mirror of https://github.com/vladmandic/human
7873 lines
1.5 MiB
7873 lines
1.5 MiB
/*
|
|
Human
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var Human=(()=>{var s2=Object.defineProperty;var KT=(e,t,n)=>t in e?s2(e,t,{enumerable:!0,configurable:!0,writable:!0,value:n}):e[t]=n;var ZT=e=>s2(e,"__esModule",{value:!0});var Jo=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var Fc=(e,t)=>{ZT(e);for(var n in t)s2(e,n,{get:t[n],enumerable:!0})};var ve=(e,t,n)=>(KT(e,typeof t!="symbol"?t+"":t,n),n),A5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var Oc=(e,t,n)=>(A5(e,t,"read from private field"),n?n.call(e):t.get(e)),Mc=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},zc=(e,t,n,s)=>(A5(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);var Age={};Fc(Age,{Human:()=>oT,Models:()=>Fp,default:()=>oT,defaults:()=>xa,env:()=>ie});function lt(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: ${r} expecting json file`);return r}function ae(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var et=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function r2(e,t,n="config",s=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")r2(e[r],t[r],r,s);else{let a=e&&typeof e[r]!="undefined";a||s.push({reason:"unknown property",where:`${n}.${r} = ${t[r]}`});let o=e&&typeof e[r]==typeof t[r];a&&!o&&s.push({reason:"property type mismatch",where:`${n}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&n==="config"&&s.length>0&&ae("invalid configuration",s),s}function fn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=fn(a,o):n[r]=o}),n),{})}var xa={backend:"",modelBasePath:"",wasmPath:"",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,skipFrame:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:11,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:12,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:13,minConfidence:.1},antispoof:{enabled:!1,skipFrames:14,modelPath:"antispoof.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",detector:{modelPath:""},maxDetected:-1,minConfidence:.3,skipFrames:1},hand:{enabled:!0,rotation:!0,skipFrames:2,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:15},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var Sl={};Fc(Sl,{Abs:()=>ni,Acos:()=>jl,Acosh:()=>ql,AdadeltaOptimizer:()=>Df,AdagradOptimizer:()=>_f,AdamOptimizer:()=>Pf,AdamaxOptimizer:()=>Ff,Add:()=>qr,AddN:()=>wa,All:()=>Xl,Any:()=>Kl,ArgMax:()=>ka,ArgMin:()=>Zl,Asin:()=>Yl,Asinh:()=>Jl,Atan:()=>Ql,Atan2:()=>tu,Atanh:()=>eu,AvgPool:()=>Ia,AvgPool3D:()=>Uc,AvgPool3DGrad:()=>hh,AvgPoolGrad:()=>ph,BackendWasm:()=>NC,BatchMatMul:()=>Sa,BatchToSpaceND:()=>si,Bincount:()=>fh,BroadcastArgs:()=>d2,BroadcastTo:()=>M5,Callback:()=>Ck,CallbackList:()=>Aw,Cast:()=>Ca,Ceil:()=>Ta,ClipByValue:()=>Xr,Complex:()=>Gc,ComplexAbs:()=>Hc,Concat:()=>ri,Conv2D:()=>Na,Conv2DBackpropFilter:()=>mh,Conv2DBackpropInput:()=>Ea,Conv3D:()=>jc,Conv3DBackpropFilterV2:()=>gh,Conv3DBackpropInputV2:()=>yh,Cos:()=>Ra,Cosh:()=>$a,CropAndResize:()=>oi,Cumsum:()=>ai,CustomCallback:()=>bw,DataStorage:()=>Bc,DenseBincount:()=>Ah,DepthToSpace:()=>ii,DepthwiseConv2dNative:()=>Da,DepthwiseConv2dNativeBackpropFilter:()=>xh,DepthwiseConv2dNativeBackpropInput:()=>bh,Diag:()=>vh,Dilation2D:()=>qc,Dilation2DBackpropFilter:()=>kh,Dilation2DBackpropInput:()=>wh,ENV:()=>ms,EarlyStopping:()=>Nk,Einsum:()=>Xc,Elu:()=>Pa,EluGrad:()=>Ih,Environment:()=>F5,Equal:()=>li,Erf:()=>nu,Exp:()=>Fa,ExpandDims:()=>ui,Expm1:()=>ci,FFT:()=>Sh,Fill:()=>su,FlipLeftRight:()=>di,Floor:()=>Oa,FloorDiv:()=>Ma,FromPixels:()=>sd,FusedBatchNorm:()=>za,FusedConv2D:()=>mo,FusedDepthwiseConv2D:()=>go,GPGPUContext:()=>Om,GatherNd:()=>hi,GatherV2:()=>pi,GraphModel:()=>o7,Greater:()=>fi,GreaterEqual:()=>La,History:()=>xw,IFFT:()=>Ch,Identity:()=>Ba,Imag:()=>Kc,InputSpec:()=>Jt,IsFinite:()=>ru,IsInf:()=>au,IsNan:()=>ou,KernelBackend:()=>Ul,LRN:()=>Yc,LRNGrad:()=>Nh,LayerVariable:()=>hw,LayersModel:()=>aa,LeakyRelu:()=>mi,Less:()=>gi,LessEqual:()=>yi,LinSpace:()=>Th,Log:()=>Wa,Log1p:()=>iu,LogSoftmax:()=>z5,LogicalAnd:()=>Ai,LogicalNot:()=>lu,LogicalOr:()=>Zc,MathBackendWebGL:()=>oc,Max:()=>Va,MaxPool:()=>Ga,MaxPool3D:()=>Jc,MaxPool3DGrad:()=>Rh,MaxPoolGrad:()=>Eh,MaxPoolWithArgmax:()=>$h,Maximum:()=>Ua,Mean:()=>Ha,Min:()=>ja,Minimum:()=>qa,MirrorPad:()=>Xa,Mod:()=>uu,MomentumOptimizer:()=>Of,Multinomial:()=>Dh,Multiply:()=>Ka,Neg:()=>xi,NonMaxSuppressionV3:()=>vi,NonMaxSuppressionV4:()=>cu,NonMaxSuppressionV5:()=>wi,NotEqual:()=>bi,OP_SCOPE_SUFFIX:()=>Q5,OneHot:()=>Ii,OnesLike:()=>ki,Optimizer:()=>na,Pack:()=>Si,PadV2:()=>Za,Pool:()=>jN,Pow:()=>Ya,Prelu:()=>Ja,Prod:()=>Ci,RMSPropOptimizer:()=>Mf,RNN:()=>Fr,Range:()=>du,Rank:()=>g2,Real:()=>Qc,RealDiv:()=>_a,Reciprocal:()=>pu,Reduction:()=>Un,Relu:()=>Qa,Relu6:()=>to,Reshape:()=>Ti,ResizeBilinear:()=>eo,ResizeBilinearGrad:()=>Ph,ResizeNearestNeighbor:()=>hu,ResizeNearestNeighborGrad:()=>_h,Reverse:()=>Ni,RotateWithOffset:()=>Wi,Round:()=>Ei,Rsqrt:()=>no,SGDOptimizer:()=>_d,ScatterNd:()=>Ri,Select:()=>$i,Selu:()=>fu,Sequential:()=>ju,Sigmoid:()=>ro,Sign:()=>mu,Sin:()=>so,Sinh:()=>_i,Slice:()=>Di,Softmax:()=>io,Softplus:()=>gu,SpaceToBatchND:()=>Pi,SparseFillEmptyRows:()=>Fh,SparseReshape:()=>Oh,SparseSegmentMean:()=>Mh,SparseSegmentSum:()=>zh,SparseToDense:()=>ed,SplitV:()=>Fi,Sqrt:()=>ao,Square:()=>yu,SquaredDifference:()=>lo,Step:()=>ho,StridedSlice:()=>Oi,StringNGrams:()=>td,StringSplit:()=>Lh,StringToHashBucketFast:()=>Bh,Sub:()=>uo,Sum:()=>oo,SymbolicTensor:()=>gr,Tan:()=>Mi,Tanh:()=>co,Tensor:()=>Ke,TensorBuffer:()=>nn,Tile:()=>Kr,TopK:()=>Au,Transform:()=>zi,Transpose:()=>po,Unique:()=>Wh,Unpack:()=>Li,UnsortedSegmentSum:()=>nd,Variable:()=>dd,ZerosLike:()=>Bi,_FusedMatMul:()=>fo,abs:()=>Zt,acos:()=>G2,acosh:()=>H2,add:()=>ue,addN:()=>ef,all:()=>tf,any:()=>gd,argMax:()=>Fs,argMin:()=>j2,asin:()=>q2,asinh:()=>X2,atan:()=>K2,atan2:()=>Z2,atanh:()=>Y2,avgPool:()=>Ad,avgPool3d:()=>e1,backend:()=>Tr,backend_util:()=>E,basicLSTMCell:()=>SR,batchNorm:()=>Yi,batchNorm2d:()=>V3,batchNorm3d:()=>U3,batchNorm4d:()=>G3,batchToSpaceND:()=>xd,bincount:()=>t1,booleanMaskAsync:()=>D_,broadcastArgs:()=>H3,broadcastTo:()=>Nu,browser:()=>Ks,buffer:()=>We,callbacks:()=>jW,cast:()=>pe,ceil:()=>n1,clipByValue:()=>rs,clone:()=>lr,complex:()=>Ao,concat:()=>kt,concat1d:()=>j3,concat2d:()=>Eu,concat3d:()=>q3,concat4d:()=>X3,constraints:()=>jv,conv1d:()=>sf,conv2d:()=>Qr,conv2dTranspose:()=>rf,conv3d:()=>r1,conv3dTranspose:()=>Z3,copyRegisteredKernels:()=>KN,cos:()=>bd,cosh:()=>af,cosineWindow:()=>$1,cumsum:()=>of,customGrad:()=>Er,data:()=>i7,denseBincount:()=>Y3,deprecationWarn:()=>V2,depthToSpace:()=>a1,depthwiseConv2d:()=>Ru,deregisterOp:()=>XW,device_util:()=>vu,diag:()=>t$,dilation2d:()=>o1,disableDeprecationWarnings:()=>WE,dispose:()=>ee,disposeVariables:()=>VE,div:()=>fe,divNoNan:()=>i1,dot:()=>J3,dropout:()=>xv,einsum:()=>Q3,elu:()=>$u,enableDebugMode:()=>BE,enableProdMode:()=>M3,enclosingPowerOfTwo:()=>bv,engine:()=>ns,env:()=>Z,equal:()=>gs,erf:()=>l1,exp:()=>ys,expandDims:()=>qt,expm1:()=>u1,eye:()=>c1,fft:()=>Rd,fill:()=>Du,findBackend:()=>U2,findBackendFactory:()=>jE,floor:()=>_u,floorDiv:()=>Qh,forceHalfFloat:()=>_4,fused:()=>So,gather:()=>Ji,gatherND:()=>Av,gather_util:()=>F2,getBackend:()=>ur,getGradient:()=>p2,getKernel:()=>Vh,getKernelsForBackend:()=>Zr,gpgpu_util:()=>i4,grad:()=>$$,grads:()=>D$,greater:()=>as,greaterEqual:()=>ko,ifft:()=>zu,imag:()=>lf,image:()=>$e,inTopKAsync:()=>U_,initializers:()=>Qv,input:()=>Uw,io:()=>ts,irfft:()=>wf,isFinite:()=>ev,isInf:()=>tv,isNaN:()=>d1,keep:()=>An,kernel_impls:()=>Ys,layers:()=>cw,leakyRelu:()=>vd,less:()=>uf,lessEqual:()=>Io,linalg:()=>Dv,linspace:()=>nv,loadGraphModel:()=>ot,loadLayersModel:()=>nB,localResponseNormalization:()=>p1,log:()=>As,log1p:()=>wd,logSigmoid:()=>rv,logSoftmax:()=>df,logSumExp:()=>m1,logicalAnd:()=>Zs,logicalNot:()=>kd,logicalOr:()=>pf,logicalXor:()=>lv,losses:()=>SF,matMul:()=>Xe,math:()=>y3,max:()=>Wn,maxPool:()=>Id,maxPool3d:()=>g1,maxPoolWithArgmax:()=>uv,maximum:()=>Rr,mean:()=>Lt,memory:()=>Yh,meshgrid:()=>eD,metrics:()=>kk,min:()=>Sd,minimum:()=>Pu,mirrorPad:()=>y1,mod:()=>A1,model:()=>eB,models:()=>Ik,moments:()=>hf,movingAverage:()=>F_,mul:()=>L,multiRNNCell:()=>lD,multinomial:()=>cv,neg:()=>_t,nextFrame:()=>zf,norm:()=>Cf,notEqual:()=>tl,oneHot:()=>Su,ones:()=>xs,onesLike:()=>bs,op:()=>U,outerProduct:()=>hD,pad:()=>Ms,pad1d:()=>gD,pad2d:()=>AD,pad3d:()=>bD,pad4d:()=>wD,pool:()=>dv,pow:()=>ea,prelu:()=>Td,print:()=>d3,prod:()=>ff,profile:()=>UE,rand:()=>$D,randomGamma:()=>FD,randomNormal:()=>pv,randomUniform:()=>Fu,range:()=>Ou,ready:()=>Jh,real:()=>Nd,reciprocal:()=>v1,registerBackend:()=>Xi,registerCallbackConstructor:()=>sB,registerGradient:()=>L5,registerKernel:()=>Yr,registerOp:()=>qW,regularizers:()=>Sk,relu:()=>cr,relu6:()=>mf,removeBackend:()=>HE,reshape:()=>G,reverse:()=>vs,reverse1d:()=>GD,reverse2d:()=>jD,reverse3d:()=>XD,reverse4d:()=>ZD,rfft:()=>$d,round:()=>gf,rsqrt:()=>yf,scalar:()=>Ee,scatterND:()=>yv,scatter_util:()=>O2,selu:()=>Af,separableConv2d:()=>w1,sequential:()=>tB,serialization:()=>de,setBackend:()=>z3,setPlatform:()=>qE,setWasmPath:()=>Cce,setWasmPaths:()=>RC,setWebGLContext:()=>Tm,setdiff1dAsync:()=>hv,sigmoid:()=>ss,sign:()=>k1,signal:()=>IF,sin:()=>xf,sinh:()=>bf,slice:()=>_e,slice1d:()=>vf,slice2d:()=>I1,slice3d:()=>Mu,slice4d:()=>Ed,slice_util:()=>yn,softmax:()=>nl,softplus:()=>Qi,spaceToBatchND:()=>Cd,sparse:()=>Dd,sparseToDense:()=>R1,spectral:()=>kF,split:()=>xn,sqrt:()=>Cn,square:()=>vt,squaredDifference:()=>kf,squeeze:()=>dt,stack:()=>Tn,step:()=>Lu,stridedSlice:()=>S1,string:()=>$f,sub:()=>xe,sum:()=>ke,sumOutType:()=>pd,tan:()=>C1,tanh:()=>Zi,tensor:()=>jt,tensor1d:()=>Yt,tensor2d:()=>dr,tensor3d:()=>A3,tensor4d:()=>w_,tensor5d:()=>k_,tensor6d:()=>I_,tensor_util:()=>or,test_util:()=>P3,tidy:()=>j,tile:()=>Os,time:()=>GE,topk:()=>T1,train:()=>rl,transpose:()=>tt,truncatedNormal:()=>If,unique:()=>Sf,unregisterGradient:()=>XN,unregisterKernel:()=>qN,unsortedSegmentSum:()=>N1,unstack:()=>Vn,upcastType:()=>Bn,util:()=>v,valueAndGrad:()=>_$,valueAndGrads:()=>P$,variable:()=>fv,variableGrads:()=>sv,version:()=>A0e,version_converter:()=>YV,version_core:()=>Zh,version_layers:()=>py,version_wasm:()=>Tce,version_webgl:()=>uJ,webgl:()=>cJ,webgl_util:()=>$I,webgpu:()=>h6,where:()=>Pn,whereAsync:()=>E1,zeros:()=>Xt,zerosLike:()=>nt});var YT=Object.create,ih=Object.defineProperty,JT=Object.getOwnPropertyDescriptor,QT=Object.getOwnPropertyNames,eN=Object.getPrototypeOf,tN=Object.prototype.hasOwnProperty,x5=e=>ih(e,"__esModule",{value:!0}),Vl=(e=>typeof Jo!="undefined"?Jo:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof Jo!="undefined"?Jo:t)[n]}):e)(function(e){if(typeof Jo!="undefined")return Jo.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')}),Dt=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},Le=(e,t)=>{x5(e);for(var n in t)ih(e,n,{get:t[n],enumerable:!0})},nN=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let s of QT(t))!tN.call(e,s)&&s!=="default"&&ih(e,s,{get:()=>t[s],enumerable:!(n=JT(t,s))||n.enumerable});return e},Qo=e=>nN(x5(ih(e!=null?YT(eN(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),sN=Dt({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(D){}function s(D,T,O){this.low=D|0,this.high=T|0,this.unsigned=!!O}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(D){return(D&&D.__isLong__)===!0}s.isLong=r;var a={},o={};function i(D,T){var O,W,H;return T?(D>>>=0,(H=0<=D&&D<256)&&(W=o[D],W)?W:(O=c(D,(D|0)<0?-1:0,!0),H&&(o[D]=O),O)):(D|=0,(H=-128<=D&&D<128)&&(W=a[D],W)?W:(O=c(D,D<0?-1:0,!1),H&&(a[D]=O),O))}s.fromInt=i;function l(D,T){if(isNaN(D))return T?b:x;if(T){if(D<0)return b;if(D>=g)return $}else{if(D<=-y)return F;if(D+1>=y)return N}return D<0?l(-D,T).neg():c(D%m|0,D/m|0,T)}s.fromNumber=l;function c(D,T,O){return new s(D,T,O)}s.fromBits=c;var u=Math.pow;function d(D,T,O){if(D.length===0)throw Error("empty string");if(D==="NaN"||D==="Infinity"||D==="+Infinity"||D==="-Infinity")return x;if(typeof T=="number"?(O=T,T=!1):T=!!T,O=O||10,O<2||36<O)throw RangeError("radix");var W;if((W=D.indexOf("-"))>0)throw Error("interior hyphen");if(W===0)return d(D.substring(1),T,O).neg();for(var H=l(u(O,8)),z=x,X=0;X<D.length;X+=8){var te=Math.min(8,D.length-X),J=parseInt(D.substring(X,X+te),O);if(te<8){var Q=l(u(O,te));z=z.mul(Q).add(l(J))}else z=z.mul(H),z=z.add(l(J))}return z.unsigned=T,z}s.fromString=d;function p(D,T){return typeof D=="number"?l(D,T):typeof D=="string"?d(D,T):c(D.low,D.high,typeof T=="boolean"?T:D.unsigned)}s.fromValue=p;var h=1<<16,f=1<<24,m=h*h,g=m*m,y=g/2,A=i(f),x=i(0);s.ZERO=x;var b=i(0,!0);s.UZERO=b;var w=i(1);s.ONE=w;var k=i(1,!0);s.UONE=k;var S=i(-1);s.NEG_ONE=S;var N=c(4294967295|0,2147483647|0,!1);s.MAX_VALUE=N;var $=c(4294967295|0,4294967295|0,!0);s.MAX_UNSIGNED_VALUE=$;var F=c(0,2147483648|0,!1);s.MIN_VALUE=F;var R=s.prototype;R.toInt=function(){return this.unsigned?this.low>>>0:this.low},R.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},R.toString=function(T){if(T=T||10,T<2||36<T)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(F)){var O=l(T),W=this.div(O),H=W.mul(O).sub(this);return W.toString(T)+H.toInt().toString(T)}else return"-"+this.neg().toString(T);for(var z=l(u(T,6),this.unsigned),X=this,te="";;){var J=X.div(z),Q=X.sub(J.mul(z)).toInt()>>>0,ne=Q.toString(T);if(X=J,X.isZero())return ne+te;for(;ne.length<6;)ne="0"+ne;te=""+ne+te}},R.getHighBits=function(){return this.high},R.getHighBitsUnsigned=function(){return this.high>>>0},R.getLowBits=function(){return this.low},R.getLowBitsUnsigned=function(){return this.low>>>0},R.getNumBitsAbs=function(){if(this.isNegative())return this.eq(F)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,O=31;O>0&&(T&1<<O)==0;O--);return this.high!=0?O+33:O+1},R.isZero=function(){return this.high===0&&this.low===0},R.eqz=R.isZero,R.isNegative=function(){return!this.unsigned&&this.high<0},R.isPositive=function(){return this.unsigned||this.high>=0},R.isOdd=function(){return(this.low&1)==1},R.isEven=function(){return(this.low&1)==0},R.equals=function(T){return r(T)||(T=p(T)),this.unsigned!==T.unsigned&&this.high>>>31==1&&T.high>>>31==1?!1:this.high===T.high&&this.low===T.low},R.eq=R.equals,R.notEquals=function(T){return!this.eq(T)},R.neq=R.notEquals,R.ne=R.notEquals,R.lessThan=function(T){return this.comp(T)<0},R.lt=R.lessThan,R.lessThanOrEqual=function(T){return this.comp(T)<=0},R.lte=R.lessThanOrEqual,R.le=R.lessThanOrEqual,R.greaterThan=function(T){return this.comp(T)>0},R.gt=R.greaterThan,R.greaterThanOrEqual=function(T){return this.comp(T)>=0},R.gte=R.greaterThanOrEqual,R.ge=R.greaterThanOrEqual,R.compare=function(T){if(r(T)||(T=p(T)),this.eq(T))return 0;var O=this.isNegative(),W=T.isNegative();return O&&!W?-1:!O&&W?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},R.comp=R.compare,R.negate=function(){return!this.unsigned&&this.eq(F)?F:this.not().add(w)},R.neg=R.negate,R.add=function(T){r(T)||(T=p(T));var O=this.high>>>16,W=this.high&65535,H=this.low>>>16,z=this.low&65535,X=T.high>>>16,te=T.high&65535,J=T.low>>>16,Q=T.low&65535,ne=0,K=0,oe=0,ce=0;return ce+=z+Q,oe+=ce>>>16,ce&=65535,oe+=H+J,K+=oe>>>16,oe&=65535,K+=W+te,ne+=K>>>16,K&=65535,ne+=O+X,ne&=65535,c(oe<<16|ce,ne<<16|K,this.unsigned)},R.subtract=function(T){return r(T)||(T=p(T)),this.add(T.neg())},R.sub=R.subtract,R.multiply=function(T){if(this.isZero())return x;if(r(T)||(T=p(T)),n){var O=n.mul(this.low,this.high,T.low,T.high);return c(O,n.get_high(),this.unsigned)}if(T.isZero())return x;if(this.eq(F))return T.isOdd()?F:x;if(T.eq(F))return this.isOdd()?F:x;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(A)&&T.lt(A))return l(this.toNumber()*T.toNumber(),this.unsigned);var W=this.high>>>16,H=this.high&65535,z=this.low>>>16,X=this.low&65535,te=T.high>>>16,J=T.high&65535,Q=T.low>>>16,ne=T.low&65535,K=0,oe=0,ce=0,he=0;return he+=X*ne,ce+=he>>>16,he&=65535,ce+=z*ne,oe+=ce>>>16,ce&=65535,ce+=X*Q,oe+=ce>>>16,ce&=65535,oe+=H*ne,K+=oe>>>16,oe&=65535,oe+=z*Q,K+=oe>>>16,oe&=65535,oe+=X*J,K+=oe>>>16,oe&=65535,K+=W*ne+H*Q+z*J+X*te,K&=65535,c(ce<<16|he,K<<16|oe,this.unsigned)},R.mul=R.multiply,R.divide=function(T){if(r(T)||(T=p(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var O=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return c(O,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:x;var W,H,z;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return b;if(T.gt(this.shru(1)))return k;z=b}else{if(this.eq(F)){if(T.eq(w)||T.eq(S))return F;if(T.eq(F))return w;var X=this.shr(1);return W=X.div(T).shl(1),W.eq(x)?T.isNegative()?w:S:(H=this.sub(T.mul(W)),z=W.add(H.div(T)),z)}else if(T.eq(F))return this.unsigned?b:x;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();z=x}for(H=this;H.gte(T);){W=Math.max(1,Math.floor(H.toNumber()/T.toNumber()));for(var te=Math.ceil(Math.log(W)/Math.LN2),J=te<=48?1:u(2,te-48),Q=l(W),ne=Q.mul(T);ne.isNegative()||ne.gt(H);)W-=J,Q=l(W,this.unsigned),ne=Q.mul(T);Q.isZero()&&(Q=w),z=z.add(Q),H=H.sub(ne)}return z},R.div=R.divide,R.modulo=function(T){if(r(T)||(T=p(T)),n){var O=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return c(O,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},R.mod=R.modulo,R.rem=R.modulo,R.not=function(){return c(~this.low,~this.high,this.unsigned)},R.and=function(T){return r(T)||(T=p(T)),c(this.low&T.low,this.high&T.high,this.unsigned)},R.or=function(T){return r(T)||(T=p(T)),c(this.low|T.low,this.high|T.high,this.unsigned)},R.xor=function(T){return r(T)||(T=p(T)),c(this.low^T.low,this.high^T.high,this.unsigned)},R.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?c(this.low<<T,this.high<<T|this.low>>>32-T,this.unsigned):c(0,this.low<<T-32,this.unsigned)},R.shl=R.shiftLeft,R.shiftRight=function(T){return r(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?c(this.low>>>T|this.high<<32-T,this.high>>T,this.unsigned):c(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},R.shr=R.shiftRight,R.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var O=this.high;if(T<32){var W=this.low;return c(W>>>T|O<<32-T,O>>>T,this.unsigned)}else return T===32?c(O,0,this.unsigned):c(O>>>T-32,0,this.unsigned)},R.shru=R.shiftRightUnsigned,R.shr_u=R.shiftRightUnsigned,R.toSigned=function(){return this.unsigned?c(this.low,this.high,!1):this},R.toUnsigned=function(){return this.unsigned?this:c(this.low,this.high,!0)},R.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},R.toBytesLE=function(){var T=this.high,O=this.low;return[O&255,O>>>8&255,O>>>16&255,O>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},R.toBytesBE=function(){var T=this.high,O=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,O>>>24,O>>>16&255,O>>>8&255,O&255]},s.fromBytes=function(T,O,W){return W?s.fromBytesLE(T,O):s.fromBytesBE(T,O)},s.fromBytesLE=function(T,O){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,O)},s.fromBytesBE=function(T,O){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],O)}}}),rN=Dt({"(disabled):node_modules/.pnpm/node-fetch@2.6.5/node_modules/node-fetch/browser.js"(){}}),aN=Dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(c){var u=this,d=l();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=d(" "),u.s1=d(" "),u.s2=d(" "),u.s0-=d(c),u.s0<0&&(u.s0+=1),u.s1-=d(c),u.s1<0&&(u.s1+=1),u.s2-=d(c),u.s2<0&&(u.s2+=1),d=null}function o(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function i(c,u){var d=new a(c),p=u&&u.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var c=4022871197,u=function(d){d=d.toString();for(var p=0;p<d.length;p++){c+=d.charCodeAt(p);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),oN=Dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var p=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^p^p>>>8},l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),iN=Dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(p^p<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,d==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),lN=Dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.x,p=c.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,c.i=p+1&7,f};function u(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}u(c,l)}function o(l,c){return c.x=l.x.slice(),c.i=l.i,c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.x&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),uN=Dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.w,p=c.X,h=c.i,f,m;return c.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,c.i=h,m+(d^d>>>16)|0};function u(d,p){var h,f,m,g,y,A=[],x=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,x=Math.max(x,p.length)),m=0,g=-32;g<x;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(y=y+1640531527|0,h=A[g&127]^=f+y,m=h==0?m+1:0);for(m>=128&&(A[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=A[m+34&127],h=A[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,A[m]=f^h;d.w=y,d.X=A,d.i=m}u(c,l)}function o(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.X&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),cN=Dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.b,h=c.c,f=c.d,m=c.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,c.b=p=p<<20^p>>>12^h,c.c=h=h-f|0,c.d=f<<16^h>>>16^m,c.a=m-p|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var d=0;d<u.length+20;d++)c.b^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),b5=Dt({"(disabled):crypto"(){}}),dN=Dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s){var r=this,a=256,o=6,i=52,l="random",c=s.pow(a,o),u=s.pow(2,i),d=u*2,p=a-1,h;function f(w,k,S){var N=[];k=k==!0?{entropy:!0}:k||{};var $=A(y(k.entropy?[w,b(n)]:w==null?x():w,3),N),F=new m(N),R=function(){for(var D=F.g(o),T=c,O=0;D<u;)D=(D+O)*a,T*=a,O=F.g(1);for(;D>=d;)D/=2,T/=2,O>>>=1;return(D+O)/T};return R.int32=function(){return F.g(4)|0},R.quick=function(){return F.g(4)/4294967296},R.double=R,A(b(F.S),n),(k.pass||S||function(D,T,O,W){return W&&(W.S&&g(W,F),D.state=function(){return g(F,{})}),O?(s[l]=D,T):D})(R,$,"global"in k?k.global:this==s,k.state)}s["seed"+l]=f;function m(w){var k,S=w.length,N=this,$=0,F=N.i=N.j=0,R=N.S=[];for(S||(w=[S++]);$<a;)R[$]=$++;for($=0;$<a;$++)R[$]=R[F=p&F+w[$%S]+(k=R[$])],R[F]=k;(N.g=function(D){for(var T,O=0,W=N.i,H=N.j,z=N.S;D--;)T=z[W=p&W+1],O=O*a+z[p&(z[W]=z[H=p&H+T])+(z[H]=T)];return N.i=W,N.j=H,O})(a)}function g(w,k){return k.i=w.i,k.j=w.j,k.S=w.S.slice(),k}function y(w,k){var S=[],N=typeof w,$;if(k&&N=="object")for($ in w)try{S.push(y(w[$],k-1))}catch(F){}return S.length?S:N=="string"?w:w+"\0"}function A(w,k){for(var S=w+"",N,$=0;$<S.length;)k[p&$]=p&(N^=k[p&$]*19)+S.charCodeAt($++);return b(k)}function x(){try{var w;return h&&(w=h.randomBytes)?w=w(a):(w=new Uint8Array(a),(r.crypto||r.msCrypto).getRandomValues(w)),b(w)}catch(N){var k=r.navigator,S=k&&k.plugins;return[+new Date,r,S,r.screen,b(n)]}}function b(w){return String.fromCharCode.apply(0,w)}if(A(s.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{h=b5()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}}),v5=Dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js"(e,t){var n=aN(),s=oN(),r=iN(),a=lN(),o=uN(),i=cN(),l=dN();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),pN=Dt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(c){var u=this,d=l();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=d(" "),u.s1=d(" "),u.s2=d(" "),u.s0-=d(c),u.s0<0&&(u.s0+=1),u.s1-=d(c),u.s1<0&&(u.s1+=1),u.s2-=d(c),u.s2<0&&(u.s2+=1),d=null}function o(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function i(c,u){var d=new a(c),p=u&&u.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var c=4022871197,u=function(d){d=String(d);for(var p=0;p<d.length;p++){c+=d.charCodeAt(p);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),hN=Dt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var p=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^p^p>>>8},l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),fN=Dt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(p^p<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,d==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),mN=Dt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.x,p=c.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,c.i=p+1&7,f};function u(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}u(c,l)}function o(l,c){return c.x=l.x.slice(),c.i=l.i,c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.x&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),gN=Dt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.w,p=c.X,h=c.i,f,m;return c.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,c.i=h,m+(d^d>>>16)|0};function u(d,p){var h,f,m,g,y,A=[],x=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,x=Math.max(x,p.length)),m=0,g=-32;g<x;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(y=y+1640531527|0,h=A[g&127]^=f+y,m=h==0?m+1:0);for(m>=128&&(A[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=A[m+34&127],h=A[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,A[m]=f^h;d.w=y,d.X=A,d.i=m}u(c,l)}function o(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.X&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),yN=Dt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.b,h=c.c,f=c.d,m=c.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,c.b=p=p<<20^p>>>12^h,c.c=h=h-f|0,c.d=f<<16^h>>>16^m,c.a=m-p|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var d=0;d<u.length+20;d++)c.b^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),AN=Dt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",c=r.pow(a,o),u=r.pow(2,i),d=u*2,p=a-1,h;function f(w,k,S){var N=[];k=k==!0?{entropy:!0}:k||{};var $=A(y(k.entropy?[w,b(s)]:w==null?x():w,3),N),F=new m(N),R=function(){for(var D=F.g(o),T=c,O=0;D<u;)D=(D+O)*a,T*=a,O=F.g(1);for(;D>=d;)D/=2,T/=2,O>>>=1;return(D+O)/T};return R.int32=function(){return F.g(4)|0},R.quick=function(){return F.g(4)/4294967296},R.double=R,A(b(F.S),s),(k.pass||S||function(D,T,O,W){return W&&(W.S&&g(W,F),D.state=function(){return g(F,{})}),O?(r[l]=D,T):D})(R,$,"global"in k?k.global:this==r,k.state)}function m(w){var k,S=w.length,N=this,$=0,F=N.i=N.j=0,R=N.S=[];for(S||(w=[S++]);$<a;)R[$]=$++;for($=0;$<a;$++)R[$]=R[F=p&F+w[$%S]+(k=R[$])],R[F]=k;(N.g=function(D){for(var T,O=0,W=N.i,H=N.j,z=N.S;D--;)T=z[W=p&W+1],O=O*a+z[p&(z[W]=z[H=p&H+T])+(z[H]=T)];return N.i=W,N.j=H,O})(a)}function g(w,k){return k.i=w.i,k.j=w.j,k.S=w.S.slice(),k}function y(w,k){var S=[],N=typeof w,$;if(k&&N=="object")for($ in w)try{S.push(y(w[$],k-1))}catch(F){}return S.length?S:N=="string"?w:w+"\0"}function A(w,k){for(var S=w+"",N,$=0;$<S.length;)k[p&$]=p&(N^=k[p&$]*19)+S.charCodeAt($++);return b(k)}function x(){try{var w;return h&&(w=h.randomBytes)?w=w(a):(w=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(w)),b(w)}catch(N){var k=n.navigator,S=k&&k.plugins;return[+new Date,n,S,n.screen,b(s)]}}function b(w){return String.fromCharCode.apply(0,w)}if(A(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{h=b5()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),w5=Dt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(e,t){var n=pN(),s=hN(),r=fN(),a=mN(),o=gN(),i=yN(),l=AN();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),k5=Dt({"(disabled):node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js"(){}}),Lc=Dt({"(disabled):path"(){}}),xN=Dt({"(disabled):worker_threads"(){}}),bN=Dt({"(disabled):perf_hooks"(){}}),vN=Dt({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.9.0_@tensorflow+tfjs-core@3.9.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return K.buffer!=Ye&&In(K.buffer),Jn}function o(){return K.buffer!=Ye&&In(K.buffer),Mt}function i(){return K.buffer!=Ye&&In(K.buffer),js}function l(){return K.buffer!=Ye&&In(K.buffer),On}function c(){return K.buffer!=Ye&&In(K.buffer),$s}var u=typeof r!="undefined"?r:{},d,p;u.ready=new Promise(function(C,P){d=C,p=P});var h={},f;for(f in u)u.hasOwnProperty(f)&&(h[f]=u[f]);var m=[],g="./this.program",y=function(C,P){throw P},A=!1,x=!1,b=!1,w=!1;A=typeof window=="object",x=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",w=!A&&!b&&!x;var k=u.ENVIRONMENT_IS_PTHREAD||!1;k&&(Ye=u.buffer);var S="";function N(C){return u.locateFile?u.locateFile(C,S):S+C}var $,F,R,D,T,O;if(b){x?S=Lc().dirname(S)+"/":S=__dirname+"/",$=function(P,V){return T||(T=Vl("fs")),O||(O=Lc()),P=O.normalize(P),T.readFileSync(P,V?null:"utf8")},R=function(P){var V=$(P,!0);return V.buffer||(V=new Uint8Array(V)),Ae(V.buffer),V},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(C){if(!(C instanceof Pc))throw C}),process.on("unhandledRejection",Ur),y=function(C){process.exit(C)},u.inspect=function(){return"[Emscripten Module object]"};var W;try{W=xN()}catch(C){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),C}global.Worker=W.Worker}else w?(typeof read!="undefined"&&($=function(P){return read(P)}),R=function(P){var V;return typeof readbuffer=="function"?new Uint8Array(readbuffer(P)):(V=read(P,"binary"),Ae(typeof V=="object"),V)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(y=function(C){quit(C)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(A||x)&&(x?S=self.location.href:typeof document!="undefined"&&document.currentScript&&(S=document.currentScript.src),typeof s!="undefined"&&s&&(S=s),S.indexOf("blob:")!==0?S=S.substr(0,S.lastIndexOf("/")+1):S="",b?($=function(P,V){return T||(T=Vl("fs")),O||(O=Lc()),P=O.normalize(P),T.readFileSync(P,V?null:"utf8")},R=function(P){var V=$(P,!0);return V.buffer||(V=new Uint8Array(V)),Ae(V.buffer),V}):($=function(C){var P=new XMLHttpRequest;return P.open("GET",C,!1),P.send(null),P.responseText},x&&(R=function(C){var P=new XMLHttpRequest;return P.open("GET",C,!1),P.responseType="arraybuffer",P.send(null),new Uint8Array(P.response)}),F=function(C,P,V){var Y=new XMLHttpRequest;Y.open("GET",C,!0),Y.responseType="arraybuffer",Y.onload=function(){if(Y.status==200||Y.status==0&&Y.response){P(Y.response);return}V()},Y.onerror=V,Y.send(null)}),D=function(C){document.title=C});b&&typeof performance=="undefined"&&(global.performance=bN().performance);var H=u.print||console.log.bind(console),z=u.printErr||console.warn.bind(console);for(f in h)h.hasOwnProperty(f)&&(u[f]=h[f]);h=null,u.arguments&&(m=u.arguments),u.thisProgram&&(g=u.thisProgram),u.quit&&(y=u.quit);var X=Atomics.load,te=Atomics.store,J=Atomics.compareExchange,Q;u.wasmBinary&&(Q=u.wasmBinary);var ne=u.noExitRuntime||!0;typeof WebAssembly!="object"&&Ur("no native wasm support detected");var K,oe,ce=!1,he;function Ae(C,P){C||Ur("Assertion failed: "+P)}function Se(C){var P=u["_"+C];return Ae(P,"Cannot call unknown function "+C+", make sure it is exported"),P}function Ce(C,P,V,Y,ye){var me={string:function(Mn){var Wl=0;if(Mn!=null&&Mn!==0){var y5=(Mn.length<<2)+1;Wl=zl(y5),mt(Mn,Wl,y5)}return Wl},array:function(Mn){var Wl=zl(Mn.length);return ht(Mn,Wl),Wl}};function ge(Mn){return P==="string"?ze(Mn):P==="boolean"?Boolean(Mn):Mn}var Te=Se(C),yt=[],hn=0;if(Y)for(var tn=0;tn<Y.length;tn++){var Aa=me[V[tn]];Aa?(hn===0&&(hn=_c()),yt[tn]=Aa(Y[tn])):yt[tn]=Y[tn]}var Bl=Te.apply(null,yt);return Bl=ge(Bl),hn!==0&&Ml(hn),Bl}function Oe(C,P,V,Y){V=V||[];var ye=V.every(function(ge){return ge==="number"}),me=P!=="string";return me&&ye&&!Y?Se(C):function(){return Ce(C,P,V,arguments,Y)}}function Ue(C,P,V){for(var Y=P+V,ye="";!(P>=Y);){var me=C[P++];if(!me)return ye;if(!(me&128)){ye+=String.fromCharCode(me);continue}var ge=C[P++]&63;if((me&224)==192){ye+=String.fromCharCode((me&31)<<6|ge);continue}var Te=C[P++]&63;if((me&240)==224?me=(me&15)<<12|ge<<6|Te:me=(me&7)<<18|ge<<12|Te<<6|C[P++]&63,me<65536)ye+=String.fromCharCode(me);else{var yt=me-65536;ye+=String.fromCharCode(55296|yt>>10,56320|yt&1023)}}return ye}function ze(C,P){return C?Ue(o(),C,P):""}function wt(C,P,V,Y){if(!(Y>0))return 0;for(var ye=V,me=V+Y-1,ge=0;ge<C.length;++ge){var Te=C.charCodeAt(ge);if(Te>=55296&&Te<=57343){var yt=C.charCodeAt(++ge);Te=65536+((Te&1023)<<10)|yt&1023}if(Te<=127){if(V>=me)break;P[V++]=Te}else if(Te<=2047){if(V+1>=me)break;P[V++]=192|Te>>6,P[V++]=128|Te&63}else if(Te<=65535){if(V+2>=me)break;P[V++]=224|Te>>12,P[V++]=128|Te>>6&63,P[V++]=128|Te&63}else{if(V+3>=me)break;P[V++]=240|Te>>18,P[V++]=128|Te>>12&63,P[V++]=128|Te>>6&63,P[V++]=128|Te&63}}return P[V]=0,V-ye}function mt(C,P,V){return wt(C,o(),P,V)}function gt(C){for(var P=0,V=0;V<C.length;++V){var Y=C.charCodeAt(V);Y>=55296&&Y<=57343&&(Y=65536+((Y&1023)<<10)|C.charCodeAt(++V)&1023),Y<=127?++P:Y<=2047?P+=2:Y<=65535?P+=3:P+=4}return P}function ht(C,P){a().set(C,P)}function bt(C,P){return C%P>0&&(C+=P-C%P),C}var Ye,Jn,Mt,ps,kn,js,On,Rs,$s;function In(C){Ye=C,u.HEAP8=Jn=new Int8Array(C),u.HEAP16=ps=new Int16Array(C),u.HEAP32=js=new Int32Array(C),u.HEAPU8=Mt=new Uint8Array(C),u.HEAPU16=kn=new Uint16Array(C),u.HEAPU32=On=new Uint32Array(C),u.HEAPF32=Rs=new Float32Array(C),u.HEAPF64=$s=new Float64Array(C)}var Ds=u.INITIAL_MEMORY||16777216;if(k)K=u.wasmMemory,Ye=u.buffer;else if(u.wasmMemory)K=u.wasmMemory;else if(K=new WebAssembly.Memory({initial:Ds/65536,maximum:2147483648/65536,shared:!0}),!(K.buffer instanceof SharedArrayBuffer))throw z("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");K&&(Ye=K.buffer),Ds=Ye.byteLength,In(Ye);var _s,hs=[],wr=[],Wr=[],ha=[],$l=[],kr=!1,Lp=!1;k||wr.push({func:function(){eh()}});function $0(){if(!k){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)Wp(u.preRun.shift());_l(hs)}}function Ic(){kr=!0,!k&&_l(wr)}function D0(){k||_l(Wr)}function Bp(){k||(Lp=!0)}function Qn(){if(!k){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)_0(u.postRun.shift());_l($l)}}function Wp(C){hs.unshift(C)}function _0(C){$l.unshift(C)}var Vr=0,fa=null,Ko=null;function P0(C){Ae(!k,"addRunDependency cannot be used in a pthread worker"),Vr++,u.monitorRunDependencies&&u.monitorRunDependencies(Vr)}function F0(C){if(Vr--,u.monitorRunDependencies&&u.monitorRunDependencies(Vr),Vr==0&&(fa!==null&&(clearInterval(fa),fa=null),Ko)){var P=Ko;Ko=null,P()}}u.preloadedImages={},u.preloadedAudios={};function Ur(C){u.onAbort&&u.onAbort(C),k&&console.error("Pthread aborting at "+new Error().stack),C+="",z(C),ce=!0,he=1,C="abort("+C+"). Build with -s ASSERTIONS=1 for more info.";var P=new WebAssembly.RuntimeError(C);throw p(P),P}function Vp(C,P){return String.prototype.startsWith?C.startsWith(P):C.indexOf(P)===0}var Dl="data:application/octet-stream;base64,";function Up(C){return Vp(C,Dl)}var O0="file://";function Gp(C){return Vp(C,O0)}var es="tfjs-backend-wasm-threaded-simd.wasm";Up(es)||(es=N(es));function Hp(C){try{if(C==es&&Q)return new Uint8Array(Q);if(R)return R(C);throw"both async and sync fetching of the wasm failed"}catch(P){Ur(P)}}function M0(){if(!Q&&(A||x)){if(typeof fetch=="function"&&!Gp(es))return fetch(es,{credentials:"same-origin"}).then(function(C){if(!C.ok)throw"failed to load wasm binary file at '"+es+"'";return C.arrayBuffer()}).catch(function(){return Hp(es)});if(F)return new Promise(function(C,P){F(es,function(V){C(new Uint8Array(V))},P)})}return Promise.resolve().then(function(){return Hp(es)})}function z0(){var C={a:Ng};function P(ge,Te){var yt=ge.exports;if(u.asm=yt,_s=u.asm.F,oe=Te,!k){var hn=Re.unusedWorkers.length;Re.unusedWorkers.forEach(function(tn){Re.loadWasmModuleToWorker(tn,function(){--hn||F0("wasm-instantiate")})})}}k||P0("wasm-instantiate");function V(ge){P(ge.instance,ge.module)}function Y(ge){return M0().then(function(Te){return WebAssembly.instantiate(Te,C)}).then(ge,function(Te){z("failed to asynchronously prepare wasm: "+Te),Ur(Te)})}function ye(){return!Q&&typeof WebAssembly.instantiateStreaming=="function"&&!Up(es)&&!Gp(es)&&typeof fetch=="function"?fetch(es,{credentials:"same-origin"}).then(function(ge){var Te=WebAssembly.instantiateStreaming(ge,C);return Te.then(V,function(yt){return z("wasm streaming compile failed: "+yt),z("falling back to ArrayBuffer instantiation"),Y(V)})}):Y(V)}if(u.instantiateWasm)try{var me=u.instantiateWasm(C,P);return me}catch(ge){return z("Module.instantiateWasm callback failed with error: "+ge),!1}return ye().catch(p),{}}var L0={10024:function(){throw"Canceled!"},10042:function(C,P){setTimeout(function(){d5(C,P)},0)}};function jp(){Re.initRuntime()}function _l(C){for(;C.length>0;){var P=C.shift();if(typeof P=="function"){P(u);continue}var V=P.func;typeof V=="number"?P.arg===void 0?_s.get(V)():_s.get(V)(P.arg):V(P.arg===void 0?null:P.arg)}}function Sc(C,P){if(C<=0||C>a().length||C&!0||P<0)return-28;if(P==0)return 0;P>=2147483647&&(P=1/0);var V=Atomics.load(i(),Ll>>2),Y=0;if(V==C){var ye=Atomics.compareExchange(i(),Ll>>2,V,0);if(ye==V&&(--P,Y=1,P<=0))return 1}var me=Atomics.notify(i(),C>>2,P);if(me>=0)return me+Y;throw"Atomics.notify returned an unexpected value "+me}u._emscripten_futex_wake=Sc;function B0(C){if(k)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!C)throw"Internal Error! Null pthread_ptr in killThread!";i()[C+12>>2]=0;var P=Re.pthreads[C];P.worker.terminate(),Re.freeThreadData(P),Re.runningWorkers.splice(Re.runningWorkers.indexOf(P.worker),1),P.worker.pthread=void 0}function W0(C){if(k)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!C)throw"Internal Error! Null pthread_ptr in cancelThread!";var P=Re.pthreads[C];P.worker.postMessage({cmd:"cancel"})}function V0(C){if(k)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!C)throw"Internal Error! Null pthread_ptr in cleanupThread!";var P=Re.pthreads[C];if(P){i()[C+12>>2]=0;var V=P.worker;Re.returnWorkerToPool(V)}}var Re={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var C=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),P=0;P<C;++P)Re.allocateUnusedWorker()},initRuntime:function(){for(var C=Yo(228),P=0;P<228/4;++P)l()[C/4+P]=0;i()[C+12>>2]=C;var V=C+152;i()[V>>2]=V;for(var Y=Yo(512),P=0;P<128;++P)l()[Y/4+P]=0;Atomics.store(l(),C+100>>2,Y),Atomics.store(l(),C+40>>2,C),t2(C,!x,1),c5(C)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Re.threadExitHandlers.length>0;)Re.threadExitHandlers.pop()();k&&Ol()&&u5()},runExitHandlersAndDeinitThread:function(C,P){Atomics.store(l(),C+56>>2,1),Atomics.store(l(),C+60>>2,0),Re.runExitHandlers(),Atomics.store(l(),C+4>>2,P),Atomics.store(l(),C+0>>2,1),Sc(C+0,2147483647),t2(0,0,0)},threadExit:function(C){var P=Ol();P&&(Re.runExitHandlersAndDeinitThread(P,C),k&&postMessage({cmd:"exit"}))},threadCancel:function(){Re.runExitHandlersAndDeinitThread(Ol(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var C in Re.pthreads){var P=Re.pthreads[C];P&&P.worker&&Re.returnWorkerToPool(P.worker)}Re.pthreads={};for(var V=0;V<Re.unusedWorkers.length;++V){var Y=Re.unusedWorkers[V];Y.terminate()}Re.unusedWorkers=[];for(var V=0;V<Re.runningWorkers.length;++V){var Y=Re.runningWorkers[V],P=Y.pthread;Re.freeThreadData(P),Y.terminate()}Re.runningWorkers=[]},freeThreadData:function(C){if(!!C){if(C.threadInfoStruct){var P=i()[C.threadInfoStruct+100>>2];i()[C.threadInfoStruct+100>>2]=0,Dc(P),Dc(C.threadInfoStruct)}C.threadInfoStruct=0,C.allocatedOwnStack&&C.stackBase&&Dc(C.stackBase),C.stackBase=0,C.worker&&(C.worker.pthread=null)}},returnWorkerToPool:function(C){Re.runWithoutMainThreadQueuedCalls(function(){delete Re.pthreads[C.pthread.threadInfoStruct],Re.unusedWorkers.push(C),Re.runningWorkers.splice(Re.runningWorkers.indexOf(C),1),Re.freeThreadData(C.pthread),C.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(C){i()[g5>>2]=0;try{C()}finally{i()[g5>>2]=1}},receiveObjectTransfer:function(C){},loadWasmModuleToWorker:function(C,P){C.onmessage=function(V){var Y=V.data,ye=Y.cmd;if(C.pthread&&(Re.currentProxiedOperationCallerThread=C.pthread.threadInfoStruct),Y.targetThread&&Y.targetThread!=Ol()){var me=Re.pthreads[Y.targetThread];me?me.worker.postMessage(V.data,Y.transferList):console.error('Internal error! Worker sent a message "'+ye+'" to target pthread '+Y.targetThread+", but that thread no longer exists!"),Re.currentProxiedOperationCallerThread=void 0;return}if(ye==="processQueuedMainThreadWork")Qg();else if(ye==="spawnThread")Jp(V.data);else if(ye==="cleanupThread")V0(Y.thread);else if(ye==="killThread")B0(Y.thread);else if(ye==="cancelThread")W0(Y.thread);else if(ye==="loaded")C.loaded=!0,P&&P(C),C.runPthread&&(C.runPthread(),delete C.runPthread);else if(ye==="print")H("Thread "+Y.threadId+": "+Y.text);else if(ye==="printErr")z("Thread "+Y.threadId+": "+Y.text);else if(ye==="alert")alert("Thread "+Y.threadId+": "+Y.text);else if(ye==="exit"){var ge=C.pthread&&Atomics.load(l(),C.pthread.threadInfoStruct+64>>2);ge&&Re.returnWorkerToPool(C)}else if(ye==="exitProcess")try{XT(Y.returnCode)}catch(Te){if(Te instanceof Pc)return;throw Te}else ye==="cancelDone"?Re.returnWorkerToPool(C):ye==="objectTransfer"?Re.receiveObjectTransfer(V.data):V.data.target==="setimmediate"?C.postMessage(V.data):z("worker sent an unknown command "+ye);Re.currentProxiedOperationCallerThread=void 0},C.onerror=function(V){z("pthread sent an error! "+V.filename+":"+V.lineno+": "+V.message)},b&&(C.on("message",function(V){C.onmessage({data:V})}),C.on("error",function(V){C.onerror(V)}),C.on("exit",function(V){})),C.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||s,wasmMemory:K,wasmModule:oe})},allocateUnusedWorker:function(){var C=N("tfjs-backend-wasm-threaded-simd.worker.js");Re.unusedWorkers.push(new Worker(C))},getNewWorker:function(){return Re.unusedWorkers.length==0&&(Re.allocateUnusedWorker(),Re.loadWasmModuleToWorker(Re.unusedWorkers[0])),Re.unusedWorkers.length>0?Re.unusedWorkers.pop():null},busySpinWait:function(C){for(var P=performance.now()+C;performance.now()<P;);}};function U0(C,P){f5(C,P),Ml(C)}u.establishStackSpace=U0;function G0(){return ne}u.getNoExitRuntime=G0;function H0(C,P){return _s.get(C)(P)}u.invokeEntryPoint=H0;function j0(C,P,V,Y){Ur("Assertion failed: "+ze(C)+", at: "+[P?ze(P):"unknown filename",V,Y?ze(Y):"unknown function"])}function q0(C,P){var V=_main(C,P)}var Zo;b?Zo=function(){var C=process.hrtime();return C[0]*1e3+C[1]/1e6}:k?Zo=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?Zo=dateNow:Zo=function(){return performance.now()};function X0(C){return i()[i5()>>2]=C,C}function K0(C,P){if(k)return ma(1,1,C,P)}function Z0(C,P){if(C==P)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:C,cmd:"processThreadQueue"});else{var V=Re.pthreads[C],Y=V&&V.worker;if(!Y)return;Y.postMessage({cmd:"processThreadQueue"})}return 1}function Y0(){Ur()}function J0(C,P,V){var Y=sg(P,V);return L0[C].apply(null,Y)}function Q0(C,P){}function eg(C,P,V){if(C<=0||C>a().length||C&!0)return-28;if(A){if(Atomics.load(i(),C>>2)!=P)return-6;for(var ye=performance.now(),me=ye+V,ge=Atomics.exchange(i(),Ll>>2,C);;){if(ye=performance.now(),ye>me)return ge=Atomics.exchange(i(),Ll>>2,0),-73;if(ge=Atomics.exchange(i(),Ll>>2,0),ge==0)break;if(Qg(),Atomics.load(i(),C>>2)!=P)return-6;ge=Atomics.exchange(i(),Ll>>2,C)}return 0}else{var Y=Atomics.wait(i(),C>>2,P,V);if(Y==="timed-out")return-73;if(Y==="not-equal")return-6;if(Y==="ok")return 0;throw"Atomics.wait returned an unexpected value "+Y}}function tg(C,P,V){o().copyWithin(C,P,P+V)}function ng(){return b?Vl("os").cpus().length:navigator.hardwareConcurrency}function ma(C,P){for(var V=arguments.length-2,Y=_c(),ye=V,me=zl(ye*8),ge=me>>3,Te=0;Te<V;Te++){var yt=arguments[2+Te];c()[ge+Te]=yt}var hn=h5(C,ye,me,P);return Ml(Y),hn}var Cc=[],Tc=[];function sg(C,P){Tc.length=0;var V;for(P>>=2;V=o()[C++];){var Y=V<105;Y&&P&1&&P++,Tc.push(Y?c()[P++>>1]:i()[P]),++P}return Tc}function rg(C,P,V){Cc.length=P;for(var Y=V>>3,ye=0;ye<P;ye++)Cc[ye]=c()[Y+ye];var me=C<0,ge=me?L0[-C-1]:Tg[C];return ge.apply(null,Cc)}function ag(){return o().length}function og(C){try{return K.grow(C-Ye.byteLength+65535>>>16),In(K.buffer),1}catch(P){}}function ig(C){var P=ag();if(C<=P)return!1;var V=2147483648;if(C>V)return!1;for(var Y=1;Y<=4;Y*=2){var ye=P*(1+.2/Y);ye=Math.min(ye,C+100663296);var me=Math.min(V,bt(Math.max(C,ye),65536)),ge=og(me);if(ge)return!0}return!1}var qe={inEventHandler:0,removeAllEventListeners:function(){for(var C=qe.eventHandlers.length-1;C>=0;--C)qe._removeHandler(C);qe.eventHandlers=[],qe.deferredCalls=[]},registerRemoveEventListeners:function(){qe.removeEventListenersRegistered||(ha.push(qe.removeAllEventListeners),qe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(C,P,V){function Y(ge,Te){if(ge.length!=Te.length)return!1;for(var yt in ge)if(ge[yt]!=Te[yt])return!1;return!0}for(var ye in qe.deferredCalls){var me=qe.deferredCalls[ye];if(me.targetFunction==C&&Y(me.argsList,V))return}qe.deferredCalls.push({targetFunction:C,precedence:P,argsList:V}),qe.deferredCalls.sort(function(ge,Te){return ge.precedence<Te.precedence})},removeDeferredCalls:function(C){for(var P=0;P<qe.deferredCalls.length;++P)qe.deferredCalls[P].targetFunction==C&&(qe.deferredCalls.splice(P,1),--P)},canPerformEventHandlerRequests:function(){return qe.inEventHandler&&qe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!qe.canPerformEventHandlerRequests())for(var C=0;C<qe.deferredCalls.length;++C){var P=qe.deferredCalls[C];qe.deferredCalls.splice(C,1),--C,P.targetFunction.apply(null,P.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(C,P){for(var V=0;V<qe.eventHandlers.length;++V)qe.eventHandlers[V].target==C&&(!P||P==qe.eventHandlers[V].eventTypeString)&&qe._removeHandler(V--)},_removeHandler:function(C){var P=qe.eventHandlers[C];P.target.removeEventListener(P.eventTypeString,P.eventListenerFunc,P.useCapture),qe.eventHandlers.splice(C,1)},registerOrRemoveHandler:function(C){var P=function(ye){++qe.inEventHandler,qe.currentEventHandler=C,qe.runDeferredCalls(),C.handlerFunc(ye),qe.runDeferredCalls(),--qe.inEventHandler};if(C.callbackfunc)C.eventListenerFunc=P,C.target.addEventListener(C.eventTypeString,P,C.useCapture),qe.eventHandlers.push(C),qe.registerRemoveEventListeners();else for(var V=0;V<qe.eventHandlers.length;++V)qe.eventHandlers[V].target==C.target&&qe.eventHandlers[V].eventTypeString==C.eventTypeString&&qe._removeHandler(V--)},queueEventHandlerOnThread_iiii:function(C,P,V,Y,ye){var me=_c(),ge=zl(12);i()[ge>>2]=V,i()[ge+4>>2]=Y,i()[ge+8>>2]=ye,e2(0,C,637534208,P,Y,ge),Ml(me)},getTargetThreadForEventCallback:function(C){switch(C){case 1:return 0;case 2:return Re.currentProxiedOperationCallerThread;default:return C}},getNodeNameForTarget:function(C){return C?C==window?"#window":C==screen?"#screen":C&&C.nodeName?C.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function lg(C){var P=gt(C)+1,V=Yo(P);return mt(C,V,P),V}function ug(C,P,V,Y){var ye=_c(),me=zl(12),ge=0;P&&(ge=lg(P)),i()[me>>2]=ge,i()[me+4>>2]=V,i()[me+8>>2]=Y,e2(0,C,657457152,0,ge,me),Ml(ye)}function cg(C,P,V,Y){P=P?ze(P):"",ug(C,P,V,Y)}function dg(C){return C>2?ze(C):C}var pg=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function hg(C){C=dg(C);var P=pg[C]||(typeof document!="undefined"?document.querySelector(C):void 0);return P}function Nc(C){return hg(C)}function qp(C,P,V){var Y=Nc(C);if(!Y)return-4;if(Y.canvasSharedPtr&&(i()[Y.canvasSharedPtr>>2]=P,i()[Y.canvasSharedPtr+4>>2]=V),Y.offscreenCanvas||!Y.controlTransferredOffscreen){Y.offscreenCanvas&&(Y=Y.offscreenCanvas);var ye=!1;if(Y.GLctxObject&&Y.GLctxObject.GLctx){var me=Y.GLctxObject.GLctx.getParameter(2978);ye=me[0]===0&&me[1]===0&&me[2]===Y.width&&me[3]===Y.height}Y.width=P,Y.height=V,ye&&Y.GLctxObject.GLctx.viewport(0,0,P,V)}else if(Y.canvasSharedPtr){var ge=i()[Y.canvasSharedPtr+8>>2];return cg(ge,C,P,V),1}else return-4;return 0}function Xp(C,P,V){return k?ma(2,1,C,P,V):qp(C,P,V)}function fg(C,P,V){var Y=Nc(C);return Y?qp(C,P,V):Xp(C,P,V)}function mg(C){}function gg(C,P){}function yg(C){var P=C.getExtension("ANGLE_instanced_arrays");if(P)return C.vertexAttribDivisor=function(V,Y){P.vertexAttribDivisorANGLE(V,Y)},C.drawArraysInstanced=function(V,Y,ye,me){P.drawArraysInstancedANGLE(V,Y,ye,me)},C.drawElementsInstanced=function(V,Y,ye,me,ge){P.drawElementsInstancedANGLE(V,Y,ye,me,ge)},1}function Ag(C){var P=C.getExtension("OES_vertex_array_object");if(P)return C.createVertexArray=function(){return P.createVertexArrayOES()},C.deleteVertexArray=function(V){P.deleteVertexArrayOES(V)},C.bindVertexArray=function(V){P.bindVertexArrayOES(V)},C.isVertexArray=function(V){return P.isVertexArrayOES(V)},1}function xg(C){var P=C.getExtension("WEBGL_draw_buffers");if(P)return C.drawBuffers=function(V,Y){P.drawBuffersWEBGL(V,Y)},1}function bg(C){return!!(C.multiDrawWebgl=C.getExtension("WEBGL_multi_draw"))}var ft={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(P){ft.lastError||(ft.lastError=P)},getNewId:function(C){for(var P=ft.counter++,V=C.length;V<P;V++)C[V]=null;return P},getSource:function(C,P,V,Y){for(var ye="",me=0;me<P;++me){var ge=Y?i()[Y+me*4>>2]:-1;ye+=ze(i()[V+me*4>>2],ge<0?void 0:ge)}return ye},createContext:function(C,P){var V=C.getContext("webgl",P);if(!V)return 0;var Y=ft.registerContext(V,P);return Y},registerContext:function(C,P){var V=Yo(8);i()[V+4>>2]=Ol();var Y={handle:V,attributes:P,version:P.majorVersion,GLctx:C};return C.canvas&&(C.canvas.GLctxObject=Y),ft.contexts[V]=Y,(typeof P.enableExtensionsByDefault=="undefined"||P.enableExtensionsByDefault)&&ft.initExtensions(Y),V},makeContextCurrent:function(C){return ft.currentContext=ft.contexts[C],u.ctx=ga=ft.currentContext&&ft.currentContext.GLctx,!(C&&!ga)},getContext:function(C){return ft.contexts[C]},deleteContext:function(C){ft.currentContext===ft.contexts[C]&&(ft.currentContext=null),typeof qe=="object"&&qe.removeAllHandlersOnTarget(ft.contexts[C].GLctx.canvas),ft.contexts[C]&&ft.contexts[C].GLctx.canvas&&(ft.contexts[C].GLctx.canvas.GLctxObject=void 0),Dc(ft.contexts[C].handle),ft.contexts[C]=null},initExtensions:function(C){if(C||(C=ft.currentContext),!C.initExtensionsDone){C.initExtensionsDone=!0;var P=C.GLctx;yg(P),Ag(P),xg(P),P.disjointTimerQueryExt=P.getExtension("EXT_disjoint_timer_query"),bg(P);var V=P.getSupportedExtensions()||[];V.forEach(function(Y){Y.indexOf("lose_context")<0&&Y.indexOf("debug")<0&&P.getExtension(Y)})}},populateUniformTable:function(C){for(var P=ft.programs[C],V=ft.programInfos[C]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},Y=V.uniforms,ye=ga.getProgramParameter(P,35718),me=0;me<ye;++me){var ge=ga.getActiveUniform(P,me),Te=ge.name;V.maxUniformLength=Math.max(V.maxUniformLength,Te.length+1),Te.slice(-1)=="]"&&(Te=Te.slice(0,Te.lastIndexOf("[")));var yt=ga.getUniformLocation(P,Te);if(yt){var hn=ft.getNewId(ft.uniforms);Y[Te]=[ge.size,hn],ft.uniforms[hn]=yt;for(var tn=1;tn<ge.size;++tn){var Aa=Te+"["+tn+"]";yt=ga.getUniformLocation(P,Aa),hn=ft.getNewId(ft.uniforms),ft.uniforms[hn]=yt}}}}},vg=["default","low-power","high-performance"];function wg(C,P){var V=P>>2,Y=i()[V+(24>>2)],ye={alpha:!!i()[V+(0>>2)],depth:!!i()[V+(4>>2)],stencil:!!i()[V+(8>>2)],antialias:!!i()[V+(12>>2)],premultipliedAlpha:!!i()[V+(16>>2)],preserveDrawingBuffer:!!i()[V+(20>>2)],powerPreference:vg[Y],failIfMajorPerformanceCaveat:!!i()[V+(28>>2)],majorVersion:i()[V+(32>>2)],minorVersion:i()[V+(36>>2)],enableExtensionsByDefault:i()[V+(40>>2)],explicitSwapControl:i()[V+(44>>2)],proxyContextToMainThread:i()[V+(48>>2)],renderViaOffscreenBackBuffer:i()[V+(52>>2)]},me=Nc(C);if(!me||ye.explicitSwapControl)return 0;var ge=ft.createContext(me,ye);return ge}function kg(C,P){return wg(C,P)}var Pl={mappings:{},buffers:[null,[],[]],printChar:function(C,P){var V=Pl.buffers[C];P===0||P===10?((C===1?H:z)(Ue(V,0)),V.length=0):V.push(P)},varargs:void 0,get:function(){Pl.varargs+=4;var C=i()[Pl.varargs-4>>2];return C},getStr:function(C){var P=ze(C);return P},get64:function(C,P){return C}};function Kp(C){return k?ma(3,1,C):0}function Zp(C,P,V,Y,ye){if(k)return ma(4,1,C,P,V,Y,ye)}function Yp(C,P,V,Y){if(k)return ma(5,1,C,P,V,Y);for(var ye=0,me=0;me<V;me++){for(var ge=i()[P+me*8>>2],Te=i()[P+(me*8+4)>>2],yt=0;yt<Te;yt++)Pl.printChar(C,o()[ge+yt]);ye+=Te}return i()[Y>>2]=ye,0}function Ig(C){var P=Re.threadExitHandlers.pop();C&&P()}function Sg(C,P){Re.threadExitHandlers.push(function(){_s.get(C)(P)})}function Jp(C){if(k)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var P=Re.getNewWorker();if(P.pthread!==void 0)throw"Internal error!";if(!C.pthread_ptr)throw"Internal error, no pthread ptr!";Re.runningWorkers.push(P);for(var V=Yo(128*4),Y=0;Y<128;++Y)i()[V+Y*4>>2]=0;var ye=C.stackBase+C.stackSize,me=Re.pthreads[C.pthread_ptr]={worker:P,stackBase:C.stackBase,stackSize:C.stackSize,allocatedOwnStack:C.allocatedOwnStack,threadInfoStruct:C.pthread_ptr},ge=me.threadInfoStruct>>2;Atomics.store(l(),ge+(64>>2),C.detached),Atomics.store(l(),ge+(100>>2),V),Atomics.store(l(),ge+(40>>2),me.threadInfoStruct),Atomics.store(l(),ge+(80>>2),C.stackSize),Atomics.store(l(),ge+(76>>2),ye),Atomics.store(l(),ge+(104>>2),C.stackSize),Atomics.store(l(),ge+(104+8>>2),ye),Atomics.store(l(),ge+(104+12>>2),C.detached);var Te=l5(),yt=Te+40;Atomics.store(l(),ge+(172>>2),yt),P.pthread=me;var hn={cmd:"run",start_routine:C.startRoutine,arg:C.arg,threadInfoStruct:C.pthread_ptr,stackBase:C.stackBase,stackSize:C.stackSize};P.runPthread=function(){hn.time=performance.now(),P.postMessage(hn,C.transferList)},P.loaded&&(P.runPthread(),delete P.runPthread)}function Cg(C,P,V,Y){if(typeof SharedArrayBuffer=="undefined")return z("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!C)return z("pthread_create called with a null thread pointer!"),28;var ye=[],me=0;if(k&&(ye.length===0||me))return p5(687865856,C,P,V,Y);if(me)return me;var ge=0,Te=0,yt=0;P&&P!=-1?(ge=i()[P>>2],ge+=81920,Te=i()[P+8>>2],yt=i()[P+12>>2]!==0):ge=2097152;var hn=Te==0;hn?Te=m5(16,ge):(Te-=ge,Ae(Te>0));for(var tn=Yo(228),Aa=0;Aa<228>>2;++Aa)l()[(tn>>2)+Aa]=0;i()[C>>2]=tn,i()[tn+12>>2]=tn;var Bl=tn+152;i()[Bl>>2]=Bl;var Mn={stackBase:Te,stackSize:ge,allocatedOwnStack:hn,detached:yt,startRoutine:V,pthread_ptr:tn,arg:Y,transferList:ye};return k?(Mn.cmd="spawnThread",postMessage(Mn,ye)):Jp(Mn),0}function Qp(C){if(k)return ma(6,1,C);switch(C){case 30:return 16384;case 85:var P=2147483648;return P/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return X0(28),-1}k||Re.initMainThreadBlock();var ga,Tg=[null,K0,Xp,Kp,Zp,Yp,Qp],Ng={e:j0,r:q0,x:Z0,b:Y0,y:J0,j:Q0,c:eg,d:Sc,f:Zo,p:tg,z:ng,u:rg,q:ig,v:fg,i:mg,t:gg,w:kg,m:Kp,n:Zp,g:Yp,o:jp,a:K||u.wasmMemory,k:Ig,l:Sg,h:Cg,s:Qp},o5=z0(),eh=u.___wasm_call_ctors=function(){return(eh=u.___wasm_call_ctors=u.asm.A).apply(null,arguments)},Eg=u._init=function(){return(Eg=u._init=u.asm.B).apply(null,arguments)},Rg=u._register_tensor=function(){return(Rg=u._register_tensor=u.asm.C).apply(null,arguments)},$g=u._dispose_data=function(){return($g=u._dispose_data=u.asm.D).apply(null,arguments)},Dg=u._dispose=function(){return(Dg=u._dispose=u.asm.E).apply(null,arguments)},_g=u._Abs=function(){return(_g=u._Abs=u.asm.G).apply(null,arguments)},Pg=u._Add=function(){return(Pg=u._Add=u.asm.H).apply(null,arguments)},Fg=u._AddN=function(){return(Fg=u._AddN=u.asm.I).apply(null,arguments)},Og=u._All=function(){return(Og=u._All=u.asm.J).apply(null,arguments)},Mg=u._Any=function(){return(Mg=u._Any=u.asm.K).apply(null,arguments)},zg=u._ArgMax=function(){return(zg=u._ArgMax=u.asm.L).apply(null,arguments)},Lg=u._AvgPool=function(){return(Lg=u._AvgPool=u.asm.M).apply(null,arguments)},Bg=u._BatchMatMul=function(){return(Bg=u._BatchMatMul=u.asm.N).apply(null,arguments)},Wg=u._Ceil=function(){return(Wg=u._Ceil=u.asm.O).apply(null,arguments)},Vg=u._ClipByValue=function(){return(Vg=u._ClipByValue=u.asm.P).apply(null,arguments)},Ug=u._Conv2D=function(){return(Ug=u._Conv2D=u.asm.Q).apply(null,arguments)},Gg=u._Conv2DBackpropInput=function(){return(Gg=u._Conv2DBackpropInput=u.asm.R).apply(null,arguments)},Hg=u._Cos=function(){return(Hg=u._Cos=u.asm.S).apply(null,arguments)},jg=u._Cosh=function(){return(jg=u._Cosh=u.asm.T).apply(null,arguments)},qg=u._CropAndResize=function(){return(qg=u._CropAndResize=u.asm.U).apply(null,arguments)},Xg=u._Cumsum=function(){return(Xg=u._Cumsum=u.asm.V).apply(null,arguments)},Kg=u._DepthToSpace=function(){return(Kg=u._DepthToSpace=u.asm.W).apply(null,arguments)},Zg=u._DepthwiseConv2dNative=function(){return(Zg=u._DepthwiseConv2dNative=u.asm.X).apply(null,arguments)},Yg=u._Elu=function(){return(Yg=u._Elu=u.asm.Y).apply(null,arguments)},th=u._Equal=function(){return(th=u._Equal=u.asm.Z).apply(null,arguments)},nh=u._Exp=function(){return(nh=u._Exp=u.asm._).apply(null,arguments)},sh=u._FlipLeftRight=function(){return(sh=u._FlipLeftRight=u.asm.