A<i;A++){let y=p[m*i+A];f.push(y),g+=y*o[A]}if(g<0||g>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let A=0;A<r;A++)u?h.values[g*r+A]+=c[m*r+A]:h.values[g*r+A]=t.rank===0?c[0]:c[m*r+A]}return h}function Bj(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:p}=R.calculateShapes(s,r,i),c=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=Ww(h,m,i,p,u,l,o,d,0,c);return n.makeTensorInfo(i,f.dtype,f.values)}var Vj={kernelName:dl,backendName:"cpu",kernelFunc:Bj};function Uj(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;we([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,d=Sa(r.dtype,s.dtype),p=w.makeZerosTypedArray(w.sizeFromShape(r.shape),d),c=0,h=i===0||i>1||r.shape.length===1?1:w.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?p[c++]=l[m]:p[c++]=u[m];return n.makeTensorInfo(r.shape,d,p)}var Hj={kernelName:pl,backendName:"cpu",kernelFunc:Uj},jj=R.SELU_SCALEALPHA,Gj=R.SELU_SCALE,qj=it(cl,e=>e>=0?Gj*e:jj*(Math.exp(e)-1)),Xj={kernelName:cl,backendName:"cpu",kernelFunc:qj},Kj=it(ml,e=>e<0?-1:e>0?1:0),Zj={kernelName:ml,backendName:"cpu",kernelFunc:Kj},Yj=it(fi,e=>Math.sin(e)),Jj={kernelName:fi,backendName:"cpu",kernelFunc:Yj},Qj=it(fl,e=>Math.sinh(e)),eG={kernelName:fl,backendName:"cpu",kernelFunc:Qj},tG=11920928955078125e-23,Bw=Math.log(tG)+2,nG=it(gl,e=>{let t=e>-Bw,n=e<Bw,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),aG={kernelName:gl,backendName:"cpu",kernelFunc:nG};function rG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;we([r],"spaceToBatchND");let o=w.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=Lw.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=R.getReshaped(u.shape,s,o,!1),p=R.getPermuted(d.length,s.length,!1),c=R.getReshapedPermuted(u.shape,s,o,!1),h=xt({inputs:{x:u},backend:n,attrs:{shape:d}}),m=ma({inputs:{x:h},backend:n,attrs:{perm:p}}),f=xt({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var sG={kernelName:Al,backendName:"cpu",kernelFunc:rG};function iG(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values[0],[p,c,h,m,f]=cw(o,a.shape,a.dtype,l,r.dtype,u,d);return[n.makeTensorInfo(c,a.dtype,p),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var oG={kernelName:wc,backendName:"cpu",kernelFunc:iG};function lG(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,l=Array.from(n.data.get(s.dataId).values),[u,d,p]=hw(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(d,a.dtype,u),n.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var uG={kernelName:kc,backendName:"cpu",kernelFunc:lG};function dG(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,d]=gy(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(d,a.dtype,u)}var pG={kernelName:Ic,backendName:"cpu",kernelFunc:dG};function cG(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,d]=gy(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(d,a.dtype,u)}var hG={kernelName:Sc,backendName:"cpu",kernelFunc:cG};function fG(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:d,strides:p,outputSize:c}=R.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f=n.bufferSync(s),g=n.data.get(i.dataId).values[0],A=Ww(m,f,o,c,d,u,l,p,g,h);return n.makeTensorInfo(o,A.dtype,A.values)}var mG={kernelName:Tc,backendName:"cpu",kernelFunc:fG};function gG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=w.parseAxisParam(i,r.shape)[0],l=R.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),d=r.shape.slice();return l.map(p=>{let c=[...d];c[o]=p;let h=Zi({inputs:{x:r},backend:n,attrs:{begin:u,size:c}});return u[o]+=p,h})}var AG={kernelName:yl,backendName:"cpu",kernelFunc:gG},yG={kernelName:Xu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;we(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},xG=it(jr,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),bG={kernelName:jr,backendName:"cpu",kernelFunc:xG};function vG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:p,shrinkAxisMask:c}=a;we(r,"stridedSlice");let{nonStrided:h,$begin:m,$strides:f,size:g,newShape:A,outShape:y}=yn.sliceInfo(r.shape,s,i,o,l,u,d,p,c),x=xt({inputs:{x:r},backend:n,attrs:{shape:A}}),v;if(h){let k=Zi({inputs:{x},backend:n,attrs:{begin:m,size:g}});v=xt({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))v=n.makeTensorInfo(y,r.dtype,[]);else{let k=n.bufferSync(x),N=mw(y,k,f,m);v=n.makeTensorInfo(N.shape,N.dtype,N.values)}let b=xt({inputs:{x:v},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),b}var wG={kernelName:xl,backendName:"cpu",kernelFunc:vG};function kG(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:d,dataSplits:p}=t,c=n.data.get(d.dataId).values,h=n.data.get(p.dataId).values,[m,f]=gw(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(p.shape,"int32",f)]}var IG={kernelName:Nc,backendName:"cpu",kernelFunc:kG};function SG(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values[0],[u,d,p]=Aw(o,l,r),c=d.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",d),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var TG={kernelName:Cc,backendName:"cpu",kernelFunc:SG};function NG(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.data.get(s.dataId).values,o=yw(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var CG={kernelName:Ec,backendName:"cpu",kernelFunc:NG},EG=it(vi,e=>Math.tan(e)),RG={kernelName:vi,backendName:"cpu",kernelFunc:EG},MG=it(wi,e=>Math.tanh(e)),FG={kernelName:wi,backendName:"cpu",kernelFunc:MG};function $G(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;we(r,"tile");let i=bw(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var OG={kernelName:Hr,backendName:"cpu",kernelFunc:$G};function zG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;we(r,"topk");let o=n.data.get(r.dataId).values,[l,u]=ww(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var _G={kernelName:bl,backendName:"cpu",kernelFunc:zG};function DG(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[d,p,c,h]=r.shape,[m,f]=u!=null?u:[p,c],g=[d,m,f,h],A=w.computeStrides(r.shape),y=A[0],x=A[1],v=A[2],b=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(g));b.fill(l);let k=a.data.get(r.dataId).values,N=a.data.get(s.dataId).values;for(let C=0;C<d;++C){let E=s.shape[0]===1?N:N.subarray(C*8,C*8+8);for(let z=0;z<m;++z)for(let F=0;F<f;++F)for(let I=0;I<h;++I){let _,D=E[6]*F+E[7]*z+1;if(D===0)continue;let V=(E[0]*F+E[1]*z+E[2])/D,q=(E[3]*F+E[4]*z+E[5])/D,G=Vw(V,c,o),Q=Vw(q,p,o);switch(i){case"nearest":_=UG(k,p,c,y,x,v,C,Q,G,I,l);break;case"bilinear":_=HG(k,p,c,y,x,v,C,Q,G,I,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let J=C*y+z*x+F*v+I;b[J]=_}return a.makeTensorInfo(g,r.dtype,b)}return{dataId:a.write(b,g,r.dtype),shape:r.shape,dtype:r.dtype}}var PG={kernelName:vl,backendName:"cpu",kernelFunc:DG};function Vw(e,t,n){switch(n){case"reflect":return LG(e,t);case"wrap":return WG(e,t);case"nearest":return VG(e,t);case"constant":default:return BG(e,t)}}function LG(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return w.clamp(0,n,t-1)}function WG(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return w.clamp(0,n,t-1)}function BG(e,t){return e}function VG(e,t){return w.clamp(0,e,t-1)}function jd(e,t,n,a,r,s,i,o,l,u,d){let p=i*a+o*r+l*s+u;return 0<=o&&o<t&&0<=l&&l<n?e[p]:d}function UG(e,t,n,a,r,s,i,o,l,u,d){let p=Math.round(o),c=Math.round(l);return jd(e,t,n,a,r,s,i,p,c,u,d)}function HG(e,t,n,a,r,s,i,o,l,u,d){let p=Math.floor(o),c=Math.floor(l),h=p+1,m=c+1,f=(m-l)*jd(e,t,n,a,r,s,i,p,c,u,d)+(l-c)*jd(e,t,n,a,r,s,i,p,m,u,d),g=(m-l)*jd(e,t,n,a,r,s,i,h,c,u,d)+(l-c)*jd(e,t,n,a,r,s,i,h,m,u,d);return(h-o)*f+(o-p)*g}function jG(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;we(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=kw(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var GG={kernelName:Rc,backendName:"cpu",kernelFunc:jG};function qG(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==s&&(l[u++]=r.shape[h]);let d=new Array(i).fill(0),p=r.shape.slice();p[s]=1;let c=new Array(o);for(let h=0;h<c.length;h++){d[s]=h;let m=Zi({inputs:{x:r},backend:n,attrs:{begin:d,size:p}});c[h]=xt({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return c}var XG={kernelName:wl,backendName:"cpu",kernelFunc:qG};function KG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;we(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,u=[],d=[],p=o-l,c=s;for(let m=0;m<p;++m){let f=d0({inputs:{input:c},backend:n,attrs:{dim:m+1}});c=f,d.push(f)}for(let m=0;m<i;++m){let f=w.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),A=j7({inputs:{a:g,b:c},backend:n}),y=ds({inputs:{x:A},backend:n,attrs:{dtype:"float32"}}),x=l0({inputs:{a:y,b:r},backend:n}),v=Hd({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(v),d.push(g),d.push(A),d.push(y),d.push(x),d.push(v)}let h=Pw({inputs:u,backend:n,attrs:{axis:0}});return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var ZG={kernelName:Ku,backendName:"cpu",kernelFunc:KG},YG=[rV,ZW,iV,lV,nB,dV,cV,fV,gV,yV,bV,wV,IV,NV,EV,FV,OV,_V,PV,nV,WV,VV,HV,GV,eB,rB,XV,YW,ZV,JV,tU,aU,QV,oU,uU,sU,pU,hU,mU,AU,xU,vU,wU,IU,TU,CU,EU,MU,RU,vy,OU,KB,_U,sB,HU,iB,jU,lB,YU,JU,eH,dB,aH,sH,oH,uH,pH,cB,fB,JW,hH,YV,mH,AH,xH,ZB,gB,yB,vH,bB,kH,TH,CH,MH,$H,zH,wB,PH,WH,VH,HH,GH,_H,XH,ZH,IB,JH,tj,sj,TB,CB,lj,pj,fj,RB,gj,yj,xj,Lw,kj,JB,$B,Sj,QW,Nj,QB,eV,tV,Ej,Mj,$j,zj,Dj,Pj,Wj,zB,Vj,Hj,Xj,DB,Zj,Jj,eG,PB,aj,aG,sG,oG,uG,pG,hG,mG,AG,BB,yG,UB,bG,wG,IG,TG,CG,qB,FU,RG,FG,OG,_G,MB,PG,GG,XG,ZG,Aj];for(let e of YG)Ni(e);var Uw={};_e(Uw,{assertNotComplex:()=>au,bindCanvasToFramebuffer:()=>uq,bindColorTextureToFramebuffer:()=>m0,bindTextureToProgramUniformSampler:()=>r6,bindTextureUnit:()=>t6,bindVertexBufferToProgramAttribute:()=>Ty,callAndCheck:()=>xe,canBeRepresented:()=>Hw,createFragmentShader:()=>qw,createFramebuffer:()=>e6,createProgram:()=>Xw,createStaticIndexBuffer:()=>Yw,createStaticVertexBuffer:()=>Zw,createTexture:()=>Jw,createVertexShader:()=>Gw,getBatchDim:()=>Ji,getExtensionOrThrow:()=>Xd,getFramebufferErrorMessage:()=>s6,getMaxTexturesInShader:()=>u6,getNumChannels:()=>oq,getProgramUniformLocation:()=>a6,getProgramUniformLocationOrThrow:()=>n6,getRowsCols:()=>Qi,getShapeAs3D:()=>g0,getTextureShapeFromLogicalShape:()=>o6,getWebGLDisjointQueryTimerVersion:()=>d6,getWebGLErrorMessage:()=>jw,getWebGLMaxTextureSize:()=>l6,hasExtension:()=>Aa,isCapableOfRenderingToFloatTexture:()=>p6,isDownloadFloatTextureEnabled:()=>c6,isReshapeFree:()=>Zd,isWebGLFenceEnabled:()=>h6,isWebGLVersionEnabled:()=>Cy,linkProgram:()=>Kw,resetMaxTextureSize:()=>dq,resetMaxTexturesInShader:()=>pq,unbindColorTextureFromFramebuffer:()=>Ny,unbindTextureUnit:()=>lq,validateFramebuffer:()=>Kd,validateProgram:()=>f0,validateTextureSize:()=>Qw});var Yi={},Iy={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function c0(e,t){Yi[e]=t}function dr(e){if(!(e in Yi)){let n=QG(e);if(n!==null)Yi[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Yi[e];return t.isContextLost()?(delete Yi[e],dr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Yi[e])}function JG(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function QG(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=JG(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Yi[e]},!1),e===1?t.getContext("webgl",Iy)||t.getContext("experimental-webgl",Iy):t.getContext("webgl2",Iy)}var Gd;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Gd||(Gd={}));var ga;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(ga||(ga={}));var on;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(on||(on={}));function qd(e,t){return[t,e]}function eq(e,t){return e*t}function h0(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function nu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function tq(e,t){let[n,a]=nu(e,t);return n*a*4}function Sy(e,t){let n=e,a,r,s,i,o,l,u,d,p,c;return te().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,d=1,p=n.HALF_FLOAT,c=n.FLOAT):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,d=4,p=t!=null?t.HALF_FLOAT_OES:null,c=e.FLOAT),l=e.RGBA,{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:d,textureTypeHalfFloat:p,textureTypeFloat:c}}function xe(e,t){let n=t();return te().getBool("DEBUG")&&nq(e),n}function nq(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+jw(e,t))}var aq=596e-10,rq=65504;function Hw(e){return!!(te().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||aq<Math.abs(e)&&Math.abs(e)<rq)}function jw(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Xd(e,t){return Rr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Gw(e,t){let n=Rr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function qw(e,t){let n=Rr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw iq(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var sq=/ERROR: [0-9]+:([0-9]+):/g;function iq(e,t){let n=sq.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
|
|
`),s=r.length.toString().length+2,i=r.map((p,c)=>w.rightPad((c+1).toString(),s)+p),o=0;for(let p=0;p<i.length;p++)o=Math.max(i[p].length,o);let l=i.slice(0,a-1),u=i.slice(a-1,a),d=i.slice(a);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${w.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(d.join(`
|
|
`))}function Xw(e){return Rr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function Kw(e,t){if(xe(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function f0(e,t){if(xe(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function Zw(e,t){let n=Rr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Yw(e,t){let n=Rr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function oq(){return te().getNumber("WEBGL_VERSION")===2?1:4}function Jw(e){return Rr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function Qw(e,t){let n=te().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function e6(e){return Rr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Ty(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),xe(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),xe(e,()=>e.enableVertexAttribArray(o)),!0)}function t6(e,t,n){i6(e,n),xe(e,()=>e.activeTexture(e.TEXTURE0+n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function lq(e,t){i6(e,t),xe(e,()=>e.activeTexture(e.TEXTURE0+t)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function n6(e,t,n){return Rr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function a6(e,t,n){return e.getUniformLocation(t,n)}function r6(e,t,n,a){xe(e,()=>t6(e,t,a)),xe(e,()=>e.uniform1i(n,a))}function uq(e){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),xe(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function m0(e,t,n){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function Ny(e,t){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Kd(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+s6(e,t))}function s6(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Rr(e,t,n){let a=xe(e,()=>t());if(a==null)throw new Error(n);return a}function i6(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function Ji(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function Qi(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function g0(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Ji(e),...Qi(e)]),t}function o6(e,t=!1){let n=te().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?w.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let a=w.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=Ji(e),s=2,i=2;return e.length&&([s,i]=Qi(e)),a=r*(s/2)*(i/2),w.sizeToSquarishShape(a).map(o=>o*2)}return w.sizeToSquarishShape(a)}function A0(e){return e%2==0}function Zd(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||A0(n)&&A0(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&A0(e[0])&&A0(t[0])}var y0,x0;function l6(e){if(y0==null){let t=dr(e);y0=t.getParameter(t.MAX_TEXTURE_SIZE)}return y0}function dq(){y0=null}function pq(){x0=null}function u6(e){if(x0==null){let t=dr(e);x0=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,x0)}function d6(e){if(e===0)return 0;let t,n=dr(e);return Aa(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Aa(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Aa(e,t){return e.getExtension(t)!=null}function Cy(e){try{if(dr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function p6(e){if(e===0)return!1;let t=dr(e);if(e===1){if(!Aa(t,"OES_texture_float"))return!1}else if(!Aa(t,"EXT_color_buffer_float"))return!1;return Ey(t)}function c6(e){if(e===0)return!1;let t=dr(e);if(e===1){if(!Aa(t,"OES_texture_float")||!Aa(t,"WEBGL_color_buffer_float"))return!1}else{if(Aa(t,"EXT_color_buffer_float"))return Ey(t);let n="EXT_color_buffer_half_float";if(Aa(t,n)){let a=t.getExtension(n);return cq(t,a)}return!1}return Ey(t)}function Ey(e){let t=Sy(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function cq(e,t){let n=Sy(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function h6(e){return e!==2?!1:dr(e).fenceSync!=null}function au(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ce=te();Ce.registerFlag("HAS_WEBGL",()=>Ce.getNumber("WEBGL_VERSION")>0);Ce.registerFlag("WEBGL_VERSION",()=>Cy(2)?2:Cy(1)?1:0);Ce.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ce.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ce.get("WEBGL_VERSION")===2);Ce.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ce.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ce.registerFlag("WEBGL_PACK",()=>Ce.getBool("HAS_WEBGL"));Ce.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_CLIP",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_REDUCE",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_CONV_IM2COL",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>l6(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>u6(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ce.getNumber("WEBGL_VERSION");return e===0?0:d6(e)});Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ce.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!sd.isMobile());Ce.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>p6(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ce.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ce.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ce.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>c6(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_FENCE_API_ENABLED",()=>h6(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ce.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ce.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ce.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>sd.isMobile()&&Ce.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Ce.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Ce.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Ce.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Ce.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function wn(){let e,t,n,a,r,s,i,o,l,u;return te().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function eo(e,t,n="index"){let a=w.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function b0(e,t,n="index"){let a=w.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / outShapeStrides[${s}]`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * outShapeStrides[${s}]`:`index -= ${e[s]} * outShapeStrides[${s}]`;return`${i}; ${o};`}).join("")}function hq(e,t){let n=e.length,a=e.map(s=>`${t}[${s}]`),r=new Array(n-1);r[n-2]=a[n-1];for(let s=n-3;s>=0;--s)r[s]=`(${r[s+1]} * ${a[s+1]})`;return r}function fq(e,t,n="index"){let a=e.map((s,i)=>i),r=hq(a,t);return r.map((s,i)=>{let o=`int ${e[i]} = ${n} / ${r[i]}`,l=i===r.length-1?`int ${e[i+1]} = ${n} - ${e[i]} * ${r[i]}`:`index -= ${e[i]} * ${r[i]}`;return`${o}; ${l};`}).join("")}function Ry(e){let t=w.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function My(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var f6=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:m6}=R;function mq(e,t,n){let a=[];if(e.forEach(c=>{let h=w.sizeFromShape(c.shapeInfo.logicalShape);if(c.shapeInfo.isUniform?a.push(`uniform float ${c.name}${h>1?`[${h}]`:""};`):(a.push(`uniform sampler2D ${c.name};`),a.push(`uniform int offset${c.name};`)),n.enableShapeUniforms){let{uniformShape:m}=Fy(n.packedInputs,c.shapeInfo.logicalShape,c.shapeInfo.texShape);switch(m.length){case 1:a.push(`uniform int ${c.name}Shape;`);break;case 2:a.push(`uniform ivec2 ${c.name}Shape;`);break;case 3:a.push(`uniform ivec3 ${c.name}Shape;`);break;case 4:a.push(`uniform ivec4 ${c.name}Shape;`);break;default:break}a.push(`uniform ivec2 ${c.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:a.push("uniform int outShape;");break;case 2:a.push("uniform ivec2 outShape;"),a.push("uniform int outShapeStrides;");break;case 3:a.push("uniform ivec3 outShape;"),a.push("uniform ivec2 outShapeStrides;");break;case 4:a.push("uniform ivec4 outShape;"),a.push("uniform ivec3 outShapeStrides;");break;default:break}a.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(c=>{a.push(`uniform ${c.type} ${c.name}${c.arrayIndex?`[${c.arrayIndex}]`:""};`)});let r=a.join(`
|
|
`),s=e.map(c=>gq(c,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),i=t.texShape,o=wn(),l=xq(o),u,d,p=wq(o);return t.isPacked?(u=Aq(t.logicalShape,i,n.enableShapeUniforms),d=vq(o)):(u=yq(t.logicalShape,i,n.enableShapeUniforms),d=bq(o)),n.packedInputs&&(p+=Tq),[p,l,d,r,u,s,n.userCode].join(`
|
|
`)}function ru(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return Pq(e,t);case 1:return Wq(e,t);case 2:return Vq(e,t);case 3:return Hq(e,t);case 4:return Gq(e,t);case 5:return qq(e);case 6:return Xq(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function g6(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return Dq(e);case 1:return Lq(e,t);case 2:return Bq(e,t);case 3:return Uq(e,t);default:return jq(e,t)}}function gq(e,t,n=!1,a){let r="";n?r+=g6(e,a):r+=ru(e,a);let s=e.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(n?r+=Kq(e,t):r+=Zq(e,t)),r}function Aq(e,t,n){switch(e.length){case 0:return A6();case 1:return Nq(e,t,n);case 2:return zq(e,t,n);case 3:return Eq(e,t,n);default:return Mq(e,t,n)}}function yq(e,t,n){switch(e.length){case 0:return A6();case 1:return Cq(e,t,n);case 2:return _q(e,t,n);case 3:return Rq(e,t,n);case 4:return Fq(e,t,n);case 5:return $q(e,t);case 6:return Oq(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function xq(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function bq(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function vq(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function wq(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${kq}
|
|
${Iq}
|
|
${Sq}
|
|
`}var kq=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Iq=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Sq=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Tq=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function A6(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function Nq(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return a[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${a[1]}.0);
|
|
}
|
|
`:a[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${a[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
return 2 * (resTexRC.x * ${a[1]} + resTexRC.y);
|
|
}
|
|
`}function Cq(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function Eq(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),s=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
int index = resTexRC.x * ${a[1]} + resTexRC.y;
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function Rq(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${b0(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let a=eo(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${a}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function Mq(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),s=r*Math.ceil(e[e.length-2]/2),i=s,o="",l="b, r, c";for(let u=2;u<e.length-1;u++)i*=e[e.length-u-1],o=`
|
|
int b${u} = index / ${i};
|
|
index -= b${u} * ${i};
|
|
`+o,l=`b${u}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
int index = resTexRC.x * ${a[1]} + resTexRC.y;
|
|
|
|
${o}
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function Fq(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${b0(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let a=eo(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${a}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function $q(e,t){let n=eo(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function Oq(e,t){let n=eo(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function zq(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${a[0]}, ${a[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
|
|
int index = resTexRC.x * ${a[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function _q(e,t,n){return w.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function to(e){return`offset${e}`}function Dq(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=wn();return`
|
|
vec4 ${n}() {
|
|
return ${a.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function Pq(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${a}() {return ${n};}`;let[r,s]=e.shapeInfo.texShape;if(r===1&&s===1)return`
|
|
float ${a}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=to(n);if(t)return`
|
|
float ${a}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[o,l]=e.shapeInfo.texShape;return`
|
|
float ${a}() {
|
|
vec2 uv = uvFromFlat(${o}, ${l}, ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Lq(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=wn();if(t)return`
|
|
vec4 ${a}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${s.texture2D}(${n}, uv);
|
|
}
|
|
`;let i=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${a}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${i[0]}, ${i[1]}, index);
|
|
return ${s.texture2D}(${n}, uv);
|
|
}
|
|
`}function Wq(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int index) {
|
|
${su(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,s=r[0],i=r[1];if(i===1&&s===1)return`
|
|
float ${a}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=to(n);return i===1?t?`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${s}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:s===1?t?`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${a}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int index) {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, index + ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Bq(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=s[0],o=s[1],l=wn();if(s!=null&&w.arraysEqual(n,s))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
|
|
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${a}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`;let u=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],d=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${d}, ${u[0]}, ${u[1]}, row, col);
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`}function Vq(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape;if(s!=null&&w.arraysEqual(n,s)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;let c=s[0],h=s[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}let{newShape:i,keptDims:o}=w.squeezeShape(n),l=i;if(l.length<n.length){let c=iu(e,l),h=["row","col"];return`
|
|
${ru(c,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${ou(h,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${su(e)}
|
|
}
|
|
`;let u=s[0],d=s[1],p=to(a);return d===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${a}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${a}TexShape[0]));
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${a}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${a}TexShape[1]), 0.5);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${d}.0, 0.5);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a}Shape[1] + col + ${p};
|
|
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${p};
|
|
vec2 uv = uvFromFlat(${u}, ${d}, index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function Uq(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(n[0]===1){let c=n.slice(1),h=[1,2],m=iu(e,c),f=["b","row","col"];return`
|
|
${g6(m,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${ou(f,h)});
|
|
}
|
|
`}let o=wn();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${a}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${a}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${o.texture2D}(${a}, uv);
|
|
}
|
|
`;let l=i[0],u=i[1],d=Math.ceil(n[2]/2),p=d*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${u}, ${p}, ${d}, b, row, col);
|
|
return ${o.texture2D}(${a}, uv);
|
|
}
|
|
`}function Hq(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[1]*n[2],i=n[2],{newShape:o,keptDims:l}=w.squeezeShape(n),u=o;if(u.length<n.length){let f=iu(e,u),g=["row","col","depth"];return`
|
|
${ru(f,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${ou(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${s}, ${i}, 1)));
|
|
${su(e)}
|
|
}
|
|
`;let d=e.shapeInfo.texShape,p=d[0],c=d[1],h=e.shapeInfo.flatOffset;if(c===s&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${a}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${i}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;if(c===i&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${a}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;let m=to(a);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${a}Shape[1] * ${a}Shape[2];
|
|
int stride1 = ${a}Shape[2];
|
|
int index = row * ${s} + col * ${i} + depth + ${m};
|
|
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s} + col * ${i} + depth + ${m};
|
|
vec2 uv = uvFromFlat(${p}, ${c}, index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function jq(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=wn();if(t)return`
|
|
vec4 ${a}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let s=e.shapeInfo.logicalShape,i=s.length,o=e.shapeInfo.texShape,l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=l[0],d=l[1],p=Math.ceil(s[i-1]/2),c=p*Math.ceil(s[i-2]/2),h="int b, int row, int col",m=`b * ${c} + (row / 2) * ${p} + (col / 2)`;for(let f=2;f<i-1;f++)h=`int b${f}, `+h,c*=s[i-f-1],m=`b${f} * ${c} + `+m;return`
|
|
vec4 ${a}(${h}) {
|
|
int index = ${m};
|
|
int texR = index / ${d};
|
|
int texC = index - texR * ${d};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${d}, ${u});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function Gq(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[3],i=n[2]*s,o=n[1]*i,{newShape:l,keptDims:u}=w.squeezeShape(n);if(l.length<n.length){let y=iu(e,l),x=["row","col","depth","depth2"];return`
|
|
${ru(y,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${ou(x,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, 1)));
|
|
${su(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,c=p[0],h=p[1],m=`int stride2 = ${a}Shape[3];`,f=`int stride1 = ${a}Shape[2] * stride2;`,g=`int stride0 = ${a}Shape[1] * stride1;`;if(h===o&&d==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${m}
|
|
${f}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${i}, ${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;if(h===s&&d==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${a}Shape[1] * ${a}Shape[2], ${a}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;let A=to(a);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${m}
|
|
${f}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index + ${A});
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} +
|
|
depth * ${s} + depth2;
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index + ${A});
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function qq(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=w.squeezeShape(t);if(l.length<t.length){let f=iu(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${ru(f)}
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${a}(${ou(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${r})) +
|
|
depth3;
|
|
${su(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,c=p[0],h=p[1];if(h===o&&d==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&d==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=to(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${r} + depth3 + ${m};
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Xq(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=w.squeezeShape(t);if(r.length<t.length){let g=iu(e,r),A=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${ru(g)}
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${a}(${ou(A,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,d=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${d}, ${u}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${su(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],m=c[1];if(m===d&&p==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(m===i&&p==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=to(n);return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${d} + col * ${u} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
|
|
vec2 uv = uvFromFlat(${h}, ${m}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function su(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function Kq(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=m6(e.shapeInfo.logicalShape,t.logicalShape),l=pt(i),u=i-s,d,p=["x","y","z","w","u","v"];s===0?d="":i<2&&o.length>=1?d="coords = 0;":d=o.map(g=>`coords.${p[g+u]} = 0;`).join(`