$).apply(null,arguments)},Ec=u._Floor=function(){return(Ec=u._Floor=u.asm.aa).apply(null,arguments)},Fl=u._FloorDiv=function(){return(Fl=u._FloorDiv=u.asm.ba).apply(null,arguments)},Jg=u._FusedBatchNorm=function(){return(Jg=u._FusedBatchNorm=u.asm.ca).apply(null,arguments)},Rc=u._FusedConv2D=function(){return(Rc=u._FusedConv2D=u.asm.da).apply(null,arguments)},se=u._FusedDepthwiseConv2D=function(){return(se=u._FusedDepthwiseConv2D=u.asm.ea).apply(null,arguments)},le=u._Gather=function(){return(le=u._Gather=u.asm.fa).apply(null,arguments)},we=u._GatherNd=function(){return(we=u._GatherNd=u.asm.ga).apply(null,arguments)},ct=u._Greater=function(){return(ct=u._Greater=u.asm.ha).apply(null,arguments)},Vt=u._GreaterEqual=function(){return(Vt=u._GreaterEqual=u.asm.ia).apply(null,arguments)},$t=u._LeakyRelu=function(){return($t=u._LeakyRelu=u.asm.ja).apply(null,arguments)},Qe=u._Less=function(){return(Qe=u._Less=u.asm.ka).apply(null,arguments)},rt=u._LessEqual=function(){return(rt=u._LessEqual=u.asm.la).apply(null,arguments)},Sn=u._Log=function(){return(Sn=u._Log=u.asm.ma).apply(null,arguments)},Gr=u._LogicalAnd=function(){return(Gr=u._LogicalAnd=u.asm.na).apply(null,arguments)},Hr=u._Max=function(){return(Hr=u._Max=u.asm.oa).apply(null,arguments)},rh=u._MaxPool=function(){return(rh=u._MaxPool=u.asm.pa).apply(null,arguments)},$c=u._Maximum=function(){return($c=u._Maximum=u.asm.qa).apply(null,arguments)},fs=u._Mean=function(){return(fs=u._Mean=u.asm.ra).apply(null,arguments)},ya=u._Min=function(){return(ya=u._Min=u.asm.sa).apply(null,arguments)},ah=u._Minimum=function(){return(ah=u._Minimum=u.asm.ta).apply(null,arguments)},iT=u._MirrorPad=function(){return(iT=u._MirrorPad=u.asm.ua).apply(null,arguments)},lT=u._Multiply=function(){return(lT=u._Multiply=u.asm.va).apply(null,arguments)},uT=u._Neg=function(){return(uT=u._Neg=u.asm.wa).apply(null,arguments)},cT=u._NonMaxSuppressionV3=function(){return(cT=u._NonMaxSuppressionV3=u.asm.xa).apply(null,arguments)},dT=u._NonMaxSuppressionV4=function(){return(dT=u._NonMaxSuppressionV4=u.asm.ya).apply(null,arguments)},pT=u._NonMaxSuppressionV5=function(){return(pT=u._NonMaxSuppressionV5=u.asm.za).apply(null,arguments)},hT=u._NotEqual=function(){return(hT=u._NotEqual=u.asm.Aa).apply(null,arguments)},fT=u._OneHot=function(){return(fT=u._OneHot=u.asm.Ba).apply(null,arguments)},mT=u._PadV2=function(){return(mT=u._PadV2=u.asm.Ca).apply(null,arguments)},gT=u._Pow=function(){return(gT=u._Pow=u.asm.Da).apply(null,arguments)},yT=u._Prelu=function(){return(yT=u._Prelu=u.asm.Ea).apply(null,arguments)},AT=u._Prod=function(){return(AT=u._Prod=u.asm.Fa).apply(null,arguments)},xT=u._RealDiv=function(){return(xT=u._RealDiv=u.asm.Ga).apply(null,arguments)},bT=u._Relu=function(){return(bT=u._Relu=u.asm.Ha).apply(null,arguments)},vT=u._Relu6=function(){return(vT=u._Relu6=u.asm.Ia).apply(null,arguments)},wT=u._ResizeBilinear=function(){return(wT=u._ResizeBilinear=u.asm.Ja).apply(null,arguments)},kT=u._Reverse=function(){return(kT=u._Reverse=u.asm.Ka).apply(null,arguments)},IT=u._RotateWithOffset=function(){return(IT=u._RotateWithOffset=u.asm.La).apply(null,arguments)},ST=u._Round=function(){return(ST=u._Round=u.asm.Ma).apply(null,arguments)},CT=u._Rsqrt=function(){return(CT=u._Rsqrt=u.asm.Na).apply(null,arguments)},TT=u._ScatterNd=function(){return(TT=u._ScatterNd=u.asm.Oa).apply(null,arguments)},NT=u._SelectV2=function(){return(NT=u._SelectV2=u.asm.Pa).apply(null,arguments)},ET=u._Sigmoid=function(){return(ET=u._Sigmoid=u.asm.Qa).apply(null,arguments)},RT=u._Sin=function(){return(RT=u._Sin=u.asm.Ra).apply(null,arguments)},$T=u._Softmax=function(){return($T=u._Softmax=u.asm.Sa).apply(null,arguments)},DT=u._Sqrt=function(){return(DT=u._Sqrt=u.asm.Ta).apply(null,arguments)},_T=u._Square=function(){return(_T=u._Square=u.asm.Ua).apply(null,arguments)},PT=u._SquaredDifference=function(){return(PT=u._SquaredDifference=u.asm.Va).apply(null,arguments)},FT=u._Step=function(){return(FT=u._Step=u.asm.Wa).apply(null,arguments)},OT=u._StridedSlice=function(){return(OT=u._StridedSlice=u.asm.Xa).apply(null,arguments)},MT=u._Sub=function(){return(MT=u._Sub=u.asm.Ya).apply(null,arguments)},zT=u._Sum=function(){return(zT=u._Sum=u.asm.Za).apply(null,arguments)},LT=u._Tan=function(){return(LT=u._Tan=u.asm._a).apply(null,arguments)},BT=u._Tanh=function(){return(BT=u._Tanh=u.asm.$a).apply(null,arguments)},WT=u._Tile=function(){return(WT=u._Tile=u.asm.ab).apply(null,arguments)},VT=u._TopK=function(){return(VT=u._TopK=u.asm.bb).apply(null,arguments)},UT=u._Transform=function(){return(UT=u._Transform=u.asm.cb).apply(null,arguments)},GT=u._Transpose=function(){return(GT=u._Transpose=u.asm.db).apply(null,arguments)},HT=u.__FusedMatMul=function(){return(HT=u.__FusedMatMul=u.asm.eb).apply(null,arguments)},Yo=u._malloc=function(){return(Yo=u._malloc=u.asm.fb).apply(null,arguments)},Dc=u._free=function(){return(Dc=u._free=u.asm.gb).apply(null,arguments)},i5=u.___errno_location=function(){return(i5=u.___errno_location=u.asm.hb).apply(null,arguments)},l5=u._emscripten_get_global_libc=function(){return(l5=u._emscripten_get_global_libc=u.asm.ib).apply(null,arguments)},Ol=u._pthread_self=function(){return(Ol=u._pthread_self=u.asm.jb).apply(null,arguments)},u5=u.___pthread_tsd_run_dtors=function(){return(u5=u.___pthread_tsd_run_dtors=u.asm.kb).apply(null,arguments)},Qg=u._emscripten_main_thread_process_queued_calls=function(){return(Qg=u._emscripten_main_thread_process_queued_calls=u.asm.lb).apply(null,arguments)},jT=u._emscripten_current_thread_process_queued_calls=function(){return(jT=u._emscripten_current_thread_process_queued_calls=u.asm.mb).apply(null,arguments)},c5=u._emscripten_register_main_browser_thread_id=function(){return(c5=u._emscripten_register_main_browser_thread_id=u.asm.nb).apply(null,arguments)},d5=u.__emscripten_do_dispatch_to_thread=function(){return(d5=u.__emscripten_do_dispatch_to_thread=u.asm.ob).apply(null,arguments)},p5=u._emscripten_sync_run_in_main_thread_4=function(){return(p5=u._emscripten_sync_run_in_main_thread_4=u.asm.pb).apply(null,arguments)},h5=u._emscripten_run_in_main_runtime_thread_js=function(){return(h5=u._emscripten_run_in_main_runtime_thread_js=u.asm.qb).apply(null,arguments)},e2=u.__emscripten_call_on_thread=function(){return(e2=u.__emscripten_call_on_thread=u.asm.rb).apply(null,arguments)},qT=u._emscripten_tls_init=function(){return(qT=u._emscripten_tls_init=u.asm.sb).apply(null,arguments)},t2=u.__emscripten_thread_init=function(){return(t2=u.__emscripten_thread_init=u.asm.tb).apply(null,arguments)},_c=u.stackSave=function(){return(_c=u.stackSave=u.asm.ub).apply(null,arguments)},Ml=u.stackRestore=function(){return(Ml=u.stackRestore=u.asm.vb).apply(null,arguments)},zl=u.stackAlloc=function(){return(zl=u.stackAlloc=u.asm.wb).apply(null,arguments)},f5=u._emscripten_stack_set_limits=function(){return(f5=u._emscripten_stack_set_limits=u.asm.xb).apply(null,arguments)},m5=u._memalign=function(){return(m5=u._memalign=u.asm.yb).apply(null,arguments)},g5=u.__emscripten_allow_main_runtime_queued_calls=10016,Ll=u.__emscripten_main_thread_futex=11652;u.cwrap=Oe,u.PThread=Re,u.PThread=Re,u.wasmMemory=K,u.ExitStatus=Pc;var oh;function Pc(C){this.name="ExitStatus",this.message="Program terminated with exit("+C+")",this.status=C}Ko=function C(){oh||n2(),oh||(Ko=C)};function n2(C){if(C=C||m,Vr>0)return;if(k){d(u),Ic(),postMessage({cmd:"loaded"});return}if($0(),Vr>0)return;function P(){oh||(oh=!0,u.calledRun=!0,!ce&&(Ic(),D0(),d(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),Qn()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),P()},1)):P()}u.run=n2;function XT(C,P){if(!(P&&ne&&C===0)){if(!P&&k)throw postMessage({cmd:"exitProcess",returnCode:C}),new Pc(C);ne||(Re.terminateAllThreads(),he=C,Bp(),u.onExit&&u.onExit(C),ce=!0),y(C,new Pc(C))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return k&&(ne=!1,Re.initWorker()),n2(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),wN=Dt({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.9.0_@tensorflow+tfjs-core@3.9.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(se,le){o=se,i=le});var l={},c;for(c in a)a.hasOwnProperty(c)&&(l[c]=a[c]);var u=[],d="./this.program",p=function(se,le){throw le},h=!1,f=!1,m=!1,g=!1;h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!m&&!f;var y="";function A(se){return a.locateFile?a.locateFile(se,y):y+se}var x,b,w,k,S,N;m?(f?y=Lc().dirname(y)+"/":y=__dirname+"/",x=function(le,we){return S||(S=Vl("fs")),N||(N=Lc()),le=N.normalize(le),S.readFileSync(le,we?null:"utf8")},w=function(le){var we=x(le,!0);return we.buffer||(we=new Uint8Array(we)),H(we.buffer),we},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(se){if(!(se instanceof Jg))throw se}),process.on("unhandledRejection",kr),p=function(se){process.exit(se)},a.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(x=function(le){return read(le)}),w=function(le){var we;return typeof readbuffer=="function"?new Uint8Array(readbuffer(le)):(we=read(le,"binary"),H(typeof we=="object"),we)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(p=function(se){quit(se)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||f)&&(f?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),s&&(y=s),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(se){var le=new XMLHttpRequest;return le.open("GET",se,!1),le.send(null),le.responseText},f&&(w=function(se){var le=new XMLHttpRequest;return le.open("GET",se,!1),le.responseType="arraybuffer",le.send(null),new Uint8Array(le.response)}),b=function(se,le,we){var ct=new XMLHttpRequest;ct.open("GET",se,!0),ct.responseType="arraybuffer",ct.onload=function(){if(ct.status==200||ct.status==0&&ct.response){le(ct.response);return}we()},ct.onerror=we,ct.send(null)},k=function(se){document.title=se});var $=a.print||console.log.bind(console),F=a.printErr||console.warn.bind(console);for(c in l)l.hasOwnProperty(c)&&(a[c]=l[c]);l=null,a.arguments&&(u=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(p=a.quit);var R;a.wasmBinary&&(R=a.wasmBinary);var D=a.noExitRuntime||!0;typeof WebAssembly!="object"&&kr("no native wasm support detected");var T,O=!1,W;function H(se,le){se||kr("Assertion failed: "+le)}function z(se){var le=a["_"+se];return H(le,"Cannot call unknown function "+se+", make sure it is exported"),le}function X(se,le,we,ct,Vt){var $t={string:function(fs){var ya=0;if(fs!=null&&fs!==0){var ah=(fs.length<<2)+1;ya=Ec(ah),oe(fs,ya,ah)}return ya},array:function(fs){var ya=Ec(fs.length);return ce(fs,ya),ya}};function Qe(fs){return le==="string"?ne(fs):le==="boolean"?Boolean(fs):fs}var rt=z(se),Sn=[],Gr=0;if(ct)for(var Hr=0;Hr<ct.length;Hr++){var rh=$t[we[Hr]];rh?(Gr===0&&(Gr=nh()),Sn[Hr]=rh(ct[Hr])):Sn[Hr]=ct[Hr]}var $c=rt.apply(null,Sn);return $c=Qe($c),Gr!==0&&sh(Gr),$c}function te(se,le,we,ct){we=we||[];var Vt=we.every(function(Qe){return Qe==="number"}),$t=le!=="string";return $t&&Vt&&!ct?z(se):function(){return X(se,le,we,arguments,ct)}}var J=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Q(se,le,we){for(var ct=le+we,Vt=le;se[Vt]&&!(Vt>=ct);)++Vt;if(Vt-le>16&&se.subarray&&J)return J.decode(se.subarray(le,Vt));for(var $t="";le<Vt;){var Qe=se[le++];if(!(Qe&128)){$t+=String.fromCharCode(Qe);continue}var rt=se[le++]&63;if((Qe&224)==192){$t+=String.fromCharCode((Qe&31)<<6|rt);continue}var Sn=se[le++]&63;if((Qe&240)==224?Qe=(Qe&15)<<12|rt<<6|Sn:Qe=(Qe&7)<<18|rt<<12|Sn<<6|se[le++]&63,Qe<65536)$t+=String.fromCharCode(Qe);else{var Gr=Qe-65536;$t+=String.fromCharCode(55296|Gr>>10,56320|Gr&1023)}}return $t}function ne(se,le){return se?Q(Ce,se,le):""}function K(se,le,we,ct){if(!(ct>0))return 0;for(var Vt=we,$t=we+ct-1,Qe=0;Qe<se.length;++Qe){var rt=se.charCodeAt(Qe);if(rt>=55296&&rt<=57343){var Sn=se.charCodeAt(++Qe);rt=65536+((rt&1023)<<10)|Sn&1023}if(rt<=127){if(we>=$t)break;le[we++]=rt}else if(rt<=2047){if(we+1>=$t)break;le[we++]=192|rt>>6,le[we++]=128|rt&63}else if(rt<=65535){if(we+2>=$t)break;le[we++]=224|rt>>12,le[we++]=128|rt>>6&63,le[we++]=128|rt&63}else{if(we+3>=$t)break;le[we++]=240|rt>>18,le[we++]=128|rt>>12&63,le[we++]=128|rt>>6&63,le[we++]=128|rt&63}}return le[we]=0,we-Vt}function oe(se,le,we){return K(se,Ce,le,we)}function ce(se,le){Se.set(se,le)}function he(se,le){return se%le>0&&(se+=le-se%le),se}var Ae,Se,Ce,Oe,Ue,ze,wt,mt,gt;function ht(se){Ae=se,a.HEAP8=Se=new Int8Array(se),a.HEAP16=Oe=new Int16Array(se),a.HEAP32=ze=new Int32Array(se),a.HEAPU8=Ce=new Uint8Array(se),a.HEAPU16=Ue=new Uint16Array(se),a.HEAPU32=wt=new Uint32Array(se),a.HEAPF32=mt=new Float32Array(se),a.HEAPF64=gt=new Float64Array(se)}var bt=a.INITIAL_MEMORY||16777216,Ye,Jn=[],Mt=[],ps=[],kn=[],js=!1;Mt.push({func:function(){jp()}});function On(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)Ds(a.preRun.shift());fa(Jn)}function Rs(){js=!0,fa(Mt)}function $s(){fa(ps)}function In(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)_s(a.postRun.shift());fa(kn)}function Ds(se){Jn.unshift(se)}function _s(se){kn.unshift(se)}var hs=0,wr=null,Wr=null;function ha(se){hs++,a.monitorRunDependencies&&a.monitorRunDependencies(hs)}function $l(se){if(hs--,a.monitorRunDependencies&&a.monitorRunDependencies(hs),hs==0&&(wr!==null&&(clearInterval(wr),wr=null),Wr)){var le=Wr;Wr=null,le()}}a.preloadedImages={},a.preloadedAudios={};function kr(se){a.onAbort&&a.onAbort(se),se+="",F(se),O=!0,W=1,se="abort("+se+"). Build with -s ASSERTIONS=1 for more info.";var le=new WebAssembly.RuntimeError(se);throw i(le),le}function Lp(se,le){return String.prototype.startsWith?se.startsWith(le):se.indexOf(le)===0}var $0="data:application/octet-stream;base64,";function Ic(se){return Lp(se,$0)}var D0="file://";function Bp(se){return Lp(se,D0)}var Qn="tfjs-backend-wasm.wasm";Ic(Qn)||(Qn=A(Qn));function Wp(se){try{if(se==Qn&&R)return new Uint8Array(R);if(w)return w(se);throw"both async and sync fetching of the wasm failed"}catch(le){kr(le)}}function _0(){if(!R&&(h||f)){if(typeof fetch=="function"&&!Bp(Qn))return fetch(Qn,{credentials:"same-origin"}).then(function(se){if(!se.ok)throw"failed to load wasm binary file at '"+Qn+"'";return se.arrayBuffer()}).catch(function(){return Wp(Qn)});if(b)return new Promise(function(se,le){b(Qn,function(we){se(new Uint8Array(we))},le)})}return Promise.resolve().then(function(){return Wp(Qn)})}function Vr(){var se={a:z0};function le(Qe,rt){var Sn=Qe.exports;a.asm=Sn,T=a.asm.i,ht(T.buffer),Ye=a.asm.o,$l("wasm-instantiate")}ha("wasm-instantiate");function we(Qe){le(Qe.instance)}function ct(Qe){return _0().then(function(rt){return WebAssembly.instantiate(rt,se)}).then(Qe,function(rt){F("failed to asynchronously prepare wasm: "+rt),kr(rt)})}function Vt(){return!R&&typeof WebAssembly.instantiateStreaming=="function"&&!Ic(Qn)&&!Bp(Qn)&&typeof fetch=="function"?fetch(Qn,{credentials:"same-origin"}).then(function(Qe){var rt=WebAssembly.instantiateStreaming(Qe,se);return rt.then(we,function(Sn){return F("wasm streaming compile failed: "+Sn),F("falling back to ArrayBuffer instantiation"),ct(we)})}):ct(we)}if(a.instantiateWasm)try{var $t=a.instantiateWasm(se,le);return $t}catch(Qe){return F("Module.instantiateWasm callback failed with error: "+Qe),!1}return Vt().catch(i),{}}function fa(se){for(;se.length>0;){var le=se.shift();if(typeof le=="function"){le(a);continue}var we=le.func;typeof we=="number"?le.arg===void 0?Ye.get(we)():Ye.get(we)(le.arg):we(le.arg===void 0?null:le.arg)}}function Ko(){kr()}function P0(se,le,we){Ce.copyWithin(se,le,le+we)}function F0(){return Ce.length}function Ur(se){try{return T.grow(se-Ae.byteLength+65535>>>16),ht(T.buffer),1}catch(le){}}function Vp(se){var le=F0(),we=2147483648;if(se>we)return!1;for(var ct=1;ct<=4;ct*=2){var Vt=le*(1+.2/ct);Vt=Math.min(Vt,se+100663296);var $t=Math.min(we,he(Math.max(se,Vt),65536)),Qe=Ur($t);if(Qe)return!0}return!1}var Dl={mappings:{},buffers:[null,[],[]],printChar:function(se,le){var we=Dl.buffers[se];le===0||le===10?((se===1?$:F)(Q(we,0)),we.length=0):we.push(le)},varargs:void 0,get:function(){Dl.varargs+=4;var se=ze[Dl.varargs-4>>2];return se},getStr:function(se){var le=ne(se);return le},get64:function(se,le){return se}};function Up(se){return 0}function O0(se,le,we,ct,Vt){}function Gp(se,le,we,ct){for(var Vt=0,$t=0;$t<we;$t++){for(var Qe=ze[le+$t*8>>2],rt=ze[le+($t*8+4)>>2],Sn=0;Sn<rt;Sn++)Dl.printChar(se,Ce[Qe+Sn]);Vt+=rt}return ze[ct>>2]=Vt,0}function es(){return 6}function Hp(se){return ze[th()>>2]=se,se}function M0(se){switch(se){case 30:return 16384;case 85:var le=2147483648;return le/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Hp(28),-1}var z0={a:Ko,d:P0,e:Vp,f:Up,c:O0,b:Gp,g:es,h:M0},L0=Vr(),jp=a.___wasm_call_ctors=function(){return(jp=a.___wasm_call_ctors=a.asm.j).apply(null,arguments)},_l=a._init=function(){return(_l=a._init=a.asm.k).apply(null,arguments)},Sc=a._register_tensor=function(){return(Sc=a._register_tensor=a.asm.l).apply(null,arguments)},B0=a._dispose_data=function(){return(B0=a._dispose_data=a.asm.m).apply(null,arguments)},W0=a._dispose=function(){return(W0=a._dispose=a.asm.n).apply(null,arguments)},V0=a._Abs=function(){return(V0=a._Abs=a.asm.p).apply(null,arguments)},Re=a._Add=function(){return(Re=a._Add=a.asm.q).apply(null,arguments)},U0=a._AddN=function(){return(U0=a._AddN=a.asm.r).apply(null,arguments)},G0=a._All=function(){return(G0=a._All=a.asm.s).apply(null,arguments)},H0=a._Any=function(){return(H0=a._Any=a.asm.t).apply(null,arguments)},j0=a._ArgMax=function(){return(j0=a._ArgMax=a.asm.u).apply(null,arguments)},q0=a._AvgPool=function(){return(q0=a._AvgPool=a.asm.v).apply(null,arguments)},Zo=a._BatchMatMul=function(){return(Zo=a._BatchMatMul=a.asm.w).apply(null,arguments)},X0=a._Ceil=function(){return(X0=a._Ceil=a.asm.x).apply(null,arguments)},K0=a._ClipByValue=function(){return(K0=a._ClipByValue=a.asm.y).apply(null,arguments)},Z0=a._Conv2D=function(){return(Z0=a._Conv2D=a.asm.z).apply(null,arguments)},Y0=a._Conv2DBackpropInput=function(){return(Y0=a._Conv2DBackpropInput=a.asm.A).apply(null,arguments)},J0=a._Cos=function(){return(J0=a._Cos=a.asm.B).apply(null,arguments)},Q0=a._Cosh=function(){return(Q0=a._Cosh=a.asm.C).apply(null,arguments)},eg=a._CropAndResize=function(){return(eg=a._CropAndResize=a.asm.D).apply(null,arguments)},tg=a._Cumsum=function(){return(tg=a._Cumsum=a.asm.E).apply(null,arguments)},ng=a._DepthToSpace=function(){return(ng=a._DepthToSpace=a.asm.F).apply(null,arguments)},ma=a._DepthwiseConv2dNative=function(){return(ma=a._DepthwiseConv2dNative=a.asm.G).apply(null,arguments)},Cc=a._Elu=function(){return(Cc=a._Elu=a.asm.H).apply(null,arguments)},Tc=a._Equal=function(){return(Tc=a._Equal=a.asm.I).apply(null,arguments)},sg=a._Exp=function(){return(sg=a._Exp=a.asm.J).apply(null,arguments)},rg=a._FlipLeftRight=function(){return(rg=a._FlipLeftRight=a.asm.K).apply(null,arguments)},ag=a._Floor=function(){return(ag=a._Floor=a.asm.L).apply(null,arguments)},og=a._FloorDiv=function(){return(og=a._FloorDiv=a.asm.M).apply(null,arguments)},ig=a._FusedBatchNorm=function(){return(ig=a._FusedBatchNorm=a.asm.N).apply(null,arguments)},qe=a._FusedConv2D=function(){return(qe=a._FusedConv2D=a.asm.O).apply(null,arguments)},lg=a._FusedDepthwiseConv2D=function(){return(lg=a._FusedDepthwiseConv2D=a.asm.P).apply(null,arguments)},ug=a._Gather=function(){return(ug=a._Gather=a.asm.Q).apply(null,arguments)},cg=a._GatherNd=function(){return(cg=a._GatherNd=a.asm.R).apply(null,arguments)},dg=a._Greater=function(){return(dg=a._Greater=a.asm.S).apply(null,arguments)},pg=a._GreaterEqual=function(){return(pg=a._GreaterEqual=a.asm.T).apply(null,arguments)},hg=a._LeakyRelu=function(){return(hg=a._LeakyRelu=a.asm.U).apply(null,arguments)},Nc=a._Less=function(){return(Nc=a._Less=a.asm.V).apply(null,arguments)},qp=a._LessEqual=function(){return(qp=a._LessEqual=a.asm.W).apply(null,arguments)},Xp=a._Log=function(){return(Xp=a._Log=a.asm.X).apply(null,arguments)},fg=a._LogicalAnd=function(){return(fg=a._LogicalAnd=a.asm.Y).apply(null,arguments)},mg=a._Max=function(){return(mg=a._Max=a.asm.Z).apply(null,arguments)},gg=a._MaxPool=function(){return(gg=a._MaxPool=a.asm._).apply(null,arguments)},yg=a._Maximum=function(){return(yg=a._Maximum=a.asm.$).apply(null,arguments)},Ag=a._Mean=function(){return(Ag=a._Mean=a.asm.aa).apply(null,arguments)},xg=a._Min=function(){return(xg=a._Min=a.asm.ba).apply(null,arguments)},bg=a._Minimum=function(){return(bg=a._Minimum=a.asm.ca).apply(null,arguments)},ft=a._MirrorPad=function(){return(ft=a._MirrorPad=a.asm.da).apply(null,arguments)},vg=a._Multiply=function(){return(vg=a._Multiply=a.asm.ea).apply(null,arguments)},wg=a._Neg=function(){return(wg=a._Neg=a.asm.fa).apply(null,arguments)},kg=a._NonMaxSuppressionV3=function(){return(kg=a._NonMaxSuppressionV3=a.asm.ga).apply(null,arguments)},Pl=a._NonMaxSuppressionV4=function(){return(Pl=a._NonMaxSuppressionV4=a.asm.ha).apply(null,arguments)},Kp=a._NonMaxSuppressionV5=function(){return(Kp=a._NonMaxSuppressionV5=a.asm.ia).apply(null,arguments)},Zp=a._NotEqual=function(){return(Zp=a._NotEqual=a.asm.ja).apply(null,arguments)},Yp=a._OneHot=function(){return(Yp=a._OneHot=a.asm.ka).apply(null,arguments)},Ig=a._PadV2=function(){return(Ig=a._PadV2=a.asm.la).apply(null,arguments)},Sg=a._Pow=function(){return(Sg=a._Pow=a.asm.ma).apply(null,arguments)},Jp=a._Prelu=function(){return(Jp=a._Prelu=a.asm.na).apply(null,arguments)},Cg=a._Prod=function(){return(Cg=a._Prod=a.asm.oa).apply(null,arguments)},Qp=a._RealDiv=function(){return(Qp=a._RealDiv=a.asm.pa).apply(null,arguments)},ga=a._Relu=function(){return(ga=a._Relu=a.asm.qa).apply(null,arguments)},Tg=a._Relu6=function(){return(Tg=a._Relu6=a.asm.ra).apply(null,arguments)},Ng=a._ResizeBilinear=function(){return(Ng=a._ResizeBilinear=a.asm.sa).apply(null,arguments)},o5=a._Reverse=function(){return(o5=a._Reverse=a.asm.ta).apply(null,arguments)},eh=a._RotateWithOffset=function(){return(eh=a._RotateWithOffset=a.asm.ua).apply(null,arguments)},Eg=a._Round=function(){return(Eg=a._Round=a.asm.va).apply(null,arguments)},Rg=a._Rsqrt=function(){return(Rg=a._Rsqrt=a.asm.wa).apply(null,arguments)},$g=a._ScatterNd=function(){return($g=a._ScatterNd=a.asm.xa).apply(null,arguments)},Dg=a._SelectV2=function(){return(Dg=a._SelectV2=a.asm.ya).apply(null,arguments)},_g=a._Sigmoid=function(){return(_g=a._Sigmoid=a.asm.za).apply(null,arguments)},Pg=a._Sin=function(){return(Pg=a._Sin=a.asm.Aa).apply(null,arguments)},Fg=a._Softmax=function(){return(Fg=a._Softmax=a.asm.Ba).apply(null,arguments)},Og=a._Sqrt=function(){return(Og=a._Sqrt=a.asm.Ca).apply(null,arguments)},Mg=a._Square=function(){return(Mg=a._Square=a.asm.Da).apply(null,arguments)},zg=a._SquaredDifference=function(){return(zg=a._SquaredDifference=a.asm.Ea).apply(null,arguments)},Lg=a._Step=function(){return(Lg=a._Step=a.asm.Fa).apply(null,arguments)},Bg=a._StridedSlice=function(){return(Bg=a._StridedSlice=a.asm.Ga).apply(null,arguments)},Wg=a._Sub=function(){return(Wg=a._Sub=a.asm.Ha).apply(null,arguments)},Vg=a._Sum=function(){return(Vg=a._Sum=a.asm.Ia).apply(null,arguments)},Ug=a._Tan=function(){return(Ug=a._Tan=a.asm.Ja).apply(null,arguments)},Gg=a._Tanh=function(){return(Gg=a._Tanh=a.asm.Ka).apply(null,arguments)},Hg=a._Tile=function(){return(Hg=a._Tile=a.asm.La).apply(null,arguments)},jg=a._TopK=function(){return(jg=a._TopK=a.asm.Ma).apply(null,arguments)},qg=a._Transform=function(){return(qg=a._Transform=a.asm.Na).apply(null,arguments)},Xg=a._Transpose=function(){return(Xg=a._Transpose=a.asm.Oa).apply(null,arguments)},Kg=a.__FusedMatMul=function(){return(Kg=a.__FusedMatMul=a.asm.Pa).apply(null,arguments)},Zg=a._malloc=function(){return(Zg=a._malloc=a.asm.Qa).apply(null,arguments)},Yg=a._free=function(){return(Yg=a._free=a.asm.Ra).apply(null,arguments)},th=a.___errno_location=function(){return(th=a.___errno_location=a.asm.Sa).apply(null,arguments)},nh=a.stackSave=function(){return(nh=a.stackSave=a.asm.Ta).apply(null,arguments)},sh=a.stackRestore=function(){return(sh=a.stackRestore=a.asm.Ua).apply(null,arguments)},Ec=a.stackAlloc=function(){return(Ec=a.stackAlloc=a.asm.Va).apply(null,arguments)};a.cwrap=te;var Fl;function Jg(se){this.name="ExitStatus",this.message="Program terminated with exit("+se+")",this.status=se}Wr=function se(){Fl||Rc(),Fl||(Wr=se)};function Rc(se){if(se=se||u,hs>0||(On(),hs>0))return;function le(){Fl||(Fl=!0,a.calledRun=!0,!O&&(Rs(),$s(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),In()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),le()},1)):le()}if(a.run=Rc,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return Rc(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),kN=1e-7,IN=1e-4,Bc=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Ul=class{refCount(e){return qs("refCount")}incRef(e){return qs("incRef")}timerAvailable(){return!0}time(e){return qs("time")}read(e){return qs("read")}readSync(e){return qs("readSync")}numDataIds(){return qs("numDataIds")}disposeData(e,t){return qs("disposeData")}write(e,t,n){return qs("write")}move(e,t,n,s,r){return qs("move")}memory(){return qs("memory")}floatPrecision(){return qs("floatPrecision")}epsilon(){return this.floatPrecision()===32?kN:IN}dispose(){return qs("dispose")}};function qs(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function I5(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,lh(e,t,n)}function SN(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,lh(e,n,s),lh(t,n,s)}function Wc(e,t,n){return Math.max(e,Math.min(t,n))}function CN(e){return e%2==0?e:e+1}function lh(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function TN(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function NN(e,t){let n=Math.random();return t*n+(1-n)*e}function EN(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function M(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function zn(e,t,n=""){M(jr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ei(e){M(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ti(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||_n(e)&&!n)for(let s=0;s<e.length;++s)ti(e[s],t,n);else t.push(e);return t}function Ht(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function RN(e){return e.length===0}function jr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function mn(e){return e%1==0}function $N(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function DN(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function _N(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return I5(t),t}function Vc(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function PN(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function FN(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function Xs(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),M(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),M(e.every(s=>mn(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function S5(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:Xs(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function C5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function T5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function N5(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function E5(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function ON(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function _n(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function a2(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function R5(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function ba(e){return typeof e=="string"||e instanceof String}function $5(e){return typeof e=="boolean"}function D5(e){return typeof e=="number"}function uh(e){return Array.isArray(e)?uh(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":D5(e)?"float32":ba(e)?"string":$5(e)?"bool":"float32"}function va(e){return!!(e&&e.constructor&&e.call&&e.apply)}function ch(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function Gl(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function _5(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,c)=>l*c)*(s?2:1);for(let l=0;l<a;l++)r[l]=_5(e+l*i,o,n,s)}return r}function Hl(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return _5(0,e,t,n)}function o2(e,t){let n=dh(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function dh(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function MN(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return Hl(e,new Float32Array(n));if(t==="int32")return Hl(e,new Int32Array(n));if(t==="bool")return Hl(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function i2(e){e.forEach(t=>{M(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function zN(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function LN(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function l2(e){return e&&e.then&&typeof e.then=="function"}function Ir(...e){Z().getBool("IS_TEST")||Z().getBool("PROD")||console.warn(...e)}function BN(...e){Z().getBool("IS_TEST")||Z().getBool("PROD")||console.log(...e)}var P5="tfjsflags",F5=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=WN,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&Ir(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];Ir(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(l2(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);P5 in e&&e[P5].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=UN(s,r)})}};function WN(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(VN(t,s[0],s[1]),s.join("="))),t}function VN(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function UN(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Z(){return ms}var ms=null;function GN(e){ms=e}var u2;function O5(){if(u2==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");u2=e}return u2}function HN(){let e=O5();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function c2(e,t){let n=HN();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var ni="Abs",jl="Acos",ql="Acosh",qr="Add",wa="AddN",Xl="All",Kl="Any",ka="ArgMax",Zl="ArgMin",Yl="Asin",Jl="Asinh",Ql="Atan",eu="Atanh",tu="Atan2",Ia="AvgPool",ph="AvgPoolGrad",Uc="AvgPool3D",hh="AvgPool3DGrad",Sa="BatchMatMul",si="BatchToSpaceND",fh="Bincount",M5="BroadcastTo",d2="BroadcastArgs",Ca="Cast",Ta="Ceil",Xr="ClipByValue",Gc="Complex",Hc="ComplexAbs",ri="Concat",Na="Conv2D",mh="Conv2DBackpropFilter",Ea="Conv2DBackpropInput",jc="Conv3D",gh="Conv3DBackpropFilterV2",yh="Conv3DBackpropInputV2",Ra="Cos",$a="Cosh",ai="Cumsum",oi="CropAndResize",Ah="DenseBincount",ii="DepthToSpace",Da="DepthwiseConv2dNative",xh="DepthwiseConv2dNativeBackpropFilter",bh="DepthwiseConv2dNativeBackpropInput",vh="Diag",qc="Dilation2D",wh="Dilation2DBackpropInput",kh="Dilation2DBackpropFilter",_a="RealDiv",Xc="Einsum",Pa="Elu",Ih="EluGrad",nu="Erf",li="Equal",Fa="Exp",ui="ExpandDims",ci="Expm1",Sh="FFT",su="Fill",di="FlipLeftRight",Oa="Floor",Ma="FloorDiv",za="FusedBatchNorm",pi="GatherV2",hi="GatherNd",fi="Greater",La="GreaterEqual",Ba="Identity",Ch="IFFT",Kc="Imag",ru="IsFinite",au="IsInf",ou="IsNan",mi="LeakyRelu",gi="Less",yi="LessEqual",Th="LinSpace",Wa="Log",iu="Log1p",Ai="LogicalAnd",lu="LogicalNot",Zc="LogicalOr",z5="LogSoftmax",Yc="LRN",Nh="LRNGrad",Va="Max",Ua="Maximum",Ga="MaxPool",Eh="MaxPoolGrad",Jc="MaxPool3D",Rh="MaxPool3DGrad",$h="MaxPoolWithArgmax",Ha="Mean",ja="Min",qa="Minimum",Xa="MirrorPad",uu="Mod",Dh="Multinomial",Ka="Multiply",xi="Neg",bi="NotEqual",vi="NonMaxSuppressionV3",cu="NonMaxSuppressionV4",wi="NonMaxSuppressionV5",ki="OnesLike",Ii="OneHot",Si="Pack",Za="PadV2",jN="Pool",Ya="Pow",Ja="Prelu",Ci="Prod",du="Range",Qc="Real",pu="Reciprocal",Qa="Relu",Ti="Reshape",hu="ResizeNearestNeighbor",_h="ResizeNearestNeighborGrad",eo="ResizeBilinear",Ph="ResizeBilinearGrad",to="Relu6",Ni="Reverse",Ei="Round",no="Rsqrt",Ri="ScatterNd",$i="Select",fu="Selu",Di="Slice",so="Sin",_i="Sinh",mu="Sign",ro="Sigmoid",gu="Softplus",ao="Sqrt",oo="Sum",Pi="SpaceToBatchND",Fi="SplitV",io="Softmax",Fh="SparseFillEmptyRows",Oh="SparseReshape",Mh="SparseSegmentMean",zh="SparseSegmentSum",ed="SparseToDense",lo="SquaredDifference",yu="Square",Oi="StridedSlice",td="StringNGrams",Lh="StringSplit",Bh="StringToHashBucketFast",uo="Sub",Mi="Tan",co="Tanh",Kr="Tile",Au="TopK",zi="Transform",po="Transpose",Wh="Unique",Li="Unpack",nd="UnsortedSegmentSum",Bi="ZerosLike",ho="Step",sd="FromPixels",Wi="RotateWithOffset",fo="_FusedMatMul",mo="FusedConv2D",go="FusedDepthwiseConv2D",xu=c2("kernelRegistry",()=>new Map),rd=c2("gradRegistry",()=>new Map);function Vh(e,t){let n=h2(e,t);return xu.get(n)}function p2(e){return rd.get(e)}function Zr(e){let t=xu.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function Yr(e){let{kernelName:t,backendName:n}=e,s=h2(t,n);xu.has(s)&&Ir(`The kernel '${t}' for backend '${n}' is already registered`),xu.set(s,e)}function L5(e){let{kernelName:t}=e;rd.has(t)&&Z().getBool("DEBUG")&&Ir(`Overriding the gradient for '${t}'`),rd.set(t,e)}function qN(e,t){let n=h2(e,t);if(!xu.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);xu.delete(n)}function XN(e){if(!rd.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);rd.delete(e)}function KN(e,t){Zr(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});Yr(r)})}function h2(e,t){return`${t}_${e}`}var v={};Le(v,{arraysEqual:()=>jr,assert:()=>M,assertNonNegativeIntegerDimensions:()=>i2,assertNonNull:()=>ei,assertShapesMatch:()=>zn,bytesFromStringArray:()=>R5,bytesPerElement:()=>a2,checkConversionForErrors:()=>N5,clamp:()=>Wc,computeStrides:()=>Gl,createScalarValue:()=>t9,createShuffledIndices:()=>_N,decodeString:()=>Hh,distSquared:()=>EN,encodeString:()=>id,fetch:()=>s9,fingerPrint64:()=>e9,flatten:()=>ti,getArrayFromDType:()=>T5,getTypedArrayFromDType:()=>C5,hasEncodingLoss:()=>ON,hexToLong:()=>ad,indexToLoc:()=>LN,inferDtype:()=>uh,inferFromImplicitShape:()=>FN,isBoolean:()=>$5,isFunction:()=>va,isInt:()=>mn,isNumber:()=>D5,isPromise:()=>l2,isScalarShape:()=>RN,isString:()=>ba,isTypedArray:()=>_n,isValidDtype:()=>E5,locToIndex:()=>zN,makeOnesTypedArray:()=>o2,makeZerosNestedTypedArray:()=>MN,makeZerosTypedArray:()=>dh,nearestDivisor:()=>ch,nearestLargerEven:()=>CN,now:()=>od,parseAxisParam:()=>Xs,randUniform:()=>NN,repeatedTry:()=>PN,rightPad:()=>Vc,shuffle:()=>I5,shuffleCombo:()=>SN,sizeFromShape:()=>Ht,sizeToSquarishShape:()=>DN,squeezeShape:()=>S5,sum:()=>TN,swap:()=>lh,tanh:()=>$N,toNestedArray:()=>Hl,toTypedArray:()=>Gh});var B5=Qo(sN()),Vi=B5.default||B5;function ad(e){return Vi.fromString(e,!0,16)}var W5=ad("c3a5c85c97cb3127"),Ui=ad("b492b66fbe98f273"),Ln=ad("9ae16a3b2f90404f");function f2(e){return e.xor(e.shru(47))}function V5(e,t,n){let s=e.slice(t,t+n);return Vi.fromBytes(Array.from(s),!0,!0)}function Ct(e,t){return V5(e,t,8)}function U5(e,t){return V5(e,t,4)}function gn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function yo(e,t,n=ad("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function ZN(e,t,n,s,r,a){r=r.add(e),a=gn(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(gn(r,44)),[r.add(s),a.add(o)]}function Uh(e,t,n,s){return ZN(Ct(e,t),Ct(e,t+8),Ct(e,t+16),Ct(e,t+24),n,s)}function YN(e,t=e.length){if(t>=8){let n=Ln.add(t*2),s=Ct(e,0).add(Ln),r=Ct(e,t-8),a=gn(r,37).mul(n).add(s),o=gn(s,25).add(r).mul(n);return yo(a,o,n)}if(t>=4){let n=Ln.add(t*2),s=U5(e,0);return yo(s.shl(3).add(t),U5(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return f2(Ln.mul(a).xor(W5.mul(o))).mul(Ln)}return Ln}function JN(e,t=e.length){let n=Ln.add(t*2),s=Ct(e,0).mul(Ui),r=Ct(e,8),a=Ct(e,t-8).mul(n),o=Ct(e,t-16).mul(Ln);return yo(gn(s.add(r),43).add(gn(a,30)).add(o),s.add(gn(r.add(Ln),18)).add(a),n)}function QN(e,t=e.length){let n=Ln.add(t*2),s=Ct(e,0).mul(Ln),r=Ct(e,8),a=Ct(e,t-8).mul(n),o=Ct(e,t-16).mul(Ln),i=gn(s.add(r),43).add(gn(a,30)).add(o),l=yo(i,s.add(gn(r.add(Ln),18)).add(a),n),c=Ct(e,16).mul(n),u=Ct(e,24),d=i.add(Ct(e,t-32)).mul(n),p=l.add(Ct(e,t-24)).mul(n);return yo(gn(c.add(u),43).add(gn(d,30)).add(p),c.add(gn(u.add(s),18)).add(d),n)}function e9(e,t=e.length){let n=Vi.fromNumber(81,!0);if(t<=32)return t<=16?YN(e,t):JN(e,t);if(t<=64)return QN(e,t);let s=n,r=n.mul(Ui).add(113),a=f2(r.mul(Ln).add(113)).mul(Ln),o=[Vi.UZERO,Vi.UZERO],i=[Vi.UZERO,Vi.UZERO];s=s.mul(Ln).add(Ct(e,0));let l=0,c=(t-1>>6)*64,u=c+(t-1&63)-63;do s=gn(s.add(r).add(o[0]).add(Ct(e,l+8)),37).mul(Ui),r=gn(r.add(o[1]).add(Ct(e,l+48)),42).mul(Ui),s=s.xor(i[1]),r=r.add(o[0]).add(Ct(e,l+40)),a=gn(a.add(i[0]),33).mul(Ui),o=Uh(e,l,o[1].mul(Ui),s.add(i[0])),i=Uh(e,l+32,a.add(i[1]),r.add(Ct(e,l+16))),[a,s]=[s,a],l+=64;while(l!==c);let d=Ui.add(a.and(255).shl(1));return l=u,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=gn(s.add(r).add(o[0]).add(Ct(e,l+8)),37).mul(d),r=gn(r.add(o[1]).add(Ct(e,l+48)),42).mul(d),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(Ct(e,l+40))),a=gn(a.add(i[0]),33).mul(d),o=Uh(e,l,o[1].mul(d),s.add(i[0])),i=Uh(e,l+32,a.add(i[1]),r.add(Ct(e,l+16))),[a,s]=[s,a],yo(yo(o[0],i[0],d).add(f2(r).mul(W5)).add(a),yo(o[1],i[1],d).add(s),d)}function t9(e,t){return t==="string"?id(e):Gh([e],t)}function n9(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Gh(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ti(e)),Z().getBool("DEBUG")&&N5(e,t),n9(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function od(){return Z().platform.now()}function s9(e,t){return Z().platform.fetch(e,t)}function id(e,t="utf-8"){return t=t||"utf-8",Z().platform.encode(e,t)}function Hh(e,t="utf-8"){return t=t||"utf-8",Z().platform.decode(e,t)}var r9=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new o9)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=od();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:od()-o})}if(Z().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let c=s[l];c.data().then(u=>{a9(u,c.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function a9(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var o9=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?Vc(`${s}ms`,9):s.error,i=Vc(e,25),l=t.rank,c=t.size,u=Vc(t.shape.toString(),14),d="";for(let p in r){let h=r[p];if(h!=null){let f=h.shape||t.shape,m=f.length;d+=`${p}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${u} %c${c} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function i9(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let c=e[l],u=c.inputs;for(let d in u){let p=u[d],h=!1;for(let f=0;f<t.length;f++)if(s[p.id]){c.outputs.forEach(m=>s[m.id]=!0),h=!0,r[c.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let d=0;d<c.outputs.length;d++)if(a[c.outputs[d].id]){for(let p in u)a[u[p].id]=!0,o[c.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let c=e[l];if(r[c.id]&&o[c.id]){let u={};for(let p in c.inputs){let h=c.inputs[p];s[h.id]&&(u[p]=h)}let d=Object.assign({},c);d.inputs=u,d.outputs=c.outputs,i.push(d)}}return i}function l9(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let c=e[l.id];c!=null?o.push(c):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let c=n(()=>i[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=a.inputs[l];if(!jr(c.shape,u.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let d=e[u.id];e[u.id]=s(d,c),d.dispose()}}}}var G5=20,ld=3,m2=7;function u9(e,t,n,s){let r=Gl(t),a=c9(e,t,n,r),o=t.length,i=jh(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(c=>" "+c).join(`
|
|
`)),l.join(`
|
|
`)}function c9(e,t,n,s){let r=Ht(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?cd(e):e;if(i>1)for(let c=0;c<r/a;c++){let u=c*a;for(let d=0;d<a;d++)o[d]=Math.max(o[d],ud(l[u+d],0,n).length)}return o}function ud(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(m2))} + ${parseFloat(e[1].toFixed(m2))}j`:ba(e)?s=`'${e}'`:n==="bool"?s=H5(e):s=parseFloat(e.toFixed(m2)).toString(),Vc(s,t)}function H5(e){return e===0?"false":"true"}function jh(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=cd(e);return[ud(m[0],0,n)]}return n==="bool"?[H5(e[0])]:[e[0].toString()]}if(l===1){if(i>G5){let g=ld*o,y=Array.from(e.slice(0,g)),A=Array.from(e.slice((i-ld)*o,i*o));return n==="complex64"&&(y=cd(y),A=cd(A)),["["+y.map((x,b)=>ud(x,r[b],n)).join(", ")+", ..., "+A.map((x,b)=>ud(x,r[i-ld+b],n)).join(", ")+"]"]}let m=n==="complex64"?cd(e):Array.from(e);return["["+m.map((g,y)=>ud(g,r[y],n)).join(", ")+"]"]}let c=t.slice(1),u=s.slice(1),d=s[0]*o,p=[];if(i>G5){for(let m=0;m<ld;m++){let g=m*d,y=g+d;p.push(...jh(e.slice(g,y),c,n,u,r,!1))}p.push("...");for(let m=i-ld;m<i;m++){let g=m*d,y=g+d;p.push(...jh(e.slice(g,y),c,n,u,r,m===i-1))}}else for(let m=0;m<i;m++){let g=m*d,y=g+d;p.push(...jh(e.slice(g,y),c,n,u,r,m===i-1))}let h=l===2?",":"";p[0]="["+p[0]+h;for(let m=1;m<p.length-1;m++)p[m]=" "+p[m]+h;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(a?"":f),p}function cd(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var nn=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Ht(e),n!=null){let s=n.length;M(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||T5(t,this.size),this.strides=Gl(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Sr().makeTensor(this.values,this.shape,this.dtype)}},Sr=null,bu=null,d9=null;function p9(e){Sr=e}function h9(e){bu=e}function f9(e){d9=e}var Ke=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Ht(e),this.strides=Gl(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return bu.buffer(this.shape,this.dtype,e)}bufferSync(){return bu.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Hl(this.shape,e,this.dtype==="complex64")}arraySync(){return Hl(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Sr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Hh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Sr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Hh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Sr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Sr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return bu.print(this,e)}clone(){return this.throwIfDisposed(),bu.clone(this)}toString(e=!1){let t=this.dataSync();return u9(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),bu.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Sr().makeVariable(this,e,t,n)}};Object.defineProperty(Ke,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function re(){return c2("Tensor",()=>Ke)}re();var dd=class extends Ke{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!jr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Sr().disposeTensor(this),this.dataId=e.dataId,Sr().incRef(this,null)}dispose(){Sr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(dd,Symbol.hasInstance,{value:e=>e instanceof Ke&&e.assign!=null&&e.assign instanceof Function});var or={};Le(or,{assertTypesMatch:()=>j5,getTensorsInContainer:()=>v2,isTensorInList:()=>g9,makeTypesMatch:()=>zt});var g2;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(g2||(g2={}));var y2;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(y2||(y2={}));var A2;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(A2||(A2={}));var x2;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(x2||(x2={}));var b2;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(b2||(b2={}));var m9={float32:x2,int32:y2,bool:A2,complex64:b2};function Bn(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return m9[e][t]}function pd(e){return Bn(e,"int32")}function zt(e,t){if(e.dtype===t.dtype)return[e,t];let n=Bn(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function j5(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function g9(e,t){return t.some(n=>n.id===e.id)}function v2(e){let t=[],n=new Set;return q5(e,t,n),t}function q5(e,t,n){if(e==null)return;if(e instanceof Ke){t.push(e);return}if(!y9(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),q5(a,t,n))}}function y9(e){return Array.isArray(e)||typeof e=="object"}function w2(e){return e.kernelName!=null}var X5=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},hd=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new X5}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(Ir(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new r9(this.backendInstance),!0}setupRegisteredKernels(){Zr(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Zr(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Ul)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,Ir(`Initialization of backend ${e} failed`),Ir(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return Ir(`Initialization of backend ${e} failed`),Ir(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return hd.nextTensorId++}nextVariableId(){return hd.nextVariableId++}clone(e){let t=B.runKernel(Ba,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return B.runKernel(Ca,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(Vh(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=w2(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(w2(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=Vh(h,this.backendName);M(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let y=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let A=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,A);let x=A.map(b=>{if(b.rank!=null)return b;let{dataId:w,shape:k,dtype:S}=b;return this.makeTensorFromDataId(w,k,S)});if(s){let b=this.getTensorsForGradient(h,f,x);n=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:c,attrs:u}=e,d=w2(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(p=this.profiler.profileKernel(l,c,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),s&&this.addTapeNode(l,c,t,d,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(h=>c[h]!=null?c[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=p2(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,c)=>a[c]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&ba(e[0])&&(r=e.map(i=>id(i)));let a=s.write(r,t,n),o=new Ke(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=R5(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r=new Ke(t,n,e,this.nextTensorId());return this.trackTensor(r,s),r}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new dd(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*a2(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof dd||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*a2(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=p2(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((c,u)=>{if(c==null){let d=n[u],p=dh(d.size,d.dtype);return this.makeTensor(p,d.shape,d.dtype)}return c}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=v2(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(r instanceof Ke,()=>"The result y returned by f() must be a tensor.");let a=i9(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?A9(r.shape):n,l9(o,a,l=>this.tidy(l),x9);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return M(va(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(o=>o instanceof Ke),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),M(n.value instanceof Ke,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(va(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),c=Array.isArray(l)?l:[l];M(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(c.every(d=>d instanceof Ke),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((d,p)=>{u[p]=()=>d}),u};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=od(),n=await this.backend.time(e);return n.wallMs=od()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new X5;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};hd.nextTensorId=0;hd.nextVariableId=0;function A9(e){let t=o2(Ht(e),"float32");return B.makeTensor(t,e,"float32")}function K5(){let e=O5();if(e._tfengine==null){let t=new F5(e);e._tfengine=new hd(t)}return GN(e._tfengine.ENV),p9(()=>e._tfengine),e._tfengine}var B=K5();function x9(e,t){let n={a:e,b:t};return B.runKernel(qr,n)}var vu={};Le(vu,{isBrowser:()=>Z5,isMobile:()=>v9});function b9(){return typeof navigator!="undefined"&&navigator!=null}function v9(e){if(e||b9()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function Z5(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var ir=Z();ir.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});ir.registerFlag("IS_BROWSER",()=>Z5());ir.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");ir.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));ir.registerFlag("PROD",()=>!1);ir.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>ir.getBool("DEBUG"));ir.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);ir.registerFlag("IS_TEST",()=>!1);ir.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);ir.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Cr(e,t){let n=e;if(_n(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||_n(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&Z().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Y5(e,s,[]),s}function Y5(e,t,n){if(n=n||[],!Array.isArray(e)&&!_n(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)Y5(e[r],s,n.concat(r))}function J5(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function _(e,t,n,s="numeric"){if(e instanceof Ke)return J5(s,e.dtype,t,n),e;let r=uh(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),J5(s,r,t,n),e==null||!_n(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=Cr(e,r);!_n(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Gh(e,r):ti(e,[],!0);return B.makeTensor(i,a,r)}function fd(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>_(a,`${t}[${o}]`,n,s))}var Q5="__op";function U(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Q5;let r=(...a)=>{B.startScope(n);try{let o=s(...a);return l2(o)&&console.error("Cannot return a Promise inside of tidy."),B.endScope(o),o}catch(o){throw B.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function w9(e,t){let n=_(e,"real","complex"),s=_(t,"imag","complex");zn(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return B.runKernel(Gc,r)}var Ao=U({complex_:w9});function xo(e,t,n,s){if(s==null&&(s=uh(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!_n(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){i2(t);let r=Ht(t),a=Ht(n);M(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==Ht(t.slice(o)):!0;M(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!_n(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?Gh(e,s):ti(e,[],!0),B.makeTensor(e,t,s)}function jt(e,t,n){let s=Cr(e,n);return xo(e,t,s,n)}var k2={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},qh=4;async function k9(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let c={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let u=new Promise(async d=>{let p=await l.bytes(),h=p.reduce((g,y)=>g+y.length,0)+qh*p.length,f=new Uint8Array(h),m=0;for(let g=0;g<p.length;g++){let y=p[g],A=new Uint8Array(new Uint32Array([y.length]).buffer);f.set(A,m),m+=qh,f.set(y,m),m+=y.length}d(f)});s.push(u)}else s.push(l.data());t!=null&&(c.group=t),n.push(c)}let a=await Promise.all(s);return{data:I9(a),specs:n}}function e3(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,c=Ht(l),u;if("quantization"in a){let d=a.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${a.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=k2[d.dtype],h=e.slice(r,r+c*p),f=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){u=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=g*d.scale+d.min}}else if(d.dtype==="float16")s===void 0&&(s=R9()),u=s(f);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(i==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);u=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=c*p}else if(i==="string"){let d=Ht(a.shape);u=[];for(let p=0;p<d;p++){let h=new Uint32Array(e.slice(r,r+qh))[0];r+=qh;let f=new Uint8Array(e.slice(r,r+h));u.push(f),r+=h}}else{let d=k2[i],p=e.slice(r,r+c*d);if(i==="float32")u=new Float32Array(p);else if(i==="int32")u=new Int32Array(p);else if(i==="bool")u=new Uint8Array(p);else if(i==="complex64"){u=new Float32Array(p);let h=new Float32Array(u.length/2),f=new Float32Array(u.length/2);for(let y=0;y<h.length;y++)h[y]=u[y*2],f[y]=u[y*2+1];let m=jt(h,l,"float32"),g=jt(f,l,"float32");n[o]=Ao(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=c*d}i!=="complex64"&&(n[o]=jt(u,l,i))}return n}function I9(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var I2=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function t3(e){return I2?Buffer.byteLength(e):new Blob([e]).size}function S9(e){if(I2)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function C9(e){if(I2){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function S2(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function n3(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function s3(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function C2(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function md(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:t3(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:t3(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function T9(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)==0;)r-=8388608,s<<=1;return s&=~8388608,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function N9(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function E9(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function R9(){let e=T9(),t=N9(),n=E9();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Ut=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Ut.instance==null&&(Ut.instance=new Ut),Ut.instance}static registerSaveRouter(e){Ut.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Ut.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Ut.getHandlers(e,"save")}static getLoadHandlers(e,t){return Ut.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Ut.getInstance().loadRouters:Ut.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},$9=e=>Ut.registerSaveRouter(e),D9=e=>Ut.registerLoadRouter(e),_9=e=>Ut.getSaveHandlers(e),P9=(e,t)=>Ut.getLoadHandlers(e,t),T2="tensorflowjs",N2=1,Gi="models_store",bo="model_info_store";function r3(){if(!Z().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function E2(e){let t=e.result;t.createObjectStore(Gi,{keyPath:"modelPath"}),t.createObjectStore(bo,{keyPath:"modelPath"})}var Hi=class{constructor(e){if(this.indexedDB=r3(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(T2,N2);r.onupgradeneeded=()=>E2(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(Gi,"readonly"),l=o.objectStore(Gi).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=c=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=md(t),i=a.transaction(bo,"readwrite"),l=i.objectStore(bo),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),u;c.onsuccess=()=>{u=a.transaction(Gi,"readwrite");let p=u.objectStore(Gi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});p.onsuccess=()=>n({modelArtifactsInfo:o}),p.onerror=h=>{l=i.objectStore(bo);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(p.error)),f.onerror=m=>(a.close(),s(p.error))}},c.onerror=d=>(a.close(),s(c.error)),i.oncomplete=()=>{u==null?a.close():u.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};Hi.URL_SCHEME="indexeddb://";var a3=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Hi.URL_SCHEME)?F9(e.slice(Hi.URL_SCHEME.length)):null;Ut.registerSaveRouter(a3);Ut.registerLoadRouter(a3);function F9(e){return new Hi(e)}function O9(e){return e.startsWith(Hi.URL_SCHEME)?e.slice(Hi.URL_SCHEME.length):e}var M9=class{constructor(){this.indexedDB=r3()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(T2,N2);n.onupgradeneeded=()=>E2(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(bo,"readonly"),o=r.objectStore(bo).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=O9(e),new Promise((t,n)=>{let s=this.indexedDB.open(T2,N2);s.onupgradeneeded=()=>E2(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(bo,"readwrite"),o=a.objectStore(bo),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=o.delete(e),u=()=>{l=r.transaction(Gi,"readwrite");let p=l.objectStore(Gi).delete(e);p.onsuccess=()=>t(i.result.modelArtifactsInfo),p.onerror=h=>n(i.error)};c.onsuccess=u,c.onerror=d=>(u(),r.close(),n(i.error))}},i.onerror=c=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},Jr="/",wu="tensorflowjs_models",o3="info",z9="model_topology",L9="weight_specs",B9="weight_data",W9="model_metadata";function i3(e){return{info:[wu,e,o3].join(Jr),topology:[wu,e,z9].join(Jr),weightSpecs:[wu,e,L9].join(Jr),weightData:[wu,e,B9].join(Jr),modelMetadata:[wu,e,W9].join(Jr)}}function l3(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function V9(e){let t=e.split(Jr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Jr)}function U9(e){return e.startsWith(ji.URL_SCHEME)?e.slice(ji.URL_SCHEME.length):e}var ji=class{constructor(e){if(!Z().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=i3(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=md(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,S9(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw l3(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=C9(a),t}};ji.URL_SCHEME="localstorage://";var u3=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ji.URL_SCHEME)?G9(e.slice(ji.URL_SCHEME.length)):null;Ut.registerSaveRouter(u3);Ut.registerLoadRouter(u3);function G9(e){return new ji(e)}var H9=class{constructor(){M(Z().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=wu+Jr,n=Jr+o3;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=V9(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=U9(e);let t=i3(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return l3(t),n}},ku="://",Ps=class{constructor(){this.managers={}}static getInstance(){return Ps.instance==null&&(Ps.instance=new Ps),Ps.instance}static registerManager(e,t){M(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(ku)&&(e=e.slice(0,e.indexOf(ku))),M(e.length>0,()=>"scheme must not be an empty string.");let n=Ps.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Xh(e){if(e.indexOf(ku)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Ps.getSchemes().join(",")}`);return{scheme:e.split(ku)[0],path:e.split(ku)[1]}}async function c3(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Ut.getLoadHandlers(e);M(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Ut.getSaveHandlers(t);M(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=Xh(e).scheme,l=Xh(e).path,c=i===Xh(e).scheme,u=await r.load();n&&c&&await Ps.getManager(i).removeModel(l);let d=await o.save(u);return n&&!c&&await Ps.getManager(i).removeModel(l),d.modelArtifactsInfo}async function j9(){let e=Ps.getSchemes(),t={};for(let n of e){let s=await Ps.getManager(n).listModels();for(let r in s){let a=n+ku+r;t[a]=s[r]}}return t}async function q9(e){let t=Xh(e);return Ps.getManager(t.scheme).removeModel(t.path)}async function X9(e,t){return c3(e,t,!1)}async function K9(e,t){return c3(e,t,!0)}var Z9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Z().get("IS_BROWSER")){Z().setPlatform("browser",new Z9);try{Ps.registerManager(ji.URL_SCHEME,new H9)}catch(e){}try{Ps.registerManager(Hi.URL_SCHEME,new M9)}catch(e){}}var Y9={importFetch:()=>rN()},R2,J9=class{constructor(){this.util=Vl("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Z().global.fetch!=null?Z().global.fetch(e,t):(R2==null&&(R2=Y9.importFetch()),R2(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Z().get("IS_NODE")&&Z().setPlatform("node",new J9);function We(e,t="float32",n){return t=t||"float32",i2(e),new nn(e,t,n)}function Q9(e,t){let n=_(e,"x","cast");if(!E5(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return B.runKernel(Ca,s,r)}var pe=U({cast_:Q9});function eE(e){let n={x:_(e,"x","clone","string_or_numeric")};return B.runKernel(Ba,n)}var lr=U({clone_:eE});function d3(e,t=!1){console.log(e.toString(t))}K5();var tE={buffer:We,cast:pe,clone:lr,print:d3};h9(tE);var ts={};Le(ts,{browserFiles:()=>lE,browserHTTPRequest:()=>hE,concatenateArrayBuffers:()=>S2,copyModel:()=>X9,decodeWeights:()=>e3,encodeWeights:()=>k9,fromMemory:()=>mE,getLoadHandlers:()=>P9,getModelArtifactsForJSON:()=>C2,getModelArtifactsInfoForJSON:()=>md,getSaveHandlers:()=>_9,http:()=>_2,isHTTPScheme:()=>D2,listModels:()=>j9,loadWeights:()=>uE,moveModel:()=>K9,registerLoadRouter:()=>D9,registerSaveRouter:()=>$9,removeModel:()=>q9,weightsLoaderFactory:()=>m3,withSaveHandler:()=>gE});var nE="model",sE=".json",rE=".weights.bin";function p3(e){return new Promise(t=>setTimeout(t)).then(e)}var Iu=class{constructor(e){if(!Z().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Iu.URL_SCHEME)&&(e=e.slice(Iu.URL_SCHEME.length)),(e==null||e.length===0)&&(e=nE),this.modelJsonFileName=e+sE,this.weightDataFileName=e+rE}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=s3(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await p3(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await p3(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:md(e)}}}};Iu.URL_SCHEME="downloads://";var aE=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=C2(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,S2(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>n3(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=n3(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},oE=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Iu.URL_SCHEME)?iE(e.slice(Iu.URL_SCHEME.length)):null;Ut.registerSaveRouter(oE);function iE(e="model"){return new Iu(e)}function lE(e){return new aE(e)}function h3(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(c=>{let u=n+ ++r/e.length*(s-n);return t(u),c}),l);function o(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,c){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),M(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(a))}async function f3(e,t){t==null&&(t={});let n=t.fetchFunc==null?Z().platform.fetch:t.fetchFunc,s=e.map(d=>n(d,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await h3(s,t.onProgress,r,a)).map(d=>d.arrayBuffer()),l=.5,c=1;return t.onProgress==null?await Promise.all(i):await h3(i,t.onProgress,l,c)}async function uE(e,t="",n,s){return m3(o=>f3(o,{requestInit:s}))(e,t,n)}function m3(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,A=k2[y]*Ht(g.shape),x=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:A})};s!=null?s.forEach((b,w)=>{b===g.name&&(x(),o[w]=!0)}):x(),i.push(g.name),m+=A})}),!o.every(h=>h)){let h=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),c=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;c.push(m)})});let u=await e(c),d={},p=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let b=0;b<f;b++)m+=u[p+b].byteLength;let g=new ArrayBuffer(m),y=new Uint8Array(g),A=0;for(let b=0;b<f;b++){let w=new Uint8Array(u[p+b]);y.set(w,A),A+=w.byteLength}a[h].forEach(b=>{let w=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),k=e3(w,[b.manifestEntry]);for(let S in k)d[S]=k[S]}),p+=f}),d}}var cE="application/octet-stream",dE="application/json",$2=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Z().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=s3(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:dE}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:cE}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:md(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return C2(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=pE(t),r=this.weightPathPrefix||n,a=[];for(let c of e)a.push(...c.weights);let o=[],i=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(u)):o.push(r+u+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await f3(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,S2(l)]}};$2.URL_SCHEME_REGEX=/^https?:\/\//;function pE(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function D2(e){return e.match($2.URL_SCHEME_REGEX)!=null}var g3=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>D2(s)):n=D2(e),n)return _2(e,t)}return null};Ut.registerSaveRouter(g3);Ut.registerLoadRouter(g3);function _2(e,t){return new $2(e,t)}function hE(e,t){return _2(e,t)}var P2=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},fE=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function mE(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new P2(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new P2({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new P2({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function gE(e){return new fE(e)}var y3={};Le(y3,{confusionMatrix:()=>vE});function yE(e,t,n=!1,s=!1){let r=_(e,"a","matMul"),a=_(t,"b","matMul");[r,a]=zt(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return B.runKernel(Sa,o,i)}var Xe=U({matMul_:yE});function AE(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:_(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return B.runKernel(Ii,a,o)}var Su=U({oneHot_:AE});function xE(e,t){let n=_(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{M(a>=0&&a<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let s={x:n},r={perm:t};return B.runKernel(po,s,r)}var tt=U({transpose_:xE});function bE(e,t,n){let s=_(e,"labels","confusionMatrix"),r=_(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),M(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),M(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=Su(pe(s,"int32"),n),o=Su(pe(r,"int32"),n),i=tt(a),l=Xe(i,o);return pe(l,"int32")}var vE=U({confusionMatrix_:bE}),Ks={};Le(Ks,{fromPixels:()=>NE,fromPixelsAsync:()=>CE,toPixels:()=>TE});function A3(e,t,n){if(ei(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=Cr(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return xo(e,t,s,n)}var Cu;function x3(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let f=2;if(r&&e.readyState<f)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Vh(sd,B.backendName)!=null){let f={pixels:e},m={numChannels:t};return B.runKernel(sd,f,m)}let[c,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;o?d=e.getContext("2d").getImageData(0,0,c,u).data:s||n?d=e.data:(a||r||i)&&(Cu==null&&(Cu=document.createElement("canvas").getContext("2d")),Cu.canvas.width=c,Cu.canvas.height=u,Cu.drawImage(e,0,0,c,u),d=Cu.getImageData(0,0,c,u).data);let p;if(t===4)p=new Int32Array(d);else{let f=c*u;p=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)p[m*t+g]=d[m*4+g]}return A3(p,[u,c,t],"int32")}function wE(e){return e!=null&&e.data instanceof Uint8Array}function kE(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function IE(e){return e!=null&&e.width!==0&&e.height!==0}function SE(e){return kE()&&!(e instanceof ImageBitmap)&&IE(e)&&!wE(e)}async function CE(e,t=3){let n=null;if(Z().getBool("WRAP_TO_IMAGEBITMAP")&&SE(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return x3(n,t)}async function TE(e,t){let n=_(e,"img","toPixels");if(!(e instanceof Ke)){let c=n;n=pe(c,"int32"),c.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let c=0;c<s*r;++c){let u=[0,0,0,255];for(let p=0;p<a;p++){let h=o[c*a+p];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(u[0]=h*i,u[1]=h*i,u[2]=h*i):u[p]=h*i}let d=c*4;l[d+0]=Math.round(u[0]),l[d+1]=Math.round(u[1]),l[d+2]=Math.round(u[2]),l[d+3]=Math.round(u[3])}if(t!=null){t.width=r,t.height=s;let c=t.getContext("2d"),u=new ImageData(l,r,s);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var NE=U({fromPixels_:x3}),F2={};Le(F2,{prepareAndValidate:()=>b3});function b3(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(Ht(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let d=0;d<r.length-1;++d)o*=r[d];let i=e.shape,l=r.slice();l.pop();let c=1;for(let d=a;d<n;++d)c*=i[d],l.push(i[d]);let u=[...Gl(e.shape).map(d=>d/c),1].slice(0,a);return[l,o,c,u]}var O2={};Le(O2,{calculateShapes:()=>v3,validateInput:()=>z2,validateUpdateShape:()=>M2});function M2(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function z2(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}M2(n,t,e)}function v3(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let d=r;d<a;++d)o*=n[d];let i=r<1?1:r,l=Ht(t.shape)/i,c=[...Gl(n.slice(0,r)),1],u=Ht(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:c,outputSize:u}}var yn={};Le(yn,{assertParamsValid:()=>EE,computeFlatOffset:()=>$E,computeOutShape:()=>w3,getNormalizedAxes:()=>C3,isSliceContinous:()=>RE,maskToAxes:()=>Kh,parseSliceParams:()=>D3,sliceInfo:()=>DE,startForAxis:()=>R3,startIndicesWithElidedDims:()=>T3,stopForAxis:()=>$3,stopIndicesWithElidedDims:()=>N3,stridesForAxis:()=>E3,stridesWithElidedDims:()=>k3});function EE(e,t,n){let s=e.shape.length;M(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),M(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)M(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function Kh(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function w3(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function k3(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function I3(e,t,n){return n<=e?n:n-(t-1)}function S3(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function C3(e,t,n,s,r,a,o,i,l){let c=e.length,u=new Array(c),d=new Array(c),p=new Array(c);if(t.length&&n>0){let h=t[0],f=n+1;u=T3(o,h,f,s,e),d=N3(i,h,f,r,e),p=k3(a,h,f,e)}else for(let h=0;h<c;h++)u[h]=R3(o,s,a,e,h,l),d[h]=$3(i,r,a,e,h,l),p[h]=E3(a,h,l);return{begin:u,end:d,strides:p}}function T3(e,t,n,s,r){let a=[...r],o=S3(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=I3(t,n,i),c=s[l];e&1<<l&&(c=0),a[i]=c}return a}function N3(e,t,n,s,r){let a=[...r],o=S3(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=I3(t,n,i),c=s[l];e&1<<l&&(c=Number.MAX_SAFE_INTEGER),a[i]=c}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=Wc(0,a[i],r[i])}return a}function E3(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function R3(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=Wc(0,o,l-1),o}function $3(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=Wc(0,o,l):o=Wc(-1,o,l-1),o}function RE(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function $E(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function D3(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{M(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(M(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function DE(e,t,n,s,r,a,o,i,l){let c=t.slice(),u=n.slice(),d=s;s==null&&(d=new Array(c.length));let p=Kh(o);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(o!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(o!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-c.length,f=Kh(i),m=e.slice();f.forEach(S=>{c[S]=0,u[S]=1,m.splice(S,0,1)});let{begin:g,end:y,strides:A}=C3(m,p,h,c,u,d,r,a,o);c=g,u=y,d=A;let x=Kh(l);x.forEach(S=>{u[S]=c[S]+1,d[S]=1});let b=w3(c,u,d),w=b.filter((S,N)=>x.indexOf(N)===-1);return{nonStrided:d.every(S=>S===1),$begin:c,$end:u,$strides:d,size:b,newShape:m,outShape:w}}var de={};Le(de,{Serializable:()=>_3,SerializationMap:()=>qi,registerClass:()=>vo});var _3=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},qi=class{constructor(){this.classNameMap={}}static getMap(){return qi.instance==null&&(qi.instance=new qi),qi.instance}static register(e){qi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function vo(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),qi.register(e)}var P3={};Le(P3,{TEST_EPSILON_FLOAT16:()=>F3,encodeStrings:()=>O3,expectArrayBuffersEqual:()=>LE,expectArraysClose:()=>PE,expectArraysEqual:()=>OE,expectNumbersClose:()=>ME,expectPromiseToFail:()=>FE,expectValuesInRange:()=>zE,testEpsilon:()=>L2});var _E=.001,F3=.1;function PE(e,t,n){return n==null&&(n=L2()),B2(e,t,(s,r)=>W2(s,r,n))}function L2(){return B.backend.floatPrecision()===32?_E:F3}function B2(e,t,n){let s=!0;if((_n(e)||_n(t))&&(s=!1),_n(e)&&_n(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=Cr(e),i=Cr(t);if(!jr(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=_n(e)?e:ti(e),a=_n(t)?t:ti(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`)}}function FE(e,t){e().then(()=>t.fail(),()=>t())}function OE(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return ba(e)||ba(e[0])||ba(t)||ba(t[0])?B2(e,n,(s,r)=>s==r):B2(e,t,(s,r)=>W2(s,r,0))}function ME(e,t,n){if(n==null&&(n=L2()),!W2(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function W2(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function zE(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function LE(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function O3(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?O3(n):e[t]=id(n)}return e}var Zh="3.9.0";function M3(){Z().set("PROD",!0)}function BE(){Z().set("DEBUG",!0)}function WE(){Z().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function V2(e){Z().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}f9(V2);function VE(){B.disposeVariables()}function ns(){return B}function Yh(){return B.memory()}function UE(e){return B.profile(e)}function j(e,t){return B.tidy(e,t)}function ee(e){v2(e).forEach(n=>n.dispose())}function An(e){return B.keep(e)}function GE(e){return B.time(e)}function z3(e){return B.setBackend(e)}function Jh(){return B.ready()}function ur(){return B.backendName}function HE(e){B.removeBackend(e)}function U2(e){return B.findBackend(e)}function jE(e){return B.findBackendFactory(e)}function Xi(e,t,n=1){return B.registerBackend(e,t,n)}function Tr(){return B.backend}function qE(e,t){Z().setPlatform(e,t)}function XE(e,t){let n=_(e,"a","add"),s=_(t,"b","add");[n,s]=zt(n,s);let r={a:n,b:s};return B.runKernel(qr,r)}var ue=U({add_:XE});function KE(e,t){let n=_(e,"a","floorDiv"),s=_(t,"b","floorDiv");[n,s]=zt(n,s);let r={a:n,b:s};return B.runKernel(Ma,r)}var Qh=U({floorDiv_:KE});function ZE(e,t){let n=_(e,"a","div"),s=_(t,"b","div");if([n,s]=zt(n,s),n.dtype==="int32"&&s.dtype==="int32")return Qh(n,s);let r={a:n,b:s},a={};return B.runKernel(_a,r,a)}var fe=U({div_:ZE});function YE(e,t){let n=_(e,"a","mul"),s=_(t,"b","mul");[n,s]=zt(n,s);let r={a:n,b:s};return B.runKernel(Ka,r)}var L=U({mul_:YE});function JE(e){let t=_(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return B.runKernel(Hc,n)}else{let n={x:t};return B.runKernel(ni,n)}}var Zt=U({abs_:JE});function QE(e){let n={x:_(e,"x","acos")};return B.runKernel(jl,n)}var G2=U({acos_:QE});function eR(e){let n={x:_(e,"x","acosh")};return B.runKernel(ql,n)}var H2=U({acosh_:eR});function tR(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>_(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!jr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return B.runKernel(wa,s)}var ef=U({addN_:tR});function nR(e,t=null,n=!1){let r={x:_(e,"x","all","bool")},a={axis:t,keepDims:n};return B.runKernel(Xl,r,a)}var tf=U({all_:nR});function sR(e,t=null,n=!1){let r={x:_(e,"x","any","bool")},a={axis:t,keepDims:n};return B.runKernel(Kl,r,a)}var gd=U({any_:sR});function rR(e,t=0){let s={x:_(e,"x","argMax")},r={axis:t};return B.runKernel(ka,s,r)}var Fs=U({argMax_:rR});function aR(e,t=0){let s={x:_(e,"x","argMin")},r={axis:t};return B.runKernel(Zl,s,r)}var j2=U({argMin_:aR});function oR(e){let n={x:_(e,"x","asin")};return B.runKernel(Yl,n)}var q2=U({asin_:oR});function iR(e){let n={x:_(e,"x","asinh")};return B.runKernel(Jl,n)}var X2=U({asinh_:iR});function lR(e){let n={x:_(e,"x","atan")};return B.runKernel(Ql,n)}var K2=U({atan_:lR});function uR(e,t){let n=_(e,"a","atan2"),s=_(t,"b","atan2");[n,s]=zt(n,s);let r={a:n,b:s};return B.runKernel(tu,r)}var Z2=U({atan2_:uR});function cR(e){let n={x:_(e,"x","atanh")};return B.runKernel(eu,n)}var Y2=U({atanh_:cR});function dR(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=W3(r);return yd(e,i,n,a,s,null,null,l)}function L3(e,t,n,s,r,a,o="channelsLast"){let[i,l]=nf(t),c;if(o==="channelsLast")c=[i,l,e[3],e[3]];else if(o==="channelsFirst")c=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return yd(e,c,n,s,r,a,!1,o)}function pR(e,t,n,s,r,a,o="NDHWC"){let[i,l,c]=Q2(t),u,d;if(o==="NDHWC")d="channelsLast",u=[i,l,c,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",u=[i,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return B3(e,u,n,s,r,!1,d,a)}function yd(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,c,u,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,d]=e;else if(i==="channelsFirst")[l,d,c,u]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,h,,f]=t,[m,g]=nf(n),[y,A]=nf(s),x=Tu(p,y),b=Tu(h,A),{padInfo:w,outHeight:k,outWidth:S}=mR(r,c,u,m,g,x,b,a,i),N=o?f*d:f,$;return i==="channelsFirst"?$=[l,N,k,S]:i==="channelsLast"&&($=[l,k,S,N]),{batchSize:l,dataFormat:i,inHeight:c,inWidth:u,inChannels:d,outHeight:k,outWidth:S,outChannels:N,padInfo:w,strideHeight:m,strideWidth:g,filterHeight:p,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:A,inShape:e,outShape:$,filterShape:t}}function B3(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,c,u,d,p]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,d,p]=e;else if(o==="channelsFirst")[l,p,c,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[y,A,x]=Q2(n),[b,w,k]=Q2(s),S=Tu(h,b),N=Tu(f,w),$=Tu(m,k),{padInfo:F,outDepth:R,outHeight:D,outWidth:T}=gR(r,c,u,d,y,A,x,S,N,$,i),O=a?g*p:g,W;return o==="channelsFirst"?W=[l,O,R,D,T]:o==="channelsLast"&&(W=[l,R,D,T,O]),{batchSize:l,dataFormat:o,inDepth:c,inHeight:u,inWidth:d,inChannels:p,outDepth:R,outHeight:D,outWidth:T,outChannels:O,padInfo:F,strideDepth:y,strideHeight:A,strideWidth:x,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:S,effectiveFilterHeight:N,effectiveFilterWidth:$,dilationDepth:b,dilationHeight:w,dilationWidth:k,inShape:e,outShape:W,filterShape:t}}function hR(e,t,n,s,r){s==null&&(s=J2(e,t,n));let a=e[0],o=e[1],i=Ki((a-t+2*s)/n+1,r),l=Ki((o-t+2*s)/n+1,r);return[i,l]}function fR(e,t,n,s,r,a){r==null&&(r=J2(e,t,s));let o=e[0],i=e[1],l=e[2],c=Ki((o-t+2*r)/s+1,a),u=Ki((i-t+2*r)/s+1,a),d=Ki((l-t+2*r)/s+1,a);return[c,u,d,n]}function J2(e,t,n,s=1){let r=Tu(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function nf(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Q2(e){return typeof e=="number"?[e,e,e]:e}function Tu(e,t){return t<=1?e:e+(e-1)*(t-1)}function mR(e,t,n,s,r,a,o,i,l){let c,u,d;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=hR([t,n],a,s,e,i);u=h[0],d=h[1]}else if(e==="same"){u=Math.ceil(t/s),d=Math.ceil(n/r);let p=Math.max(0,(u-1)*s+a-t),h=Math.max(0,(d-1)*r+o-n),f=Math.floor(p/2),m=p-f,g=Math.floor(h/2),y=h-g;c={top:f,bottom:m,left:g,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-a+1)/s),d=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];c={top:p,bottom:h,left:f,right:m,type:p===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},u=Ki((t-a+p+h)/s+1,i),d=Ki((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:d}}function gR(e,t,n,s,r,a,o,i,l,c,u){let d,p,h,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=fR([t,n,s,1],i,1,r,e,u);p=g[0],h=g[1],f=g[2]}else if(e==="same"){p=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/o);let m=(p-1)*r+i-t,g=(h-1)*a+l-n,y=(f-1)*o+c-s,A=Math.floor(m/2),x=m-A,b=Math.floor(g/2),w=g-b,k=Math.floor(y/2),S=y-k;d={top:b,bottom:w,left:k,right:S,front:A,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),f=Math.ceil((s-c+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:p,outHeight:h,outWidth:f}}function Ki(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function wo(e){let[t,n,s]=nf(e);return t===1&&n===1&&s===1}function Nr(e,t){return wo(e)||wo(t)}function W3(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function yR(e,t){let s={x:_(e,"x","reshape","string_or_numeric")},r={shape:t};return B.runKernel(Ti,s,r)}var G=U({reshape_:yR});function AR(e,t,n,s,r){let a=_(e,"x","avgPool","float32"),o=1;M(Nr(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=G(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),r!=null&&M(mn(s),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=B.runKernel(Ia,c,u);return d=pe(d,a.dtype),l?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Ad=U({avgPool_:AR});function xR(e,t,n,s,r,a="NDHWC"){let o=_(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&M(mn(s),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=B.runKernel(Uc,c,u);return d=pe(d,i.dtype),l?G(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var e1=U({avgPool3d_:xR});function bR(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=fd(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${a.dtype}. `)}),n.length===1)return lr(n[0]);let s=n,r={axis:t};return B.runKernel(ri,s,r)}var kt=U({concat_:bR});function vR(e){let n={x:_(e,"x","sigmoid")};return B.runKernel(ro,n)}var ss=U({sigmoid_:vR});function wR(e,t,n){let s=_(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return B.runKernel(Di,r,a)}var _e=U({slice_:wR});function kR(e){let n={x:_(e,"x","tanh")};return B.runKernel(co,n)}var Zi=U({tanh_:kR});function IR(e,t,n,s,r,a){let o=_(e,"forgetBias","basicLSTMCell"),i=_(t,"lstmKernel","basicLSTMCell"),l=_(n,"lstmBias","basicLSTMCell"),c=_(s,"data","basicLSTMCell"),u=_(r,"c","basicLSTMCell"),d=_(a,"h","basicLSTMCell"),p=kt([c,d],1),h=Xe(p,i),f=ue(h,l),m=f.shape[0],g=f.shape[1]/4,y=[m,g],A=_e(f,[0,0],y),x=_e(f,[0,g],y),b=_e(f,[0,g*2],y),w=_e(f,[0,g*3],y),k=ue(L(ss(A),Zi(x)),L(u,ss(ue(o,b)))),S=L(Zi(k),ss(w));return[k,S]}var SR=U({basicLSTMCell_:IR});function CR(e,t,n){let s=_(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);M(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(s.shape[0]%r==0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return B.runKernel(si,a,o)}var xd=U({batchToSpaceND_:CR});function TR(e){let t;return e.rank===0||e.rank===1?t=G(e,[1,1,1,e.size]):e.rank===2?t=G(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function NR(e,t,n,s,r,a){a==null&&(a=.001);let o=_(e,"x","batchNorm"),i=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),c;r!=null&&(c=_(r,"scale","batchNorm"));let u;s!=null&&(u=_(s,"offset","batchNorm")),M(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:TR(o),scale:c,offset:u,mean:i,variance:l},h={varianceEpsilon:a},f=B.runKernel(za,p,h);return G(f,o.shape)}var Yi=U({batchNorm_:NR});function ER(e,t,n,s,r,a){let o=_(e,"x","batchNorm"),i=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),c;r!=null&&(c=_(r,"scale","batchNorm"));let u;return s!=null&&(u=_(s,"offset","batchNorm")),M(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),M(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),Yi(o,i,l,u,c,a)}var V3=U({batchNorm2d_:ER});function RR(e,t,n,s,r,a){let o=_(e,"x","batchNorm"),i=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),c;r!=null&&(c=_(r,"scale","batchNorm"));let u;return s!=null&&(u=_(s,"offset","batchNorm")),M(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),M(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),Yi(o,i,l,u,c,a)}var U3=U({batchNorm3d_:RR});function $R(e,t,n,s,r,a){let o=_(e,"x","batchNorm"),i=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),c;r!=null&&(c=_(r,"scale","batchNorm"));let u;return s!=null&&(u=_(s,"offset","batchNorm")),M(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),M(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),Yi(o,i,l,u,c,a)}var G3=U({batchNorm4d_:$R});function DR(e,t,n){let s=_(e,"x","bincount"),r=_(t,"weights","bincount");M(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return B.runKernel(fh,a,o)}var t1=U({bincount_:DR});function _R(e,t){let n=_(e,"s0","broadcastArgs","int32"),s=_(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return B.runKernel(d2,r)}var H3=U({broadcastArgs_:_R});function PR(e,t){let n=_(e,"broadcastTo","x"),s=n.shape;if(t.some(c=>!(c>0)||c%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let c=n.shape.slice();for(;c.length<t.length;)c.unshift(1);n=G(n,c)}let r=n.shape,a=Array.from(t);for(let c=t.length-1;c>=0;c--)if(r[c]===t[c])a[c]=1;else if(n.shape[c]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((c,u)=>c>1?u:-1).filter(c=>c>=0).length===0)return lr(n);let i={x:n},l={reps:a};return B.runKernel(Kr,i,l)}var Nu=U({broadcastTo_:PR});function FR(e){let n={x:_(e,"x","ceil")};return B.runKernel(Ta,n)}var n1=U({ceil_:FR});function OR(e,t,n){let s=_(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return B.runKernel(Xr,r,a)}var rs=U({clipByValue_:OR});function MR(e){return kt(e,0)}var j3=U({concat1d_:MR});function zR(e,t){return kt(e,t)}var Eu=U({concat2d_:zR});function LR(e,t){return kt(e,t)}var q3=U({concat3d_:LR});function BR(e,t){return kt(e,t)}var X3=U({concat4d_:BR});function WR(e,t,n,s,r="NHWC",a=[1,1],o){let i=_(e,"x","conv2d"),l=_(t,"filter","conv2d"),c=i,u=!1;i.rank===3&&(u=!0,c=G(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&M(mn(s),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d=r==="NHWC"?c.shape[3]:c.shape[1];M(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),M(Nr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let p={x:c,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=B.runKernel(Na,p,h);return u?G(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Qr=U({conv2d_:WR});function VR(e,t,n,s,r="NWC",a=1,o){let i=_(e,"x","conv1d"),l=_(t,"filter","conv1d"),c=i,u=!1;i.rank===2&&(u=!0,c=G(i,[1,i.shape[0],i.shape[1]])),M(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&M(mn(s),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),M(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(Nr(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),M(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=G(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=G(c,[c.shape[0],1,c.shape[1],c.shape[2]]),g=Qr(p,d,[1,n],s,"NHWC",[1,a],o);return u?G(g,[g.shape[2],g.shape[3]]):G(g,[g.shape[0],g.shape[2],g.shape[3]])}var sf=U({conv1d_:VR});function UR(e,t,n,s,r,a="NHWC",o){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,c=!1;t.rank===3&&(c=!0,l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),M(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];M(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),M(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&M(mn(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let p={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=B.runKernel(Ea,p,h);return c?G(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var s1=U({conv2DBackpropInput_:UR});function GR(e,t,n,s,r,a){let o=_(e,"x","conv2dTranspose"),i=_(t,"filter","conv2dTranspose");return s1(n,o,i,s,r,"NHWC",a)}var rf=U({conv2dTranspose_:GR});function HR(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=_(e,"x","conv3d"),i=_(t,"filter","conv3d"),l=o,c=!1;o.rank===4&&(c=!0,l=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),M(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),M(Nr(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let u={x:l,filter:i},d={strides:n,pad:s,dataFormat:r,dilations:a},p=B.runKernel(jc,u,d);return c?G(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var r1=U({conv3d_:HR});function jR(e,t,n,s,r){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=G(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],c=o.shape[4];M(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),M(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:o,filter:n},d={pad:r,strides:s,inputShape:a},p=B.runKernel(yh,u,d);return i?G(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var K3=U({conv3DBackpropInput_:jR});function qR(e,t,n,s,r){let a=_(e,"x","conv3dTranspose"),o=_(t,"filter","conv3dTranspose");return K3(n,a,o,s,r)}var Z3=U({conv3dTranspose_:qR});function XR(e){let n={x:_(e,"x","cos")};return B.runKernel(Ra,n)}var bd=U({cos_:XR});function KR(e){let n={x:_(e,"x","cosh")};return B.runKernel($a,n)}var af=U({cosh_:KR});function ZR(e,t=0,n=!1,s=!1){let a={x:_(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return B.runKernel(ai,a,o)}var of=U({cumsum_:ZR});function YR(e,t,n,s=!1){let r=_(e,"x","denseBincount"),a=_(t,"weights","denseBincount");M(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),M(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return B.runKernel(Ah,o,i)}var Y3=U({denseBincount_:YR});function JR(e,t,n="NHWC"){let s=_(e,"x","depthToSpace"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];M(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),M(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return B.runKernel(ii,i,l)}var a1=U({depthToSpace_:JR});function QR(e,t,n,s,r="NHWC",a=[1,1],o){let i=_(e,"x","depthwiseConv2d"),l=_(t,"filter","depthwiseConv2d"),c=i,u=!1;i.rank===3&&(u=!0,c=G(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&M(mn(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:c,filter:l},p={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},h=B.runKernel(Da,d,p);return u?G(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Ru=U({depthwiseConv2d_:QR});function e$(e){let n={x:_(e,"x","diag")};return B.runKernel(vh,n)}var t$=U({diag_:e$});function n$(e,t,n,s,r=[1,1],a="NHWC"){let o=_(e,"x","dilation2d"),i=_(t,"filter","dilation2d");M(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),M(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),M(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,c=!1;o.rank===3&&(l=G(o,[1,o.shape[0],o.shape[1],o.shape[2]]),c=!0);let u={x:l,filter:i},d={strides:n,pad:s,dilations:r},p=B.runKernel(qc,u,d);return c?G(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var o1=U({dilation2d_:n$});function s$(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function sn(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function Tt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}function r$(e,t){let n=_(e,"a","equal","string_or_numeric"),s=_(t,"b","equal","string_or_numeric");[n,s]=zt(n,s),Tt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(li,r)}var gs=U({equal_:r$});function a$(e,t,n){let s=_(t,"a","where"),r=_(n,"b","where"),a=_(e,"condition","where","bool"),o=Tt(Tt(a.shape,s.shape),r.shape),i=Nu(a,o),l=Nu(s,o),c=Nu(r,o),u={condition:i,t:l,e:c};return B.runKernel($i,u)}var Pn=U({where_:a$});function o$(e){let n={x:_(e,"x","zerosLike")};return B.runKernel(Bi,n)}var nt=U({zerosLike_:o$});function i$(e,t){let n=_(e,"a","div"),s=_(t,"b","div");[n,s]=zt(n,s);let r=fe(n,s),a=nt(r),o=gs(s,a);return Pn(o,a,r)}var i1=U({divNoNan_:i$});function l$(e,t){let n=_(e,"t1","dot"),s=_(t,"t2","dot");M((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(M(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=G(n,[1,-1]),i=G(s,[-1,1]),l=Xe(o,i);return G(l,[])}else if(n.rank===1&&s.rank===2){let o=G(n,[1,-1]),i=G(s,[s.shape[0],s.shape[1]]),l=Xe(o,i);return G(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=G(s,[-1,1]),i=Xe(n,o);return G(i,[i.size])}else{let o=G(s,[s.shape[0],s.shape[1]]);return Xe(n,o)}}var J3=U({dot_:l$});function u$(e,...t){let n=t.map((r,a)=>_(r,`tensors${a}`,"einsum")),s={equation:e};return B.runKernel(Xc,n,s)}var Q3=U({einsum_:u$});function c$(e){let n={x:_(e,"x","elu")};return B.runKernel(Pa,n)}var $u=U({elu_:c$});function d$(e){let t=_(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=pe(t,"float32"));let n={x:t};return B.runKernel(nu,n)}var l1=U({erf_:d$});function p$(e){let n={x:_(e,"x","exp")};return B.runKernel(Fa,n)}var ys=U({exp_:p$});function h$(e,t=0){let n=_(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return B.runKernel(ui,s,r)}var qt=U({expandDims_:h$});function f$(e){let n={x:_(e,"x","expm1")};return B.runKernel(ci,n)}var u1=U({expm1_:f$});function m$(e,t){let n=_(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return B.runKernel(Kr,s,r)}var Os=U({tile_:m$});function g$(e,t,n,s="float32"){t==null&&(t=e);let r=We([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=G(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return Os(qt(o,0),[n[0],1,1]);if(n.length===2)return Os(qt(qt(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return Os(qt(qt(qt(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var c1=U({eye_:g$});function Du(e,t,n){let s={shape:e,value:t,dtype:n};return B.runKernel(su,{},s)}function y$(e){let n={x:_(e,"x","floor")};return B.runKernel(Oa,n)}var _u=U({floor_:y$});function A$(e,t,n=0,s=0){let r=_(e,"x","gather"),a=_(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return B.runKernel(pi,o,i)}var Ji=U({gather_:A$});function x$(e,t){let n=_(e,"a","greater","string_or_numeric"),s=_(t,"b","greater","string_or_numeric");[n,s]=zt(n,s),Tt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(fi,r)}var as=U({greater_:x$});function b$(e,t){let n=_(e,"a","greaterEqual","string_or_numeric"),s=_(t,"b","greaterEqual","string_or_numeric");[n,s]=zt(n,s),Tt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(La,r)}var ko=U({greaterEqual_:b$});function v$(e){let n={input:_(e,"input","imag")};return B.runKernel(Kc,n)}var lf=U({imag_:v$});function w$(e){let n={x:_(e,"x","isFinite")};return B.runKernel(ru,n)}var ev=U({isFinite_:w$});function k$(e){let n={x:_(e,"x","isInf")};return B.runKernel(au,n)}var tv=U({isInf_:k$});function I$(e){let n={x:_(e,"x","isNaN")};return B.runKernel(ou,n)}var d1=U({isNaN_:I$});function S$(e,t=.2){let s={x:_(e,"x","leakyRelu")},r={alpha:t};return B.runKernel(mi,s,r)}var vd=U({leakyRelu_:S$});function C$(e,t){let n=_(e,"a","less","string_or_numeric"),s=_(t,"b","less","string_or_numeric");[n,s]=zt(n,s),Tt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(gi,r)}var uf=U({less_:C$});function T$(e,t){let n=_(e,"a","lessEqual","string_or_numeric"),s=_(t,"b","lessEqual","string_or_numeric");[n,s]=zt(n,s),Tt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(yi,r)}var Io=U({lessEqual_:T$});function nv(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return B.runKernel(Th,{},s)}function N$(e,t=5,n=1,s=1,r=.5){let a=_(e,"x","localResponseNormalization");M(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${a.rank}.`),M(mn(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=G(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},c={depthRadius:t,bias:n,alpha:s,beta:r},u=B.runKernel(Yc,l,c);return i?G(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var p1=U({localResponseNormalization_:N$});function E$(e){let n={x:_(e,"x","log")};return B.runKernel(Wa,n)}var As=U({log_:E$});function R$(e){let n={x:_(e,"x","log1p")};return B.runKernel(iu,n)}var wd=U({log1p_:R$});function $$(e){return M(va(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=_(t,"x","tf.grad","string_or_numeric"),r=n!=null?_(n,"dy","tf.grad"):null;return B.tidy(()=>{let{value:a,grads:o}=B.gradients(()=>e(s),[s],r);return r!=null&&zn(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),cf(o),o[0]})}}function D$(e){return M(va(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=fd(t,"args","tf.grads","string_or_numeric"),r=n!=null?_(n,"dy","tf.grads"):null;return B.tidy(()=>{let{value:a,grads:o}=B.gradients(()=>e(...s),s,r);return r!=null&&zn(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),cf(o),o})}}function _$(e){return M(va(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof Ke,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof Ke,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=B.gradients(()=>e(t),[t],n);return cf(s),{grad:s[0],value:r}}}function P$(e){return M(va(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(r=>r instanceof Ke),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof Ke,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=B.gradients(()=>e(...t),t,n);return n!=null&&zn(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),cf(s.grads),s}}function sv(e,t){M(va(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(c=>c instanceof dd),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in B.registeredVariables)t.push(B.registeredVariables[c])}let s=n?t.filter(c=>!c.trainable):null,r=t.length;t=t.filter(c=>c.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=B.gradients(e,t,null,a);M(i.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((c,u)=>{i[u]!=null&&(l[c.name]=i[u])}),s!=null&&s.forEach(c=>l[c.name]=null),{value:o,grads:l}}function Er(e){return B.customGrad(e)}function cf(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function F$(e){let n={x:_(e,"x","neg")};return B.runKernel(xi,n)}var _t=U({neg_:F$});function O$(e){let n={x:_(e,"x","softplus")};return B.runKernel(gu,n)}var Qi=U({softplus_:O$});function M$(e){let t=_(e,"x","logSigmoid");return Er(s=>({value:_t(Qi(_t(s))),gradFunc:o=>L(o,ss(_t(s)))}))(t)}var rv=U({logSigmoid_:M$});function z$(e,t=null,n=!1){let r={x:_(e,"x","max")},a={reductionIndices:t,keepDims:n};return B.runKernel(Va,r,a)}var Wn=U({max_:z$});function L$(e,t){let n=_(e,"a","sub"),s=_(t,"b","sub");[n,s]=zt(n,s);let r={a:n,b:s};return B.runKernel(uo,r)}var xe=U({sub_:L$});function B$(e,t=null,n=!1){let s=_(e,"x","sum");s.dtype==="bool"&&(s=pe(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return B.runKernel(oo,r,a)}var ke=U({sum_:B$});function W$(e,t=-1){let n=_(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Er((r,a)=>{let o=!0,i=Wn(r,t,!0),l=xe(r,i),c=xe(pe(l,"float32"),As(ke(ys(l),t,o)));return a([c]),{value:c,gradFunc:(d,p)=>{let[h]=p,f=!0,m=ys(h);return xe(d,L(ke(d,t,f),m))}}})(n)}var df=U({logSoftmax_:W$});function h1(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function av(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function ov(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function el(e,t){let n=t.map(s=>1);return av(e,n,t)}function V$(e,t,n){M(h1(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function iv(e,t){if(h1(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function f1(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function U$(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function G$(e,t=null,n=!1){let s=_(e,"x","logSumExp"),r=Xs(t,s.shape),a=Wn(s,r,!0),o=xe(s,a),i=ys(o),l=ke(i,r),c=As(l),u=ue(G(a,c.shape),c);if(n){let d=el(u.shape,r);return G(u,d)}return u}var m1=U({logSumExp_:G$});function H$(e,t){let n=_(e,"a","logicalAnd","bool"),s=_(t,"b","logicalAnd","bool");Tt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Ai,r)}var Zs=U({logicalAnd_:H$});function j$(e){let n={x:_(e,"x","logicalNot","bool")};return B.runKernel(lu,n)}var kd=U({logicalNot_:j$});function q$(e,t){let n=_(e,"a","logicalOr","bool"),s=_(t,"b","logicalOr","bool");Tt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Zc,r)}var pf=U({logicalOr_:q$});function X$(e,t){let n=_(e,"a","logicalXor","bool"),s=_(t,"b","logicalXor","bool");return Tt(n.shape,s.shape),Zs(pf(e,t),kd(Zs(e,t)))}var lv=U({logicalXor_:X$});function K$(e,t,n,s,r){let a=_(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=G(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),M(Nr(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),r!=null&&M(mn(s),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=B.runKernel(Ga,c,u);return l?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Id=U({maxPool_:K$});function Z$(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=_(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&M(mn(s),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=B.runKernel(Jc,c,u);return l?G(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var g1=U({maxPool3d_:Z$});function Y$(e,t,n,s,r=!1){let o={x:_(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=B.runKernel($h,o,i);return{result:l[0],indexes:l[1]}}var uv=U({maxPoolWithArgmax_:Y$});function J$(e,t){let n=_(e,"a","maximum"),s=_(t,"b","maximum");[n,s]=zt(n,s),n.dtype==="bool"&&(n=pe(n,"int32"),s=pe(s,"int32")),Tt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Ua,r)}var Rr=U({maximum_:J$});function Q$(e,t=null,n=!1){let r={x:_(e,"x","mean")},a={axis:t,keepDims:n};return B.runKernel(Ha,r,a)}var Lt=U({mean_:Q$});function Xt(e,t="float32"){if(t==="complex64"){let s=Xt(e,"float32"),r=Xt(e,"float32");return Ao(s,r)}let n=dh(Ht(e),t);return B.makeTensor(n,e,t)}function xs(e,t="float32"){if(t==="complex64"){let s=xs(e,"float32"),r=Xt(e,"float32");return Ao(s,r)}let n=o2(Ht(e),t);return B.makeTensor(n,e,t)}function eD(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=_(e,"x","meshgrid",e instanceof Ke?e.dtype:"float32");if(t===void 0)return[s];let r=_(t,"y","meshgrid",t instanceof Ke?t.dtype:"float32"),a=Ht(s.shape),o=Ht(r.shape);return n==="xy"?(s=G(s,[1,-1]),r=G(r,[-1,1]),[Xe(xs([o,1],s.dtype),s),Xe(r,xs([1,a],r.dtype))]):(s=G(s,[-1,1]),r=G(r,[1,-1]),[Xe(s,xs([1,o],s.dtype)),Xe(xs([a,1],r.dtype),r)])}function tD(e,t=null,n=!1){let r={x:_(e,"x","min")},a={axis:t,keepDims:n};return B.runKernel(ja,r,a)}var Sd=U({min_:tD});function nD(e,t){let n=_(e,"a","minimum"),s=_(t,"b","minimum");[n,s]=zt(n,s),n.dtype==="bool"&&(n=pe(n,"int32"),s=pe(s,"int32")),Tt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(qa,r)}var Pu=U({minimum_:nD});function sD(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=_(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)M(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),M(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return B.runKernel(Xa,o,a)}var y1=U({mirrorPad_:sD});function rD(e,t){let n=_(e,"a","mod"),s=_(t,"b","mod");[n,s]=zt(n,s);let r={a:n,b:s};return B.runKernel(uu,r)}var A1=U({mod_:rD});function aD(e){let t=_(e,"x","square"),n={};return B.runKernel("Square",{x:t},n)}var vt=U({square_:aD});function oD(e,t=null,n=!1){e=_(e,"x","moments");let s=Xs(t,e.shape),r=Lt(e,s,n),a=r.shape;n||(a=el(r.shape,s));let o=vt(xe(pe(e,"float32"),G(r,a))),i=Lt(o,s,n);return{mean:r,variance:i}}var hf=U({moments_:oD});function iD(e,t,n,s){let r=_(t,"data","multiRNNCell"),a=fd(n,"c","multiRNNCell"),o=fd(s,"h","multiRNNCell"),i=r,l=[];for(let d=0;d<e.length;d++){let p=e[d](i,a[d],o[d]);l.push(p[0]),l.push(p[1]),i=p[1]}let c=[],u=[];for(let d=0;d<l.length;d+=2)c.push(l[d]),u.push(l[d+1]);return[c,u]}var lD=U({multiRNNCell_:iD});function uD(e,t,n,s=!1){let r=_(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?G(r,[1,-1]):r},c={numSamples:t,seed:n,normalized:s},u=B.runKernel(Dh,l,c);return o===1?G(u,[u.size]):u}var cv=U({multinomial_:uD});function cD(e,t){let n=_(e,"a","notEqual","string_or_numeric"),s=_(t,"b","notEqual","string_or_numeric");[n,s]=zt(n,s),Tt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(bi,r)}var tl=U({notEqual_:cD});function dD(e){let n={x:_(e,"x","onesLike")};return B.runKernel(ki,n)}var bs=U({onesLike_:dD});function pD(e,t){let n=_(e,"v1","outerProduct"),s=_(t,"v2","outerProduct");M(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=G(n,[-1,1]),a=G(s,[1,-1]);return Xe(r,a)}var hD=U({outerProduct_:pD});function fD(e,t,n=0){let s=_(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return B.runKernel(Za,a,r)}var Ms=U({pad_:fD});function mD(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Ms(e,[t],n)}var gD=U({pad1d_:mD});function yD(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Ms(e,t,n)}var AD=U({pad2d_:yD});function xD(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Ms(e,t,n)}var bD=U({pad3d_:xD});function vD(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Ms(e,t,n)}var wD=U({pad4d_:vD});function kD(e,t,n){let s=_(e,"x","spaceToBatchND");M(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return B.runKernel(Pi,r,a)}var Cd=U({spaceToBatchND_:kD});function ID(e,t,n,s,r,a){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=_(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(Nr(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=L3(i.shape,t,a,r,s),u=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=CD([c.filterHeight,c.filterWidth],u):d=[[0,0],[0,0]];let p=u[0]===1&&u[1]===1,[h,f]=SD([c.inHeight,c.inWidth],u,d),m=p?s:"valid",g=p?i:Cd(i,u,h),A=(n==="avg"?()=>Ad(g,t,a,m):()=>Id(g,t,a,m))(),x=p?A:xd(A,u,f);return l?G(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function SD(e,t,n){let s=n.map(u=>u[0]),r=n.map(u=>u[1]),a=e.concat(s,r),o=t.map((u,d)=>(u-a[d]%u)%u),i=r.map((u,d)=>u+o[d]),l=t.map((u,d)=>[s[d],i[d]]),c=t.map((u,d)=>[0,o[d]]);return[l,c]}function CD(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var dv=U({pool_:ID});function TD(e,t){let n=_(e,"base","pow"),s=_(t,"exp","pow");[n,s]=zt(n,s);let r={a:n,b:s};return B.runKernel(Ya,r)}var ea=U({pow_:TD});function ND(e,t){let n=_(e,"x","prelu"),s=_(t,"alpha","prelu"),r={x:n,alpha:s};return B.runKernel(Ja,r)}var Td=U({prelu_:ND});function ED(e,t=null,n=!1){let s=_(e,"x","prod");s.dtype==="bool"&&(s=pe(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return B.runKernel(Ci,r,a)}var ff=U({prod_:ED});function RD(e,t,n){let s=Ht(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return B.makeTensor(r,e,n)}var $D=U({rand_:RD}),x1=Qo(v5()),b1=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=x1.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},DD=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=x1.alea(r.toString()),this.randn=new b1(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},_D=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=x1.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function PD(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new DD(t,n,s,r),o=We(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var FD=U({randomGamma_:PD});function OD(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new b1(t,n,s,!1,r),o=We(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var pv=U({randomNormal_:OD});function MD(e,t=0,n=1,s="float32",r){let a=We(e,s),o=new _D(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var Fu=U({randomUniform_:MD});function Ou(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return B.runKernel(du,{},r)}function zD(e){let n={input:_(e,"input","real")};return B.runKernel(Qc,n)}var Nd=U({real_:zD});function LD(e){let n={x:_(e,"x","reciprocal")};return B.runKernel(pu,n)}var v1=U({reciprocal_:LD});function BD(e){let n={x:_(e,"x","relu")};return B.runKernel(Qa,n)}var cr=U({relu_:BD});function WD(e){let n={x:_(e,"x","relu6")};return B.runKernel(to,n)}var mf=U({relu6_:WD});function VD(e,t){let s={x:_(e,"x","reverse")},r={dims:t};return B.runKernel(Ni,s,r)}var vs=U({reverse_:VD});function UD(e){let t=_(e,"x","reverse");return M(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),vs(t,0)}var GD=U({reverse1d_:UD});function HD(e,t){let n=_(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),vs(n,t)}var jD=U({reverse2d_:HD});function qD(e,t){let n=_(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),vs(n,t)}var XD=U({reverse3d_:qD});function KD(e,t){let n=_(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),vs(n,t)}var ZD=U({reverse4d_:KD});function YD(e){let n={x:_(e,"x","round")};return B.runKernel(Ei,n)}var gf=U({round_:YD});function JD(e){let n={x:_(e,"x","rsqrt")};return B.runKernel(no,n)}var yf=U({rsqrt_:JD});function Ee(e,t){if((_n(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&_n(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return xo(e,[],[],t)}function QD(e){let n={x:_(e,"x","selu")};return B.runKernel(fu,n)}var Af=U({selu_:QD});function e_(e,t,n,s,r,a=[1,1],o="NHWC"){let i=_(e,"x","separableConv2d"),l=_(t,"depthwiseFilter","separableConv2d"),c=_(n,"pointwiseFilter","separableConv2d"),u=i,d=!1;if(i.rank===3&&(d=!0,u=G(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),M(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let p=l.shape[2],h=l.shape[3];M(c.shape[2]===p*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*h}, but got ${c.shape[2]}.`);let f=Ru(u,l,s,r,o,a),g=Qr(f,c,1,"valid",o);return d?G(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var w1=U({separableConv2d_:e_});async function t_(e,t){let n=_(e,"x","setdiff1d"),s=_(t,"y","setdiff1d");M(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let u=0;u<r.length;u++)o.has(r[u])||i++;let l=new nn([i],n.dtype),c=new nn([i],"int32");for(let u=0,d=0;u<r.length;u++)o.has(r[u])||(l.values[d]=r[u],c.values[d]=u,d++);return[l.toTensor(),c.toTensor()]}var hv=t_;function n_(e){let n={x:_(e,"x","sign")};return B.runKernel(mu,n)}var k1=U({sign_:n_});function s_(e){let n={x:_(e,"x","sin")};return B.runKernel(so,n)}var xf=U({sin_:s_});function r_(e){let n={x:_(e,"x","sinh")};return B.runKernel(_i,n)}var bf=U({sinh_:r_});function a_(e,t,n){let s=_(e,"x","slice1d");return M(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),_e(s,[t],[n])}var vf=U({slice1d_:a_});function o_(e,t,n){let s=_(e,"x","slice2d");return M(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var I1=U({slice2d_:o_});function i_(e,t,n){let s=_(e,"x","slice3d");return M(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var Mu=U({slice3d_:i_});function l_(e,t,n){let s=_(e,"x","slice4d");return M(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var Ed=U({slice4d_:l_});function u_(e,t=-1){let n=_(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return B.runKernel(io,s,r)}var nl=U({softmax_:u_});function c_(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(Sh,t)}var Rd=U({fft_:c_});function d_(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(Ch,t)}var zu=U({ifft_:d_});function p_(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=G(e,[n,t]);s=zu(r)}else{let r=[n,2*(t-1)],a=G(Nd(e),[n,t]),o=G(lf(e),[n,t]),i=vs(_e(a,[0,1],[n,t-2]),1),l=L(vs(_e(o,[0,1],[n,t-2]),1),Ee(-1)),c=kt([a,i],1),u=kt([o,l],1),d=G(Ao(c,u),[r[0],r[1]]);s=zu(d)}if(s=Nd(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=G(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var wf=U({irfft_:p_});function h_(e,t,n=0){let r={x:_(e,"x","split")},a={numOrSizeSplits:t,axis:n};return B.runKernel(Fi,r,a)}var xn=U({split_:h_});function f_(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=_e(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=kt([e,Xt(f)],e.shape.length-1),n=t}else r=e;let a=nt(r),o=G(Ao(r,a),[s,n]),i=Rd(o),l=Math.floor(n/2)+1,c=Nd(i),u=lf(i),d=xn(c,[l,n-l],c.shape.length-1),p=xn(u,[l,n-l],u.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,G(Ao(d[0],p[0]),h)}var $d=U({rfft_:f_});function m_(e){let n={x:_(e,"x","sqrt")};return B.runKernel(ao,n)}var Cn=U({sqrt_:m_});function g_(e,t){let n=_(e,"a","squaredDifference"),s=_(t,"b","squaredDifference");[n,s]=zt(n,s),Tt(n.shape,s.shape);let r={a:n,b:s},a={};return B.runKernel(lo,r,a)}var kf=U({squaredDifference_:g_});function y_(e,t){let n=_(e,"x","squeeze");return G(n,S5(n.shape,t).newShape)}var dt=U({squeeze_:y_});function A_(e,t=0){let n=fd(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return B.runKernel(Si,s,r)}var Tn=U({stack_:A_});function x_(e,t=0){let s={x:_(e,"x","step")},r={alpha:t};return B.runKernel(ho,s,r)}var Lu=U({step_:x_});function b_(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let u={x:_(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return B.runKernel(Oi,u,d)}var S1=U({stridedSlice_:b_});function v_(e){let n={x:_(e,"x","tan")};return B.runKernel(Mi,n)}var C1=U({tan_:v_});function Yt(e,t){ei(e);let n=Cr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return xo(e,null,n,t)}function dr(e,t,n){if(ei(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=Cr(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return xo(e,t,s,n)}function w_(e,t,n){if(ei(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=Cr(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return xo(e,t,s,n)}function k_(e,t,n){if(ei(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=Cr(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return xo(e,t,s,n)}function I_(e,t,n){if(ei(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=Cr(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,xo(e,t,s,n)}function S_(e,t=1,n=!0){let s=_(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=B.runKernel(Au,a,o);return{values:i,indices:l}}var T1=U({topk_:S_});function C_(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new b1(t,n,s,!0,r),o=We(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var If=U({truncatedNormal_:C_});function T_(e,t=0){let n=_(e,"x","unique","string_or_numeric");M(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=B.runKernel(Wh,s,r);return{values:a,indices:o}}var Sf=U({unique_:T_});function N_(e,t,n){let s=_(e,"x","unsortedSegmentSum"),r=_(t,"segmentIds","unsortedSegmentSum","int32");M(mn(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return B.runKernel(nd,a,o)}var N1=U({unsortedSegmentSum_:N_});function E_(e,t=0){let n=_(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return B.runKernel(Li,s,r)}var Vn=U({unstack_:E_});function fv(e,t=!0,n,s){return B.makeVariable(e,t,n,s)}function mv(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=We(e,"int32"),r=We([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function R_(e){let t=_(e,"condition","whereAsync","bool"),n=await t.data(),s=mv(t.shape,n);return e!==t&&t.dispose(),s}var E1=R_;async function $_(e,t,n){let s=_(e,"tensor","boolMask"),r=_(t,"mask","boolMask","bool"),a=n==null?0:n,o=r.rank,i=s.shape;M(o>0,()=>"mask cannot be scalar"),zn(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m<a+o;m++)l*=i[m];let c=i.slice(0,a).concat([l],i.slice(a+o)),u=G(s,c),d=G(r,[-1]),p=await E1(d),h=dt(p,[1]),f=Ji(u,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),u.dispose(),d.dispose(),p.dispose(),f}var D_=$_;function __(e,t="euclidean",n=null,s=!1){e=_(e,"x","norm");let r=gv(e,t,n),a=r.shape;if(s){let o=Xs(n,e.shape);a=el(r.shape,o)}return G(r,a)}function gv(e,t,n=null){if(e.rank===0)return Zt(e);if(e.rank!==1&&n===null)return gv(G(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return ke(Zt(e),n);if(t===1/0)return Wn(Zt(e),n);if(t===-1/0)return Sd(Zt(e),n);if(t==="euclidean"||t===2)return Cn(ke(ea(Zt(e),Ee(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Wn(ke(Zt(e),n[0]),n[1]-1);if(t===1/0)return Wn(ke(Zt(e),n[1]),n[0]);if(t===-1/0)return Sd(ke(Zt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Cn(ke(vt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Cf=U({norm_:__});function P_(e,t,n,s,r=!0){let a=_(e,"v","movingAverage"),o=_(t,"x","movingAverage"),i=_(n,"decay","movingAverage");j5(a,o),M(jr(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Ee(1),c=xe(l,i),u=L(xe(o,a),c);if(r){M(s!=null,()=>"When using zeroDebias: true, step is required.");let d=_(s,"step","movingAverage");u=fe(u,xe(l,ea(i,d)))}return ue(a,u)}var F_=U({movingAverage_:P_});function O_(e,t,n){let s=_(e,"indices","scatterND","int32"),r=_(t,"updates","scatterND");z2(r,s,n);let a={indices:s,updates:r},o={shape:n};return B.runKernel(Ri,a,o)}var yv=U({scatterND_:O_});function M_(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function z_(e,t,n,s=0){let r=_(e,"sparseIndices","sparseToDense","int32"),a=_(t,"sparseValues","sparseToDense"),o=_(s,"defaultValue","sparseToDense",a.dtype);M_(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return B.runKernel(ed,i,l)}var R1=U({sparseToDense_:z_});function L_(e,t){let n=_(t,"indices","gatherND","int32"),r={params:_(e,"x","gatherND","string_or_numeric"),indices:n};return B.runKernel(hi,r)}var Av=U({gatherND_:L_});function B_(e,t){if(t==null)return e.shape.slice();if(jr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function W_(e,t,n,s){let r=_(e,"x","dropout");if(M(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ke?r.clone():r;let a=B_(r,n),o=1-t,i=fe(_u(ue(Fu(a,0,1,"float32",s),o)),o);return L(r,i)}var xv=U({dropout_:W_});function bv(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function $1(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return Yt(r,"float32")}async function V_(e,t,n=1){let s=_(e,"predictions","inTopK"),r=_(t,"targets","inTopK");M(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),M(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),zn(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];M(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,c]=[o.length/a,a],u=C5("bool",l);for(let d=0;d<l;d++){let p=d*c,h=o.subarray(p,p+c),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),u[d]=0;for(let m=0;m<n;m++)if(f[m].index===i[d]){u[d]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),jt(u,r.shape,"bool")}var U_=V_,So={};Le(So,{conv2d:()=>j_,depthwiseConv2d:()=>Z_,matMul:()=>J_});function G_(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=a==="NHWC"?i.shape[3]:i.shape[1],u=a==="NHWC"?l.shape[3]:l.shape[1];M(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),M(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),o!=null&&M(mn(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:i,dy:l},p={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return B.runKernel(mh,d,p)}var D1=U({conv2DBackpropFilter_:G_});function Tf(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return L(e,Lu(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Nf(e,t){let n=t,s=sn(e.shape,t.shape);return s.length>0&&(n=ke(n,s)),G(n,e.shape)}function Ef(e,t,n,s){if(t==="linear")return e;if(t==="relu")return cr(e);if(t==="elu")return $u(e);if(t==="relu6")return mf(e);if(t==="prelu")return Td(e,n);if(t==="leakyrelu")return vd(e,s);if(t==="sigmoid")return ss(e);throw new Error(`Unknown fused activation ${t}.`)}var Rf=(e,t)=>!(e>0)||t==="linear";function H_({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",Rf(B.state.gradientDepth,l)===!1){let w=Qr(e,t,n,s,r,a,o);return i!=null&&(w=ue(w,i)),Ef(w,l,c,u)}let d=_(e,"x","conv2d"),p=_(t,"filter","conv2d"),h=d,f=!1;d.rank===3&&(f=!0,h=G(d,[1,d.shape[0],d.shape[1],d.shape[2]])),M(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),M(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),o!=null&&M(mn(s),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),M(h.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${p.shape[2]}.`),M(Nr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let m=yd(h.shape,p.shape,n,a,s,o),g;i!=null&&(g=_(i,"bias","fused conv2d"),[g]=zt(g,d),Tt(m.outShape,g.shape));let y;c!=null&&(y=_(c,"prelu weights","fused conv2d"));let A=(w,k)=>{let[S,N,$,F]=k,R=Tf(w,$,l);M(wo(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let D=s1(N.shape,R,S,n,s),T=D1(N,R,S.shape,n,s),O=[D,T];if(F!=null){let W=Nf(F,R);O.push(W)}return O},x={x:h,filter:p,bias:g,preluActivationWeights:y},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?Er((k,S,N)=>{let $=B.runKernel(mo,x,b);return N([S,k,$]),f&&($=G($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:A}})(h,p):Er((k,S,N,$)=>{let F=B.runKernel(mo,x,b);return $([S,k,F,N]),f&&(F=G(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:A}})(h,p,g)}var j_=U({fusedConv2d_:H_});function q_(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:i,dy:l},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return B.runKernel(xh,c,u)}var vv=U({depthwiseConv2dNativeBackpropFilter_:q_});function X_(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:i,filter:n},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},d=B.runKernel(bh,c,u);return l?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var wv=U({depthwiseConv2dNativeBackpropInput_:X_});function K_({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(Rf(B.state.gradientDepth,l)===!1){let w=Ru(e,t,n,s,r,a,o);return i!