|
|
`);let c="";i<2&&s>0?c="coords":c=e.shapeInfo.logicalShape.map((g,A)=>`coords.${p[A+u]}`).join(", ");let h="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,f=w.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!f)i===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let g=s-2,A=s-1;o.indexOf(g)>-1&&o.indexOf(A)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(A)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${d}
|
|
vec4 outputValue = get${a}(${c});
|
|
${h}
|
|
}
|
|
`}function Zq(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&w.arraysEqual(i,s))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=pt(l),d=m6(e.shapeInfo.logicalShape,t.logicalShape),p=l-o,c,h=["x","y","z","w","u","v"];o===0?c="":l<2&&d.length>=1?c="coords = 0;":c=d.map(f=>`coords.${h[f+p]} = 0;`).join(`
|
|
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+p]}`).join(", "),`
|
|
float ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${c}
|
|
return get${a}(${m});
|
|
}
|
|
`}function pt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Fy(e,t,n){let{newShape:a,keptDims:r}=w.squeezeShape(t),s=t.length,i=e&&s===3&&t[0]===1,o=i?t.slice(1):a,l=!e&&s>1&&!w.arraysEqual(t,n)&&a.length<s||i;return{useSqueezeShape:l,uniformShape:l?o:t,keptDims:r}}function iu(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function ou(e,t){return t.map(n=>e[n]).join(", ")}function Yq(e,t,n,a){let r=n.map((x,v)=>{let b={logicalShape:x.shape,texShape:x.isUniform?null:x.texData.texShape,isUniform:x.isUniform,isPacked:x.isUniform?!1:x.texData.isPacked,flatOffset:null};return x.texData!=null&&x.texData.slice!=null&&x.texData.slice.flatOffset>0&&(b.flatOffset=x.texData.slice.flatOffset),{name:t.variableNames[v],shapeInfo:b}}),s=r.map(x=>x.shapeInfo),i={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},o=mq(r,i,t),l=e.createProgram(o),u=null,d=e.getUniformLocation(l,"NAN",!1);te().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(l,"INFINITY",!1));let p=!1,c={},h={},m={};for(let x=0;x<t.variableNames.length;x++){let v=t.variableNames[x];c[v]=e.getUniformLocation(l,v,p),c[`offset${v}`]=e.getUniformLocation(l,`offset${v}`,p),t.enableShapeUniforms&&(h[`${v}Shape`]=e.getUniformLocation(l,`${v}Shape`,p),m[`${v}TexShape`]=e.getUniformLocation(l,`${v}TexShape`,p))}let f,g,A;t.enableShapeUniforms&&(f=e.getUniformLocation(l,"outShape",p),A=e.getUniformLocation(l,"outShapeStrides",p),g=e.getUniformLocation(l,"outTexShape",p));let y=[];return t.customUniforms&&t.customUniforms.forEach((x,v)=>{y[v]=e.getUniformLocation(l,x.name,p)}),{program:t,source:o,webGLProgram:l,uniformLocations:c,customUniformLocations:y,inShapeInfos:s,outShapeInfo:i,infLoc:u,nanLoc:d,inShapesLocations:h,inTexShapesLocations:m,outShapeLocation:f,outShapeStridesLocation:A,outTexShapeLocation:g}}function y6(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!w.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!w.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function Jq(e,t,n,a,r){t.program.enableShapeUniforms||(y6(t.inShapeInfos,n),y6([t.outShapeInfo],[a]));let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),te().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let d=t.program.variableNames[u],p=t.uniformLocations[d],c=t.uniformLocations[`offset${d}`],h=t.inShapesLocations[`${d}Shape`],m=t.inTexShapesLocations[`${d}TexShape`];if(h){let{uniformShape:f}=Fy(t.program.packedInputs,l.shape,l.texData.texShape);switch(f.length){case 1:e.gl.uniform1iv(h,new Int32Array(f));break;case 2:e.gl.uniform2iv(h,new Int32Array(f));break;case 3:e.gl.uniform3iv(h,new Int32Array(f));break;case 4:e.gl.uniform4iv(h,new Int32Array(f));break;default:break}}if(m&&e.gl.uniform2i(m,l.texData.texShape[0],l.texData.texShape[1]),p!=null){if(l.isUniform){if(w.sizeFromShape(l.shape)<2)e.gl.uniform1f(p,l.uniformValues[0]);else{let f=l.uniformValues;f instanceof Float32Array||(f=new Float32Array(f)),e.gl.uniform1fv(p,f)}return}l.texData.slice!=null&&c!=null&&e.gl.uniform1i(c,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture,p,u)}});let o=t.outShapeLocation;if(o)switch(a.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(a.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(a.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(a.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(a.shape));break;default:break}if(t.outShapeStridesLocation){let l=w.computeStrides(a.shape);switch(a.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,a.texData.texShape[0],a.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let d=t.customUniformLocations[u],p=r[u];if(l.type==="float")e.gl.uniform1fv(d,p);else if(l.type==="vec2")e.gl.uniform2fv(d,p);else if(l.type==="vec3")e.gl.uniform3fv(d,p);else if(l.type==="vec4")e.gl.uniform4fv(d,p);else if(l.type==="int")e.gl.uniform1iv(d,p);else if(l.type==="ivec2")e.gl.uniform2iv(d,p);else if(l.type==="ivec3")e.gl.uniform3iv(d,p);else if(l.type==="ivec4")e.gl.uniform4iv(d,p);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function Qq(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let l=i.texData.texShape,{useSqueezeShape:u,uniformShape:d,keptDims:p}=Fy(e.packedInputs,i.shape,l),c="",h="",m="";if(d.length===1&&e.packedInputs){let b=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];c=`${b[0]>1}_${b[1]>1}`}else if(d.length===2&&!e.packedInputs)h=`${d[0]>1}_${d[1]>1}`;else if(d.length>2&&!e.packedInputs){let b=w.computeStrides(d);m=`${b[0]===l[1]}_${b[b.length-1]===l[1]}`}let f=i.shape.length,g=d.length===2&&w.arraysEqual(i.shape,l),A=w.sizeFromShape(i.shape)===1,y=R.getBroadcastDims(i.shape,n.shape),x=!e.packedInputs&&f===n.shape.length&&w.arraysEqual(l,n.texData.texShape),v=e.packedInputs||d.length>2?"":`${l[0]>1}_${l[1]>1}`;a+=`${f}_${x}_${u?p:""}_${d.length}_${A}_${y}_${g}_${c}_${h}_${m}_${v}_${o}`}else{let l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`}});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r+`${te().getNumber("WEBGL_VERSION")}`,s}function ya(e){return te().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var eX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Gd.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=wn();this.outputShape=e,this.enableShapeUniforms=ya(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?b0(["r","c","d"],e):eo(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},tX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Gd.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=wn();this.outputShape=e,this.enableShapeUniforms=ya(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?b0(["r","c","d"],e):eo(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},nX=class{constructor(e){this.variableNames=["A"],this.outTexUsage=ga.DOWNLOAD;let t=wn();this.outputShape=e,this.userCode=`
|
|
${f6}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},aX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=ga.DOWNLOAD;let t=wn();this.outputShape=e,this.userCode=`
|
|
${f6}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},rX=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=wn();this.outputShape=e,this.enableShapeUniforms=ya(this.outputShape.length);let a="result";t&&(a="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?My():Ry(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${a}, 0., 0., 0.);
|
|
}
|
|
`}},sX=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=wn();this.outputShape=e,this.enableShapeUniforms=ya(this.outputShape.length);let a="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=s*2+i;a+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${i};
|
|
if (localCoords[1] + ${s} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${s};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${o}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${o}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${o}] = values[2];
|
|
} else {
|
|
result[${o}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?My():Ry(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${a}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},x6={};_e(x6,{bindVertexProgramAttributeStreams:()=>C6,createBufferFromOutputTexture:()=>M6,createFloat16MatrixTexture:()=>I6,createFloat16PackedMatrixTexture:()=>N6,createFloat32MatrixTexture:()=>k6,createIndexBuffer:()=>w6,createPackedMatrixTexture:()=>T6,createUnsignedBytesMatrixTexture:()=>S6,createVertexBuffer:()=>v6,createVertexShader:()=>b6,downloadByteEncodedFloatMatrixFromOutputTexture:()=>$6,downloadFloat32MatrixFromBuffer:()=>F6,downloadMatrixFromPackedOutputTexture:()=>z6,downloadPackedMatrixFromBuffer:()=>O6,getInternalFormatForFloat16MatrixTexture:()=>Oy,getInternalFormatForFloat16PackedMatrixTexture:()=>Dy,getInternalFormatForFloat32MatrixTexture:()=>$y,getInternalFormatForPackedMatrixTexture:()=>_y,getInternalFormatForUnsignedBytesMatrixTexture:()=>zy,uploadDenseMatrixToTexture:()=>E6,uploadPixelDataToTexture:()=>R6});function b6(e){let t=wn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return Gw(e,n)}function v6(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return Zw(e,t)}function w6(e){let t=new Uint16Array([0,1,2,2,1,3]);return Yw(e,t)}function Yd(e,t,n,a,r,s){Qw(t,n);let i=Jw(e),o=e.TEXTURE_2D;return xe(e,()=>e.bindTexture(o,i)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),xe(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function $y(e){return e.internalFormatFloat}function k6(e,t,n,a){let[r,s]=qd(t,n);return Yd(e,r,s,$y(a),a.textureFormatFloat,e.FLOAT)}function Oy(e){return e.internalFormatHalfFloat}function I6(e,t,n,a){let[r,s]=qd(t,n);return Yd(e,r,s,Oy(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function zy(e){return e.downloadTextureFormat}function S6(e,t,n,a){let[r,s]=qd(t,n);return Yd(e,r,s,zy(a),e.RGBA,e.UNSIGNED_BYTE)}function _y(e){return e.internalFormatPackedFloat}function T6(e,t,n,a){let[r,s]=nu(t,n);return Yd(e,r,s,_y(a),e.RGBA,e.FLOAT)}function Dy(e){return e.internalFormatPackedHalfFloat}function N6(e,t,n,a){let[r,s]=nu(t,n);return Yd(e,r,s,Dy(a),e.RGBA,a.textureTypeHalfFloat)}function C6(e,t,n){let a=0,r=3*4,s=3*4+2*4;return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ty(e,t,"clipSpacePos",n,3,s,a)&&Ty(e,t,"uv",n,2,s,r)}function E6(e,t,n,a,r,s){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function R6(e,t,n){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function M6(e,t,n,a){let r=e.createBuffer();xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return xe(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function F6(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function $6(e,t,n,a){let[r,s]=qd(t,n),i=4,o=new Uint8Array(eq(t*n,i));return xe(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function O6(e,t,n,a,r,s,i,o){let l=e,u=new Float32Array(tq(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function z6(e,t,n){let a=new Float32Array(t*n*4);return xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var v0=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=te().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,c0(t,e)):this.gl=dr(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(te().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Xd(this.gl,r),Aa(this.gl,s))this.textureHalfFloatExtension=Xd(this.gl,s);else if(te().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Aa(this.gl,a))this.colorBufferHalfFloatExtension=Xd(this.gl,a);else if(te().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Aa(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Aa(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=v6(this.gl),this.indexBuffer=w6(this.gl),this.framebuffer=e6(this.gl),this.textureConfig=Sy(this.gl,this.textureHalfFloatExtension)}get debug(){return te().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;xe(e,()=>e.finish()),xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.deleteFramebuffer(this.framebuffer)),xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),xe(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),k6(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),I6(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),S6(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),R6(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),E6(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),N6(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),T6(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(Ny(this.gl,this.framebuffer),this.outputTexture=null),xe(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>$6(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return O6(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return F6(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=M6(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(te().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>z6(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=qw(t,e);this.vertexShader==null&&(this.vertexShader=b6(t));let a=Xw(t);return xe(t,()=>t.attachShader(a,this.vertexShader)),xe(t,()=>t.attachShader(a,n)),Kw(t,a),this.debug&&f0(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=C6(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&xe(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&f0(this.gl,this.program),xe(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?n6(this.gl,e,t):a6(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),xe(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),r6(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=nu(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&f0(this.gl,this.program),Kd(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),xe(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),xe(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Xd(this.gl,te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=iX(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),m0(this.gl,e,this.framebuffer),this.debug&&Kd(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(m0(this.gl,this.outputTexture,this.framebuffer),this.debug&&Kd(this.gl)):Ny(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;m0(a,e,this.framebuffer),this.debug&&Kd(a),this.outputTexture=e,xe(a,()=>a.viewport(0,0,t,n)),xe(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),xe(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function iX(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:oX,bincountImpl:_6,bincountReduceImpl:lX,ceilImpl:uX,concatImpl:dX,equalImpl:pX,expImpl:cX,expm1Impl:hX,floorImpl:fX,gatherNdImpl:mX,gatherV2Impl:gX,greaterImpl:AX,greaterEqualImpl:yX,lessImpl:xX,lessEqualImpl:bX,linSpaceImpl:vX,logImpl:wX,maxImpl:kX,maximumImpl:IX,minimumImpl:SX,multiplyImpl:TX,negImpl:NX,notEqualImpl:CX,prodImpl:EX,rangeImpl:RX,rsqrtImpl:MX,sigmoidImpl:FX,simpleAbsImpl:D6,sliceImpl:$X,sparseFillEmptyRowsImpl:OX,sparseReshapeImpl:zX,sparseSegmentReductionImpl:P6,sqrtImpl:_X,stridedSliceImpl:DX,stringNGramsImpl:PX,stringSplitImpl:LX,stringToHashBucketFastImpl:WX,subImpl:BX,tileImpl:VX,topKImpl:UX,transposeImpl:Py,uniqueImpl:HX}=uy;function L6(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function kn(e,t){return t===1?[e]:L6(e,t)}function jX(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var GX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=kn("rc",t),a=pt(t),r=XX(t,e,n),s=KX(t,e[e.length-1],e[e.length-2],n),i=ZX(e,n);this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${s}
|
|
|
|
setOutput(vec4(${i}));
|
|
}
|
|
}
|
|
`}}};function qX(e,t){let n=[];for(let a=0;a<=1;a++)for(let r=0;r<=1;r++){let s=`${a===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function XX(e,t,n){if(e===1)return`rc > ${t[0]}`;let a="";for(let r=e-2;r<e;r++)a+=`${n[r]} >= ${t[r]}`,r<e-1&&(a+="||");return a}function KX(e,t,n,a){if(e===1)return"";let r=a.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function ZX(e,t){let n=e.length,a=qX(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${a[0]}),
|
|
cEdge ? 0. : getA(${a[1]}),
|
|
rEdge ? 0. : getA(${a[2]}),
|
|
rEdge || cEdge ? 0. : getA(${a[3]})`}var W6=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=ya(this.outputShape.length);let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2==1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${a}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${a>0?"}":""}
|
|
`}this.userCode=`
|
|
${YX(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?My():Ry(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function YX(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?fq(["r","c","d"],"inputShape"):eo(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var JX=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=V6(t,n),r=U6(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=B6(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===on.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===on.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===on.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===on.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===on.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=V6(n,a),s=U6(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=B6(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=te().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function QX(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function B6(e,t,n,a,r){let s=eK(t,a),i;if(r){let[l,u]=nu(e[0],e[1]);i=l*u}else{let[l,u]=qd(e[0],e[1]);i=l*u}let o=QX(n,s);return i*o}function eK(e,t){switch(e){case on.PACKED_2X2_FLOAT32:return _y(t);case on.PACKED_2X2_FLOAT16:return Dy(t);case on.UNPACKED_FLOAT32:return $y(t);case on.UNPACKED_FLOAT16:return Oy(t);case on.PACKED_4X1_UNSIGNED_BYTE:return zy(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function tK(e){return te().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?on.PACKED_2X2_FLOAT32:on.UNPACKED_FLOAT32:e?on.PACKED_2X2_FLOAT16:on.UNPACKED_FLOAT16}function V6(e,t){if(e===ga.UPLOAD)return on.PACKED_2X2_FLOAT32;if(e===ga.RENDER||e==null)return tK(t);if(e===ga.DOWNLOAD||e===ga.PIXELS)return on.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function U6(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var cs=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=ya(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},ja="if (isnan(x)) return x;",nK="return x;",H6="return abs(x);",aK="return (x >= 0.0) ? x : (exp(x) - 1.0);",rK=ja+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,sK=ja+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,w0="return x;",iK="return 1.0 / (1.0 + exp(-1.0 * x));",oK="return x;",lK=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,uK=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,dK=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,pK="return 1.0 / (1.0 + exp(-1.0 * x));",lu=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=ya(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},cK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=kn("rc",t),a=pt(t),r=jX(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},hK=ar.whereImpl,fK=1e-7,mK=1e-4,Ly={};function gK(e){return e in Ly||(Ly[e]={}),Ly[e]}var AK=te().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),yK=600;function xK(){return te().global.screen==null?1024:te().global.screen.height*te().global.screen.width*window.devicePixelRatio*yK/1024/1024}var uu=class extends $u{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!te().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=dr(te().getNumber("WEBGL_VERSION"));this.binaryCache=gK(te().getNumber("WEBGL_VERSION")),this.gpgpu=new v0(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new JX(this.gpgpu),this.numMBBeforeWarning=xK(),this.texData=new Hp(this,vr())}nextDataId(){return uu.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((te().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||te().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:ga.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(te().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:ga.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let p;o?p=new lu(i,w0):p=new cs(i,w0);let c=this.runWebGLProgram(p,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(c.dataId);return this.disposeIntermediateTensorInfo(c),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,u;l&&(u=w.now());let d;if(a==="complex64"){let p=this.readSync(r.real.dataId),c=this.readSync(r.imag.dataId);d=R.mergeRealAndImagArrays(p,c)}else d=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=w.now()-u),this.convertAndCacheOnCPU(e,d)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new lu(a,w0):h=new cs(a,w0);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!te().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&te().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&te().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...h0(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let d;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];d=R.mergeRealAndImagArrays(m,f)}else if(l==null)d=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(a);d=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;xe(h,()=>h.deleteBuffer(l))}let p=this.convertAndCacheOnCPU(e,d),c=this.pendingRead.get(e);return this.pendingRead.delete(e),c.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&vr().removeDataId(e,this),this.pendingDeletes--),p}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>w.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!Hw(n))throw te().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=w.sizeFromShape(t);if(te().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),c=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(c.texture,...h0(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let s=te().getBool("WEBGL_PACK")&&a===!0,i=s?g0(t):t,o=s?new aX(i):new nX(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),d=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),d}timerAvailable(){return te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=w.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=w.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=AK){return te().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&w.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){R.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return hK(e.shape,t)}packedUnaryOp(e,t,n){let a=new lu(e.shape,t),r=this.compileAndRun(a,[e],n);return vr().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=D6(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(te().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,H6,e.dtype);let t=new cs(e.shape,H6),n=this.compileAndRun(t,[e]);return vr().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(s=>w.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:a}=this.makeTensorInfo(e,t,n);return vr().makeTensorFromDataId(a,e,t,this)}unpackTensor(e){let t=new cK(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new GX(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Ji(e.shape),...Qi(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[Ji(t),...Qi(t)],s=new W6(r,n),i=!0,o=[n],l=this.runWebGLProgram(s,[a],e.dtype,o,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:a,dtype:r}=t,s=g0(a),i,o=h0(s);n?i=new tX(s):i=new eX(s);let l=!0,u=[o],d=this.runWebGLProgram(i,[{shape:s,dtype:r,dataId:e}],r,u,l);return{dtype:r,shape:a,dataId:d.dataId}}runWebGLProgram(e,t,n,a,r=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===Gd.DENSE){let f=h0(e.outputShape);i.texShape=f.map(g=>g*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),w.sizeFromShape(s.shape)===0)return i.values=w.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(f.dataId);if(g.texture==null){if(!e.packedInputs&&w.sizeFromShape(f.shape)<=te().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=f.shape)}else if(!!g.isPacked!=!!e.packedInputs)f=g.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),g=this.texData.get(f.dataId);else if(g.isPacked&&!Zd(g.shape,f.shape)){let A=f,y=f.shape;f.shape=g.shape,f=this.packedReshape(f,y),o.push(f),g=this.texData.get(f.dataId),A.shape=y}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:g,isUniform:!1}});this.uploadToGPU(s.dataId);let u={shape:s.shape,texData:i,isUniform:!1},d=Qq(e,l,u),p=this.getAndSaveBinary(d,()=>Yq(this.gpgpu,e,l,u)),c=this.activeTimers!=null,h;c&&(h=this.startTimer()),Jq(this.gpgpu,p,l,u,a),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),c&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let m=te().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=w.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!te().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(te().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=H(()=>{if(!te().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=te().getBool("DEBUG");te().set("DEBUG",!1);let t=this.abs(ke(1e-8)).dataSync()[0];if(te().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?fK:mK}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=w.now());let d=t.texShape;if(d==null&&(d=o6(n,o),t.texShape=d),r!=null){let p=g0(n),c,h=d[1],m=d[0],f=r instanceof Uint8Array;o?([h,m]=nu(d[0],d[1]),c=new sX(p,f)):c=new rX(p,f);let g=this.makeTensorInfo([m,h],a);f?this.texData.get(g.dataId).usage=ga.PIXELS:this.texData.get(g.dataId).usage=ga.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,m,r);let A=[[m,h]],y=!0,x=this.runWebGLProgram(c,[g],a,A,y),v=this.texData.get(x.dataId);t.texture=v.texture,t.texShape=v.texShape,t.isPacked=v.isPacked,t.usage=v.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(x.dataId),t.values=null,l&&(this.uploadWaitMs+=w.now()-u)}else{let p=this.acquireTexture(d,i,a,o);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=bK(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}};uu.nextDataId=0;function bK(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var vK="3.9.0";function j6(){te().set("WEBGL_FORCE_F16_TEXTURES",!0)}sd.isBrowser()&&Fl("webgl",()=>new uu,2);var wK={forceHalfFloat:j6},G6=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,du=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=ya(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},k0=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Jd=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=R.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=ya(r);let s="";if(a)if(r===0||w.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${pt(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?s+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=kn("coords",r);this.enableShapeUniforms?s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Zn(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var kK={kernelName:qs,backendName:"webgl",kernelFunc:Zn};function hs(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=Zn({inputs:{x:a},backend:n}),l=Zn({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var IK={kernelName:Jp,backendName:"webgl",kernelFunc:hs},q6="return (a < 0.) ? b * a : a;",X6=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function SK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",w.createScalarValue(s,"float32")),o=te().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Jd(X6,r.shape,i.shape):new du(q6,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],r.dtype);return n.disposeIntermediateTensorInfo(i),l}var TK={kernelName:Xs,backendName:"webgl",kernelFunc:SK},K6="return (a < 0.) ? b * a : a;",Z6=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function NK(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=te().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Jd(Z6,a.shape,r.shape):new du(K6,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)}var CK={kernelName:oi,backendName:"webgl",kernelFunc:NK},Y6="if (isnan(x)) return x;",EK=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,RK=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Je({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let p=o.texData.get(i.dataId),c=n(p.values,l);return o.makeTensorInfo(i.shape,l,c)}let u=te().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,d;return u?d=new lu(i.shape,t):d=new cs(i.shape,e),o.runWebGLProgram(d,[i],l)}}function ln({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,d=o;if(a&&l.dtype==="complex64"){let m=d.texData.get(l.dataId),f=d.texData.get(u.dataId),[g,A]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[v,b]=x,k={dataId:v.dataId,dtype:v.dtype,shape:l.shape},N={dataId:b.dataId,dtype:b.dtype,shape:u.shape},C=new du(e,l.shape,u.shape);return d.runWebGLProgram(C,[k,N],Sa(v.dtype,b.dtype))}),y=hs({inputs:{real:g,imag:A},backend:d});return d.disposeIntermediateTensorInfo(g),d.disposeIntermediateTensorInfo(A),y}let p=s||Sa(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||d.shouldExecuteOnCPU([l,u]))&&r!=null){let m=d.texData.get(l.dataId).values,f=d.texData.get(u.dataId).values,g=l.dtype==="string"?R.fromUint8ToStringArray(m):m,A=l.dtype==="string"?R.fromUint8ToStringArray(f):f,[y,x]=r(l.shape,u.shape,g,A,p),v=d.makeTensorInfo(x,p),b=d.texData.get(v.dataId);return b.values=y,v}let c=te().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return c?h=new Jd(t,l.shape,u.shape,n):h=new du(e,l.shape,u.shape),d.runWebGLProgram(h,[l,u],p)}}function I0(e,t=!1){if(e==="linear")return t?oK:nK;if(e==="relu")return t?uK:rK;if(e==="elu")return t?lK:aK;if(e==="relu6")return t?dK:sK;if(e==="prelu")return t?Z6:K6;if(e==="leakyrelu")return t?X6:q6;if(e==="sigmoid")return t?pK:iK;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var J6=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=ya(this.outputShape.length);let u=a?e[1]:e[2],d=Math.ceil(u/2),p=a?"i * 2, rc.y":"rc.y, i * 2",c=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:f=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,g="result = activation(result);");let A=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let y="rc.x",x="rc.x";e[0]<t[0]?y=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${f}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${d}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${d}; i++) {
|
|
int batchA = ${y};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${p});
|
|
vec4 b = getMatrixB(batchB, ${c});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${m[0]});
|
|