=null&&(w=ue(w,i)),Ef(w,l,c,u)}let d=_(e,"x","depthwiseConv2d"),p=_(t,"filter","depthwiseConv2d"),h=d,f=!1;d.rank===3&&(f=!0,h=G(d,[1,d.shape[0],d.shape[1],d.shape[2]])),M(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),M(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),M(h.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),a==null&&(a=[1,1]),M(Nr(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&M(mn(s),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${s}.`);let m=yd(h.shape,p.shape,n,a,s,o,!0),g;i!=null&&(g=_(i,"bias","fused conv2d"),[g]=zt(g,d),Tt(m.outShape,g.shape));let y;c!=null&&(y=_(c,"prelu weights","fused depthwiseConv2d"));let A=(w,k)=>{M(wo(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[S,N,$,F]=k,R=Tf(w,$,l),D=wv(N.shape,R,S,n,s,a,o),T=vv(N,R,S.shape,n,s,a,o);if(F!=null){let O=Nf(g,R);return[D,T,O]}return[D,T]},x={x:h,filter:p,bias:g,preluActivationWeights:y},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?Er((k,S,N)=>{let $=B.runKernel(go,x,b);return N([S,k,$]),f&&($=G($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:A}})(h,p):Er((k,S,N,$)=>{let F=B.runKernel(go,x,b);return $([S,k,F,N]),f&&(F=G(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:A}})(h,p,g)}var Z_=U({fusedDepthwiseConv2d_:K_});function Y_({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(Rf(B.state.gradientDepth,a)===!1){let F=Xe(e,t,n,s);return r!=null&&(F=ue(F,r)),Ef(F,a,o,i)}let l=_(e,"a","fused matMul"),c=_(t,"b","fused matMul");[l,c]=zt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=s?c.shape[c.rank-1]:c.shape[c.rank-2],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?c.shape[c.rank-2]:c.shape[c.rank-1],f=l.shape.slice(0,-2),m=c.shape.slice(0,-2),g=Ht(f),y=Ht(m);M(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),M(jr(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),M(u===d,()=>`Error in fused matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${s} must match.`);let A=l.shape.slice(0,-2).concat([p,h]),x=n?G(l,[g,u,p]):G(l,[g,p,u]),b=s?G(c,[y,h,d]):G(c,[y,d,h]),w;r!=null&&(w=_(r,"bias","fused matMul"),[w]=zt(w,l),Tt(A,w.shape));let k;o!=null&&(k=_(o,"prelu weights","fused matMul"));let S=(F,R)=>{let[D,T,O,W]=R,H=Tf(G(F,O.shape),O,a),z,X;if(!n&&!s?(z=Xe(H,T,!1,!0),X=Xe(D,H,!0,!1)):!n&&s?(z=Xe(H,T,!1,!1),X=Xe(H,D,!0,!1)):n&&!s?(z=Xe(T,H,!1,!0),X=Xe(D,H,!1,!1)):(z=Xe(T,H,!0,!0),X=Xe(H,D,!0,!0)),r!=null){let te=Nf(W,H);return[z,X,te]}else return[z,X]},N={a:x,b,bias:w,preluActivationWeights:k},$={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?Er((R,D,T)=>{let O=B.runKernel(fo,N,$);return T([R,D,O]),{value:G(O,A),gradFunc:S}})(x,b):Er((R,D,T,O)=>{let W=B.runKernel(fo,N,$);return O([R,D,W,T]),{value:G(W,A),gradFunc:S}})(x,b,w)}var J_=U({fusedMatMul_:Y_});function Q_(e){return $1(e,.54,.46)}var eP=U({hammingWindow_:Q_});function tP(e){return $1(e,.5,.5)}var kv=U({hannWindow_:tP});function nP(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(_e(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=kt([_e(e,a,t-i),Du([i],r)]);o.push(l),a+=n}return o.length===0?dr([],[0,t]):G(kt(o),[o.length,t])}var Iv=U({frame_:nP});function sP(e,t,n,s,r=kv){s==null&&(s=bv(t));let a=Iv(e,t,n),o=L(a,r(t));return $d(o,s)}var rP=U({stft_:sP});function aP(e,t,n,s,r="bilinear",a=0){let o=_(e,"image","cropAndResize"),i=_(t,"boxes","cropAndResize","float32"),l=_(n,"boxInd","cropAndResize","int32"),c=i.shape[0];M(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${i.shape}.`),M(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${i.shape}.`),M(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),M(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),M(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let u={image:o,boxes:i,boxInd:l},d={method:r,extrapolationValue:a,cropSize:s};return B.runKernel(oi,u,d)}var oP=U({cropAndResize_:aP});function iP(e){let t=_(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return B.runKernel(di,n,{})}var lP=U({flipLeftRight_:iP});function uP(e){let t=_(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];M(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),M(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Os(t,r)}var cP=U({grayscaleToRGB_:uP});function dP(e,t,n=0,s=.5){let r=_(e,"image","rotateWithOffset","float32");M(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return B.runKernel(Wi,a,o)}var pP=U({rotateWithOffset_:dP});function Bu(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),M(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),M(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function hP(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),i=Bu(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return B.runKernel(vi,{boxes:a,scores:o},l)}var fP=U({nonMaxSuppression_:hP});function mP(e,t,n){let s=gP(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function gP(e,t,n){return AP(e,t,n||yP)}function yP(e,t){return e>t?1:e<t?-1:0}function AP(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function Sv(e,t,n,s,r){return _1(e,t,n,s,r,0)}function Cv(e,t,n,s,r,a){return _1(e,t,n,s,r,0,!1,a,!0)}function Tv(e,t,n,s,r,a){return _1(e,t,n,s,r,a,!0)}function _1(e,t,n,s,r,a,o=!1,i=!1,l=!1){let c=[];for(let g=0;g<t.length;g++)t[g]>r&&c.push({score:t[g],boxIndex:g,suppressBeginIndex:0});c.sort(Nv);let u=a>0?-.5/a:0,d=[],p=[];for(;d.length<n&&c.length>0;){let g=c.pop(),{score:y,boxIndex:A,suppressBeginIndex:x}=g;if(y<r)break;let b=!1;for(let w=d.length-1;w>=x;--w){let k=xP(e,A,d[w]);if(k>=s){b=!0;break}if(g.score=g.score*bP(s,u,k),g.score<=r)break}g.suppressBeginIndex=d.length,b||(g.score===y?(d.push(A),p.push(g.score)):g.score>r&&mP(c,g,Nv))}let h=d.length,f=n-h;i&&f>0&&(d.push(...new Array(f).fill(0)),p.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=p),l&&(m.validOutputs=h),m}function xP(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),c=Math.min(r[0],r[2]),u=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),p=Math.max(r[1],r[3]),h=(i-a)*(l-o),f=(d-c)*(p-u);if(h<=0||f<=0)return 0;let m=Math.max(a,c),g=Math.max(o,u),y=Math.min(i,d),A=Math.min(l,p),x=Math.max(y-m,0)*Math.max(A-g,0);return x/(h+f-x)}function bP(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function Nv(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function vP(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),i=Bu(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),c=l[0],u=l[1],{selectedIndices:d}=Sv(c,u,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),Yt(d,"int32")}var wP=vP;function kP(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=_(e,"boxes","nonMaxSuppression"),i=_(t,"scores","nonMaxSuppression"),l=Bu(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c={boxes:o,scores:i},u={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},d=B.runKernel(wi,c,u);return{selectedIndices:d[0],selectedScores:d[1]}}var IP=U({nonMaxSuppressionWithScore_:kP});async function SP(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=_(e,"boxes","nonMaxSuppressionAsync"),i=_(t,"scores","nonMaxSuppressionAsync"),l=Bu(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c=await Promise.all([o.data(),i.data()]),u=c[0],d=c[1],{selectedIndices:p,selectedScores:h}=Tv(u,d,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Yt(p,"int32"),selectedScores:Yt(h)}}var CP=SP;function TP(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=_(e,"boxes","nonMaxSuppression"),i=_(t,"scores","nonMaxSuppression"),l=Bu(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,p={boxes:o,scores:i},h={maxOutputSize:c,iouThreshold:u,scoreThreshold:d,padToMaxOutputSize:a},f=B.runKernel(cu,p,h);return{selectedIndices:f[0],validOutputs:f[1]}}var NP=U({nonMaxSuppressionPadded_:TP});async function EP(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=_(e,"boxes","nonMaxSuppressionAsync"),i=_(t,"scores","nonMaxSuppressionAsync"),l=Bu(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,[p,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=Cv(p,h,c,u,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Yt(f,"int32"),validOutputs:Ee(m,"int32")}}var RP=EP;function $P(e,t,n=!1,s=!1){let r=_(e,"images","resizeBilinear");M(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=G(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=B.runKernel(eo,i,l);return o?G(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Ev=U({resizeBilinear_:$P});function DP(e,t,n=!1,s=!1){let r=_(e,"images","resizeNearestNeighbor");M(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=G(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=B.runKernel(hu,i,l);return o?G(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Rv=U({resizeNearestNeighbor_:DP});function _P(e,t="binary",n=!1,s=.5){let r=_(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],c=L(Yt([s]),255),u,d,p,h;if(M(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),M(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),M(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),M(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[u,d,p]=xn(r,[1,1,1],-1);let g=L(u,a),y=L(d,o),A=L(p,i);h=ue(ue(g,y),A)}else h=e;if(t==="otsu"){let g=t1(pe(gf(h),"int32"),jt([]),256);c=PP(g,l)}let f=n?Io(h,c):as(h,c);return pe(L(f,255),"int32")}function PP(e,t){let n=Yt([-1]),s=Yt([0]),r=Yt([0]),a,o,i,l,c,u;for(let d=0;d<e.size-1;d++){a=_e(e,0,d+1),o=_e(e,d+1),c=fe(ke(a),t),u=fe(ke(o),t);let p=ke(L(a,Ou(0,a.size)));i=fe(p,ke(a));let h=Du(o.shape,a.size),f=ue(Ou(0,o.size),h),m=L(o,f);l=fe(ke(m),ke(o));let g=xe(i,l),y=xe(i,l),A=L(c,u);r=L(L(A,g),y);let x=as(r,s);s=Pn(x,r,s),n=Pn(x,Yt([d]),n)}return n}var FP=U({threshold_:_P});function OP(e,t,n="nearest",s="constant",r=0,a){let o=_(e,"image","transform","float32"),i=_(t,"transforms","transform","float32");M(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},c={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return B.runKernel(zi,l,c)}var MP=U({transform_:OP});function zP(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=_(e,"a","bandPart");M(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=G(Ou(0,a,1,"int32"),[-1,1]),l=Ou(0,o,1,"int32"),c=xe(i,l),u=Zs(Io(c,Ee(+t,"int32")),ko(c,Ee(-n,"int32"))),d=Xt([a,o],s.dtype);return G(Tn(Vn(G(s,[-1,a,o])).map(p=>Pn(u,p,d))),r)}var LP=U({bandPart_:zP});function BP(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)M(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=xn(e,e.shape[0],0).map(r=>dt(r,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(B.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=L(ke(L(n[o],a)),n[o]);a=xe(a,i)}return fe(a,Cf(a,"euclidean"))}));return t?Tn(n,0):n}var WP=U({gramSchmidt_:BP});function VP(e,t=!1){if(M(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return $v(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),s=Vn(G(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[c,u]=$v(l,t);r.push(c),a.push(u)});let o=G(Tn(r,0),e.shape),i=G(Tn(a,0),e.shape);return[o,i]}}function $v(e,t=!1){return B.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=c1(n),a=lr(e),o=dr([[1]],[1,1]),i=lr(o),l=n>=s?s:n;for(let c=0;c<l;++c){let u=a,d=i,p=r;[i,a,r]=B.tidy(()=>{let h=_e(a,[c,c],[n-c,1]),f=Cf(h),m=_e(a,[c,c],[1,1]),g=Pn(as(m,0),dr([[-1]]),dr([[1]])),y=xe(m,L(g,f)),A=fe(h,y);A.shape[0]===1?i=lr(o):i=kt([o,_e(A,[1,0],[A.shape[0]-1,A.shape[1]])],0);let x=_t(fe(Xe(g,y),f)),b=_e(a,[c,0],[n-c,s]),w=L(x,i),k=tt(i);if(c===0)a=xe(b,Xe(w,Xe(k,b)));else{let $=xe(b,Xe(w,Xe(k,b)));a=kt([_e(a,[0,0],[c,s]),$],0)}let S=tt(w),N=_e(r,[0,c],[n,r.shape[1]-c]);if(c===0)r=xe(N,Xe(Xe(N,i),S));else{let $=xe(N,Xe(Xe(N,i),S));r=kt([_e(r,[0,0],[n,c]),$],1)}return[i,a,r]}),ee([u,d,p])}return!t&&n>s&&(r=_e(r,[0,0],[n,s]),a=_e(a,[0,0],[s,s])),[r,a]})}var UP=U({qr_:VP}),Un;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Un||(Un={}));function GP(e,t,n=Un.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=_(t,"weights","computeWeightedLoss"));let a=r==null?s:L(s,r);if(n===Un.NONE)return a;if(n===Un.SUM)return ke(a);if(n===Un.MEAN){if(r==null)return Lt(a);{let o=s.size/r.size,i=fe(ke(a),ke(r));return o>1?fe(i,Ee(o)):i}}if(n===Un.SUM_BY_NONZERO_WEIGHTS){if(r==null)return fe(ke(a),Ee(s.size));{let o=L(r,xs(s.shape)),i=pe(ke(tl(o,Ee(0))),"float32");return fe(ke(a),i)}}throw Error(`Unknown reduction: ${n}`)}var ta=U({computeWeightedLoss_:GP});function HP(e,t,n,s=Un.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","absoluteDifference"),a=_(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=_(n,"weights","absoluteDifference")),zn(r.shape,a.shape,"Error in absoluteDifference: ");let i=Zt(xe(r,a));return ta(i,o,s)}var jP=U({absoluteDifference_:HP});function qP(e,t,n,s,r=Un.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"labels","cosineDistance"),o=_(t,"predictions","cosineDistance"),i=null;s!=null&&(i=_(s,"weights","cosineDistance")),zn(a.shape,o.shape,"Error in cosineDistance: ");let l=Ee(1),c=xe(l,ke(L(a,o),n,!0));return ta(c,i,r)}var XP=U({cosineDistance_:qP});function KP(e,t,n,s=Un.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","hingeLoss"),a=_(t,"predictions","hingeLoss"),o=null;n!=null&&(o=_(n,"weights","hingeLoss")),zn(r.shape,a.shape,"Error in hingeLoss: ");let i=Ee(1);r=xe(L(Ee(2),r),i);let l=cr(xe(i,L(r,a)));return ta(l,o,s)}var ZP=U({hingeLoss_:KP});function YP(e,t,n,s=1,r=Un.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"labels","huberLoss"),o=_(t,"predictions","huberLoss"),i=null;n!=null&&(i=_(n,"weights","huberLoss")),zn(a.shape,o.shape,"Error in huberLoss: ");let l=Ee(s),c=Zt(xe(o,a)),u=Pu(c,l),d=xe(c,u),p=ue(L(Ee(.5),vt(u)),L(l,d));return ta(p,i,r)}var JP=U({huberLoss_:YP});function QP(e,t,n,s=1e-7,r=Un.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"labels","logLoss"),o=_(t,"predictions","logLoss"),i=null;n!=null&&(i=_(n,"weights","logLoss")),zn(a.shape,o.shape,"Error in logLoss: ");let l=Ee(1),c=Ee(s),u=_t(L(a,As(ue(o,c)))),d=L(xe(l,a),As(ue(xe(l,o),c))),p=xe(u,d);return ta(p,i,r)}var eF=U({logLoss_:QP});function tF(e,t,n,s=Un.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","meanSquaredError"),a=_(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=_(n,"weights","meanSquaredError")),zn(r.shape,a.shape,"Error in meanSquaredError: ");let i=kf(r,a);return ta(i,o,s)}var nF=U({meanSquaredError_:tF});function sF(e,t){let n=_(e,"labels","sigmoidCrossEntropyWithLogits"),s=_(t,"logits","sigmoidCrossEntropyWithLogits");zn(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=cr(s),a=L(s,n),o=wd(ys(_t(Zt(s))));return ue(xe(r,a),o)}function rF(e,t,n,s=0,r=Un.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"multiClassLabels","sigmoidCrossEntropy"),o=_(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=_(n,"weights","sigmoidCrossEntropy")),zn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let c=Ee(s),u=Ee(1),d=Ee(.5);a=ue(L(a,xe(u,c)),L(d,c))}let l=sF(a,o);return ta(l,i,r)}var aF=U({sigmoidCrossEntropy_:rF});function oF(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Er((r,a,o)=>{let l=m1(a,[n],!0),c=xe(pe(a,"float32"),l);o([r,c]);let u=_t(L(c,r));return{value:ke(u,[n]),gradFunc:(h,f)=>{let[m,g]=f,y=el(h.shape,[n]);return[L(G(h,y),xe(pe(m,"float32"),ys(g))),L(G(h,y),xe(ys(g),pe(m,"float32")))]}}})(e,t)}function iF(e,t,n,s=0,r=Un.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"onehotLabels","softmaxCrossEntropy"),o=_(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=_(n,"weights","softmaxCrossEntropy")),zn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let c=Ee(s),u=Ee(1),d=Ee(a.shape[1]);a=ue(L(a,xe(u,c)),fe(c,d))}let l=oF(a,o);return ta(l,i,r)}var lF=U({softmaxCrossEntropy_:iF});function uF(e,t,n,s){let r=_(e,"indices","sparseFillEmptyRows"),a=_(t,"values","sparseFillEmptyRows"),o=_(n,"denseShape","sparseFillEmptyRows"),i=_(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},c=B.runKernel(Fh,l);return{outputIndices:c[0],outputValues:c[1],emptyRowIndicator:c[2],reverseIndexMap:c[3]}}var cF=U({sparseFillEmptyRows_:uF});function dF(e,t,n){let s=_(e,"inputIndices","sparseReshape"),r=_(t,"inputShape","sparseReshape"),a=_(n,"newShape","sparseReshape");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=B.runKernel(Oh,o);return{outputIndices:i[0],outputShape:i[1]}}var pF=U({sparseReshape_:dF});function hF(e,t,n){let s=_(e,"data","sparseSegmentMean"),r=_(t,"indices","sparseSegmentMean"),a=_(n,"segmentIds","sparseSegmentMean");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return B.runKernel(Mh,o)}var fF=U({sparseSegmentMean_:hF});function mF(e,t,n){let s=_(e,"data","sparseSegmentSum"),r=_(t,"indices","sparseSegmentSum"),a=_(n,"segmentIds","sparseSegmentSum");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return B.runKernel(zh,o)}var gF=U({sparseSegmentSum_:mF});function yF(e,t,n,s,r,a,o,i){let l=_(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let c=_(t,"dataSplits","stringNGrams");if(c.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let u={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:c},p=B.runKernel(td,d,u);return{nGrams:p[0],nGramsSplits:p[1]}}var AF=U({stringNGrams_:yF});function xF(e,t,n=!0){let s=_(e,"input","stringSplit","string"),r=_(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=B.runKernel(Lh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var bF=U({stringSplit_:xF});function vF(e,t){let n=_(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return B.runKernel(Bh,r,s)}var wF=U({stringToHashBucketFast_:vF}),kF={fft:Rd,ifft:zu,rfft:$d,irfft:wf},IF={hammingWindow:eP,hannWindow:kv,frame:Iv,stft:rP},$e={flipLeftRight:lP,grayscaleToRGB:cP,resizeNearestNeighbor:Rv,resizeBilinear:Ev,rotateWithOffset:pP,cropAndResize:oP,nonMaxSuppression:fP,nonMaxSuppressionAsync:wP,nonMaxSuppressionWithScore:IP,nonMaxSuppressionWithScoreAsync:CP,nonMaxSuppressionPadded:NP,nonMaxSuppressionPaddedAsync:RP,threshold:FP,transform:MP},Dv={bandPart:LP,gramSchmidt:WP,qr:UP},SF={absoluteDifference:jP,computeWeightedLoss:ta,cosineDistance:XP,hingeLoss:ZP,huberLoss:JP,logLoss:eF,meanSquaredError:nF,sigmoidCrossEntropy:aF,softmaxCrossEntropy:lF},Dd={sparseFillEmptyRows:cF,sparseReshape:pF,sparseSegmentMean:fF,sparseSegmentSum:gF},$f={stringNGrams:AF,stringSplit:bF,stringToHashBucketFast:wF},na=class extends _3{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return ee(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return sv(e,t)}dispose(){this.iterations_!=null&&ee(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ee(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(na,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Df=class extends na{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:j(()=>nt(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:j(()=>nt(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;j(()=>{let c=ue(L(i,this.rho),L(vt(o),1-this.rho)),u=L(fe(Cn(ue(l,this.epsilon)),Cn(ue(i,this.epsilon))),o),d=ue(L(l,this.rho),L(vt(u),1-this.rho));i.assign(c),l.assign(d);let p=ue(L(u,-this.learningRate),r);r.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(ee(this.accumulatedGrads.map(e=>e.variable)),ee(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Df.className="Adadelta";vo(Df);var _f=class extends na{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n];if(this.accumulatedGrads[s]==null){let i=!1;this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:j(()=>Du(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;j(()=>{let i=ue(o,vt(a));o.assign(i);let l=ue(L(fe(a,Cn(ue(i,B.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&ee(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};_f.className="Adagrad";vo(_f);var Pf=class extends na{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],j(()=>{this.accBeta1=Ee(t).variable(),this.accBeta2=Ee(n).variable()}),s==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);j(()=>{let n=xe(1,this.accBeta1),s=xe(1,this.accBeta2);t.forEach((r,a)=>{let o=B.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:j(()=>nt(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:j(()=>nt(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedSecondMoment[a].variable,d=ue(L(c,this.beta1),L(l,1-this.beta1)),p=ue(L(u,this.beta2),L(vt(l),1-this.beta2)),h=fe(d,n),f=fe(p,s);c.assign(d),u.assign(p);let m=ue(L(fe(h,ue(Cn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&ee(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),j(()=>{this.accBeta1.assign(ea(this.beta1,this.iterations_+1)),this.accBeta2.assign(ea(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Pf.className="Adam";vo(Pf);var Ff=class extends na{constructor(e,t,n,s=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],j(()=>{this.iteration=Ee(0).variable(),this.accBeta1=Ee(t).variable()}),s==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);j(()=>{let n=xe(1,this.accBeta1),s=fe(-this.learningRate,ue(L(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=B.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:nt(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:nt(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedWeightedInfNorm[a].variable,d=ue(L(c,this.beta1),L(l,1-this.beta1)),p=L(u,this.beta2),h=Zt(l),f=Rr(p,h);c.assign(d),u.assign(f);let m=ue(L(fe(s,n),fe(d,ue(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(ue(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&ee(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Ff.className="Adamax";vo(Ff);var _d=class extends na{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=B.registeredVariables[n];j(()=>{let o=ue(L(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=An(Ee(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};_d.className="SGD";vo(_d);var Of=class extends _d{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ee(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n];if(this.accumulations[s]==null){let i=!1;this.accumulations[s]={originalName:`${n}/momentum`,variable:j(()=>nt(r).variable(i))}}let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&j(()=>{let i,l=ue(L(this.m,a),o);this.useNesterov?i=ue(L(this.c,ue(o,L(l,this.m))),r):i=ue(L(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&ee(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Of.className="Momentum";vo(Of);var Mf=class extends na{constructor(e,t=.9,n=0,s=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=B.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:j(()=>nt(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:j(()=>nt(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:j(()=>nt(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;j(()=>{let c=ue(L(i,this.decay),L(vt(o),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[s].variable,d=ue(L(u,this.decay),L(o,1-this.decay)),p=fe(L(o,this.learningRate),Cn(xe(c,ue(vt(d),this.epsilon)))),h=ue(L(l,this.momentum),p);i.assign(c),u.assign(d),l.assign(h);let f=xe(r,h);r.assign(f)}else{let u=ue(L(i,this.decay),L(vt(o),1-this.decay)),d=ue(L(l,this.momentum),fe(L(o,this.learningRate),Cn(ue(u,this.epsilon))));i.assign(u),l.assign(d);let p=xe(r,d);r.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&ee(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&ee(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&ee(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Mf.className="RMSProp";vo(Mf);var sl=class{static sgd(e){return new _d(e)}static momentum(e,t,n=!1){return new Of(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new Mf(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new Pf(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new Df(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new Ff(e,t,n,s,r)}static adagrad(e,t=.1){return new _f(e,t)}},rl={sgd:sl.sgd,momentum:sl.momentum,adadelta:sl.adadelta,adagrad:sl.adagrad,rmsprop:sl.rmsprop,adamax:sl.adamax,adam:sl.adam},CF=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function zf(){return new Promise(e=>CF(()=>e()))}var E={};Le(E,{ERF_A1:()=>MF,ERF_A2:()=>zF,ERF_A3:()=>LF,ERF_A4:()=>BF,ERF_A5:()=>WF,ERF_P:()=>OF,PARALLELIZE_THRESHOLD:()=>P1,SELU_SCALE:()=>Pv,SELU_SCALEALPHA:()=>_v,applyActivation:()=>Ef,assertAndGetBroadcastShape:()=>Tt,assertAxesAreInnerMostDims:()=>V$,assertParamsConsistent:()=>TF,assignToTypedArray:()=>qF,axesAreInnerMostDims:()=>h1,calculateShapes:()=>v3,checkEinsumDimSizes:()=>QF,combineLocations:()=>av,complexWithEvenIndex:()=>GF,complexWithOddIndex:()=>HF,computeConv2DInfo:()=>yd,computeConv3DInfo:()=>B3,computeDefaultPad:()=>J2,computeDilation2DInfo:()=>dR,computeOptimalWindowSize:()=>EF,computeOutAndReduceShapes:()=>ov,computeOutShape:()=>NF,computePool2DInfo:()=>L3,computePool3DInfo:()=>pR,convertConv2DDataFormat:()=>W3,decodeEinsumEquation:()=>YF,eitherStridesOrDilationsAreOne:()=>Nr,expandShapeToKeepDim:()=>el,exponent:()=>KF,exponents:()=>XF,fromStringArrayToUint8:()=>lO,fromUint8ToStringArray:()=>iO,getAxesPermutation:()=>iv,getBroadcastDims:()=>s$,getComplexWithIndex:()=>jF,getEinsumComputePath:()=>eO,getEinsumPermutation:()=>JF,getFusedBiasGradient:()=>Nf,getFusedDyActivation:()=>Tf,getImageCenter:()=>RF,getInnerMostAxes:()=>U$,getPermuted:()=>DF,getReductionAxes:()=>sn,getReshaped:()=>$F,getReshapedPermuted:()=>_F,getSliceBeginCoords:()=>PF,getSliceSize:()=>FF,getUndoAxesPermutation:()=>f1,isIdentityPermutation:()=>tO,log:()=>BN,mergeRealAndImagArrays:()=>VF,prepareAndValidate:()=>b3,prepareSplitSize:()=>sO,segment_util:()=>Mv,shouldFuse:()=>Rf,slice_util:()=>yn,splitRealAndImagArrays:()=>UF,tupleValuesAreOne:()=>wo,upcastType:()=>Bn,validateInput:()=>z2,validateUpdateShape:()=>M2,warn:()=>Ir});function TF(e,t){let n=e[0].length;e.forEach((r,a)=>{M(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)M(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function NF(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var P1=30;function EF(e){return e<=P1?e:ch(e,Math.floor(Math.sqrt(e)))}function RF(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function $F(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function DF(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2==1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function _F(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function PF(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function FF(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var _v=1.7580993408473768,Pv=1.0507009873554805,OF=.3275911,MF=.254829592,zF=-.284496736,LF=1.421413741,BF=-1.453152027,WF=1.061405429;function VF(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function UF(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function GF(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function HF(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function jF(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function qF(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function XF(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function KF(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var F1="->",ZF=/->/g,Fv=",",Ov="...";function YF(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(ZF,"").length)/F1.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${F1}").`);let[s,r]=e.split(F1);M(s.indexOf(Ov)===-1,()=>`The ellipsis notation ("${Ov}") is not supported yet.`);let a=s.split(Fv),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let p=0;p<r.length;++p){let h=r[p];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let p=0;p<s.length;++p){let h=s[p];i.indexOf(h)===-1&&h!==Fv&&i.push(h)}let l=new Array(a.length);for(let p=0;p<o;++p){if(new Set(a[p].split("")).size!==a[p].length)throw new Error(`Found duplicate axes in input component ${a[p]}. Support for duplicate axes in input is not implemented yet.`);l[p]=[];for(let h=0;h<a[p].length;++h)l[p].push(i.indexOf(a[p][h]))}let c=i.length,u=r.length,d=[];for(let p=u;p<c;++p)d.push(p);return{allDims:i,summedDims:d,idDims:l}}function JF(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function QF(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:M(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function eO(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=nO(t,i);for(let c of l)a.indexOf(c)===-1&&(s[o].push(c),a.push(c))}return{path:n,steps:s}}function tO(e){return e.every((t,n)=>t===n)}function nO(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function sO(e,t,n=0){let s=[];if(typeof t=="number")M(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);M(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}M(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}var Mv={};Le(Mv,{collectGatherOpShapeInfo:()=>oO,computeOutShape:()=>aO,segOpComputeOptimalWindowSize:()=>rO});function rO(e,t){let n=!1,s;for(e<=P1?(s=e,n=!0):s=ch(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=ch(e,s+1);return s}function aO(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function oO(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
|
|
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let d=0;d<s;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let o=e.shape[n],i=[],l=1,c=1,u=1;for(let d=0;d<s;++d)i.push(e.shape[d]),l*=e.shape[d];for(let d=s;d<n;d++)i.push(e.shape[d]),c*=e.shape[d];for(let d=s;d<r;d++)i.push(t.shape[d]);for(let d=n+1;d<a;d++)i.push(e.shape[d]),u*=e.shape[d];return{batchSize:l,sliceSize:u,outerSize:c,dimSize:o,outputShape:i}}function iO(e){try{return e.map(t=>Hh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function lO(e){return e.map(t=>id(t))}var Ys={};Le(Ys,{nonMaxSuppressionV3Impl:()=>Sv,nonMaxSuppressionV4Impl:()=>Cv,nonMaxSuppressionV5Impl:()=>Tv,whereImpl:()=>mv});var zv={kernelName:ni,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Lu(pe(n,"float32"),-1))}}},uO={kernelName:jl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=vt(pe(n,"float32")),r=Cn(xe(Ee(1),s));return _t(fe(e,r))}}}},cO={kernelName:ql,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Cn(xe(vt(pe(n,"float32")),1));return fe(e,s)}}}},dO={kernelName:qr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Tt(n.shape,s.shape);return{a:()=>{let i=e,l=sn(n.shape,r);return l.length>0&&(i=ke(i,l)),G(i,n.shape)},b:()=>{let i=e,l=sn(s.shape,r);return l.length>0&&(i=ke(i,l)),G(i,s.shape)}}}},pO={kernelName:wa,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},hO={kernelName:ka,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>nt(n)}}},fO={kernelName:Zl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>nt(n)}}},mO={kernelName:Yl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,Cn(xe(Ee(1),vt(pe(n,"float32")))))}}},gO={kernelName:Jl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Cn(ue(Ee(1),vt(pe(n,"float32"))));return fe(e,s)}}}},yO={kernelName:tu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Tt(n.shape,s.shape);return{a:()=>{let i=ue(vt(n),vt(s)),l=L(e,fe(s,i)),c=sn(n.shape,r);return c.length>0&&(l=ke(l,c)),G(l,n.shape)},b:()=>{let i=ue(vt(n),vt(s)),l=_t(L(e,fe(n,i))),c=sn(s.shape,r);return c.length>0&&(l=ke(l,c)),G(l,s.shape)}}}},AO={kernelName:Ql,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ue(vt(pe(n,"float32")),1))}}},xO={kernelName:eu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,xe(Ee(1),vt(pe(n,"float32"))))}}};function bO(e,t,n,s,r,a){let o=_(e,"dy","avgPool3dGrad"),i=_(t,"input","avgPool3dGrad"),l=o,c=i,u=!1;i.rank===4&&(u=!0,l=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),c=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),a!=null&&M(mn(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let d={dy:l,input:c},p={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=B.runKernel(hh,d,p);return u?G(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var vO=U({avgPool3dGrad_:bO}),wO={kernelName:Uc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>vO(e,s,r,a,o,i)}}};function kO(e,t,n,s,r){let a=_(e,"dy","avgPoolGrad"),o=_(t,"input","avgPoolGrad");M(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,c=!1;o.rank===3&&(c=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=G(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let u={dy:l,input:i},d={filterSize:n,strides:s,pad:r},p=B.runKernel(ph,u,d);return c?G(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var IO=U({avgPoolGrad_:kO}),SO={kernelName:Ia,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>IO(e,s,r,a,o)}}},CO={kernelName:Sa,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>Xe(e,r,!1,!0),b:()=>Xe(s,e,!0,!1)}:!a&&o?{a:()=>Xe(e,r,!1,!1),b:()=>Xe(e,s,!0,!1)}:a&&!o?{a:()=>Xe(r,e,!1,!0),b:()=>Xe(s,e,!1,!1)}:{a:()=>Xe(r,e,!0,!0),b:()=>Xe(e,s,!0,!0)}}},TO={kernelName:si,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>Cd(e,s,r)}}},NO={kernelName:M5,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>ke(e,i,!0)}}},EO={kernelName:Ca,gradFunc:e=>({x:()=>e.clone()})},RO={kernelName:Ta,gradFunc:e=>({x:()=>nt(e)})},$O={kernelName:Xr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>Pn(Zs(ko(s,r),Io(s,a)),e,nt(e))}}},DO={kernelName:Hc,inputsToSave:["x"],gradFunc:zv.gradFunc},_O={kernelName:ri,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=Xs(r,t[0].shape)[0],o=s.map(l=>l[a]);return xn(e,o,a).map(l=>()=>l)}},PO={kernelName:Na,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return M(wo(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>s1(s.shape,e,r,o,i,l),filter:()=>D1(s,e,r.shape,o,i,l)}}},FO={kernelName:Ea,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>Qr(e,r,a,o,i,1,l),filter:()=>D1(e,s,r.shape,a,o,i,l)}}};function OO(e,t,n,s,r){let a=e;e.rank===4&&(a=G(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=G(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),M(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),M(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return B.runKernel(gh,i,l)}var MO=U({conv3DBackpropFilter_:OO}),zO={kernelName:jc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;M(wo(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>K3(o.shape,e,i,r,a),filter:()=>MO(o,e,i.shape,r,a)}}},LO={kernelName:Ra,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(_t(xf(pe(n,"float32"))),e)}}},BO={kernelName:$a,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(bf(pe(n,"float32")),e)}}},WO={kernelName:ai,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=iv([r],s.rank),l=of(e,r,a,!o);return i!=null&&(l=tt(l,i)),l}}}},VO={kernelName:Da,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;M(wo(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,c]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),M(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),M(Nr(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),o!=null&&M(mn(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>wv(l.shape,e,c,r,a,i,o),filter:()=>vv(l,e,c.shape,r,a,i,o)}}},UO={kernelName:qc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>B.runKernel(wh,a,n),filter:()=>B.runKernel(kh,o,n)}}},GO={kernelName:Pa,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>B.runKernel(Ih,s)}}},HO={kernelName:nu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(ys(_t(vt(n))),2/Math.sqrt(Math.PI));return{x:()=>L(e,s)}}},jO={kernelName:Fa,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,n)}}},qO={kernelName:ui,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>G(e,n.shape)}}},XO={kernelName:ci,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,ys(n))}}},KO={kernelName:Oa,gradFunc:e=>({x:()=>nt(e)})},ZO={kernelName:Ma,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Tt(n.shape,s.shape);return{a:()=>{let i=fe(e,pe(s,"float32")),l=sn(n.shape,r);return l.length>0?G(ke(i,l),n.shape):i},b:()=>{let i=L(e,pe(n,"float32")),l=sn(s.shape,r);l.length>0&&(i=G(ke(i,l),s.shape));let c=vt(s);return _t(fe(i,pe(c,"float32")))}}}},YO={kernelName:za,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Ee(1):i,c=sn(a.shape,r.shape),u=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)u.push(r.shape[b]);u.push(1)}let d=xe(r,a),p=L(e,l),h=yf(ue(o,Ee(s))),f=L(L(L(h,h),h),Ee(-.5));return{x:()=>a.rank===1?G(L(L(e,Os(G(h,[1,1,1,a.shape[0]]),u)),l),r.shape):G(L(L(e,h),l),r.shape),mean:()=>{let b=L(L(h,Ee(-1)),p);return a.rank===1&&(b=ke(b,c)),G(b,a.shape)},variance:()=>{let b=L(L(f,d),p);return a.rank===1&&(b=ke(b,c)),G(b,a.shape)},scale:()=>{let b=L(d,h),w=L(e,b);return a.rank===1&&(w=ke(w,c)),G(w,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=ke(b,c)),G(b,a.shape)}}}},JO={kernelName:pi,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=Xs(a,s.shape)[0];return{x:()=>{let l=s.shape,c=r.size,u=l.slice(0,o),d=u.length,p=l.slice(a,l.length).slice(1),h=p.length,f=Lv(0,d),m=Lv(d+1,d+1+h),g=Bv([u,[c],p]),y=G(e,g),A=G(r,[c]),x=Bv([[d],f,m]),b=tt(y,x),w=N1(b,A,s.shape[o]),k=f1(x);return w=tt(w,k),w},indices:()=>r}}};function Lv(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function Bv(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var QO={kernelName:La,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>nt(n),b:()=>nt(s)}}},eM={kernelName:Ba,gradFunc:e=>({x:()=>pe(e,"float32")})},tM={kernelName:ru,gradFunc:e=>({x:()=>nt(e)})},nM={kernelName:au,gradFunc:e=>({x:()=>nt(e)})},sM={kernelName:ou,gradFunc:e=>({x:()=>nt(e)})},rM={kernelName:mi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=as(s,0);return{x:()=>Pn(a,e,L(e,r))}}},aM={kernelName:iu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ue(n,1))}}},oM={kernelName:Wa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,pe(n,"float32"))}}},iM={kernelName:z5,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let a=!0,o=ys(s);return xe(e,L(ke(e,r,a),o))}}}};function lM(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return B.runKernel(Nh,i,l)}var uM=U({localResponseNormalizationBackprop_:lM}),cM={kernelName:Yc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>uM(s,r,e,a,o,i,l)}}};function Wv(e,t,n,s){return t.rank<n.rank&&(t=G(t,el(t.shape,s))),e.rank<n.rank&&(e=G(e,el(e.shape,s))),{x:()=>L(e,pe(gs(n,t),e.dtype))}}var Vv={kernelName:Va,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=Xs(r,a.shape),l=Wv(e,o,a,i);return{x:()=>l.x()}}},dM={kernelName:Ua,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,pe(ko(n,s),"float32")),b:()=>L(e,pe(uf(n,s),"float32"))}}};function pM(e,t,n,s,r,a,o){let i=_(e,"dy","maxPool3dGrad"),l=_(t,"input","maxPool3dGrad"),c=_(n,"output","maxPool3dGrad"),u=i,d=l,p=c,h=!1;l.rank===4&&(h=!0,u=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=G(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),p=G(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),M(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),M(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),o!=null&&M(mn(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let f={dy:u,input:d,output:p},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=B.runKernel(Rh,f,m);return h?G(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var hM=U({maxPool3dGrad_:pM}),fM={kernelName:Jc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>hM(e,s,r,a,o,i,l)}}};function mM(e,t,n,s,r,a,o){let i=_(e,"dy","maxPoolGrad"),l=_(t,"input","maxPoolGrad"),c=_(n,"output","maxPoolGrad");M(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),M(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),o!=null&&M(mn(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let u={dy:i,input:l,output:c},d={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return B.runKernel(Eh,u,d)}var gM=U({maxPoolGrad_:mM}),yM={kernelName:Ga,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>gM(e,s,r,a,o,i)}}},AM={kernelName:Ha,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=Xs(r,s.shape),i=ov(s.shape,a)[1],l=Ht(i);return{x:()=>{let u=s.shape.slice();a.forEach(h=>{u[h]=1});let d=G(e,u);return fe(L(d,xs(s.shape,"float32")),l)}}}},xM={kernelName:ja,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=Xs(r,a.shape),l=Wv(e,o,a,i);return{x:()=>l.x()}}},bM={kernelName:qa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,pe(Io(n,s),"float32")),b:()=>L(e,pe(as(n,s),"float32"))}}},vM={kernelName:Xa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>_e(e,a,s.shape)}}},wM={kernelName:uu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Tt(n.shape,s.shape);return{a:()=>{let i=sn(n.shape,r);return i.length>0?G(ke(e,i),n.shape):e},b:()=>{let i=L(e,_t(_u(fe(n,s)))),l=sn(s.shape,r);return l.length>0?G(ke(i,l),s.shape):i}}}},kM={kernelName:Ka,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Tt(n.shape,s.shape);return{a:()=>{let i=L(e,pe(s,"float32")),l=sn(n.shape,r);return l.length>0?G(ke(i,l),n.shape):i},b:()=>{let i=L(e,pe(n,"float32")),l=sn(s.shape,r);return l.length>0?G(ke(i,l),s.shape):i}}}},IM={kernelName:xi,gradFunc:e=>({x:()=>_t(e)})},SM={kernelName:Ii,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Xt(n.shape,"float32")}}},CM={kernelName:ki,gradFunc:e=>({x:()=>nt(e)})},TM={kernelName:Si,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return Vn(e,s).map(a=>()=>a)}},Uv={kernelName:Za,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>_e(e,a,s.shape)}}},NM={kernelName:Ya,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=Tt(a.shape,o.shape);return{a:()=>{let u=pe(o,"float32"),d=L(e,L(u,ea(a,xe(u,Ee(1))))),p=sn(a.shape,i);return p.length>0&&(d=ke(d,p)),G(d,a.shape)},b:()=>{let u=as(a,0),d=Pn(u,As(a),nt(a)),p=L(e,L(r,d)),h=sn(o.shape,i);return h.length>0&&(p=ke(p,h)),G(p,o.shape)}}}},EM={kernelName:Ja,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=as(n,0);return{x:()=>Pn(r,e,L(e,s)),alpha:()=>{let a=Pn(r,nt(e),L(e,n)),o=sn(s.shape,e.shape);return o.length>0&&(a=ke(a,o)),G(a,s.shape)}}}},RM={kernelName:_a,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Tt(n.shape,s.shape);return{a:()=>{let i=fe(e,pe(s,"float32")),l=sn(n.shape,r);return l.length>0?G(ke(i,l),n.shape):i},b:()=>{let i=L(e,pe(n,"float32")),l=sn(s.shape,r);l.length>0&&(i=G(ke(i,l),s.shape));let c=vt(s);return _t(fe(i,pe(c,"float32")))}}}},$M={kernelName:pu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,_t(vt(n)))}}},DM={kernelName:to,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(Io(n,6),Lu(n));return{x:()=>L(e,pe(s,"float32"))}}},_M={kernelName:Qa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,pe(Lu(n),"float32"))}}},PM={kernelName:Ti,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>G(e,n.shape)}}},FM={kernelName:eo,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>B.runKernel(Ph,r,n)}}},OM={kernelName:hu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>B.runKernel(_h,r,n)}}},MM={kernelName:Ni,gradFunc:(e,t,n)=>{let{dims:s}=n,r=Xs(s,e.shape);return{x:()=>vs(e,r)}}},zM={kernelName:Ei,gradFunc:e=>({x:()=>nt(e)})},LM={kernelName:no,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_t(fe(e,L(ea(n,1.5),2)))}}},BM={kernelName:$i,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>pe(nt(n),"float32"),t:()=>L(e,pe(n,e.dtype)),e:()=>L(e,pe(kd(n),e.dtype))}}},WM={kernelName:fu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=as(n,Ee(0)),r=Ee(_v),a=Ee(Pv),o=L(e,a),i=L(L(e,r),ys(pe(n,"float32")));return Pn(s,o,i)}}}},VM={kernelName:ro,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(n,xe(Ee(1),n)))}}},UM={kernelName:mu,gradFunc:e=>({x:()=>nt(e)})},GM={kernelName:so,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(bd(pe(n,"float32")),e)}}},HM={kernelName:_i,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(af(pe(n,"float32")),e)}}},jM={kernelName:Di,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=D3(s,r,a),c=[];for(let u=0;u<e.rank;u++)c.push([i[u],o[u]-i[u]-l[u]]);return{x:()=>Ms(e,c)}}},qM={kernelName:io,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=L(e,s);return{logits:()=>xe(o,L(ke(o,[r],a),s))}}},XM={kernelName:gu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,ss(n))}}},Gv={kernelName:Pi,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>xd(e,s,r)}}},Hv={kernelName:Fi,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>kt(e,s)}}},KM={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,L(Cn(pe(n,"float32")),2))}}},ZM={kernelName:yu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(pe(n,"float32"),2))}}},YM={kernelName:lo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Ee(2);return{a:()=>L(e,L(r,xe(n,s))),b:()=>L(e,L(r,xe(s,n)))}}},JM={kernelName:ho,gradFunc:e=>({x:()=>nt(e)})},QM={kernelName:uo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Tt(n.shape,s.shape);return{a:()=>{let i=e,l=sn(n.shape,r);return l.length>0&&(i=ke(i,l)),G(i,n.shape)},b:()=>{let i=e,l=sn(s.shape,r);return l.length>0&&(i=ke(i,l)),G(_t(i),s.shape)}}}},ez={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;Xs(a,s.shape).forEach(c=>{r[c]=1});let i=G(e,r),l=L(i,xs(s.shape,"float32"));return{x:()=>l}}},tz={kernelName:Mi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,vt(bd(n)))}}},nz={kernelName:co,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(xe(Ee(1),vt(n)),e)}}},sz={kernelName:Kr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=nt(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=ue(o,_e(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=ue(o,_e(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let c=0;c<r[2];++c)o=ue(o,_e(e,[i*s.shape[0],l*s.shape[1],c*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let c=0;c<r[2];++c)for(let u=0;u<r[3];++u)o=ue(o,_e(e,[i*s.shape[0],l*s.shape[1],c*s.shape[2],u*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},rz={kernelName:po,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=f1(r);return{x:()=>tt(e,a)}}},az={kernelName:Li,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>Tn(e,r)}}},oz={kernelName:nd,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>iz(e,n)}}};function iz(e,t){let n=Rr(t,nt(t)),s=Ji(e,n),r=ko(t,Ee(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=qt(r,i+1);r=Zs(r,xs(s.shape,"bool"));let o=nt(s);return Pn(r,s,o)}var lz={kernelName:Bi,gradFunc:e=>({x:()=>nt(e)})},uz=[zv,uO,cO,dO,pO,hO,fO,mO,gO,yO,AO,xO,wO,SO,CO,TO,NO,EO,RO,$O,DO,_O,FO,PO,zO,LO,BO,WO,VO,UO,RM,GO,HO,jO,qO,XO,ZO,KO,YO,JO,QO,eM,tM,nM,sM,rM,aM,oM,iM,cM,Vv,Vv,dM,fM,yM,AM,xM,bM,vM,wM,kM,IM,SM,CM,TM,Uv,Uv,NM,EM,$M,DM,_M,PM,FM,OM,MM,zM,LM,BM,WM,VM,UM,GM,HM,jM,qM,XM,Gv,Gv,Hv,Hv,KM,YM,ZM,JM,QM,ez,tz,nz,sz,rz,az,oz,lz];for(let e of uz)L5(e);re().prototype.abs=function(){return this.throwIfDisposed(),Zt(this)};re().prototype.acos=function(){return this.throwIfDisposed(),G2(this)};re().prototype.acosh=function(){return this.throwIfDisposed(),H2(this)};re().prototype.add=function(e){return this.throwIfDisposed(),ue(this,e)};re().prototype.all=function(e,t){return this.throwIfDisposed(),tf(this,e,t)};re().prototype.any=function(e,t){return this.throwIfDisposed(),gd(this,e,t)};re().prototype.argMax=function(e){return this.throwIfDisposed(),Fs(this,e)};re().prototype.argMin=function(e){return this.throwIfDisposed(),j2(this,e)};re().prototype.asScalar=function(){return this.throwIfDisposed(),M(this.size===1,()=>"The array must have only 1 element."),G(this,[])};re().prototype.asType=function(e){return this.throwIfDisposed(),pe(this,e)};re().prototype.as1D=function(){return this.throwIfDisposed(),G(this,[this.size])};re().prototype.as2D=function(e,t){return this.throwIfDisposed(),G(this,[e,t])};re().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),G(this,[e,t,n])};re().prototype.as4D=function(e,t,n,s){return this.throwIfDisposed(),G(this,[e,t,n,s])};re().prototype.as5D=function(e,t,n,s,r){return this.throwIfDisposed(),G(this,[e,t,n,s,r])};re().prototype.asin=function(){return this.throwIfDisposed(),q2(this)};re().prototype.asinh=function(){return this.throwIfDisposed(),X2(this)};re().prototype.atan=function(){return this.throwIfDisposed(),K2(this)};re().prototype.atan2=function(e){return this.throwIfDisposed(),Z2(this,e)};re().prototype.atanh=function(){return this.throwIfDisposed(),Y2(this)};re().prototype.avgPool=function(e,t,n,s){return this.throwIfDisposed(),Ad(this,e,t,n,s)};re().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),xd(this,e,t)};re().prototype.batchNorm=function(e,t,n,s,r){return this.throwIfDisposed(),Yi(this,e,t,n,s,r)};re().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Nu(this,e)};re().prototype.cast=function(e){return this.throwIfDisposed(),pe(this,e)};re().prototype.ceil=function(){return this.throwIfDisposed(),n1(this)};re().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),rs(this,e,t)};re().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ke&&(e=[e]),kt([this,...e],t)};re().prototype.conv1d=function(e,t,n,s,r,a){return this.throwIfDisposed(),sf(this,e,t,n,s,r,a)};re().prototype.conv2dTranspose=function(e,t,n,s,r){return this.throwIfDisposed(),rf(this,e,t,n,s,r)};re().prototype.conv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Qr(this,e,t,n,s,r,a)};re().prototype.cos=function(){return this.throwIfDisposed(),bd(this)};re().prototype.cosh=function(){return this.throwIfDisposed(),af(this)};re().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),of(this,e,t,n)};re().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),a1(this,e,t)};re().prototype.depthwiseConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Ru(this,e,t,n,s,r,a)};re().prototype.dilation2d=function(e,t,n,s,r){return this.throwIfDisposed(),o1(this,e,t,n,s,r)};re().prototype.divNoNan=function(e){return this.throwIfDisposed(),i1(this,e)};re().prototype.div=function(e){return this.throwIfDisposed(),fe(this,e)};re().prototype.dot=function(e){return this.throwIfDisposed(),J3(this,e)};re().prototype.elu=function(){return this.throwIfDisposed(),$u(this)};re().prototype.equal=function(e){return this.throwIfDisposed(),gs(this,e)};re().prototype.erf=function(){return this.throwIfDisposed(),l1(this)};re().prototype.exp=function(){return this.throwIfDisposed(),ys(this)};re().prototype.expandDims=function(e){return this.throwIfDisposed(),qt(this,e)};re().prototype.expm1=function(){return this.throwIfDisposed(),u1(this)};re().prototype.fft=function(){return this.throwIfDisposed(),Rd(this)};re().prototype.flatten=function(){return this.throwIfDisposed(),G(this,[this.size])};re().prototype.floor=function(){return this.throwIfDisposed(),_u(this)};re().prototype.floorDiv=function(e){return this.throwIfDisposed(),Qh(this,e)};re().prototype.gather=function(e,t){return this.throwIfDisposed(),Ji(this,e,t)};re().prototype.greaterEqual=function(e){return this.throwIfDisposed(),ko(this,e)};re().prototype.greater=function(e){return this.throwIfDisposed(),as(this,e)};re().prototype.ifft=function(){return this.throwIfDisposed(),zu(this)};re().prototype.irfft=function(){return this.throwIfDisposed(),wf(this)};re().prototype.isFinite=function(){return this.throwIfDisposed(),ev(this)};re().prototype.isInf=function(){return this.throwIfDisposed(),tv(this)};re().prototype.isNaN=function(){return this.throwIfDisposed(),d1(this)};re().prototype.leakyRelu=function(e){return this.throwIfDisposed(),vd(this,e)};re().prototype.lessEqual=function(e){return this.throwIfDisposed(),Io(this,e)};re().prototype.less=function(e){return this.throwIfDisposed(),uf(this,e)};re().prototype.localResponseNormalization=function(e,t,n,s){return this.throwIfDisposed(),p1(this,e,t,n,s)};re().prototype.logSigmoid=function(){return this.throwIfDisposed(),rv(this)};re().prototype.logSoftmax=function(e){return this.throwIfDisposed(),df(this,e)};re().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),m1(this,e,t)};re().prototype.log=function(){return this.throwIfDisposed(),As(this)};re().prototype.log1p=function(){return this.throwIfDisposed(),wd(this)};re().prototype.logicalAnd=function(e){return this.throwIfDisposed(),Zs(this,e)};re().prototype.logicalNot=function(){return this.throwIfDisposed(),kd(this)};re().prototype.logicalOr=function(e){return this.throwIfDisposed(),pf(this,e)};re().prototype.logicalXor=function(e){return this.throwIfDisposed(),lv(this,e)};re().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Xe(this,e,t,n)};re().prototype.maxPool=function(e,t,n,s){return this.throwIfDisposed(),Id(this,e,t,n,s)};re().prototype.max=function(e,t){return this.throwIfDisposed(),Wn(this,e,t)};re().prototype.maximum=function(e){return this.throwIfDisposed(),Rr(this,e)};re().prototype.mean=function(e,t){return this.throwIfDisposed(),Lt(this,e,t)};re().prototype.min=function(e,t){return this.throwIfDisposed(),Sd(this,e,t)};re().prototype.minimum=function(e){return this.throwIfDisposed(),Pu(this,e)};re().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),y1(this,e,t)};re().prototype.mod=function(e){return this.throwIfDisposed(),A1(this,e)};re().prototype.mul=function(e){return this.throwIfDisposed(),L(this,e)};re().prototype.neg=function(){return this.throwIfDisposed(),_t(this)};re().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Cf(this,e,t,n)};re().prototype.notEqual=function(e){return this.throwIfDisposed(),tl(this,e)};re().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Su(this,e,t,n)};re().prototype.onesLike=function(){return this.throwIfDisposed(),bs(this)};re().prototype.pad=function(e,t){return this.throwIfDisposed(),Ms(this,e,t)};re().prototype.pool=function(e,t,n,s,r){return this.throwIfDisposed(),dv(this,e,t,n,s,r)};re().prototype.pow=function(e){return this.throwIfDisposed(),ea(this,e)};re().prototype.prelu=function(e){return this.throwIfDisposed(),Td(this,e)};re().prototype.prod=function(e,t){return this.throwIfDisposed(),ff(this,e,t)};re().prototype.reciprocal=function(){return this.throwIfDisposed(),v1(this)};re().prototype.relu=function(){return this.throwIfDisposed(),cr(this)};re().prototype.relu6=function(){return this.throwIfDisposed(),mf(this)};re().prototype.reshapeAs=function(e){return this.throwIfDisposed(),G(this,e.shape)};re().prototype.reshape=function(e){return this.throwIfDisposed(),G(this,e)};re().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),Ev(this,e,t,n)};re().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),Rv(this,e,t,n)};re().prototype.reverse=function(e){return this.throwIfDisposed(),vs(this,e)};re().prototype.rfft=function(){return this.throwIfDisposed(),$d(this)};re().prototype.round=function(){return this.throwIfDisposed(),gf(this)};re().prototype.rsqrt=function(){return this.throwIfDisposed(),yf(this)};re().prototype.selu=function(){return this.throwIfDisposed(),Af(this)};re().prototype.separableConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),w1(this,e,t,n,s,r,a)};re().prototype.sigmoid=function(){return this.throwIfDisposed(),ss(this)};re().prototype.sign=function(){return this.throwIfDisposed(),k1(this)};re().prototype.sin=function(){return this.throwIfDisposed(),xf(this)};re().prototype.sinh=function(){return this.throwIfDisposed(),bf(this)};re().prototype.slice=function(e,t){return this.throwIfDisposed(),_e(this,e,t)};re().prototype.softmax=function(e){return this.throwIfDisposed(),nl(this,e)};re().prototype.softplus=function(){return this.throwIfDisposed(),Qi(this)};re().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Cd(this,e,t)};re().prototype.split=function(e,t){return this.throwIfDisposed(),xn(this,e,t)};re().prototype.sqrt=function(){return this.throwIfDisposed(),Cn(this)};re().prototype.square=function(){return this.throwIfDisposed(),vt(this)};re().prototype.squaredDifference=function(e){return this.throwIfDisposed(),kf(this,e)};re().prototype.squeeze=function(e){return this.throwIfDisposed(),dt(this,e)};re().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ke?[this,e]:[this,...e];return Tn(n,t)};re().prototype.step=function(e){return this.throwIfDisposed(),Lu(this,e)};re().prototype.stridedSlice=function(e,t,n,s,r,a,o,i){return this.throwIfDisposed(),S1(this,e,t,n,s,r,a,o,i)};re().prototype.sub=function(e){return this.throwIfDisposed(),xe(this,e)};re().prototype.sum=function(e,t){return this.throwIfDisposed(),ke(this,e,t)};re().prototype.tan=function(){return this.throwIfDisposed(),C1(this)};re().prototype.tanh=function(){return this.throwIfDisposed(),Zi(this)};re().prototype.tile=function(e){return this.throwIfDisposed(),Os(this,e)};re().prototype.toBool=function(){return this.throwIfDisposed(),pe(this,"bool")};re().prototype.toFloat=function(){return this.throwIfDisposed(),pe(this,"float32")};re().prototype.toInt=function(){return this.throwIfDisposed(),pe(this,"int32")};re().prototype.topk=function(e,t){return this.throwIfDisposed(),T1(this,e,t)};re().prototype.transpose=function(e){return this.throwIfDisposed(),tt(this,e)};re().prototype.unique=function(e){return this.throwIfDisposed(),Sf(this,e)};re().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),N1(this,e,t)};re().prototype.unstack=function(e){return this.throwIfDisposed(),Vn(this,e)};re().prototype.where=function(e,t){return this.throwIfDisposed(),Pn(e,this,t)};re().prototype.zerosLike=function(){return this.throwIfDisposed(),nt(this)};var jv={};Le(jv,{maxNorm:()=>hz,minMaxNorm:()=>gz,nonNeg:()=>mz,unitNorm:()=>fz});var O1;function rn(){return O1==null&&(O1=Tr().epsilon()),O1}function pr(){return"channelsLast"}var sa=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,sa.prototype)}},hr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,hr.prototype)}},q=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,q.prototype)}},Ve=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ve.prototype)}},qv=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,qv.prototype)}};function al(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function $r(e,t){if(!e)throw new qv(t)}function Xv(e,t){let n=0;for(let s of e)s===t&&n++;return n}function os(e){return e.length===1?e[0]:e}function Nt(e){return Array.isArray(e)?e:[e]}function ra(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function ol(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Js={};function M1(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function z1(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>z1(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:z1(s))}}}function Pd(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in Js)o=Js[a];else if(o=t[a],o==null)throw new q(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new q(`${s}: Improper config format: ${JSON.stringify(a)}.
|
|
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in Js?[i,l]=Js.className:o in t&&([i,l]=t[o]),i==null)throw new q(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let h of Object.keys(Js))c[h]=Js[h];for(let h of Object.keys(n))c[h]=n[h];let u=a.config;u.customObjects=c;let d=Object.assign({},Js);for(let h of Object.keys(n))Js[h]=n[h];z1(a.config);let p=l(i,a.config,n,r);return Js=Object.assign({},d),p}else{let c=Object.assign({},Js);for(let d of Object.keys(n))Js[d]=n[d];let u=new i(a.config);return Js=Object.assign({},c),u}}}function cz(e,t){return e<t?-1:e>t?1:0}function Lf(e,t){return-1*cz(e,t)}function Co(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function dz(e){if(e==null)throw new q(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function il(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new q(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function L1(e,t,n=0,s=1/0){return $r(n>=0),$r(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function bn(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>bn(n,`element ${s+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Kv(e)}.`)}function Kv(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Kv(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function pz(e,t){let n=v.now(),s;return(...a)=>{let o=v.now();return o-n<t||(n=o,s=e(...a)),s}}function Zv(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function B1(e,t){return j(()=>Cn(ke(L(e,e),t,!0)))}var Fd=class extends de.Serializable{getConfig(){return{}}},W1=class extends Fd{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>{let t=B1(e,this.axis),n=rs(t,0,this.maxValue);return L(e,fe(n,ue(rn(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};W1.className="MaxNorm";de.registerClass(W1);var V1=class extends Fd{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>fe(e,ue(rn(),B1(e,this.axis))))}getConfig(){return{axis:this.axis}}};V1.className="UnitNorm";de.registerClass(V1);var U1=class extends Fd{apply(e){return cr(e)}};U1.className="NonNeg";de.registerClass(U1);var G1=class extends Fd{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>{let t=B1(e,this.axis),n=ue(L(this.rate,rs(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,fe(n,ue(rn(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};G1.className="MinMaxNorm";de.registerClass(G1);var Yv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function an(e){return M1(e)}function Jv(e,t={}){return Pd(e,de.SerializationMap.getMap().classNameMap,t,"constraint")}function on(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in Yv?Yv[e]:e,config:{}};return Jv(n)}else return e instanceof Fd?e:Jv(e)}function hz(e){return new W1(e)}function fz(e){return new V1(e)}function mz(){return new U1}function gz(e){return new G1(e)}var Qv={};Le(Qv,{constant:()=>Lz,glorotNormal:()=>jz,glorotUniform:()=>Hz,heNormal:()=>qz,heUniform:()=>Xz,identity:()=>Uz,leCunNormal:()=>Kz,leCunUniform:()=>Zz,ones:()=>zz,orthogonal:()=>Yz,randomNormal:()=>Wz,randomUniform:()=>Bz,truncatedNormal:()=>Vz,varianceScaling:()=>Gz,zeros:()=>Mz});var yz=["channelsFirst","channelsLast"],Az=["nearest","bilinear"],xz=["valid","same","causal"],bz=["max","avg"],vz=["sum","mul","concat","ave"],Wu=new Map;function Kt(e){il(yz,"DataFormat",e)}function wz(e){il(Az,"InterpolationFormat",e)}function zs(e){il(xz,"PaddingMode",e)}function ew(e){il(bz,"PoolMode",e)}var Od=[],tw="/";function ll(e,t){Od.push(e);try{let n=t();return Od.pop(),n}catch(n){throw Od.pop(),n}}function kz(){return Od.length===0?"":Od.join(tw)+tw}function nw(e){if(!rw(e))throw new Error("Not a valid tensor name: '"+e+"'");return kz()+e}function sw(e){if(!rw(e))throw new Error("Not a valid tensor name: '"+e+"'");Wu.has(e)||Wu.set(e,0);let t=Wu.get(e);if(Wu.set(e,Wu.get(e)+1),t>0){let n=`${e}_${t}`;return Wu.set(n,1),n}else return e}var Iz=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function rw(e){return!!e.match(Iz)}function Sz(e){return e===parseInt(e.toString(),10)}function To(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function Vu(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function No(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function fr(e,t){if(t<e)throw new q(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}function Bf(e,t){return pe(e,t)}function Md(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),G(e,n)}function Cz(e,t){return j(()=>{if(e.shape.length!==2)throw new q(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Md(e,1);return q1(n,[1,t,1])})}function Tz(e){let t=[To(e.shape)];return G(e,t)}function Nz(e){if(e.rank<=1)throw new q(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],To(e.shape,1)];return G(e,t)}function ul(e,t,n){return j(()=>{switch(e.rank){case 1:return vf(e,t,n);case 2:return I1(e,[t,0],[n,e.shape[1]]);case 3:return Mu(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Ed(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return _e(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return _e(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new q(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function H1(e,t,n){return j(()=>{switch(e.rank){case 1:return vf(e,t,n);case 2:return I1(e,[0,t],[e.shape[0],n]);case 3:return Mu(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Ed(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Wf(e,t,n,s){return j(()=>{switch(e.rank){case 1:return vf(e,t,n);case 2:switch(s){case 1:return ul(e,t,n);case 2:return H1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return ul(e,t,n);case 2:return Mu(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return H1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return ul(e,t,n);case 2:return Ed(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Ed(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return H1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function j1(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),kt(e,t)}function aw(e,t){switch(e.rank){case 1:return j3([e,t]);case 2:return Eu([e,t],0);case 3:return q3([e,t],0);case 4:return X3([e,t],0);default:throw new q(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function q1(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new q(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Os(e,t)}function Vf(e,t=0,n=1,s,r){return pv(e,t,n,s,r)}function Dr(e,t,n,s){if(e.rank<2||t.rank<2)throw new Ve(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Ve(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,a=!1;return So.matMul({a:e,b:t,transposeA:r,transposeB:a,bias:s?X1(e.rank,s,pr()):null,activation:n})}else{let r=e.shape.slice(),a=r.pop();e=G(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),c=[...o,i],u=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=G(tt(t,u),[l,-1]);let d=[...r,...c],p=!1,h=!1;return G(So.matMul({a:e,b:t,transposeA:p,transposeB:h,bias:s?X1(e.rank,s,pr()):null,activation:n}),d)}}function ow(e,t,n){return j(()=>(Array.isArray(t)?t=Yt(t,"int32"):t=pe(t,"int32"),Ji(e,t,n)))}function zd(e){return L(e,e)}function X1(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new q(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?G(t,[1,s[0],1,1,1]):G(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?G(t,[1,1,1,1,s[0]]):G(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?G(t,[1,s[0],1,1]):G(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?G(t,[1,1,1,s[0]]):G(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?G(t,[1,s[0],1]):G(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?G(t,[1,1,s[0]]):G(t,[1].concat(s))}else if(e<3)return t;throw new q(`Unsupported input rank by biasAdd: ${t.rank}`)}function mr(e,t,n){return j(()=>(n==null&&(n=pr()),Kt(n),ue(e,X1(e.rank,t,n))))}function Ez(e,t=1){if(t!==1)throw new Ve(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return $u(e)}function Rz(e){return j(()=>fe(e,ue(Zt(e),1)))}function iw(e,t,n,s){return j(()=>xv(e,t,n,s))}function $z(e){return j(()=>{let t=ue(.5,L(.2,e));return rs(t,0,1)})}function Ld(e,t,n=!1){return n?e():t()}var Dz=["fanIn","fanOut","fanAvg"],_z=["normal","uniform","truncatedNormal"];function Pz(e){il(Dz,"FanMode",e)}function Fz(e){il(_z,"Distribution",e)}var Qs=class extends de.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},K1=class extends Qs{apply(e,t){return Xt(e,t)}};K1.className="Zeros";de.registerClass(K1);var Uf=class extends Qs{apply(e,t){return xs(e,t)}};Uf.className="Ones";de.registerClass(Uf);var Z1=class extends Qs{constructor(e){super();if(typeof e!="object")throw new q(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new q(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return j(()=>L(Ee(this.value),xs(e,t)))}getConfig(){return{value:this.value}}};Z1.className="Constant";de.registerClass(Z1);var Y1=class extends Qs{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Fu(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Y1.className="RandomUniform";de.registerClass(Y1);var J1=class extends Qs{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ve(`randomNormal does not support dType ${t}.`);return Vf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};J1.className="RandomNormal";de.registerClass(J1);var Q1=class extends Qs{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ve(`truncatedNormal does not support dType ${t}.`);return If(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Q1.className="TruncatedNormal";de.registerClass(Q1);var ey=class extends Qs{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return j(()=>{if(e.length!==2||e[0]!==e[1])throw new q("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,c1(e[0]))})}getConfig(){return{gain:this.gain}}};ey.className="Identity";de.registerClass(ey);function Oz(e,t="channelsLast"){let n,s;if(Kt(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=To(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=To(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=To(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var is=class extends Qs{constructor(e){super();if(e.scale<0)throw new q(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,Pz(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,Fz(this.distribution),this.seed=e.seed}apply(e,t){let n=Oz(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ve(`${this.getClassName()} does not support dType ${t}.`);return If(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return Fu(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};is.className="VarianceScaling";de.registerClass(is);var Gf=class extends is{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return is.className}};Gf.className="GlorotUniform";de.registerClass(Gf);var Hf=class extends is{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return is.className}};Hf.className="GlorotNormal";de.registerClass(Hf);var jf=class extends is{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return is.className}};jf.className="HeNormal";de.registerClass(jf);var qf=class extends is{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return is.className}};qf.className="HeUniform";de.registerClass(qf);var Xf=class extends is{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return is.className}};Xf.className="LeCunNormal";de.registerClass(Xf);var Kf=class extends is{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return is.className}};Kf.className="LeCunNormal";de.registerClass(Kf);var ty=class extends Qs{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Ve("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return j(()=>{if(e.length<2)throw new Ve("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=Vf(n,0,1,"float32"),r=Dv.gramSchmidt(s);return e[0]>e[1]&&(r=tt(r)),L(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};ty.className="Orthogonal";de.registerClass(ty);var lw={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function uw(e,t={}){return Pd(e,de.SerializationMap.getMap().classNameMap,t,"initializer")}function Bt(e){return M1(e)}function Pt(e){if(typeof e=="string"){let t=e in lw?lw[e]:e;if(t==="GlorotNormal")return new Hf;if(t==="GlorotUniform")return new Gf;if(t==="HeNormal")return new jf;if(t==="HeUniform")return new qf;if(t==="LeCunNormal")return new Xf;if(t==="LeCunUniform")return new Kf;{let n={};return n.className=t,n.config={},uw(n)}}else return e instanceof Qs?e:uw(e)}function Mz(){return new K1}function zz(){return new Uf}function Lz(e){return new Z1(e)}function Bz(e){return new Y1(e)}function Wz(e){return new J1(e)}function Vz(e){return new Q1(e)}function Uz(e){return new ey(e)}function Gz(e){return new is(e)}function Hz(e){return new Gf(e)}function jz(e){return new Hf(e)}function qz(e){return new jf(e)}function Xz(e){return new qf(e)}function Kz(e){return new Xf(e)}function Zz(e){return new Kf(e)}function Yz(e){return new ty(e)}var cw={};Le(cw,{Layer:()=>at,RNN:()=>Fr,RNNCell:()=>Xd,activation:()=>_B,add:()=>VB,alphaDropout:()=>SW,average:()=>UB,averagePooling1d:()=>xA,averagePooling2d:()=>bA,averagePooling3d:()=>vA,avgPool1d:()=>JB,avgPool2d:()=>eW,avgPool3d:()=>nW,avgPooling1d:()=>QB,avgPooling2d:()=>tW,avgPooling3d:()=>sW,batchNormalization:()=>KB,bidirectional:()=>yW,concatenate:()=>GB,conv1d:()=>IB,conv2d:()=>SB,conv2dTranspose:()=>CB,conv3d:()=>TB,conv3dTranspose:()=>NB,convLstm2d:()=>hW,convLstm2dCell:()=>fW,cropping2D:()=>RB,dense:()=>PB,depthwiseConv2d:()=>DB,dot:()=>XB,dropout:()=>FB,elu:()=>AB,embedding:()=>WB,flatten:()=>MB,gaussianDropout:()=>IW,gaussianNoise:()=>kW,globalAveragePooling1d:()=>rW,globalAveragePooling2d:()=>aW,globalMaxPool1d:()=>xW,globalMaxPool2d:()=>bW,globalMaxPooling1d:()=>xk,globalMaxPooling2d:()=>bk,gru:()=>iW,gruCell:()=>lW,input:()=>Uw,inputLayer:()=>yB,layerNormalization:()=>ZB,leakyReLU:()=>bB,lstm:()=>uW,lstmCell:()=>cW,masking:()=>CW,maxPool1d:()=>vW,maxPool2d:()=>wW,maxPooling1d:()=>vk,maxPooling2d:()=>wk,maxPooling3d:()=>oW,maximum:()=>HB,minimum:()=>jB,multiply:()=>qB,permute:()=>BB,prelu:()=>vB,reLU:()=>xB,repeatVector:()=>zB,reshape:()=>LB,rnn:()=>mW,separableConv2d:()=>EB,simpleRNN:()=>dW,simpleRNNCell:()=>pW,softmax:()=>wB,spatialDropout1d:()=>OB,stackedRNNCells:()=>gW,thresholdedReLU:()=>kB,timeDistributed:()=>AW,upSampling2d:()=>$B,zeroPadding2d:()=>YB});var Jz=0;function dw(){return Jz++}var Zf={};function Yf(e=""){return e in Zf||(Zf[e]=0),Zf[e]+=1,e+Zf[e].toString()}function ny(e){return Array.isArray(e)&&Array.isArray(e[0])}function Jf(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Ge(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new q(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function At(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new q(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Qf(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var pw="Variable",hw=class{constructor(e,t="float32",n=pw,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=dw(),n=n==null?pw:n,this.originalName=nw(n),this.name=sw(this.originalName),this.trainable_=s,this.constraint=r,this.val=fv(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),Qz(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function Qz(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function sy(e){return e.map(t=>t.read())}function ry(e){e.forEach(t=>{t[0].write(t[1])})}var Jt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},gr=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=dw(),a!=null&&(this.originalName=nw(a),this.name=sw(this.originalName)),this.rank=t.length}},eL=0,em=class{constructor(e,t){this.callArgs=t,this.id=eL++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},tL=0,at=class extends de.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=tL++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ra(n)+"_"+Yf(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new hr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new q(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return os(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return os(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new sa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new sa(`Layer ${this.name} is not connected, no input to return.`);return os(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new sa(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new sa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return os(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=Nt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=Nt(this.inputSpec);if(e.length!==t.length)throw new q(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new q(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),c=r.axes[i],u=l>=0?o[l]:o[o.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=Nt(e),s=!0;for(let a of n)if(!(a instanceof gr)){s=!1;break}let r=!0;for(let a of n)if(a instanceof gr){r=!1;break}if(s===r)throw new q("Arguments to apply() must be all SymbolicTensors or all Tensors");return ll(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of Nt(e))a.push(o.shape);this.build(os(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=Nt(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=os(i),this.activityRegularizer!=null)throw new Ve("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=nL(e),o=this.computeOutputShape(a),i,l=sL(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((c,u)=>new gr(l,c,this,Nt(e),t,this.name,u)):i=new gr(l,o,this,Nt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Ve("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new sa(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new sa(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new hr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Qf(this.weights)}build(e){this.built=!0}getWeights(e=!1){return sy(e?this.trainableWeights:this.weights)}setWeights(e){j(()=>{let t=this.weights;if(t.length!==e.length)throw new q(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=sy(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!v.arraysEqual(a.shape,i.shape))throw new q(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}ry(n)})}addWeight(e,t,n,s,r,a,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new q(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=Pt("zeros"));let i=s.apply(t,n),l=new hw(i,n,e,a,o);return i.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),a==null&&(a=!0),a?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=Nt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=Nt(e);t=Nt(t),n=Nt(n),s=Nt(s),r=Jf(r),a=Jf(a);let l=[],c=[],u=[];for(let d of i)l.push(d.sourceLayer),c.push(d.nodeIndex),u.push(d.tensorIndex);new em({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function nL(e){e=Nt(e);let t=[];for(let n of e)t.push(n.shape);return os(t)}function sL(e){return"float32"}function fw(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],c=fw(o,i,l);for(let u of c)r.indexOf(u)===-1&&r.push(u)}return r}}}var Uu=class extends at{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Yf("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new q("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new q("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new q("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new gr(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new em({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new q(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Uu.className="InputLayer";de.registerClass(Uu);function mw(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new q("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Uu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Eo(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];ee(s)}}function gw(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var yw;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(yw||(yw={}));var rL=125,Gu=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},Aw=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},aL=class extends Gu{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=j(()=>ue(this.totals[s],L(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:j(()=>{let s=L(fe(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),An(t[n])}))}},xw=class extends Gu{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},bw=class extends Gu{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=rL),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=pz(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await Eo(n),s.push(this.yield(e,t,n))),s.push(zf()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Eo(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Eo(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(zf()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Eo(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Eo(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(zf()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Eo(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Eo(e),await this.trainEnd(e))}};function vw(e,t){return e==null&&(e={}),e instanceof Gu?[e]:Array.isArray(e)&&e[0]instanceof Gu?e:Nt(e).map(s=>new bw(s,t))}var er=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),er.checkForDuplicate(t),er.constructors[e]==null&&(er.constructors[e]=[]),er.constructors[e].push(t)}static checkForDuplicate(e){for(let t in er.constructors)er.constructors[+t].forEach(s=>{if(s===e)throw new q("Duplicate callback constructor.")})}static clear(){er.constructors={}}static createCallbacks(e){let t=[];for(let n in er.constructors){let s=+n;e>=s&&t.push(...er.constructors[s])}return t.map(n=>new n)}};er.constructors={};function ww(e,t,n,s,r,a,o,i,l){let c=new xw,u=[new aL,...er.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let d=new Aw(u);return d.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:d,history:c}}function yr(e,t={},n=!1){return Pd(e,de.SerializationMap.getMap().classNameMap,t,"layer",n)}function tm(e,t){return j(()=>{e.dtype!=="float32"&&(e=pe(e,"float32"));let n=ke(zd(e),t,!0),s=Du(n.shape,rn()),r=Cn(Rr(n,s));return fe(e,r)})}function cl(e,t){return j(()=>Lt(zd(xe(t,e)),-1))}function nm(e,t){return j(()=>Lt(Zt(xe(t,e)),-1))}function Hu(e,t){return j(()=>{let n=xe(e,t),s=rs(Zt(e),rn(),Number.MAX_VALUE),r=Zt(fe(n,s));return L(100,Lt(r,-1))})}function oL(e,t){return j(()=>{let n=rs(t,rn(),Number.MAX_VALUE),s=As(ue(1,n)),r=rs(e,rn(),Number.MAX_VALUE),a=As(ue(1,r));return Lt(zd(xe(s,a)),-1)})}function iL(e,t){return j(()=>{let n=Rr(0,xe(1,L(e,t)));return Lt(zd(n),-1)})}function lL(e,t){return j(()=>{let n=Rr(0,xe(1,L(e,t)));return Lt(n,-1)})}function uL(e,t){return j(()=>{let n=ke(L(e,t),-1),s=Wn(L(xe(1,e),t),-1);return Rr(0,ue(1,xe(s,n)))})}function cL(e,t){return j(()=>{let n=Math.log(2),s=xe(t,e),r=xe(ue(s,Qi(L(-2,s))),n);return Lt(r,-1)})}function Bd(e,t,n=!1){return j(()=>{if(n)t=nl(t);else{let s=ke(t,t.shape.length-1,!0);t=fe(t,s)}return t=rs(t,rn(),1-rn()),_t(ke(L(pe(e,"float32"),As(t)),t.shape.length-1))})}function sm(e,t,n=!1){return j(()=>{let s=pe(_u(Tz(e)),"int32");t=rs(t,rn(),1-rn());let r=t.shape,a=G(Su(s,r[r.length-1]),r);return Bd(a,t,n)})}function dL(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new q(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return j(()=>{let n=cr(t),s=_t(Zt(t));return ue(xe(n,L(t,e)),wd(ys(s)))})}function rm(e,t){return j(()=>{let n;return n=rs(t,rn(),1-rn()),n=As(fe(n,xe(1,n))),Lt(dL(e,n),-1)})}function pL(e,t){return j(()=>{let n=rs(e,rn(),1),s=rs(t,rn(),1);return ke(L(e,As(fe(n,s))),-1)})}function hL(e,t){return j(()=>{let n=As(ue(rn(),t));return Lt(xe(t,L(e,n)),-1)})}function ay(e,t){return j(()=>{let n=tm(e,-1),s=tm(t,-1),r=L(n,s);return _t(ke(r,-1))})}var am={meanSquaredError:cl,meanAbsoluteError:nm,meanAbsolutePercentageError:Hu,meanSquaredLogarithmicError:oL,squaredHinge:iL,hinge:lL,categoricalHinge:uL,logcosh:cL,categoricalCrossentropy:Bd,sparseCategoricalCrossentropy:sm,binaryCrossentropy:rm,kullbackLeiblerDivergence:pL,poisson:hL,cosineProximity:ay};function oy(e){if(typeof e=="string"){if(e in am)return am[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new q(t)}else return e}function iy(e,t){return j(()=>{let n=L(.5,bs(t)),s=Bf(as(t,n),e.dtype);return Lt(gs(e,s),-1)})}function ly(e,t){return j(()=>Bf(gs(Fs(e,-1),Fs(t,-1)),"float32"))}function kw(e,t){return j(()=>pe(ke(Zs(gs(e,1),gs(t,1))),"float32"))}function fL(e,t){return j(()=>pe(ke(Zs(gs(e,1),gs(t,0))),"float32"))}function mL(e,t){return j(()=>pe(ke(Zs(gs(e,0),gs(t,1))),"float32"))}function Iw(e,t){return j(()=>{let n=kw(e,t),s=mL(e,t),r=ue(n,s);return pe(Pn(as(r,0),fe(n,r),0),"float32")})}function gL(e,t){return j(()=>{let n=kw(e,t),s=fL(e,t),r=ue(n,s);return pe(Pn(as(r,0),fe(n,r),0),"float32")})}function Sw(e,t){return rm(e,t)}function Cw(e,t){return e.rank===t.rank&&(e=dt(e,[e.rank-1])),t=Fs(t,-1),t.dtype!==e.dtype&&(t=pe(t,e.dtype)),pe(gs(e,t),"float32")}var yL=cl,AL=cl,xL=nm,bL=nm,vL=Hu,wL=Hu,uy=Bd,kL=ay,Tw=sm,om={binaryAccuracy:iy,categoricalAccuracy:ly,precision:Iw,categoricalCrossentropy:uy,sparseCategoricalCrossentropy:Tw,mse:yL,MSE:AL,mae:xL,MAE:bL,mape:vL,MAPE:wL,cosine:kL};function IL(e){if(typeof e=="string"&&e in om)return om[e];if(typeof e!="string"&&e!=null)return e;throw new q(`Unknown metric ${e}`)}function im(e){if($r(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(am))if(am[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(om))if(om[n]===e){t=n;break}return t!==void 0?t:e.name}}function SL(e){let t={Adagrad:()=>rl.adagrad(.01),Adadelta:()=>rl.adadelta(1,.95,rn()),Adam:()=>rl.adam(.001,.9,.999,rn()),Adamax:()=>rl.adamax(.002,.9,.999,rn(),0),RMSProp:()=>rl.rmsprop(.001,.9,0,rn()),SGD:()=>rl.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new q(`Unknown Optimizer ${e}`)}var Nw=1*1024*1024;function Ew(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!cy(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>Nw&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${Nw}.`)}}function cy(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!cy(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!cy(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function CL(e,t,n,s=console.log){let r=NL(e),a=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let o;if(!r){a.push("Receives inputs"),o=[];for(let u in e.nodesByDepth)o.push(...e.nodesByDepth[u])}s("_".repeat(t)),lm(a,n,s),s("=".repeat(t));let i=e.layers;for(let u=0;u<i.length;++u)r?EL(i[u],n,s):RL(i[u],n,o,s),s((u===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=TL(e),c=Qf(e.nonTrainableWeights);s(`Total params: ${l+c}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${c}`),s("_".repeat(t))}function TL(e){let t;return e.collectedTrainableWeights!=null?t=Qf(e.collectedTrainableWeights):t=Qf(e.trainableWeights),t}function NL(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function lm(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function EL(e,t,n){let s;try{s=JSON.stringify(e.outputShape)}catch(i){s="multiple"}let r=e.name,a=e.getClassName(),o=[`${r} (${a})`,s,e.countParams().toString()];lm(o,t,n)}function RL(e,t,n,s){let r;try{r=JSON.stringify(e.outputShape)}catch(u){r="multiple"}let a=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let d=0;d<u.inboundLayers.length;++d){let p=u.inboundLayers[d].name,h=u.nodeIndices[d],f=u.tensorIndices[d];a.push(`${p}[${h}][${f}]`)}let o=e.name,i=e.getClassName(),l=a.length===0?"":a[0],c=[`${o} (${i})`,r,e.countParams().toString(),l];lm(c,t,s);for(let u=1;u<a.length;++u)lm(["","","",a[u]],t,s)}function Rw(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Wd(e,t){if(e===null)return null;if(typeof e=="string")return ol(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];Rw(t,r,a)?n.push(a):n.push(Wd(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=ol(s);n[a]=Wd(r,a)}}return n}}function dy(e,t){if(e==null)return null;if(typeof e=="string")return ra(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];Rw(t,r,a)?n.push(a):n.push(dy(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=ra(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=dy(r,s)}return n}}var py="3.9.0";function $L(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return pe(t,e.dtype)}catch(n){throw new q(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var dl=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof dl)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=$L(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new q(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof gr){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof gr){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&ee(this.id2Mask)}},hy={},$w={};function Vd(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),l=[],c=t.names();for(let f of i)c.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let u=i.join(",")+"|"+t.names().join(","),d,p;if(hy[u]==null){let f=DL(o,t);d=f.sorted,p=f.recipientCounts,hy[u]=d,$w[u]=p}d=hy[u],p={},r||Object.assign(p,$w[u]);let h=new dl(t);for(let f=0;f<d.length;++f){if(s!=null){let $=Yh().numTensors;$>s.maxNumTensors&&(s.maxNumTensors=$),$<s.minNumTensors&&(s.minNumTensors=$)}let m=d[f],g=m.sourceLayer;if(g instanceof Uu)continue;let y=[],A=[],x=[],b=!1;for(let $ of m.inputs){let F=h.getValue($),R=h.getMask($);y.push(F),A.push(R),R!=null&&(b=!0),r||(p[$.name]--,p[$.name]===0&&!t.hasKey($)&&i.indexOf($.name)===-1&&!F.isDisposed&&$.sourceLayer.stateful!==!0&&x.push(F))}b&&(n=n||{},n.mask=A[0]);let w=Nt(g.apply(y,n)),k=null;g.supportsMasking&&(k=g.computeMask(y,A));let S=PL(m),N=Array.isArray(S)?S:[S];for(let $=0;$<N.length;++$){h.hasKey(N[$])||h.add(N[$],w[$],Array.isArray(k)?k[0]:k);let F=i.indexOf(N[$].name);F!==-1&&(l[F]=w[$])}r||ee(x)}return h.disposeMasks(),a?l:l[0]}function DL(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=Dw(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=Dw(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(c=>s[l].add(c))}}return{sorted:n,recipientCounts:_L(s)}}function _L(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Dw(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let c of i.inputs)r[c.name]==null&&(r[c.name]=new Set),r[c.name].add(i.name),!n.has(c.name)&&a.push(c)}}return{sorted:s,recipientMap:r}}function PL(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var _r=class extends at{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=Yf(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Co(this.inputs).length!==this.inputs.length)throw new q(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Co(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let A=y.sourceLayer,x=y.nodeIndex,b=y.tensorIndex;this.outputLayers.push(A),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(b)}for(let y of this.inputs){let A=y.sourceLayer,x=y.nodeIndex,b=y.tensorIndex;$r(x===0,"input layer has >1 nodes"),$r(b===0,"input layer has >1 tensors"),this.inputLayers.push(A),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let A=this.inputLayers[y];if(!(A instanceof Uu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${A.getClassName()}.`);this.inputNames.push(A.name),this.feedInputShapes.push(A.batchInputShape),this.feedInputNames.push(A.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},s={},r={},a={},o=[],i=(y,A,x,b,w,k)=>{(b==null||w==null||k==null)&&(b=y.sourceLayer,w=y.nodeIndex,k=y.tensorIndex);let S=b.inboundNodes[w];if(x.indexOf(S)!==-1)throw new hr(`The tensor ${y.name} at layer "${b.name}" is part of a cycle.`);if(A.indexOf(S)!==-1)return;this.containerNodes.add(_r.nodeKey(b,w)),b.id in a||(a[b.id]=Object.keys(a).length),x.indexOf(S)===-1&&x.push(S);let N=S.inboundLayers.length;for(let $=0;$<N;$++){let F=S.inputTensors[$],R=S.inboundLayers[$],D=S.nodeIndices[$],T=S.tensorIndices[$];i(F,A,x,R,D,T)}for(A.push(S);x.indexOf(S)>=0;)x.splice(x.indexOf(S),1);o.push(S)},l=[],c=[];for(let y of this.outputs)i(y,l,c);let u=o.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let A=t[y.id],x=s[y.outboundLayer.id]==null?0:s[y.outboundLayer.id];A=Math.max(A,x),s[y.outboundLayer.id]=A,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=A;for(let b=0;b<y.inboundLayers.length;b++){let w=y.inboundLayers[b],k=y.nodeIndices[b],S=w.inboundNodes[k],N=t[S.id]==null?0:t[S.id];t[S.id]=Math.max(A+1,N),n[S.id]=S}}let d={};for(let y in t){let A=t[y];A in d||(d[A]=[]),d[A].push(n[y])}let p={};for(let y in s){let A=s[y];A in p||(p[A]=[]),p[A].push(r[y])}let h=Object.keys(p).map(y=>parseInt(y,10)).sort(Lf);this.layers=[];for(let y of h){let A=p[y];A.sort((x,b)=>{let w=a[x.id],k=a[b.id];return w<k?-1:w>k?1:0});for(let x of A)x instanceof _r&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=p,h=Object.keys(d).map(y=>parseInt(y,10)).sort(Lf);let f=this.inputs.slice(),m=[];for(let y of h)for(let A of d[y]){let x=A.outboundLayer;if(x!=null){for(let b of A.inputTensors)if(f.indexOf(b)===-1)throw new hr(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${x.name}". The following previous layers were accessed without issue: ${m}`);for(let b of A.outputTensors)f.push(b);m.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(y=>y.name);for(let y of g){let A=g.filter(x=>x===y).length;if(A!==1)throw new hr(`The name "${y}" is used ${A} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new em({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new q("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new q(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new q(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new q(`${a.length} of ${s} weights are not set: ${a}`)}ry(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${py}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=dy(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return j(()=>{e=Nt(e);let n=new dl;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return Vd(this.outputs,n,t)})}computeMask(e,t){return j(()=>{e=Nt(e);let n;return t==null?n=al(null,e.length):n=Nt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Jf(e);if(t.length!==this.inputLayers.length)throw new q(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],c=i.name+"_0_0";n[c]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Lf);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let c=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(c.id)!==-1)continue;let u=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],y=l.tensorIndices[f],A=`${m.name}_${g}_${y}`,x=n[A];u.push(x)}let d=c.computeOutputShape(os(u)),p=Jf(d),h=c.inboundNodes.indexOf(l);for(let f=0;f<p.length;f++){let m=`${c.name}_${h}_${f}`;n[m]=p[f]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],c=this.outputLayersTensorIndices[o],u=`${i.name}_${l}_${c}`;a.push(u)}for(let o=0;o<a.length;o++){let i=a[o];$r(i in n),r.push(n[i])}return os(r)}runInternalGraph(e,t){t==null&&(t=al(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],c=e[i],u=t[i];n[l.id]=[c,u]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Lf);for(let i of s){let l=this.nodesByDepth[i];for(let c of l){let u=c.outboundLayer,d=c.inputTensors,p=c.outputTensors,h=new Array;for(let f of d)f.id in n&&h.push(n[f.id]);if(h.length===d.length){let f={},m,g,y,A;if(c.callArgs!=null&&(f=c.callArgs),h.length===1){let[x,b]=h[0];f.mask==null&&(f.mask=b),y=Nt(u.call(x,f)),A=Nt(u.computeMask(x,b)),m=[x],g=[b]}else m=h.map(x=>x[0]),g=h.map(x=>x[1]),f.mask==null&&(f.mask=g),y=Nt(u.call(m,f)),A=Nt(u.computeMask(m,g));if(u.activityRegularizer)throw new Ve("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<p.length;++x){let b=p[x],w=y[x],k=A[x];n[b.id]=[w,k]}}}}let r=[],a=[],o=[];for(let i of this.outputs){$r(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,c]=n[i.id];o.push(l.shape),r.push(l),a.push(c)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof _r?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=_r.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new q(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new q("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new q(`No such layer: ${e}`)}calculateLosses(){return j(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=_r.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let u=0;u<a.inboundNodes.length;u++){let d=a.inboundNodes[u],p=_r.nodeKey(a,u),h={};if(this.containerNodes.has(p)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let f=[];for(let m=0;m<d.inboundLayers.length;m++){let g=d.inboundLayers[m],y=d.nodeIndices[m],A=d.tensorIndices[m],x=_r.nodeKey(g,y),b=t[x];b==null&&(b=0),f.push([g.name,b,A,h])}l.push(f)}}}let c={};c.name=a.name,c.className=o,c.config=i,c.inboundNodes=l,n.push(c)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=_r.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.inputLayersTensorIndices[a];s.push([o.name,c,u])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=_r.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.outputLayersTensorIndices[a];r.push([o.name,c,u])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let y=[],A;for(let x of g){let b=x[0],w=x[1],k=x[2];if(A=x[3]==null?{}:x[3],!(b in r)){o(m,g);return}let S=r[b];if(S.inboundNodes.length<=w){o(m,g);return}let N=S.inboundNodes[w];y.push(N.outputTensors[k])}y.length>0&&m.apply(os(y),A)}function l(m){let g=m.name,y=yr(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(s),r[g]=y,m.inboundNodes.forEach(x=>{if(!(x instanceof Array))throw new q(`Corrupted configuration, expected array for nodeData: ${x}`);o(y,x)})}let c=t.name,u=t.layers;for(let m of u)l(m);for(;!dz(a);)for(let m of u){let g=r[m.name];if(g.name in a){let y=a[g.name];delete a[g.name];for(let A of y)i(g,A)}}let d=[],p=[],h=t.inputLayers;for(let m of h){let g=m[0],y=m[1],A=m[2];$r(g in r);let b=r[g].inboundNodes[y].outputTensors;d.push(b[A])}let f=t.outputLayers;for(let m of f){let g=m[0],y=m[1],A=m[2];$r(g in r);let b=r[g].inboundNodes[y].outputTensors;p.push(b[A])}return new e({inputs:d,outputs:p,name:c})}get stateful(){if(this._stateful)throw new q("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){j(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function FL(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function _w(e,t){return FL(e,t,"classWeight")}async function Pw(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=j(()=>{if(e.shape.length===1)return lr(e);if(e.shape.length===2){if(e.shape[1]>1)return Fs(e,1);if(e.shape[1]===1)return G(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());ee(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Yt(o,"float32")}else return null}function OL(e,t){return L(e,t)}var ML=32;function Fw(e,t){let n,s,r=t;n=r.xs,s=r.ys,v.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=Ow("input",e.inputNames,n),o=Ow("output",e.outputNames,s),i=a[0].shape[0];v.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)v.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)v.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function Ow(e,t,n){if(n instanceof Ke)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new q(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function zL(e){if(e.length===3)throw new Ve("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function LL(e,t,n){let s=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(Mw(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=zL(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;r?c=l.slice().concat(l.map(g=>"val_"+g)):c=l.slice();let u=vw(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:p,history:h}=ww(u,d,n.epochs,null,null,BL(t,n),null,r,c);p.setModel(e),e.history=h,await p.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await p.onEpochBegin(f);let y=0,A=0;for(s||(m=await t.iterator());s?y<n.batchesPerEpoch:!0;){let x=await m.next();if(s&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:b,ys:w}=Fw(e,x.value),k={};k.batch=A,k.size=b[0].shape[0],await p.onBatchBegin(A,k);let S=[];if(n.classWeight!=null){let F=_w(n.classWeight,e.outputNames);for(let R=0;R<F.length;++R)S.push(await Pw(w[R],null,F[R]))}let N=b.concat(w).concat(S),$=i(N);ee(N);for(let F=0;F<l.length;++F){let R=l[F],D=$[F];k[R]=D,An(D)}await p.onBatchEnd(A,k),gw(k),A++,y++}if(s?y>=n.batchesPerEpoch:x.done){if(r){let b;Mw(n.validationData)?b=Nt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=Nt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?ML:n.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)g[`val_${e.metricsNames[w]}`]=b[w]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(f,g),f++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function BL(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function Mw(e){return typeof e.iterator=="function"}function WL(e){return typeof e.next=="function"}async function VL(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new Ve("Verbose mode is not implemented yet.");v.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=WL(t)?t:await t.iterator(),i=0,l=0;for(;s?l<n.batches:!0;){let c=await o.next();if(a=j(()=>{if(c.value){let{xs:u,ys:d}=Fw(e,c.value),p=u.concat(d),h=j(()=>r(p));if(ee(p),l===0)for(let m=0;m<h.length;++m)a.push(Ee(0));let f=p[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],y=a[m];a[m]=j(()=>ue(a[m],L(f,g))),l>0&&ee(y)}ee(h),i+=f,++l}return a}),c.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c<a.length;++c){let u=a[c];a[c]=fe(a[c],i),ee(u)}return os(a)}function fy(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Ud(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>ul(s,t,n-t)):ul(e,t,n-t)}function my(e,t){return j(()=>e==null?null:Array.isArray(e)?e.map(n=>my(n,t)):ow(e,t.dtype==="int32"?t:pe(t,"int32")))}function gy(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function UL(e,t,n,s,r,a,o,i,l,c,u,d,p,h,f){r==null&&(r=32),a==null&&(a=1),u==null&&(u=!0),p==null&&(p=0);let m=!1;if(l!=null&&c!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new q("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=fr(0,g)),o==null&&(o=1);let{callbackList:A,history:x}=ww(i,o,a,p,g,h,r,m,d);A.setModel(e),e.history=x,await A.onTrainBegin(),e.stopTraining_=!1;for(let b=p;b<a;++b){await A.onEpochBegin(b);let w={};if(h!=null)throw new Ve("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new Ve("batch shuffling is not implemneted yet");u&&v.shuffle(y);let k=Yt(y),S=gy(g,r);for(let N=0;N<S.length;++N){let $={};if(await A.onBatchBegin(N,$),j(()=>{let F=S[N][0],R=S[N][1],D=ul(k,F,R-F);$.batch=N,$.size=R-F;let T=my(n,D),O=t(T);for(let W=0;W<s.length;++W){let H=s[W],z=O[W];$[H]=z,An(z)}if(N===S.length-1&&m){let W=e.testLoop(l,c,r);for(let H=0;H<s.length;++H){let z=s[H],X=W[H];An(X),w["val_"+z]=X}}}),await A.onBatchEnd(N,$),gw($),e.stopTraining_)break}k.dispose()}if(await A.onEpochEnd(b,w),e.stopTraining_)break}return await A.onTrainEnd(),await e.history.syncData(),e.history}async function GL(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,c,u;try{let d=s.batchSize==null?32:s.batchSize;fy(d);let p=!1,h=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,p,d);r=h[0],a=h[1],u=h[2];let f=!1,m;if(s.validationData!=null&&s.validationData.length>0){if(f=!0,s.validationData.length===2)o=s.validationData[0],i=s.validationData[1];else throw s.validationData.length===3?new Ve("validationData including sample weights is not supported yet."):new q(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let S=!0,N=await e.standardizeUserData(o,i,null,null,S,d);l=N[0],c=N[1],m=l.concat(c)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){f=!0;let S=Math.floor(r[0].shape[0]*(1-s.validationSplit)),N=r[0].shape[0];l=Ud(r,S,N),r=Ud(r,0,S),c=Ud(a,S,N),a=Ud(a,0,S),m=l.concat(c)}else s.validationSteps!=null&&(f=!0);let g=r.concat(a).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),A=e.getDedupedMetricsNames(),x,b;f?(e.makeTestFunction(),x=e.testFunction,b=A.slice().concat(A.map(S=>"val_"+S))):(x=null,m=[],b=A.slice());let w=vw(s.callbacks,s.yieldEvery);return await UL(e,y,g,A,d,s.epochs,s.verbose,w,x,m,s.shuffle,b,s.initialEpoch,null,null)}finally{e.isTraining=!1,pl(r,t),pl(a,n),pl(l,o),pl(c,i),u!=null&&ee(u)}}function zw(e){let t=[];e instanceof Ke&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(Md(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function pl(e,t){if(e==null)return;let n=[];if(t instanceof Ke)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof Ke)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function HL(e){return e instanceof Ke}function yy(e){return Array.isArray(e)}function Lw(e){return!HL(e)&&!yy(e)}function Bw(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(yy(e)&&e.length>0)o=!0;else if(Lw(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new q(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(Lw(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new q(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(yy(e)){if(e=e,e.length!==t.length)throw new q(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new q(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=zw(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new q(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let c=i.shape[l],u=n[o][l];if(u!=null&&u>=0&&c!==u)throw new q(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function jL(e,t,n){let s=Co(e.map(a=>a.shape[0]));s.sort();let r=Co(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new q(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new q(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!v.arraysEqual(s,r))throw new q(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function qL(e,t,n){let s=[cl,rm,Bd];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===Bd&&a.shape[a.shape.length-1]===1)throw new q(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),c=i.slice(1);for(let u=0;u<l.length;++u){let d=l[u],p=c[u];if(p!=null&&d!==p)throw new q(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function Ww(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new q(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new q(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new q(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let c=i.shape[l],u=n[o][l];if(u!=null&&u!==c)throw new q(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function XL(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var KL="layers-model",aa=class extends _r{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new q("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");CL(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=SL(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof na))throw new q("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new q(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(oy(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new q(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>oy(o))}else{let a=oy(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],ll("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=XL(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};ll("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let c="",u,d,p;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===rm?["accuracy","acc"].indexOf(h)!==-1?d=iy:["crossentropy","ce"].indexOf(h)!==-1&&(d=Sw):this.lossFunctions[a]===sm?["accuracy","acc"].indexOf(h)!==-1?d=Cw:["crossentropy","ce"].indexOf(h)!==-1&&(d=Tw):["accuracy","acc"].indexOf(h)!==-1?d=ly:["crossentropy","ce"].indexOf(h)!==-1&&(d=uy);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),p=d,u=c+g}else p=IL(h),u=c+im(h);let f;ll(u,()=>{f=p}),r(a,u,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;fy(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return os(l)}finally{pl(a[0],e),pl(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),VL(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new q(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new q(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new q("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new dl;if(e instanceof Ke&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new q(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new q(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=Vd(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=al(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new q(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return j(()=>{let s=this.checkNumSamples(e);if(n)throw new Ve("Verbose predictLoop() is not implemented yet.");let r=gy(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)j(()=>{let l=r[o][0],c=r[o][1],u=Ud(e,l,c),d=[];if(Array.isArray(u))for(let h=0;h<u.length;++h)d.push({key:this.inputs[h],value:u[h]});else d.push({key:this.inputs[0],value:u});let p=new dl(d);return Vd(this.outputs,p)}).forEach((l,c)=>a[c].push(l));return os(a.map(o=>kt(o,0)))})}predict(e,t={}){let n=zw(e);Ww(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return fy(s),this.predictLoop(n,s)}finally{pl(n,e)}}predictOnBatch(e){Ww(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new hr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===sm?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=Bw(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=Bw(t,this.feedOutputNames,r,!1,"target"),jL(e,t,null),qL(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!=0)throw new q(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let c=_w(s,this.outputNames);l=[];for(let u=0;u<c.length;++u)l.push(await Pw(i[u],null,c[u]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return j(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new Ve("Verbose mode is not implemented yet.");if(r!=null)throw new Ve("steps mode in testLoop() is not implemented yet");{let i=gy(a,n),l=Yt(fr(0,a));for(let c=0;c<i.length;++c){let u=i[c][0],d=i[c][1],p=ul(l,u,d-u),h=my(t,p),f=e(h);if(c===0)for(let m=0;m<f.length;++m)o.push(Ee(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=ue(o[m],L(d-u,g))}}for(let c=0;c<o.length;++c)o[c]=fe(o[c],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;Xv(e,s)>1&&(r+=`_${Xv(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let u=[];for(let f=0;f<this.inputs.length;++f)u.push({key:this.inputs[f],value:n[f]});let d=new dl(u),p=Vd(this.outputs,d,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let g=this.lossFunctions[f](s[f],p[f]);r[f]!=null&&(g=OL(g,r[f]));let y=Lt(g);t.push(y),f===0?h=g:h=ue(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],y=this.metricsTensors[f][1];m=Lt(g(s[y],p[y]))}An(m),a.push(m)}return h=Lt(h),this.calculateLosses().forEach(f=>{h=ue(h,f)}),h},i=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>j(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new dl(a),i=Vd(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],u=Lt(c(r[l],i[l]));l===0?n=u:n=ue(n,u),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],u=this.metricsTensors[l][1],d=Lt(c(r[u],i[u]));t.push(d)}return t})}async fit(e,t,n={}){return GL(this,e,t,n)}async fitDataset(e,t){return LL(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let c=await l.data();i.push(c[0])}return ee(o),os(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Yh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Yh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=ra(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>ra(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=ra(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ra(im(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ra(im(e)));{let e={};for(let t in this.metrics)e[t]=ra(im(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Wd(e.optimizer_config),n=yr(t),s;if(typeof e.loss=="string")s=ol(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>ol(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=ol(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>ol(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=ol(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=ts.getSaveHandlers(e);if(l.length===0)throw new q(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new q(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new q("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await ts.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:KL,generatedBy:`TensorFlow.js tfjs-layers v${py}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:c,specs:u}=await ts.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...u),n.data=ts.concatenateArrayBuffers([n.data,c])}if(this.userDefinedMetadata!=null){let l=!0;Ew(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){Ew(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};aa.className="Model";de.registerClass(aa);var Vw=class extends aa{};Vw.className="Functional";de.registerClass(Vw);async function ZL(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=Wd(n),r=yr(s,t);if(e.weightsManifest!=null){let a=await ts.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),ee(a)}return r}async function YL(e,t){if(t==null&&(t={}),typeof e=="string"){let n=ts.getLoadHandlers(e,t);if(n.length===0)n.push(ts.browserHTTPRequest(e,t));else if(n.length>1)throw new q(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return JL(e,void 0,t)}async function JL(e,t,n){if(n==null&&(n={}),e.load==null)throw new q("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=yr(Wd(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new q("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=QL(s.weightData,s.weightSpecs);i.loadWeights(c,a),i.optimizer!=null&&u.length>0&&await i.optimizer.setWeights(u),ee(c),ee(u.map(d=>d.tensor))}return i}function QL(e,t){let n=ts.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var ju=class extends aa{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Yf("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new q(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof ju||e instanceof aa,n;if(t){if(n=e,n.outputs.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new q("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new q("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=mw({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new q(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=fw(this.outputs[0])}this.inboundNodes=[],new em({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:al(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(At(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new aa({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new hr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new hr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new hr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new hr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new q("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof ju))throw new Ve(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let c=yr(i,void 0,s);s&&c.setFastWeightInitDuringBuild(!0),o.add(c)}return o}set stopTraining(e){if(this.model==null)throw new q("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new q("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};ju.className="Sequential";de.registerClass(ju);function eB(e){return new aa(e)}function tB(e){return new ju(e)}function nB(e,t){return t==null&&(t={}),YL(e,t)}function Uw(e){return mw(e)}function sB(e,t){er.registerCallbackConstructor(e,t)}var ls=class extends de.Serializable{getConfig(){return{}}},Gw=class extends ls{apply(e,t=1){return Ez(e,t)}};Gw.className="elu";de.registerClass(Gw);var Hw=class extends ls{apply(e){return Af(e)}};Hw.className="selu";de.registerClass(Hw);var jw=class extends ls{apply(e){return cr(e)}};jw.className="relu";de.registerClass(jw);var qw=class extends ls{apply(e){return j(()=>Pu(6,cr(e)))}};qw.className="relu6";de.registerClass(qw);var Xw=class extends ls{apply(e){return e}};Xw.className="linear";de.registerClass(Xw);var Kw=class extends ls{apply(e){return ss(e)}};Kw.className="sigmoid";de.registerClass(Kw);var Zw=class extends ls{apply(e){return $z(e)}};Zw.className="hardSigmoid";de.registerClass(Zw);var Yw=class extends ls{apply(e){return Qi(e)}};Yw.className="softplus";de.registerClass(Yw);var Jw=class extends ls{apply(e){return Rz(e)}};Jw.className="softsign";de.registerClass(Jw);var Qw=class extends ls{apply(e){return Zi(e)}};Qw.className="tanh";de.registerClass(Qw);var Ay=class extends ls{apply(e,t=-1){return nl(e,t)}};Ay.className="softmax";de.registerClass(Ay);var ek=class extends ls{apply(e,t=-1){return df(e,t)}};ek.className="logSoftmax";de.registerClass(ek);var tk=class extends ls{apply(e,t=1){return j(()=>L(ss(L(e,t)),e))}};tk.className="swish";de.registerClass(tk);var nk=class extends ls{apply(e){return j(()=>L(e,Zi(Qi(e))))}};nk.className="mish";de.registerClass(nk);function Ro(e){return e.getClassName()}function xy(e,t={}){return Pd(e,de.SerializationMap.getMap().classNameMap,t,"activation")}function $o(e){if(e==null){let t={};return t.className="linear",t.config={},xy(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},xy(t)}else return e instanceof ls?e:xy(e)}function by(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var sk=class extends de.Serializable{},Gd=class extends sk{constructor(e){super();by(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return j(()=>{let t=Xt([1]);return this.hasL1&&(t=ue(t,ke(L(this.l1,Zt(e))))),this.hasL2&&(t=ue(t,ke(L(this.l2,zd(e))))),G(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Gd.className="L1L2";de.registerClass(Gd);function rB(e){return by(e),new Gd({l1:e!=null?e.l1:null,l2:0})}function aB(e){return by(e),new Gd({l2:e!=null?e.l2:null,l1:0})}var rk={l1l2:"L1L2"};function It(e){return M1(e)}function ak(e,t={}){return Pd(e,de.SerializationMap.getMap().classNameMap,t,"regularizer")}function Ft(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in rk?rk[e]:e,config:{}};return ak(n)}else return e instanceof sk?e:ak(e)}var vy=class extends at{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Ge(e);let n=cr(e);return this.maxValue!=null&&(n=rs(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};vy.className="ReLU";de.registerClass(vy);var wy=class extends at{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ge(e);return vd(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};wy.className="LeakyReLU";de.registerClass(wy);var ky=class extends at{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Pt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Ft(e.alphaRegularizer),this.alphaConstraint=on(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new q(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=At(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new Jt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Ge(e),Td(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Bt(this.alphaInitializer),alphaRegularizer:It(this.alphaRegularizer),alphaConstraint:an(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};ky.className="PReLU";de.registerClass(ky);var Iy=class extends at{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Ve(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ge(e);return $u(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Iy.className="ELU";de.registerClass(Iy);var Sy=class extends at{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Ge(e);return L(n,pe(as(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};Sy.className="ThresholdedReLU";de.registerClass(Sy);var Cy=class extends at{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new Ay().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Ge(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Cy.className="Softmax";de.registerClass(Cy);function qu(e,t,n){if(typeof e=="number")return al(e,t);if(e.length!==t)throw new q(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!Sz(r))throw new q(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Ar(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function Pr(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+No([n-t,0]);else if(s==="same")e=e*t;else throw new q(`Unsupport padding mode: ${s}.`);return e}function Ty(e,t){return j(()=>(Kt(t),t==="channelsFirst"?tt(e,[0,2,3,1]):e))}function ok(e,t){return j(()=>(Kt(t),t==="channelsFirst"?tt(e,[0,2,3,4,1]):e))}function oB(e,t,n,s=1,r="valid",a,o=1){return j(()=>{if(a==null&&(a=pr()),Kt(a),e.shape.length!==3)throw new q(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new q(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new q(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=tt(e,[0,2,1])),r==="causal")throw new Ve("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=sf(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=mr(i,n)),i})}function ik(e,t,n,s=[1,1],r="valid",a,o,i=null){return j(()=>{if(a==null&&(a=pr()),Kt(a),e.rank!==3&&e.rank!==4)throw new q(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new q(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Ty(e,a);if(r==="causal")throw new Ve("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=So.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=tt(l,[0,3,1,2])),l})}function iB(e,t,n,s=[1,1,1],r="valid",a,o){return j(()=>{if(a==null&&(a=pr()),Kt(a),e.rank!==4&&e.rank!==5)throw new q(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new q(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=ok(e,a);if(r==="causal")throw new Ve("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=r1(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=mr(i,n)),a==="channelsFirst"&&(i=tt(i,[0,4,1,2,3])),i})}var Ny=class extends at{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Ny.verifyArgs(t),this.rank=e,bn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Ve(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=qu(t.kernelSize,e,"kernelSize"),this.strides=qu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,zs(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Kt(this.dataFormat),this.activation=$o(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Pt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=on(t.biasConstraint),this.biasRegularizer=Ft(t.biasRegularizer),this.activityRegularizer=Ft(t.activityRegularizer),this.dilationRate=qu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new q(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new q(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new q(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if($r("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!L1(e.kernelSize,"number",1,3))throw new q(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Ro(this.activation),useBias:this.useBias,biasInitializer:Bt(this.biasInitializer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),biasConstraint:an(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Hd=class extends Ny{constructor(e,t){super(e,t);this.kernel=null,Hd.verifyArgs(t),this.filters=t.filters,bn(this.filters,"filters"),this.kernelInitializer=Pt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=on(t.kernelConstraint),this.kernelRegularizer=Ft(t.kernelRegularizer)}build(e){e=At(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return j(()=>{e=Ge(e);let n,s=this.bias==null?null:this.bias.read(),r=Zv(this.activation.getClassName());if(r!=null&&this.rank===2)n=ik(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=oB(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=ik(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=iB(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Ve("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=At(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=Ar(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:Bt(this.kernelInitializer),kernelRegularizer:It(this.kernelRegularizer),kernelConstraint:an(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new q(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},jd=class extends Hd{constructor(e){super(2,e);jd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!L1(e.kernelSize,"number",1,2))throw new q(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};jd.className="Conv2D";de.registerClass(jd);var qd=class extends Hd{constructor(e){super(3,e);qd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new q(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};qd.className="Conv3D";de.registerClass(qd);var Ey=class extends jd{constructor(e){super(e);if(this.inputSpec=[new Jt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=At(e),e.length!==4)throw new q("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Jt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return j(()=>{let n=Ge(e);if(n.shape.length!==4)throw new q(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],c=this.kernelSize[0],u=this.kernelSize[1],d=this.strides[0],p=this.strides[1],h=Pr(i,d,c,this.padding),f=Pr(l,p,u,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=tt(n,[0,2,3,1]));let g=rf(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=tt(g,[0,3,1,2])),this.bias!=null&&(g=mr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=At(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=Pr(t[s],i,a,this.padding),t[r]=Pr(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Ey.className="Conv2DTranspose";de.registerClass(Ey);var Ry=class extends qd{constructor(e){super(e);if(this.inputSpec=[new Jt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=At(e),e.length!==5)throw new q("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Jt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return j(()=>{let n=Ge(e);if(n.shape.length!==5)throw new q(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],c=s[a],u=s[o],d=this.kernelSize[0],p=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],y=Pr(l,f,d,this.padding),A=Pr(c,m,p,this.padding),x=Pr(u,g,h,this.padding),b=[r,y,A,x,this.filters];this.dataFormat!=="channelsLast"&&(n=tt(n,[0,2,3,4,1]));let w=Z3(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=tt(w,[0,4,1,2,3])),this.bias!