result += (${h[1]} * ${m[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${A}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},Q6={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},e4=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},t4="return a * b;";function Wy(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=R.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),u=new e4(Q6.REAL,a.shape,r.shape),d=new e4(Q6.IMAG,a.shape,r.shape),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],c=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(d,p,"float32"),m=hs({inputs:{real:c,imag:h},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[u,d]=TX(a.shape,r.shape,o.values,l.values,s),p=n.makeTensorInfo(d,s),c=n.texData.get(p.dataId);return c.values=u,p}let i;return te().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Jd(t4,a.shape,r.shape):i=new du(t4,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var MK={kernelName:ai,backendName:"webgl",kernelFunc:Wy};function FK(e,t,n){let a=[Ji(e.shape),...Qi(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[Ji(t),...Qi(t)],i=new W6(s,a),o=!0,l=[a],u=n.runWebGLProgram(i,[r],e.dtype,l,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function Ae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=w.sizeFromShape(r.shape),l=w.inferFromImplicitShape(s,o),u=w.sizeFromShape(l);w.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let d=i.texData.get(r.dataId);return d.isPacked&&!Zd(r.shape,l)&&!(d.texture!==null&&Zd(d.shape,l))?FK(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var $K={kernelName:ul,backendName:"webgl",kernelFunc:Ae},n4=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let d=1/t;l=`sumValue += dot(values * ${w.isInt(d)?d.toPrecision(2):d}, ones);`}let u="";r%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},OK=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,d=n%4,p=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,c="vec4";t==="all"?(i="1.0",p=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,c="bvec4"):t==="any"&&(i="0.0",p=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,c="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${d===1}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===2}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===3}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function zK(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=R.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function no(e,t,n,a){let r=zK(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:u}=r[i],d,p;n==="mean"?d=i===0?new n4({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new n4({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):d=new OK({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),p=s,s=a.runWebGLProgram(d,[s],t),p.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(p)}return s}var _K=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=pt(this.rank),r=DK(t);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function DK(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var PK=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=pt(this.rank),r=L6("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=r[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function S0(e,t,n){let a=te().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new PK(e.shape,t):new _K(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function LK(e,t,n,a){let r=t,s=e.shape.length,i=w.parseAxisParam(r,e.shape),o=i,l=R.getAxesPermutation(o,s),u=l!=null,d=e;u&&(d=S0(e,l,a),o=R.getInnerMostAxes(o.length,s)),R.assertAxesAreInnerMostDims("sum",o,s);let[p,c]=R.computeOutAndReduceShapes(d.shape,o),h=p;n&&(h=R.expandShapeToKeepDim(p,i));let m=w.sizeFromShape(c),f=w.sizeFromShape(e.shape)/m,g=Ae({inputs:{x:d},attrs:{shape:[f,m]},backend:a}),A=Dc(e.dtype),y=no(g,A,"sum",a),x=Ae({inputs:{x:y},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(y),u&&a.disposeIntermediateTensorInfo(d),x}function T0(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return LK(r,s,i,n)}var WK={kernelName:Ai,backendName:"webgl",kernelFunc:T0};function In(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let d=0;d<l.length;d++)l[d]=r.shape[s[d]];let u;if(i.shouldExecuteOnCPU([r])){let d=i.texData.get(r.dataId).values,p=Py(d,r.shape,r.dtype,s,l);u=i.makeTensorInfo(l,r.dtype);let c=i.texData.get(u.dataId);c.values=p}else u=S0(r,s,i);return u}var BK={kernelName:ki,backendName:"webgl",kernelFunc:In},a4=1e3;function N0({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,d=t.shape.length,p=n?e.shape[u-2]:e.shape[u-1],c=a?t.shape[d-1]:t.shape[d-2],h=n?e.shape[u-1]:e.shape[u-2],m=a?t.shape[d-2]:t.shape[d-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),A=w.sizeFromShape(f),y=w.sizeFromShape(g),x=A===y||A===1||y===1;w.assert(u>=2&&d>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${g}).`);let v=(A>y?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,m]);w.assert(p===c,()=>`Error in matMul: inner shapes (${p}) and (${c}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=n?[A,p,h]:[A,h,p],k=a?[y,m,c]:[y,c,m],N=Ae({inputs:{x:e},backend:r,attrs:{shape:b}}),C=Ae({inputs:{x:t},backend:r,attrs:{shape:k}}),E=[N,C],z=Math.max(A,y),F=n?N.shape[1]:N.shape[2],I=s!=null,_=i!=null,D=l==="leakyrelu",V=l!=null?I0(l,!0):null,q=I||_||D||V!=null,G;if((h===1||m===1)&&F>a4&&q===!1){let J=N,ne=C;n&&(J=In({inputs:{x:N},backend:r,attrs:{perm:[0,2,1]}}),E.push(J)),a&&(ne=In({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),E.push(ne));let ee=m!==1,ie=m===1,Z=J;ee&&(Z=Ae({inputs:{x:J},backend:r,attrs:{shape:[z,F,1]}}),E.push(Z));let le=m===1?2:1,oe=ne;ie&&(oe=Ae({inputs:{x:ne},backend:r,attrs:{shape:[z,1,F]}}),E.push(oe));let ye=Wy({inputs:{a:Z,b:oe},backend:r});G=T0({inputs:{x:ye},backend:r,attrs:{axis:le,keepDims:!0}}),E.push(ye)}else{let J=Sa(e.dtype,t.dtype),ne=new J6(b,k,[z,h,m],n,a,I,V,_,D),ee=[N,C];if(s!=null&&ee.push(s),_&&ee.push(i),D){let ie=r.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));ee.push(ie),E.push(ie)}G=r.runWebGLProgram(ne,ee,J)}let Q=Ae({inputs:{x:G},backend:r,attrs:{shape:v}});E.push(G);for(let J of E)r.disposeIntermediateTensorInfo(J);return Q}function VK(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:p}=a;return N0({a:r,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:p,activation:d})}var UK={kernelName:Ii,backendName:"webgl",kernelFunc:VK},r4="return abs(x);";function HK(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=D6(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return te().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new lu(a.shape,r4):r=new cs(a.shape,r4),n.runWebGLProgram(r,[a],a.dtype)}var jK={kernelName:Io,backendName:"webgl",kernelFunc:HK},GK=ja+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,qK=Je({opSnippet:GK}),XK={kernelName:So,backendName:"webgl",kernelFunc:qK},KK=ja+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,ZK=Je({opSnippet:KK}),YK={kernelName:To,backendName:"webgl",kernelFunc:ZK},s4="return a + b;",JK=ln({opSnippet:s4,packedOpSnippet:s4,supportsComplex:!0,cpuKernelImpl:oX}),QK={kernelName:Vr,backendName:"webgl",kernelFunc:JK},eZ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}},tZ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}};function C0(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return Zn({inputs:{x:a[0]},backend:n});if(a.length>te().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=C0({inputs:a.slice(0,o),backend:n}),u=C0({inputs:a.slice(o),backend:n});return C0({inputs:[l,u],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>Sa(o,l)),s=a.map(o=>o.shape),i=te().getBool("WEBGL_PACK")?new tZ(a[0].shape,s):new eZ(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var nZ={kernelName:Cs,backendName:"webgl",kernelFunc:C0};function aZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),u=l,d=R.getAxesPermutation(u,o),p=r;d!=null&&(p=In({inputs:{x:r},backend:n,attrs:{perm:d}}),u=R.getInnerMostAxes(u.length,o)),R.assertAxesAreInnerMostDims("all",u,o);let[c,h]=R.computeOutAndReduceShapes(p.shape,u),m=w.sizeFromShape(h),f=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=no(f,f.dtype,"all",n),A;if(i){let y=R.expandShapeToKeepDim(c,l);A=Ae({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=Ae({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),d!=null&&n.disposeIntermediateTensorInfo(p),A}var rZ={kernelName:No,backendName:"webgl",kernelFunc:aZ};function sZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),u=l,d=R.getAxesPermutation(u,o),p=r;d!=null&&(p=In({inputs:{x:r},backend:n,attrs:{perm:d}}),u=R.getInnerMostAxes(u.length,o)),R.assertAxesAreInnerMostDims("any",u,o);let[c,h]=R.computeOutAndReduceShapes(p.shape,u),m=w.sizeFromShape(h),f=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=no(f,f.dtype,"any",n),A;if(i){let y=R.expandShapeToKeepDim(c,l);A=Ae({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=Ae({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),d!=null&&n.disposeIntermediateTensorInfo(p),A}var iZ={kernelName:Co,backendName:"webgl",kernelFunc:sZ},oZ=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${a};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},lZ=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=pt(o),u=kn("coords",o),d,p;if(s===1){p=o+1;let N=pt(p);d=`
|
|
${N} sourceLocR = ${N}(${u.join()}, 0);
|
|
++${u[o-1]};
|
|
${N} sourceLocG = ${N}(${u.join()}, 0);
|
|
++${u[o-2]};
|
|
${N} sourceLocA = ${N}(${u.join()}, 0);
|
|
--${u[o-1]};
|
|
${N} sourceLocB = ${N}(${u.join()}, 0);
|
|
--${u[o-2]};`}else p=o,d=`
|
|
${l} sourceLocR = coords;
|
|
++${u[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[o-2]};`;let c=["x","y","z","w","u","v"].slice(0,p),h="."+c[p-1],m=c.map(N=>"int "+N),f=kn("sourceLocR",p-1).concat("inIdx.r"),g=kn("sourceLocG",p-1).concat("inIdx.g"),A=kn("sourceLocB",p-1).concat("inIdx.b"),y=kn("sourceLocA",p-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=a?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${y.join()})));`,b=`vec4(
|
|
getAChannel(${f.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,k=a?"":`
|
|
float getBestIndicesAChannel(${m.join()}) {
|
|
return getChannel(getBestIndicesA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${m.join()}) {
|
|
return getChannel(getA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}
|
|
${k}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
|
|
${d}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${b};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${v}
|
|
vec4 candidate = ${b};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function i4(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=R.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new oZ(o,n,a==null),u=[t];a!=null&&u.push(a);let d=e.runWebGLProgram(l,u,"int32");if(d.shape[1]===1)return d;let p=i4(e,t,n,d);return e.disposeIntermediateTensorInfo(d),p}function o4(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=R.computeOptimalWindowSize(s),o=new lZ(r,i,n,a==null),l=a==null?[t]:[t,a],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let d=o4(e,t,n,u);return e.disposeIntermediateTensorInfo(u),d}return u}function l4(e,t,n,a){let r=[n];if(R.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!te().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,l=t;o&&(l=e.unpackTensor(t),s.push(l));let[u,d]=R.computeOutAndReduceShapes(l.shape,r),p=w.sizeFromShape(d),c=Ae({inputs:{x:l},backend:e,attrs:{shape:[-1,p]}});s.push(c);let h=i4(e,c,a);s.push(h);let m=Ae({inputs:{x:h},backend:e,attrs:{shape:u}});return s.forEach(f=>e.disposeIntermediateTensorInfo(f)),m}return o4(e,t,a)}function uZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=w.parseAxisParam(s,r.shape),o=R.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=In({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let d=l4(n,l,i[0],"max");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),d}var dZ={kernelName:Es,backendName:"webgl",kernelFunc:uZ};function pZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=w.parseAxisParam(s,r.shape),o=R.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=In({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let d=l4(n,l,i[0],"min");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),d}var cZ={kernelName:_u,backendName:"webgl",kernelFunc:pZ},hZ=ja+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,fZ=Je({opSnippet:hZ}),mZ={kernelName:Eo,backendName:"webgl",kernelFunc:fZ},gZ=ja+"return log(x + sqrt(x * x + 1.0));",AZ=Je({opSnippet:gZ}),yZ={kernelName:Ro,backendName:"webgl",kernelFunc:AZ},xZ=ja+`
|
|
return atan(x);
|
|
`,bZ=Je({opSnippet:xZ}),vZ={kernelName:Mo,backendName:"webgl",kernelFunc:bZ},wZ=EK+`
|
|
return atan(a, b);
|
|
`,kZ=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+RK+`
|
|
return result;
|
|
`,IZ=ln({opSnippet:wZ,packedOpSnippet:kZ}),SZ={kernelName:$o,backendName:"webgl",kernelFunc:IZ},TZ=ja+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,NZ=Je({opSnippet:TZ}),CZ={kernelName:Fo,backendName:"webgl",kernelFunc:NZ},Qd=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,c=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,A="0.0";if(m||(A="-1.0 / 1e-20"),n){let N=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${N} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?f:g:`wR * ${p} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let y="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,b=s%4,k=`
|
|
if (${m}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${y}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
const float initializationValue = ${A};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${A});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${v}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${k}
|
|
}
|
|
|
|
int xC = xCCorner + ${v};
|
|
if (${b===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${b===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${b===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},By=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,d=e.dilationHeight,p=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,A=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",x="0.0";if(y||(x="-1.0 / 1e-20"),n){let E=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${g}, ${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${d}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${p}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${E} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
|
|
wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let v="max",b=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(b="avgValue / count");let k=Math.floor(s/4)*4,N=s%4,C=`
|
|
if (${y}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${v}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${g}, ${A});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${d}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${k}; wC += 4) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
|
|
);
|
|
|
|
${C}
|
|
}
|
|
|
|
int xC = xCCorner + ${k};
|
|
if (${N===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${C}
|
|
} else if (${N===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${C}
|
|
} else if (${N===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${C}
|
|
}
|
|
}
|
|
setOutput(${b});
|
|
}
|
|
}
|
|
`}};function EZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;au(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;w.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=R.computePool2DInfo(r.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&w.arraysEqual(d.inShape,d.outShape))return Zn({inputs:{x:r},backend:n});let p=new Qd(d,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var RZ={kernelName:Rs,backendName:"webgl",kernelFunc:EZ};function MZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,d=[1,1,1],p=R.computePool3DInfo(r.shape,s,i,d,o,l,u),c=new By(p,"avg",!1);return n.runWebGLProgram(c,[r],"float32")}var FZ={kernelName:Du,backendName:"webgl",kernelFunc:MZ},$Z=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,d=l-1-e.padInfo.left,p=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${d});
|
|
const float avgMultiplier = float(${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},OZ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,c=e.effectiveFilterWidth,h=d-1-e.padInfo.front,m=p-1-e.padInfo.top,f=c-1-e.padInfo.left,g=1/(t*n*a);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${m}, ${f});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function zZ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=a,p=[1,1,1],c=R.computePool3DInfo(i.shape,o,l,p,u,d),h=new OZ(c);return n.runWebGLProgram(h,[r],i.dtype)}var _Z={kernelName:Zp,backendName:"webgl",kernelFunc:zZ};function DZ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;au([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,d=R.computePool2DInfo(i.shape,o,l,1,u),p=new $Z(d);return n.runWebGLProgram(p,[r],i.dtype)}var PZ={kernelName:Kp,backendName:"webgl",kernelFunc:DZ};function LZ(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return N0({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var WZ={kernelName:Ms,backendName:"webgl",kernelFunc:LZ},BZ=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(R.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},VZ=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(R.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},UZ=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;w.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[a,r,s],d=null;i!=null&&(d=i.shape,u.push(i));let p=null;o!=null&&(p=o.shape,u.push(o));let c=te().getBool("WEBGL_PACK_NORMALIZATION")?new VZ(a.shape,r.shape,s.shape,d,p,l):new BZ(a.shape,r.shape,s.shape,d,p,l);return t.runWebGLProgram(c,u,u[0].dtype)},HZ={kernelName:js,backendName:"webgl",kernelFunc:UZ},jZ=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=pt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=GZ(this.rank),a,r=e.map((s,i)=>`sourceLoc.${Vy[i]} = start[${i}] + coords.${Vy[i]};`);a=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${a}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},Vy=["x","y","z","w","u","v"];function GZ(e){if(e===1)return"sourceLoc";if(e<=6)return Vy.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var qZ=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=pt(this.rank),n=kn("coords",this.rank),a=kn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
|
|
result.x = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.y = ${s};
|
|
--${a[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${a[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,d)=>`start[${d}]`).join()});`:e.map((u,d)=>`${a[d]} = ${n[d]} + start[${d}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}};function XZ(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=yn.computeFlatOffset(t,w.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function pu(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=yn.parseSliceParams(r,s,i);if(yn.assertParamsValid(r,o,l),w.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),c=$X(p.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}let{isPacked:u}=n.texData.get(r.dataId),d=yn.isSliceContinous(r.shape,o,l);if(u||!d){let p=te().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new qZ(l):new jZ(l),c=[o];return n.runWebGLProgram(p,[r],r.dtype,c)}return n.uploadToGPU(r.dataId),XZ(r,o,l,n)}var KZ={kernelName:hl,backendName:"webgl",kernelFunc:pu},ZZ=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,x)=>y*x),l=R.getReshaped(r.shape,s,o),u=R.getPermuted(l.length,s.length),d=R.getReshapedPermuted(r.shape,s,o),p=R.getSliceBeginCoords(i,s.length),c=R.getSliceSize(d,i,s.length),h=[],m=Ae({inputs:{x:r},backend:n,attrs:{shape:l}}),f=In({inputs:{x:m},backend:n,attrs:{perm:u}}),g=Ae({inputs:{x:f},backend:n,attrs:{shape:d}}),A=pu({inputs:{x:g},backend:n,attrs:{begin:p,size:c}});return h.push(m),h.push(f),h.push(g),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},YZ={kernelName:Oo,backendName:"webgl",kernelFunc:ZZ};function JZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),u=_6(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var QZ={kernelName:Yp,backendName:"webgl",kernelFunc:JZ},eY="return float(a != b);",u4=ln({opSnippet:eY,cpuKernelImpl:CX,dtype:"bool"}),tY={kernelName:tl,backendName:"webgl",kernelFunc:u4};function ep(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Zn({inputs:{x:r.complexTensorInfos.real},backend:n})}var nY={kernelName:xc,backendName:"webgl",kernelFunc:ep},aY="return float(int(x));";function rY(e,t){let n=new cs(e.shape,aY),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function Uy(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return Zn({inputs:{x:r},backend:n});let i=_t(r.shape),o=Uy({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=hs({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=ep({inputs:{input:r},backend:n}),o=Uy({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,s)){let i=Zn({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return rY(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),o=u4({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var sY={kernelName:Fs,backendName:"webgl",kernelFunc:Uy},d4="return ceil(x);",iY=Je({opSnippet:d4,packedOpSnippet:d4,cpuKernelImpl:uX}),oY={kernelName:$s,backendName:"webgl",kernelFunc:iY},lY=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},uY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function dY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;te().getBool("WEBGL_PACK_CLIP")?o=new uY(r.shape):o=new lY(r.shape);let l=[[s],[i]];return n.runWebGLProgram(o,[r],r.dtype,l)}var pY={kernelName:Ur,backendName:"webgl",kernelFunc:dY},cY=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function p4(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function hY(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new cY(a.shape),i=[p4(a,r.complexTensorInfos.real),p4(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var fY={kernelName:Pu,backendName:"webgl",kernelFunc:hY},mY=class{constructor(e){this.outputShape=[],this.outputShape=R.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},gY=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=R.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=pt(a),s=kn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),d=i.join(),p=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${d}), vec2(${u.join()}));
|
|
}`;for(let m=1;m<o.length;m++){let f=o[m-1];p+=`
|
|
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
|
|
return getChannel(
|
|
getT${m}(${E0(i,l,f)}),
|
|
vec2(${E0(u,l,f)}));
|
|
}`}let c=o.length,h=o[o.length-1];p+=`
|
|
return getChannel(
|
|
getT${c}(${E0(i,l,h)}),
|
|
vec2(${E0(u,l,h)}));`,this.userCode=`
|
|
float getValue(${i.map(m=>"int "+m)}) {
|
|
${p}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[a-1]} = ${s[a-1]} + 1;
|
|
if (${s[a-1]} < ${n[a-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[a-2]} = ${s[a-2]} + 1;
|
|
if (${s[a-2]} < ${n[a-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[a-1]} = ${s[a-1]} - 1;
|
|
if (${s[a-2]} < ${n[a-2]} &&
|
|
${s[a-1]} < ${n[a-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function E0(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function R0(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Zn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var AY={kernelName:cc,backendName:"webgl",kernelFunc:R0};function cu(e,t,n){let a=e[0].dtype;if(a==="complex64"){let d=e.map(f=>ep({inputs:{input:f},backend:n})),p=e.map(f=>R0({inputs:{input:f},backend:n})),c=cu(d,t,n),h=cu(p,t,n),m=hs({inputs:{real:c,imag:h},backend:n});return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),p.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let d=e.map(A=>{let y=w.sizeFromShape(A.shape.slice(t));return Ae({inputs:{x:A},backend:n,attrs:{shape:[-1,y]}})}),p=d.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),c=R.computeOutShape(d.map(A=>A.shape),1),h=d[0].shape[0]===1,m=dX(p,c,a,h),f=R.computeOutShape(e.map(A=>A.shape),t),g=n.makeTensorInfo(f,a,m);return d.forEach(A=>n.disposeIntermediateTensorInfo(A)),g}if(e.length>te().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let d=Math.floor(e.length/2),p=cu(e.slice(0,d),t,n),c=cu(e.slice(d),t,n),h=cu([p,c],t,n);return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),h}if(te().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let d=new gY(e.map(p=>p.shape),t);return n.runWebGLProgram(d,e,a)}let{tensors2D:s,outShape:i}=yY(e,t,n),o=new mY(s.map(d=>d.shape)),l=n.runWebGLProgram(o,s,a);s.forEach(d=>n.disposeIntermediateTensorInfo(d));let u=Ae({inputs:{x:l},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(l),u}function yY(e,t,n){let a=R.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>Ae({inputs:{x:r},attrs:{shape:[-1,w.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function c4(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=w.parseAxisParam(r,t[0].shape)[0],i=R.computeOutShape(t.map(u=>u.shape),s);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>w.sizeFromShape(u.shape)>0);if(o.length===1)return Zn({inputs:{x:o[0]},backend:n});let l=o.map(u=>u.shape);return R.assertParamsConsistent(l,s),cu(o,s,n)}var xY={kernelName:zo,backendName:"webgl",kernelFunc:c4},h4=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,A=f?2:3,y=f?3:1,x="",v="";n&&(a?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,v="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${y}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${A}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${m===1}) {
|
|
|
|
if (${f}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${m===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${m===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${b}
|
|
${v}
|
|
setOutput(result);
|
|
}
|
|
`}},bY=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.filterDepth,p=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${a});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${d}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${m===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${m===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${m===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},vY=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=ya(this.outputShape.length);let{dataFormat:n}=t,a=wn(),r=n==="channelsLast",s=r?0:1,i=r?1:2,o=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let u=0;u<=1;u++)for(let d=0;d<=1;d++)l+=`
|
|
blockIndex = rc.y + ${d};
|
|
pos = rc.x + ${u};
|
|
|
|
${o}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${s}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${i}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${u*2+d}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${u*2+d}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${a.output} = result;
|
|
}
|
|
`}};function f4({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=a.texData.get(e.dataId),d=n.inChannels,p=l[0]*l[1]*l[2],c=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,A=[];if(!((p===1||c===1)&&d>a4)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!=0&&w.arraysEqual(u.shape.slice(-3),l.slice(-3))){let y=l[0]*l[1]*(l[2]+1),x={dataId:e.dataId,shape:[1,y,n.inChannels],dtype:e.dtype},v=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,w.assert(Zd(u.shape,x.shape),()=>`packed reshape ${u.shape} to ${x.shape} isn't free`);let b=Ae({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});A.push(b);let k=N0({a:x,b,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),N=a.texData.get(k.dataId);w.assert(N.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=v,N.shape=n.outShape,g=Zn({inputs:{x:k},backend:a}),g.shape=n.outShape,A.push(k)}else{let y=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],x=Ae({inputs:{x:e},backend:a,attrs:{shape:[1,y,n.inChannels]}}),v=Ae({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),b=N0({a:x,b:v,transposeA:m,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=Ae({inputs:{x:b},backend:a,attrs:{shape:n.outShape}}),A.push(x),A.push(v),A.push(b)}for(let y of A)a.disposeIntermediateTensorInfo(y);return g}function m4({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:d,outWidth:p,outHeight:c,dataFormat:h}=n,m=h==="channelsLast",f=l*u*d,g=c*p,A=[f,g],y=!0,x=!1,v=[],b=Ae({inputs:{x:e},backend:a,attrs:{shape:e.shape.slice(1)}}),k=Ae({inputs:{x:t},backend:a,attrs:{shape:[1,f,w.sizeFromShape(t.shape)/f]}});v.push(b),v.push(k);let N=new vY(A,n),C=[b.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],E=a.runWebGLProgram(N,[b],"float32",C),z=Ae({inputs:{x:E},backend:a,attrs:{shape:[1,A[0],A[1]]}});v.push(E),v.push(z);let F=r!=null,I=s!=null,_=o==="leakyrelu",D=o?I0(o,!0):null,V=new J6(z.shape,k.shape,[1,g,n.outChannels],y,x,F,D,I,_),q=[z,k];if(r&&q.push(r),I&&q.push(s),_){let ne=a.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));q.push(ne),v.push(ne)}let G=a.runWebGLProgram(V,q,"float32"),Q=m?[1,c,p,n.outChannels]:[1,n.outChannels,c,p],J=Ae({inputs:{x:G},backend:a,attrs:{shape:Q}});v.push(G);for(let ne of v)a.disposeIntermediateTensorInfo(ne);return J}function wY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=a,p=R.convertConv2DDataFormat(l),c=R.computeConv2DInfo(r.shape,s.shape,i,u,o,d,!1,p),h;if(c.filterHeight===1&&c.filterWidth===1&&c.dilationHeight===1&&c.dilationWidth===1&&c.strideHeight===1&&c.strideWidth===1&&(c.padInfo.type==="SAME"||c.padInfo.type==="VALID"))h=f4({x:r,filter:s,convInfo:c,backend:n});else if(te().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=m4({x:r,filter:s,convInfo:c,backend:n});else{let f=new h4(c);h=n.runWebGLProgram(f,[r,s],"float32")}let m=Ae({inputs:{x:h},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(h),m}var kY={kernelName:Os,backendName:"webgl",kernelFunc:wY},IY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},SY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,d=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${d}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},TY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${a} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},NY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=a-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${a} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function CY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=a,p=R.convertConv2DDataFormat(l),c=R.computeConv2DInfo(r.shape,d,i,1,o,u,!1,p),h=new IY(c);return n.runWebGLProgram(h,[r,s],"float32")}var EY={kernelName:Qp,backendName:"webgl",kernelFunc:CY};function RY(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=a,p=R.convertConv2DDataFormat(u),c=R.computeConv2DInfo(i,s.shape,o,1,l,d,!1,p),h=new SY(c);return n.runWebGLProgram(h,[r,s],"float32")}var MY={kernelName:zs,backendName:"webgl",kernelFunc:RY};function FY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=R.computeConv3DInfo(r.shape,s.shape,i,l,o),d=new bY(u);return n.runWebGLProgram(d,[r,s],"float32")}var $Y={kernelName:Lu,backendName:"webgl",kernelFunc:FY};function OY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,u=R.computeConv3DInfo(r.shape,l,i,1,o),d=new TY(u);return n.runWebGLProgram(d,[r,s],"float32")}var zY={kernelName:ec,backendName:"webgl",kernelFunc:OY};function _Y(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,u=R.computeConv3DInfo(l,s.shape,o,1,i),d=new NY(u);return n.runWebGLProgram(d,[r,s],"float32")}var DY={kernelName:tc,backendName:"webgl",kernelFunc:_Y},PY=Y6+`
|
|
return cos(x);
|
|
`,LY=Je({opSnippet:PY}),WY={kernelName:_s,backendName:"webgl",kernelFunc:LY},BY=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,VY=Je({opSnippet:BY}),UY={kernelName:Ds,backendName:"webgl",kernelFunc:VY},HY=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[d,p]=n;this.outputShape=[u,d,p,l];let c=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,A]=d>1?[`${(i-1)/(d-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[y,x,v]=p>1?[`${(o-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
|
|
const float height_ratio = float(${f});
|
|
const float width_ratio = float(${y});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${A};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${v};
|
|
if( in_x < 0.0 || in_x > ${m} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${c} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},jY=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,d=new HY(r.shape,s.shape,o,l,u);return n.runWebGLProgram(d,[r,s,i],"float32")},GY={kernelName:_o,backendName:"webgl",kernelFunc:jY},g4=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let a=e.length,r=t?"0.0":`getX(${A4(a,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${pt(a)} coords = getOutputCoords();
|
|
int end = ${y4(a,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${y4(a,"coords")} = idx;
|
|
val += getX(${A4(a,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function A4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function y4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function qY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length,u=R.getAxesPermutation([s],l),d=r;u!=null&&(d=In({inputs:{x:r},backend:n,attrs:{perm:u}}));let p=R.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${s}`);let c=d.shape[p],h=Zn({inputs:{x:d},backend:n});for(let m=0;m<=Math.ceil(Math.log2(c))-1;m++){let f=new g4(d.shape,!1,o),g=[[m]],A=h;h=n.runWebGLProgram(f,[h],h.dtype,g),n.disposeIntermediateTensorInfo(A)}if(i){let m=new g4(d.shape,i,o),f=h;h=n.runWebGLProgram(m,[h],h.dtype),n.disposeIntermediateTensorInfo(f)}if(u!=null){let m=R.getUndoAxesPermutation(u),f=In({inputs:{x:h},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),f}return h}var XY={kernelName:Ps,backendName:"webgl",kernelFunc:qY};function KY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(s.dataId),d=_6(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,d)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),d=lX(l,u,i,o);return n.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var ZY={kernelName:nc,backendName:"webgl",kernelFunc:KY},YY=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function JY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;w.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],d=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,c=u*s,h=d/(s*s),m=i==="NHWC"?[o,p,c,h]:[o,h,p,c],f=new YY(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var QY={kernelName:Do,backendName:"webgl",kernelFunc:JY},x4=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=ya(this.outputShape.length);let s=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,l="",u="";n&&(a?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,u="result = activation(result);");let d=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${o};
|
|
int q = d2 - d1 * ${o};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${s}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${i}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${d}
|
|
${u}
|
|
setOutput(result);
|
|
}
|
|
`}},b4=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=ya(this.outputShape.length);let s=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,d=e.filterWidth,p=d,c=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<d;g++)c+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;for(let g=0;g<u;g++){for(let A=0;A<d;A++)c+=`
|
|
xTexelC${A*2} = vec4(0.0);
|
|
xTexelC${A*2}Ready = 0;
|
|
xTexelC${A*2+1} = vec4(0.0);
|
|
xTexelC${A*2+1}Ready = 0;
|
|
xC${A} = vec4(0.0);`;c+=`
|
|
xR = xRCorner + ${g} * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let A=0;A<(p+1)/2;A++){let y=A*2;if(c+=`
|
|
xC = xCCorner + ${y*l};
|
|
`,o===1){if(y<d&&(i%2==1?(c+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`,l===1&&y>0?c+=`
|
|
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
|
|
`:c+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
|
|
} else {
|
|
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
|
|
}
|
|
`):c+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xC${y} = xTexelC${y};
|
|
`,y+1<d)){let x=i%2==0?w.nearestLargerEven(l):l;l%2==0&&i%2==1||l%2!=0&&i%2!=1?(c+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
`,l>1&&(c+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`),c+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
|
|
`):x===1?c+=`
|
|
xC${y+1} = xTexelC${y};
|
|
`:c+=`
|
|
xCOffset = xC + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y+1} = xTexelC${y+1};
|
|
`}}else y<d&&(i%2==1?(c+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`,y+1<d&&(c+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
|
|
`)):(c+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(
|
|
xTexelC${y}.xy, xTexelC${y+1}.xy);
|
|
`,y+1<d&&(c+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`)));y<d&&(c+=`
|
|
wTexel = getW(${g}, ${y}, d1, q);
|
|
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
|
|
`,y+1<d&&(c+=`
|
|
wTexel = getW(${g}, ${y+1}, d1, q);
|
|
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}c+=`
|
|
}
|
|
`}let h="",m="";n&&(a?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,m="result = activation(result);");let f=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${s};
|
|
int q = d2 - d1 * ${s};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${c}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${f}
|
|
${m}
|
|
setOutput(result);
|
|
}
|
|
`}};function eJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a,d=l;d==null&&(d=[1,1]),w.assert(R.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=R.computeConv2DInfo(r.shape,s.shape,i,d,o,u,!0),c;te().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?c=new b4(p):c=new x4(p);let h=[[p.padInfo.top,p.padInfo.left],[p.strideHeight,p.strideWidth],[p.dilationHeight,p.dilationWidth],[p.inHeight,p.inWidth]];return n.runWebGLProgram(c,[r,s],"float32",h)}var tJ={kernelName:Ls,backendName:"webgl",kernelFunc:eJ},nJ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},aJ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function rJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=a,p=R.computeConv2DInfo(r.shape,d,i,o,l,u,!0),c=new nJ(p);return n.runWebGLProgram(c,[r,s],"float32")}var sJ={kernelName:ac,backendName:"webgl",kernelFunc:rJ};function iJ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=a,p=R.computeConv2DInfo(d,s.shape,i,o,l,u,!0),c=new aJ(p);return n.runWebGLProgram(c,[r,s],"float32")}var oJ={kernelName:rc,backendName:"webgl",kernelFunc:iJ},lJ=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function uJ(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=w.sizeFromShape(a.shape),i=Ae({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new lJ(s),l=n.runWebGLProgram(o,[i],i.dtype),u=Ae({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var dJ={kernelName:sc,backendName:"webgl",kernelFunc:uJ},pJ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:d,left:p}=a;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${s});
|
|
const ivec2 pads = ivec2(${d}, ${p});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function cJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=R.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),d,p=new pJ(u);d=n.runWebGLProgram(p,[r,s],"float32");let c=Ae({inputs:{x:d},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(d),c}var hJ={kernelName:Wu,backendName:"webgl",kernelFunc:cJ};function fJ(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=R.decodeEinsumEquation(r,s.length);R.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=R.getEinsumComputePath(o,l),p=d.length,c=null,h=i.length,m=[];for(let f=0;f<p;++f){for(let g of d[f]){let{permutationIndices:A,expandDims:y}=R.getEinsumPermutation(h,l[g]),x;R.isIdentityPermutation(A)?x=s[g]:(x=In({inputs:{x:s[g]},backend:n,attrs:{perm:A}}),m.push(x));let v=x.shape.slice();for(let b=0;b<y.length;++b)v.splice(y[b],0,1);w.arraysEqual(x.shape,v)||(x=Ae({inputs:{x},backend:n,attrs:{shape:v}}),m.push(x)),c===null?c=x:(c=Wy({inputs:{a:x,b:c},backend:n}),m.push(c))}f<p-1&&(u[f]>=0&&(c=T0({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var mJ={kernelName:lc,backendName:"webgl",kernelFunc:fJ},gJ="return (x >= 0.0) ? x : (exp(x) - 1.0);",AJ=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,yJ=Je({opSnippet:gJ,packedOpSnippet:AJ}),xJ={kernelName:Bs,backendName:"webgl",kernelFunc:yJ},bJ="return (b >= 1.0) ? a : a * (b + 1.0);",vJ=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,wJ=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=te().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Jd(vJ,a.shape,r.shape):new du(bJ,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},kJ={kernelName:uc,backendName:"webgl",kernelFunc:wJ},IJ=`
|
|
return vec4(equal(a, b));
|
|
`,SJ="return float(a == b);",TJ=ln({opSnippet:SJ,packedOpSnippet:IJ,dtype:"bool",cpuKernelImpl:pX}),NJ={kernelName:Lo,backendName:"webgl",kernelFunc:TJ},CJ=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${R.ERF_P};
|
|
float a1 = ${R.ERF_A1};
|
|
float a2 = ${R.ERF_A2};
|
|
float a3 = ${R.ERF_A3};
|
|
float a4 = ${R.ERF_A4};
|
|
float a5 = ${R.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,EJ=Je({opSnippet:CJ}),RJ={kernelName:Po,backendName:"webgl",kernelFunc:EJ},v4="return exp(x);",w4=Je({opSnippet:v4,packedOpSnippet:v4,cpuKernelImpl:cX}),MJ={kernelName:Vs,backendName:"webgl",kernelFunc:w4};function Hy(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(w.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),Ae({inputs:{x:s},backend:a,attrs:{shape:o}})}var FJ={kernelName:Wo,backendName:"webgl",kernelFunc:Hy},k4="return exp(x) - 1.0;",$J=Je({opSnippet:k4,packedOpSnippet:k4,cpuKernelImpl:hX}),OJ={kernelName:Bo,backendName:"webgl",kernelFunc:$J},I4=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${a});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function S4(e,t,n){let a=n.texData.get(e.dataId),r=w.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=Ae({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new I4("real",l,t),d=new I4("imag",l,t),p=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],c=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(d,p,"float32"),m=hs({inputs:{real:c,imag:h},backend:n});n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h);let f=Ae({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function zJ(e){let{inputs:t,backend:n}=e,{input:a}=t;return S4(a,!1,n)}var _J={kernelName:dc,backendName:"webgl",kernelFunc:zJ},DJ=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function tp(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||w.inferDtype(r),s==="string"){let i=w.getArrayFromDType(s,w.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new DJ(a,r),o=[[r]];return t.runWebGLProgram(i,[],s,o)}}var PJ={kernelName:Bu,backendName:"webgl",kernelFunc:tp},LJ=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},WJ={kernelName:Vo,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new LJ(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},T4="return floor(x);",BJ=Je({opSnippet:T4,packedOpSnippet:T4,cpuKernelImpl:fX}),VJ={kernelName:Us,backendName:"webgl",kernelFunc:BJ},UJ=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,HJ=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,jJ=ln({opSnippet:UJ,packedOpSnippet:HJ,dtype:"int32"}),GJ={kernelName:Hs,backendName:"webgl",kernelFunc:jJ},qJ=class{constructor(e){this.variableNames=["A"];let t=wn(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},XJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=wn(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},KJ={kernelName:Mc,backendName:"webgl",kernelFunc:ZJ},hu;function ZJ(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],d=[u,l],p=[u,l,s];(o||i)&&(hu==null&&(hu=document.createElement("canvas").getContext("2d")),hu.canvas.width=l,hu.canvas.height=u,hu.drawImage(r,0,0,l,u),r=hu.canvas);let c=n.makeTensorInfo(d,"int32");n.texData.get(c.dataId).usage=ga.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(c.dataId),r);let h=te().getBool("WEBGL_PACK")?new XJ(p):new qJ(p),m=n.runWebGLProgram(h,[c],"int32");return n.disposeData(c.dataId),m}function YJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=R.convertConv2DDataFormat(d),g=R.computeConv2DInfo(r.shape,s.shape,l,p,u,c,!1,f),A,y=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))A=f4({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(te().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)A=m4({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let v=i!=null,b=o!=null,k=h==="leakyrelu",N=h?I0(h,!1):null,C=new h4(g,v,N,b,k),E=[r,s];if(i&&E.push(i),o&&E.push(o),k){let z=n.makeTensorInfo([],"float32",w.createScalarValue(m,"float32"));E.push(z),y.push(z)}A=n.runWebGLProgram(C,E,"float32")}let x=Ae({inputs:{x:A},backend:n,attrs:{shape:g.outShape}});return y.push(A),y.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var JJ={kernelName:Si,backendName:"webgl",kernelFunc:YJ};function QJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dimRoundingMode:p,activation:c,leakyreluAlpha:h}=a,m=[],f=d;f==null&&(f=[1,1]),w.assert(R.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=R.computeConv2DInfo(r.shape,s.shape,l,f,u,p,!0),A=te().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,y=c?I0(c,A):null,x=[r,s],v=i!=null,b=o!=null,k=c==="leakyrelu";if(v&&x.push(i),b&&x.push(o),k){let z=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));x.push(z),m.push(z)}let N;A?N=new b4(g,v,y,b,k):N=new x4(g,v,y,b,k);let C=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],E=n.runWebGLProgram(N,x,"float32",C);return m.forEach(z=>n.disposeIntermediateTensorInfo(z)),E}var eQ={kernelName:Ti,backendName:"webgl",kernelFunc:QJ},tQ=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let a=pt(t.length),r=pt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${a} strides = ${a}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function nQ(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],o=w.sizeFromShape(a.shape),[l,u,d,p]=R.prepareAndValidate(a,r),c=Ae({inputs:{x:r},backend:n,attrs:{shape:[u,i]}}),h=Ae({inputs:{x:a},backend:n,attrs:{shape:[w.sizeFromShape(a.shape)/d,d]}});if(n.shouldExecuteOnCPU([a,r])||a.dtype==="string"){let A=n.readSync(r.dataId),y=n.bufferSync(a),x=mX(A,y,a.dtype,u,i,d,p,a.shape,o);return n.makeTensorInfo(l,a.dtype,x.values)}let m=new tQ(i,p,[u,d]),f=n.runWebGLProgram(m,[h,c],h.dtype),g=Ae({inputs:{x:f},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),g}var aQ={kernelName:Ho,backendName:"webgl",kernelFunc:nQ},rQ=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=pt(this.rank),a=sQ(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function sQ(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("int(getIndices(resRC.x, resRC.z))"):a.push(`${n[r]}`);return a.join()}function N4(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=w.parseAxisParam(i,r.shape)[0],u=R.segment_util.collectGatherOpShapeInfo(r,s,l,o),d=w.sizeFromShape(s.shape),p=[],c=Ae({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=Ae({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,d/u.batchSize]}});p.push(c),p.push(h);let m=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let y=n.bufferSync(h),x=n.bufferSync(c),v=gX(x,y,m);return p.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(u.outputShape,v.dtype,v.values)}let f=new rQ(c.shape,m),g=n.runWebGLProgram(f,[c,h],c.dtype);p.push(g);let A=Ae({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return p.forEach(y=>n.disposeIntermediateTensorInfo(y)),A}var iQ={kernelName:Uo,backendName:"webgl",kernelFunc:N4},oQ="return float(a > b);",lQ=`
|
|
return vec4(greaterThan(a, b));
|
|
`,uQ=ln({opSnippet:oQ,packedOpSnippet:lQ,cpuKernelImpl:AX,dtype:"bool"}),dQ={kernelName:jo,backendName:"webgl",kernelFunc:uQ},pQ="return float(a >= b);",cQ=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,hQ=ln({opSnippet:pQ,packedOpSnippet:cQ,dtype:"bool",cpuKernelImpl:yX}),fQ={kernelName:Gs,backendName:"webgl",kernelFunc:hQ};function mQ(e){let{inputs:t,backend:n}=e,{input:a}=t;return S4(a,!0,n)}var gQ={kernelName:pc,backendName:"webgl",kernelFunc:mQ},AQ="return float(!isnan(x) && !isinf(x));",yQ=Je({opSnippet:AQ,dtype:"bool"}),xQ={kernelName:Go,backendName:"webgl",kernelFunc:yQ},bQ="return float(isinf(x));",vQ=Je({opSnippet:bQ,dtype:"bool"}),wQ={kernelName:qo,backendName:"webgl",kernelFunc:vQ},kQ="return float(isnan(x));",IQ=Je({opSnippet:kQ,dtype:"bool"}),SQ={kernelName:Xo,backendName:"webgl",kernelFunc:IQ},TQ="return float(a < b);",NQ=`
|
|
return vec4(lessThan(a, b));
|
|
`,CQ=ln({opSnippet:TQ,packedOpSnippet:NQ,cpuKernelImpl:xX,dtype:"bool"}),EQ={kernelName:Ko,backendName:"webgl",kernelFunc:CQ},RQ="return float(a <= b);",MQ=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,FQ=ln({opSnippet:RQ,packedOpSnippet:MQ,cpuKernelImpl:bX,dtype:"bool"}),$Q={kernelName:Zo,backendName:"webgl",kernelFunc:FQ};function OQ(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=vX(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var zQ={kernelName:hc,backendName:"webgl",kernelFunc:OQ},_Q=`if (x < 0.0) return NAN;
|
|
return log(x);`,DQ=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,PQ=Je({opSnippet:_Q,packedOpSnippet:DQ,cpuKernelImpl:wX}),LQ={kernelName:Ks,backendName:"webgl",kernelFunc:PQ},WQ="return log(1.0 + x);",BQ=Je({opSnippet:WQ}),VQ={kernelName:Yo,backendName:"webgl",kernelFunc:BQ},UQ="return float(a >= 1.0 && b >= 1.0);",HQ=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,jQ=ln({opSnippet:UQ,packedOpSnippet:HQ,dtype:"bool"}),GQ={kernelName:Jo,backendName:"webgl",kernelFunc:jQ},qQ="return float(!(x >= 1.0));",XQ=Je({opSnippet:qQ}),KQ={kernelName:Vu,backendName:"webgl",kernelFunc:XQ},ZQ="return float(a >= 1.0 || b >= 1.0);",YQ=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,JQ=ln({opSnippet:ZQ,packedOpSnippet:YQ,dtype:"bool"}),QQ={kernelName:Uu,backendName:"webgl",kernelFunc:JQ},eee=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},tee=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},nee=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,u=te().getBool("WEBGL_PACK_NORMALIZATION")?new tee(r.shape,s,i,o,l):new eee(r.shape,s,i,o,l);return n.runWebGLProgram(u,[r],r.dtype)},aee={kernelName:Hu,backendName:"webgl",kernelFunc:nee},ree=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${a}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${a})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},see=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=a,p=new ree(r.shape,o,l,u,d);return n.runWebGLProgram(p,[r,s,i],r.dtype)},iee={kernelName:fc,backendName:"webgl",kernelFunc:see};function oee(e,t,n,a){let r=w.sizeFromShape(t),s=w.sizeFromShape(e.shape)/r,i=Ae({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=no(i,e.dtype,"max",a),l=Ae({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function C4(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),u=l,d=R.getAxesPermutation(u,o),p=d!=null,c=n.shouldExecuteOnCPU([r]),h=r;if(p){if(c){let y=n.texData.get(h.dataId).values,x=new Array(o);for(let k=0;k<x.length;k++)x[k]=r.shape[d[k]];let v=Py(y,r.shape,r.dtype,d,x);h=n.makeTensorInfo(x,r.dtype);let b=n.texData.get(h.dataId);b.values=v}else h=S0(r,d,n);u=R.getInnerMostAxes(u.length,o)}R.assertAxesAreInnerMostDims("max",u,o);let[m,f]=R.computeOutAndReduceShapes(h.shape,u),g=m;i&&(g=R.expandShapeToKeepDim(m,l));let A;if(c){let y=n.texData.get(h.dataId).values,x=kX(y,w.sizeFromShape(f),g,r.dtype);A=n.makeTensorInfo(g,r.dtype);let v=n.texData.get(A.dataId);v.values=x}else A=oee(h,f,g,n);return p&&n.disposeIntermediateTensorInfo(h),A}var lee={kernelName:Zs,backendName:"webgl",kernelFunc:C4},uee=G6+`
|
|
return max(a, b);
|
|
`,dee=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+k0+`
|
|
return result;
|
|
`,pee=ln({opSnippet:uee,packedOpSnippet:dee,cpuKernelImpl:IX}),cee={kernelName:Ys,backendName:"webgl",kernelFunc:pee};function hee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;au(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;w.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=R.computePool2DInfo(r.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&w.arraysEqual(d.inShape,d.outShape))return Zn({inputs:{x:r},backend:n});let p=new Qd(d,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var fee={kernelName:Js,backendName:"webgl",kernelFunc:hee};function mee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=a,d=[1,1,1],p=R.computePool3DInfo(r.shape,s,i,d,o,u,l),c=new By(p,"max",!1);return n.runWebGLProgram(c,[r],r.dtype)}var gee={kernelName:ju,backendName:"webgl",kernelFunc:mee},Aee=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},yee=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,d=o-1-e.padInfo.front,p=l-1-e.padInfo.top,c=u-1-e.padInfo.left,h=o*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${d}, ${p}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function xee(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=a,p=[1,1,1],c=R.computePool3DInfo(i.shape,o,l,p,u,d),h=new By(c,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new yee(c),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var bee={kernelName:gc,backendName:"webgl",kernelFunc:xee};function vee(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;au([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:p}=a,c=R.computePool2DInfo(o.shape,l,u,1,d,p),h=!0,m=new Qd(c,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new Aee(c),A=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),A}var wee={kernelName:mc,backendName:"webgl",kernelFunc:vee};function kee(e,t,n,a){let r=new Qd(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new Qd(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var Iee={kernelName:Ac,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;w.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let u=[1,1];w.assert(R.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let d=R.computePool2DInfo(a.shape,r,s,u,i),[p,c]=kee(a,o,d,l);return[p,c]}};function See(e,t,n,a){let r=w.sizeFromShape(t),s=w.sizeFromShape(e.shape)/r,i=Ae({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=no(i,"float32","mean",a),l=Ae({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var Tee={kernelName:Qs,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=w.parseAxisParam(s,a.shape),u=l,d=R.getAxesPermutation(u,o),p=d!=null,c=i.shouldExecuteOnCPU([a]),h=[],m=a;if(p){if(c){let x=i.texData.get(m.dataId).values,v=new Array(o);for(let N=0;N<v.length;N++)v[N]=a.shape[d[N]];let b=Py(x,a.shape,a.dtype,d,v);m=i.makeTensorInfo(v,a.dtype);let k=i.texData.get(m.dataId);k.values=b}else m=S0(a,d,i);h.push(m),u=R.getInnerMostAxes(u.length,o)}R.assertAxesAreInnerMostDims("sum",u,o);let[f,g]=R.computeOutAndReduceShapes(m.shape,u),A=f;r&&(A=R.expandShapeToKeepDim(f,l));let y=See(m,g,A,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return y}};function Nee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),u=l,d=R.getAxesPermutation(u,o),p=r;d!=null&&(p=In({inputs:{x:r},backend:n,attrs:{perm:d}}),u=R.getInnerMostAxes(u.length,r.shape.length)),R.assertAxesAreInnerMostDims("min",u,o);let[c,h]=R.computeOutAndReduceShapes(p.shape,u),m=w.sizeFromShape(h),f=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=no(f,f.dtype,"min",n),A;if(i){let y=R.expandShapeToKeepDim(c,l);A=Ae({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=Ae({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),d!=null&&n.disposeIntermediateTensorInfo(p),A}var Cee={kernelName:ei,backendName:"webgl",kernelFunc:Nee},Eee=G6+`
|
|
return min(a, b);
|
|
`,Ree=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+k0+`
|
|
return result;
|
|
`,Mee=ln({opSnippet:Eee,packedOpSnippet:Ree,cpuKernelImpl:SX}),Fee={kernelName:ti,backendName:"webgl",kernelFunc:Mee},$ee=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,d)=>u[0]+e[d]+u[1]);let a=e.length,r=pt(a),s=t.map(u=>u[0]).join(","),i=t.map((u,d)=>u[0]+e[d]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${a}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},Oee=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=pt(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=kn("rc",a),l=kn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,d=a===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,c="";if(a===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${p};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${p};
|
|
}
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${d});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${p}) +
|
|
gte * ((end - 1) * 2 - source + ${p});
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${d});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${d});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},zee=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=te().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Oee(a.shape,r,s):new $ee(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},_ee={kernelName:ni,backendName:"webgl",kernelFunc:zee},Dee=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,Pee=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+k0+`
|
|
return result;
|
|
`,Lee=ln({opSnippet:Dee,packedOpSnippet:Pee}),Wee={kernelName:Qo,backendName:"webgl",kernelFunc:Lee},Bee=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},Vee=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,Uee=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,E4=ln({opSnippet:Vee,packedOpSnippet:Uee,checkOutOfBounds:!0}),Hee={kernelName:Ws,backendName:"webgl",kernelFunc:E4},R4="return a - b;",M4=ln({opSnippet:R4,packedOpSnippet:R4,supportsComplex:!0,cpuKernelImpl:BX}),jee={kernelName:bi,backendName:"webgl",kernelFunc:M4};function F4(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=w.parseAxisParam([s],r.shape),o=C4({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=R.expandShapeToKeepDim(o.shape,i),u=Ae({inputs:{x:o},backend:n,attrs:{shape:l}}),d=M4({inputs:{a:r,b:u},backend:n}),p=w4({inputs:{x:d},backend:n}),c=T0({inputs:{x:p},backend:n,attrs:{axis:i,keepDims:!1}}),h=Ae({inputs:{x:c},backend:n,attrs:{shape:l}}),m=E4({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}var Gee={kernelName:yi,backendName:"webgl",kernelFunc:F4};function qee(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:F4({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],d=l.shape[1],p=new Bee(u,d,s),c=[[i]],h=n.runWebGLProgram(p,[l],"int32",c);return o||n.disposeIntermediateTensorInfo(l),h}var Xee={kernelName:yc,backendName:"webgl",kernelFunc:qee},$4="return -x;";function Kee(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=NX(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return te().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new lu(a.shape,$4):r=new cs(a.shape,$4),n.runWebGLProgram(r,[a],a.dtype)}var Zee={kernelName:el,backendName:"webgl",kernelFunc:Kee},Yee=ar.nonMaxSuppressionV3Impl;function Jee(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,u=n.readSync(r.dataId),d=n.readSync(s.dataId),{selectedIndices:p}=Yee(u,d,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var Qee={kernelName:nl,backendName:"webgl",kernelFunc:Jee},ete=ar.nonMaxSuppressionV4Impl;function tte(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a,d=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:c,validOutputs:h}=ete(d,p,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var nte={kernelName:al,backendName:"webgl",kernelFunc:tte},ate=ar.nonMaxSuppressionV5Impl;function rte(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a,d=n.readSync(r.dataId),p=n.readSync(s.dataId),c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:A}=ate(d,p,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var ste={kernelName:rl,backendName:"webgl",kernelFunc:rte},ite=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${a}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},ote=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=w.sizeFromShape(r.shape),u=new ite(l,s,i,o),d=Ae({inputs:{x:r},backend:n,attrs:{shape:[l]}}),p=n.runWebGLProgram(u,[d],r.dtype);n.disposeIntermediateTensorInfo(d);let c=[...r.shape,s],h=Ae({inputs:{x:p},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(p),h},lte={kernelName:ri,backendName:"webgl",kernelFunc:ote};function M0(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=ep({inputs:{input:a},backend:n}),s=M0({inputs:{x:r},backend:n}),i=R0({inputs:{input:a},backend:n}),o=M0({inputs:{x:i},backend:n}),l=hs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return tp({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var ute={kernelName:kl,backendName:"webgl",kernelFunc:M0};function O4(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=ep({inputs:{input:a},backend:n}),s=O4({inputs:{x:r},backend:n}),i=R0({inputs:{input:a},backend:n}),o=M0({inputs:{x:i},backend:n}),l=hs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return tp({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var dte={kernelName:sl,backendName:"webgl",kernelFunc:O4};function pte(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Hy({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{w.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let p=Hy({inputs:{input:d},backend:n,attrs:{dim:r}});return o.push(p),p}),u=c4({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var cte={kernelName:il,backendName:"webgl",kernelFunc:pte},hte=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let a=e.length,r=pt(a),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}},fte=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=pt(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=kn("rc",a),l=kn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,d=a===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
|
|
if(${u}) {
|
|
`,a===1?"":`}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
|
|
if(${u}) {`],c=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
|
|
${p[m]}
|
|
if (${c}) {
|
|
result[${m}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${m}] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
`;h+=a===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},z4=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;if(w.sizeFromShape(r.shape)===0){let u=s.map((d,p)=>d[0]+r.shape[p]+d[1]);return tp({backend:n,attrs:{shape:u,value:i,dtype:r.dtype}})}let o=te().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new fte(r.shape,s,i):new hte(r.shape,s,i),l=[[i]];return n.runWebGLProgram(o,[r],r.dtype,l)},mte={kernelName:si,backendName:"webgl",kernelFunc:z4},gte=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,Ate=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+k0+`
|
|
return result;
|
|
`,yte=ln({opSnippet:gte,packedOpSnippet:Ate}),xte={kernelName:ii,backendName:"webgl",kernelFunc:yte};function bte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],u=w.parseAxisParam(s,r.shape),d=u,p=R.getAxesPermutation(d,o),c=r;p!=null&&(c=In({inputs:{x:r},backend:n,attrs:{perm:p}}),d=R.getInnerMostAxes(d.length,o),l.push(c)),R.assertAxesAreInnerMostDims("prod",d,o);let h;if(n.shouldExecuteOnCPU([c])){let m=n.texData.get(c.dataId).values,{outVals:f,outShape:g,outDtype:A}=EX(c.shape,c.dtype,m,d);h=n.makeTensorInfo(g,A,f)}else{let[m,f]=R.computeOutAndReduceShapes(c.shape,d),g=w.sizeFromShape(f),A=Ae({inputs:{x:c},backend:n,attrs:{shape:[-1,g]}}),y=Dc(r.dtype),x=no(A,y,"prod",n);h=Ae({inputs:{x},backend:n,attrs:{shape:m}}),l.push(A),l.push(x)}if(i){l.push(h);let m=R.expandShapeToKeepDim(h.shape,u);h=Ae({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var vte={kernelName:ol,backendName:"webgl",kernelFunc:bte},_4=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=RX(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},wte={kernelName:Gu,backendName:"webgl",kernelFunc:_4},kte="return 1.0 / x;",Ite=Je({opSnippet:kte}),Ste={kernelName:ll,backendName:"webgl",kernelFunc:Ite},Tte=ja+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,Nte=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Cte=Je({opSnippet:Tte,packedOpSnippet:Nte}),Ete={kernelName:li,backendName:"webgl",kernelFunc:Cte},Rte=ja+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Mte=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Fte=Je({opSnippet:Rte,packedOpSnippet:Mte}),$te={kernelName:di,backendName:"webgl",kernelFunc:Fte},Ote=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},zte=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]},
|
|
${u[1]/d[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function _te(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,d=te().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new zte(r.shape,l,u,s,i):new Ote(r.shape,l,u,s,i);return n.runWebGLProgram(d,[r],"float32")}var Dte={kernelName:ui,backendName:"webgl",kernelFunc:_te},Pte=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],p=1/u,c=1/d,h=Math.ceil(p)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${d});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Lte(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Pte(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Wte={kernelName:vc,backendName:"webgl",kernelFunc:Lte},Bte=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",c;r?c="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Vte=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",c;r?c="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]},
|
|
${u[1]/d[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Ute(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,d=te().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Vte(r.shape,l,u,s,i):new Bte(r.shape,l,u,s,i);return n.runWebGLProgram(d,[r],r.dtype)}var Hte={kernelName:qu,backendName:"webgl",kernelFunc:Ute},jte=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],p=1/u,c=1/d,h=Math.ceil(p)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${d});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${a}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Gte(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new jte(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var qte={kernelName:bc,backendName:"webgl",kernelFunc:Gte},Xte=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=pt(n);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},Kte=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=kn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=pt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(a.slice())};
|
|
if(${r}){
|
|
result.g = ${l(a.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${u(a.slice())};
|
|
if(${r}) {
|
|
result.a = ${d(a.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function d(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let m=e.map((A,y)=>c(y,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function c(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function Zte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=w.parseAxisParam(s,r.shape);if(i===0)return Zn({inputs:{x:r},backend:n});let l=te().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Kte(r.shape,o):new Xte(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var Yte={kernelName:pi,backendName:"webgl",kernelFunc:Zte},Jte=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Qte={kernelName:Il,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new Jte(a.shape,s),[u,d]=R.getImageCenter(i,a.shape[1],a.shape[2]),p=[[u,d,Math.sin(r),Math.cos(r)]];return o.runWebGLProgram(l,[a],a.dtype,p)}},ene=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,tne=Je({opSnippet:ene}),nne={kernelName:ci,backendName:"webgl",kernelFunc:tne},ane="return inversesqrt(x);",rne=Je({opSnippet:ane,cpuKernelImpl:MX}),sne={kernelName:hi,backendName:"webgl",kernelFunc:rne},D4=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=pt(r.length),l=pt(s.length),u="";n===1?u="i":n===2&&(u="i, j");let d=`getIndices(${u})`,p="";a===1?p="i":a===2&&(p="i, coords[1]");let c=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${d});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${c};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function ine(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:p}=R.calculateShapes(s,r,i),c=[p/u,u];if(p===0)return n.makeTensorInfo(i,r.dtype);let h=Ae({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=Ae({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new D4(l,o,h.shape.length,m.shape.length,d,c),A=n.runWebGLProgram(g,[m,h,f],m.dtype),y=Ae({inputs:{x:A},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(f),y}var one={kernelName:dl,backendName:"webgl",kernelFunc:ine},lne=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);a=o.join(),r=l.join()}let s=pt(n);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${a});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function une(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new lne(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],Sa(r.dtype,s.dtype))}var dne={kernelName:pl,backendName:"webgl",kernelFunc:une},pne=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${R.SELU_SCALEALPHA};