==null&&(w=mr(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=At(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],u=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[s]=Pr(t[s],c,o,this.padding),t[r]=Pr(t[r],u,i,this.padding),t[a]=Pr(t[a],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Ry.className="Conv3DTranspose";de.registerClass(Ry);var lk=class extends Hd{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new q("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new q("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new q(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Pt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Ft(t.depthwiseRegularizer),this.depthwiseConstraint=on(t.depthwiseConstraint),this.pointwiseInitializer=Pt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Ft(t.pointwiseRegularizer),this.pointwiseConstraint=on(t.pointwiseConstraint)}build(e){if(e=At(e),e.length<this.rank+2)throw new q(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Jt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return j(()=>{e=Ge(e);let n;if(this.rank===1)throw new Ve("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=tt(e,[0,2,3,1])),n=w1(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=mr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=tt(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Bt(this.depthwiseInitializer),e.pointwiseInitializer=Bt(this.pointwiseInitializer),e.depthwiseRegularizer=It(this.depthwiseRegularizer),e.pointwiseRegularizer=It(this.pointwiseRegularizer),e.depthwiseConstraint=an(this.depthwiseConstraint),e.pointwiseConstraint=an(this.pointwiseConstraint),e}};lk.className="SeparableConv";var $y=class extends lk{constructor(e){super(2,e)}};$y.className="SeparableConv2D";de.registerClass($y);var um=class extends Hd{constructor(e){super(1,e);um.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!L1(e.kernelSize,"number",1,1))throw new q(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};um.className="Conv1D";de.registerClass(um);var Dy=class extends at{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return j(()=>{if(e=Ge(e),this.dataFormat==="channelsLast"){let n=Wf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Wf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Wf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Wf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Dy.className="Cropping2D";de.registerClass(Dy);var _y=class extends at{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Kt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,wz(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return j(()=>{let n=Ge(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=tt(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?$e.resizeNearestNeighbor(n,[r,a]):$e.resizeBilinear(n,[r,a]);return tt(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?$e.resizeNearestNeighbor(n,[r,a]):$e.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};_y.className="UpSampling2D";de.registerClass(_y);function lB(e,t,n=[1,1],s="valid",r,a){return j(()=>{r==null&&(r=pr()),Kt(r);let o=Ty(e,r);if(e.rank!==4)throw new q(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new q(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=Ru(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=tt(o,[0,3,1,2])),o})}var Py=class extends Ny{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Pt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=on(e.depthwiseConstraint),this.depthwiseRegularizer=Ft(e.depthwiseRegularizer)}build(e){if(e=At(e),e.length<4)throw new q(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{e=Ge(e);let n=lB(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=mr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Ar(t,this.kernelSize[0],this.padding,this.strides[0]),a=Ar(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Bt(this.depthwiseInitializer),e.depthwiseRegularizer=It(this.depthwiseRegularizer),e.depthwiseConstraint=an(this.depthwiseRegularizer),e}};Py.className="DepthwiseConv2D";de.registerClass(Py);function uk(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new q("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function ck(e,t,n,s=!1,r,a,o=!1,i=!1){return j(()=>{let l=t.shape.length;if(l<3)throw new q(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(fr(2,l));if(t=tt(t,c),a!=null)throw new Ve("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=pe(pe(r,"bool"),"float32"),r.rank===l-1&&(r=qt(r,-1)),r=tt(r,c)),s&&(t=vs(t,0),r!=null&&(r=vs(r,0)));let u=[],d,p=n,h=t.shape[0],f=Vn(t),m;r!=null&&(m=Vn(r));for(let y=0;y<h;++y){let A=f[y],x=j(()=>e(A,p));if(r==null)d=x[0],p=x[1];else{let b=j(()=>{let w=m[y],k=xe(bs(w),w),S=ue(L(x[0],w),L(p[0],k)),N=p.map(($,F)=>ue(L(x[1][F],w),L($,k)));return{output:S,newStates:N}});d=b.output,p=b.newStates}i&&u.push(d)}let g;return i&&(g=Tn(u,1)),[d,g,p]})}var Fr=class extends at{constructor(e){super(e);let t;if(e.cell==null)throw new q("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new pm({cells:e.cell}):t=e.cell,t.stateSize==null)throw new q("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Jt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return fr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){ny(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return j(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Ve("Constants support is not implemented in RNN yet.");ny(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new Jt({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new Ve("Constants support is not implemented in RNN yet.");this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new q(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new Jt({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){j(()=>{if(!this.stateful)throw new sa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Xt([n,s])):this.states_=[Xt([n,this.cell.stateSize])];else if(e==null)ee(this.states_),this.keptStates!=null&&(ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Xt([n,s])):this.states_[0]=Xt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):ee(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!v.arraysEqual(r.shape,o))throw new q(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>An(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=uk(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new Jt({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof gr){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return j(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=Ge(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new q(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=ck((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),c=l[0],u=l[1],d=l[2];this.stateful&&this.resetStates(d,s);let p=this.returnSequences?u:c;return this.returnState?[p].concat(d):p})}getInitialState(e){return j(()=>{let t=Xt(e.shape);return t=ke(t,[1,2]),t=Md(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?q1(t,[1,n]):t):this.cell.stateSize>1?[q1(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Fr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let s=t.cell,r=yr(s,n);return new e(Object.assign(t,{cell:r}))}};Fr.className="RNN";de.registerClass(Fr);var Xd=class extends at{},cm=class extends Xd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,bn(this.units,"units"),this.activation=$o(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ft(e.kernelRegularizer),this.recurrentRegularizer=Ft(e.recurrentRegularizer),this.biasRegularizer=Ft(e.biasRegularizer),this.kernelConstraint=on(e.kernelConstraint),this.recurrentConstraint=on(e.recurrentConstraint),this.biasConstraint=on(e.biasConstraint),this.dropout=Vu([1,No([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Vu([1,No([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=At(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{if(e=e,e.length!==2)throw new q(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Do({ones:()=>bs(e),rate:this.dropout,training:s})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Do({ones:()=>bs(n),rate:this.recurrentDropout,training:s}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=Dr(L(e,a),this.kernel.read()):r=Dr(e,this.kernel.read()),this.bias!=null&&(r=mr(r,this.bias.read())),o!=null&&(n=L(n,o));let i=ue(r,Dr(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ro(this.activation),useBias:this.useBias,kernelInitializer:Bt(this.kernelInitializer),recurrentInitializer:Bt(this.recurrentInitializer),biasInitializer:Bt(this.biasInitializer),kernelRegularizer:It(this.kernelRegularizer),recurrentRegularizer:It(this.recurrentRegularizer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),kernelConstraint:an(this.kernelConstraint),recurrentConstraint:an(this.recurrentConstraint),biasConstraint:an(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};cm.className="SimpleRNNCell";de.registerClass(cm);var Fy=class extends Fr{constructor(e){e.cell=new cm(e);super(e)}call(e,t){return j(()=>{this.cell.dropoutMask!=null&&(ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};Fy.className="SimpleRNN";de.registerClass(Fy);var dm=class extends Xd{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new q("GRUCell does not support reset_after parameter set to true.");this.units=e.units,bn(this.units,"units"),this.activation=$o(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=$o(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ft(e.kernelRegularizer),this.recurrentRegularizer=Ft(e.recurrentRegularizer),this.biasRegularizer=Ft(e.biasRegularizer),this.kernelConstraint=on(e.kernelConstraint),this.recurrentConstraint=on(e.recurrentConstraint),this.biasConstraint=on(e.biasConstraint),this.dropout=Vu([1,No([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Vu([1,No([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=At(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{if(e=e,e.length!==2)throw new q(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Do({ones:()=>bs(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Do({ones:()=>bs(s),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=L(e,r[0]));let c=Dr(e,this.kernel.read());this.useBias&&(c=mr(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=L(s,a[0]));let u=this.recurrentKernel.read(),[d,p]=xn(u,[2*this.units,this.units],u.rank-1),h=Dr(s,d),[f,m,g]=xn(c,3,c.rank-1),[y,A]=xn(h,2,h.rank-1);o=this.recurrentActivation.apply(ue(f,y)),i=this.recurrentActivation.apply(ue(m,A));let x=Dr(L(i,s),p);l=this.activation.apply(ue(g,x));let b=ue(L(o,s),L(ue(1,_t(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ro(this.activation),recurrentActivation:Ro(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Bt(this.kernelInitializer),recurrentInitializer:Bt(this.recurrentInitializer),biasInitializer:Bt(this.biasInitializer),kernelRegularizer:It(this.kernelRegularizer),recurrentRegularizer:It(this.recurrentRegularizer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),kernelConstraint:an(this.kernelConstraint),recurrentConstraint:an(this.recurrentConstraint),biasConstraint:an(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};dm.className="GRUCell";de.registerClass(dm);var Oy=class extends Fr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new dm(e);super(e)}call(e,t){return j(()=>{this.cell.dropoutMask!=null&&(ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Oy.className="GRU";de.registerClass(Oy);var Kd=class extends Xd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,bn(this.units,"units"),this.activation=$o(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=$o(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Ft(e.kernelRegularizer),this.recurrentRegularizer=Ft(e.recurrentRegularizer),this.biasRegularizer=Ft(e.biasRegularizer),this.kernelConstraint=on(e.kernelConstraint),this.recurrentConstraint=on(e.recurrentConstraint),this.biasConstraint=on(e.biasConstraint),this.dropout=Vu([1,No([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Vu([1,No([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=At(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends Qs{apply(i,l){let c=r.apply([a]),u=new Uf().apply([a]),d=r.apply([a*2]);return aw(aw(c,u),d)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return j(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new q(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Do({ones:()=>bs(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Do({ones:()=>bs(s),rate:this.recurrentDropout,training:n,count:4}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,c,u;0<this.dropout&&this.dropout<1&&(e=L(e,a[0]));let d=Dr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=L(s,o[0])),d=ue(d,Dr(s,this.recurrentKernel.read())),this.useBias&&(d=mr(d,this.bias.read()));let[p,h,f,m]=xn(d,4,d.rank-1);i=this.recurrentActivation.apply(p),l=this.recurrentActivation.apply(h),c=ue(L(l,r),L(i,this.activation.apply(f))),u=this.recurrentActivation.apply(m);let g=L(u,this.activation.apply(c));return[g,g,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ro(this.activation),recurrentActivation:Ro(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Bt(this.kernelInitializer),recurrentInitializer:Bt(this.recurrentInitializer),biasInitializer:Bt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:It(this.kernelRegularizer),recurrentRegularizer:It(this.recurrentRegularizer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),kernelConstraint:an(this.kernelConstraint),recurrentConstraint:an(this.recurrentConstraint),biasConstraint:an(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Kd.className="LSTMCell";de.registerClass(Kd);var My=class extends Fr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Kd(e);super(e)}call(e,t){return j(()=>{this.cell.dropoutMask!=null&&(ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};My.className="LSTM";de.registerClass(My);var pm=class extends Xd{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return j(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){ny(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{ll(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return Object.assign({},e,s)}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(yr(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return sy(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}ry(t)}};pm.className="StackedRNNCells";de.registerClass(pm);function Do(e){let{ones:t,rate:n,training:s=!1,count:r=1}=e,a=()=>iw(t(),n),o=()=>Ld(a,t,s);return!r||r<=1?An(o().clone()):Array(r).fill(void 0).map(o).map(l=>An(l.clone()))}var uB=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,s=Object.getOwnPropertySymbols(e);r<s.length;r++)t.indexOf(s[r])<0&&Object.prototype.propertyIsEnumerable.call(e,s[r])&&(n[s[r]]=e[s[r]]);return n},dk=class extends Fr{constructor(e){if(e.unroll)throw new Ve("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Ve("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Jt({ndim:5})]}call(e,t){return j(()=>{if(this.cell.dropoutMask!=null&&(ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new q("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return j(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Xt(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){j(()=>{if(!this.stateful)throw new sa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Xt(r)):this.states_=[Xt(r)];else if(e==null)ee(this.states_),this.keptStates!=null&&(ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Xt(r)):this.states_[0]=Xt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):ee(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!v.arraysEqual(i.shape,l))throw new q(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>An(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],c=e[i?4:3],u=Ar(l,s[0],r,a[0],o[0]),d=Ar(c,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,u,d]:[u,d,n]]}};dk.className="ConvRNN2D";var hm=class extends Kd{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t}));this.filters=t,bn(this.filters,"filters"),this.kernelSize=qu(n,2,"kernelSize"),this.kernelSize.forEach(i=>bn(i,"kernelSize")),this.strides=qu(s||1,2,"strides"),this.strides.forEach(i=>bn(i,"strides")),this.padding=r||"valid",zs(this.padding),this.dataFormat=a||"channelsLast",Kt(this.dataFormat),this.dilationRate=qu(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>bn(i,"dilationRate"))}build(e){var t;e=At(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;i=new(t=class extends Qs{apply(d,p){let h=l.apply([c]),f=xs([c]),m=l.apply([c*2]);return j1([h,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return j(()=>{if(e.length!==3)throw new q(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Do({ones:()=>bs(s),rate:this.dropout,training:n,count:o}));let i=this.dropoutMask,l=(te,J,Q)=>!J||!J[Q]?te:L(J[Q],te),c=l(s,i,0),u=l(s,i,1),d=l(s,i,2),p=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Do({ones:()=>bs(r),rate:this.recurrentDropout,training:n,count:o}));let h=this.recurrentDropoutMask,f=l(r,h,0),m=l(r,h,1),g=l(r,h,2),y=l(r,h,3),A=3,[x,b,w,k]=xn(this.kernel.read(),o,A),[S,N,$,F]=this.useBias?xn(this.bias.read(),o):[null,null,null,null];c=this.inputConv(c,x,S,this.padding),u=this.inputConv(u,b,N,this.padding),d=this.inputConv(d,w,$,this.padding),p=this.inputConv(p,k,F,this.padding);let[R,D,T,O]=xn(this.recurrentKernel.read(),o,A);f=this.recurrentConv(f,R),m=this.recurrentConv(m,D),g=this.recurrentConv(g,T),y=this.recurrentConv(y,O);let W=this.recurrentActivation.apply(ue(c,f)),H=this.recurrentActivation.apply(ue(u,m)),z=ue(L(H,a),L(W,this.activation.apply(ue(d,g)))),X=L(this.recurrentActivation.apply(ue(p,y)),this.activation.apply(z));return[X,X,z]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=uB(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){let r=Qr(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?mr(r,n,this.dataFormat):r}recurrentConv(e,t){return Qr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};hm.className="ConvLSTM2DCell";de.registerClass(hm);var zy=class extends dk{constructor(e){let t=new hm(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};zy.className="ConvLSTM2D";de.registerClass(zy);var fm=class extends at{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Ge(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Ld(()=>iw(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};fm.className="Dropout";de.registerClass(fm);var Ly=class extends fm{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Ly.className="SpatialDropout1D";de.registerClass(Ly);var By=class extends at{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,bn(this.units,"units"),this.activation=$o(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=on(e.kernelConstraint),this.biasConstraint=on(e.biasConstraint),this.kernelRegularizer=Ft(e.kernelRegularizer),this.biasRegularizer=Ft(e.biasRegularizer),this.activityRegularizer=Ft(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=At(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=At(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Ge(e),s=Zv(this.activation.getClassName()),r;return s!=null?r=Dr(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=Dr(n,this.kernel.read()),this.bias!=null&&(r=mr(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:Ro(this.activation),useBias:this.useBias,kernelInitializer:Bt(this.kernelInitializer),biasInitializer:Bt(this.biasInitializer),kernelRegularizer:It(this.kernelRegularizer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),kernelConstraint:an(this.kernelConstraint),biasConstraint:an(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};By.className="Dense";de.registerClass(By);var Wy=class extends at{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=At(e);for(let t of e.slice(1))if(t==null)throw new q(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],To(e,1)]}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Ge(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=tt(n,s)}return Nz(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Wy.className="Flatten";de.registerClass(Wy);var Vy=class extends at{constructor(e){super(e);this.supportsMasking=!0,this.activation=$o(e.activation)}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Ge(e);return this.activation.apply(n)})}getConfig(){let e={activation:Ro(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Vy.className="Activation";de.registerClass(Vy);var Uy=class extends at{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return j(()=>(e=Ge(e),Cz(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Uy.className="RepeatVector";de.registerClass(Uy);var Gy=class extends at{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new q("Can only specifiy one unknown dimension.");else r*=l}let o=To(e);if(a!==null){if(r===0||o%r!=0)throw new q(n);s[a]=o/r}else if(o!==r)throw new q(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Ge(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return G(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Gy.className="Reshape";de.registerClass(Gy);var Hy=class extends at{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=fr(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Jt({ndim:this.dims.length+1})]}computeOutputShape(e){e=At(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return tt(Ge(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Hy.className="Permute";de.registerClass(Hy);var jy=class extends at{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Ge(e),s=-1;return gd(tl(n,this.maskValue),s)}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Ge(e),s=-1,r=!0,a=gd(tl(n,this.maskValue),s,r);return L(n,pe(a,n.dtype))})}};jy.className="Masking";de.registerClass(jy);var qy=class extends at{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(Nt(e.inputLength))}this.inputDim=e.inputDim,bn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,bn(this.outputDim,"outputDim"),this.embeddingsInitializer=Pt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Ft(e.embeddingsRegularizer),this.activityRegularizer=Ft(e.activityRegularizer),this.embeddingsConstraint=on(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return j(()=>this.maskZero?(e=Ge(e),tl(e,nt(e))):null)}computeOutputShape(e){if(e=At(e),this.inputLength==null)return[...e,this.outputDim];let t=Nt(this.inputLength);if(t.length!==e.length-1)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Ge(e);n.dtype!=="int32"&&(n=Bf(n,"int32"));let s=ow(this.embeddings.read(),G(n,[n.size]));return G(s,At(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Bt(this.embeddingsInitializer),embeddingsRegularizer:It(this.embeddingsRegularizer),activityRegularizer:It(this.activityRegularizer),embeddingsConstraint:an(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};qy.className="Embedding";de.registerClass(qy);var hl=class extends at{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Ve}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new q("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[At(e)]),e=e,e.length<2)throw new q(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Co(t),t.length>1)throw new q(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&Co(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return j(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=No(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=Md(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let c=i.shape,u=c[0],d=c.slice(1).concat([u]),p=G(i,[u].concat(To(c.slice(1))));p=tt(p,[1,0]),p=G(p,d),n.push(p),r=!0}else if(l>1){let c=fr(1,l).concat([0]);n.push(tt(i,c)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,c=i[l-1],u=[c].concat(i.slice(0,i.length-1));a=G(tt(G(a,[-1,c]),[1,0]),u)}else if(o>1){let i=[o-1].concat(fr(0,o-1));a=tt(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=Co(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return j(()=>{if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an Array");if(!Array.isArray(e))throw new q("`inputs` should be an Array");if(t.length!==e.length)throw new q(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:qt(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=Zs(n,t[s]);return n})}},Xy=class extends hl{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ue(t,e[n]);return t})}};Xy.className="Add";de.registerClass(Xy);var Ky=class extends hl{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=L(t,e[n]);return t})}};Ky.className="Multiply";de.registerClass(Ky);var Zy=class extends hl{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ue(t,e[n]);return L(1/e.length,t)})}};Zy.className="Average";de.registerClass(Zy);var Yy=class extends hl{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Rr(t,e[n]);return t})}};Yy.className="Maximum";de.registerClass(Yy);var Jy=class extends hl{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Pu(t,e[n]);return t})}};Jy.className="Minimum";de.registerClass(Jy);var Qy=class extends hl{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new q("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(v.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new q("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return j(()=>j1(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new q("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new q("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new q(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return j(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(pe(bs(e[a]),"bool")):t[a].rank<e[a].rank?s.push(qt(t[a],-1)):s.push(t[a]);let r=kt(s,this.axis);return tf(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Qy.className="Concatenate";de.registerClass(Qy);function Zd(e,t){for(;e<0;)e+=t;return e}function cB(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Ve("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Ve("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return j(()=>{let o;if(s>r){o=s-r;let l=[];for(let c=0;c<o;++c)l.push(1);t=G(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let c=0;c<o;++c)l.push(1);e=G(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=ke(L(e,t),a[0]):i=ke(L(tt(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,c=a[1]===t.shape.length-1;i=Xe(e,t,l,c)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let c=[];for(let u=l;u<l+o;++u)c.push(u);i=dt(i,c)}return i.shape.length===1&&(i=qt(i,1)),i})}var eA=class extends hl{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Ve("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new q(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new q(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>Zd(r,e[a].shape.length)):s=[Zd(this.axes,t.shape.length),Zd(this.axes,n.shape.length)],this.normalize&&(t=tm(t,s[0]),n=tm(n,s[1])),cB(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Zd(this.axes,e.length),Zd(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Ve("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};eA.className="Dot";de.registerClass(eA);var tA=class extends at{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Ge(e);return Ld(()=>ue(Vf(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};tA.className="GaussianNoise";de.registerClass(tA);var nA=class extends at{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Ge(e);return this.rate>0&&this.rate<1?Ld(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return L(n,Vf(n.shape,1,r))},()=>n,t.training||!1):n})}};nA.className="GaussianDropout";de.registerClass(nA);var sA=class extends at{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Ge(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return j(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Ld(()=>{let r=Ge(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=ko(Fu(n),this.rate);l=Bf(l,"float32");let c=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-c*i*this.rate,d=ue(L(r,l),L(ue(l,-1),i));return ue(L(d,c),u)},()=>Ge(e),t.training||!1)}return e})}};sA.className="AlphaDropout";de.registerClass(sA);function Yd(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=V3(e,t,n,s,r,a);else if(e.rank===3)o=U3(e,t,n,s,r,a);else if(e.rank===4)o=G3(e,t,n,s,r,a);else throw new Ve(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function dB(e,t,n,s,r=.001){return j(()=>{let a=hf(e,s),o=a.mean,i=a.variance;return[Yd(e,o,i,n,t,r),o,i]})}function pB(e,t,n,s,r=.001){return j(()=>{let a=hf(e,s),o=a.mean,i=a.variance,l=[];for(let f of fr(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let c=G(o,l),u=G(i,l),d=t==null?null:G(t,l),p=n==null?null:G(n,l);return[Yd(e,c,u,p,d,r),o,i]})}function hB(e,t,n,s,r=.001){return v.arraysEqual(s.slice().sort(),fr(0,e.rank-1))?dB(e,t,n,s,r):pB(e,t,n,s,r)}var rA=class extends at{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Pt(e.betaInitializer||"zeros"),this.gammaInitializer=Pt(e.gammaInitializer||"ones"),this.movingMeanInitializer=Pt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Pt(e.movingVarianceInitializer||"ones"),this.betaConstraint=on(e.betaConstraint),this.gammaConstraint=on(e.gammaConstraint),this.betaRegularizer=Ft(e.betaRegularizer),this.gammaRegularizer=Ft(e.gammaRegularizer)}build(e){e=At(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new q(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Jt({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return j(()=>{let n=t.training==null?!1:t.training,s=Ge(e),r=s.shape,a=r.length,o=fr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=al(1,a);l[i]=r[i];let c=o.slice();c.sort();let u=!v.arraysEqual(c,fr(0,a).slice(0,a-1)),d=()=>{if(u){let y=G(this.movingMean.read(),l),A=G(this.movingVariance.read(),l),x=this.center?G(this.beta.read(),l):null,b=this.scale?G(this.gamma.read(),l):null;return Yd(s,y,A,x,b,this.epsilon)}else return Yd(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[p,h,f]=hB(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(y,A,x)=>{j(()=>{let b=1-x,w=y.read(),k=L(xe(w,A),b);y.write(xe(w,k))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Bt(this.betaInitializer),gammaInitializer:Bt(this.gammaInitializer),movingMeanInitializer:Bt(this.movingMeanInitializer),movingVarianceInitializer:Bt(this.movingVarianceInitializer),betaRegularizer:It(this.betaRegularizer),gammaRegularizer:It(this.gammaRegularizer),betaConstraint:an(this.betaConstraint),gammaConstraint:an(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};rA.className="BatchNormalization";de.registerClass(rA);var aA=class extends at{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Pt(e.betaInitializer||"zeros"),this.gammaInitializer=Pt(e.gammaInitializer||"ones"),this.betaRegularizer=Ft(e.betaRegularizer),this.gammaRegularizer=Ft(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=At(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Co(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=Ge(e),s=n.shape,r=s.length;return j(()=>{let a=!0,{mean:o,variance:i}=hf(n,this.axis,a),l=al(1,r);for(let f of this.axis)l[f]=s[f];let c=f=>f!=null&&f.shape.length!==r&&this.axis!==[r-1]?G(f,l):f,u=c(this.gamma.read()),d=c(this.beta.read()),p=[],h=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(p.push(s[f]),h.push(1)):(p.push(1),h.push(s[f]));return o=Os(o,p),i=Os(i,p),u=Os(u,h),d=Os(d,h),Yd(n,o,i,d,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Bt(this.betaInitializer),gammaInitializer:Bt(this.gammaInitializer),betaRegularizer:It(this.betaRegularizer),gammaRegularizer:It(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};aA.className="LayerNormalization";de.registerClass(aA);function fB(e,t,n){return j(()=>{if(e.rank!==4)throw new q(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new q("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=pr()),n!=="channelsLast"&&n!=="channelsFirst")throw new q(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],Ms(e,s)})}var oA=class extends at{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?pr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new q(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new q(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new q(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Jt({ndim:4})]}computeOutputShape(e){e=At(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return j(()=>fB(Ge(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};oA.className="ZeroPadding2D";de.registerClass(oA);function mm(e,t,n,s,r,a){return j(()=>{Kt(r),ew(a),zs(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=pr()),a==null&&(a="max"),e=Ty(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=Id(e,t,n,i):o=Ad(e,t,n,i),r==="channelsFirst"&&(o=tt(o,[0,3,1,2])),o})}function pk(e,t,n,s,r,a){return j(()=>{Kt(r),ew(a),zs(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=pr()),a==null&&(a="max"),e=ok(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=g1(e,t,n,i):o=e1(e,t,n,i),r==="channelsFirst"&&(o=tt(o,[0,4,1,2,3])),o})}var hk=class extends at{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new q(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(bn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new q(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);bn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,zs(this.padding),this.inputSpec=[new Jt({ndim:3})]}computeOutputShape(e){e=At(e);let t=Ar(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return j(()=>{this.invokeCallHook(e,t),e=Md(Ge(e),2);let n=this.poolingFunction(Ge(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return dt(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},iA=class extends hk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Kt(r),zs(s),mm(e,t,n,s,r,"max")}};iA.className="MaxPooling1D";de.registerClass(iA);var lA=class extends hk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Kt(r),zs(s),mm(e,t,n,s,r,"avg")}};lA.className="AveragePooling1D";de.registerClass(lA);var fk=class extends at{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new q(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];bn(this.poolSize,"poolSize"),bn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Kt(this.dataFormat),zs(this.padding),this.inputSpec=[new Jt({ndim:4})]}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ar(t,this.poolSize[0],this.padding,this.strides[0]),n=Ar(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return j(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ge(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},uA=class extends fk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Kt(r),zs(s),mm(e,t,n,s,r,"max")}};uA.className="MaxPooling2D";de.registerClass(uA);var cA=class extends fk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Kt(r),zs(s),mm(e,t,n,s,r,"avg")}};cA.className="AveragePooling2D";de.registerClass(cA);var mk=class extends at{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new q(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];bn(this.poolSize,"poolSize"),bn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Kt(this.dataFormat),zs(this.padding),this.inputSpec=[new Jt({ndim:5})]}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ar(t,this.poolSize[0],this.padding,this.strides[0]),n=Ar(n,this.poolSize[1],this.padding,this.strides[1]),s=Ar(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return j(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ge(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},dA=class extends mk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Kt(r),zs(s),pk(e,t,n,s,r,"max")}};dA.className="MaxPooling3D";de.registerClass(dA);var pA=class extends mk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Kt(r),zs(s),pk(e,t,n,s,r,"avg")}};pA.className="AveragePooling3D";de.registerClass(pA);var gk=class extends at{constructor(e){super(e);this.inputSpec=[new Jt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Ve}},hA=class extends gk{constructor(e){super(e||{})}call(e,t){return j(()=>{let n=Ge(e);return Lt(n,1)})}};hA.className="GlobalAveragePooling1D";de.registerClass(hA);var fA=class extends gk{constructor(e){super(e||{})}call(e,t){return j(()=>{let n=Ge(e);return Wn(n,1)})}};fA.className="GlobalMaxPooling1D";de.registerClass(fA);var yk=class extends at{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Kt(this.dataFormat),this.inputSpec=[new Jt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Ve}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},mA=class extends yk{call(e,t){return j(()=>{let n=Ge(e);return this.dataFormat==="channelsLast"?Lt(n,[1,2]):Lt(n,[2,3])})}};mA.className="GlobalAveragePooling2D";de.registerClass(mA);var gA=class extends yk{call(e,t){return j(()=>{let n=Ge(e);return this.dataFormat==="channelsLast"?Wn(n,[1,2]):Wn(n,[2,3])})}};gA.className="GlobalMaxPooling2D";de.registerClass(gA);var Ak=class extends at{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=yr(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},yA=class extends Ak{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=At(e),e.length<3)throw new q(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=At(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return j(()=>(e=Ge(e),ck((a,o)=>[Ge(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};yA.className="TimeDistributed";de.registerClass(yA);function mB(e){il(vz,"BidirectionalMergeMode",e)}var gB="concat",AA=class extends Ak{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=yr(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=yr(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?gB:e.mergeMode,mB(this.mergeMode),e.weights)throw new Ve("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):os(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=uk(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new q("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let c=n.map(u=>new Jt({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),o.push(...c)}if(s!=null)throw new Ve("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof gr;for(let l of a)if(l instanceof gr!==i)throw new q("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return j(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=vs(r,1));let o;return this.mergeMode==="concat"?o=j1([s,r]):this.mergeMode==="sum"?o=ue(s,r):this.mergeMode==="ave"?o=L(.5,ue(s,r)):this.mergeMode==="mul"?o=L(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){ll(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),ll(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=yr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Ve("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};AA.className="Bidirectional";de.registerClass(AA);function yB(e){return new Uu(e)}function AB(e){return new Iy(e)}function xB(e){return new vy(e)}function bB(e){return new wy(e)}function vB(e){return new ky(e)}function wB(e){return new Cy(e)}function kB(e){return new Sy(e)}function IB(e){return new um(e)}function SB(e){return new jd(e)}function CB(e){return new Ey(e)}function TB(e){return new qd(e)}function NB(e){return new Ry(e)}function EB(e){return new $y(e)}function RB(e){return new Dy(e)}function $B(e){return new _y(e)}function DB(e){return new Py(e)}function _B(e){return new Vy(e)}function PB(e){return new By(e)}function FB(e){return new fm(e)}function OB(e){return new Ly(e)}function MB(e){return new Wy(e)}function zB(e){return new Uy(e)}function LB(e){return new Gy(e)}function BB(e){return new Hy(e)}function WB(e){return new qy(e)}function VB(e){return new Xy(e)}function UB(e){return new Zy(e)}function GB(e){return new Qy(e)}function HB(e){return new Yy(e)}function jB(e){return new Jy(e)}function qB(e){return new Ky(e)}function XB(e){return new eA(e)}function KB(e){return new rA(e)}function ZB(e){return new aA(e)}function YB(e){return new oA(e)}function xA(e){return new lA(e)}function JB(e){return xA(e)}function QB(e){return xA(e)}function bA(e){return new cA(e)}function eW(e){return bA(e)}function tW(e){return bA(e)}function vA(e){return new pA(e)}function nW(e){return vA(e)}function sW(e){return vA(e)}function rW(e){return new hA(e)}function aW(e){return new mA(e)}function xk(e){return new fA(e)}function bk(e){return new gA(e)}function vk(e){return new iA(e)}function wk(e){return new uA(e)}function oW(e){return new dA(e)}function iW(e){return new Oy(e)}function lW(e){return new dm(e)}function uW(e){return new My(e)}function cW(e){return new Kd(e)}function dW(e){return new Fy(e)}function pW(e){return new cm(e)}function hW(e){return new zy(e)}function fW(e){return new hm(e)}function mW(e){return new Fr(e)}function gW(e){return new pm(e)}function yW(e){return new AA(e)}function AW(e){return new yA(e)}var xW=xk,bW=bk,vW=vk,wW=wk;function kW(e){return new tA(e)}function IW(e){return new nA(e)}function SW(e){return new sA(e)}function CW(e){return new jy(e)}var kk={};Le(kk,{MAPE:()=>MW,MSE:()=>BW,binaryAccuracy:()=>TW,binaryCrossentropy:()=>NW,categoricalAccuracy:()=>RW,categoricalCrossentropy:()=>$W,cosineProximity:()=>PW,mape:()=>zW,meanAbsoluteError:()=>FW,meanAbsolutePercentageError:()=>OW,meanSquaredError:()=>LW,mse:()=>WW,precision:()=>DW,recall:()=>_W,sparseCategoricalAccuracy:()=>EW});function TW(e,t){return iy(e,t)}function NW(e,t){return Sw(e,t)}function EW(e,t){return Cw(e,t)}function RW(e,t){return ly(e,t)}function $W(e,t){return uy(e,t)}function DW(e,t){return Iw(e,t)}function _W(e,t){return gL(e,t)}function PW(e,t){return ay(e,t)}function FW(e,t){return nm(e,t)}function OW(e,t){return Hu(e,t)}function MW(e,t){return Hu(e,t)}function zW(e,t){return Hu(e,t)}function LW(e,t){return cl(e,t)}function BW(e,t){return cl(e,t)}function WW(e,t){return cl(e,t)}var Ik={};Le(Ik,{modelFromJSON:()=>ZL});var Sk={};Le(Sk,{l1:()=>UW,l1l2:()=>VW,l2:()=>GW});function VW(e){return new Gd(e)}function UW(e){return rB(e)}function GW(e){return aB(e)}var Ck=class extends Gu{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof aa))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function gm(e,t){return e<t}function Tk(e,t){return e>t}var Nk=class extends Ck{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Ve("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=gm:this.mode==="max"?this.monitorFunc=Tk:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Tk:this.monitorFunc=gm,this.monitorFunc===gm&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===gm?1/0:-1/0}async onEpochEnd(e,t){await Eo(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function HW(e){return new Nk(e)}var jW={earlyStopping:HW},xr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(xr||(xr={}));var Ek;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Ek||(Ek={}));var wA={};function qW(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};wA[e]=n}function Rk(e){return wA[e]}function XW(e){delete wA[e]}function I(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return Gn(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(p=>Gn(p,n,s,r));let c=Gn(t.inputNames.slice(i)[0],n,s,r),u=c.dataSync();return a.type==="number"?u[0]:v.toNestedArray(c.shape,u)}let o=t.attrParams[e];return o&&o.value}function Gn(e,t,n,s){let[r,a]=ws(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[ym(r,i)]);return o!==void 0?t[ym(r,o)][a]:void 0}function KW(e,t,n){return t[ym(e,n.currentContextId)]}function oa(e,t){let[n,s,r]=ws(e);return[ym(n,t&&t.currentContextId),s,r]}function ym(e,t){return t?`${e}-${t}`:e}function ws(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function Am(e,t,n){let s=I("pad",e,t,n);if(s==="explicit"){s=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function ia(e){return e.kept?e:lr(e)}var $k={};Le($k,{json:()=>ZW});var ZW=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Dk={};Le(Dk,{json:()=>YW});var YW=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],_k={};Le(_k,{json:()=>JW});var JW=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],Pk={};Le(Pk,{json:()=>QW});var QW=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],Fk={};Le(Fk,{json:()=>eV});var eV=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],Ok={};Le(Ok,{json:()=>tV});var tV=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Mk={};Le(Mk,{json:()=>nV});var nV=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],zk={};Le(zk,{json:()=>sV});var sV=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Lk={};Le(Lk,{json:()=>rV});var rV=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],Bk={};Le(Bk,{json:()=>aV});var aV=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],Wk={};Le(Wk,{json:()=>oV});var oV=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Vk={};Le(Vk,{json:()=>iV});var iV=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],Uk={};Le(Uk,{json:()=>lV});var lV=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],Gk={};Le(Gk,{json:()=>uV});var uV=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],Hk={};Le(Hk,{json:()=>cV});var cV=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],jk={};Le(jk,{json:()=>dV});var dV=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],qk={};Le(qk,{json:()=>pV});var pV=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],Xk={};Le(Xk,{json:()=>hV});var hV=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],Kk={};Le(Kk,{json:()=>fV});var fV=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],Zk=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[$k,Dk,_k,Pk,Fk,Ok,Mk,zk,Lk,Bk,Wk,Vk,Uk,Gk,Hk,jk,qk,Xk,Kk],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((g,y)=>{let[A,,x]=oa(g),b=o[A];if(b.outputs!=null){let w=b.outputs.indexOf(x);if(w!==-1){let k=`${A}:${w}`;m.inputNames[y]=k}}m.inputs.push(b),b.children.push(m)})}),Object.keys(u).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(u).forEach(f=>{let[m]=oa(f),g=o[m];g!=null&&(g.signatureKey=u[f],l.push(g))}),Object.keys(c).length>0?Object.keys(c).forEach(f=>{let[m]=oa(f),g=o[m];g&&(g.signatureKey=c[f],i.push(g))}):i=s;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:p};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=Rk(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.substr(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=kA(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=kA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=$A(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=$A(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=SA(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=SA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=RA(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=RA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=IA(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=IA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=_A(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=_A(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=EA(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=EA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=DA(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=DA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=TA(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=TA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=NA(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=NA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=Jk(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Jk(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&s.push(u[d.name]),u),{}));let a=[],o=[];e.signature.inputArg.forEach(u=>{let[d]=oa(u.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:CA(u.type),type:"dtype"}},children:[]};p.signatureKey=u.name,a.push(p),r[d]=p}),Object.keys(r).forEach(u=>{let d=r[u];d.inputNames.forEach((p,h)=>{let[f,,m]=oa(p),g=r[f];if(g.outputs!=null){let y=g.outputs.indexOf(m);if(y!==-1){let A=`${f}:${y}`;d.inputNames[h]=A}}d.inputs.push(g),g.children.push(d)})});let l=e.ret;e.signature.outputArg.forEach(u=>{let[d,p]=oa(l[u.name]),h=r[d];h!=null&&(h.defaultOutput=p,o.push(h))});let c=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function mV(e){let t=Z().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function Yk(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):mV(e);return t?n:n.toLowerCase()}function kA(e,t,n,s=!1){let r=e[t];return r!=null?Yk(r.s,s):n}function IA(e,t,n){let s=e[t];return s?s.b:n}function SA(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function CA(e){switch(typeof e=="string"&&(e=xr[e]),e){case xr.DT_FLOAT:return"float32";case xr.DT_INT32:case xr.DT_INT64:case xr.DT_INT8:case xr.DT_UINT8:return"int32";case xr.DT_BOOL:return"bool";case xr.DT_DOUBLE:return"float32";case xr.DT_STRING:return"string";default:return null}}function Jk(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function TA(e,t,n){let s=e[t];return s&&s.type?CA(s.type):n}function NA(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>CA(r)):n}function Qk(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function EA(e,t,n){let s=e[t];return s&&s.shape?Qk(s.shape):n}function RA(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function $A(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>Yk(a,s)):n}function DA(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>Qk(r)):n}function _A(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var gV=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return Gn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Gn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return SA(this.node.rawAttrs,e,t);if(n.s!=null)return kA(this.node.rawAttrs,e,t);if(n.b!=null)return IA(this.node.rawAttrs,e,t);if(n.shape!=null)return EA(this.node.rawAttrs,e,t);if(n.type!=null)return TA(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return RA(this.node.rawAttrs,e,t);if(n.list.s!=null)return $A(this.node.rawAttrs,e,t);if(n.list.shape!=null)return DA(this.node.rawAttrs,e,t);if(n.list.b!=null)return _A(this.node.rawAttrs,e,t);if(n.list.type!=null)return NA(this.node.rawAttrs,e,t)}return t}},yV=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ue(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[ef(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[A1(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[L(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[fe(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[i1(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Qh(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[xe(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Pu(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Rr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[ea(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[kf(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},AV=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Zt(I("x",e,t,n))];case"Acos":return[G2(I("x",e,t,n))];case"Acosh":return[H2(I("x",e,t,n))];case"Asin":return[q2(I("x",e,t,n))];case"Asinh":return[X2(I("x",e,t,n))];case"Atan":return[K2(I("x",e,t,n))];case"Atan2":return[Z2(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[Y2(I("x",e,t,n))];case"Ceil":return[n1(I("x",e,t,n))];case"Complex":return[Ao(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[bd(I("x",e,t,n))];case"Cosh":return[af(I("x",e,t,n))];case"Elu":return[$u(I("x",e,t,n))];case"Erf":return[l1(I("x",e,t,n))];case"Exp":return[ys(I("x",e,t,n))];case"Expm1":return[u1(I("x",e,t,n))];case"Floor":return[_u(I("x",e,t,n))];case"Log":return[As(I("x",e,t,n))];case"Log1p":return[wd(I("x",e,t,n))];case"Imag":return[lf(I("x",e,t,n))];case"Neg":return[_t(I("x",e,t,n))];case"Reciprocal":return[v1(I("x",e,t,n))];case"Real":return[Nd(I("x",e,t,n))];case"Relu":return[cr(I("x",e,t,n))];case"Round":return[gf(I("x",e,t,n))];case"Selu":return[Af(I("x",e,t,n))];case"Sigmoid":return[ss(I("x",e,t,n))];case"Sin":return[xf(I("x",e,t,n))];case"Sign":return[k1(I("x",e,t,n))];case"Sinh":return[bf(I("x",e,t,n))];case"Softplus":return[Qi(I("x",e,t,n))];case"Sqrt":return[Cn(I("x",e,t,n))];case"Square":return[vt(I("x",e,t,n))];case"Tanh":return[Zi(I("x",e,t,n))];case"Tan":return[C1(I("x",e,t,n))];case"ClipByValue":return[rs(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[mf(I("x",e,t,n))];case"Rsqrt":return[yf(Gn(e.inputNames[0],t,n))];case"Prod":return[ff(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[vd(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[Td(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[d1(Gn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function tr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];v.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function e7(e){return!(typeof e=="number"||e.some(t=>t<0))}function Jd(e,t,n){let s=PA(e,n),r=!e7(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=PA(a.shape,s)}),!e7(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function PA(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var xV=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Ee(0),An(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),tr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,An(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return jt([],[0].concat(this.elementShape));let n=this.readMany(e);return tr(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Tn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return jt([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return tr(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),kt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,Vn(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];j(()=>{t=G(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],c=[0,l,0],u=[1,e[i],r];a[i]=G(_e(t,c,u),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},Qd=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);tr(t,r.shape,"TensorList shape mismatch: "),An(r)}),this.idTensor=Ee(0),this.maxNumElements=s,An(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Qd([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);tr(e,this.elementShape,"TensorList shape mismatch: ");let s=Jd(this.elementShape,this.tensors,e);return j(()=>{let r=this.tensors.map(a=>G(a,s));return Tn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Jd(this.elementShape,this.tensors,e),s=this.tensors.pop();return tr(s.shape,e,"TensorList shape mismatch: "),G(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(tr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");An(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);tr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=Jd(this.elementShape,this.tensors,t);return G(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);tr(this.elementShape,t.shape,"TensorList shape mismatch: "),An(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);tr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=Jd(this.elementShape,this.tensors,n);return e.length===0?jt([],[0].concat(s)):j(()=>{let r=e.map(a=>G(this.tensors[a],s));return Tn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);tr(this.elementShape,t,"TensorList shape mismatch: ");let n=Jd(this.elementShape,this.tensors,t);return this.size()===0?jt([],[0].concat(n)):j(()=>{let s=this.tensors.map(r=>G(r,n));return kt(s,0)})}};function bV(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);tr(r,t,"TensorList shape mismatch: ");let a=Vn(e);return new Qd(a,t,s)}function vV(e,t,n){return new Qd([],e,t,n)}function wV(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new Qd([],n,e.dtype,s),o=Vn(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function kV(e,t,n){let s=0,r=t.map(u=>(s+=u,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=PA(a,n),i=s===0?0:e.size/s,l=j(()=>{let u=[];e=G(e,[1,s,i]);for(let d=0;d<t.length;++d){let p=d===0?0:r[d-1],h=[0,p,0],f=[1,t[d],i];u[d]=G(_e(e,h,f),o)}return e.dispose(),u}),c=new Qd([],n,e.dtype,t.length);for(let u=0;u<l.length;u++)c.setItem(u,l[u]);return c}var IV=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),a=I("cond",e,t,n),o=I("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=I("body",e,t,n),r=I("cond",e,t,n),a=I("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(u=>u.id),l=await o[0].data();o.forEach(u=>{!u.kept&&i.indexOf(u.id)===-1&&u.dispose()});let c=a;for(;l[0];){let u=c;c=await n.functionMap[s].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let d=c.map(h=>h.id);u.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let p=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await p[0].data(),p.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return c}case"LoopCond":{let s=I("pred",e,t,n);return[ia(s)]}case"Switch":{let s=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=ia(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>Gn(r,t,n)!==void 0);if(s){let r=Gn(s,t,n);return[ia(r)]}return}case"Enter":{let s=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(s),[ia(r)]}case"Exit":{let s=I("tensor",e,t,n);return n.exitFrame(),[ia(s)]}case"NextIteration":{let s=I("tensor",e,t,n);return n.nextIteration(),[ia(s)]}case"TensorArrayV3":{let s=I("size",e,t,n),r=I("dtype",e,t,n),a=I("elementShape",e,t,n),o=I("dynamicSize",e,t,n),i=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new xV(c,r,s,a,l,o,i);return n.addTensorArray(u),[u.idTensor,Ee(1)]}case"TensorArrayWriteV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=I("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),a=I("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Ee(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=I("indices",e,t,n),r=I("tensor",e,t,n),a=I("elementShape",e,t,n),o=I("numElements",e,t,n),i=wV(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=I("elementShape",e,t,n),r=I("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=I(a,e,t,n),i=vV(s,r,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let s=I("tensorListId",e,t,n),r=I("indices",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=I("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=bV(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id),a=I("dtype",e,t,n),o=I("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=I("tensorListId",e,t,n),r=I("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("lengths",e,t,n),o=kV(s,a,r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function t7(e,t,n){let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",c=I("numArgs",e,t,n);if(a){if(i&&c!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&c!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let u=I("strides",e,t,n),d=Am(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[f,m]=I("args",e,t,n);o&&(m=f,f=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:u,pad:d,dataFormat:p,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var SV=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=I("stride",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilation",e,t,n);return[sf(I("x",e,t,n),I("filter",e,t,n),s,r,a,o)]}case"Conv2D":{let s=I("strides",e,t,n),r=Am(e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[Qr(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=t7(e,t,n);return[So.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=t7(e,t,n);return[So.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=I("outputShape",e,t,n),r=I("strides",e,t,n),a=Am(e,t,n);return[rf(I("x",e,t,n),I("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=I("strides",e,t,n),r=Am(e,t,n),a=I("dilations",e,t,n),o=I("dataFormat",e,t,n).toUpperCase();return[Ru(I("input",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,o,[a[1],a[2]])]}case"Conv3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[r1(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2],s[3]],r,a,[o[1],o[2],o[3]])]}case"AvgPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Ad(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Id(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n),o=I("includeBatchInIndex",e,t,n),{result:i,indexes:l}=uv(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,o);return[i,l]}case"AvgPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[e1(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[g1(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dilations",e,t,n),o=s[1],i=s[2],l=a[1],c=a[2];return[o1(I("x",e,t,n),I("filter",e,t,n),[o,i],r,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},CV=(e,t,n)=>{switch(e.op){case"Fill":{let s=I("shape",e,t,n),r=I("dtype",e,t,n),a=I("value",e,t,n);return[Du(s,a,r)]}case"LinSpace":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("num",e,t,n);return[nv(s,r,a)]}case"Multinomial":{let s=I("logits",e,t,n),r=I("numSamples",e,t,n),a=I("seed",e,t,n);return[cv(s,r,a)]}case"OneHot":{let s=I("indices",e,t,n),r=I("depth",e,t,n),a=I("onValue",e,t,n),o=I("offValue",e,t,n);return[Su(s,r,a,o)]}case"Ones":return[xs(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[bs(I("x",e,t,n))];case"RandomUniform":return[Fu(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("step",e,t,n);return[Ou(s,r,a,I("dtype",e,t,n))]}case"TruncatedNormal":{let s=I("shape",e,t,n),r=I("mean",e,t,n),a=I("stdDev",e,t,n),o=I("seed",e,t,n);return[If(s,r,a,I("dtype",e,t,n),o)]}case"Zeros":return[Xt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[nt(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function FA(e,t,n){let s=I("boxes",e,t,n),r=I("scores",e,t,n),a=I("maxOutputSize",e,t,n),o=I("iouThreshold",e,t,n),i=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var TV=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=FA(e,t,n),c=await $e.nonMaxSuppressionWithScoreAsync(s,r,a,o,i,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=FA(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await $e.nonMaxSuppressionPaddedAsync(s,r,a,o,i,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=FA(e,t,n);return[await $e.nonMaxSuppressionAsync(s,r,a,o,i)]}case"Where":{let s=pe(I("condition",e,t,n),"bool"),r=[await E1(s)];return s.dispose(),r}case"ListDiff":return hv(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},NV=(e,t,n)=>{switch(e.op){case"TopKV2":{let s=I("x",e,t,n),r=I("k",e,t,n),a=I("sorted",e,t,n),o=T1(s,r,a);return[o.values,o.indices]}case"Unique":{let s=I("x",e,t,n),r=Sf(s);return[r.values,r.indices]}case"UniqueV2":{let s=I("x",e,t,n),r=I("axis",e,t,n),a=Sf(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},EV=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=I("default",e,t,n);return[Gn(e.name,t,n)||s];case"Placeholder":return[Gn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[ia(c)]}case"IdentityN":return I("x",e,t,n).map(c=>ia(c));case"Snapshot":let r=I("x",e,t,n);return[ia(r)];case"Shape":return[Yt(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>Yt(c.shape));case"Size":return[Ee(I("x",e,t,n).size,"int32")];case"Rank":return[Ee(I("x",e,t,n).rank,"int32")];case"NoOp":return[Ee(1)];case"Print":let a=I("x",e,t,n),o=I("data",e,t,n),i=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let c=0;c<o.length;c++)console.log(Array.prototype.slice.call(o[c].dataSync()).slice(0,l));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},RV=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Ee(0),this.tensorMap=new Map,An(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ee(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),j(()=>{let s=Vn(t),r=n.length,a=s.length;v.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];An(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return j(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return Tn(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},$V=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),a=I("valueDType",e,t,n),o=new RV(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},DV=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[$e.resizeBilinear(s,[r[0],r[1]],a,o)]}case"ResizeNearestNeighbor":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[$e.resizeNearestNeighbor(s,[r[0],r[1]],a,o)]}case"CropAndResize":{let s=I("image",e,t,n),r=I("boxes",e,t,n),a=I("boxInd",e,t,n),o=I("cropSize",e,t,n),i=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[$e.cropAndResize(s,r,a,o,i,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},_V=(e,t,n)=>{switch(e.op){case"Equal":return[gs(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[tl(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[as(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[ko(I("a",e,t,n),I("b",e,t,n))];case"Less":return[uf(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[Io(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[Zs(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[kd(I("a",e,t,n))];case"LogicalOr":return[pf(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[Pn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},PV=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Xe(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[Q3(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[tt(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=r==="prelu",i=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[So.