|
|
float scale = ${R.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,cne=Je({opSnippet:pne}),hne={kernelName:cl,backendName:"webgl",kernelFunc:cne},P4="return 1.0 / (1.0 + exp(-1.0 * x));",fne=Je({opSnippet:P4,packedOpSnippet:P4,cpuKernelImpl:FX}),mne={kernelName:mi,backendName:"webgl",kernelFunc:fne},gne=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,Ane=Je({opSnippet:gne}),yne={kernelName:ml,backendName:"webgl",kernelFunc:Ane},xne=Y6+`
|
|
return sin(x);
|
|
`,bne=Je({opSnippet:xne}),vne={kernelName:fi,backendName:"webgl",kernelFunc:bne},wne=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,kne=Je({opSnippet:wne}),Ine={kernelName:fl,backendName:"webgl",kernelFunc:kne},Sne=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,Tne=Je({opSnippet:Sne}),Nne={kernelName:gl,backendName:"webgl",kernelFunc:Tne},Cne=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((A,y)=>A*y),l=[[0,0]];l.push(...i);for(let A=1+s.length;A<r.shape.length;++A)l.push([0,0]);let u=[],d=z4({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=R.getReshaped(d.shape,s,o,!1),c=R.getPermuted(p.length,s.length,!1),h=R.getReshapedPermuted(d.shape,s,o,!1),m=Ae({inputs:{x:d},backend:n,attrs:{shape:p}}),f=In({inputs:{x:m},backend:n,attrs:{perm:c}}),g=Ae({inputs:{x:f},backend:n,attrs:{shape:h}});return u.push(d),u.push(m),u.push(f),u.forEach(A=>n.disposeIntermediateTensorInfo(A)),g},Ene={kernelName:Al,backendName:"webgl",kernelFunc:Cne};function Rne(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.readSync(a.dataId),l=n.readSync(r.dataId),u=n.readSync(s.dataId),d=n.readSync(i.dataId)[0],[p,c,h,m,f]=OX(o,a.shape,a.dtype,l,r.dtype,u,d);return[n.makeTensorInfo(c,a.dtype,p),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var Mne={kernelName:wc,backendName:"webgl",kernelFunc:Rne};function Fne(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),l=Array.from(n.readSync(s.dataId)),[u,d,p]=zX(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(d,a.dtype,u),n.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var $ne={kernelName:kc,backendName:"webgl",kernelFunc:Fne};function One(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,d]=P6(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(d,a.dtype,u)}var zne={kernelName:Ic,backendName:"webgl",kernelFunc:One};function _ne(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,d]=P6(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(d,a.dtype,u)}var Dne={kernelName:Sc,backendName:"webgl",kernelFunc:_ne};function Pne(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,strides:d,outputSize:p}=R.calculateShapes(s,r,o),c=!1,h=new D4(u,l,r.shape.length,s.shape.length,d,[p,1],c),m=n.runWebGLProgram(h,[s,r,i],s.dtype),f=Ae({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var Lne={kernelName:Tc,backendName:"webgl",kernelFunc:Pne};function Wne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=w.parseAxisParam(i,r.shape)[0],l=R.prepareSplitSize(r,s,o),u=r.shape.length,d=new Array(u).fill(0),p=r.shape.slice();return l.map(c=>{let h=[...p];h[o]=c;let m=pu({inputs:{x:r},backend:n,attrs:{begin:d,size:h}});return d[o]+=c,m})}var Bne={kernelName:yl,backendName:"webgl",kernelFunc:Wne},L4="return sqrt(x);",Vne=Je({opSnippet:L4,packedOpSnippet:L4,cpuKernelImpl:_X}),Une={kernelName:gi,backendName:"webgl",kernelFunc:Vne},Hne="return x * x;",jne=Je({opSnippet:Hne}),Gne={kernelName:Xu,backendName:"webgl",kernelFunc:jne},W4="return (a - b) * (a - b);",qne=ln({opSnippet:W4,packedOpSnippet:W4}),Xne={kernelName:xi,backendName:"webgl",kernelFunc:qne};function Kne({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=ja+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new cs(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var Zne={kernelName:jr,backendName:"webgl",kernelFunc:Kne},Yne=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=pt(n.length),s=pt(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function Jne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:p,shrinkAxisMask:c}=a,{nonStrided:h,$begin:m,$strides:f,size:g,newShape:A,outShape:y}=yn.sliceInfo(r.shape,s,i,o,l,u,d,p,c),x=Ae({inputs:{x:r},backend:n,attrs:{shape:A}}),v;if(h){let k=pu({inputs:{x},backend:n,attrs:{begin:m,size:g}});v=Ae({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))v=n.makeTensorInfo(y,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let k=n.texData.get(x.dataId).values,N=Be(x.shape,x.dtype,k),C=DX(y,N,f,m);v=n.makeTensorInfo(y,x.dtype,C.values)}else{let k=new Yne(m,f,y);v=n.runWebGLProgram(k,[x],x.dtype)}let b=Ae({inputs:{x:v},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),b}var Qne={kernelName:xl,backendName:"webgl",kernelFunc:Jne};function eae(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:d,dataSplits:p}=t,c=n.readSync(d.dataId),h=n.readSync(p.dataId),[m,f]=PX(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(p.shape,"int32",f)]}var tae={kernelName:Nc,backendName:"webgl",kernelFunc:eae};function nae(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.readSync(s.dataId),l=n.readSync(i.dataId)[0],[u,d,p]=LX(o,l,r),c=d.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",d),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var aae={kernelName:Cc,backendName:"webgl",kernelFunc:nae};function rae(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.readSync(s.dataId),o=WX(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var sae={kernelName:Ec,backendName:"webgl",kernelFunc:rae},iae="return tan(x);",oae=Je({opSnippet:iae}),lae={kernelName:vi,backendName:"webgl",kernelFunc:oae},uae=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,dae=Je({opSnippet:uae}),pae={kernelName:wi,backendName:"webgl",kernelFunc:dae},cae=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=pt(this.rank),r=hae(e);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function hae(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function B4(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"||r.shape.length>5){let o=n.readSync(r.dataId),l=r.dtype==="string"?o.map(p=>w.decodeString(p)):o,u=Be(r.shape,r.dtype,l),d=VX(u,s);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let i=new cae(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var fae={kernelName:Hr,backendName:"webgl",kernelFunc:B4},mae=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},gae=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function ao(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function V4(e){let t=1;for(;t<e;)t*=2;return t}function Aae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=te().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=te().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,d=u[u.length-1];if(n.shouldExecuteOnCPU([r])||d<o||s>l){let E=n.readSync(r.dataId),[z,F]=UX(E,u,r.dtype,s,i);return[n.makeTensorInfo(z.shape,z.dtype,z.values),n.makeTensorInfo(F.shape,F.dtype,F.values)]}if(s===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(d===1)return[r,tp({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let p=n.texData.get(r.dataId),c=p!==null&&p.isPacked,h=c?n.unpackTensor(r):r,m=w.sizeFromShape(u)/d,f=Ae({inputs:{x:h},attrs:{shape:[m,d]},backend:n});c&&ao(n,h);let g=V4(s),A=V4(d),y=null,x=()=>y===null?[f,f]:[f,y],v=(E,z,F)=>{let I=x(),_=new mae(F),D=[[d],[y===null?1:0],[Number.NEGATIVE_INFINITY],[E],[z]],V=y;y=n.runWebGLProgram(_,I,"int32",D),ao(n,V)};for(let E=1;E<g;E*=2){let z=E*2;for(let F=E;F>=1;F/=2)v(z,F,[m,A])}for(let E=A;E>g;E/=2){let z=x(),F=new gae([m,E/2]),I=[[d],[y===null?1:0],[g]],_=y;y=n.runWebGLProgram(F,z,"int32",I),ao(n,_);let D=g/2,V=D*2;for(let q=D;q>=1;q/=2)v(V,q,y.shape)}let b=y;y=pu({inputs:{x:y},backend:n,attrs:{begin:0,size:[m,s]}}),ao(n,b);let k=N4({inputs:{x:f,indices:y},backend:n,attrs:{axis:1,batchDims:1}});ao(n,f);let N=u.slice(0,-1);N.push(s),b=y,y=Ae({inputs:{x:y},attrs:{shape:N},backend:n}),ao(n,b);let C=k;return k=Ae({inputs:{x:k},attrs:{shape:N},backend:n}),ao(n,C),[k,y]}var yae={kernelName:bl,backendName:"webgl",kernelFunc:Aae},xae=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function bae(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[d,p,c,h]=r.shape,[m,f]=u!=null?u:[p,c],g=[d,m,f,h],A=new xae(p,c,i,o,l,g);return n.runWebGLProgram(A,[r,s],"float32")}var vae={kernelName:vl,backendName:"webgl",kernelFunc:bae};function wae(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;au(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=HX(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var kae={kernelName:Rc,backendName:"webgl",kernelFunc:wae};function Iae(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),d=0;for(let f=0;f<o;f++)f!==s&&(u[d++]=i.shape[f]);let p=[],c=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){c[s]=f;let g=pu({inputs:{x:i},backend:n,attrs:{begin:c,size:h}}),A=Ae({inputs:{x:g},backend:n,attrs:{shape:u}});m[f]=A,p.push(g)}return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var Sae={kernelName:wl,backendName:"webgl",kernelFunc:Iae},Tae=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,d=n%4,p=`
|
|
sumValue += dot(values, segFilter);
|
|
`,c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${d===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function Nae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,d=R.getAxesPermutation([u],o),p=r;d!=null&&(p=In({inputs:{x:r},backend:n,attrs:{perm:d}}),l.push(p),u=R.getInnerMostAxes(1,o)[0]);let c=R.segment_util.computeOutShape(p.shape,u,i),h=w.sizeFromShape([p.shape[u]]),m=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=Dc(r.dtype),g=(v,b,k,N,C)=>{let E=v.shape[0],z=v.shape[1],F=R.segment_util.segOpComputeOptimalWindowSize(z,C),I={windowSize:F,inSize:z,batchSize:E,numSegments:C},_=new Tae(I,b),D=n.compileAndRun(_,[v,k],N);if(l.push(D),D.shape[1]===C)return D;let V=_4({backend:n,attrs:{start:0,stop:C,step:1,dtype:"float32"}}),q=B4({inputs:{x:V},backend:n,attrs:{reps:[z/F]}});return l.push(V),l.push(q),g(D,b,q,N,C)},A=g(m,"unsortedSegmentSum",s,f,i),y=Ae({inputs:{x:A},backend:n,attrs:{shape:c}}),x=y;if(d!=null){l.push(y);let v=R.getUndoAxesPermutation(d);x=In({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var Cae={kernelName:Ku,backendName:"webgl",kernelFunc:Nae},Eae=[aee,iee,UK,jK,XK,YK,QK,nZ,rZ,iZ,dZ,cZ,mZ,yZ,SZ,vZ,CZ,FZ,RZ,_Z,PZ,WZ,HZ,YZ,QZ,sY,oY,pY,fY,IK,xY,EY,MY,kY,zY,DY,$Y,WY,UY,GY,XY,ZY,QY,sJ,oJ,tJ,dJ,hJ,mJ,xJ,kJ,NJ,RJ,MJ,FJ,OJ,_J,PJ,WJ,VJ,GJ,KJ,JJ,eQ,aQ,iQ,dQ,fQ,kK,gQ,AY,xQ,wQ,SQ,TK,EQ,$Q,zQ,VQ,LQ,GQ,KQ,QQ,lee,gee,fee,bee,wee,Iee,cee,Tee,Cee,Fee,_ee,Wee,Xee,MK,Zee,Qee,nte,ste,tY,lte,dte,cte,mte,xte,CK,vte,wte,nY,Hee,Ste,$te,Ete,$K,Dte,Wte,Hte,qte,Yte,Qte,nne,sne,one,dne,hne,mne,yne,vne,Ine,KZ,Gee,Nne,Ene,Mne,$ne,zne,Dne,Lne,Bne,Une,Gne,Xne,Zne,Qne,tae,aae,sae,jee,WK,lae,pae,fae,yae,vae,BK,kae,Sae,Cae,ute];for(let e of Eae)Ni(e);var Dn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Dn||(Dn={}));var np;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(np||(np={}));var U4;function Rae(e){U4=e.wasm.cwrap(Ii,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Mae(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:p}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let C=n.dataIdMap.get(i.dataId);if(C.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${C.shape.length}.`);m=C.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=np[d];if(g==null)throw new Error(`${d} activation not yet supported for FusedConv2D in the wasm backend.`);let A=l?r.shape[2]:r.shape[1],y=u?s.shape[1]:s.shape[2],x=r.shape[0],v=n.makeOutput([x,A,y],r.dtype),b=n.dataIdMap.get(v.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),N=new Uint8Array(new Int32Array(s.shape).buffer);return U4(c,k,r.shape.length,h,N,s.shape.length,l,u,g,m,f,p||0,b),v}var Fae={kernelName:Ii,backendName:"wasm",setupFunc:Rae,kernelFunc:Mae};function un(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function a(r){let{backend:s,inputs:{x:i}}=r,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),u=s.dataIdMap.get(l.dataId).id;return w.sizeFromShape(l.shape)===0||t(o,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var $ae=un(Io);function Sn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:d}=l,p=o.dataIdMap.get(u.dataId).id,c=o.dataIdMap.get(d.dataId).id,h=n!=null?n:u.dtype,m=R.assertAndGetBroadcastShape(u.shape,d.shape),f=o.makeOutput(m,h);if(w.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),A=new Uint8Array(new Int32Array(d.shape).buffer),y=o.dataIdMap.get(f.dataId).id,x=()=>a(p,g,u.shape.length,c,A,d.shape.length,Dn[u.dtype],y);if(t&&u.dtype==="float32")return x(),f;let v=R.getBroadcastDims(u.shape,m),b=R.getBroadcastDims(d.shape,m),k=v.every((C,E)=>C===E),N=b.every((C,E)=>C===E);if(k&&N)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var Oae=!0,zae=Sn(Vr,Oae),H4;function _ae(e){H4=e.wasm.cwrap(Cs,null,["array","number","number","number"])}function Dae(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return H4(s,r.length,Dn[a.dtype],i),a}var Pae={kernelName:Cs,backendName:"wasm",setupFunc:_ae,kernelFunc:Dae};function F0(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var Lae={kernelName:qs,backendName:"wasm",kernelFunc:F0},j4;function Wae(e){j4=e.wasm.cwrap(ki,null,["number","array","number","number","number","array","number"])}function fu(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=Vae(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=Bae(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=F0({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),d=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(u.dataId).id,c=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return j4(d,h,l.shape.length,Dn[l.dtype],p,c,s.length),u}function Bae(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function Vae(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var Uae={kernelName:ki,backendName:"wasm",kernelFunc:fu,setupFunc:Wae};function fs(e,t,n){let a=e.shape,r=e.shape.length,s=w.parseAxisParam(t,a),i=s,o=R.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let d=new Array(r);for(let c=0;c<d.length;c++)d[c]=a[o[c]];i=R.getInnerMostAxes(i.length,r),l=fu({inputs:{x:e},attrs:{perm:o},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==p&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var G4;function Hae(e){G4=e.wasm.cwrap(No,null,["number, number, number"])}function jae(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:c}=fs(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;R.assertAxesAreInnerMostDims("all",d,h);let[m,f]=R.computeOutAndReduceShapes(l.shape,d),g=w.sizeFromShape(f),A=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(A.dataId).id;G4(o,g,y)}if(c&&t.disposeData(u.dataId),s){let y=R.expandShapeToKeepDim(A.shape,p);A.shape=y}return A}var Gae={kernelName:No,backendName:"wasm",setupFunc:Hae,kernelFunc:jae},q4;function qae(e){q4=e.wasm.cwrap(Co,null,["number, number, number"])}function Xae(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:c}=fs(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;R.assertAxesAreInnerMostDims("any",d,h);let[m,f]=R.computeOutAndReduceShapes(l.shape,d),g=w.sizeFromShape(f),A=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(A.dataId).id;q4(o,g,y)}if(c&&t.disposeData(u.dataId),s){let y=R.expandShapeToKeepDim(A.shape,p);A.shape=y}return A}var Kae={kernelName:Co,backendName:"wasm",setupFunc:qae,kernelFunc:Xae},X4;function Zae(e){X4=e.wasm.cwrap(Es,null,["number","number","number","number","number"])}function Yae(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:d,inputWasTransposed:p}=fs(s,r,t);if(p){let A=t.dataIdMap.get(u.dataId).id;A!==i&&(l=u,o=A)}let c=l.shape.slice(0,-1),h=t.makeOutput(c,"int32"),m=t.dataIdMap.get(h.dataId).id,f=w.sizeFromShape(h.shape),g=l.shape[d[0]];return X4(o,Dn[l.dtype],f,g,m),p&&t.disposeData(u.dataId),h}var Jae={kernelName:Es,backendName:"wasm",kernelFunc:Yae,setupFunc:Zae},K4;function Qae(e){K4=e.wasm.cwrap(Rs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ere(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,d=R.computePool2DInfo(r.shape,i,o,1,l,u),p=d.filterHeight,c=d.filterWidth,h=d.padInfo.top,m=d.padInfo.right,f=d.padInfo.bottom,g=d.padInfo.left,A=d.strideHeight,y=d.strideWidth,x=d.inChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);if(d.dilationWidth!==1||d.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${d.dilationHeight}, ${d.dilationWidth}].`);let v=a.makeOutput(d.outShape,"float32"),b=a.dataIdMap.get(v.dataId).id;return K4(s,r.shape[0],r.shape[1],r.shape[2],p,c,h,m,f,g,A,y,x,b),v}var tre={kernelName:Rs,backendName:"wasm",setupFunc:Qae,kernelFunc:ere};function Pn(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=w.sizeFromShape(a.shape),i=w.inferFromImplicitShape(r,s);return w.assert(s===w.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var nre={kernelName:ul,backendName:"wasm",kernelFunc:Pn},Z4;function are(e){Z4=e.wasm.cwrap(Ms,null,["number","array","number","number","array","number","number","number","number"])}function rre(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,d=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=w.sizeFromShape(m),A=w.sizeFromShape(f),y=g===A||g===1||A===1;w.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(g>A?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([c,h]);w.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[g,d,c]:[g,c,d],b=o?[A,h,p]:[A,p,h],k=Pn({inputs:{x:r},backend:n,attrs:{shape:v}}),N=Pn({inputs:{x:s},backend:n,attrs:{shape:b}}),C=n.dataIdMap.get(k.dataId).id,E=n.dataIdMap.get(N.dataId).id,z=i?k.shape[2]:k.shape[1],F=o?N.shape[1]:N.shape[2],I=Math.max(g,A),_=n.makeOutput([I,z,F],k.dtype),D=n.dataIdMap.get(_.dataId).id,V=new Uint8Array(new Int32Array(k.shape).buffer),q=new Uint8Array(new Int32Array(N.shape).buffer);return Z4(C,V,k.shape.length,E,q,N.shape.length,i,o,D),n.disposeData(k.dataId),n.disposeData(N.dataId),_.shape=x,_}var sre={kernelName:Ms,backendName:"wasm",setupFunc:are,kernelFunc:rre};function ap(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=yn.parseSliceParams(t,n,a),o=yn.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),d=w.computeStrides(t.shape),p=r.dataIdMap.get(u.dataId);if(o){let m=yn.computeFlatOffset(s,d);return t.dtype==="string"?p.stringBytes=l.slice(m,m+w.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+w.sizeFromShape(i))),u}if(t.dtype==="string"){let m=u0(l,s,i,t.shape,t.dtype);return p.stringBytes=m,u}let c=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)ire(l,d[0],c,s,i);else if(h===3)ore(l,d[0],d[1],c,s,i);else if(h===4)lre(l,d[0],d[1],d[2],c,s,i);else{let m=u0(l,s,i,t.shape,t.dtype);c.set(m)}return u}function ire(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;u<l;u++){let d=u*t+o;n.set(e.subarray(d,d+r[1]),s),s+=r[1]}}function ore(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],u=r[2],d=o+s[0],p=l+s[1];for(let c=o;c<d;c++)for(let h=l;h<p;h++){let m=c*t+h*n+u;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function lre(e,t,n,a,r,s,i){let o=0,l=s[0],u=s[1],d=s[2],p=l+i[0],c=u+i[1],h=d+i[2],m=s[3];for(let f=l;f<p;f++)for(let g=u;g<c;g++)for(let A=d;A<h;A++){let y=f*t+g*n+A*a+m;r.set(e.subarray(y,y+i[3]),o),o+=i[3]}}var ure={kernelName:hl,backendName:"wasm",kernelFunc:ap};function dre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a,o=s.reduce((A,y)=>A*y),l=R.getReshaped(r.shape,s,o),u=R.getPermuted(l.length,s.length),d=R.getReshapedPermuted(r.shape,s,o),p=R.getSliceBeginCoords(i,s.length),c=R.getSliceSize(d,i,s.length),h=Pn({inputs:{x:r},backend:n,attrs:{shape:l}}),m=fu({inputs:{x:h},backend:n,attrs:{perm:u}}),f=Pn({inputs:{x:m},backend:n,attrs:{shape:d}}),g=ap({inputs:{x:f},backend:n,attrs:{begin:p,size:c}});return n.disposeData(h.dataId),n.disposeData(m.dataId),n.disposeData(h.dataId),g}var pre={kernelName:Oo,backendName:"wasm",kernelFunc:dre};function $0(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var cre={kernelName:Fs,backendName:"wasm",kernelFunc:$0},hre=un($s),Y4;function fre(e){Y4=e.wasm.cwrap(Ur,null,["number","number","number","number"])}function mre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return Y4(o,s,i,u),l}var gre={kernelName:Ur,backendName:"wasm",setupFunc:fre,kernelFunc:mre};function J4(e){let{inputs:t,backend:n}=e,a=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=R.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>w.sizeFromShape(h.shape)>0);if(s.length===1)return F0({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(w.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(R.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(x=>{let v=w.sizeFromShape(x.shape.slice(a));return Pn({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=R.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=cy(m,r,t[0].dtype,f),A=R.computeOutShape(s.map(x=>x.shape),a);i.shape=A;let y=n.dataIdMap.get(i.dataId);return y.stringBytes=R.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),i}let l=w.sizeFromShape(s[0].shape.slice(0,a)),u=0,d=s.map(h=>{let m=w.sizeFromShape(h.shape.slice(a));return u+=m,m}),p=s.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(i);for(let h=0;h<l;h++){let m=h*u;for(let f=0;f<p.length;f++){let g=d[f],A=h*g,y=p[f].subarray(A,A+g);c.set(y,m),m+=g}}return i}var Are={kernelName:zo,backendName:"wasm",kernelFunc:J4},Q4;function yre(e){Q4=e.wasm.cwrap(Os,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function xre(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:p,dataFormat:c}=n,h=R.convertConv2DDataFormat(c),m=R.computeConv2DInfo(r.shape,s.shape,l,u,d,p,!1,h),f=m.filterHeight,g=m.filterWidth,A=m.padInfo.top,y=m.padInfo.right,x=m.padInfo.bottom,v=m.padInfo.left,b=m.dilationHeight,k=m.dilationWidth,N=m.strideHeight,C=m.strideWidth,E=m.inChannels,z=m.outChannels,F=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let I=a.makeOutput(m.outShape,"float32"),_=a.dataIdMap.get(I.dataId).id;return Q4(i,r.shape[0],r.shape[1],r.shape[2],o,f,g,A,y,x,v,F,b,k,N,C,E,z,_),I}var bre={kernelName:Os,backendName:"wasm",setupFunc:yre,kernelFunc:xre},e8;function vre(e){e8=e.wasm.cwrap(zs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function wre(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:d}=a,p=1,c=R.convertConv2DDataFormat(l),h=R.computeConv2DInfo(d,s.shape,i,p,o,u,!1,c),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:A,inHeight:y,inWidth:x,outChannels:v,outHeight:b,outWidth:k,strideHeight:N,strideWidth:C}=h,E=f-1-h.padInfo.top,z=g-1-h.padInfo.left,F=h.dataFormat==="channelsLast",I=w.computeStrides(h.inShape),_=w.computeStrides(r.shape),[D,V,q]=w.computeStrides(s.shape),G=I[0],Q=F?I[1]:I[2],J=F?I[2]:1,ne=F?1:I[1],ee=_[0],ie=F?_[1]:_[2],Z=F?_[2]:1,le=F?1:_[1],oe=t.makeOutput(h.inShape,"float32"),ye=t.dataIdMap.get(oe.dataId).id,ge=t.dataIdMap.get(r.dataId).id,Se=t.dataIdMap.get(s.dataId).id;return e8(ge,Se,m,f,g,y,x,A,b,k,v,N,C,E,z,D,V,q,G,Q,J,ne,ee,ie,Z,le,ye),oe}var kre={kernelName:zs,backendName:"wasm",setupFunc:vre,kernelFunc:wre},Ire=un(_s),Sre=un(Ds),jy;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(jy||(jy={}));var t8;function Tre(e){t8=e.wasm.cwrap(_o,null,["number","number","number","number","array","number","number","number","number","number"])}function Nre(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:u}=n,d=l.shape[0],[p,c]=i,h=[d,p,c,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=$0({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,A=t.dataIdMap.get(l.dataId).id,y=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(h,"float32"),v=t.dataIdMap.get(x.dataId).id,b=new Uint8Array(new Int32Array(o.shape).buffer);return t8(g,A,y,d,b,p,c,jy[r],s,v),f!=null&&t.disposeData(f.dataId),x}var Cre={kernelName:_o,backendName:"wasm",setupFunc:Tre,kernelFunc:Nre},n8;function Ere(e){n8=e.wasm.cwrap(Ps,null,["number","number","number","number","number","number"])}function Rre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=R.getAxesPermutation([s],l),d=r;u!==null&&(d=fu({inputs:{x:r},attrs:{perm:u},backend:n}));let p=R.getInnerMostAxes(1,l)[0];R.assertAxesAreInnerMostDims("cumsum",[p],l);let c=n.makeOutput(d.shape,d.dtype),h=d.shape[p],m=n.dataIdMap.get(d.dataId).id,f=n.dataIdMap.get(c.dataId).id;n8(m,i?1:0,o?1:0,h,f,Dn[r.dtype]);let g=c;if(u!==null){let A=R.getUndoAxesPermutation(u);g=fu({inputs:{x:c},attrs:{perm:A},backend:n}),n.disposeData(d.dataId),n.disposeData(c.dataId)}return g}var Mre={kernelName:Ps,backendName:"wasm",setupFunc:Ere,kernelFunc:Rre},a8;function Fre(e){a8=e.wasm.cwrap(Do,null,["number","number","number","array","number","array","array","number","number"])}function $re(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a;w.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],d=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,c=u*s,h=d/(s*s),m=i==="NHWC"?[o,p,c,h]:[o,h,p,c],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,A=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return a8(g,s,i==="NHWC"?1:0,A,r.shape.length-1,y,x,m.length,v),f}var Ore={kernelName:Do,backendName:"wasm",setupFunc:Fre,kernelFunc:$re},r8;function zre(e){r8=e.wasm.cwrap(Ls,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function _re(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:p}=n,c=u==null?[1,1]:u,h=R.computeConv2DInfo(r.shape,s.shape,l,c,d,p,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,A=h.padInfo.right,y=h.padInfo.bottom,x=h.padInfo.left,v=h.dilationHeight,b=h.dilationWidth,k=h.strideHeight,N=h.strideWidth,C=h.inChannels,E=h.outChannels,z=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let F=a.makeOutput(h.outShape,"float32"),I=a.dataIdMap.get(F.dataId).id;return r8(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,A,y,x,z,v,b,k,N,C,E,I),F}var Dre={kernelName:Ls,backendName:"wasm",setupFunc:zre,kernelFunc:_re},Pre=un(Bs),Lre=!1,Wre=Sn(Lo,Lre,"bool"),Bre=un(Vs);function Gy(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Pn({inputs:{x:r},backend:a,attrs:{shape:o}})}var Vre={kernelName:Wo,backendName:"wasm",kernelFunc:Gy};function s8(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var Ure={kernelName:Bu,backendName:"wasm",kernelFunc:s8},i8;function Hre(e){i8=e.wasm.cwrap(Vo,null,["number","number","number","number","number","number"])}function jre(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,d]=a.shape;return i8(s,o,l,u,d,i),r}var Gre={kernelName:Vo,backendName:"wasm",kernelFunc:jre,setupFunc:Hre},qre=un(Us),Xre=!1,Kre=Sn(Hs,Xre),o8;function Zre(e){o8=e.wasm.cwrap(js,null,["number","number","number","number","number","number","number"])}function Yre(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,d=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(w.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return o8(d,p,c,h,m,r,g),f}var Jre={kernelName:js,backendName:"wasm",setupFunc:Zre,kernelFunc:Yre},l8;function Qre(e){l8=e.wasm.cwrap(Si,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ese(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=R.computeConv2DInfo(r.shape,s.shape,l,d,u,c),g=np[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let A=a.dataIdMap.get(r.dataId).id,y=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let Z=a.dataIdMap.get(i.dataId);if(Z.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Z.shape.length}.`);if(Z.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Z.shape}) does not match the number of output channels (${x})`);v=Z.id}let b=f.filterHeight,k=f.filterWidth,N=f.padInfo.top,C=f.padInfo.right,E=f.padInfo.bottom,z=f.padInfo.left,F=f.dilationHeight,I=f.dilationWidth,_=f.strideHeight,D=f.strideWidth,V=f.inChannels,q=f.padInfo.type==="SAME"?1:0,G=f.batchSize,Q=f.inHeight,J=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ne=a.makeOutput(f.outShape,"float32"),ee=a.dataIdMap.get(ne.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return l8(A,G,Q,J,y,b,k,v,N,C,E,z,q,F,I,_,D,V,x,g,ie,m||0,ee),ne}var tse={kernelName:Si,backendName:"wasm",setupFunc:Qre,kernelFunc:ese},u8;function nse(e){u8=e.wasm.cwrap(Ti,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ase(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=R.computeConv2DInfo(r.shape,s.shape,l,d,u,c,!0),g=np[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let A=a.dataIdMap.get(r.dataId).id,y=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let Z=a.dataIdMap.get(i.dataId);if(Z.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Z.shape.length}.`);if(Z.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Z.shape}) does not match the number of output channels (${x})`);v=Z.id}let b=f.filterHeight,k=f.filterWidth,N=f.padInfo.top,C=f.padInfo.right,E=f.padInfo.bottom,z=f.padInfo.left,F=f.dilationHeight,I=f.dilationWidth,_=f.strideHeight,D=f.strideWidth,V=f.inChannels,q=f.padInfo.type==="SAME"?1:0,G=f.batchSize,Q=f.inHeight,J=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ne=a.makeOutput(f.outShape,"float32"),ee=a.dataIdMap.get(ne.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return u8(A,G,Q,J,y,b,k,v,N,C,E,z,q,F,I,_,D,V,x,g,ie,m||0,ee),ne}var rse={kernelName:Ti,backendName:"wasm",setupFunc:nse,kernelFunc:ase},d8;function sse(e){d8=e.wasm.cwrap(Ho,null,["number","number","number","number","number","number","array","number"])}function ise(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=u1.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let d=r.shape,p=d[d.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return d8(c,Dn[a.dtype],h,i,p,o,m,f),u}var ose={kernelName:Ho,backendName:"wasm",setupFunc:sse,kernelFunc:ise},p8;function lse(e){p8=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function use(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=w.parseAxisParam(i,r.shape)[0],u=R.segment_util.collectGatherOpShapeInfo(r,s,l,o),d=Pn({inputs:{x:r},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),p=w.sizeFromShape(s.shape),c=Pn({inputs:{x:s},attrs:{shape:[u.batchSize,p/u.batchSize]},backend:t}),h=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize],m=t.makeOutput(h,r.dtype);if(w.sizeFromShape(r.shape)===0)return m;let f=d.shape.length-1,g=t.dataIdMap.get(d.dataId).id,A=t.dataIdMap.get(c.dataId).id,y=t.dataIdMap.get(m.dataId).id,x=new Uint8Array(new Int32Array(w.computeStrides(d.shape)).buffer),v=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer);return p8(g,Dn[r.dtype],x,f,A,u.batchSize,v,y),t.disposeData(d.dataId),t.disposeData(c.dataId),m.shape=u.outputShape,m}var dse={kernelName:Uo,backendName:"wasm",setupFunc:lse,kernelFunc:use},pse=!1,cse=Sn(jo,pse,"bool"),hse=!1,fse=Sn(Gs,hse,"bool"),c8;function mse(e){c8=e.wasm.cwrap(Xs,null,["number","number","number"])}function gse(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,t.dtype);if(w.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;c8(r,n,i)}return s}var Ase={kernelName:Xs,backendName:"wasm",setupFunc:mse,kernelFunc:gse},yse=!1,xse=Sn(Ko,yse,"bool"),bse=!1,vse=Sn(Zo,bse,"bool"),wse=un(Ks),kse=!1,Ise=Sn(Jo,kse,"bool"),h8;function Sse(e){h8=e.wasm.cwrap(Zs,null,["number, number, number"])}function Tse(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:c}=fs(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;R.assertAxesAreInnerMostDims("max",d,h);let[m,f]=R.computeOutAndReduceShapes(l.shape,d),g=w.sizeFromShape(f),A=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(A.dataId).id;h8(o,g,y)}if(c&&t.disposeData(u.dataId),s){let y=R.expandShapeToKeepDim(A.shape,p);A.shape=y}return A}var Nse={kernelName:Zs,backendName:"wasm",setupFunc:Sse,kernelFunc:Tse},Cse=!1,Ese=Sn(Ys,Cse),f8;function Rse(e){f8=e.wasm.cwrap(Js,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Mse(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,d=R.computePool2DInfo(r.shape,i,o,1,l,u),p=d.filterHeight,c=d.filterWidth,h=d.padInfo.top,m=d.padInfo.right,f=d.padInfo.bottom,g=d.padInfo.left,A=d.dilationHeight,y=d.dilationWidth,x=d.strideHeight,v=d.strideWidth,b=d.inChannels,k=d.outChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let N=a.makeOutput(d.outShape,"float32"),C=a.dataIdMap.get(N.dataId).id;return f8(s,r.shape[0],r.shape[1],r.shape[2],p,c,h,m,f,g,A,y,x,v,b,k,C),N}var Fse={kernelName:Js,backendName:"wasm",setupFunc:Rse,kernelFunc:Mse},m8;function $se(e){m8=e.wasm.cwrap(Qs,null,["number, number, number"])}function Ose(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=fs(i,r,t),m=p;if(h){let v=t.dataIdMap.get(d.dataId).id;v!==o&&(u=d,l=v,m=R.getInnerMostAxes(m.length,u.shape.length))}R.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=R.computeOutAndReduceShapes(u.shape,m),A=w.sizeFromShape(g),y=u;u.dtype!=="float32"&&(y=$0({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let x=t.makeOutput(f,"float32");if(w.sizeFromShape(u.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;m8(l,A,v)}if(h&&t.disposeData(d.dataId),s){let v=R.expandShapeToKeepDim(x.shape,c);x.shape=v}return u.dtype!=="float32"&&t.disposeData(y.dataId),x}var zse={kernelName:Qs,backendName:"wasm",setupFunc:$se,kernelFunc:Ose},g8;function _se(e){g8=e.wasm.cwrap(ei,null,["number, number, number"])}function Dse(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=fs(i,r,t);if(h){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x)}let m=u.shape.length;R.assertAxesAreInnerMostDims("min",p,m);let[f,g]=R.computeOutAndReduceShapes(u.shape,p),A=w.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;g8(l,A,x)}if(h&&t.disposeData(d.dataId),s){let x=R.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var Pse={kernelName:ei,backendName:"wasm",setupFunc:_se,kernelFunc:Dse},Lse=!1,Wse=Sn(ti,Lse),qy;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(qy||(qy={}));var A8;function Bse(e){A8=e.wasm.cwrap(ni,null,["number","array","number","number","array","array","number","number"])}function Vse(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=a.map(m=>m[0]),p=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(d).buffer),h=new Uint8Array(new Int32Array(p).buffer);return A8(i,u,t.shape.length,Dn[t.dtype],c,h,qy[r],l),o}var Use={kernelName:ni,backendName:"wasm",kernelFunc:Vse,setupFunc:Bse},Hse=!0,jse=Sn(ai,Hse),Gse=un(el);function Xy(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var y8;function qse(e){y8=e.wasm.cwrap(nl,"number",["number","number","number","number","number"])}function Xse(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,d=t.dataIdMap.get(l.dataId).id,p=y8(u,d,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=Xy(t,p);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var Kse={kernelName:nl,backendName:"wasm",setupFunc:qse,kernelFunc:Xse},x8;function Zse(e){x8=e.wasm.cwrap(al,"number",["number","number","number","number","number","bool"])}function Yse(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,d=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,c=x8(d,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=Xy(t,c);t.wasm._free(f);let A=t.makeOutput([m],"int32",h),y=t.makeOutput([],"int32",g);return[A,y]}var Jse={kernelName:al,backendName:"wasm",setupFunc:Zse,kernelFunc:Yse},b8;function Qse(e){b8=e.wasm.cwrap(rl,"number",["number","number","number","number","number","number"])}function eie(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,d=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,c=b8(d,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=Xy(t,c);t.wasm._free(g);let A=t.makeOutput([m],"int32",h),y=t.makeOutput([m],"float32",f);return[A,y]}var tie={kernelName:rl,backendName:"wasm",setupFunc:Qse,kernelFunc:eie},nie=!1,aie=Sn(tl,nie,"bool"),v8;function rie(e){v8=e.wasm.cwrap(ri,null,["number","number","number","number","number"])}function sie(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return v8(d,s,i,o,u),l}var iie={kernelName:ri,backendName:"wasm",setupFunc:rie,kernelFunc:sie};function oie(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var lie={kernelName:sl,backendName:"wasm",kernelFunc:oie};function uie(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Gy({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{w.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let p=Gy({inputs:{input:d},backend:n,attrs:{dim:r}});return o.push(p),p}),u=J4({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(d=>n.disposeData(d.dataId)),u}var die={kernelName:il,backendName:"wasm",kernelFunc:uie},w8;function pie(e){w8=e.wasm.cwrap(si,null,["number","array","number","number","array","array","number","number"])}function cie(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]);if(w.sizeFromShape(t.shape)===0)return s8({backend:n,attrs:{shape:s,value:r,dtype:t.dtype}});let i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=a.map(m=>m[0]),p=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(d).buffer),h=new Uint8Array(new Int32Array(p).buffer);return w8(i,u,t.shape.length,Dn[t.dtype],c,h,r,l),o}var k8={kernelName:si,backendName:"wasm",kernelFunc:cie,setupFunc:pie},hie=!1,fie=Sn(ii,hie),I8;function mie(e){I8=e.wasm.cwrap(oi,null,["number","number","number"])}function gie(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=n.makeOutput(a.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return I8(s,i,l),o}var Aie={kernelName:oi,backendName:"wasm",setupFunc:mie,kernelFunc:gie},S8;function yie(e){S8=e.wasm.cwrap(ol,null,["number","number","number","number"])}function xie(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=fs(i,r,t),m=p;if(h){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,m=R.getInnerMostAxes(m.length,u.shape.length))}R.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=R.computeOutAndReduceShapes(u.shape,m),A=w.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;S8(l,A,Dn[y.dtype],x)}if(h&&t.disposeData(d.dataId),s){let x=R.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var bie={kernelName:ol,backendName:"wasm",setupFunc:yie,kernelFunc:xie},vie=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=my(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},wie={kernelName:Gu,backendName:"wasm",kernelFunc:vie},kie=!0,Iie=Sn(Ws,kie),Sie=un(li),Tie=un(di),T8;function Nie(e){T8=e.wasm.cwrap(ui,null,["number","number","number","number","number","number","number","number","number","number"])}function Cie(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[d,p,c,h]=r.shape,m=[d,l,u,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=$0({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let A=f.id,y=t.makeOutput(m,"float32");if(w.sizeFromShape(r.shape)===0)return y;let x=t.dataIdMap.get(y.dataId).id;return T8(A,d,p,c,h,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),y}var Eie={kernelName:ui,backendName:"wasm",setupFunc:Nie,kernelFunc:Cie},N8;function Rie(e){N8=e.wasm.cwrap(pi,null,["number","array","number","array","number","number"])}function Mie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=w.parseAxisParam(s,r.shape);if(r.shape.length===0)return F0({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,d=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);N8(l,d,i.length,p,r.shape.length,u);let c=Pn({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var Fie={kernelName:pi,backendName:"wasm",kernelFunc:Mie,setupFunc:Rie},C8;function $ie(e){C8=e.wasm.cwrap(Il,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Oie(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,d=n.dataIdMap.get(l.dataId).id,[p,c,h,m]=r.shape,[f,g]=R.getImageCenter(o,c,h),A=i===0,y=255,x=typeof i=="number"?[i,i,i,A?0:y]:[...i,y],v=new Uint8Array(new Int32Array(x).buffer);return C8(u,p,c,h,m,s,f,g,v,x.length,d),l}var zie={kernelName:Il,backendName:"wasm",kernelFunc:Oie,setupFunc:$ie},_ie=un(ci),Die=un(hi),E8;function Pie(e){E8=e.wasm.cwrap(dl,null,["number","number","number","number","number","number","array","number","number"])}function Lie(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(w.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:d,strides:p,outputSize:c}=d1.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(p).buffer),g=t.dataIdMap.get(o.dataId).id;return E8(h,m,Dn[s.dtype],l,u,d,f,c,g),o}var Wie={kernelName:dl,backendName:"wasm",setupFunc:Pie,kernelFunc:Lie},R8;function Bie(e){R8=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Vie(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),d=n.dataIdMap.get(u.dataId).id,p=a.shape.length,c=r.shape.length,h=p===0||p>1||c===1?1:w.sizeFromShape(r.shape.slice(1));return R8(i,o,l,h,d),u}var Uie={kernelName:pl,backendName:"wasm",kernelFunc:Vie,setupFunc:Bie},M8;function Hie(e){M8=e.wasm.cwrap(mi,null,["number","number"])}function jie(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||M8(a,s),r}var Gie={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Hie,kernelFunc:jie},qie=un(fi),F8;function Xie(e){F8=e.wasm.cwrap(yi,null,["number","number","number","number"])}function Kie(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=w.sizeFromShape(n.shape)/o;return w.sizeFromShape(s.shape)===0||F8(r,i,o,l),s}var Zie={kernelName:yi,backendName:"wasm",setupFunc:Xie,kernelFunc:Kie};function Yie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a,o=w.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=k8.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=R.getReshaped(u.shape,s,o,!1),p=R.getPermuted(d.length,s.length,!1),c=R.getReshapedPermuted(u.shape,s,o,!1),h=Pn({inputs:{x:u},backend:n,attrs:{shape:d}}),m=fu({inputs:{x:h},backend:n,attrs:{perm:p}}),f=Pn({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeData(u.dataId),n.disposeData(h.dataId),n.disposeData(m.dataId),f}var Jie={kernelName:Al,backendName:"wasm",kernelFunc:Yie};function Qie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=w.parseAxisParam(i,r.shape)[0],l=R.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),d=r.shape.slice();return l.map(p=>{let c=[...d];c[o]=p;let h=ap({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=p,h})}var eoe={kernelName:yl,backendName:"wasm",kernelFunc:Qie},toe=un(gi),noe=un(Xu),aoe=!0,roe=Sn(xi,aoe),$8;function soe(e){$8=e.wasm.cwrap(jr,null,["number","number","number"])}function ioe(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return $8(i,r,l),o}var ooe={kernelName:jr,backendName:"wasm",setupFunc:soe,kernelFunc:ioe},O8;function loe(e){O8=e.wasm.cwrap(xl,null,["number","array","number","array","array","array","array","array","number","number"])}function uoe(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o}=a;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:p,shrinkAxisMask:c}=a,h=R.slice_util.maskToAxes(d);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(d!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(d!==0&&c!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-s.length,f=R.slice_util.maskToAxes(p),g=r.shape.slice();f.forEach(z=>{s[z]=0,i[z]=1,g.splice(z,0,1)});let A=Pn({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:y,end:x,strides:v}=R.slice_util.getNormalizedAxes(A.shape,h,m,s,i,o,l,u,d);s=y,i=x,o=v;let b=R.slice_util.maskToAxes(c);b.forEach(z=>{i[z]=s[z]+1,o[z]=1});let k=R.slice_util.computeOutShape(s,i,o),N=k.filter((z,F)=>b.indexOf(F)===-1);if(o.every(z=>z===1)){let z=ap({inputs:{x:A},attrs:{begin:s,size:k},backend:t});t.disposeData(A.dataId);let F=Pn({inputs:{x:z},attrs:{shape:N},backend:t});return t.disposeData(z.dataId),F}let C=t.makeOutput(N,"float32");if(!N.some(z=>z===0)){let z=t.dataIdMap.get(A.dataId).id,F=new Uint8Array(new Int32Array(w.computeStrides(A.shape)).buffer),I=new Uint8Array(new Int32Array(s).buffer),_=new Uint8Array(new Int32Array(i).buffer),D=new Uint8Array(new Int32Array(o).buffer),V=new Uint8Array(new Int32Array(N).buffer),q=new Uint8Array(new Int32Array(w.computeStrides(N)).buffer),G=t.dataIdMap.get(C.dataId).id;O8(z,F,A.shape.length,I,_,D,V,q,N.length,G)}t.disposeData(A.dataId);let E=Pn({inputs:{x:C},attrs:{shape:N},backend:t});return t.disposeData(C.dataId),E}var doe={kernelName:xl,backendName:"wasm",setupFunc:loe,kernelFunc:uoe},poe=!0,coe=Sn(bi,poe),z8;function hoe(e){z8=e.wasm.cwrap(Ai,null,["number, number, number"])}function foe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=fs(i,r,t),m=p;if(h){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,m=R.getInnerMostAxes(m.length,u.shape.length))}R.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=R.computeOutAndReduceShapes(u.shape,m),A=w.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;z8(l,A,x)}if(h&&t.disposeData(d.dataId),s){let x=R.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var moe={kernelName:Ai,backendName:"wasm",setupFunc:hoe,kernelFunc:foe},goe=un(vi),Aoe=un(wi),_8;function yoe(e){_8=e.wasm.cwrap(Hr,null,["number","array","number","array","number","number"])}function xoe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c<o.length;c++)o[c]=r.shape[c]*i[c];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),d=n.makeOutput(o,r.dtype),p=n.dataIdMap.get(d.dataId).id;return _8(s,l,r.shape.length,u,o.length,Dn[d.dtype],p),d}var boe={kernelName:Hr,backendName:"wasm",setupFunc:yoe,kernelFunc:xoe},D8;function voe(e){D8=e.wasm.cwrap(bl,null,["number","array","number","number","number","bool","number","number"])}var woe=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),d=t.dataIdMap.get(u.dataId).id,p=t.makeOutput(l,"int32"),c=t.dataIdMap.get(p.dataId).id;return D8(i,o,a.shape.length,Dn[a.dtype],r,s,d,c),[u,p]},koe={kernelName:bl,backendName:"wasm",setupFunc:voe,kernelFunc:woe},P8;function Ioe(e){P8=e.wasm.cwrap(vl,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function Soe(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[d,p,c,h]=r.shape,[m,f]=u!=null?u:[p,c],g=[d,m,f,h],A=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),y=t.makeOutput(g,r.dtype),x=t.dataIdMap.get(y.dataId).id,v=t.dataIdMap.get(r.dataId).id,b=t.dataIdMap.get(s.dataId).id,k=i==="nearest"?1:2,N;switch(o){case"constant":N=1;break;case"reflect":N=2;break;case"wrap":N=3;break;case"nearest":N=4;break;default:N=1;break}return P8(v,b,s.shape[0]>1,d,m,f,h,c,p,A,r.shape.length-1,k,N,l,x),y}var Toe={kernelName:vl,backendName:"wasm",setupFunc:Ioe,kernelFunc:Soe};function Noe(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==s&&(l[u++]=r.shape[h]);let d=new Array(i),p=new Array(o).fill(0),c=r.shape.slice();c[s]=1;for(let h=0;h<d.length;h++)p[s]=h,d[h]=ap({inputs:{x:r},attrs:{begin:p,size:c},backend:n});return d.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var Coe={kernelName:wl,backendName:"wasm",kernelFunc:Noe};function Eoe(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var Roe={kernelName:kl,backendName:"wasm",kernelFunc:Eoe},Moe=[$ae,zae,Pae,Gae,Kae,Jae,tre,sre,pre,cre,hre,gre,Are,bre,kre,Ire,Sre,Cre,Mre,Ore,Dre,Pre,Wre,Bre,Vre,Ure,Gre,qre,Kre,Fae,Jre,tse,rse,ose,dse,cse,fse,Lae,Ase,xse,vse,wse,Ise,Nse,Ese,Fse,zse,Pse,Wse,Use,jse,Gse,Kse,Jse,tie,aie,iie,lie,die,k8,fie,Aie,bie,wie,Iie,Sie,Tie,nre,Eie,Fie,zie,Die,_ie,Wie,Uie,Gie,qie,ure,Zie,Jie,eoe,toe,noe,roe,ooe,doe,coe,moe,goe,Aoe,boe,koe,Toe,Uae,Coe,Roe];for(let e of Moe)Ni(e);var Ky=te();Ky.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Ky.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Ky.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var L8=Ss(pI()),Foe='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',$oe=Ss(cI()),W8=class extends $u{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Hp(this,vr())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=w.sizeFromShape(n),o=i*w.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:a,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let s=this.wasm.HEAPU8.slice(t,t+w.sizeFromShape(a)*w.bytesPerElement(n));return _oe(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function Ooe(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function B8(e,t,n){if(O0!=null)return O0;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),sp!=null&&sp[a]!=null?sp[a]:n+a}async function zoe(){let[e,t]=await Promise.all([te().getAsync("WASM_HAS_SIMD_SUPPORT"),te().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=Foe,d=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(d)}return o.endsWith(".wasm")?B8(e,t,rp!=null?rp:l):l+o},Zy&&(r.instantiateWasm=Ooe(B8(e,t,rp!=null?rp:"")));let s=!1;r.onAbort=()=>{s||ip||(ip=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&O0==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+L8.default.toString()],{type:"text/javascript"}),i=(0,L8.default)(r)):i=(0,$oe.default)(r),i.then(o=>{s=!0,ip=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function _oe(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Doe=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],O0=null,rp=null,sp={},ip=!1,Zy=!1;function Poe(e,t=!1){if(g1("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),ip)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");O0=e,Zy=t}function Loe(e,t=!1){if(ip)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")rp=e;else{sp=e;let n=Doe.filter(a=>sp[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Zy=t}var Woe="3.9.0",Boe=2;Fl("wasm",async()=>{let{wasm:e}=await zoe();return new W8(e)},Boe);var Voe={tfjs:hI,"tfjs-core":fI,"tfjs-data":mI,"tfjs-layers":gI,"tfjs-converter":AI,"tfjs-backend-cpu":yI,"tfjs-backend-webgl":xI,"tfjs-backend-wasm":bI};var Ln={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Uoe(){let e=Ln.gl;!e||(Ln.extensions=e.getSupportedExtensions())}function V8(){if(!A1(Ln.name)){try{Ln.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ln.width,Ln.height):document.createElement("canvas")}catch(e){ue("error: cannot create canvas:",e);return}try{Ln.gl=Ln.canvas.getContext("webgl2",Ln.webGLattr)}catch(e){ue("error: cannot get WebGL2 context:",e);return}try{c0(2,Ln.gl)}catch(e){ue("error: cannot set WebGL2 context:",e);return}try{let e=new v0(Ln.gl);Fl(Ln.name,()=>new uu(e),Ln.priority)}catch(e){ue("error: cannot register WebGL backend:",e);return}try{Tl("webgl").forEach(t=>{let n={...t,backendName:Ln.name};Ni(n)})}catch(e){ue("error: cannot update WebGL backend registration:",e);return}try{ra.set("WEBGL_VERSION",2)}catch(e){ue("error: cannot set WebGL backend flags:",e);return}Uoe(),ue("backend registered:",Ln.name)}}function U8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],a=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:a}}function lp(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function up(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function dp(e,t,n){let a=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/a,e.startPoint[0]/r,e.endPoint[1]/a,e.endPoint[0]/r]];return Me.cropAndResize(t,s,[0],n)}function z0(e,t=1.5){let n=up(e),a=lp(e),r=[t*a[0]/2,t*a[1]/2],s=[n[0]-r[0],n[1]-r[1]],i=[n[0]+r[0],n[1]+r[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function _0(e){let t=up(e),n=lp(e),r=Math.max(...n)/2,s=[Math.round(t[0]-r),Math.round(t[1]-r)],i=[Math.round(t[0]+r),Math.round(t[1]+r)];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function Yy(e){let t=e.map(s=>s[0]),n=e.map(s=>s[1]),a=[Math.min(...t),Math.min(...n)],r=[Math.max(...t),Math.max(...n)];return{startPoint:a,endPoint:r,landmarks:e}}var H8=e=>({startPoint:Re(e,[0,0],[-1,2]),endPoint:Re(e,[0,2],[-1,2])});var D0=[[1,0,0],[0,1,0],[0,0,1]];function Hoe(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function j8(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Hoe(n)}function G8(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function ms(e,t){let n=0;for(let a=0;a<e.length;a++)n+=e[a]*t[a];return n}function joe(e,t){let n=[];for(let a=0;a<e.length;a++)n.push(e[a][t]);return n}function q8(e,t){let n=[],a=e.length;for(let r=0;r<a;r++){n.push([]);for(let s=0;s<a;s++)n[r].push(ms(e[r],joe(t,s)))}return n}function Jy(e,t){let n=Math.cos(e),a=Math.sin(e),r=[[n,-a,0],[a,n,0],[0,0,1]],s=G8(t[0],t[1]),i=q8(s,r),o=G8(-t[0],-t[1]);return q8(i,o)}function X8(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],a=[-ms(t[0],n),-ms(t[1],n)];return[t[0].concat(a[0]),t[1].concat(a[1]),[0,0,1]]}function K8(e,t){return[ms(e,t[0]),ms(e,t[1])]}function Z8(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let a=0;a<t.strides.length;a++){let r=t.strides[a],s=Math.floor((e+r-1)/r),i=Math.floor((e+r-1)/r),o=t.anchors[a];for(let l=0;l<s;l++){let u=r*(l+.5);for(let d=0;d<i;d++){let p=r*(d+.5);for(let c=0;c<o;c++)n.push([p,u])}}}return n}var Y8=6;function Goe(e,t,n){let a=Re(e,[0,1],[-1,2]),r=re(a,t),s=Re(e,[0,3],[-1,2]),i=ce(s,n),o=ce(r,n),l=ce(i,2),u=fe(o,l),d=re(o,l),p=L(u,n),c=L(d,n);return _l([p,c],1)}var J8=class{constructor(t,n){this.model=t,this.anchorsData=Z8(t.inputs[0].shape[1]),this.anchors=_a(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t,n){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[a,r,s]=H(()=>{let d=Me.resizeBilinear(t,[this.inputSize,this.inputSize]),p=fe(ce(d,127.5),.5),c=this.model.execute(p),h;if(Array.isArray(c)){let A=c.sort((b,k)=>b.size-k.size),y=ht([A[0],A[2]],2),x=ht([A[1],A[3]],2),v=ht([x,y],1);h=lt(v,0)}else h=lt(c);let m=Goe(h,this.anchors,[this.inputSize,this.inputSize]),f=Re(h,[0,0],[-1,1]),g=lt(Un(f));return[h,m,g]});this.config=mn(this.config,n);let i=await Me.nonMaxSuppressionAsync(r,s,this.config.face.detector.maxDetected,this.config.face.detector.iouThreshold,this.config.face.detector.minConfidence),o=await i.array();K(i);let l=[],u=await s.data();for(let d=0;d<o.length;d++){let p=u[o[d]];if(p>this.config.face.detector.minConfidence){let c=Re(r,[o[d],0],[1,-1]),h=H8(c);K(c);let m=this.anchorsData[o[d]],f=H(()=>B(lt(Re(a,[o[d],Y8-1],[1,-1])),[Y8,-1]));l.push({box:h,landmarks:f,anchor:m,confidence:p})}}return K(a),K(r),K(s),{boxes:l,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function Q8(e){let t=await ft(gt(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new J8(t,e);return!t||!t.modelUrl?ue("load model failed:",e.face.detector.modelPath):e.debug&&ue("load model:",t.modelUrl),n}var pr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Qy=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],pp=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],ro=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var qoe=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Xoe=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Koe=[33,133,362,263,1,78,308],Hle=qoe.map(e=>pp[e]),jle=Xoe.map(e=>pp[e]),Gle=Koe.map(e=>pp[e]);var e2=pr.leftEyeLower0,t2=pr.rightEyeLower0,mu={leftBounds:[e2[0],e2[e2.length-1]],rightBounds:[t2[0],t2[t2.length-1]]},ek={count:468,mouth:13,symmetryLine:[13,pr.midwayBetweenEyes[0]]},Zoe={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},gu={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function P0(e,t,n,a){for(let r=0;r<Qy.length;r++){let{key:s,indices:i}=Qy[r],o=pr[`${n}${s}`];if(!a||a.includes(s))for(let l=0;l<i.length;l++){let u=i[l];e[o[l]]=[t[u][0],t[u][1],(t[u][2]+e[o[l]][2])/2]}}}var n2=class{constructor(t,n,a){var r,s;this.storedBoxes=[],this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=a,this.boxSize=((r=t==null?void 0:t.model)==null?void 0:r.inputs[0].shape[2])||0,this.meshSize=(n==null?void 0:n.inputs[0].shape[2])||((s=t==null?void 0:t.model)==null?void 0:s.inputs[0].shape[2]),this.irisSize=(a==null?void 0:a.inputs[0].shape[1])||0,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,a,r){let s=lp({startPoint:n.startPoint,endPoint:n.endPoint}),i=t.map(p=>[s[0]/this.meshSize*(p[0]-this.meshSize/2),s[1]/this.meshSize*(p[1]-this.meshSize/2),p[2]]),o=a!==0?Jy(a,[0,0]):D0,l=a!==0?i.map(p=>[...K8(p,o),p[2]]):i,u=a!==0?X8(r):D0,d=[...up({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(p=>[Math.round(p[0]+ms(d,u[0])),Math.round(p[1]+ms(d,u[1])),Math.round(p[2])])}getLeftToRightEyeDepthDifference(t){let n=t[mu.leftBounds[0]][2],a=t[mu.rightBounds[0]][2];return n-a}getEyeBox(t,n,a,r,s=!1){let i=_0(z0(Yy([t[a],t[r]]),this.irisEnlarge)),o=lp(i),l=Me.cropAndResize(n,[[i.startPoint[1]/this.meshSize,i.startPoint[0]/this.meshSize,i.endPoint[1]/this.meshSize,i.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);if(s&&ra.flags.IS_BROWSER){let u=Me.flipLeftRight(l);K(l),l=u}return{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,a,r=!1){let s=[];for(let i=0;i<gu.numCoordinates;i++){let o=t[i*3],l=t[i*3+1],u=t[i*3+2];s.push([(r?1-o/this.irisSize:o/this.irisSize)*a[0]+n.startPoint[0],l/this.irisSize*a[1]+n.startPoint[1],u])}return{rawCoords:s,iris:s.slice(gu.index)}}getAdjustedIrisCoords(t,n,a){let r=t[pr[`${a}EyeUpper0`][gu.upperCenter]][2],s=t[pr[`${a}EyeLower0`][gu.lowerCenter]][2],i=(r+s)/2;return n.map((o,l)=>{let u=i;return l===2?u=r:l===4&&(u=s),[o[0],o[1],u]})}correctFaceRotation(t,n,a){let[r,s]=n.landmarks.length>=ek.count?ek.symmetryLine:Zoe.symmetryLine,i=j8(n.landmarks[r],n.landmarks[s]),o=up({startPoint:n.startPoint,endPoint:n.endPoint}),l=[o[0]/a.shape[2],o[1]/a.shape[1]],u=Me.rotateWithOffset(a,i,0,l),d=Jy(-i,o),p=t.face.mesh.enabled?dp({startPoint:n.startPoint,endPoint:n.endPoint},u,[this.meshSize,this.meshSize]):dp({startPoint:n.startPoint,endPoint:n.endPoint},u,[this.boxSize,this.boxSize]),c=ce(p,255);return K(p),K(u),[i,d,c]}async augmentIris(t,n){let{box:a,boxSize:r,crop:s}=this.getEyeBox(t,n,mu.leftBounds[0],mu.leftBounds[1],!0),{box:i,boxSize:o,crop:l}=this.getEyeBox(t,n,mu.rightBounds[0],mu.rightBounds[1]),u=ht([s,l]);K(s),K(l);let d=this.irisModel.predict(u);K(u);let p=await d.data();K(d);let c=p.slice(0,gu.numCoordinates*3),{rawCoords:h,iris:m}=this.getEyeCoords(c,a,r,!0),f=p.slice(gu.numCoordinates*3),{rawCoords:g,iris:A}=this.getEyeCoords(f,i,o),y=this.getLeftToRightEyeDepthDifference(t);Math.abs(y)<30?(P0(t,h,"left",null),P0(t,g,"right",null)):y<1?P0(t,h,"left",["EyeUpper0","EyeLower0"]):P0(t,g,"right",["EyeUpper0","EyeLower0"]);let x=this.getAdjustedIrisCoords(t,m,"left"),v=this.getAdjustedIrisCoords(t,A,"right");return t.concat(x).concat(v)}async predict(t,n){let a=!1,r;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.skipFrame)&&(r=await this.boundingBoxDetector.getBoundingBoxes(t,n),this.skipped=0),n.skipFrame&&this.skipped++,!n.skipFrame||r&&r.boxes&&(!n.face.mesh.enabled||r.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let o of r.boxes){let l=await o.box.startPoint.data(),u=await o.box.endPoint.data(),d=await o.landmarks.array();this.storedBoxes.push({startPoint:l,endPoint:u,landmarks:d,confidence:o.confidence})}this.storedBoxes.length>0&&(a=!0)}if(a){if(!r||!r.boxes||r.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let o=0;o<this.storedBoxes.length;o++){let l=U8({startPoint:this.storedBoxes[o].startPoint,endPoint:this.storedBoxes[o].endPoint},r.scaleFactor),u=z0(l),d=_0(u),p=this.storedBoxes[o].landmarks,c=this.storedBoxes[o].confidence;this.storedBoxes[o]={...d,confidence:c,landmarks:p}}}r&&r.boxes&&r.boxes.forEach(o=>{K(o.box.startPoint),K(o.box.endPoint),K(o.landmarks)});let s=[],i=[];for(let o of this.storedBoxes){let l,u=0,d;if(n.face.detector.rotation&&n.face.mesh.enabled&&ra.flags.IS_BROWSER)[u,d,l]=this.correctFaceRotation(n,o,t);else{d=D0;let p=t.clone(),c=n.face.mesh.enabled?dp({startPoint:o.startPoint,endPoint:o.endPoint},p,[this.meshSize,this.meshSize]):dp({startPoint:o.startPoint,endPoint:o.endPoint},p,[this.boxSize,this.boxSize]);l=ce(c,255),K(c),K(p)}if(!n.face.mesh.enabled)s.push({mesh:[],box:o,faceConfidence:null,boxConfidence:o.confidence,confidence:o.confidence,image:l});else{let[p,c,h]=this.meshDetector.execute(l);K(p);let m=(await c.data())[0];K(c);let f=B(h,[-1,3]),g=await f.array();if(K(h),K(f),m<n.face.detector.minConfidence)o.confidence=m,K(l);else{n.face.iris.enabled&&(g=await this.augmentIris(g,l));let A=this.transformRawCoords(g,o,u,d);o={...z0(Yy(A),1.5),confidence:o.confidence},n.face.detector.rotation&&n.face.mesh.enabled&&n.face.description.enabled&&ra.flags.IS_BROWSER&&([u,d,l]=this.correctFaceRotation(n,o,t)),s.push({mesh:A,box:o,faceConfidence:m,boxConfidence:o.confidence,confidence:m,image:l}),o={..._0(o),confidence:o.confidence,faceConfidence:m}}}i.push(o)}return n.face.mesh.enabled&&(this.storedBoxes=i.filter(o=>o.confidence>n.face.detector.minConfidence)),this.detectedFaces=s.length,s}};var Ft=[null,null,null],a2;async function tk(e,t){let n=await a2.predict(e,t),a=[],r=0;for(let s of n||[]){if(!s||s.isDisposedInternal)continue;let i=s.mesh.map(d=>[d[0]/(e.shape[2]||0),d[1]/(e.shape[1]||0),d[2]/a2.meshSize]),o={};if(s.mesh&&s.mesh.length>0)for(let d of Object.keys(pr))o[d]=pr[d].map(p=>s.mesh[p]);let l=s.box?[Math.trunc(Math.max(0,s.box.startPoint[0])),Math.trunc(Math.max(0,s.box.startPoint[1])),Math.trunc(Math.min(e.shape[2]||0,s.box.endPoint[0])-Math.max(0,s.box.startPoint[0])),Math.trunc(Math.min(e.shape[1]||0,s.box.endPoint[1])-Math.max(0,s.box.startPoint[1]))]:[0,0,0,0],u=s.box?[s.box.startPoint[0]/(e.shape[2]||0),s.box.startPoint[1]/(e.shape[1]||0),(s.box.endPoint[0]-s.box.startPoint[0])/(e.shape[2]||0),(s.box.endPoint[1]-s.box.startPoint[1])/(e.shape[1]||0)]:[0,0,0,0];a.push({id:r++,score:Math.round(100*s.faceConfidence||100*s.boxConfidence||0)/100,boxScore:Math.round(100*s.boxConfidence)/100,faceScore:Math.round(100*s.faceConfidence)/100,box:l,boxRaw:u,mesh:s.mesh,meshRaw:i,annotations:o,tensor:s.image}),s.coords&&K(s.coords)}return a}async function r2(e){return!Ft[0]&&e.face.enabled||!Ft[1]&&e.face.mesh.enabled||!Ft[2]&&e.face.iris.enabled?(Ft=await Promise.all([!Ft[0]&&e.face.enabled?Q8(e):null,!Ft[1]&&e.face.mesh.enabled?ft(gt(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Ft[2]&&e.face.iris.enabled?ft(gt(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Ft[1]||!Ft[1].modelUrl?ue("load model failed:",e.face.mesh.modelPath):e.debug&&ue("load model:",Ft[1].modelUrl)),e.face.iris.enabled&&(!Ft[2]||!Ft[2].modelUrl?ue("load model failed:",e.face.iris.modelPath):e.debug&&ue("load model:",Ft[2].modelUrl))):e.debug&&(Ft[0]&&ue("cached model:",Ft[0].model.modelUrl),Ft[1]&&ue("cached model:",Ft[1].modelUrl),Ft[2]&&ue("cached model:",Ft[2].modelUrl)),a2=new n2(Ft[0],Ft[1],Ft[2]),Ft}var nk=ro,ak=pp;var Ga,L0=[],rk=0,s2=Number.MAX_SAFE_INTEGER;async function i2(e){let t=gt(e.modelBasePath,e.face.description.modelPath);return Ga?e.debug&&ue("cached model:",t):(Ga=await ft(t),Ga?e.debug&&ue("load model:",t):ue("load model failed:",e.face.description.modelPath)),Ga}function o2(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let a=5*e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(0,100-a)/100}function sk(e,t,n=0){let a={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return a;for(let r of t)if(r.embedding&&r.name){let s=o2(e,r.embedding);s>n&&s>a.similarity&&(a={...r,similarity:s})}return a}function l2(e){return H(()=>{let n=e.image||e.tensor||e;if(!(n instanceof je))return null;let a=[[.05,.15,.85,.85]];if(!Ga.inputs[0].shape)return null;let r=n.shape.length===3?Me.cropAndResize(zt(n,0),a,[0],[Ga.inputs[0].shape[2],Ga.inputs[0].shape[1]]):Me.cropAndResize(n,a,[0],[Ga.inputs[0].shape[2],Ga.inputs[0].shape[1]]);return L(r,255)})}async function u2(e,t,n,a){var r,s;return Ga?s2<t.face.description.skipFrames&&t.skipFrame&&rk===a&&((r=L0[n])==null?void 0:r.age)&&((s=L0[n])==null?void 0:s.age)>0?(s2++,L0[n]):(s2=0,new Promise(async i=>{let o=l2(e),l,u={age:0,gender:"unknown",genderScore:0,descriptor:[]};if(t.face.description.enabled&&(l=await Ga.predict(o)),K(o),l){let d=await l.find(A=>A.shape[1]===1).data(),p=Math.trunc(200*Math.abs(d[0]-.5))/100;p>t.face.description.minConfidence&&(u.gender=d[0]<=.5?"female":"male",u.genderScore=Math.min(.99,p));let h=(await Qa(l.find(A=>A.shape[1]===100),1).data())[0],m=await l.find(A=>A.shape[1]===100).data();u.age=Math.round(m[h-1]>m[h+1]?10*h-100*m[h-1]:10*h+100*m[h+1])/10;let g=await l.find(A=>A.shape[1]===1024).data();u.descriptor=[...g],l.forEach(A=>K(A))}L0[n]=u,rk=a,i(u)})):null}var Yoe=["angry","disgust","fear","happy","sad","surprise","neutral"],qa,W0=[],ik=0,d2=Number.MAX_SAFE_INTEGER,p2=[.2989,.587,.114];async function c2(e){return qa?e.debug&&ue("cached model:",qa.modelUrl):(qa=await ft(gt(e.modelBasePath,e.face.emotion.modelPath)),!qa||!qa.modelUrl?ue("load model failed:",e.face.emotion.modelPath):e.debug&&ue("load model:",qa.modelUrl)),qa}async function h2(e,t,n,a){return qa?d2<t.face.emotion.skipFrames&&t.skipFrame&&ik===a&&W0[n]&&W0[n].length>0?(d2++,W0[n]):(d2=0,new Promise(async r=>{let s=Me.resizeBilinear(e,[qa.inputs[0].shape[2],qa.inputs[0].shape[1]],!1),[i,o,l]=sn(s,3,3);K(s);let u=L(i,p2[0]),d=L(o,p2[1]),p=L(l,p2[2]);K(i),K(o),K(l);let c=Uc([u,d,p]);K(u),K(d),K(p);let h=H(()=>L(fe(c,.5),2));K(c);let m=[];if(t.face.emotion.enabled){let f=await qa.predict(h),g=await f.data();K(f);for(let A=0;A<g.length;A++)g[A]>t.face.emotion.minConfidence&&m.push({score:Math.min(.99,Math.trunc(100*g[A])/100),emotion:Yoe[A]});m.sort((A,y)=>y.score-A.score)}K(h),W0[n]=m,ik=a,r(m)})):null}var cp=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],ok=cp.length,hp=cp.reduce((e,t,n)=>(e[t]=n,e),{}),Joe=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Qoe=Joe.map(([e,t])=>[hp[e],hp[t]]),lk=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function uk(e){let t=e.reduce(({maxX:n,maxY:a,minX:r,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(n,i),maxY:Math.max(a,o),minX:Math.min(r,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function dk(e,[t,n],[a,r]){let s=t/a,i=n/r,o=(u,d)=>({id:d,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/a,u.box[2]/r,u.box[3]/a],box:[Math.trunc(u.box[0]*i),Math.trunc(u.box[1]*s),Math.trunc(u.box[2]*i),Math.trunc(u.box[3]*s)],keypoints:u.keypoints.map(({score:p,part:c,position:h})=>({score:p,part:c,position:[Math.trunc(h.x*i),Math.trunc(h.y*s)],positionRaw:[h.x/a,h.y/a]}))});return e.map((u,d)=>o(u,d))}var f2=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let a=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=a}};function m2(e,t,n,a){return{y:a.get(e,t,n),x:a.get(e,t,n+ok)}}function g2(e,t,n){let{heatmapY:a,heatmapX:r,id:s}=e,{y:i,x:o}=m2(a,r,s,n);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function A2(e,t,n){return e<t?t:e>n?n:e}function pk(e,t,n,a){let r=n-e,s=a-t;return r*r+s*s}function y2(e,t){return{x:e.x+t.x,y:e.y+t.y}}var B0=1,Au=16,ele=50**2;function ck(e,t,n,a,r,s,i=2){let o=A=>({y:s.get(A.y,A.x,e),x:s.get(A.y,A.x,s.shape[2]/2+e)}),l=(A,y,x)=>({y:A2(Math.round(A.y/Au),0,y-1),x:A2(Math.round(A.x/Au),0,x-1)}),[u,d]=a.shape,p=l(t.position,u,d),c=o(p),m=y2(t.position,c);for(let A=0;A<i;A++){let y=l(m,u,d),x=m2(y.y,y.x,n,r);m=y2({x:y.x*Au,y:y.y*Au},{x:x.x,y:x.y})}let f=l(m,u,d),g=a.get(f.y,f.x,n);return{position:m,part:cp[n],score:g}}function tle(e,t,n,a,r){let s=lk.map(([c,h])=>[hp[c],hp[h]]),i=s.map(([,c])=>c),o=s.map(([c])=>c),l=t.shape[2],u=i.length,d=new Array(l),p=g2(e.part,Au,n);d[e.part.id]={score:e.score,part:cp[e.part.id],position:p};for(let c=u-1;c>=0;--c){let h=i[c],m=o[c];d[h]&&!d[m]&&(d[m]=ck(c,d[h],m,t,n,r))}for(let c=0;c<u;++c){let h=o[c],m=i[c];d[h]&&!d[m]&&(d[m]=ck(c,d[h],m,t,n,a))}return d}function nle(e,t,n,a,r){let[s,i]=r.shape,o=!0,l=Math.max(n-B0,0),u=Math.min(n+B0+1,s);for(let d=l;d<u;++d){let p=Math.max(a-B0,0),c=Math.min(a+B0+1,i);for(let h=p;h<c;++h)if(r.get(d,h,e)>t){o=!1;break}if(!o)break}return o}function ale(e,t){let[n,a,r]=t.shape,s=new f2(n*a*r,({score:i})=>i);for(let i=0;i<n;++i)for(let o=0;o<a;++o)for(let l=0;l<r;++l){let u=t.get(i,o,l);u<e||nle(l,u,i,o,t)&&s.enqueue({score:u,part:{heatmapY:i,heatmapX:o,id:l}})}return s}function hk(e,{x:t,y:n},a){return e.some(({keypoints:r})=>{var i;let s=(i=r[a])==null?void 0:i.position;return s?pk(n,t,s.y,s.x)<=ele:!1})}function rle(e,t){return t.reduce((a,{position:r,score:s},i)=>(hk(e,r,i)||(a+=s),a),0)/t.length}function fk(e,t,n,a,r,s){let i=[],o=ale(s,t);for(;i.length<r&&!o.empty();){let l=o.dequeue(),u=g2(l.part,Au,e);if(hk(i,u,l.part.id))continue;let d=tle(l,t,e,n,a);d=d.filter(h=>h.score>s);let p=rle(i,d),c=uk(d);p>s&&i.push({keypoints:d,box:c,score:Math.round(100*p)/100})}return i}var Yn,sle=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function x2(e,t){let n=H(()=>{if(!Yn.inputs[0].shape)return[];let i=Me.resizeBilinear(e,[Yn.inputs[0].shape[2],Yn.inputs[0].shape[1]]),o=fe(ce(de(i,"float32"),127.5),1),u=Yn.execute(o,sle).map(d=>lt(d,[0]));return u[1]=u[1].sigmoid(),u}),a=await Promise.all(n.map(i=>i.buffer()));for(let i of n)K(i);let r=await fk(a[0],a[1],a[2],a[3],t.body.maxDetected,t.body.minConfidence);return Yn.inputs[0].shape?dk(r,[e.shape[1],e.shape[2]],[Yn.inputs[0].shape[2],Yn.inputs[0].shape[1]]):[]}async function b2(e){return Yn?e.debug&&ue("cached model:",Yn.modelUrl):(Yn=await ft(gt(e.modelBasePath,e.body.modelPath)),!Yn||!Yn.