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:r,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},FV=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Yi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[Yi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[p1(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[nl(I("x",e,t,n))];case"LogSoftmax":return[df(I("x",e,t,n))];case"SparseToDense":return[R1(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},OV=(e,t,n)=>{switch(e.op){case"Max":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Wn(I("x",e,t,n),o,i)]}case"Mean":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Lt(I("x",e,t,n),o,i)]}case"Min":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Sd(I("x",e,t,n),o,i)]}case"Sum":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[ke(I("x",e,t,n),o,i)]}case"All":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[tf(I("x",e,t,n),o,i)]}case"Any":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[gd(I("x",e,t,n),o,i)]}case"ArgMax":{let o=I("axis",e,t,n);return[Fs(I("x",e,t,n),o)]}case"ArgMin":{let o=I("axis",e,t,n);return[j2(I("x",e,t,n),o)]}case"Prod":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[ff(I("x",e,t,n),o,i)]}case"Cumsum":{let o=I("axis",e,t,n),i=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[of(I("x",e,t,n),o,i,l)]}case"Bincount":let s=I("x",e,t,n),r=I("weights",e,t,n),a=I("size",e,t,n);return[t1(s,r,a)];case"DenseBincount":{let o=I("x",e,t,n),i=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[Y3(o,i,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},MV=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=I("n",e,t,n),r=I("axis",e,t,n),a=I("tensors",e,t,n);return a=a.slice(0,s),[kt(a,r)]}case"Gather":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[Ji(s,pe(r,"int32"),0)]}case"GatherV2":{let s=I("axis",e,t,n),r=I("batchDims",e,t,n),a=I("x",e,t,n),o=I("indices",e,t,n);return[Ji(a,pe(o,"int32"),s,r)]}case"Reverse":{let s=I("dims",e,t,n),r=[];for(let o=0;o<s.length;o++)s[o]&&r.push(o);let a=I("x",e,t,n);return[vs(a,r)]}case"ReverseV2":{let s=I("axis",e,t,n),r=I("x",e,t,n);return[vs(r,s)]}case"Slice":{let s=I("begin",e,t,n),r=I("size",e,t,n);return[_e(I("x",e,t,n),s,r)]}case"StridedSlice":{let s=I("begin",e,t,n),r=I("end",e,t,n),a=I("strides",e,t,n),o=I("beginMask",e,t,n),i=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),c=I("newAxisMask",e,t,n),u=I("shrinkAxisMask",e,t,n),d=I("x",e,t,n);return[S1(d,s,r,a,o,i,l,c,u)]}case"Pack":return j(()=>{let s=I("axis",e,t,n),r=I("tensors",e,t,n),a=r[0].shape,o=dt(r[0]).shape,i=r.map(l=>{let c=v.arraysEqual(l.shape,a);if(!c&&!v.arraysEqual(dt(l).shape,o))throw new Error("the input tensors shape does not match");return c?l:G(l,a)});return[Tn(i,s)]});case"Unpack":{let s=I("axis",e,t,n),r=I("tensor",e,t,n);return Vn(r,s)}case"Tile":{let s=I("reps",e,t,n);return[Os(I("x",e,t,n),s)]}case"Split":case"SplitV":{let s=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),a=I("x",e,t,n);return xn(a,r,s)}case"ScatterNd":{let s=I("indices",e,t,n),r=I("values",e,t,n),a=I("shape",e,t,n);return[yv(s,r,a)]}case"GatherNd":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[Av(s,r)]}case"SparseToDense":{let s=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),a=I("sparseValues",e,t,n),o=I("defaultValue",e,t,n);return[R1(s,a,r,a.dtype===o.dtype?o:pe(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},zV=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:o}=Dd.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[s,r,a,o]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=Dd.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[Dd.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[Dd.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},LV=(e,t,n)=>{switch(e.op){case"FFT":return[Rd(I("x",e,t,n))];case"IFFT":return[zu(I("x",e,t,n))];case"RFFT":return[$d(I("x",e,t,n))];case"IRFFT":return[wf(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},BV=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=$f.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=$f.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[$f.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},WV=(e,t,n)=>{switch(e.op){case"Cast":return[pe(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let s=I("axis",e,t,n);return[qt(I("x",e,t,n),s)]}case"Squeeze":{let s=I("axis",e,t,n);return[dt(I("x",e,t,n),s)]}case"Reshape":return[G(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[y1(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[Ms(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let s=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[Cd(I("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=I("blockShape",e,t,n),r=I("crops",e,t,n);return[xd(I("x",e,t,n),s,r)]}case"DepthToSpace":{let s=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[a1(I("x",e,t,n),s,r)]}case"BroadcastTo":return[Nu(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[H3(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function n7(e,t,n,s){let r=((a,o,i)=>{switch(a.category){case"arithmetic":return j(()=>yV(a,o,i));case"basic_math":return j(()=>AV(a,o,i));case"control":return IV(a,o,i);case"convolution":return j(()=>SV(a,o,i));case"creation":return j(()=>CV(a,o,i));case"dynamic":return TV(a,o,i);case"evaluation":return j(()=>NV(a,o,i));case"image":return j(()=>DV(a,o,i));case"graph":return j(()=>EV(a,o,i));case"logical":return j(()=>_V(a,o,i));case"matrices":return j(()=>PV(a,o,i));case"normalization":return j(()=>FV(a,o,i));case"reduction":return j(()=>OV(a,o,i));case"slice_join":return j(()=>MV(a,o,i));case"sparse":return j(()=>zV(a,o,i));case"spectral":return j(()=>LV(a,o,i));case"string":return j(()=>BV(a,o,i));case"transformation":return j(()=>WV(a,o,i));case"hash_table":return $V(a,o,i,s);case"custom":let l=Rk(a.op);if(l&&l.customExecutor)return l.customExecutor(new gV(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var s7=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function r7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,c=Object.keys(e).map(p=>ws(p)[0]),u=[];s!=null&&(u=s.map(p=>ws(p.name)[0]));let d=[...t];for(;d.length>0;){let p=d.pop();if((a7(p)||jV(p)||qV(p))&&o==null&&(o=p,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(p.name),n[p.name]==null&&c.indexOf(p.name)===-1&&u.indexOf(p.name)===-1){if(p.inputs.length===0){a.push(p.name);continue}p.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function VV(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(u=>ws(u)[0]).map(u=>e.nodes[u]),i=e.initNodes;o.forEach(u=>{s.has(u.name)&&a.push(u)}),e.weights.forEach(u=>{s.has(u.name)&&a.push(u)}),i!=null&&i.forEach(u=>{s.has(u.name)&&a.push(u)});let l=new Set,c=[];for(;a.length>0;){let u=a.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(d=>{!l.has(d.name)&&s.has(d.name)&&d.inputs.every(p=>l.has(p.name))&&a.push(d)})}return c}var UV=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],GV=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],HV=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function a7(e){return UV.indexOf(e.op)>=0}function jV(e){return GV.indexOf(e.op)>=0}function qV(e){return HV.indexOf(e.op)>=0}var OA=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new OA(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=r7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return VV(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(u=>this.graph.nodes[ws(u)[0]]),r=t.map(u=>ws(u)[0]),a=r.map(u=>this.graph.nodes[u]);a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},c={};return j(()=>{let u=new s7(this.weightMap,l,c,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,g]=ws(f),y=[];y[g]=e[f],d[m]=y});let p=this.getFrozenTensorIds(d),h={};for(let f=0;f<i.length;f++){let m=i[f];if(!d[m.name]){let g=n7(m,d,u,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);d[m.name]=g,this.checkTensorForDisposal(m.name,m,d,u,p,r,h)}}return this.parent==null&&u.dispose(p),t.map(f=>Gn(f,d,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=KW(i.name,n,s);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!r.has(c.id)){let u=o[c.id];u===1?(c.dispose(),delete o[c.id]):u!=null&&o[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new s7(this.weightMap,s,r,this.functionExecutorMap),o=await this.executeWithControlFlow(e,a,t,n),i=t.map(d=>Gn(d,o,a)),l=i.map(d=>d.id),c=Object.keys(e).map(d=>e[d].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(o).forEach(d=>{o[d].forEach(h=>{h&&!h.kept&&!h.isDisposed&&!u.has(h.id)&&h.dispose()})}),this.parent==null&&a.dispose(u),i}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(A=>this.graph.nodes[ws(A)[0]]),o=n.map(A=>ws(A)[0]),i=o.map(A=>this.graph.nodes[A]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:d}=r7(e,i,this.weightMap,this._initNodes),p=[...a,...this.graph.weights,...this._initNodes||[]].map(A=>({node:A,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(A=>{let[x,b]=ws(A),w=[];w[b]=e[A],h[x]=w});let f={},m=this.getFrozenTensorIds(h),g={};for(;p.length>0;){let A=this.processStack(a,p,t,h,g,m,o,f,l);await Promise.all(A)}u==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=i.filter(A=>!a7(A)&&!Gn(A.name,h,t)).map(A=>A.name);if(y.length>0){let A="";throw u!=null&&(A=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${c}]. ${A}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let d="";if(u.node.op==="Enter"&&I("isConstant",u.node,s,n)&&([d]=oa(u.node.name,n)),s[u.node.name]==null){let p=n7(u.node,s,n,this._resourceManager);d||([d]=oa(u.node.name,n));let h=n.currentContext;v.isPromise(p)?c.push(p.then(f=>(s[d]=f,n.currentContext=h,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l),f))):(s[d]=p,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l))}else this.processChildNodes(u.node,t,n,s,r,l)}return c}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=oa(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!Gn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!Gn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=ws(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);v.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=ws(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=ws(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},XV=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},KV="?tfjs-format=file",ZV="model.json",o7=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new XV}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=ts.browserHTTPRequest(e,this.loadOptions);else{let t=ts.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(ts.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=ts.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new OA(Zk.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=Zk.Instance.transformGraph(e.modelInitializer);this.initializer=new OA(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=ts.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ke)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function ot(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${ZV}${KV}`);let n=new o7(e,t);return await n.load(),n}var YV="3.9.0",i7={};Le(i7,{CSVDataset:()=>x7,Dataset:()=>Ku,FileDataSource:()=>C7,TextLineDataset:()=>g7,URLDataSource:()=>T7,array:()=>bU,csv:()=>$U,func:()=>DU,generator:()=>_U,microphone:()=>FU,version_data:()=>OU,webcam:()=>PU,zip:()=>vU});var JV=Qo(w5()),QV=Qo(w5());function eU(e,t){return xm(e,t)}function xm(e,t,n=new Map,s=new Set){if(e==null)return null;if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Xu(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=xm(i,t,n,s);a[o]=l}return s.delete(e),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function tU(e,t=u7){return l7(e,t)}function l7(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Xu(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(c=>c[o]),l=l7(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function u7(e){return e===null?null:Xu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function c7(e,t){let n=new Map;xm(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(v.isPromise(a)){let o=await a;n.set(r,o)}}return xm(e,t,n)}function Xu(e){let t=!1;if(Z().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=k5();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ke)&&!(e instanceof Promise)&&!t)}function nU(e){return e==null||sU(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ke||v.isTypedArray(e)}function sU(e){return e===null||typeof e!="object"&&typeof e!="function"}function rU(e){return eU(e,aU)}function aU(e){return e instanceof Ke?{value:e.clone(),recurse:!1}:Xu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var d7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},MA=class extends d7{constructor(){super(MA.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};MA.INITIAL_CAPACITY=32;function p7(e){return new lU(e)}function zA(e){return new uU(e)}function oU(e,t){return new f7(e,t)}function iU(e,t=_o.FAIL){return new AU(e,t)}var vn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new gU(this,e)}filter(e){return new fU(this,e)}map(e){return new mU(this,e)}mapAsync(e){return new h7(this,e)}serialMapAsync(e){return new h7(this,e).serial()}flatmap(e){return new yU(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new hU(this,e,t)}columnMajorBatch(e,t=!0,n=u7){return this.rowMajorBatch(e,t).map(r=>tU(r,n))}concatenate(e,t){return new f7(p7([this,e]),t)}take(e){return e<0||e==null?this:new pU(this,e)}skip(e){return e<0||e==null?this:new dU(this,e)}prefetch(e){return new m7(this,e)}shuffle(e,t){return new xU(this,e,t)}serial(){return new cU(this)}},lU=class extends vn{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:rU(e),done:!1}}},uU=class extends vn{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},cU=class extends vn{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},dU=class extends vn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;ee(e.value)}return this.upstream.next()}},pU=class extends vn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},hU=class extends vn{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},fU=class extends vn{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;ee(e.value)}}},mU=class extends vn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=or.getTensorsInContainer(e.value),n=this.transform(e.value),s=or.getTensorsInContainer(n);for(let r of t)or.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},gU=class extends vn{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},h7=class extends vn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=or.getTensorsInContainer(e.value),n=await this.transform(e.value),s=or.getTensorsInContainer(n);for(let r of t)or.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},LA=class extends vn{constructor(){super();this.outputQueue=new MA,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},yU=class extends LA{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=or.getTensorsInContainer(e.value),n=this.transform(e.value),s=or.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)or.isTensorInList(r,s)||r.dispose();return!0}},f7=class extends vn{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},_o;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(_o||(_o={}));var AU=class extends vn{constructor(e,t=_o.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof vn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await c7(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case _o.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case _o.SHORTEST:return{value:null,done:!0};case _o.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},m7=class extends vn{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new d7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},xU=class extends m7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=QV.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Ku=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),ks(async()=>(await n.iterator()).columnMajorBatch(e,t,wU),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,ks(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,ks(async()=>(await t.iterator()).filter(s=>j(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return ks(async()=>(await t.iterator()).map(n=>j(()=>e(n))),this.size)}mapAsync(e){let t=this;return ks(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return ks(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,ks(async()=>{let s=zA(async()=>({value:await t.iterator(),done:!1}));return oU(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,ks(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=JV.alea(t||v.now().toString());return ks(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,ks(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Ku.MAX_BUFFER_SIZE=1e4;function ks(e,t=null){return new class extends Ku{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function bU(e){return ks(async()=>p7(e),e.length)}function vU(e){if(!Xu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return ks(async()=>{let n=await c7(e,s=>{if(s instanceof Ku)return{value:s.iterator(),recurse:!1};if(Xu(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return iU(n,_o.SHORTEST)},t)}function wU(e){if(e===null)return null;let t=e[0];return nU(t)?{value:kU(e),recurse:!1}:{value:null,recurse:!0}}function kU(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ke?Tn(e):jt(e)}var g7=class extends Ku{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},bm='"',ep=Symbol("out"),y7=Symbol("field"),vm=Symbol("quote"),BA=Symbol("quoteafterquote"),A7=Symbol("quoteinquote"),x7=class extends Ku{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new g7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let c=Number(i);if(isNaN(c))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=c;else switch(o.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(i);break;default:l=c}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=ep;for(let o=0;o<r;o++)switch(a){case ep:switch(e.charAt(o)){case bm:s=o+1,a=vm;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=ep;break;default:a=y7,s=o;break}break;case y7:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=ep,s=o+1;break;default:}break;case vm:switch(e.charAt(o)){case bm:a=BA;break;default:}break;case BA:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=ep,s=o+1;break;case bm:a=vm;break;default:a=A7;break}break;case A7:switch(e.charAt(o)){case bm:a=vm;break;default:}break;default:}if(a===BA?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},b7=class extends vn{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(Z().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new b7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),jt(n,t)}},v7=class extends vn{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Yt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=dr([a,r,i,o],[1,4])}else this.cropBox=dr([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(Z().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new v7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Ks.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return j(()=>{let t=qt(pe(e,"float32"),0),n;n=$e.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return G(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},w7=class{},k7=class extends vn{split(e){return new IU(this,e)}},IU=class extends k7{constructor(e,t){super();this.upstream=e,this.impl=new SU(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},SU=class extends LA{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},CU=class extends vn{decodeUTF8(){return new TU(this)}},TU=class extends k7{constructor(e){super();this.upstream=e,this.impl=new NU(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},NU=class extends LA{constructor(e){super();if(this.upstream=e,Z().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=k5();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Z().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},I7=class extends CU{constructor(e,t={}){super();this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(Z().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function EU(e,t={}){let n,s;typeof e=="string"?n=e:(n=e.url,s=RU(e));let r=await v.fetch(n,s);if(r.ok){let a=new Uint8Array(await r.arrayBuffer());return new I7(a,t)}else throw new Error(r.statusText)}var RU=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function S7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var C7=class extends w7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(S7(this.input)&&Z().get("IS_NODE")){let e=Vl("fs");this.input=e.readFileSync(this.input.substr(7))}return new I7(this.input,this.options)}},T7=class extends w7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return S7(this.url)?new C7(this.url,this.fileOptions).iterator():EU(this.url,this.fileOptions)}};function $U(e,t={}){return new x7(new T7(e),t)}function DU(e){let t=zA(e);return ks(async()=>t)}function _U(e){return ks(async()=>{let t=await e();return zA(()=>t.next())})}async function PU(e,t){return v7.create(e,t)}async function FU(e){return b7.create(e)}var OU="3.9.0";function Ne(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var MU=Ys.whereImpl,WA=class extends Ul{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Bc(this,ns())}nextDataId(){return WA.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,Z().get("IS_NODE")&&E.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return E.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}makeOutput(e,t,n){let s=this.write(e,t,n);return ns().makeTensorFromDataId(s,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Ne([e],"where");let t=this.readSync(e.dataId);return MU(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};WA.nextDataId=0;var VA={};Le(VA,{addImpl:()=>E7,bincountImpl:()=>GA,bincountReduceImpl:()=>R7,ceilImpl:()=>$7,concatImpl:()=>HA,equalImpl:()=>D7,expImpl:()=>P7,expm1Impl:()=>O7,floorImpl:()=>M7,gatherNdImpl:()=>z7,gatherV2Impl:()=>L7,greaterEqualImpl:()=>W7,greaterImpl:()=>B7,lessEqualImpl:()=>U7,lessImpl:()=>V7,linSpaceImpl:()=>G7,logImpl:()=>H7,maxImpl:()=>j7,maximumImpl:()=>q7,minimumImpl:()=>X7,multiplyImpl:()=>jA,negImpl:()=>K7,notEqualImpl:()=>Z7,prodImpl:()=>Y7,rangeImpl:()=>XA,rsqrtImpl:()=>J7,sigmoidImpl:()=>SG,simpleAbsImpl:()=>N7,sliceImpl:()=>Im,sparseFillEmptyRowsImpl:()=>eI,sparseReshapeImpl:()=>tI,sparseSegmentReductionImpl:()=>KA,sqrtImpl:()=>NG,squaredDifferenceImpl:()=>nI,stridedSliceImpl:()=>sI,stringNGramsImpl:()=>rI,stringSplitImpl:()=>aI,stringToHashBucketFastImpl:()=>oI,subImpl:()=>iI,tileImpl:()=>lI,topKImpl:()=>cI,transposeImpl:()=>qA,uniqueImpl:()=>dI});function N7(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var zU=e=>{let{x:t}=e.inputs,n=e.backend;Ne(t,"abs");let s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=N7(r),n.makeOutput(s,t.shape,"float32")},LU={kernelName:ni,backendName:"cpu",kernelFunc:zU};function Qt(e){return(t,n,s,r,a)=>{let o=E.assertAndGetBroadcastShape(t,n),i=o.length,l=v.computeStrides(o),c=v.sizeFromShape(o),u=v.getTypedArrayFromDType(a,c),d=t.length,p=n.length,h=v.computeStrides(t),f=v.computeStrides(n),m=E.getBroadcastDims(t,o),g=E.getBroadcastDims(n,o);if(m.length+g.length===0)for(let y=0;y<u.length;++y)u[y]=e(s[y%s.length],r[y%r.length]);else for(let y=0;y<u.length;++y){let A=v.indexToLoc(y,i,l),x=A.slice(-d);m.forEach(S=>x[S]=0);let b=v.locToIndex(x,d,h),w=A.slice(-p);g.forEach(S=>w[S]=0);let k=v.locToIndex(w,p,f);u[y]=e(s[b],r[k])}return[u,o]}}function Is(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var BU={kernelName:Gc,backendName:"cpu",kernelFunc:Is};function wm(e,t,n="float32"){if(n==="complex64"){let r=wm(e,t,"float32"),a=wm(e,t,"float32");return Is({inputs:{real:r,imag:a},backend:e})}let s=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function Or(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var WU={kernelName:Ba,backendName:"cpu",kernelFunc:Or};function fl(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var VU={kernelName:Qc,backendName:"cpu",kernelFunc:fl};function Po(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Or({inputs:{x:r},backend:n});let o=wm(n,r.shape,r.dtype),i=Po({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Is({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=fl({inputs:{input:r},backend:n}),i=Po({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Or({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=v.toTypedArray([0],r.dtype),[l,c]=Qt((u,d)=>u!==d?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var UU={kernelName:Ca,backendName:"cpu",kernelFunc:Po};function wn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Ne([o,i],e);let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=o.dtype==="string"?E.fromUint8ToStringArray(c):c,p=o.dtype==="string"?E.fromUint8ToStringArray(u):u,h=s||o.dtype,[f,m]=t(o.shape,i.shape,d,p,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let c=Po({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),d=u.complexTensorInfos.real,p=u.complexTensorInfos.imag,h=l.data.get(d.dataId).values,f=l.data.get(p.dataId).values,m=Po({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),y=g.complexTensorInfos.real,A=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,b=l.data.get(A.dataId).values,[w,k,S]=n(o.shape,i.shape,h,f,x,b),N=l.makeTensorInfo(S,"float32",w),$=l.makeTensorInfo(S,"float32",k),F=Is({inputs:{real:N,imag:$},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(N),l.disposeIntermediateTensorInfo($),F}else{let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=s||o.dtype,[p,h]=t(o.shape,i.shape,c,u,d);return l.makeTensorInfo(h,d,p)}}}function UA(e){return(t,n,s,r,a,o)=>{let i=E.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(i),c=i.length,u=v.computeStrides(i),d=v.getTypedArrayFromDType("float32",l),p=v.getTypedArrayFromDType("float32",l),h=E.getBroadcastDims(t,i),f=E.getBroadcastDims(n,i),m=E.mergeRealAndImagArrays(s,r),g=E.mergeRealAndImagArrays(a,o),y=t.length,A=v.computeStrides(t),x=n.length,b=v.computeStrides(n);if(h.length+f.length===0)for(let w=0;w<d.length;w++){let k=w%m.length,S=w%g.length,N=e(m[k*2],m[k*2+1],g[S*2],g[S*2+1]);d[w]=N.real,p[w]=N.imag}else for(let w=0;w<d.length;w++){let k=v.indexToLoc(w,c,u),S=k.slice(-y);h.forEach(D=>S[D]=0);let N=v.locToIndex(S,y,A),$=k.slice(-x);f.forEach(D=>$[D]=0);let F=v.locToIndex($,x,b),R=e(m[N*2],m[N*2+1],g[F*2],g[F*2+1]);d[w]=R.real,p[w]=R.imag}return[d,p,i]}}var E7=Qt((e,t)=>e+t),GU=UA((e,t,n,s)=>({real:e+n,imag:t+s})),tp=wn(qr,E7,GU),HU={kernelName:qr,backendName:"cpu",kernelFunc:tp};function GA(e,t,n,s,r){let a=v.sizeFromShape(s),o=v.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function R7(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=We([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let c=e.get(i,l);if(c<0)throw new Error("Input x must be non-negative!");c>=n||(s?o.set(1,i,c):t.size>0?o.set(o.get(i,c)+t.get(i,l),i,c):o.set(o.get(i,c)+1,i,c))}return o}function Fo(e){return(t,n,s)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function xt(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ne(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=v.sizeFromShape(o.shape),u=n||o.dtype,d=v.getArrayFromDType(u,c);for(let p=0;p<c;++p)d[p]=t(l[p],r);return i.makeTensorInfo(o.shape,u,d)}}function Zu(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ne(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=n||o.dtype,u=t(l,c,r);return i.makeTensorInfo(o.shape,c,u)}}var $7=Fo(e=>Math.ceil(e)),jU=Zu(Ta,$7),qU={kernelName:Ta,backendName:"cpu",kernelFunc:jU};function HA(e,t,n,s){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=v.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?E.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let c=0;c<o.shape[0];++c){let u=c*t[1]+a;for(let d=0;d<o.shape[1];++d)r[u+d]=i[l++]}a+=o.shape[1]})}return r}var D7=Qt((e,t)=>e===t?1:0),_7=wn(li,D7,null,"bool"),XU={kernelName:li,backendName:"cpu",kernelFunc:_7},P7=Fo(e=>Math.exp(e)),F7=Zu(Fa,P7),KU={kernelName:Fa,backendName:"cpu",kernelFunc:F7},O7=Fo(e=>Math.expm1(e)),ZU=Zu(ci,O7),YU={kernelName:ci,backendName:"cpu",kernelFunc:ZU},M7=Fo(e=>Math.floor(e)),JU=Zu(Oa,M7),QU={kernelName:Oa,backendName:"cpu",kernelFunc:JU};function z7(e,t,n,s,r,a,o,i,l){let c=We([s,a],n);for(let u=0;u<s;u++){let d=[],p=0;for(let h=0;h<r;h++){let f=e[u*r+h];p+=f*o[h],d.push(f)}if(p<0||p>=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let h=0;h<a;h++)c.values[u*a+h]=t.get(...t.indexToLoc(p*a+h))}return c}function L7(e,t,n){let s=We(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],c=t.locToIndex([i,l]);o[2]=t.values[c];let u=e.locToIndex(o);s.values[r]=e.values[u]}return s}var B7=Qt((e,t)=>e>t?1:0),eG=wn(fi,B7,null,"bool"),tG={kernelName:fi,backendName:"cpu",kernelFunc:eG},W7=Qt((e,t)=>e>=t?1:0),nG=wn(La,W7,null,"bool"),sG={kernelName:La,backendName:"cpu",kernelFunc:nG},V7=Qt((e,t)=>e<t?1:0),rG=wn(gi,V7,null,"bool"),aG={kernelName:gi,backendName:"cpu",kernelFunc:rG},U7=Qt((e,t)=>e<=t?1:0),oG=wn(yi,U7,null,"bool"),iG={kernelName:yi,backendName:"cpu",kernelFunc:oG};function G7(e,t,n){let s=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var H7=Fo(e=>Math.log(e)),lG=Zu(Wa,H7),uG={kernelName:Wa,backendName:"cpu",kernelFunc:lG};function j7(e,t,n,s){let r=v.getTypedArrayFromDType(s,v.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let c=e[o+l];(Number.isNaN(c)||c>i)&&(i=c)}r[a]=i}return r}var q7=Qt((e,t)=>Math.max(e,t)),cG=wn(Ua,q7),dG={kernelName:Ua,backendName:"cpu",kernelFunc:cG},X7=Qt((e,t)=>Math.min(e,t)),pG=wn(qa,X7),hG={kernelName:qa,backendName:"cpu",kernelFunc:pG},jA=Qt((e,t)=>e*t),fG=UA((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),km=wn(Ka,jA,fG),mG={kernelName:Ka,backendName:"cpu",kernelFunc:km};function K7(e,t,n){let s=v.createScalarValue(-1,n);return jA([],t,s,e,n)}function gG(e){let{inputs:t,backend:n}=e,{x:s}=t;Ne(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=K7(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var yG={kernelName:xi,backendName:"cpu",kernelFunc:gG},Z7=Qt((e,t)=>e!==t?1:0),AG=wn(bi,Z7,null,"bool"),xG={kernelName:bi,backendName:"cpu",kernelFunc:AG};function qA(e,t,n,s,r){let a=t.length,o=v.sizeFromShape(t),i=v.computeStrides(t),l=v.computeStrides(r),c=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let u=0;u<o;++u){let d=v.indexToLoc(u,a,i),p=new Array(d.length);for(let f=0;f<p.length;f++)p[f]=d[s[f]];let h=v.locToIndex(p,a,l);c[h]=e[u]}return c}function Ls(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;Ne(r,"transpose");let o=r.shape.length,i=new Array(o);for(let d=0;d<i.length;d++)i[d]=r.shape[a[d]];let l=s.data.get(r.dataId).values,c=qA(l,r.shape,r.dtype,a,i);return{dataId:s.write(c,i,r.dtype),shape:i,dtype:r.dtype}}var bG={kernelName:po,backendName:"cpu",kernelFunc:Ls};function Y7(e,t,n,s){let[r,a]=E.computeOutAndReduceShapes(e,s),o=Bn(t,"int32"),i=v.makeZerosTypedArray(v.sizeFromShape(r),o),l=v.sizeFromShape(a);for(let c=0;c<i.length;++c){let u=c*l,d=1;for(let p=0;p<l;++p)d*=n[u+p];i[c]=d}return{outVals:i,outShape:r,outDtype:o}}function vG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"prod");let i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=E.getAxesPermutation(l,i),u=l,d=r,p=[];c!=null&&(d=Ls({inputs:{x:r},backend:n,attrs:{perm:c}}),p.push(d),u=E.getInnerMostAxes(u.length,i));let h=n.data.get(d.dataId).values,{outVals:f,outShape:m,outDtype:g}=Y7(d.shape,d.dtype,h,u),y=m;return o&&(y=E.expandShapeToKeepDim(m,l)),p.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(y,g,f)}var wG={kernelName:Ci,backendName:"cpu",kernelFunc:vG};function XA(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return v.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}var J7=Fo(e=>1/Math.sqrt(e)),kG=Zu(no,J7),IG={kernelName:no,backendName:"cpu",kernelFunc:kG},SG=Fo(e=>1/(1+Math.exp(-e))),Q7=xt(ro,e=>1/(1+Math.exp(-e))),CG={kernelName:ro,backendName:"cpu",kernelFunc:Q7};function Im(e,t,n,s,r){let a=yn.isSliceContinous(s,t,n),o=v.sizeFromShape(n),i=v.computeStrides(s);if(a){let d=yn.computeFlatOffset(t,i);return r==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=r==="string"?E.fromUint8ToStringArray(e):e,c=We(s,r,l),u=We(n,r);for(let d=0;d<u.size;++d){let p=u.indexToLoc(d),h=p.map((f,m)=>f+t[m]);u.set(c.get(...h),...p)}return r==="string"?E.fromStringArrayToUint8(u.values):u.values}function ml(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Ne(r,"slice");let[i,l]=yn.parseSliceParams(r,a,o);yn.assertParamsValid(r,i,l);let c=n.data.get(r.dataId).values,u=Im(c,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,u)}var TG={kernelName:Di,backendName:"cpu",kernelFunc:ml};function eI(e,t,n,s,r,a,o){let i=t[0],l=a[0],c=new Array(l),u=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${i}`);let g=v.getArrayFromDType(n,0),y=v.getArrayFromDType(r,0);return[g,[0,d],y,c,u]}let p=!0,h=0,f=new Array(l).fill(0);for(let g=0;g<i;++g){let y=e[g*d];if(y<0)throw new Error(`indices(${g}, 0) is invalid: ${y} < 0`);if(y>=l)throw new Error(`indices(${g}, 0) is invalid: ${y} >= ${l}`);++f[y],p=p&&y>=h,h=y}let m=!0;for(let g=0;g<l;++g){let y=f[g]===0;c[g]=y,m=m&&!y,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&p){let g=e,y=s;for(let A=0;A<i;++A)u[A]=A;return[g,[i,d],y,c,u]}else{let g=f[l-1],y=v.getArrayFromDType(n,g*d),A=v.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let b=0;b<i;++b){let w=e[b*d],k=x[w],S=(w===0?0:f[w-1])+k;x[w]++;for(let N=0;N<d;++N)y[S*d+N]=e[b*d+N];A[S]=s[b],u[b]=S}for(let b=0;b<l;++b)if(x[b]===0){let k=b===0?0:f[b-1];y[k*d+0]=b;for(let S=1;S<d;++S)y[k*d+S]=0;A[k]=o}return[y,[g,d],A,c,u]}}function tI(e,t,n,s,r){let a=v.sizeFromShape(s),o=t[0],i=r.length,l=[],c=1,u=-1;for(let g=0;g<i;++g){let y=r[g];if(y===-1){if(u!==-1)throw new Error(`only one output dimension may be -1, not both ${u} and ${g}`);u=g,l.push(1)}else{if(y<0)throw new Error(`size ${g} must be non-negative, not ${y}`);c*=y,l.push(y)}}if(u!==-1){if(c<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let g=Math.trunc(a/c);if(c*g!==a)throw new Error(`Input to reshape is a SparseTensor with ${a}
|
|
dense values, but the requested shape requires a multiple of ${c}. inputShape=${s} outputShape= ${l}`);l[u]=g}let d=v.sizeFromShape(l);if(d!==a)throw new Error(`Input to reshape is a tensor with ${a} dense values, but the requested shape has ${d}. inputShape=${s} outputShape=${l}`);let p=s.length,h=[];if(p>0){h[p-1]=1;for(let g=p-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=v.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let y=0;for(let A=0;A<p;++A)y+=e[g*p+A]*h[A];for(let A=0;A<i;++A)m[g*i+A]=Math.trunc(y/f[A]),y%=f[A]}return[m,[o,i],l]}function KA(e,t,n,s,r,a=!1,o=0){let i=s.length;if(i!==r.length)throw new Error("segmentIds and indices should have same size.");let l=[t[0],e.length/t[0]],c=l[1],d=i>0?r[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let p=t.slice();p[0]=d;let h=p.reduce((x,b)=>x*b,1),f=v.getArrayFromDType(n,h);if(i===0)return d>0&&f.fill(o),[f,p];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,g=1,y=0,A=r[m];for(;;){let x=0;if(g<i){if(x=r[g],A===x){++g;continue}if(A>=x)throw new Error("segment ids are not increasing")}if(A<0||A>=d)throw new Error(`Segment id ${A} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);A>y&&f.fill(o,y*c,A*c);for(let b=m;b<g;++b){let w=s[b];if(w<0||w>=l[0])throw new Error(`Bad: indices[${b}] == ${s[b]} out of range [0, ${l[0]})`);for(let k=0;k<c;k++)f[A*c+k]+=e[w*c+k]}if(a)for(let b=0;b<c;b++)f[A*c+b]/=g-m;if(m=g,++g,y=A+1,A=x,g>i)break}return y<d&&f.fill(o,y*c,d*c),[f,p]}var NG=Fo(e=>Math.sqrt(e)),EG=xt(ao,e=>Math.sqrt(e)),RG={kernelName:ao,backendName:"cpu",kernelFunc:EG},nI=Qt((e,t)=>{let n=e-t;return n*n}),$G=wn(lo,nI),DG={kernelName:lo,backendName:"cpu",kernelFunc:$G};function sI(e,t,n,s){let r=We(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var _G=class{constructor(e,t,n,s,r,a){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(n),this.rightPad=v.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),c=Math.max(0,i-(r-(o+1))),u=a-(l+c),d=t+(l>0?0:o-i),p=0;p+=l*this.leftPad.length;for(let y=0;y<u;++y)p+=e[d+y].length;p+=c*this.rightPad.length,p+=(l+c+u-1)*this.separator.length,n[s+o]=new Uint8Array(p);let f=n[s+o],m=0,g=y=>y.forEach(A=>f[m++]=A);for(let y=0;y<l;++y)g(this.leftPad),g(this.separator);for(let y=0;y<u-1;++y)g(e[d+y]),g(this.separator);if(u>0){g(e[d+u-1]);for(let y=0;y<c;++y)g(this.separator),g(this.rightPad)}else{for(let y=0;y<c-1;++y)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let c=t[l]>=i;if(c=c&&t[l]<=n,!c)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=v.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],c=0;this.nGramWidths.forEach(u=>{c+=this.getNumNGrams(l,u)}),this.preserveShort&&l>0&&c===0&&(c=1),a[i]=a[i-1]+c}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],c=a[i];if(this.nGramWidths.forEach(u=>{let d=t[i+1]-t[i],p=this.getNumNGrams(d,u);this.createNGrams(e,l,o,c,p,u),c+=p}),this.preserveShort&&c===a[i]){let u=t[i+1]-t[i];if(u===0)continue;let d=u+2*this.padWidth,p=1;this.createNGrams(e,l,o,c,p,d)}}return[o,a]}};function rI(e,t,n,s,r,a,o,i){return new _G(n,s,r,a,o,i).compute(e,t)}function PG(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&s.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}}function aI(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let p=0;p<s;++p){let h=r.length;PG(e[p],t,n,r);let f=r.length-h;i[p]=f,a+=f,o=Math.max(o,f)}let l=v.getArrayFromDType("int32",a*2),c=new Array(a),u=[s,o],d=0;for(let p=0;p<s;++p)for(let h=0;h<i[p];++h)l[d*2]=p,l[d*2+1]=h,c[d]=r[d],++d;return[l,c,u]}function oI(e,t){let n=v.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=v.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var iI=Qt((e,t)=>e-t),FG=UA((e,t,n,s)=>({real:e-n,imag:t-s})),ZA=wn(uo,iI,FG),OG={kernelName:uo,backendName:"cpu",kernelFunc:ZA};function lI(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=We(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var np=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function uI(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,c=Math.log(i),u=.5*Math.exp(2*c/3),d=.5*Math.sqrt(c*u*(i-u)/i)*Math.sign(l-i/2),p=Math.max(n,Math.floor(t-l*u/i+d)),h=Math.min(s,Math.floor(t+(i-l)*u/i+d));uI(e,t,p,h)}let r=e[t],a=n,o=s;for(v.swap(e,n,t),np(e[s],r)>0&&v.swap(e,n,s);a<o;){for(v.swap(e,a,o),a++,o--;np(e[a],r)<0;)a=a+1;for(;np(e[o],r)>0;)o=o-1}np(e[n],r)===0?v.swap(e,n,o):(o=o+1,v.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function cI(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=v.getTypedArrayFromDType(n,o*s),c=v.getTypedArrayFromDType("int32",o*s);for(let d=0;d<o;d++){let p=d*i,h=e.subarray(p,p+i),f=new Array(h.length);h.forEach((A,x)=>f[x]={value:A,index:x}),s<f.length&&(uI(f,s),f=f.slice(0,s)),r&&f.sort(np);let m=d*s,g=l.subarray(m,m+s),y=c.subarray(m,m+s);for(let A=0;A<s;A++)g[A]=f[A].value,y[A]=f[A].index}let u=t.slice();return u[u.length-1]=s,[We(u,n,l),We(u,"int32",c)]}function dI(e,t,n,s){let r=v.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[r]),l=new nn(a,s,e),c=[],u=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(u)m=e[f].toString();else{let g=[];for(let y=0;y<a[0];y++)for(let A=0;A<a[2];A++)g.push(l.get(y,f,A));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,c.push(f)}}let d=a.slice();d[1]=Object.keys(o).length;let p=new nn(d,s);c.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let y=0;y<a[2];y++)p.set(l.get(g,f,y),g,m,y)});let h=n.slice();return h[r]=d[1],{outputValues:p.values,outputShape:h,indices:i}}Xi("cpu",()=>new WA,1);var pI=xt(Pa,e=>e>=0?e:Math.exp(e)-1),MG={kernelName:Pa,backendName:"cpu",kernelFunc:pI};function hI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Ne([r],"leakyRelu");let o=v.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",o);for(let c=0;c<i.length;c++)l[c]=i[c]<0?a*i[c]:i[c];return n.makeTensorInfo(r.shape,"float32",l)}var zG={kernelName:mi,backendName:"cpu",kernelFunc:hI},LG=Qt((e,t)=>e<0?t*e:e);function fI(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Ne([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=LG(s.shape,r.shape,a,o,s.dtype);return n.makeTensorInfo(l,s.dtype,i)}var BG={kernelName:Ja,backendName:"cpu",kernelFunc:fI},mI=xt(Qa,e=>Math.max(0,e)),WG={kernelName:Qa,backendName:"cpu",kernelFunc:mI},gI=xt(to,e=>Math.min(Math.max(0,e),6)),VG={kernelName:to,backendName:"cpu",kernelFunc:gI};function YA(e,t,n,s,r){if(n==="linear")return Or({inputs:{x:t},backend:e});if(n==="relu")return mI({inputs:{x:t},backend:e});if(n==="elu")return pI({inputs:{x:t},backend:e});if(n==="relu6")return gI({inputs:{x:t},backend:e});if(n==="prelu")return fI({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return hI({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return Q7({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function Et(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=v.sizeFromShape(r.shape),i=v.inferFromImplicitShape(a,o),l=v.sizeFromShape(i);v.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let c=n.data.get(r.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,d=c.complexTensorInfos.imag;u.shape=i,d.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var UG={kernelName:Ti,backendName:"cpu",kernelFunc:Et};function yI(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Ne([r,a],"matMul");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=g===y||g===1||y===1;v.assert(l>=2&&c>=2&&A,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>y?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);v.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let w=o?[g,u,p]:[g,p,u],k=i?[y,h,d]:[y,d,h],S=Et({inputs:{x:r},backend:n,attrs:{shape:w}}),N=Et({inputs:{x:a},backend:n,attrs:{shape:k}}),$=o?S.shape[1]:S.shape[2],F=o?S.shape[2]:S.shape[1],R=i?N.shape[1]:N.shape[2],D=Math.max(g,y),T=n.data.get(S.dataId).values,O=n.data.get(N.dataId).values,W=v.computeStrides(S.shape),H=v.computeStrides(N.shape),[z,X,te]=o?[W[0],1,W[1]]:[W[0],W[1],1],[J,Q,ne]=i?[1,H[1],H[0]]:[H[1],1,H[0]],K=F*R,oe=We([D,F,R],S.dtype),ce=oe.values,he=n.blockSize;for(let Ae=0;Ae<D;Ae++)for(let Se=0;Se<F;Se+=he)for(let Ce=0;Ce<R;Ce+=he)for(let Oe=0;Oe<$;Oe+=he){let Ue=Math.min(Se+he,F),ze=Math.min(Ce+he,R),wt=Math.min(Oe+he,$);for(let mt=Se;mt<Ue;mt++)for(let gt=Ce;gt<ze;gt++){let ht=0;for(let bt=Oe;bt<wt;bt++){let Ye=Math.min(Ae,g-1)*z,Jn=Math.min(Ae,y-1)*ne,Mt=T[Ye+mt*X+bt*te],ps=O[bt*J+gt*Q+Jn];ht+=Mt*ps}ce[Ae*K+(mt*R+gt)]+=ht}}return n.disposeIntermediateTensorInfo(S),n.disposeIntermediateTensorInfo(N),n.makeTensorInfo(b,oe.dtype,oe.values)}var GG={kernelName:Sa,backendName:"cpu",kernelFunc:yI};function HG(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s,p,h,f,m=[];p=yI({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:c},backend:n}),o&&(h=tp({inputs:{a:p,b:o},backend:n}),m.push(p),p=h),u&&(f=YA(n,p,u,i,d),m.push(p),p=f);for(let y of m)n.disposeIntermediateTensorInfo(y);return p}var jG={kernelName:fo,backendName:"cpu",kernelFunc:HG},qG=xt(jl,e=>Math.acos(e)),XG={kernelName:jl,backendName:"cpu",kernelFunc:qG},KG=xt(ql,e=>Math.acosh(e)),ZG={kernelName:ql,backendName:"cpu",kernelFunc:KG};function YG(e){let{inputs:t,backend:n}=e,s=t;Ne(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=We(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let c=0;c<o.length;c++)o[c]+=l[c]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var JG={kernelName:wa,backendName:"cpu",kernelFunc:YG};function QG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"all");let i=v.parseAxisParam(a,r.shape),l=i,c=E.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ls({inputs:{x:r},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("all",l,u.shape.length);let[d,p]=E.computeOutAndReduceShapes(u.shape,l),h=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let y=0;y<f.length;++y){let A=y*h,x=m[A];for(let b=0;b<h;++b){let w=m[A+b];x=x&&w}f[y]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let y=E.expandShapeToKeepDim(d,i),A=Et({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),A}return g}var eH={kernelName:Xl,backendName:"cpu",kernelFunc:QG};function tH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"any");let i=v.parseAxisParam(a,r.shape),l=i,c=E.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ls({inputs:{x:r},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("any",l,u.shape.length);let[d,p]=E.computeOutAndReduceShapes(u.shape,l),h=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let y=0;y<f.length;++y){let A=y*h,x=m[A];for(let b=0;b<h;++b){let w=m[A+b];x=x||w}f[y]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let y=E.expandShapeToKeepDim(d,i),A=Et({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),A}return g}var nH={kernelName:Kl,backendName:"cpu",kernelFunc:tH};function sH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ne(r,"argMax");let o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Ls({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],E.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[u,d]=E.computeOutAndReduceShapes(l.shape,o),p=v.sizeFromShape(u),h=v.makeZerosTypedArray(p,"int32"),f=v.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*f,A=m[y],x=0;for(let b=0;b<f;++b){let w=m[y+b];w>A&&(A=w,x=b)}h[g]=x}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var rH={kernelName:ka,backendName:"cpu",kernelFunc:sH};function aH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ne(r,"argMin");let o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Ls({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],E.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[u,d]=E.computeOutAndReduceShapes(l.shape,o),p=v.sizeFromShape(u),h=v.makeZerosTypedArray(p,"int32"),f=v.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*f,A=m[y],x=0;for(let b=0;b<f;++b){let w=m[y+b];w<A&&(A=w,x=b)}h[g]=x}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var oH={kernelName:Zl,backendName:"cpu",kernelFunc:aH},iH=xt(Yl,e=>Math.asin(e)),lH={kernelName:Yl,backendName:"cpu",kernelFunc:iH},uH=xt(Jl,e=>Math.asinh(e)),cH={kernelName:Jl,backendName:"cpu",kernelFunc:uH},dH=xt(Ql,e=>Math.atan(e)),pH={kernelName:Ql,backendName:"cpu",kernelFunc:dH},hH=Qt((e,t)=>Math.atan2(e,t)),fH=wn(tu,hH),mH={kernelName:tu,backendName:"cpu",kernelFunc:fH},gH=xt(eu,e=>Math.atanh(e)),yH={kernelName:eu,backendName:"cpu",kernelFunc:gH};function JA(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,c=r.dilationWidth,u=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=We(r.outShape,n),g=m.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],A=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let b=0;b<r.batchSize;++b){let w=b*y,k=b*s[0];for(let S=0;S<r.inChannels;++S)for(let N=0;N<r.outHeight;++N){let $=N*o-p,F=Math.max(0,$),R=Math.min(r.inHeight,u+$),D=w+N*A;for(let T=0;T<r.outWidth;++T){let O=T*i-h,W=Math.max(0,O),H=Math.min(r.inWidth,d+O),z=f,X=0,te=0;for(let Q=F;Q<R;Q+=l){let ne=k+Q*s[1];for(let K=W;K<H;K+=c){let oe=ne+K*s[2],ce=e[oe+S];a==="max"&&ce>z?z=ce:a==="avg"&&(X+=ce,te++)}if(isNaN(z))break}let J=D+T*x+S;g[J]=a==="avg"?X/te:z}}}return m}function AI(e,t,n,s,r=!1,a=!1){let o=We(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,c=s.dilationHeight,u=s.dilationWidth,d=s.effectiveFilterHeight,p=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=We(t,n,e);for(let g=0;g<s.batchSize;++g)for(let y=0;y<s.inChannels;++y)for(let A=0;A<s.outHeight;++A){let x=A*i-h,b=x;for(;b<0;)b+=c;let w=Math.min(s.inHeight,d+x);for(let k=0;k<s.outWidth;++k){let S=k*l-f,N=S;for(;N<0;)N+=u;let $=Math.min(s.inWidth,p+S),F=Number.NEGATIVE_INFINITY,R=-1;for(let D=b;D<w;D+=c){let T=D-x;for(let O=N;O<$;O+=u){let W=O-S,H=m.get(g,D,O,y);H>F&&(F=H,r?R=a?((g*s.inHeight+D)*s.inWidth+O)*s.inChannels+y:(D*s.inWidth+O)*s.inChannels+y:R=T*p+W)}}o.set(R,g,A,k,y)}}return o}function xI(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,c=r.dilationDepth,u=r.dilationHeight,d=r.dilationWidth,p=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,A=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=We(r.outShape,n),b=x.values,w=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[3]*r.outShape[4],N=r.outShape[4];for(let $=0;$<r.batchSize;++$){let F=$*w,R=$*s[0];for(let D=0;D<r.inChannels;++D)for(let T=0;T<r.outDepth;++T){let O=T*o-m,W=O;for(;W<0;)W+=c;let H=Math.min(r.inDepth,p+O),z=F+T*k;for(let X=0;X<r.outHeight;++X){let te=X*i-g,J=te;for(;J<0;)J+=u;let Q=Math.min(r.inHeight,h+te),ne=z+X*S;for(let K=0;K<r.outWidth;++K){let oe=K*l-y,ce=oe;for(;ce<0;)ce+=d;let he=Math.min(r.inWidth,f+oe),Ae=ne+K*N,Se=A,Ce=0,Oe=0;for(let ze=W;ze<H;ze+=c){let wt=R+ze*s[1];for(let mt=J;mt<Q;mt+=u){let gt=wt+mt*s[2];for(let ht=ce;ht<he;ht+=d){let bt=gt+ht*s[3],Ye=e[bt+D];if(a==="max"&&Ye>Se?Se=Ye:a==="avg"&&(Ce+=Ye,Oe++),isNaN(Se))break}if(isNaN(Se))break}if(isNaN(Se))break}let Ue=Ae+D;b[Ue]=a==="avg"?Ce/Oe:Se}}}}return x}function AH(e,t){let n=We(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,d=t.effectiveFilterWidth,p=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let A=y*s-p,x=A;for(;x<0;)x+=o;let b=Math.min(t.inDepth,c+A);for(let w=0;w<t.outHeight;++w){let k=w*r-h,S=k;for(;S<0;)S+=i;let N=Math.min(t.inHeight,u+k);for(let $=0;$<t.outWidth;++$){let F=$*a-f,R=F;for(;R<0;)R+=l;let D=Math.min(t.inWidth,d+F),T=Number.NEGATIVE_INFINITY,O=-1;for(let W=x;W<b;W+=o){let H=W-A;for(let z=S;z<N;z+=i){let X=z-k;for(let te=R;te<D;te+=l){let J=te-F,Q=e.get(m,W,z,te,g);Q>=T&&(T=Q,O=H*u*d+X*u+J)}}}n.set(O,m,y,w,$,g)}}}return n}function xH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ne(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))d=Or({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=JA(p,r.shape,r.dtype,h,u,"avg");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var bH={kernelName:Ia,backendName:"cpu",kernelFunc:xH};function vH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Ne(r,"avgPool3d");let u=E.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=xI(d,r.shape,r.dtype,v.computeStrides(r.shape),u,"avg");return n.makeTensorInfo(p.shape,"float32",p.values)}var wH={kernelName:Uc,backendName:"cpu",kernelFunc:vH};function kH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Ne([r,a],"avgPool3DGrad");let u=E.computePool3DInfo(a.shape,o,i,1,l,c),d=u.strideDepth,p=u.strideHeight,h=u.strideWidth,f=u.filterDepth,m=u.filterHeight,g=u.filterWidth,y=u.dilationDepth,A=u.dilationHeight,x=u.dilationWidth,b=u.effectiveFilterDepth,w=u.effectiveFilterHeight,k=u.effectiveFilterWidth,S=b-1-u.padInfo.front,N=k-1-u.padInfo.left,$=w-1-u.padInfo.top,F=We(a.shape,"float32"),R=1/(f*m*g),D=n.bufferSync(r);for(let T=0;T<u.batchSize;++T)for(let O=0;O<u.inChannels;++O)for(let W=0;W<u.inDepth;++W)for(let H=0;H<u.inHeight;++H)for(let z=0;z<u.inWidth;++z){let X=W-S,te=H-$,J=z-N,Q=0;for(let ne=0;ne<b;ne+=y){let K=(X+ne)/d;if(!(K<0||K>=u.outDepth||Math.floor(K)!==K))for(let oe=0;oe<w;oe+=A){let ce=(te+oe)/p;if(!(ce<0||ce>=u.outHeight||Math.floor(ce)!==ce))for(let he=0;he<k;he+=x){let Ae=(J+he)/h;if(Ae<0||Ae>=u.outWidth||Math.floor(Ae)!==Ae)continue;Q+=D.get(T,K,ce,Ae,O)}}}F.set(Q*R,T,W,H,z,O)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var IH={kernelName:hh,backendName:"cpu",kernelFunc:kH};function SH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Ne([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=E.computePool2DInfo(o.shape,i,l,1,c),d=u.strideHeight,p=u.strideWidth,h=u.filterHeight,f=u.filterWidth,m=u.dilationHeight,g=u.dilationWidth,y=u.effectiveFilterHeight,A=u.effectiveFilterWidth,x=A-1-u.padInfo.left,b=y-1-u.padInfo.top,w=We(o.shape,"float32"),k=1/(h*f),S=n.data.get(r.dataId).values,N=We(r.shape,"float32",S);for(let $=0;$<u.batchSize;++$)for(let F=0;F<u.inChannels;++F)for(let R=0;R<u.inHeight;++R)for(let D=0;D<u.inWidth;++D){let T=R-b,O=D-x,W=0;for(let H=0;H<y;H+=m){let z=(T+H)/d;if(!(z<0||z>=u.outHeight||Math.floor(z)!==z))for(let X=0;X<A;X+=g){let te=(O+X)/p;if(te<0||te>=u.outWidth||Math.floor(te)!==te)continue;W+=N.get($,z,te,F)}}w.set(W*k,$,R,D,F)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var CH={kernelName:ph,backendName:"cpu",kernelFunc:SH};function TH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;v.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Ne([r,i,l,a,o],"batchNorm");let{varianceEpsilon:c}=s;c==null&&(c=.001);let u=n.data.get(r.dataId).values,d=n.data.get(i.dataId).values,p=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(u.length),g=f.length,y=h.length,A=p.length,x=d.length,b=0,w=0,k=0,S=0;for(let N=0;N<u.length;++N)m[N]=f[b++]+(u[N]-d[w++])*h[k++]/Math.sqrt(p[S++]+c),b>=g&&(b=0),w>=x&&(w=0),k>=y&&(k=0),S>=A&&(S=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var NH={kernelName:za,backendName:"cpu",kernelFunc:TH};function EH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Ne([r],"batchToSpaceND");let i=a.reduce((y,A)=>y*A),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=Et({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Ls({inputs:{x:h},backend:n,attrs:{perm:c}}),m=Et({inputs:{x:f},backend:n,attrs:{shape:u}}),g=ml({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var RH={kernelName:si,backendName:"cpu",kernelFunc:EH};function $H(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=GA(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var DH={kernelName:fh,backendName:"cpu",kernelFunc:$H};function _H(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=E.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var PH={kernelName:d2,backendName:"cpu",kernelFunc:_H},FH=xt(Xr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),OH={kernelName:Xr,backendName:"cpu",kernelFunc:FH},MH=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let c=0;c<i.length;c++){let u=i[c],d=l[c];s[c]=Math.hypot(u,d)}return n.makeOutput(s,t.shape,"float32")},zH={kernelName:Hc,backendName:"cpu",kernelFunc:MH};function Yu(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var LH={kernelName:Kc,backendName:"cpu",kernelFunc:Yu};function Ju(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=E.computeOutShape(t.map(m=>m.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>v.sizeFromShape(m.shape)>0);if(i.length===1)return Or({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(E.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>fl({inputs:{input:b},backend:n})),g=i.map(b=>Yu({inputs:{input:b},backend:n})),y=Ju({inputs:m,backend:n,attrs:{axis:a}}),A=Ju({inputs:g,backend:n,attrs:{axis:a}}),x=Is({inputs:{real:y,imag:A},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(A),x}let c=i.map(m=>{let g=v.sizeFromShape(m.shape.slice(a));return Et({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),u=c.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=E.computeOutShape(c.map(m=>m.shape),1);let d=c[0].shape[0]===1,p=HA(u,o,t[0].dtype,d),h=E.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,p);return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var BH={kernelName:ri,backendName:"cpu",kernelFunc:Ju};function bI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s;Ne([r,a],"conv2d");let d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,y=p.padInfo.left,A=p.padInfo.top,x=p.dataFormat==="channelsLast",b=new nn(p.outShape,r.dtype),w=v.computeStrides(r.shape),k=v.computeStrides(a.shape),S=w[0],N=x?w[1]:w[2],$=x?w[2]:1,F=x?1:w[1],R=b.strides[0],D=x?b.strides[1]:b.strides[2],T=x?b.strides[2]:1,O=x?1:b.strides[1],W=n.data.get(r.dataId).values,H=n.data.get(a.dataId).values,z=b.values;for(let X=0;X<p.batchSize;++X){let te=X*S,J=X*R;for(let Q=0;Q<p.outHeight;++Q){let ne=J+Q*D,K=Q*p.strideHeight-A;for(let oe=0;oe<h;++oe){let ce=K+oe*m;if(ce<0||ce>=p.inHeight)continue;let he=oe*k[0],Ae=te+ce*N;for(let Se=0;Se<p.outWidth;++Se){let Ce=ne+Se*T,Oe=Se*p.strideWidth-y;for(let Ue=0;Ue<f;++Ue){let ze=Oe+Ue*g;if(ze<0||ze>=p.inWidth)continue;let wt=he+Ue*k[1],mt=Ae+ze*$,gt=wt;for(let ht=0;ht<p.inChannels;++ht){let bt=W[mt+ht*F];for(let Ye=0;Ye<p.outChannels;++Ye)z[Ce+Ye*O]+=bt*H[gt+Ye];gt+=p.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,z)}var WH={kernelName:Na,backendName:"cpu",kernelFunc:bI};function VH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,filterShape:u}=s;Ne([r,a],"conv2dBackpropFilter");let d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,u,o,1,i,c,!1,d),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=p,y=p.dataFormat==="channelsLast",A=new nn(p.filterShape,"float32"),x=p.padInfo.left,b=p.padInfo.top,w=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,S=new nn(r.shape,r.dtype,w),N=new nn(a.shape,a.dtype,k);for(let $=0;$<m;++$){let F=Math.max(0,Math.ceil((b-$)/h)),R=Math.min(p.outHeight,(p.inHeight+b-$)/h);for(let D=0;D<g;++D){let T=Math.max(0,Math.ceil((x-D)/f)),O=Math.min(p.outWidth,(p.inWidth+x-D)/f);for(let W=0;W<p.inChannels;++W)for(let H=0;H<p.outChannels;++H){let z=0;for(let X=0;X<p.batchSize;++X)for(let te=F;te<R;++te){let J=$+te*h-b;for(let Q=T;Q<O;++Q){let ne=D+Q*f-x;y?z+=S.get(X,J,ne,W)*N.get(X,te,Q,H):z+=S.get(X,W,J,ne)*N.get(X,H,te,Q)}}A.set(z,$,D,W,H)}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var UH={kernelName:mh,backendName:"cpu",kernelFunc:VH};function GH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s;Ne([r,a],"conv2dBackpropInput");let d=v.computeStrides(a.shape),p=v.computeStrides(r.shape),h=E.convertConv2DDataFormat(c),f=E.computeConv2DInfo(o,a.shape,i,1,l,u,!1,h),m=new nn(f.inShape,"float32"),g=m.values,y=n.data.get(r.dataId).values,A=n.data.get(a.dataId).values,[x,b,w]=d,{batchSize:k,filterHeight:S,filterWidth:N,inChannels:$,inHeight:F,inWidth:R,outChannels:D,outHeight:T,outWidth:O,strideHeight:W,strideWidth:H}=f;h=f.dataFormat;let z=S-1-f.padInfo.top,X=N-1-f.padInfo.left,te=h==="channelsLast",J=m.strides[0],Q=te?m.strides[1]:m.strides[2],ne=te?m.strides[2]:1,K=te?1:m.strides[1],oe=p[0],ce=te?p[1]:p[2],he=te?p[2]:1,Ae=te?1:p[1];for(let Se=0;Se<k;++Se)for(let Ce=0;Ce<$;++Ce)for(let Oe=0;Oe<F;++Oe){let Ue=Oe-z,ze=Math.max(0,Math.ceil(Ue/W)),wt=Math.min(T,(S+Ue)/W);for(let mt=0;mt<R;++mt){let gt=mt-X,ht=Math.max(0,Math.ceil(gt/H)),bt=Math.min(O,(N+gt)/H),Ye=0;for(let Mt=ze;Mt<wt;++Mt){let ps=Mt*W-Ue;for(let kn=ht;kn<bt;++kn){let js=kn*H-gt,On=oe*Se+ce*Mt+he*kn,Rs=x*(S-1-ps)+b*(N-1-js)+w*Ce;for(let $s=0;$s<D;++$s){let In=y[On+Ae*$s],Ds=A[Rs+$s];Ye+=In*Ds}}}let Jn=J*Se+Q*Oe+ne*mt+K*Ce;g[Jn]=Ye}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var HH={kernelName:Ea,backendName:"cpu",kernelFunc:GH};function jH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;Ne([r,a],"conv3d");let c=E.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:u,filterHeight:d,filterWidth:p,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=c,y=g.front,A=g.left,x=g.top,b=new nn(c.outShape,r.dtype),w=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,S=b.values,N=v.computeStrides(r.shape),$=v.computeStrides(a.shape);for(let F=0;F<c.batchSize;++F){let R=F*N[0],D=F*b.strides[0];for(let T=0;T<c.outDepth;++T){let O=D+T*b.strides[1],W=T*c.strideDepth-y;for(let H=0;H<u;++H){let z=W+H*h;if(z<0||z>=c.inDepth)continue;let X=H*$[0],te=R+z*N[1];for(let J=0;J<c.outHeight;++J){let Q=O+J*b.strides[2],ne=J*c.strideHeight-x;for(let K=0;K<d;++K){let oe=ne+K*f;if(oe<0||oe>=c.inHeight)continue;let ce=X+K*$[1],he=te+oe*N[2];for(let Ae=0;Ae<c.outWidth;++Ae){let Se=Q+Ae*c.outChannels,Ce=Ae*c.strideWidth-A;for(let Oe=0;Oe<p;++Oe){let Ue=Ce+Oe*m;if(Ue<0||Ue>=c.inWidth)continue;let ze=ce+Oe*$[2],wt=he+Ue*c.inChannels,mt=ze;for(let gt=0;gt<c.inChannels;++gt){let ht=w[wt+gt];for(let bt=0;bt<c.outChannels;++bt)S[Se+bt]+=ht*k[mt+bt];mt+=c.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var qH={kernelName:jc,backendName:"cpu",kernelFunc:jH};function XH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;Ne([r,a],"conv3dBackpropFilterV2");let c=v.computeStrides(r.shape),u=v.computeStrides(a.shape),d=E.computeConv3DInfo(r.shape,l,o,1,i),p=d.strideDepth,h=d.strideHeight,f=d.strideWidth,m=d.filterDepth,g=d.filterHeight,y=d.filterWidth,A=new nn(d.filterShape,"float32"),x=A.values,[b,w,k,S]=A.strides,N=n.data.get(a.dataId).values,[$,F,R,D]=u,T=n.data.get(r.dataId).values,[O,W,H,z]=c,X=d.padInfo.front,te=d.padInfo.left,J=d.padInfo.top;for(let Q=0;Q<m;++Q){let ne=Math.max(0,Math.ceil((X-Q)/p)),K=Math.min(d.outDepth,(d.inDepth+X-Q)/p),oe=Q*b;for(let ce=0;ce<g;++ce){let he=Math.max(0,Math.ceil((J-ce)/h)),Ae=Math.min(d.outHeight,(d.inHeight+J-ce)/h),Se=ce*w+oe;for(let Ce=0;Ce<y;++Ce){let Oe=Math.max(0,Math.ceil((te-Ce)/f)),Ue=Math.min(d.outWidth,(d.inWidth+te-Ce)/f),ze=Ce*k+Se;for(let wt=0;wt<d.inChannels;++wt){let mt=wt*S+ze;for(let gt=0;gt<d.outChannels;++gt){let ht=0;for(let bt=0;bt<d.batchSize;++bt){let Ye=bt*O,Jn=bt*$;for(let Mt=ne;Mt<K;++Mt){let kn=(Q+Mt*p-X)*W+Ye,js=Mt*F+Jn;for(let On=he;On<Ae;++On){let $s=(ce+On*h-J)*H+kn,In=On*R+js;for(let Ds=Oe;Ds<Ue;++Ds){let hs=(Ce+Ds*f-te)*z+$s,wr=Ds*D+In;ht+=T[hs+wt]*N[wr+gt]}}}}x[mt+gt]=ht}}}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var KH={kernelName:gh,backendName:"cpu",kernelFunc:XH};function ZH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;Ne([r],"conv3dBackpropInputV2");let c=v.computeStrides(r.shape),u=v.computeStrides(a.shape),d=E.computeConv3DInfo(l,a.shape,i,1,o),p=new nn(d.inShape,"float32"),h=p.values,[f,m,g,y]=p.strides,A=n.data.get(r.dataId).values,[x,b,w,k]=c,S=n.data.get(a.dataId).values,[N,$,F,R]=u,{batchSize:D,filterDepth:T,filterHeight:O,filterWidth:W,inChannels:H,inDepth:z,inHeight:X,inWidth:te,outChannels:J,outDepth:Q,outHeight:ne,outWidth:K,strideDepth:oe,strideHeight:ce,strideWidth:he}=d,Ae=T-1-d.padInfo.front,Se=O-1-d.padInfo.top,Ce=W-1-d.padInfo.left;for(let Oe=0;Oe<D;++Oe)for(let Ue=0;Ue<H;++Ue)for(let ze=0;ze<z;++ze){let wt=ze-Ae,mt=Math.max(0,Math.ceil(wt/oe)),gt=Math.min(Q,(T+wt)/oe);for(let ht=0;ht<X;++ht){let bt=ht-Se,Ye=Math.max(0,Math.ceil(bt/ce)),Jn=Math.min(ne,(O+bt)/ce);for(let Mt=0;Mt<te;++Mt){let ps=Mt-Ce,kn=Math.max(0,Math.ceil(ps/he)),js=Math.min(K,(W+ps)/he),On=0;for(let Rs=mt;Rs<gt;++Rs){let $s=Rs*oe-wt;for(let In=Ye;In<Jn;++In){let Ds=In*ce-bt;for(let _s=kn;_s<js;++_s){let hs=_s*he-ps,wr=x*Oe+b*Rs+w*In+k*_s,Wr=N*(T-1-$s)+$*(O-1-Ds)+F*(W-1-hs)+R*Ue;for(let ha=0;ha<J;++ha){let $l=A[wr+ha],kr=S[Wr+ha];On+=$l*kr}}}}h[f*Oe+m*ze+g*ht+y*Mt+Ue]=On}}}return n.makeTensorInfo(p.shape,p.dtype,p.values)}var YH={kernelName:yh,backendName:"cpu",kernelFunc:ZH},JH=xt(Ra,e=>Math.cos(e)),QH={kernelName:Ra,backendName:"cpu",kernelFunc:JH},ej=xt($a,e=>Math.cosh(e)),tj={kernelName:$a,backendName:"cpu",kernelFunc:ej};function nj(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,[u,d,p,h]=r.shape,f=a.shape[0],[m,g]=i,y=We([f,m,g,h],"float32"),A=n.data.get(a.dataId).values,x=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,w=v.computeStrides(r.shape),k=v.computeStrides(y.shape);for(let S=0;S<f;S++){let N=S*4,$=A[N],F=A[N+1],R=A[N+2],D=A[N+3],T=x[S];if(T>=u)continue;let O=m>1?(R-$)*(d-1)/(m-1):0,W=g>1?(D-F)*(p-1)/(g-1):0;for(let H=0;H<m;H++){let z=m>1?$*(d-1)+H*O:.5*($+R)*(d-1);if(z<0||z>d-1){for(let X=0;X<g;X++)for(let te=0;te<h;te++){let J=te+X*k[2]+H*k[1]+S*k[0];y.values[J]=c}continue}if(l==="bilinear"){let X=Math.floor(z),te=Math.ceil(z),J=z-X;for(let Q=0;Q<g;Q++){let ne=g>1?F*(p-1)+Q*W:.5*(F+D)*(p-1);if(ne<0||ne>p-1){for(let he=0;he<h;he++){let Ae=he+Q*k[2]+H*k[1]+S*k[0];y.values[Ae]=c}continue}let K=Math.floor(ne),oe=Math.ceil(ne),ce=ne-K;for(let he=0;he<h;he++){let Ae=he+K*w[2]+X*w[1]+T*w[0],Se=b[Ae];Ae=he+oe*w[2]+X*w[1]+T*w[0];let Ce=b[Ae];Ae=he+K*w[2]+te*w[1]+T*w[0];let Oe=b[Ae];Ae=he+oe*w[2]+te*w[1]+T*w[0];let Ue=b[Ae],ze=Se+(Ce-Se)*ce,wt=Oe+(Ue-Oe)*ce;Ae=he+Q*k[2]+H*k[1]+S*k[0],y.values[Ae]=ze+(wt-ze)*J}}}else for(let X=0;X<g;++X){let te=g>1?F*(p-1)+X*W:.5*(F+D)*(p-1);if(te<0||te>p-1){for(let ne=0;ne<h;ne++){let K=ne+X*k[2]+H*k[1]+S*k[0];y.values[K]=c}continue}let J=Math.round(te),Q=Math.round(z);for(let ne=0;ne<h;ne++){let K=ne+J*w[2]+Q*w[1]+T*w[0],oe=ne+X*k[2]+H*k[1]+S*k[0];y.values[oe]=b[K]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var sj={kernelName:oi,backendName:"cpu",kernelFunc:nj};function rj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Ne(r,"cumsum");let l=E.getAxesPermutation([a],r.shape.length),c=r;l!=null&&(c=Ls({inputs:{x:r},backend:n,attrs:{perm:l}}));let u=E.getInnerMostAxes(1,r.shape.length)[0];if(u!==c.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${c.shape.length-1} but got axis=${u}`);let d=Bn(c.dtype,"int32"),p=v.makeZerosTypedArray(v.sizeFromShape(c.shape),d),h=n.data.get(c.dataId).values,f=c.shape[c.shape.length-1],m=i?(y,A)=>y+f-A-1:(y,A)=>y+A;for(let y=0;y<h.length;y+=f)for(let A=0;A<f;A++){let x=m(y,A);if(A===0)p[x]=o?0:h[x];else{let b=m(y,A-1);p[x]=o?h[b]+p[b]:h[x]+p[b]}}let g=n.makeTensorInfo(c.shape,d,p);if(l!=null){let y=E.getUndoAxesPermutation(l),A=Ls({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(c),A}return g}var aj={kernelName:ai,backendName:"cpu",kernelFunc:rj};function oj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=GA(l,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(a),u=R7(l,c,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var ij={kernelName:Ah,backendName:"cpu",kernelFunc:oj};function lj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;v.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`),v.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=r.shape[1],c=r.shape[2],u=r.shape[3],d=l*a,p=c*a,h=u/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*d*p*h),g=0;for(let y=0;y<i;++y)for(let A=0;A<d;++A){let x=Math.floor(A/a),b=A%a;for(let w=0;w<p;++w){let k=Math.floor(w/a),S=w%a,N=(b*a+S)*h;for(let $=0;$<h;++$){let R=$+N+u*(k+c*(x+l*y));m[g++]=f[R]}}}return n.makeTensorInfo([i,d,p,h],r.dtype,m)}var uj={kernelName:ii,backendName:"cpu",kernelFunc:lj};function vI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s;Ne([r,a],"depthwiseConv2DNative");let u=v.computeStrides(r.shape),d=v.computeStrides(a.shape),p=l;p==null&&(p=[1,1]),v.assert(E.eitherStridesOrDilationsAreOne(o,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${p}'`);let h=E.computeConv2DInfo(r.shape,a.shape,o,p,i,c,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:y,padInfo:A}=h,x=A.left,b=A.top,w=h.outChannels/h.inChannels,k=new nn(h.outShape,r.dtype),S=n.data.get(r.dataId).values,N=n.data.get(a.dataId).values,$=k.values;for(let F=0;F<h.batchSize;++F){let R=F*u[0],D=F*k.strides[0];for(let T=0;T<h.outHeight;++T){let O=D+T*k.strides[1],W=T*h.strideHeight-b;for(let H=0;H<f;++H){let z=W+H*g;if(z<0||z>=h.inHeight)continue;let X=H*d[0],te=R+z*u[1];for(let J=0;J<h.outWidth;++J){let Q=O+J*k.strides[2],ne=J*h.strideWidth-x;for(let K=0;K<m;++K){let oe=ne+K*y;if(oe<0||oe>=h.inWidth)continue;let ce=X+K*d[1],he=te+oe*h.inChannels,Ae=Q,Se=ce;for(let Ce=0;Ce<h.inChannels;++Ce){let Oe=S[he+Ce];for(let Ue=0;Ue<w;++Ue)$[Ae+Ue]+=Oe*N[Se+Ue];Ae+=w,Se+=w}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var cj={kernelName:Da,backendName:"cpu",kernelFunc:vI};function dj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,filterShape:u}=s;Ne([r,a],"depthwiseConv2dNativeBackpropFilter");let d=E.computeConv2DInfo(r.shape,u,o,i,l,c,!0),{strideHeight:p,strideWidth:h,filterHeight:f,filterWidth:m}=d,g=new nn(d.filterShape,"float32"),y=d.padInfo.left,A=d.padInfo.top,x=d.outChannels/d.inChannels,b=n.data.get(r.dataId).values,w=new nn(r.shape,r.dtype,b),k=n.data.get(a.dataId).values,S=new nn(a.shape,a.dtype,k);for(let N=0;N<f;++N){let $=Math.max(0,Math.ceil((A-N)/p)),F=Math.min(d.outHeight,(d.inHeight+A-N)/p);for(let R=0;R<m;++R){let D=Math.max(0,Math.ceil((y-R)/h)),T=Math.min(d.outWidth,(d.inWidth+y-R)/h);for(let O=0;O<d.outChannels;++O){let W=Math.trunc(O/x),H=O%x,z=0;for(let X=0;X<d.batchSize;++X)for(let te=$;te<F;++te){let J=N+te*p-A;for(let Q=D;Q<T;++Q){let ne=R+Q*h-y;z+=w.get(X,J,ne,W)*S.get(X,te,Q,O)}}g.set(z,N,R,W,H)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var pj={kernelName:xh,backendName:"cpu",kernelFunc:dj};function hj(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,inputShape:u}=s;Ne([r,a],"depthwiseConv2DNativeBackpropInput");let d=v.computeStrides(r.shape),p=v.computeStrides(a.shape),h=E.computeConv2DInfo(u,a.shape,o,i,l,c,!0),f=new nn(h.inShape,"float32"),m=f.values,[g,y,A]=f.strides,x=n.data.get(r.dataId).values,[b,w,k]=d,S=n.data.get(a.dataId).values,[N,$,F]=p,{batchSize:R,filterHeight:D,filterWidth:T,inChannels:O,inHeight:W,inWidth:H,outChannels:z,outHeight:X,outWidth:te,strideHeight:J,strideWidth:Q}=h,ne=D-1-h.padInfo.top,K=T-1-h.padInfo.left,oe=z/O;for(let ce=0;ce<R;++ce)for(let he=0;he<O;++he)for(let Ae=0;Ae<W;++Ae){let Se=Ae-ne,Ce=Math.max(0,Math.ceil(Se/J)),Oe=Math.min(X,(D+Se)/J);for(let Ue=0;Ue<H;++Ue){let ze=Ue-K,wt=Math.max(0,Math.ceil(ze/Q)),mt=Math.min(te,(T+ze)/Q),gt=0;for(let ht=Ce;ht<Oe;++ht){let bt=ht*J-Se;for(let Ye=wt;Ye<mt;++Ye){let Jn=Ye*Q-ze,Mt=b*ce+w*ht+k*Ye,ps=N*(D-1-bt)+$*(T-1-Jn)+F*he;for(let kn=0;kn<oe;++kn){let js=he*oe+kn,On=x[Mt+js],Rs=S[ps+kn];gt+=On*Rs}}}m[g*ce+y*Ae+A*Ue+he]=gt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var fj={kernelName:bh,backendName:"cpu",kernelFunc:hj};function mj(e){let{inputs:t,backend:n}=e,{x:s}=t,r=v.