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",Yn.modelUrl)),Yn}function V0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function fp(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function mk(e,t,n){let a=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/a,e.startPoint[0]/r,e.endPoint[1]/a,e.endPoint[0]/r]];return Me.cropAndResize(t,s,[0],n)}function gk(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],a=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:a,palmLandmarks:r,confidence:e.confidence}}function U0(e,t=1.5){let n=fp(e),a=V0(e),r=[t*a[0]/2,t*a[1]/2],s=[n[0]-r[0],n[1]-r[1]],i=[n[0]+r[0],n[1]+r[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function H0(e){let t=fp(e),n=V0(e),r=Math.max(...n)/2,s=[t[0]-r,t[1]-r],i=[t[0]+r,t[1]+r];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var Ak=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var v2=class{constructor(t){this.model=t,this.anchors=Ak.map(n=>[n.x,n.y]),this.anchorsTensor=_a(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=Dt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Dt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return H(()=>{let n=Re(t,[0,0],[-1,2]),a=Re(t,[0,2],[-1,2]),r=re(ce(n,this.inputSizeTensor),this.anchorsTensor),s=ce(a,this.doubleInputSizeTensor),i=L(fe(r,s),this.inputSizeTensor),o=L(re(r,s),this.inputSizeTensor);return _l([i,o],1)})}normalizeLandmarks(t,n){return H(()=>{let a=re(ce(B(t,[-1,7,2]),this.inputSizeTensor),this.anchors[n]);return L(a,this.inputSizeTensor)})}async getBoxes(t,n){let a={};a.batched=this.model.predict(t),a.predictions=lt(a.batched),a.scores=H(()=>lt(Un(Re(a.predictions,[0,0],[-1,1]))));let r=await a.scores.data();a.boxes=Re(a.predictions,[0,1],[-1,4]),a.norm=this.normalizeBoxes(a.boxes),a.nms=await Me.nonMaxSuppressionAsync(a.norm,a.scores,10*n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence);let s=await a.nms.array(),i=[];for(let o of s){let l=Re(a.norm,[o,0],[1,-1]),u=H(()=>B(this.normalizeLandmarks(Re(a.predictions,[o,5],[1,14]),o),[-1,2]));i.push({box:l,palmLandmarks:u,confidence:r[o]})}for(let o of Object.keys(a))K(a[o]);return i}async estimateHandBounds(t,n){let a=t.shape[1],r=t.shape[2],s=H(()=>fe(ce(Me.resizeBilinear(t,[this.inputSize,this.inputSize]),127.5),1)),i=await this.getBoxes(s,n);K(s);let o=[];if(!i||i.length===0)return o;for(let l of i){let u=await l.box.data(),d=u.slice(0,2),p=u.slice(2,4),c=await l.palmLandmarks.array();K(l.box),K(l.palmLandmarks),o.push(gk({startPoint:d,endPoint:p,palmLandmarks:c,confidence:l.confidence},[r/this.inputSize,a/this.inputSize]))}return o}};function ile(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function yk(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return ile(n)}var xk=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function gs(e,t){let n=0;for(let a=0;a<e.length;a++)n+=e[a]*t[a];return n}function ole(e,t){let n=[];for(let a=0;a<e.length;a++)n.push(e[a][t]);return n}function bk(e,t){let n=[],a=e.length;for(let r=0;r<a;r++){n.push([]);for(let s=0;s<a;s++)n[r].push(gs(e[r],ole(t,s)))}return n}function w2(e,t){let n=Math.cos(e),a=Math.sin(e),r=[[n,-a,0],[a,n,0],[0,0,1]],s=xk(t[0],t[1]),i=bk(s,r),o=xk(-t[0],-t[1]);return bk(i,o)}function vk(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],a=[-gs(t[0],n),-gs(t[1],n)];return[t[0].concat(a[0]),t[1].concat(a[1]),[0,0,1]]}function k2(e,t){return[gs(e,t[0]),gs(e,t[1])]}var lle=5,wk=1.65,kk=[0,5,9,13,17,1,2],ule=0,dle=2,I2=class{constructor(t,n){var a;this.handDetector=t,this.handPoseModel=n,this.inputSize=(a=this.handPoseModel)==null?void 0:a.inputs[0].shape[2],this.storedBoxes=[],this.skipped=0,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),a=t.map(i=>i[1]),r=[Math.min(...n),Math.min(...a)],s=[Math.max(...n),Math.max(...a)];return{startPoint:r,endPoint:s}}getBoxForPalmLandmarks(t,n){let a=t.map(s=>k2([...s,1],n)),r=this.calculateLandmarksBoundingBox(a);return U0(H0(r),lle)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),a=U0(H0(n),wk);a.palmLandmarks=[];for(let r=0;r<kk.length;r++)a.palmLandmarks.push(t[kk[r]].slice(0,2));return a}transformRawCoords(t,n,a,r){let s=V0(n),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(h=>[i[0]*(h[0]-this.inputSize/2),i[1]*(h[1]-this.inputSize/2),i[2]*h[2]]),l=w2(a,[0,0]),u=o.map(h=>[...k2(h,l),h[2]]),d=vk(r),p=[...fp(n),1],c=[gs(p,d[0]),gs(p,d[1])];return u.map(h=>[Math.trunc(h[0]+c[0]),Math.trunc(h[1]+c[1]),Math.trunc(h[2])])}async estimateHands(t,n){let a=!1,r;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.skipFrame)&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipFrame&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(a=!0));let s=[];for(let i=0;i<this.storedBoxes.length;i++){let o=this.storedBoxes[i];if(!!o)if(n.hand.landmarks){let l=n.hand.rotation?yk(o.palmLandmarks[ule],o.palmLandmarks[dle]):0,u=fp(o),d=[u[0]/t.shape[2],u[1]/t.shape[1]],p=n.hand.rotation&&ra.flags.IS_BROWSER?Me.rotateWithOffset(t,l,0,d):t.clone(),c=w2(-l,u),h=a?this.getBoxForPalmLandmarks(o.palmLandmarks,c):o,m=mk(h,p,[this.inputSize,this.inputSize]),f=ce(m,255);K(m),K(p);let[g,A]=await this.handPoseModel.predict(f);K(f);let y=(await g.data())[0];if(K(g),y>=n.hand.minConfidence/4){let x=B(A,[-1,3]),v=await x.array();K(A),K(x);let b=this.transformRawCoords(v,h,l,c),k=this.getBoxForHandLandmarks(b);this.storedBoxes[i]={...k,confidence:y};let N={landmarks:b,confidence:y,box:{topLeft:k.startPoint,bottomRight:k.endPoint}};s.push(N)}else this.storedBoxes[i]=null;K(A)}else{let l=U0(H0(o),wk),u={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(u)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}};var Ue={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>Ue.nameMapping[e],getPoints:e=>Ue.pointsMapping[e]},Tn={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>Tn.nameMapping[e]},We={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>We.nameMapping[e]};var so={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function Ik(e,t,n,a){let r=(t-a)/(e-n),s=Math.atan(r)*180/Math.PI;return s<=0?s=-s:s>0&&(s=180-s),s}function Sk(e,t){let n=Ik(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let a=Ik(e[1],e[2],t[1],t[2]);return[n,a]}function Tk(e,t=1){let n=0,a=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?a=1*t:r=1*t,[n,a,r]}function ple(e,t,n){let a=e[0]-t[0],r=e[0]-n[0],s=t[0]-n[0],i=e[1]-t[1],o=e[1]-n[1],l=t[1]-n[1],u=e[2]-t[2],d=e[2]-n[2],p=t[2]-n[2],c=Math.sqrt(a*a+i*i+u*u),h=Math.sqrt(r*r+o*o+d*d),m=Math.sqrt(s*s+l*l+p*p),f=(m*m+c*c-h*h)/(2*m*c);f>1?f=1:f<-1&&(f=-1);let g=Math.acos(f);g=57.2958*g%180;let A;return g>so.NO_CURL_START_LIMIT?A=Tn.none:g>so.HALF_CURL_START_LIMIT?A=Tn.half:A=Tn.full,A}function Nk(e,t,n,a){let r;return a===Math.abs(e)?e>0?r=We.horizontalLeft:r=We.horizontalRight:a===Math.abs(t)?t>0?r=We.horizontalLeft:r=We.horizontalRight:n>0?r=We.horizontalLeft:r=We.horizontalRight,r}function Ck(e,t,n,a){let r;return a===Math.abs(e)?e<0?r=We.verticalDown:r=We.verticalUp:a===Math.abs(t)?t<0?r=We.verticalDown:r=We.verticalUp:n<0?r=We.verticalDown:r=We.verticalUp,r}function cle(e,t,n,a,r,s,i,o){let l,u=Ck(e,t,n,a),d=Nk(r,s,i,o);return u===We.verticalUp?d===We.horizontalLeft?l=We.diagonalUpLeft:l=We.diagonalUpRight:d===We.horizontalLeft?l=We.diagonalDownLeft:l=We.diagonalDownRight,l}function hle(e,t,n,a){let r=e[0]-t[0],s=e[0]-n[0],i=t[0]-n[0],o=e[1]-t[1],l=e[1]-n[1],u=t[1]-n[1],d=Math.max(Math.abs(r),Math.abs(s),Math.abs(i)),p=Math.max(Math.abs(o),Math.abs(l),Math.abs(u)),c=0,h=0,m=0,f=p/(d+1e-5);f>1.5?c+=so.DISTANCE_VOTE_POWER:f>.66?h+=so.DISTANCE_VOTE_POWER:m+=so.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+o*o),A=Math.sqrt(s*s+l*l),y=Math.sqrt(i*i+u*u),x=Math.max(g,A,y),v=e[0],b=e[1],k=n[0],N=n[1];x===g?(k=n[0],N=n[1]):x===y&&(v=t[0],b=t[1]);let z=Sk([v,b],[k,N]),F=Tk(z,so.TOTAL_ANGLE_VOTE_POWER);c+=F[0],h+=F[1],m+=F[2];for(let _ of a){let D=Tk(_,so.SINGLE_ANGLE_VOTE_POWER);c+=D[0],h+=D[1],m+=D[2]}let I;return c===Math.max(c,h,m)?I=Ck(l,o,u,p):m===Math.max(h,m)?I=Nk(s,r,i,d):I=cle(l,o,u,p,s,r,i,d),I}function S2(e){let t=[],n=[],a=[],r=[];if(!e)return{curls:a,directions:r};for(let s of Ue.all){let i=Ue.getPoints(s),o=[],l=[];for(let u of i){let d=e[u[0]],p=e[u[1]],c=Sk(d,p),h=c[0],m=c[1];o.push(h),l.push(m)}t.push(o),n.push(l)}for(let s of Ue.all){let i=s===Ue.thumb?1:0,o=Ue.getPoints(s),l=e[o[i][0]],u=e[o[i+1][1]],d=e[o[3][1]],p=ple(l,u,d),c=hle(l,u,d,t[s].slice(i));a[s]=p,r[s]=c}return{curls:a,directions:r}}var mp=class{constructor(t){this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}addCurl(t,n,a){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,a])}addDirection(t,n,a){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,a])}setWeight(t,n){this.weights[t]=n;let a=this.weights.reduce((r,s)=>r+s,0);this.weightsRelative=this.weights.map(r=>r*5/a)}matchAgainst(t,n){let a=0;for(let r in t){let s=t[r],i=this.curls[r];if(typeof i=="undefined"){a+=this.weightsRelative[r];continue}for(let[o,l]of i)if(s===o){a+=l*this.weightsRelative[r];break}}for(let r in n){let s=n[r],i=this.directions[r];if(typeof i=="undefined"){a+=this.weightsRelative[r];continue}for(let[o,l]of i)if(s===o){a+=l*this.weightsRelative[r];break}}return a/10}};var As=new mp("thumbs up");As.addCurl(Ue.thumb,Tn.none,1);As.addDirection(Ue.thumb,We.verticalUp,1);As.addDirection(Ue.thumb,We.diagonalUpLeft,.25);As.addDirection(Ue.thumb,We.diagonalUpRight,.25);for(let e of[Ue.index,Ue.middle,Ue.ring,Ue.pinky])As.addCurl(e,Tn.full,1),As.addDirection(e,We.horizontalLeft,1),As.addDirection(e,We.horizontalRight,1);var Wt=new mp("victory");Wt.addCurl(Ue.thumb,Tn.half,.5);Wt.addCurl(Ue.thumb,Tn.none,.5);Wt.addDirection(Ue.thumb,We.verticalUp,1);Wt.addDirection(Ue.thumb,We.diagonalUpLeft,1);Wt.addCurl(Ue.index,Tn.none,1);Wt.addDirection(Ue.index,We.verticalUp,.75);Wt.addDirection(Ue.index,We.diagonalUpLeft,1);Wt.addCurl(Ue.middle,Tn.none,1);Wt.addDirection(Ue.middle,We.verticalUp,1);Wt.addDirection(Ue.middle,We.diagonalUpLeft,.75);Wt.addCurl(Ue.ring,Tn.full,1);Wt.addDirection(Ue.ring,We.verticalUp,.2);Wt.addDirection(Ue.ring,We.diagonalUpLeft,1);Wt.addDirection(Ue.ring,We.horizontalLeft,.2);Wt.addCurl(Ue.pinky,Tn.full,1);Wt.addDirection(Ue.pinky,We.verticalUp,.2);Wt.addDirection(Ue.pinky,We.diagonalUpLeft,1);Wt.addDirection(Ue.pinky,We.horizontalLeft,.2);Wt.setWeight(Ue.index,2);Wt.setWeight(Ue.middle,2);var Ek=[As,Wt];var fle=.7;function Rk(e){let t=S2(e),n={};for(let a of Ue.all)n[Ue.getName(a)]={curl:Tn.getName(t.curls[a]),direction:We.getName(t.directions[a])};return n}function Mk(e){let t=S2(e),n=[];for(let a of Ek){let r=a.matchAgainst(t.curls,t.directions);r>=fle&&n.push({name:a.name,confidence:r})}return n}var Fk={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},ys,xs,$k;async function T2(e,t){let n=await $k.estimateHands(e,t);if(!n)return[];let a=[];for(let r=0;r<n.length;r++){let s={};if(n[r].landmarks)for(let d of Object.keys(Fk))s[d]=Fk[d].map(p=>n[r].landmarks[p]);let i=n[r].landmarks,o=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(i&&i.length>0){for(let d of i)d[0]<o[0]&&(o[0]=d[0]),d[1]<o[1]&&(o[1]=d[1]),d[0]>o[2]&&(o[2]=d[0]),d[1]>o[3]&&(o[3]=d[1]);o[2]-=o[0],o[3]-=o[1],l=[o[0]/(e.shape[2]||0),o[1]/(e.shape[1]||0),o[2]/(e.shape[2]||0),o[3]/(e.shape[1]||0)]}else o=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let u=Rk(i);a.push({id:r,score:Math.round(100*n[r].confidence)/100,box:o,boxRaw:l,keypoints:i,annotations:s,landmarks:u})}return a}async function N2(e){!ys||!xs?([ys,xs]=await Promise.all([e.hand.enabled?ft(gt(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?ft(gt(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!ys||!ys.modelUrl?ue("load model failed:",e.hand.detector.modelPath):e.debug&&ue("load model:",ys.modelUrl),!xs||!xs.modelUrl?ue("load model failed:",e.hand.skeleton.modelPath):e.debug&&ue("load model:",xs.modelUrl))):(e.debug&&ue("cached model:",ys.modelUrl),e.debug&&ue("cached model:",xs.modelUrl));let t=new v2(ys);return $k=new I2(t,xs),[ys,xs]}var Ok=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],zk=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var Wn;async function j0(e){return Wn?e.debug&&ue("cached model:",Wn.modelUrl):(Wn=await ft(gt(e.modelBasePath,e.body.modelPath)),Wn.width=parseInt(Wn.signature.inputs["input_1:0"].tensorShape.dim[2].size),Wn.height=parseInt(Wn.signature.inputs["input_1:0"].tensorShape.dim[1].size),!Wn||!Wn.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",Wn.modelUrl)),Wn}async function C2(e,t){if(!Wn)return[];if(!t.body.enabled)return[];let n={width:e.shape[2]||0,height:e.shape[1]||0},a=Me.resizeBilinear(e,[Wn.width,Wn.height],!1),r=ce(a,[255]);K(a);let s=await Wn.predict(r),i=s.find(g=>g.size===195||g.size===155),o=await(i==null?void 0:i.data())||[];s.forEach(g=>K(g)),K(r);let l=[],u=(o==null?void 0:o.length)===195?Ok:zk,d=5;for(let g=0;g<o.length/d;g++)l.push({id:g,part:u[g],position:[Math.trunc(n.width*o[d*g+0]/255),Math.trunc(n.height*o[d*g+1]/255),Math.trunc(o[d*g+2])+0],positionRaw:[o[d*g+0]/255,o[d*g+1]/255,o[d*g+2]+0],score:(100-Math.trunc(100/(1+Math.exp(o[d*g+3]))))/100,presence:(100-Math.trunc(100/(1+Math.exp(o[d*g+4]))))/100});let p=l.map(g=>g.position[0]),c=l.map(g=>g.position[1]),h=[Math.min(...p),Math.min(...c),Math.max(...p)-Math.min(...p),Math.max(...c)-Math.min(...p)],m=[0,0,0,0],f=l.reduce((g,A)=>A.score>g?A.score:g,0);return[{id:0,score:f,box:h,boxRaw:m,keypoints:l}]}var Bn,cr=[],E2=[0,0,0,0],R2=[0,0,0,0],G0=0,M2=Number.MAX_SAFE_INTEGER,mle=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function _k(e){return Bn?e.debug&&ue("cached model:",Bn.modelUrl):(Bn=await ft(gt(e.modelBasePath,e.body.modelPath)),!Bn||!Bn.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",Bn.modelUrl)),Bn}function gle(e,t){let[n,a]=e.shape;return H(()=>{let r=(o,l)=>fe(o,L(ce(o,ke(l,"int32")),ke(l,"int32"))),s=B(e,[a*n]),i=da(s,0).dataSync()[0];if(i>t){let o=Qa(s,0),l=r(o,n).dataSync()[0],u=ce(o,ke(n,"int32")).dataSync()[0];return[l,u,i]}return[0,0,i]})}async function F2(e,t){return M2<t.body.skipFrames&&t.skipFrame&&Object.keys(cr).length>0?(M2++,[{id:0,score:G0,box:E2,boxRaw:R2,keypoints:cr}]):(M2=0,new Promise(async n=>{let a=H(()=>{if(!Bn.inputs[0].shape)return null;let u=Me.resizeBilinear(e,[Bn.inputs[0].shape[2],Bn.inputs[0].shape[1]],!1);return L(u,2).sub(1)}),r;if(t.body.enabled&&(r=await Bn.predict(a)),K(a),r){cr.length=0;let u=r.squeeze();K(r);let d=u.unstack(2);K(u);for(let p=0;p<d.length;p++){let[c,h,m]=gle(d[p],t.body.minConfidence);G0>t.body.minConfidence&&cr.push({score:Math.round(100*m)/100,part:mle[p],positionRaw:[c/Bn.inputs[0].shape[2],h/Bn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*c/Bn.inputs[0].shape[2]),Math.round(e.shape[1]*h/Bn.inputs[0].shape[1])]})}d.forEach(p=>K(p))}G0=cr.reduce((u,d)=>d.score>u?d.score:u,0);let s=cr.map(u=>u.position[0]),i=cr.map(u=>u.position[1]);E2=[Math.min(...s),Math.min(...i),Math.max(...s)-Math.min(...s),Math.max(...i)-Math.min(...i)];let o=cr.map(u=>u.positionRaw[0]),l=cr.map(u=>u.positionRaw[1]);R2=[Math.min(...o),Math.min(...l),Math.max(...o)-Math.min(...o),Math.max(...l)-Math.min(...l)],n([{id:0,score:G0,box:E2,boxRaw:R2,keypoints:cr}])}))}var hr,xa=[],$2=[0,0,0,0],Mr=[0,0,0,0],Fr=0,O2=Number.MAX_SAFE_INTEGER,Dk=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];async function z2(e){return hr?e.debug&&ue("cached model:",hr.modelUrl):(hr=await ft(gt(e.modelBasePath,e.body.modelPath)),!hr||!hr.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",hr.modelUrl)),hr}async function Ale(e,t,n){xa.length=0;let a=e[0][0];for(let u=0;u<a.length;u++)Fr=a[u][2],Fr>t.body.minConfidence&&xa.push({score:Math.round(100*Fr)/100,part:Dk[u],positionRaw:[a[u][1],a[u][0]],position:[Math.round((n.shape[2]||0)*a[u][1]),Math.round((n.shape[1]||0)*a[u][0])]});Fr=xa.reduce((u,d)=>d.score>u?d.score:u,0);let r=xa.map(u=>u.position[0]),s=xa.map(u=>u.position[1]);$2=[Math.min(...r),Math.min(...s),Math.max(...r)-Math.min(...r),Math.max(...s)-Math.min(...s)];let i=xa.map(u=>u.positionRaw[0]),o=xa.map(u=>u.positionRaw[1]);Mr=[Math.min(...i),Math.min(...o),Math.max(...i)-Math.min(...i),Math.max(...o)-Math.min(...o)];let l=[];return l.push({id:0,score:Fr,box:$2,boxRaw:Mr,keypoints:xa}),l}async function yle(e,t,n){let a=[];for(let r=0;r<e[0].length;r++){let s=e[0][r];if(Fr=Math.round(100*s[51+4])/100,!(Fr<t.body.minConfidence)){xa.length=0;for(let i=0;i<17;i++){let o=Math.round(100*s[3*i+2])/100;o>t.body.minConfidence&&xa.push({part:Dk[i],score:o,positionRaw:[s[3*i+1],s[3*i+0]],position:[Math.trunc(s[3*i+1]*(n.shape[2]||0)),Math.trunc(s[3*i+0]*(n.shape[1]||0))]})}Mr=[s[51+1],s[51+0],s[51+3]-s[51+1],s[51+2]-s[51+0]],a.push({id:r,score:Fr,boxRaw:Mr,box:[Math.trunc(Mr[0]*(n.shape[2]||0)),Math.trunc(Mr[1]*(n.shape[1]||0)),Math.trunc(Mr[2]*(n.shape[2]||0)),Math.trunc(Mr[3]*(n.shape[1]||0))],keypoints:xa})}}return a}async function _2(e,t){return O2<t.body.skipFrames&&t.skipFrame&&Object.keys(xa).length>0?(O2++,[{id:0,score:Fr,box:$2,boxRaw:Mr,keypoints:xa}]):(O2=0,new Promise(async n=>{let a=H(()=>{if(!hr.inputs[0].shape)return null;let o=hr.inputs[0].shape[2];o===-1&&(o=256);let l=Me.resizeBilinear(e,[o,o],!1);return de(l,"int32")}),r;t.body.enabled&&(r=await hr.predict(a)),K(a),r||n([]);let s=await r.array(),i;r.shape[2]===17?i=await Ale(s,t,e):r.shape[2]===56&&(i=await yle(s,t,e)),K(r),n(i)}))}var yu=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Jn,D2=[],P2=Number.MAX_SAFE_INTEGER,q0=2.5;async function L2(e){if(Jn)e.debug&&ue("cached model:",Jn.modelUrl);else{Jn=await ft(gt(e.modelBasePath,e.object.modelPath));let t=Object.values(Jn.modelSignature.inputs);if(Jn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Jn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!Jn||!Jn.modelUrl?ue("load model failed:",e.object.modelPath):e.debug&&ue("load model:",Jn.modelUrl)}return Jn}async function xle(e,t,n,a){let r=0,s=[];for(let u of[1,2,4])H(async()=>{var g,A;let d=u*13,p=(g=e.find(y=>y.shape[1]===d**2&&y.shape[2]===yu.length))==null?void 0:g.squeeze(),c=(A=e.find(y=>y.shape[1]===d**2&&y.shape[2]<yu.length))==null?void 0:A.squeeze(),m=await c.reshape([-1,4,c.shape[1]/4]).argMax(2).array(),f=await p.array();for(let y=0;y<p.shape[0];y++)for(let x=0;x<p.shape[1];x++){let v=f[y][x];if(v>a.object.minConfidence&&x!==61){let b=(.5+Math.trunc(y%d))/d,k=(.5+Math.trunc(y/d))/d,N=m[y].map(V=>V*(d/u/t)),[C,E]=[b-q0/u*N[0],k-q0/u*N[1]],[z,F]=[b+q0/u*N[2]-C,k+q0/u*N[3]-E],I=[C,E,z,F];I=I.map(V=>Math.max(0,Math.min(V,1)));let _=[I[0]*n[0],I[1]*n[1],I[2]*n[0],I[3]*n[1]],D={id:r++,score:Math.round(100*v)/100,class:x+1,label:yu[x].label,box:_.map(V=>Math.trunc(V)),boxRaw:I};s.push(D)}}});e.forEach(u=>K(u));let i=s.map(u=>[u.boxRaw[1],u.boxRaw[0],u.boxRaw[3],u.boxRaw[2]]),o=s.map(u=>u.score),l=[];if(i&&i.length>0){let u=await Me.nonMaxSuppressionAsync(i,o,a.object.maxDetected,a.object.iouThreshold,a.object.minConfidence);l=await u.data(),K(u)}return s=s.filter((u,d)=>l.includes(d)).sort((u,d)=>d.score-u.score),s}async function W2(e,t){return P2<t.object.skipFrames&&t.skipFrame&&D2.length>0?(P2++,D2):(P2=0,new Promise(async n=>{let a=[e.shape[2],e.shape[1]],r=Me.resizeBilinear(e,[Jn.inputSize,Jn.inputSize],!1),s=ce(r,255),i=s.transpose([0,3,1,2]);K(s),K(r);let o;t.object.enabled&&(o=await Jn.predict(i)),K(i);let l=await xle(o,Jn.inputSize,a,t);D2=l,n(l)}))}var Qn,B2=[],V2=Number.MAX_SAFE_INTEGER;async function U2(e){if(Qn)e.debug&&ue("cached model:",Qn.modelUrl);else{Qn=await ft(gt(e.modelBasePath,e.object.modelPath));let t=Object.values(Qn.modelSignature.inputs);if(Qn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Qn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!Qn||!Qn.modelUrl?ue("load model failed:",e.object.modelPath):e.debug&&ue("load model:",Qn.modelUrl)}return Qn}async function ble(e,t,n,a){if(!e)return[];let r=[],s=await e.array(),i=lt(e);K(e);let o=sn(i,6,1);K(i);let l=$n([o[1],o[0],o[3],o[2]],1),u=lt(l),d=lt(o[4]),p=lt(o[5]);o.forEach(f=>K(f));let c=await Me.nonMaxSuppressionAsync(u,d,a.object.maxDetected,a.object.iouThreshold,a.object.minConfidence);K(u),K(d),K(p);let h=await c.data();K(c);let m=0;for(let f of h){let g=Math.trunc(100*s[0][f][4])/100,A=s[0][f][5],y=yu[A].label,[x,v]=[s[0][f][0]/t,s[0][f][1]/t],b=[x,v,s[0][f][2]/t-x,s[0][f][3]/t-v],k=[Math.trunc(b[0]*n[0]),Math.trunc(b[1]*n[1]),Math.trunc(b[2]*n[0]),Math.trunc(b[3]*n[1])];r.push({id:m++,score:g,class:A,label:y,box:k,boxRaw:b})}return r}async function H2(e,t){return V2<t.object.skipFrames&&t.skipFrame&&B2.length>0?(V2++,B2):(V2=0,new Promise(async n=>{let a=[e.shape[2],e.shape[1]],r=Me.resizeBilinear(e,[Qn.inputSize,Qn.inputSize]),s=t.object.enabled?Qn.execute(r,["tower_0/detections"]):null;K(r);let i=await ble(s,Qn.inputSize,a,t);B2=i,n(i)}))}function vle(e,t,n){let a=function(o,l,u){let d=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(d,(p,c)=>(u[c]=0,p))},r=function(o,l){let u=e.createShader(l);if(e.shaderSource(u,o),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let s=r(t,e.VERTEX_SHADER),i=r(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),a(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);a(t,"uniform",this.uniform),a(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function Pk(e){e||(e={});let t=0,n=null,a=!1,r=-1,s=[null,null],i=[],o=-1,l=-1,u=null,d=null,p={},c=e.canvas||document.createElement("canvas"),h={},m={INTERMEDIATE:1},f=c.getContext("webgl");if(!f)throw new Error("Filter: getContext() failed");this.addFilter=function(b){let k=Array.prototype.slice.call(arguments,1),N=p[b];i.push({func:N,args:k})},this.reset=function(){i=[]};let g=function(b,k){if(!(b===o&&k===l)){if(c.width=b,o=b,c.height=k,l=k,!u){let N=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,u),f.bufferData(f.ARRAY_BUFFER,N,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,o,l),s=[null,null]}},A=function(b,k){let N=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,N);let C=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,C);let E=f.createTexture();return f.bindTexture(f.TEXTURE_2D,E),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,b,k,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,E,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:N,texture:E}},y=function(b){return s[b]=s[b]||A(o,l),s[b]},x=function(b=null){var E,z;let k=null,N=null,C=!1;t===0?k=n:k=(E=y(r))==null?void 0:E.texture,t++,a&&!(b&m.INTERMEDIATE)?(N=null,C=t%2==0):(r=(r+1)%2,N=(z=y(r))==null?void 0:z.fbo),f.bindTexture(f.TEXTURE_2D,k),f.bindFramebuffer(f.FRAMEBUFFER,N),f.uniform1f(d.uniform.flipY,C?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(b){if(g(b.width,b.height),t=0,n||(n=f.createTexture()),f.bindTexture(f.TEXTURE_2D,n),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,b),i.length===0)return x(),c;for(let k=0;k<i.length;k++){a=k===i.length-1;let N=i[k];N.func.apply(this,N.args||[])}return c};let v=function(b){if(h[b])return d=h[b],f.useProgram(d.id),d;let k={};k.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
|
|
`),k.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
|
|
`),d=new vle(f,k.VERTEX_IDENTITY,b);let N=Float32Array.BYTES_PER_ELEMENT,C=4*N;return f.enableVertexAttribArray(d.attribute.pos),f.vertexAttribPointer(d.attribute.pos,2,f.FLOAT,!1,C,0*N),f.enableVertexAttribArray(d.attribute.uv),f.vertexAttribPointer(d.attribute.uv,2,f.FLOAT,!1,C,2*N),h[b]=d,d};p.colorMatrix=function(b){let k=new Float32Array(b);k[4]/=255,k[9]/=255,k[14]/=255,k[19]/=255;let N=k[18]===1&&k[3]===0&&k[8]===0&&k[13]===0&&k[15]===0&&k[16]===0&&k[17]===0&&k[19]===0?p.colorMatrix.SHADER.WITHOUT_ALPHA:p.colorMatrix.SHADER.WITH_ALPHA,C=v(N);f.uniform1fv(C.uniform.m,k),x()},p.colorMatrix.SHADER={},p.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
|
|
`),p.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
|
|
`),p.brightness=function(b){let k=(b||0)+1;p.colorMatrix([k,0,0,0,0,0,k,0,0,0,0,0,k,0,0,0,0,0,1,0])},p.saturation=function(b){let k=(b||0)*2/3+1,N=(k-1)*-.5;p.colorMatrix([k,N,N,0,0,N,k,N,0,0,N,N,k,0,0,0,0,0,1,0])},p.desaturate=function(){p.saturation(-1)},p.contrast=function(b){let k=(b||0)+1,N=-128*(k-1);p.colorMatrix([k,0,0,0,N,0,k,0,0,N,0,0,k,0,N,0,0,0,1,0])},p.negative=function(){p.contrast(-2)},p.hue=function(b){b=(b||0)/180*Math.PI;let k=Math.cos(b),N=Math.sin(b),C=.213,E=.715,z=.072;p.colorMatrix([C+k*(1-C)+N*-C,E+k*-E+N*-E,z+k*-z+N*(1-z),0,0,C+k*-C+N*.143,E+k*(1-E)+N*.14,z+k*-z+N*-.283,0,0,C+k*-C+N*-(1-C),E+k*-E+N*E,z+k*(1-z)+N*z,0,0,0,0,0,1,0])},p.desaturateLuminance=function(){p.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},p.sepia=function(){p.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},p.brownie=function(){p.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},p.vintagePinhole=function(){p.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},p.kodachrome=function(){p.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},p.technicolor=function(){p.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},p.polaroid=function(){p.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},p.shiftToBGR=function(){p.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},p.convolution=function(b){let k=new Float32Array(b),N=1/o,C=1/l,E=v(p.convolution.SHADER);f.uniform1fv(E.uniform.m,k),f.uniform2f(E.uniform.px,N,C),x()},p.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
|
|
`),p.detectEdges=function(){p.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},p.sobelX=function(){p.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},p.sobelY=function(){p.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},p.sharpen=function(b){let k=b||1;p.convolution.call(this,[0,-1*k,0,-1*k,1+4*k,-1*k,0,-1*k,0])},p.emboss=function(b){let k=b||1;p.convolution.call(this,[-2*k,-1*k,0,-1*k,1,1*k,0,1*k,2*k])},p.blur=function(b){let k=b/7/o,N=b/7/l,C=v(p.blur.SHADER);f.uniform2f(C.uniform.px,0,N),x(m.INTERMEDIATE),f.uniform2f(C.uniform.px,k,0),x()},p.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
|
|
`),p.pixelate=function(b){let k=b/o,N=b/l,C=v(p.pixelate.SHADER);f.uniform2f(C.uniform.size,k,N),x()},p.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
|
|
`)}var X0=2048,Ee,It,Bt;function io(e,t){let n;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof je)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof je)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=Oa(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let r=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,s=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!r||!s)return{tensor:null,canvas:Ee};let i=r,o=s;if(i>X0&&(i=X0,o=i*s/r),o>X0&&(o=X0,i=o*r/s),t.filter.width>0?i=t.filter.width:t.filter.height>0&&(i=r*(t.filter.height/s)),t.filter.height>0?o=t.filter.height:t.filter.width>0&&(o=s*(t.filter.width/r)),!i||!o)throw new Error("Human: Input cannot determine dimension");(!Ee||(Ee==null?void 0:Ee.width)!==i||(Ee==null?void 0:Ee.height)!==o)&&(Ee=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas"),(Ee==null?void 0:Ee.width)!==i&&(Ee.width=i),(Ee==null?void 0:Ee.height)!==o&&(Ee.height=o));let l=Ee.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(r,0),l.scale(-1,1),l.drawImage(e,0,0,r,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,r,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),t.filter.enabled){if((!Bt||!It||Ee.width!==It.width||(Ee==null?void 0:Ee.height)!==(It==null?void 0:It.height))&&(It=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height):document.createElement("canvas"),(It==null?void 0:It.width)!==(Ee==null?void 0:Ee.width)&&(It.width=Ee==null?void 0:Ee.width),(It==null?void 0:It.height)!==(Ee==null?void 0:Ee.height)&&(It.height=Ee==null?void 0:Ee.height),Bt=ra.flags.IS_BROWSER?new Pk({canvas:It}):null),!Bt)return{tensor:null,canvas:Ee};Bt.reset(),Bt.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&Bt.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&Bt.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&Bt.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&Bt.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&Bt.addFilter("hue",t.filter.hue),t.filter.negative&&Bt.addFilter("negative"),t.filter.sepia&&Bt.addFilter("sepia"),t.filter.vintage&&Bt.addFilter("brownie"),t.filter.sepia&&Bt.addFilter("sepia"),t.filter.kodachrome&&Bt.addFilter("kodachrome"),t.filter.technicolor&&Bt.addFilter("technicolor"),t.filter.polaroid&&Bt.addFilter("polaroid"),t.filter.pixelate!==0&&Bt.addFilter("pixelate",t.filter.pixelate),Bt.apply(Ee)}else It=Ee,Bt&&(Bt=null);if(!n){let u;if(It.data){let d=[It.height,It.width,3];u=Wc(It.data,d,"int32")}else if(It instanceof ImageData)u=ia?ia.fromPixels(It):null;else if(t.backend==="webgl"||t.backend==="humangl"){let d=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");d.width=i,d.height=o;let p=d.getContext("2d");p==null||p.drawImage(It,0,0),u=ia?ia.fromPixels(d):null}else{let d=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");d.width=i,d.height=o;let p=d.getContext("2d");p==null||p.drawImage(It,0,0);let c=p==null?void 0:p.getImageData(0,0,i,o);u=ia?ia.fromPixels(c):null}if(u){let d=de(u,"float32");n=zt(d,0),K(u),K(d)}}}let a=t.filter.return?It:null;return{tensor:n,canvas:a}}var ba,j2=!1;async function K0(e){return ba?e.debug&&ue("cached model:",ba.modelUrl):(ba=await ft(gt(e.modelBasePath,e.segmentation.modelPath)),!ba||!ba.modelUrl?ue("load model failed:",e.segmentation.modelPath):e.debug&&ue("load model:",ba.modelUrl)),ba}async function G2(e){var m,f;let t=((m=e.tensor)==null?void 0:m.shape[1])||0,n=((f=e.tensor)==null?void 0:f.shape[2])||0;if(!e.tensor||!ba||!ba.inputs[0].shape)return null;let a=Me.resizeBilinear(e.tensor,[ba.inputs[0].shape[1],ba.inputs[0].shape[2]],!1),r=ce(a,255),s=ba.predict(r);K(a),K(r);let i=lt(s,0),o;if(i.shape[2]===2){let g=i.softmax(),[A,y]=ha(g,2),x=zt(y,2),v=zt(x,0);K(g),K(A),K(y);let b=Me.cropAndResize(v,[[0,0,.5,.5]],[0],[t,n]);o=lt(b,0),K(b),K(x),K(v)}else o=Me.resizeBilinear(i,[t,n]);if(typeof document=="undefined")return o.data();let l=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");l.width=t,l.height=n,ia&&await ia.toPixels(o,l),K(o),K(i),K(s);let u=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");u.width=t,u.height=n;let d=u.getContext("2d");d.filter="blur(8px",await d.drawImage(l,0,0);let p=d.getImageData(0,0,t,n).data,c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");c.width=t,c.height=n;let h=c.getContext("2d");return e.canvas&&await h.drawImage(e.canvas,0,0),h.globalCompositeOperation="darken",h.filter="blur(8px)",await h.drawImage(l,0,0),h.globalCompositeOperation="source-over",h.filter="none",e.canvas=c,p}async function Lk(e,t,n){var s;if(j2)return null;j2=!0,ba||await K0(n);let a=io(e,n),r=await G2(a);if(K(a.tensor),t&&r){let i=io(t,n),o=i.canvas;K(i.tensor);let l=a.canvas,u=(s=l.getContext("2d"))==null?void 0:s.getImageData(0,0,l.width,l.height).data,d=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(l.width,l.height):document.createElement("canvas");d.width=l.width,d.height=l.height;let p=d.getContext("2d");p.globalCompositeOperation="copy",p.drawImage(o,0,0,d.width,d.height);let c=p.getImageData(0,0,d.width,d.height);for(let h=0;h<d.width*d.height;h++)c.data[4*h+0]=(255-r[4*h+0])/255*c.data[4*h+0]+r[4*h+0]/255*u[4*h+0],c.data[4*h+1]=(255-r[4*h+1])/255*c.data[4*h+1]+r[4*h+1]/255*u[4*h+1],c.data[4*h+2]=(255-r[4*h+2])/255*c.data[4*h+2]+r[4*h+2]/255*u[4*h+2],c.data[4*h+3]=(255-r[4*h+3])/255*c.data[4*h+3]+r[4*h+3]/255*u[4*h+3];p.putImageData(c,0,0),a.canvas=d}return j2=!1,a.canvas}async function Wk(e){e.config.async?[e.models.face,e.models.emotion,e.models.handpose,e.models.posenet,e.models.blazepose,e.models.efficientpose,e.models.movenet,e.models.nanodet,e.models.centernet,e.models.faceres,e.models.segmentation]=await Promise.all([e.models.face||(e.config.face.enabled?r2(e.config):null),e.models.emotion||(e.config.face.enabled&&e.config.face.emotion.enabled?c2(e.config):null),e.models.handpose||(e.config.hand.enabled?N2(e.config):null),e.models.posenet||(e.config.body.enabled&&e.config.body.modelPath.includes("posenet")?b2(e.config):null),e.models.blazepose||(e.config.body.enabled&&e.config.body.modelPath.includes("blazepose")?j0(e.config):null),e.models.efficientpose||(e.config.body.enabled&&e.config.body.modelPath.includes("efficientpose")?_k(e.config):null),e.models.movenet||(e.config.body.enabled&&e.config.body.modelPath.includes("movenet")?z2(e.config):null),e.models.nanodet||(e.config.object.enabled&&e.config.object.modelPath.includes("nanodet")?L2(e.config):null),e.models.centernet||(e.config.object.enabled&&e.config.object.modelPath.includes("centernet")?U2(e.config):null),e.models.faceres||(e.config.face.enabled&&e.config.face.description.enabled?i2(e.config):null),e.models.segmentation||(e.config.segmentation.enabled?K0(e.config):null)]):(e.config.face.enabled&&!e.models.face&&(e.models.face=await r2(e.config)),e.config.face.enabled&&e.config.face.emotion.enabled&&!e.models.emotion&&(e.models.emotion=await c2(e.config)),e.config.hand.enabled&&!e.models.handpose&&(e.models.handpose=await N2(e.config)),e.config.body.enabled&&!e.models.posenet&&e.config.body.modelPath.includes("posenet")&&(e.models.posenet=await b2(e.config)),e.config.body.enabled&&!e.models.blazepose&&e.config.body.modelPath.includes("blazepose")&&(e.models.blazepose=await j0(e.config)),e.config.body.enabled&&!e.models.efficientpose&&e.config.body.modelPath.includes("efficientpose")&&(e.models.efficientpose=await j0(e.config)),e.config.body.enabled&&!e.models.movenet&&e.config.body.modelPath.includes("movenet")&&(e.models.movenet=await z2(e.config)),e.config.object.enabled&&!e.models.nanodet&&e.config.object.modelPath.includes("nanodet")&&(e.models.nanodet=await L2(e.config)),e.config.object.enabled&&!e.models.centernet&&e.config.object.modelPath.includes("centernet")&&(e.models.centernet=await U2(e.config)),e.config.face.enabled&&e.config.face.description.enabled&&!e.models.faceres&&(e.models.faceres=await i2(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=await K0(e.config)))}var wle=e=>{let t=(p,c)=>Math.atan2(p[1]-c[1],p[0]-c[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],a=1,r=e.mesh[33][2]>e.mesh[263][2],s=r?e.mesh[473]:e.mesh[468],i=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],o=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(i[0]-s[0])/o[0]-n[0],a*(s[1]-i[1])/o[1]-n[1]],u=Math.sqrt(l[0]**2+l[1]**2);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},kle=(e,t)=>{let n=g=>{let A=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=A,g[1]/=A,g[2]/=A,g},a=(g,A)=>{let y=g[0]-A[0],x=g[1]-A[1],v=g[2]-A[2];return[y,x,v]},r=(g,A)=>{let y=g[1]*A[2]-g[2]*A[1],x=g[2]*A[0]-g[0]*A[2],v=g[0]*A[1]-g[1]*A[0];return[y,x,v]},s=g=>{let[A,y,x,v,b,k,N,C,E]=g,z,F,I;return v<1?v>-1?(I=Math.asin(v),F=Math.atan2(-N,A),z=Math.atan2(-k,b)):(I=-Math.PI/2,F=-Math.atan2(C,E),z=0):(I=Math.PI/2,F=Math.atan2(C,E),z=0),isNaN(z)&&(z=0),isNaN(F)&&(F=0),isNaN(I)&&(I=0),{pitch:2*-z,yaw:2*-F,roll:2*-I}},i=g=>{let A=(x,v,b,k)=>Math.atan2(k-v,b-x);return{pitch:A(g[10][1],g[10][2],g[152][1],g[152][2]),yaw:A(g[33][0],g[33][2],g[263][0],g[263][2]),roll:A(g[33][0],g[33][1],g[263][0],g[263][1])}},o=e.meshRaw;if(!o||o.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[o[10],o[152],o[234],o[454]].map(g=>[g[0]*t[0]/l,g[1]*t[1]/l,g[2]]),d=n(a(u[1],u[0])),p=n(a(u[3],u[2])),c=n(r(p,d));p=r(d,c);let h=[p[0],p[1],p[2],d[0],d[1],d[2],c[0],c[1],c[2]],m=s(h),f=o.length===478?wle(e):{bearing:0,strength:0};return{angle:m,matrix:h,gaze:f}},q2=async(e,t)=>{var p,c,h,m,f,g;let n,a,r,s,i,o,l,u=[];e.state="run:face",n=Ye();let d=await tk(t,e.config);if(e.performance.face=Math.trunc(Ye()-n),!t.shape||t.shape.length!==4)return[];if(!d)return[];for(let A=0;A<d.length;A++){if(e.analyze("Get Face"),!d[A].tensor||d[A].tensor.isDisposedInternal){ue("Face object is disposed:",d[A].tensor);continue}let y=kle(d[A],[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?i=e.config.face.emotion.enabled?h2(d[A].tensor||pn([]),e.config,A,d.length):{}:(e.state="run:emotion",n=Ye(),i=e.config.face.emotion.enabled?await h2(d[A].tensor||pn([]),e.config,A,d.length):{},e.performance.emotion=Math.trunc(Ye()-n)),e.analyze("End Emotion:"),e.analyze("Start Description:"),e.config.async?l=e.config.face.description.enabled?u2(d[A].tensor||pn([]),e.config,A,d.length):[]:(e.state="run:description",n=Ye(),l=e.config.face.description.enabled?await u2(d[A].tensor||pn([]),e.config,A,d.length):[],e.performance.embedding=Math.trunc(Ye()-n)),e.analyze("End Description:"),e.config.async&&([a,s,i,o,l,r]=await Promise.all([a,s,i,o,l,r])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((c=(p=d[A])==null?void 0:p.annotations)==null?void 0:c.leftEyeIris)&&((m=(h=d[A])==null?void 0:h.annotations)==null?void 0:m.rightEyeIris)&&(delete d[A].annotations.leftEyeIris,delete d[A].annotations.rightEyeIris);let x=((f=d[A].annotations)==null?void 0:f.leftEyeIris)&&((g=d[A].annotations)==null?void 0:g.rightEyeIris)?Math.max(Math.abs(d[A].annotations.leftEyeIris[3][0]-d[A].annotations.leftEyeIris[1][0]),Math.abs(d[A].annotations.rightEyeIris[4][1]-d[A].annotations.rightEyeIris[2][1]))/t.shape[2]:0,v=e.config.face.detector.return?lt(d[A].tensor):null;K(d[A].tensor),d[A].tensor&&delete d[A].tensor,u.push({...d[A],id:A,age:l.age,gender:l.gender,genderScore:l.genderScore,embedding:l.descriptor,emotion:i,iris:x!==0?Math.trunc(500/x/11.7)/100:0,rotation:y,tensor:v}),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),u};var Bk=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let a=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&a&&r&&a.position.y<s.position.y&&r.position.y<s.position.y?t.push({body:n,gesture:"i give up"}):s&&a&&a.position.y<s.position.y?t.push({body:n,gesture:"raise left hand"}):s&&r&&r.position.y<s.position.y&&t.push({body:n,gesture:"raise right hand"});let i=e[n].keypoints.find(l=>l.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},Vk=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let a=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(a)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${a<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},Uk=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let a=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],s=Math.abs(a*r),i=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],o=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(i*o),u=!1;Math.abs(s-l)/Math.max(s,l)<.25&&(u=!0,t.push({iris:n,gesture:"facing center"}));let p=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2],c=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2];(c>.06||p>.06)&&(u=!1),c>.06&&t.push({iris:n,gesture:"looking right"}),p>.06&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],m=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(m<.01||h<.01||m>.022||h>.022)&&(u=!1),(m<.01||h<.01)&&t.push({iris:n,gesture:"looking down"}),(m>.022||h>.022)&&t.push({iris:n,gesture:"looking up"}),u&&t.push({iris:n,gesture:"looking center"})}return t},Hk=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let a=[];for(let[s,i]of Object.entries(e[n].annotations))s!=="palmBase"&&Array.isArray(i)&&a.push({name:s.toLowerCase(),position:i[0]});if(a&&a.length>0){let s=a.reduce((o,l)=>o.position[2]<l.position[2]?o:l);t.push({hand:n,gesture:`${s.name} forward`});let i=a.reduce((o,l)=>o.position[1]<l.position[1]?o:l);t.push({hand:n,gesture:`${i.name} up`})}let r=Mk(e[n].keypoints);for(let s of r)t.push({hand:n,gesture:s.name})}return t};var Z2={};p5(Z2,{all:()=>Tle,body:()=>qk,canvas:()=>Sle,face:()=>Gk,gesture:()=>jk,hand:()=>Xk,object:()=>Kk,options:()=>bs,person:()=>Ile});var bs={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},vs=e=>{if(e&&e.getContext)return e.getContext("2d");throw new Error("Human: Invalid Canvas")},Z0=e=>Math.round(e*180/Math.PI);function X2(e,t,n,a=0,r){e.fillStyle=r.useDepth&&a?`rgba(${127.5+2*a}, ${127.5-2*a}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function gp(e,t,n,a,r,s){if(e.beginPath(),s.useCurves){let i=(t+t+a)/2,o=(n+n+r)/2;e.ellipse(i,o,a/2,r/2,0,0,2*Math.PI)}else e.lineWidth=s.lineWidth,e.moveTo(t+s.roundRect,n),e.lineTo(t+a-s.roundRect,n),e.quadraticCurveTo(t+a,n,t+a,n+s.roundRect),e.lineTo(t+a,n+r-s.roundRect),e.quadraticCurveTo(t+a,n+r,t+a-s.roundRect,n+r),e.lineTo(t+s.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-s.roundRect),e.lineTo(t,n+s.roundRect),e.quadraticCurveTo(t,n,t+s.roundRect,n),e.closePath();e.stroke()}function K2(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let a of t){let r=a[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(a[0],Math.round(a[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function Ap(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){K2(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let a=0;a<t.length-2;a++){let r=(t[a][0]+t[a+1][0])/2,s=(t[a][1]+t[a+1][1])/2;e.quadraticCurveTo(t[a][0],t[a][1],r,s)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}async function jk(e,t,n){let a=mn(bs,n);if(!t||!e)return;let r=vs(e);r.font=a.font,r.fillStyle=a.color;let s=1;for(let i=0;i<t.length;i++){let o=[],l=[];if([o,l]=Object.entries(t[i]),l.length>1&&l[1].length>0){let u=o[1]>0?`#${o[1]}`:"",d=`${o[0]} ${u}: ${l[1]}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(d,8,2+s*a.lineHeight)),r.fillStyle=a.labelColor,r.fillText(d,6,0+s*a.lineHeight),s+=1}}}async function Gk(e,t,n){var s,i,o,l;let a=mn(bs,n);if(!t||!e)return;let r=vs(e);for(let u of t){r.font=a.font,r.strokeStyle=a.color,r.fillStyle=a.color,a.drawBoxes&&gp(r,u.box[0],u.box[1],u.box[2],u.box[3],a);let d=[];if(d.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&d.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&d.push(`age: ${u.age||""}`),u.iris&&d.push(`distance: ${u.iris}`),u.emotion&&u.emotion.length>0){let p=u.emotion.map(c=>`${Math.trunc(100*c.score)}% ${c.emotion}`);p.length>3&&(p.length=3),d.push(p.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&d.push(`roll: ${Z0(u.rotation.angle.roll)}\xB0 yaw:${Z0(u.rotation.angle.yaw)}\xB0 pitch:${Z0(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&d.push(`gaze: ${Z0(u.rotation.gaze.bearing)}\xB0`)),d.length===0&&d.push("face"),r.fillStyle=a.color;for(let p=d.length-1;p>=0;p--){let c=Math.max(u.box[0],0),h=p*a.lineHeight+u.box[1];a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(d[p],c+5,h+16)),r.fillStyle=a.labelColor,r.fillText(d[p],c+4,h+15)}if(r.lineWidth=1,u.mesh&&u.mesh.length>0){if(a.drawPoints)for(let p of u.mesh)X2(r,p[0],p[1],p[2],a);if(a.drawPolygons){r.lineWidth=1;for(let p=0;p<ro.length/3;p++){let c=[ro[p*3+0],ro[p*3+1],ro[p*3+2]].map(h=>u.mesh[h]);K2(r,c,a)}if(u.annotations&&u.annotations.leftEyeIris){r.strokeStyle=a.useDepth?"rgba(255, 200, 255, 0.3)":a.color,r.beginPath();let p=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,c=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;r.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],p,c,0,0,2*Math.PI),r.stroke(),a.fillPolygons&&(r.fillStyle=a.useDepth?"rgba(255, 255, 200, 0.3)":a.color,r.fill())}if(u.annotations&&u.annotations.rightEyeIris){r.strokeStyle=a.useDepth?"rgba(255, 200, 255, 0.3)":a.color,r.beginPath();let p=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,c=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;r.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],p,c,0,0,2*Math.PI),r.stroke(),a.fillPolygons&&(r.fillStyle=a.useDepth?"rgba(255, 255, 200, 0.3)":a.color,r.fill())}if(a.drawGaze&&((i=(s=u.rotation)==null?void 0:s.gaze)==null?void 0:i.strength)&&((l=(o=u.rotation)==null?void 0:o.gaze)==null?void 0:l.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.beginPath();let p=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]),r.lineTo(p[0],p[1]);let c=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]),r.lineTo(c[0],c[1]),r.stroke()}}}}}async function qk(e,t,n){var s;let a=mn(bs,n);if(!t||!e)return;let r=vs(e);r.lineJoin="round";for(let i=0;i<t.length;i++){if(r.strokeStyle=a.color,r.fillStyle=a.color,r.lineWidth=a.lineWidth,r.font=a.font,a.drawBoxes&&t[i].box&&((s=t[i].box)==null?void 0:s.length)===4&&(gp(r,t[i].box[0],t[i].box[1],t[i].box[2],t[i].box[3],a),a.drawLabels&&(a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(`body ${100*t[i].score}%`,t[i].box[0]+3,1+t[i].box[1]+a.lineHeight,t[i].box[2])),r.fillStyle=a.labelColor,r.fillText(`body ${100*t[i].score}%`,t[i].box[0]+2,0+t[i].box[1]+a.lineHeight,t[i].box[2]))),a.drawPoints)for(let o=0;o<t[i].keypoints.length;o++)r.fillStyle=a.useDepth&&t[i].keypoints[o].position[2]?`rgba(${127.5+2*(t[i].keypoints[o].position[2]||0)}, ${127.5-2*(t[i].keypoints[o].position[2]||0)}, 255, 0.5)`:a.color,X2(r,t[i].keypoints[o].position[0],t[i].keypoints[o].position[1],0,a);if(a.drawLabels&&(r.font=a.font,t[i].keypoints))for(let o of t[i].keypoints)r.fillStyle=a.useDepth&&o.position[2]?`rgba(${127.5+2*o.position[2]}, ${127.5-2*o.position[2]}, 255, 0.5)`:a.color,r.fillText(`${o.part} ${Math.trunc(100*o.score)}%`,o.position[0]+4,o.position[1]+4);if(a.drawPolygons&&t[i].keypoints){let o,l=[];l.length=0,o=t[i].keypoints.find(u=>u.part==="leftShoulder"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightShoulder"),o&&l.push([o.position[0],o.position[1]]),Ap(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="rightShoulder"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightHip"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftHip"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftShoulder"),o&&l.push([o.position[0],o.position[1]]),l.length===4&&K2(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="leftHip"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftKnee"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftAnkle"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftHeel"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftFoot"),o&&l.push([o.position[0],o.position[1]]),Ap(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="rightHip"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightKnee"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightAnkle"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightHeel"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightFoot"),o&&l.push([o.position[0],o.position[1]]),Ap(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="leftShoulder"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftElbow"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftWrist"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftPalm"),o&&l.push([o.position[0],o.position[1]]),Ap(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="rightShoulder"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightElbow"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightWrist"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightPalm"),o&&l.push([o.position[0],o.position[1]]),Ap(r,l,a)}}}async function Xk(e,t,n){let a=mn(bs,n);if(!t||!e)return;let r=vs(e);r.lineJoin="round",r.font=a.font;for(let s of t){if(a.drawBoxes&&(r.strokeStyle=a.color,r.fillStyle=a.color,gp(r,s.box[0],s.box[1],s.box[2],s.box[3],a),a.drawLabels&&(a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText("hand",s.box[0]+3,1+s.box[1]+a.lineHeight,s.box[2])),r.fillStyle=a.labelColor,r.fillText("hand",s.box[0]+2,0+s.box[1]+a.lineHeight,s.box[2])),r.stroke()),a.drawPoints&&s.keypoints&&s.keypoints.length>0)for(let i of s.keypoints)r.fillStyle=a.useDepth?`rgba(${127.5+2*i[2]}, ${127.5-2*i[2]}, 255, 0.5)`:a.color,X2(r,i[0],i[1],0,a);if(a.drawLabels){let i=(o,l)=>{!o||(r.fillStyle=a.useDepth?`rgba(${127.5+2*o[o.length-1][2]}, ${127.5-2*o[o.length-1][2]}, 255, 0.5)`:a.color,r.fillText(l,o[o.length-1][0]+4,o[o.length-1][1]+4))};r.font=a.font,i(s.annotations.index,"index"),i(s.annotations.middle,"middle"),i(s.annotations.ring,"ring"),i(s.annotations.pinky,"pinky"),i(s.annotations.thumb,"thumb"),i(s.annotations.palm,"palm")}if(a.drawPolygons){let i=o=>{if(!!o)for(let l=0;l<o.length;l++)r.beginPath(),r.strokeStyle=a.useDepth?`rgba(${127.5+2*o[l][2]}, ${127.5-2*o[l][2]}, 255, 0.5)`:a.color,r.moveTo(o[l>0?l-1:0][0],o[l>0?l-1:0][1]),r.lineTo(o[l][0],o[l][1]),r.stroke()};r.lineWidth=a.lineWidth,i(s.annotations.index),i(s.annotations.middle),i(s.annotations.ring),i(s.annotations.pinky),i(s.annotations.thumb)}}}async function Kk(e,t,n){let a=mn(bs,n);if(!t||!e)return;let r=vs(e);r.lineJoin="round",r.font=a.font;for(let s of t)if(a.drawBoxes){if(r.strokeStyle=a.color,r.fillStyle=a.color,gp(r,s.box[0],s.box[1],s.box[2],s.box[3],a),a.drawLabels){let i=`${s.label} ${Math.round(100*s.score)}%`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(i,s.box[0]+3,1+s.box[1]+a.lineHeight,s.box[2])),r.fillStyle=a.labelColor,r.fillText(i,s.box[0]+2,0+s.box[1]+a.lineHeight,s.box[2])}r.stroke()}}async function Ile(e,t,n){let a=mn(bs,n);if(!t||!e)return;let r=vs(e);r.lineJoin="round",r.font=a.font;for(let s=0;s<t.length;s++)if(a.drawBoxes){if(r.strokeStyle=a.color,r.fillStyle=a.color,gp(r,t[s].box[0],t[s].box[1],t[s].box[2],t[s].box[3],a),a.drawLabels){let i=`person #${s}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(i,t[s].box[0]+3,1+t[s].box[1]+a.lineHeight,t[s].box[2])),r.fillStyle=a.labelColor,r.fillText(i,t[s].box[0]+2,0+t[s].box[1]+a.lineHeight,t[s].box[2])}r.stroke()}}async function Sle(e,t){if(!e||!t)return;vs(t),vs(e).drawImage(e,0,0)}async function Tle(e,t,n){let a=Ye(),r=mn(bs,n);if(!t||!e)return null;let s=Promise.all([Gk(e,t.face,r),qk(e,t.body,r),Xk(e,t.hand,r),Kk(e,t.object,r),jk(e,t.gesture,r)]);return t.performance.draw=Math.trunc(Ye()-a),s}function Zk(e,t,n,a,r){var o,l,u,d,p,c,h,m,f,g,A,y,x,v,b,k;let s=0,i=[];for(let N of e){let C={id:s++,face:N,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let D of t)N.box[0]>D.box[0]&&N.box[0]<D.box[0]+D.box[2]&&N.box[1]+N.box[3]>D.box[1]&&N.box[1]+N.box[3]<D.box[1]+D.box[3]&&(C.body=D);if(C.body)for(let D of n)D.box[0]+D.box[2]>C.body.box[0]&&D.box[0]+D.box[2]<C.body.box[0]+C.body.box[2]&&D.box[1]+D.box[3]>C.body.box[1]&&D.box[1]+D.box[3]<C.body.box[1]+C.body.box[3]&&C.hands&&(C.hands.left=D),D.box[0]<C.body.box[0]+C.body.box[2]&&D.box[0]>C.body.box[0]&&D.box[1]+D.box[3]>C.body.box[1]&&D.box[1]+D.box[3]<C.body.box[1]+C.body.box[3]&&C.hands&&(C.hands.right=D);for(let D of a)D.face!==void 0&&D.face===N.id?(o=C.gestures)==null||o.push(D):D.iris!==void 0&&D.iris===N.id?(l=C.gestures)==null||l.push(D):D.body!==void 0&&D.body===((u=C.body)==null?void 0:u.id)?(d=C.gestures)==null||d.push(D):D.hand!==void 0&&D.hand===((c=(p=C.hands)==null?void 0:p.left)==null?void 0:c.id)?(h=C.gestures)==null||h.push(D):D.hand!==void 0&&D.hand===((f=(m=C.hands)==null?void 0:m.right)==null?void 0:f.id)&&((g=C.gestures)==null||g.push(D));let E=[],z=[],F=D=>{D&&D.length===4&&(E.push(D[0],D[0]+D[2]),z.push(D[1],D[1]+D[3]))};F((A=C.face)==null?void 0:A.box),F((y=C.body)==null?void 0:y.box),F((v=(x=C.hands)==null?void 0:x.left)==null?void 0:v.box),F((k=(b=C.hands)==null?void 0:b.right)==null?void 0:k.box);let I=Math.min(...E),_=Math.min(...z);C.box=[I,_,Math.max(...E)-I,Math.max(...z)-_],r&&r[1]&&r[2]&&(C.boxRaw=[C.box[0]/r[2],C.box[1]/r[1],C.box[2]/r[2],C.box[3]/r[1]]),i.push(C)}return i}var Fe={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function Yk(e){var a,r,s,i,o,l,u,d,p,c,h,m,f,g,A,y,x,v,b,k,N;if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};let t=Date.now()-e.timestamp,n=t<1e3?8-Math.log(t+1):1;if(Fe.canvas=e.canvas,!Fe.body||e.body.length!==Fe.body.length)Fe.body=JSON.parse(JSON.stringify(e.body));else for(let C=0;C<e.body.length;C++){let E=e.body[C].box.map((I,_)=>((n-1)*Fe.body[C].box[_]+I)/n),z=e.body[C].boxRaw.map((I,_)=>((n-1)*Fe.body[C].boxRaw[_]+I)/n),F=e.body[C].keypoints.map((I,_)=>({score:I.score,part:I.part,position:[Fe.body[C].keypoints[_]?((n-1)*Fe.body[C].keypoints[_].position[0]+I.position[0])/n:I.position[0],Fe.body[C].keypoints[_]?((n-1)*Fe.body[C].keypoints[_].position[1]+I.position[1])/n:I.position[1]],positionRaw:[Fe.body[C].keypoints[_]?((n-1)*Fe.body[C].keypoints[_].positionRaw[0]+I.positionRaw[0])/n:I.position[0],Fe.body[C].keypoints[_]?((n-1)*Fe.body[C].keypoints[_].positionRaw[1]+I.positionRaw[1])/n:I.position[1]]}));Fe.body[C]={...e.body[C],box:E,boxRaw:z,keypoints:F}}if(!Fe.hand||e.hand.length!==Fe.hand.length)Fe.hand=JSON.parse(JSON.stringify(e.hand));else for(let C=0;C<e.hand.length;C++){let E=e.hand[C].box.map((D,V)=>((n-1)*Fe.hand[C].box[V]+D)/n),z=e.hand[C].boxRaw.map((D,V)=>((n-1)*Fe.hand[C].boxRaw[V]+D)/n),F=e.hand[C].keypoints?e.hand[C].keypoints.map((D,V)=>D.map((q,G)=>((n-1)*Fe.hand[C].keypoints[V][G]+q)/n)):[],I=Object.keys(e.hand[C].annotations),_={};for(let D of I)_[D]=e.hand[C].annotations[D].map((V,q)=>V.map((G,Q)=>((n-1)*Fe.hand[C].annotations[D][q][Q]+G)/n));Fe.hand[C]={...e.hand[C],box:E,boxRaw:z,keypoints:F,annotations:_}}if(!Fe.face||e.face.length!==Fe.face.length)Fe.face=JSON.parse(JSON.stringify(e.face));else for(let C=0;C<e.face.length;C++){let E=e.face[C].box.map((I,_)=>((n-1)*Fe.face[C].box[_]+I)/n),z=e.face[C].boxRaw.map((I,_)=>((n-1)*Fe.face[C].boxRaw[_]+I)/n),F={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};F.matrix=(a=e.face[C].rotation)==null?void 0:a.matrix,F.angle={roll:((n-1)*(((s=(r=Fe.face[C].rotation)==null?void 0:r.angle)==null?void 0:s.roll)||0)+(((o=(i=e.face[C].rotation)==null?void 0:i.angle)==null?void 0:o.roll)||0))/n,yaw:((n-1)*(((u=(l=Fe.face[C].rotation)==null?void 0:l.angle)==null?void 0:u.yaw)||0)+(((p=(d=e.face[C].rotation)==null?void 0:d.angle)==null?void 0:p.yaw)||0))/n,pitch:((n-1)*(((h=(c=Fe.face[C].rotation)==null?void 0:c.angle)==null?void 0:h.pitch)||0)+(((f=(m=e.face[C].rotation)==null?void 0:m.angle)==null?void 0:f.pitch)||0))/n},F.gaze={bearing:((n-1)*(((A=(g=Fe.face[C].rotation)==null?void 0:g.gaze)==null?void 0:A.bearing)||0)+(((x=(y=e.face[C].rotation)==null?void 0:y.gaze)==null?void 0:x.bearing)||0))/n,strength:((n-1)*(((b=(v=Fe.face[C].rotation)==null?void 0:v.gaze)==null?void 0:b.strength)||0)+(((N=(k=e.face[C].rotation)==null?void 0:k.gaze)==null?void 0:N.strength)||0))/n},Fe.face[C]={...e.face[C],rotation:F,box:E,boxRaw:z}}if(!Fe.object||e.object.length!==Fe.object.length)Fe.object=JSON.parse(JSON.stringify(e.object));else for(let C=0;C<e.object.length;C++){let E=e.object[C].box.map((F,I)=>((n-1)*Fe.object[C].box[I]+F)/n),z=e.object[C].boxRaw.map((F,I)=>((n-1)*Fe.object[C].boxRaw[I]+F)/n);Fe.object[C]={...e.object[C],box:E,boxRaw:z}}if(e.persons){let C=e.persons;if(!Fe.persons||C.length!==Fe.persons.length)Fe.persons=JSON.parse(JSON.stringify(C));else for(let E=0;E<C.length;E++)Fe.persons[E].box=C[E].box.map((z,F)=>((n-1)*Fe.persons[E].box[F]+z)/n)}return e.gesture&&(Fe.gesture=e.gesture),e.performance&&(Fe.performance=e.performance),Fe}var Y0=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,J0=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;var Y2="2.1.5";var xu,yp,xp,oo,lo,bu,Q0,bp,ef,tf,nf,af,Cle=class{constructor(t){aa(this,xu,void 0);aa(this,yp,void 0);aa(this,xp,void 0);aa(this,oo,void 0);aa(this,lo,void 0);aa(this,bu,void 0);this.analyze=(...t)=>{if(!fn(this,yp))return;let n=this.tf.engine().state.numTensors,a=fn(this,xu);Ma(this,xu,n);let r=n-a;r!==0&&ue(...t,r)};aa(this,Q0,t=>{if(!fn(this,xp))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof je))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});aa(this,bp,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let a=Ye();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&this.config.debug&&ue("running inside web worker"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(ue("override: backend set to tensorflow while running in browser"),this.config.backend="humangl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(ue("override: backend set to webgl while running in nodejs"),this.config.backend="tensorflow"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")ue("override: backend set to webgpu but browser does not support webgpu"),this.config.backend="humangl";else{let s=await navigator.gpu.requestAdapter();this.config.debug&&ue("enumerated webgpu adapter:",s)}this.config.backend==="humangl"&&V8();let r=Object.keys(this.tf.engine().registryFactory);if(this.config.debug&&ue("available backends:",r),r.includes(this.config.backend)||(ue(`error: backend ${this.config.backend} not found in registry`),this.config.backend=this.tf.ENV.flags.IS_NODE?"tensorflow":"humangl",ue(`override: using backend ${this.config.backend} instead`)),this.config.debug&&ue("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&ue("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let s=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),i=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&ue(`wasm execution: ${s?"SIMD":"no SIMD"} ${i?"multithreaded":"singlethreaded"}`),this.config.debug&&!s&&ue("warning: wasm simd support is not enabled")}try{await this.tf.setBackend(this.config.backend)}catch(s){ue("error: cannot set backend:",this.config.backend,s)}}if(this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_CPU_FORWARD",!0),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!1),this.tf.ENV.set("WEBGL_USE_SHAPES_UNIFORMS",!0),typeof this.config.deallocate!="undefined"&&this.config.deallocate&&(ue("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let r=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&ue(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}this.tf.enableProdMode(),await this.tf.ready(),this.performance.backend=Math.trunc(Ye()-a)}});this.next=t=>Yk(t||this.result);aa(this,ef,async t=>{if(this.config.cacheSensitivity===0)return!1;let n=32;if(!t.shape[1]||!t.shape[2])return!1;let a=Me.resizeBilinear(t,[Math.trunc(t.shape[1]/n),Math.trunc(t.shape[2]/n)]),r=await a.data(),s=0;for(let l=0;l<r.length/3;l++)s+=r[3*l+2];a.dispose();let i=100*(Math.max(s,fn(this,lo))/Math.min(s,fn(this,lo))-1);Ma(this,lo,s);let o=i<Math.max(this.config.cacheSensitivity,fn(this,bu));return Ma(this,bu,i>10*this.config.cacheSensitivity?0:i),o});aa(this,tf,async()=>{let t=(r,s="application/octet-stream")=>fetch(`data:${s};base64,${r}`).then(i=>i.blob()),n,a;switch(this.config.warmup){case"face":n=await t(Y0);break;case"full":n=await t(J0);break;default:n=null}if(n){let r=await createImageBitmap(n);a=await this.detect(r,this.config),r.close()}return a});aa(this,nf,async()=>new Promise(t=>{let n,a=0;switch(this.config.warmup){case"face":a=256,n="data:image/jpeg;base64,"+Y0;break;case"full":case"body":a=1200,n="data:image/jpeg;base64,"+J0;break;default:n=null}let r=new Image;r.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(a,a):document.createElement("canvas");s.width=r.naturalWidth,s.height=r.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(r,0,0);let o=await this.detect(s,this.config);t(o)},n?r.src=n:t(null)}));aa(this,af,async()=>{let t=r=>Buffer.from(r,"base64"),n;if(this.config.warmup==="face"&&(n=t(Y0)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(J0)),!n)return null;let a;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),s=r.expandDims(0);this.tf.dispose(r),a=await this.detect(s,this.config),this.tf.dispose(s)}else this.config.debug&&ue("Warmup tfjs-node not loaded");return a});this.version=Y2,Object.defineProperty(this,"version",{value:Y2}),Fm.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${Mx}/dist/`,this.config=mn(Fm,t||{}),this.tf=op,this.draw=Z2,this.state="idle",Ma(this,xu,0),Ma(this,yp,!1),Ma(this,xp,!1),Ma(this,oo,!0),Ma(this,bu,0),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,movenet:null,handpose:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,centernet:null,faceres:null,segmentation:null},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[]},this.image=n=>io(n,this.config),this.faceTriangulation=nk,this.faceUVMap=ak,this.sysinfo=h5(),Ma(this,lo,1)}similarity(t,n){return o2(t,n)}segmentation(t,n){return Lk(t,n,this.config)}enhance(t){return l2(t)}match(t,n,a=0){return sk(t,n,a)}async load(t){this.state="load";let n=Ye();t&&(this.config=mn(this.config,t)),fn(this,oo)&&(this.config.debug&&ue(`version: ${this.version}`),this.config.debug&&ue(`tfjs version: ${this.tf.version_core}`),this.config.debug&&ue("platform:",this.sysinfo.platform),this.config.debug&&ue("agent:",this.sysinfo.agent),await fn(this,bp).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&ue("configuration:",this.config),this.config.debug&&ue("tf flags:",this.tf.ENV.flags))),await Wk(this),fn(this,oo)&&(this.config.debug&&ue("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),Ma(this,oo,!1));let a=Math.trunc(Ye()-n);a>(this.performance.load||0)&&(this.performance.load=a)}async detect(t,n){return new Promise(async a=>{this.state="config";let r,s;this.config=mn(this.config,n),this.state="check";let i=fn(this,Q0).call(this,t);i&&(ue(i,t),a({error:i}));let o=Ye();await fn(this,bp).call(this),await this.load(),r=Ye();let l=io(t,this.config);if(this.performance.image=Math.trunc(Ye()-r),this.analyze("Get Image:"),this.config.segmentation.enabled&&l&&l.tensor&&(this.analyze("Start Segmentation:"),this.state="run:segmentation",r=Ye(),await G2(l),s=Math.trunc(Ye()-r),s>0&&(this.performance.segmentation=s),l.canvas&&(K(l.tensor),l=io(l.canvas,this.config)),this.analyze("End Segmentation:")),!l||!l.tensor){ue("could not convert input to tensor"),a({error:"could not convert input to tensor"});return}r=Ye(),this.config.skipFrame=await fn(this,ef).call(this,l.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(Ye()-r),this.analyze("Check Changed:");let u=[],d=[],p=[],c=[];this.config.async?(u=this.config.face.enabled?q2(this,l.tensor):[],this.performance.face&&delete this.performance.face):(this.state="run:face",r=Ye(),u=this.config.face.enabled?await q2(this,l.tensor):[],s=Math.trunc(Ye()-r),s>0&&(this.performance.face=s)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?d=this.config.body.enabled?x2(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?d=this.config.body.enabled?C2(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?d=this.config.body.enabled?F2(l.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(d=this.config.body.enabled?_2(l.tensor,this.config):[]),this.performance.body&&delete this.performance.body):(this.state="run:body",r=Ye(),this.config.body.modelPath.includes("posenet")?d=this.config.body.enabled?await x2(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?d=this.config.body.enabled?await C2(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?d=this.config.body.enabled?await F2(l.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(d=this.config.body.enabled?await _2(l.tensor,this.config):[]),s=Math.trunc(Ye()-r),s>0&&(this.performance.body=s)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(p=this.config.hand.enabled?T2(l.tensor,this.config):[],this.performance.hand&&delete this.performance.hand):(this.state="run:hand",r=Ye(),p=this.config.hand.enabled?await T2(l.tensor,this.config):[],s=Math.trunc(Ye()-r),s>0&&(this.performance.hand=s)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(this.config.object.modelPath.includes("nanodet")?c=this.config.object.enabled?W2(l.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(c=this.config.object.enabled?H2(l.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(this.state="run:object",r=Ye(),this.config.object.modelPath.includes("nanodet")?c=this.config.object.enabled?await W2(l.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(c=this.config.object.enabled?await H2(l.tensor,this.config):[]),s=Math.trunc(Ye()-r),s>0&&(this.performance.object=s)),this.analyze("End Object:"),this.config.async&&([u,d,p,c]=await Promise.all([u,d,p,c]));let h=[];this.config.gesture.enabled&&(r=Ye(),h=[...Vk(u),...Bk(d),...Hk(p),...Uk(u)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(Ye()-r)),this.performance.total=Math.trunc(Ye()-o),this.state="idle",this.result={face:u,body:d,hand:p,gesture:h,object:c,performance:this.performance,canvas:l.canvas,timestamp:Date.now(),get persons(){var m;return Zk(u,d,p,h,(m=l==null?void 0:l.tensor)==null?void 0:m.shape)}},K(l.tensor),a(this.result)})}async warmup(t){let n=Ye();if(t&&(this.config=mn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let a;typeof createImageBitmap=="function"?a=await fn(this,tf).call(this):typeof Image!="undefined"?a=await fn(this,nf).call(this):a=await fn(this,af).call(this);let r=Ye();return this.config.debug&&ue("Warmup",this.config.warmup,Math.round(r-n),"ms",a),a}};xu=new WeakMap,yp=new WeakMap,xp=new WeakMap,oo=new WeakMap,lo=new WeakMap,bu=new WeakMap,Q0=new WeakMap,bp=new WeakMap,ef=new WeakMap,tf=new WeakMap,nf=new WeakMap,af=new WeakMap;})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|