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=We([r,r],s.dtype),i=o.values;for(let c=0;c<a.length;c++)i[c*r+c]=a[c];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var gj={kernelName:vh,backendName:"cpu",kernelFunc:mj},yj={kernelName:qc,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,c=l.data.get(s.dataId).values,u=s.shape.length,d=l.data.get(r.dataId).values,p=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:y,outWidth:A,padInfo:x,strideHeight:b,strideWidth:w,filterHeight:k,filterWidth:S,dilationHeight:N,dilationWidth:$,outShape:F}=E.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),R=v.sizeFromShape(F),D=F.length,T=v.getArrayFromDType(s.dtype,R);for(let W=0;W<h;++W)for(let H=0;H<y;++H){let z=H*b-x.top;for(let X=0;X<A;++X){let te=X*w-x.left;for(let J=0;J<g;++J){let Q=Number.MIN_SAFE_INTEGER;for(let K=0;K<k;++K){let oe=z+K*N;if(oe>=0&&oe<f)for(let ce=0;ce<S;++ce){let he=te+ce*$;if(he>=0&&he<m){let Ae=v.locToIndex([W,oe,he,J],u,v.computeStrides(s.shape)),Se=v.locToIndex([K,ce,J],p,v.computeStrides(r.shape)),Ce=c[Ae]+d[Se];Ce>Q&&(Q=Ce)}}}let ne=v.locToIndex([W,H,X,J],D,v.computeStrides(F));T[ne]=Q}}}return{dataId:l.write(v.toTypedArray(T,s.dtype),F,s.dtype),shape:F,dtype:s.dtype}}},Aj={kernelName:kh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=v.toNestedArray(s.shape,c.data.get(s.dataId).values),d=v.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:S,dilationWidth:N,outShape:$}=E.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===$.length,()=>`Error in ${kh}, dy must have the same rank as output ${$.length}, but got ${a.rank}`);let F=v.toNestedArray($,c.data.get(a.dataId).values),R=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T<p;++T)for(let O=0;O<g;++O){let W=O*x-A.top;for(let H=0;H<y;++H){let z=H*b-A.left;for(let X=0;X<m;++X){let te=Number.MIN_SAFE_INTEGER,J=0,Q=0;for(let ne=0;ne<w;++ne){let K=W+ne*S;if(K>=0&&K<h)for(let oe=0;oe<k;++oe){let ce=z+oe*N;if(ce>=0&&ce<f){let he=u[T][K][ce][X]+d[ne][oe][X];he>te&&(te=he,J=ne,Q=oe)}}}R[J][Q][X]+=F[T][O][H][X]}}}return{dataId:c.write(v.toTypedArray(R,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},xj={kernelName:wh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=v.toNestedArray(s.shape,c.data.get(s.dataId).values),d=v.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:S,dilationWidth:N,outShape:$}=E.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===$.length,()=>`Error in ${wh}, dy must have the same rank as output ${$.length}, but got ${a.rank}`);let F=v.toNestedArray($,c.data.get(a.dataId).values),R=v.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T<p;++T)for(let O=0;O<g;++O){let W=O*x-A.top;for(let H=0;H<y;++H){let z=H*b-A.left;for(let X=0;X<m;++X){let te=Number.MIN_SAFE_INTEGER,J=W<0?0:W,Q=z<0?0:z;for(let ne=0;ne<w;++ne){let K=W+ne*S;if(K>=0&&K<h)for(let oe=0;oe<k;++oe){let ce=z+oe*N;if(ce>=0&&ce<f){let he=u[T][K][ce][X]+d[ne][oe][X];he>te&&(te=he,J=K,Q=ce)}}}R[T][J][Q][X]+=F[T][O][H][X]}}}return{dataId:c.write(v.toTypedArray(R,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function sp(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"sum");let i;r.dtype==="bool"?i=Po({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=Or({inputs:{x:r},backend:n});let l=i.shape.length,c=v.parseAxisParam(a,i.shape),u=E.getAxesPermutation(c,l),d=c,p=i;u!=null&&(p=Ls({inputs:{x:i},backend:n,attrs:{perm:u}}),d=E.getInnerMostAxes(d.length,l)),E.assertAxesAreInnerMostDims("sum",d,p.shape.length);let[h,f]=E.computeOutAndReduceShapes(p.shape,d),m=E.upcastType(p.dtype,"int32"),g=wm(n,h,m),y=v.sizeFromShape(f),A=n.data.get(g.dataId).values,x=n.data.get(p.dataId).values;for(let b=0;b<A.length;++b){let w=b*y,k=0;for(let S=0;S<y;++S)k+=x[w+S];A[b]=k}if(o){let b=E.expandShapeToKeepDim(g.shape,c),w=g;g=Et({inputs:{x:g},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(w)}return n.disposeIntermediateTensorInfo(i),u!=null&&n.disposeIntermediateTensorInfo(p),g}var bj={kernelName:oo,backendName:"cpu",kernelFunc:sp};function vj(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=E.decodeEinsumEquation(r,a.length);E.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=E.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:y,expandDims:A}=E.getEinsumPermutation(h,l[g]),x;E.isIdentityPermutation(y)?x=a[g]:(x=Ls({inputs:{x:a[g]},backend:n,attrs:{perm:y}}),f.push(x));let b=x.shape.slice();for(let w=0;w<A.length;++w)b.splice(A[w],0,1);v.arraysEqual(x.shape,b)||(x=Et({inputs:{x},backend:n,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=km({inputs:{a:x,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=sp({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var wj={kernelName:Xc,backendName:"cpu",kernelFunc:vj};function kj(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Ne([s,r],"eluGrad");let a=new Float32Array(v.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let c=o[l];c>=1?a[l]=i[l]:a[l]=i[l]*(c+1)}return n.makeTensorInfo(r.shape,"float32",a)}var Ij={kernelName:Ih,backendName:"cpu",kernelFunc:kj},Sj=E.ERF_P,Cj=E.ERF_A1,Tj=E.ERF_A2,Nj=E.ERF_A3,Ej=E.ERF_A4,Rj=E.ERF_A5,$j=xt(nu,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+Sj*n);return t*(1-((((Rj*s+Ej)*s+Nj)*s+Tj)*s+Cj)*s*Math.exp(-n*n))}),Dj={kernelName:nu,backendName:"cpu",kernelFunc:$j};function Sm(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Et({inputs:{x:r},backend:n,attrs:{shape:i}})}var _j={kernelName:ui,backendName:"cpu",kernelFunc:Sm},Pj=Qt((e,t)=>e/t),QA=wn(_a,Pj),ex={kernelName:_a,backendName:"cpu",kernelFunc:QA};function wI(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,c=[r,a],u=v.sizeFromShape(c),d=v.getTypedArrayFromDType("float32",u),p=v.getTypedArrayFromDType("float32",u);for(let g=0;g<r;g++){let y=ml({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),A=ml({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,a]}}),x=Is({inputs:{real:y,imag:A},backend:n}),{real:b,imag:w}=Fj(x,t,n),k=E.mergeRealAndImagArrays(b,w);for(let S=0;S<a;S++){let N=E.getComplexWithIndex(k,S);d[g*a+S]=N.real,p[g*a+S]=N.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(c,"float32",d),f=n.makeTensorInfo(c,"float32",p),m=Is({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function Fj(e,t,n){let s=v.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if(Oj(s)){let i=tx(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let c=n.makeTensorInfo(l,"float32",i.real),u=n.makeTensorInfo(l,"float32",i.imag),d=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),p=Or({inputs:{x:d},backend:n}),h=ex.kernelFunc({inputs:{a:c,b:d},backend:n}),f=ex.kernelFunc({inputs:{a:u,b:p},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=E.mergeRealAndImagArrays(a,o),l=Mj(i,s,t);return E.splitRealAndImagArrays(l)}}function Oj(e){return(e&e-1)==0}function tx(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=E.mergeRealAndImagArrays(e,t),o=n/2,i=E.complexWithEvenIndex(a),l=i.real,c=i.imag,u=[l.length],d=r.makeTensorInfo(u,"float32",l),p=r.makeTensorInfo(u,"float32",c),h=Is({inputs:{real:d,imag:p},backend:r}),f=E.complexWithOddIndex(a),m=f.real,g=f.imag,y=[m.length],A=r.makeTensorInfo(y,"float32",m),x=r.makeTensorInfo(y,"float32",g),b=Is({inputs:{real:A,imag:x},backend:r}),w=tx(l,c,o,s,r),k=w.real,S=w.imag,N=[k.length],$=r.makeTensorInfo(N,"float32",k),F=r.makeTensorInfo(N,"float32",S),R=Is({inputs:{real:$,imag:F},backend:r}),D=tx(m,g,o,s,r),T=D.real,O=D.imag,W=[T.length],H=r.makeTensorInfo(W,"float32",T),z=r.makeTensorInfo(W,"float32",O),X=Is({inputs:{real:H,imag:z},backend:r}),te=E.exponents(n,s),J=[te.real.length],Q=r.makeTensorInfo(J,"float32",te.real),ne=r.makeTensorInfo(J,"float32",te.imag),K=Is({inputs:{real:Q,imag:ne},backend:r}),oe=km({inputs:{a:K,b:X},backend:r}),ce=tp({inputs:{a:R,b:oe},backend:r}),he=ZA({inputs:{a:R,b:oe},backend:r}),Ae=fl({inputs:{input:ce},backend:r}),Se=fl({inputs:{input:he},backend:r}),Ce=Yu({inputs:{input:ce},backend:r}),Oe=Yu({inputs:{input:he},backend:r}),Ue=Ju({inputs:[Ae,Se],backend:r,attrs:{axis:0}}),ze=Ju({inputs:[Ce,Oe],backend:r,attrs:{axis:0}}),wt=r.data.get(Ue.dataId).values,mt=r.data.get(ze.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(F),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo(H),r.disposeIntermediateTensorInfo(z),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(ne),r.disposeIntermediateTensorInfo(K),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(ce),r.disposeIntermediateTensorInfo(he),r.disposeIntermediateTensorInfo(Ae),r.disposeIntermediateTensorInfo(Ce),r.disposeIntermediateTensorInfo(Se),r.disposeIntermediateTensorInfo(Oe),r.disposeIntermediateTensorInfo(Ue),r.disposeIntermediateTensorInfo(ze),{real:wt,imag:mt}}function Mj(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=E.exponent(r*i,t,n),c=E.getComplexWithIndex(e,i);a+=c.real*l.real-c.imag*l.imag,o+=c.real*l.imag+c.imag*l.real}n&&(a/=t,o/=t),E.assignToTypedArray(s,a,o,r)}return s}function zj(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Et({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=wI(i,!1,n),c=Et({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var Lj={kernelName:Sh,backendName:"cpu",kernelFunc:zj};function nx(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||v.inferDtype(r),i=v.getArrayFromDType(o,v.sizeFromShape(s));return Wj(i,r,o),t.makeTensorInfo(s,o,i)}var Bj={kernelName:su,backendName:"cpu",kernelFunc:nx};function Wj(e,t,n){e.fill(t)}var Vj={kernelName:di,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[o,i,l,c]=s.shape,u=r.data.get(s.dataId).values;for(let p=0;p<o;p++){let h=p*l*i*c;for(let f=0;f<i;f++){let m=f*(l*c);for(let g=0;g<l;g++){let y=g*c;for(let A=0;A<c;A++){let x=Math.round(l-g-1),b=h+m+y+A,w=u[b];if(x>=0&&x<l){let k=x*c,S=h+m+k+A;w=u[S]}a[b]=w}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},Uj=Qt((e,t)=>Math.floor(e/t)),Gj=wn(Ma,Uj,null,"int32"),Hj={kernelName:Ma,backendName:"cpu",kernelFunc:Gj};function jj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=bI({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=tp({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=YA(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var qj={kernelName:mo,backendName:"cpu",kernelFunc:jj};function Xj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=vI({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=tp({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=YA(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var Kj={kernelName:go,backendName:"cpu",kernelFunc:Xj};function Zj(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=v.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,c,u,d]=E.prepareAndValidate(s,r);if(c===0)return n.makeTensorInfo(l,s.dtype,[]);let p=n.data.get(r.dataId).values,h=n.bufferSync(s),f=z7(p,h,s.dtype,c,i,u,d,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var Yj={kernelName:hi,backendName:"cpu",kernelFunc:Zj};function Jj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Ne([r,a],"gatherV2");let l=i;i==null&&(l=0);let c=v.sizeFromShape(a.shape),u=v.parseAxisParam(o,r.shape)[0],d=E.segment_util.collectGatherOpShapeInfo(r,a,u,l),p=Et({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),h=Et({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,c/d.batchSize]}}),f=[d.batchSize,d.outerSize,c/d.batchSize,d.sliceSize],m=n.bufferSync(h),g=n.bufferSync(p),y=L7(g,m,f);return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.makeTensorInfo(d.outputShape,y.dtype,y.values)}var Qj={kernelName:pi,backendName:"cpu",kernelFunc:Jj};function eq(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Et({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=wI(i,!0,n),c=Et({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var tq={kernelName:Ch,backendName:"cpu",kernelFunc:eq},nq=xt(ru,e=>Number.isFinite(e)?1:0,"bool"),sq={kernelName:ru,backendName:"cpu",kernelFunc:nq},rq=xt(au,e=>Math.abs(e)===1/0?1:0,"bool"),aq={kernelName:au,backendName:"cpu",kernelFunc:rq},oq=xt(ou,e=>Number.isNaN(e)?1:0,"bool"),iq={kernelName:ou,backendName:"cpu",kernelFunc:oq};function lq(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=G7(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var uq={kernelName:Th,backendName:"cpu",kernelFunc:lq},cq=xt(iu,e=>Math.log1p(e)),dq={kernelName:iu,backendName:"cpu",kernelFunc:cq},pq=Qt((e,t)=>e&&t),hq=wn(Ai,pq,null,"bool"),fq={kernelName:Ai,backendName:"cpu",kernelFunc:hq},mq=xt(lu,e=>e?0:1,"bool"),gq={kernelName:lu,backendName:"cpu",kernelFunc:mq},yq=Qt((e,t)=>e||t),Aq=wn(Zc,yq,null,"bool"),xq={kernelName:Zc,backendName:"cpu",kernelFunc:Aq};function bq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Ne(r,"LRN");let c=r.shape[3],u=c-1,d=n.data.get(r.dataId).values,p=v.sizeFromShape(r.shape),h=new Float32Array(p);function f(m){let g=m%c,y=m-g+Math.max(0,g-a),A=m-g+Math.min(g+a,u),x=0;for(;y<=A;y++){let b=d[y];x+=b*b}return x}for(let m=0;m<p;m++){let g=f(m),y=d[m]*Math.pow(o+i*g,-l);h[m]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var vq={kernelName:Yc,backendName:"cpu",kernelFunc:bq};function wq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:c,beta:u}=s;Ne(o,"LRNGrad");let d=v.sizeFromShape(o.shape),p=o.shape[3],h=n.data.get(o.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(d),y=d;for(let A=0;A<y;A++){let x=A%p,b=A-x+Math.max(0,x-i),w=A-x+Math.min(p,x+i+1),k=0;for(let S=b;S<w;S++)k+=Math.pow(f[S],2);k=c*k+l;for(let S=b;S<w;S++){let N=-2*c*u*f[S]*m[A]/k;A===S&&(N+=Math.pow(k,-u)),N*=h[A],g[S]+=N}}return n.makeTensorInfo(o.shape,r.dtype,g)}var kq={kernelName:Nh,backendName:"cpu",kernelFunc:wq};function kI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,c=l.length,u=v.parseAxisParam(a,l),d=u,p=E.getAxesPermutation(d,c),h=i.data.get(r.dataId).values;if(p!=null){let b=new Array(c);for(let w=0;w<b.length;w++)b[w]=l[p[w]];h=qA(h,l,r.dtype,p,b),d=E.getInnerMostAxes(d.length,c),l=b}Ne(r,"max"),E.assertAxesAreInnerMostDims("max",d,c);let[f,m]=E.computeOutAndReduceShapes(l,d),g=v.sizeFromShape(m),y=j7(h,g,f,r.dtype),A=i.write(y,f,r.dtype),x=f;return o&&(x=E.expandShapeToKeepDim(f,u)),{dataId:A,shape:x,dtype:r.dtype}}var Iq={kernelName:Va,backendName:"cpu",kernelFunc:kI};function Sq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ne(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))d=Or({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=JA(p,r.shape,r.dtype,h,u,"max");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var Cq={kernelName:Ga,backendName:"cpu",kernelFunc:Sq};function Tq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Ne(r,"maxPool3d");let u=E.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=xI(d,r.shape,r.dtype,v.computeStrides(r.shape),u,"max");return n.makeTensorInfo(p.shape,"float32",p.values)}var Nq={kernelName:Jc,backendName:"cpu",kernelFunc:Tq};function Eq(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Ne([r,a],"maxPool3DGrad");let u=E.computePool3DInfo(a.shape,o,i,1,l,c),d=n.bufferSync(a),p=AH(d,u),h=u.strideDepth,f=u.strideHeight,m=u.strideWidth,g=u.dilationDepth,y=u.dilationHeight,A=u.dilationWidth,x=u.effectiveFilterDepth,b=u.effectiveFilterHeight,w=u.effectiveFilterWidth,k=x-1-u.padInfo.front,S=w-1-u.padInfo.left,N=b-1-u.padInfo.top,$=We(a.shape,"float32"),F=n.bufferSync(r);for(let R=0;R<u.batchSize;++R)for(let D=0;D<u.inChannels;++D)for(let T=0;T<u.inDepth;++T)for(let O=0;O<u.inHeight;++O)for(let W=0;W<u.inWidth;++W){let H=T-k,z=O-N,X=W-S,te=0;for(let J=0;J<x;J+=g){let Q=(H+J)/h;if(!(Q<0||Q>=u.outDepth||Math.floor(Q)!==Q))for(let ne=0;ne<b;ne+=y){let K=(z+ne)/f;if(!(K<0||K>=u.outHeight||Math.floor(K)!==K))for(let oe=0;oe<w;oe+=A){let ce=(X+oe)/m;if(ce<0||ce>=u.outWidth||Math.floor(ce)!==ce)continue;let he=x*b*w-1-p.get(R,Q,K,ce,D),Ae=J*b*w+ne*w+oe,Se=he===Ae?1:0;if(Se===0)continue;te+=F.get(R,Q,K,ce,D)*Se}}}$.set(te,R,T,O,W,D)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var Rq={kernelName:Rh,backendName:"cpu",kernelFunc:Eq};function $q(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Ne([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=E.computePool2DInfo(i.shape,l,c,1,u,d),h=n.data.get(i.dataId).values,f=We(p.outShape,i.dtype,AI(h,i.shape,i.dtype,p).values),m=p.strideHeight,g=p.strideWidth,y=p.dilationHeight,A=p.dilationWidth,x=p.effectiveFilterHeight,b=p.effectiveFilterWidth,w=b-1-p.padInfo.left,k=x-1-p.padInfo.top,S=We(i.shape,"float32"),N=n.data.get(r.dataId).values,$=We(r.shape,"float32",N);for(let F=0;F<p.batchSize;++F)for(let R=0;R<p.inChannels;++R)for(let D=0;D<p.inHeight;++D)for(let T=0;T<p.inWidth;++T){let O=D-k,W=T-w,H=0;for(let z=0;z<x;z+=y){let X=(O+z)/m;if(!(X<0||X>=p.outHeight||Math.floor(X)!==X))for(let te=0;te<b;te+=A){let J=(W+te)/g;if(J<0||J>=p.outWidth||Math.floor(J)!==J)continue;let Q=x*b-1-f.get(F,X,J,R),ne=z*b+te,K=Q===ne?1:0;if(K===0)continue;H+=$.get(F,X,J,R)*K}}S.set(H,F,D,T,R)}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var Dq={kernelName:Eh,backendName:"cpu",kernelFunc:$q};function _q(e,t,n,s,r){let a=v.computeStrides(t),o=JA(e,t,n,a,r,"max"),i=AI(e,t,n,r,!0,s);return[o.values,i.values]}var Pq={kernelName:$h,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Ne(s,"MaxPoolWithArgmax");let c=l.data.get(s.dataId).values,u=E.computePool2DInfo(s.shape,r,a,[1,1],o),[d,p]=_q(c,s.shape,s.dtype,i,u),h=l.write(d,u.outShape,s.dtype),f=l.write(p,u.outShape,s.dtype);return[{dataId:h,shape:u.outShape,dtype:s.dtype},{dataId:f,shape:u.outShape,dtype:"int32"}]}};function Fq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=v.parseAxisParam(a,r.shape),c=E.computeOutAndReduceShapes(r.shape,i)[1],u=v.sizeFromShape(c),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([u]));d.push(p);let h=Po({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(h);let f=QA({inputs:{a:h,b:p},backend:n});d.push(f);let m=sp({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var Oq={kernelName:Ha,backendName:"cpu",kernelFunc:Fq};function Mq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"min");let i=v.parseAxisParam(a,r.shape),l=i,c=E.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ls({inputs:{x:r},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("min",l,u.shape.length);let[d,p]=E.computeOutAndReduceShapes(u.shape,l),h=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let y=0;y<f.length;++y){let A=y*h,x=m[A];for(let b=0;b<h;++b){let w=m[A+b];(Number.isNaN(w)||w<x)&&(x=w)}f[y]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let y=E.expandShapeToKeepDim(d,i),A=Et({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),A}return g}var zq={kernelName:ja,backendName:"cpu",kernelFunc:Mq};function Lq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;Ne(r,"mirrorPad");let i=a.map((x,b)=>x[0]+r.shape[b]+x[1]),l=a.map(x=>x[0]),c=a.map((x,b)=>x[0]+r.shape[b]),u=o==="reflect"?0:1,d=n.data.get(r.dataId).values,p=r.shape.length,h=v.computeStrides(r.shape),f=v.sizeFromShape(i),m=i.length,g=v.computeStrides(i),y=v.getTypedArrayFromDType(r.dtype,f);for(let x=0;x<f;x++){let b=v.indexToLoc(x,m,g);for(let k=0;k<m;k++)b[k]<l[k]?b[k]=l[k]*2-b[k]-u:b[k]>=c[k]&&(b[k]=(c[k]-1)*2-b[k]+u);b=b.map((k,S)=>k-l[S]);let w=v.locToIndex(b,p,h);y[x]=d[w]}return{dataId:n.write(y,i,r.dtype),shape:i,dtype:r.dtype}}var Bq={kernelName:Xa,backendName:"cpu",kernelFunc:Lq},Wq=Qt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),Vq=wn(uu,Wq),Uq={kernelName:uu,backendName:"cpu",kernelFunc:Vq},Gq=Qo(v5());function II(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=v.parseAxisParam([i],r.shape),c=kI({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=E.expandShapeToKeepDim(c.shape,l),d=Et({inputs:{x:c},backend:n,attrs:{shape:u}}),p=ZA({inputs:{a:r,b:d},backend:n}),h=F7({inputs:{x:p},backend:n}),f=sp({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),m=Et({inputs:{x:f},backend:n,attrs:{shape:u}}),g=QA({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var Hq={kernelName:io,backendName:"cpu",kernelFunc:II};function jq(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Ne(r,"multinomial");let l=i?r:II({inputs:{logits:r},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],d=n.data.get(l.dataId).values,p=[c,a],h=v.makeZerosTypedArray(v.sizeFromShape(p),"int32");for(let f=0;f<c;++f){let m=f*u,g=new Float32Array(u-1);g[0]=d[m];for(let x=1;x<g.length;++x)g[x]=g[x-1]+d[m+x];let y=Gq.alea(o.toString()),A=f*a;for(let x=0;x<a;++x){let b=y();h[A+x]=g.length;for(let w=0;w<g.length;w++)if(b<g[w]){h[A+x]=w;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(p,"int32",h)}var qq={kernelName:Dh,backendName:"cpu",kernelFunc:jq},Xq=Ys.nonMaxSuppressionV3Impl;function Kq(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;Ne(r,"NonMaxSuppression");let c=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,{selectedIndices:d}=Xq(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Zq={kernelName:vi,backendName:"cpu",kernelFunc:Kq},Yq=Ys.nonMaxSuppressionV4Impl;function Jq(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:c}=s;Ne(r,"NonMaxSuppressionPadded");let u=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,{selectedIndices:p,validOutputs:h}=Yq(u,d,o,i,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Qq={kernelName:cu,backendName:"cpu",kernelFunc:Jq},eX=Ys.nonMaxSuppressionV5Impl;function tX(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s;Ne(r,"NonMaxSuppressionWithScore");let u=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:y}=eX(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var nX={kernelName:wi,backendName:"cpu",kernelFunc:tX};function sX(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s;Ne(r,"oneHot");let l=v.sizeFromShape(r.shape),c=new Float32Array(l*a);c.fill(i);let u=n.data.get(r.dataId).values;for(let d=0;d<l;++d)u[d]>=0&&u[d]<a&&(c[d*a+u[d]]=o);return n.makeTensorInfo([...r.shape,a],"int32",c)}var rX={kernelName:Ii,backendName:"cpu",kernelFunc:sX};function Cm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=fl({inputs:{input:s},backend:n}),a=Cm({inputs:{x:r},backend:n}),o=Yu({inputs:{input:s},backend:n}),i=Cm({inputs:{x:o},backend:n}),l=Is({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return nx({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var aX={kernelName:Bi,backendName:"cpu",kernelFunc:Cm};function SI(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=fl({inputs:{input:s},backend:n}),a=SI({inputs:{x:r},backend:n}),o=Yu({inputs:{input:s},backend:n}),i=Cm({inputs:{x:o},backend:n}),l=Is({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return nx({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var oX={kernelName:ki,backendName:"cpu",kernelFunc:SI};function CI(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Sm({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=Sm({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=Ju({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var iX={kernelName:Si,backendName:"cpu",kernelFunc:CI};function lX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Ne(r,"pad");let i=a.map((A,x)=>A[0]+r.shape[x]+A[1]),l=a.map(A=>A[0]),c=n.data.get(r.dataId).values,u=v.sizeFromShape(r.shape),d=r.shape.length,p=v.computeStrides(r.shape),h=v.sizeFromShape(i),f=i.length,m=v.computeStrides(i),g=v.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let A=0;A<u;A++){let b=v.indexToLoc(A,d,p).map((k,S)=>k+l[S]),w=v.locToIndex(b,f,m);g[w]=c[A]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var TI={kernelName:Za,backendName:"cpu",kernelFunc:lX},uX=Qt((e,t)=>Math.pow(e,t)),cX=wn(Ya,uX),dX={kernelName:Ya,backendName:"cpu",kernelFunc:cX};function pX(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=XA(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var hX={kernelName:du,backendName:"cpu",kernelFunc:pX},fX=xt(pu,e=>1/e),mX={kernelName:pu,backendName:"cpu",kernelFunc:fX};function gX(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ne(r,"resizeBilinear");let l=v.computeStrides(r.shape),[c,u]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([d,c,u,f])),y=[a&&c>1?p-1:p,a&&u>1?h-1:h],A=[a&&c>1?c-1:c,a&&u>1?u-1:u],x=0,b=y[0]/A[0],w=y[1]/A[1];for(let k=0;k<d;k++)for(let S=0;S<c;S++){let N;o?N=b*(S+.5)-.5:N=b*S;let $=Math.max(0,Math.floor(N)),F=N-$,R=Math.min(p-1,Math.ceil(N)),D=k*l[0]+$*l[1],T=k*l[0]+R*l[1];for(let O=0;O<u;O++){let W;o?W=w*(O+.5)-.5:W=w*O;let H=Math.max(0,Math.floor(W)),z=W-H,X=Math.min(h-1,Math.ceil(W)),te=D+H*l[2],J=T+H*l[2],Q=D+X*l[2],ne=T+X*l[2];for(let K=0;K<f;K++){let oe=m[te+K],ce=m[J+K],he=m[Q+K],Ae=m[ne+K],Se=oe+(he-oe)*z,Ce=ce+(Ae-ce)*z,Oe=Se+(Ce-Se)*F;g[x++]=Oe}}}return n.makeTensorInfo([d,c,u,f],"float32",g)}var yX={kernelName:eo,backendName:"cpu",kernelFunc:gX};function AX(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ne([a,r],"resizeBilinearGrad");let i=v.computeStrides(r.shape),[l,c,u,d]=r.shape,[,p,h]=a.shape,f=new Float32Array(l*c*u*d),m=[o&&p>1?c-1:c,o&&h>1?u-1:u],g=[o&&p>1?p-1:p,o&&h>1?h-1:h],y=m[0]/g[0],A=m[1]/g[1],x=n.data.get(a.dataId).values,b=0;for(let w=0;w<l;w++){let k=w*i[0];for(let S=0;S<p;S++){let N=S*y,$=Math.floor(N),F=Math.min(Math.ceil(N),c-1),R=k+$*i[1],D=k+F*i[1],T=N-$,O=1-T;for(let W=0;W<h;W++){let H=W*A,z=Math.floor(H),X=Math.min(Math.ceil(H),u-1),te=H-z,J=1-te,Q=R+z*i[2],ne=R+X*i[2],K=D+z*i[2],oe=D+X*i[2],ce=O*J,he=O*te,Ae=T*J,Se=T*te;for(let Ce=0;Ce<d;Ce++){let Oe=x[b++];f[Q+Ce]+=Oe*ce,f[ne+Ce]+=Oe*he,f[K+Ce]+=Oe*Ae,f[oe+Ce]+=Oe*Se}}}}return n.makeTensorInfo([l,u,c,d],"float32",f)}var xX={kernelName:Ph,backendName:"cpu",kernelFunc:AX};function bX(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ne(r,"resizeNearestNeighbor");let l=v.computeStrides(r.shape),[c,u]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(d*c*u*f),y=[a&&c>1?p-1:p,a&&u>1?h-1:h],A=[a&&c>1?c-1:c,a&&u>1?u-1:u],x=y[0]/A[0],b=y[1]/A[1],w=0;for(let k=0;k<d;k++){let S=k*l[0];for(let N=0;N<c;N++){let $=o?x*(N+.5):x*N,F=Math.min(p-1,a?Math.round($):Math.floor($));o&&(F=Math.max(0,F));let R=S+F*l[1];for(let D=0;D<u;D++){let T=o?b*(D+.5):b*D,O=Math.min(h-1,a?Math.round(T):Math.floor(T));o&&(O=Math.max(0,O));let W=R+O*l[2];for(let H=0;H<f;H++){let z=m[W+H];g[w++]=z}}}}return n.makeTensorInfo([d,c,u,f],r.dtype,g)}var vX={kernelName:hu,backendName:"cpu",kernelFunc:bX};function wX(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ne([a,r],"resizeNearestNeighborGrad");let i=v.computeStrides(r.shape),l=v.computeStrides(a.shape),[c,u,d,p]=r.shape,[,h,f]=a.shape,m=new Float32Array(c*u*d*p),g=n.data.get(a.dataId).values,y=[o&&h>1?u-1:u,o&&f>1?d-1:d],A=[o&&h>1?h-1:h,o&&f>1?f-1:f],x=y[0]/A[0],b=y[1]/A[1],w=1/x,k=1/b,S=Math.ceil(w)*2+2,N=Math.ceil(k)*2+2;for(let $=0;$<c;$++){let F=$*i[0];for(let R=0;R<u;R++){let D=F+R*i[1],T=Math.floor(R*w),O=Math.floor(T-S/2);for(let W=0;W<d;W++){let H=D+W*i[2],z=Math.floor(W*k),X=Math.floor(z-N/2);for(let te=0;te<p;te++){let J=0;for(let Q=0;Q<S;Q++){let ne=Q+O;if(ne<0||ne>=h)continue;let K=F+ne*l[1],oe=ne*x,ce=Math.min(u-1,o?Math.round(oe):Math.floor(oe));if(R===ce)for(let he=0;he<N;he++){let Ae=he+X;if(Ae<0||Ae>=f)continue;let Se=K+Ae*l[2],Ce=Ae*b,Oe=Math.min(d-1,o?Math.round(Ce):Math.floor(Ce));W===Oe&&(J+=g[Se+te])}}m[H+te]=J}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var kX={kernelName:_h,backendName:"cpu",kernelFunc:wX};function IX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Ne(r,"reverse");let o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return Or({inputs:{x:r},backend:n});let l=new nn(r.shape,r.dtype),c=n.bufferSync(r);for(let u=0;u<l.size;u++){let d=l.indexToLoc(u),p=d.slice();i.forEach(h=>p[h]=r.shape[h]-1-p[h]),l.set(c.get(...p),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var SX={kernelName:Ni,backendName:"cpu",kernelFunc:IX},CX={kernelName:Wi,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[c,u,d,p]=s.shape,[h,f]=E.getImageCenter(o,u,d),m=255,g=Math.sin(r),y=Math.cos(r),A=i.data.get(s.dataId).values;for(let b=0;b<c;b++){let w=b*d*u*p;for(let k=0;k<u;k++){let S=k*(d*p);for(let N=0;N<d;N++){let $=N*p;for(let F=0;F<p;F++){let R=[c,k,N,F],D=R[2],T=R[1],O=(D-h)*y-(T-f)*g,W=(D-h)*g+(T-f)*y;O=Math.round(O+h),W=Math.round(W+f);let H=a;if(typeof a!="number"&&(F===3?H=m:H=a[F]),O>=0&&O<d&&W>=0&&W<u){let X=W*(d*p),te=O*p,J=w+X+te+F;H=A[J]}let z=w+S+$+F;l[z]=H}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},TX=xt(Ei,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),NX={kernelName:Ei,backendName:"cpu",kernelFunc:TX};function NI(e,t,n,s,r,a,o,i,l,c){let u=[s/r,r],d=e.values,p=t.values;if(s===0)return We(n,t.dtype);let h=We(u,t.dtype);h.values.fill(l);for(let f=0;f<a;f++){let m=[],g=0;for(let y=0;y<o;y++){let A=d[f*o+y];m.push(A),g+=A*i[y]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y<r;y++)c?h.values[g*r+y]+=p[f*r+y]:h.values[g*r+y]=t.rank===0?p[0]:p[f*r+y]}return h}function EX(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=E.calculateShapes(a,r,o),p=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=NI(h,f,o,d,c,l,i,u,0,p);return n.makeTensorInfo(o,m.dtype,m.values)}var RX={kernelName:Ri,backendName:"cpu",kernelFunc:EX};function $X(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;Ne([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=Bn(r.dtype,a.dtype),d=v.makeZerosTypedArray(v.sizeFromShape(r.shape),u),p=0,h=o===0||o>1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<h;m++)i[f]===1?d[p++]=l[f]:d[p++]=c[f];return n.makeTensorInfo(r.shape,u,d)}var DX={kernelName:$i,backendName:"cpu",kernelFunc:$X},_X=E.SELU_SCALEALPHA,PX=E.SELU_SCALE,FX=xt(fu,e=>e>=0?PX*e:_X*(Math.exp(e)-1)),OX={kernelName:fu,backendName:"cpu",kernelFunc:FX},MX=xt(mu,e=>e<0?-1:e>0?1:0),zX={kernelName:mu,backendName:"cpu",kernelFunc:MX},LX=xt(so,e=>Math.sin(e)),BX={kernelName:so,backendName:"cpu",kernelFunc:LX},WX=xt(_i,e=>Math.sinh(e)),VX={kernelName:_i,backendName:"cpu",kernelFunc:WX},UX=11920928955078125e-23,EI=Math.log(UX)+2,GX=xt(gu,e=>{let t=e>-EI,n=e<EI,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),HX={kernelName:gu,backendName:"cpu",kernelFunc:GX};function jX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;Ne([r],"spaceToBatchND");let i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let c=TI.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=E.getReshaped(c.shape,a,i,!1),d=E.getPermuted(u.length,a.length,!1),p=E.getReshapedPermuted(c.shape,a,i,!1),m=Et({inputs:{x:c},backend:n,attrs:{shape:u}}),A=Ls({inputs:{x:m},backend:n,attrs:{perm:d}}),w=Et({inputs:{x:A},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),w}var qX={kernelName:Pi,backendName:"cpu",kernelFunc:jX};function XX(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=n.data.get(o.dataId).values[0],[d,p,h,f,m]=eI(i,s.shape,s.dtype,l,r.dtype,c,u);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var KX={kernelName:Fh,backendName:"cpu",kernelFunc:XX};function ZX(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[c,u,d]=tI(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var YX={kernelName:Oh,backendName:"cpu",kernelFunc:ZX};function JX(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=KA(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var QX={kernelName:Mh,backendName:"cpu",kernelFunc:JX};function eK(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=KA(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var tK={kernelName:zh,backendName:"cpu",kernelFunc:eK};function nK(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=E.calculateShapes(a,r,i),h=!1,f=n.bufferSync(r),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],y=NI(f,m,i,p,u,c,l,d,g,h);return n.makeTensorInfo(i,y.dtype,y.values)}var sK={kernelName:ed,backendName:"cpu",kernelFunc:nK};function rK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(d=>{let p=[...u];p[i]=d;let h=ml({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});return c[i]+=d,h})}var aK={kernelName:Fi,backendName:"cpu",kernelFunc:rK},oK={kernelName:yu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Ne(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},iK=xt(ho,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),lK={kernelName:ho,backendName:"cpu",kernelFunc:iK};function uK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s;Ne(r,"stridedSlice");let{nonStrided:h,$begin:f,$strides:m,size:g,newShape:y,outShape:A}=yn.sliceInfo(r.shape,a,o,i,l,c,u,d,p),x=Et({inputs:{x:r},backend:n,attrs:{shape:y}}),b;if(h){let k=ml({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=Et({inputs:{x:k},backend:n,attrs:{shape:A}}),n.disposeIntermediateTensorInfo(k)}else if(A.some(k=>k===0))b=n.makeTensorInfo(A,r.dtype,[]);else{let k=n.bufferSync(x),S=sI(A,k,m,f);b=n.makeTensorInfo(S.shape,S.dtype,S.values)}let w=Et({inputs:{x:b},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),w}var cK={kernelName:Oi,backendName:"cpu",kernelFunc:uK};function dK(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.data.get(u.dataId).values,h=n.data.get(d.dataId).values,[f,m]=rI(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var pK={kernelName:td,backendName:"cpu",kernelFunc:dK};function hK(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[c,u,d]=aI(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var fK={kernelName:Lh,backendName:"cpu",kernelFunc:hK};function mK(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=oI(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var gK={kernelName:Bh,backendName:"cpu",kernelFunc:mK},yK=xt(Mi,e=>Math.tan(e)),AK={kernelName:Mi,backendName:"cpu",kernelFunc:yK},xK=xt(co,e=>Math.tanh(e)),bK={kernelName:co,backendName:"cpu",kernelFunc:xK};function vK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Ne(r,"tile");let o=lI(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var wK={kernelName:Kr,backendName:"cpu",kernelFunc:vK};function kK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Ne(r,"topk");let i=n.data.get(r.dataId).values,[l,c]=cI(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var IK={kernelName:Au,backendName:"cpu",kernelFunc:kK};function SK(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=n,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],y=v.computeStrides(r.shape),A=y[0],x=y[1],b=y[2],w=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));w.fill(l);let k=s.data.get(r.dataId).values,S=s.data.get(a.dataId).values;for(let $=0;$<u;++$){let F=a.shape[0]===1?S:S.subarray($*8,$*8+8);for(let R=0;R<f;++R)for(let D=0;D<m;++D)for(let T=0;T<h;++T){let O,W=F[6]*D+F[7]*R+1;if(W===0)continue;let H=(F[0]*D+F[1]*R+F[2])/W,z=(F[3]*D+F[4]*R+F[5])/W,X=RI(H,p,i),te=RI(z,d,i);switch(o){case"nearest":O=$K(k,d,p,A,x,b,$,te,X,T,l);break;case"bilinear":O=DK(k,d,p,A,x,b,$,te,X,T,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let J=$*A+R*x+D*b+T;w[J]=O}return s.makeTensorInfo(g,r.dtype,w)}return{dataId:s.write(w,g,r.dtype),shape:r.shape,dtype:r.dtype}}var CK={kernelName:zi,backendName:"cpu",kernelFunc:SK};function RI(e,t,n){switch(n){case"reflect":return TK(e,t);case"wrap":return NK(e,t);case"nearest":return RK(e,t);case"constant":default:return EK(e,t)}}function TK(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return v.clamp(0,n,t-1)}function NK(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return v.clamp(0,n,t-1)}function EK(e,t){return e}function RK(e,t){return v.clamp(0,e,t-1)}function rp(e,t,n,s,r,a,o,i,l,c,u){let d=o*s+i*r+l*a+c;return 0<=i&&i<t&&0<=l&&l<n?e[d]:u}function $K(e,t,n,s,r,a,o,i,l,c,u){let d=Math.round(i),p=Math.round(l);return rp(e,t,n,s,r,a,o,d,p,c,u)}function DK(e,t,n,s,r,a,o,i,l,c,u){let d=Math.floor(i),p=Math.floor(l),h=d+1,f=p+1,m=(f-l)*rp(e,t,n,s,r,a,o,d,p,c,u)+(l-p)*rp(e,t,n,s,r,a,o,d,f,c,u),g=(f-l)*rp(e,t,n,s,r,a,o,h,p,c,u)+(l-p)*rp(e,t,n,s,r,a,o,h,f,c,u);return(h-i)*m+(i-d)*g}function _K(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Ne(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:c}=dI(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([c.length],"int32",c)]}var PK={kernelName:Wh,backendName:"cpu",kernelFunc:_K};function FK(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),c=0;for(let h=0;h<o;h++)h!==a&&(l[c++]=r.shape[h]);let u=new Array(o).fill(0),d=r.shape.slice();d[a]=1;let p=new Array(i);for(let h=0;h<p.length;h++){u[a]=h;let f=ml({inputs:{x:r},backend:n,attrs:{begin:u,size:d}});p[h]=Et({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return p}var OK={kernelName:Li,backendName:"cpu",kernelFunc:FK};function MK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;Ne(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,c=[],u=[],d=i-l,p=a;for(let f=0;f<d;++f){let m=Sm({inputs:{input:p},backend:n,attrs:{dim:f+1}});p=m,u.push(m)}for(let f=0;f<o;++f){let m=v.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),y=_7({inputs:{a:g,b:p},backend:n}),A=Po({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),x=km({inputs:{a:A,b:r},backend:n}),b=sp({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});c.push(b),u.push(g),u.push(y),u.push(A),u.push(x),u.push(b)}let h=CI({inputs:c,backend:n,attrs:{axis:0}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var zK={kernelName:nd,backendName:"cpu",kernelFunc:MK},LK=[jG,LU,XG,ZG,HU,JG,eH,nH,rH,oH,lH,cH,pH,mH,yH,bH,wH,IH,CH,GG,NH,RH,DH,PH,UU,qU,OH,BU,zH,BH,UH,HH,WH,KH,YH,qH,QH,tj,sj,aj,ij,uj,cj,pj,fj,gj,yj,xj,Aj,ex,wj,MG,Ij,XU,Dj,KU,_j,YU,Lj,Bj,Vj,QU,Hj,qj,Kj,Yj,Qj,tG,sG,WU,tq,LH,sq,aq,iq,zG,aG,iG,uq,uG,dq,fq,gq,xq,vq,kq,dG,Cq,Nq,Rq,Dq,Pq,Iq,Oq,zq,hG,Bq,Uq,qq,mG,yG,Zq,Qq,nX,xG,rX,oX,iX,TI,dX,BG,wG,hX,VU,mX,WG,VG,UG,yX,xX,vX,kX,SX,CX,NX,IG,RX,DX,OX,CG,zX,BX,VX,TG,Hq,HX,qX,KX,YX,QX,tK,sK,aK,RG,oK,DG,lK,cK,pK,fK,gK,OG,bj,AK,bK,wK,IK,bG,CK,PK,OK,zK,aX];for(let e of LK)Yr(e);var $I={};Le($I,{assertNotComplex:()=>ec,bindCanvasToFramebuffer:()=>YK,bindColorTextureToFramebuffer:()=>Rm,bindTextureToProgramUniformSampler:()=>jI,bindTextureUnit:()=>UI,bindVertexBufferToProgramAttribute:()=>ax,callAndCheck:()=>Ie,canBeRepresented:()=>DI,createFragmentShader:()=>FI,createFramebuffer:()=>VI,createProgram:()=>OI,createStaticIndexBuffer:()=>LI,createStaticVertexBuffer:()=>zI,createTexture:()=>BI,createVertexShader:()=>PI,getBatchDim:()=>yl,getExtensionOrThrow:()=>ip,getFramebufferErrorMessage:()=>qI,getMaxTexturesInShader:()=>YI,getNumChannels:()=>KK,getProgramUniformLocation:()=>HI,getProgramUniformLocationOrThrow:()=>GI,getRowsCols:()=>Al,getShapeAs3D:()=>$m,getTextureShapeFromLogicalShape:()=>KI,getWebGLDisjointQueryTimerVersion:()=>JI,getWebGLErrorMessage:()=>_I,getWebGLMaxTextureSize:()=>ZI,hasExtension:()=>Ws,isCapableOfRenderingToFloatTexture:()=>QI,isDownloadFloatTextureEnabled:()=>e4,isReshapeFree:()=>up,isWebGLFenceEnabled:()=>t4,isWebGLVersionEnabled:()=>ix,linkProgram:()=>MI,resetMaxTextureSize:()=>JK,resetMaxTexturesInShader:()=>QK,unbindColorTextureFromFramebuffer:()=>ox,unbindTextureUnit:()=>ZK,validateFramebuffer:()=>lp,validateProgram:()=>Em,validateTextureSize:()=>WI});var gl={},sx={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Tm(e,t){gl[e]=t}function Mr(e){if(!(e in gl)){let n=WK(e);if(n!==null)gl[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=gl[e];return t.isContextLost()?(delete gl[e],Mr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),gl[e])}function BK(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function WK(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=BK(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete gl[e]},!1),e===1?t.getContext("webgl",sx)||t.getContext("experimental-webgl",sx):t.getContext("webgl2",sx)}var ap;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(ap||(ap={}));var Bs;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Bs||(Bs={}));var Nn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Nn||(Nn={}));function op(e,t){return[t,e]}function VK(e,t){return e*t}function Nm(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function Qu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function UK(e,t){let[n,s]=Qu(e,t);return n*s*4}function rx(e,t){let n=e,s,r,a,o,i,l,c,u,d,p;return Z().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,c=4,u=1,d=n.HALF_FLOAT,p=n.FLOAT):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,c=4,u=4,d=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT),l=e.RGBA,{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:d,textureTypeFloat:p}}function Ie(e,t){let n=t();return Z().getBool("DEBUG")&&GK(e),n}function GK(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+_I(e,t))}var HK=596e-10,jK=65504;function DI(e){return!!(Z().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||HK<Math.abs(e)&&Math.abs(e)<jK)}function _I(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function ip(e,t){return la(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function PI(e,t){let n=la(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function FI(e,t){let n=la(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw XK(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var qK=/ERROR: [0-9]+:([0-9]+):/g;function XK(e,t){let n=qK.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
|
|
`),a=r.length.toString().length+2,o=r.map((d,p)=>v.rightPad((p+1).toString(),a)+d),i=0;for(let d=0;d<o.length;d++)i=Math.max(o[d].length,i);let l=o.slice(0,s-1),c=o.slice(s-1,s),u=o.slice(s);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${v.rightPad(c[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
|
|
`))}function OI(e){return la(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function MI(e,t){if(Ie(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Em(e,t){if(Ie(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function zI(e,t){let n=la(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function LI(e,t){let n=la(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function KK(){return Z().getNumber("WEBGL_VERSION")===2?1:4}function BI(e){return la(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function WI(e,t){let n=Z().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function VI(e){return la(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function ax(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),Ie(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),Ie(e,()=>e.enableVertexAttribArray(i)),!0)}function UI(e,t,n){XI(e,n),Ie(e,()=>e.activeTexture(e.TEXTURE0+n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function ZK(e,t){XI(e,t),Ie(e,()=>e.activeTexture(e.TEXTURE0+t)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function GI(e,t,n){return la(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function HI(e,t,n){return e.getUniformLocation(t,n)}function jI(e,t,n,s){Ie(e,()=>UI(e,t,s)),Ie(e,()=>e.uniform1i(n,s))}function YK(e){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),Ie(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Rm(e,t,n){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function ox(e,t){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function lp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+qI(e,t))}function qI(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function la(e,t,n){let s=Ie(e,()=>t());if(s==null)throw new Error(n);return s}function XI(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function yl(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function Al(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function $m(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[yl(e),...Al(e)]),t}function KI(e,t=!1){let n=Z().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?v.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let s=v.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=yl(e),a=2,o=2;return e.length&&([a,o]=Al(e)),s=r*(a/2)*(o/2),v.sizeToSquarishShape(s).map(i=>i*2)}return v.sizeToSquarishShape(s)}function Dm(e){return e%2==0}function up(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||Dm(n)&&Dm(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Dm(e[0])&&Dm(t[0])}var _m,Pm;function ZI(e){if(_m==null){let t=Mr(e);_m=t.getParameter(t.MAX_TEXTURE_SIZE)}return _m}function JK(){_m=null}function QK(){Pm=null}function YI(e){if(Pm==null){let t=Mr(e);Pm=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Pm)}function JI(e){if(e===0)return 0;let t,n=Mr(e);return Ws(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Ws(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Ws(e,t){return e.getExtension(t)!=null}function ix(e){try{if(Mr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function QI(e){if(e===0)return!1;let t=Mr(e);if(e===1){if(!Ws(t,"OES_texture_float"))return!1}else if(!Ws(t,"EXT_color_buffer_float"))return!1;return lx(t)}function e4(e){if(e===0)return!1;let t=Mr(e);if(e===1){if(!Ws(t,"OES_texture_float")||!Ws(t,"WEBGL_color_buffer_float"))return!1}else{if(Ws(t,"EXT_color_buffer_float"))return lx(t);let s="EXT_color_buffer_half_float";if(Ws(t,s)){let r=t.getExtension(s);return eZ(t,r)}return!1}return lx(t)}function lx(e){let t=rx(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function eZ(e,t){let n=rx(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function t4(e){return e!==2?!1:Mr(e).fenceSync!=null}function ec(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var De=Z();De.registerFlag("HAS_WEBGL",()=>De.getNumber("WEBGL_VERSION")>0);De.registerFlag("WEBGL_VERSION",()=>ix(2)?2:ix(1)?1:0);De.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);De.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>De.get("WEBGL_VERSION")===2);De.registerFlag("WEBGL_CPU_FORWARD",()=>!0);De.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);De.registerFlag("WEBGL_PACK",()=>De.getBool("HAS_WEBGL"));De.registerFlag("WEBGL_PACK_NORMALIZATION",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_CLIP",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_REDUCE",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_LAZILY_UNPACK",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_CONV_IM2COL",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>ZI(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>YI(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=De.getNumber("WEBGL_VERSION");return e===0?0:JI(e)});De.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>De.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!vu.isMobile());De.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>QI(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>De.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:De.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));De.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>e4(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_FENCE_API_ENABLED",()=>t4(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>De.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);De.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});De.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>vu.isMobile()&&De.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});De.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);De.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);De.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);De.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function Hn(){let e,t,n,s,r,a,o,i,l,c;return Z().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",c=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,c=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:c}}function xl(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function Fm(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function tZ(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function nZ(e,t,n="index"){let s=e.map((a,o)=>o),r=tZ(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function ux(e){let t=v.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function cx(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var n4=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:s4}=E;function sZ(e,t,n){let s=[];if(e.forEach(h=>{let f=v.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=dx(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
|
|
`),a=e.map(h=>rZ(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),o=t.texShape,i=Hn(),l=iZ(i),c,u,d=cZ(i);return t.isPacked?(c=aZ(t.logicalShape,o,n.enableShapeUniforms),u=uZ(i)):(c=oZ(t.logicalShape,o,n.enableShapeUniforms),u=lZ(i)),n.packedInputs&&(d+=fZ),[d,l,u,r,c,a,n.userCode].join(`
|
|
`)}function tc(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return CZ(e,t);case 1:return NZ(e,t);case 2:return RZ(e,t);case 3:return DZ(e,t);case 4:return PZ(e,t);case 5:return FZ(e);case 6:return OZ(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function r4(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return SZ(e);case 1:return TZ(e,t);case 2:return EZ(e,t);case 3:return $Z(e,t);default:return _Z(e,t)}}function rZ(e,t,n=!1,s){let r="";n?r+=r4(e,s):r+=tc(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=MZ(e,t):r+=zZ(e,t)),r}function aZ(e,t,n){switch(e.length){case 0:return a4();case 1:return mZ(e,t,n);case 2:return kZ(e,t,n);case 3:return yZ(e,t,n);default:return xZ(e,t,n)}}function oZ(e,t,n){switch(e.length){case 0:return a4();case 1:return gZ(e,t,n);case 2:return IZ(e,t,n);case 3:return AZ(e,t,n);case 4:return bZ(e,t,n);case 5:return vZ(e,t);case 6:return wZ(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function iZ(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function lZ(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function uZ(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function cZ(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${dZ}
|
|
${pZ}
|
|
${hZ}
|
|
`}var dZ=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,pZ=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,hZ=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,fZ=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function a4(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function mZ(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${s[1]}.0);
|
|
}
|
|
`:s[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${s[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
|
|
}
|
|
`}function gZ(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function yZ(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function AZ(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${Fm(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let s=xl(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function xZ(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let c=2;c<e.length-1;c++)o*=e[e.length-c-1],i=`
|
|
int b${c} = index / ${o};
|
|
index -= b${c} * ${o};
|
|
`+i,l=`b${c}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function bZ(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${Fm(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let s=xl(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function vZ(e,t){let n=xl(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function wZ(e,t){let n=xl(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function kZ(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function IZ(e,t,n){return v.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function bl(e){return`offset${e}`}function SZ(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=Hn();return`
|
|
vec4 ${n}() {
|
|
return ${s.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function CZ(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${s}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=bl(n);if(t)return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[i,l]=e.shapeInfo.texShape;return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function TZ(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=Hn();if(t)return`
|
|
vec4 ${s}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${s}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${o[0]}, ${o[1]}, index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`}function NZ(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int index) {
|
|
${nc(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
|
|
float ${s}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=bl(n);return o===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:a===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function EZ(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=Hn();if(a!=null&&v.arraysEqual(n,a))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;let c=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],u=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${c[0]}, ${c[1]}, row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`}function RZ(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&v.arraysEqual(n,a)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let p=a[0],h=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}let{newShape:o,keptDims:i}=v.squeezeShape(n),l=o;if(l.length<n.length){let p=sc(e,l),h=["row","col"];return`
|
|
${tc(p,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${rc(h,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${nc(e)}
|
|
}
|
|
`;let c=a[0],u=a[1],d=bl(s);return u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${c}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:c===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s}Shape[1] + col + ${d};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${c}, ${u}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function $Z(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let p=n.slice(1),h=[1,2],f=sc(e,p),m=["b","row","col"];return`
|
|
${r4(f,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${rc(m,h)});
|
|
}
|
|
`}let i=Hn();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`;let l=o[0],c=o[1],u=Math.ceil(n[2]/2),d=u*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${c}, ${d}, ${u}, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`}function DZ(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=v.squeezeShape(n),c=i;if(c.length<n.length){let m=sc(e,c),g=["row","col","depth"];return`
|
|
${tc(m,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${rc(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${o}, 1)));
|
|
${nc(e)}
|
|
}
|
|
`;let u=e.shapeInfo.texShape,d=u[0],p=u[1],h=e.shapeInfo.flatOffset;if(p===a&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${s}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(p===o&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let f=bl(s);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${s}Shape[1] * ${s}Shape[2];
|
|
int stride1 = ${s}Shape[2];
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${p}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function _Z(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=Hn();if(t)return`
|
|
vec4 ${s}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],c=l[0],u=l[1],d=Math.ceil(a[o-1]/2),p=d*Math.ceil(a[o-2]/2),h="int b, int row, int col",f=`b * ${p} + (row / 2) * ${d} + (col / 2)`;for(let m=2;m<o-1;m++)h=`int b${m}, `+h,p*=a[o-m-1],f=`b${m} * ${p} + `+f;return`
|
|
vec4 ${s}(${h}) {
|
|
int index = ${f};
|
|
int texR = index / ${u};
|
|
int texC = index - texR * ${u};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${u}, ${c});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function PZ(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:c}=v.squeezeShape(n);if(l.length<n.length){let A=sc(e,l),x=["row","col","depth","depth2"];return`
|
|
${tc(A,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${rc(x,c)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, 1)));
|
|
${nc(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===i&&u==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${o}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(h===a&&u==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let y=bl(s);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${y});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${h}, index + ${y});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function FZ(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:c}=v.squeezeShape(t);if(l.length<t.length){let m=sc(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${tc(m)}
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${s}(${rc(g,c)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, ${r})) +
|
|
depth3;
|
|
${nc(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1];if(h===i&&u==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${o}, ${a}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&u==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=bl(n);return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} + depth * ${a} +
|
|
depth2 * ${r} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function OZ(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=v.squeezeShape(t);if(r.length<t.length){let g=sc(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${tc(g)}
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${s}(${rc(y,a)});
|
|
}
|
|
`}let o=t[5],i=t[4]*o,l=t[3]*i,c=t[2]*l,u=t[1]*c;if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${u}, ${c}, ${l}, ${i})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${o}, 1)));
|
|
${nc(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,h=p[0],f=p[1];if(f===u&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${c}, ${l}, ${i}, ${o})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===o&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=bl(n);return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${u} + col * ${c} + depth * ${l} +
|
|
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${h}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function nc(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function MZ(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=s4(e.shapeInfo.logicalShape,t.logicalShape),l=St(o),c=o-a,u,d=["x","y","z","w","u","v"];a===0?u="":o<2&&i.length>=1?u="coords = 0;":u=i.map(A=>`coords.${d[A+c]} = 0;`).join(`
|
|
`);let p="";o<2&&a>0?p="coords":p=e.shapeInfo.logicalShape.map((A,x)=>`coords.${d[x+c]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,y=v.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!y)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!y)o===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(i.length){let A=a-2,x=a-1;i.indexOf(A)>-1&&i.indexOf(x)>-1?h="return vec4(outputValue.x);":i.indexOf(A)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(x)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${u}
|
|
vec4 outputValue = get${s}(${p});
|
|
${h}
|
|
}
|
|
`}function zZ(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(o,a))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let c=St(l),u=s4(e.shapeInfo.logicalShape,t.logicalShape),d=l-i,p,h=["x","y","z","w","u","v"];i===0?p="":l<2&&u.length>=1?p="coords = 0;":p=u.map(m=>`coords.${h[m+d]} = 0;`).join(`
|
|
`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+d]}`).join(", "),`
|
|
float ${r}() {
|
|
${c} coords = getOutputCoords();
|
|
${p}
|
|
return get${s}(${f});
|
|
}
|
|
`}function St(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function dx(e,t,n){let{newShape:s,keptDims:r}=v.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!v.arraysEqual(t,n)&&s.length<a||o;return{useSqueezeShape:l,uniformShape:l?i:t,keptDims:r}}function sc(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function rc(e,t){return t.map(n=>e[n]).join(", ")}function LZ(e,t,n,s){let r=n.map((x,b)=>{let w={logicalShape:x.shape,texShape:x.isUniform?null:x.texData.texShape,isUniform:x.isUniform,isPacked:x.isUniform?!1:x.texData.isPacked,flatOffset:null};return x.texData!=null&&x.texData.slice!=null&&x.texData.slice.flatOffset>0&&(w.flatOffset=x.texData.slice.flatOffset),{name:t.variableNames[b],shapeInfo:w}}),a=r.map(x=>x.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=sZ(r,o,t),l=e.createProgram(i),c=null,u=e.getUniformLocation(l,"NAN",!1);Z().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(l,"INFINITY",!1));let d=!1,p={},h={},f={};for(let x=0;x<t.variableNames.length;x++){let b=t.variableNames[x];p[b]=e.getUniformLocation(l,b,d),p[`offset${b}`]=e.getUniformLocation(l,`offset${b}`,d),t.enableShapeUniforms&&(h[`${b}Shape`]=e.getUniformLocation(l,`${b}Shape`,d),f[`${b}TexShape`]=e.getUniformLocation(l,`${b}TexShape`,d))}let m,g,y;t.enableShapeUniforms&&(m=e.getUniformLocation(l,"outShape",d),y=e.getUniformLocation(l,"outShapeStrides",d),g=e.getUniformLocation(l,"outTexShape",d));let A=[];return t.customUniforms&&t.customUniforms.forEach((x,b)=>{A[b]=e.getUniformLocation(l,x.name,d)}),{program:t,source:i,webGLProgram:l,uniformLocations:p,customUniformLocations:A,inShapeInfos:a,outShapeInfo:o,infLoc:c,nanLoc:u,inShapesLocations:h,inTexShapesLocations:f,outShapeLocation:m,outShapeStridesLocation:y,outTexShapeLocation:g}}function o4(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!v.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!v.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function BZ(e,t,n,s,r){t.program.enableShapeUniforms||(o4(t.inShapeInfos,n),o4([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),Z().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,c)=>{let u=t.program.variableNames[c],d=t.uniformLocations[u],p=t.uniformLocations[`offset${u}`],h=t.inShapesLocations[`${u}Shape`],f=t.inTexShapesLocations[`${u}TexShape`];if(h){let{uniformShape:m}=dx(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}l.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture,d,c)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,c)=>{let u=t.customUniformLocations[c],d=r[c];if(l.type==="float")e.gl.uniform1fv(u,d);else if(l.type==="vec2")e.gl.uniform2fv(u,d);else if(l.type==="vec3")e.gl.uniform3fv(u,d);else if(l.type==="vec4")e.gl.uniform4fv(u,d);else if(l.type==="int")e.gl.uniform1iv(u,d);else if(l.type==="ivec2")e.gl.uniform2iv(u,d);else if(l.type==="ivec3")e.gl.uniform3iv(u,d);else if(l.type==="ivec4")e.gl.uniform4iv(u,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function WZ(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:c,uniformShape:u,keptDims:d}=dx(e.packedInputs,o.shape,l),p="",h="",f="";if(u.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];p=`${w[0]>1}_${w[1]>1}`}else if(u.length===2&&!e.packedInputs)h=`${u[0]>1}_${u[1]>1}`;else if(u.length>2&&!e.packedInputs){let w=v.computeStrides(u);f=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let m=o.shape.length,g=u.length===2&&v.arraysEqual(o.shape,l),y=v.sizeFromShape(o.shape)===1,A=E.getBroadcastDims(o.shape,n.shape),x=!e.packedInputs&&m===n.shape.length&&v.arraysEqual(l,n.texData.texShape),b=e.packedInputs||u.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${x}_${c?d:""}_${u.length}_${y}_${A}_${g}_${p}_${h}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${Z().getNumber("WEBGL_VERSION")}`,a}function Vs(e){return Z().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var VZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=ap.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Hn();this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?Fm(["r","c","d"],e):xl(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},UZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=ap.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Hn();this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?Fm(["r","c","d"],e):xl(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},GZ=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Bs.DOWNLOAD;let t=Hn();this.outputShape=e,this.userCode=`
|
|
${n4}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},HZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Bs.DOWNLOAD;let t=Hn();this.outputShape=e,this.userCode=`
|
|
${n4}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},jZ=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Hn();this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?cx():ux(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${s}, 0., 0., 0.);
|
|
}
|
|
`}},qZ=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Hn();this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${o};
|
|
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${a};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${i}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${i}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${i}] = values[2];
|
|
} else {
|
|
result[${i}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?cx():ux(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${s}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},i4={};Le(i4,{bindVertexProgramAttributeStreams:()=>g4,createBufferFromOutputTexture:()=>x4,createFloat16MatrixTexture:()=>p4,createFloat16PackedMatrixTexture:()=>m4,createFloat32MatrixTexture:()=>d4,createIndexBuffer:()=>c4,createPackedMatrixTexture:()=>f4,createUnsignedBytesMatrixTexture:()=>h4,createVertexBuffer:()=>u4,createVertexShader:()=>l4,downloadByteEncodedFloatMatrixFromOutputTexture:()=>v4,downloadFloat32MatrixFromBuffer:()=>b4,downloadMatrixFromPackedOutputTexture:()=>k4,downloadPackedMatrixFromBuffer:()=>w4,getInternalFormatForFloat16MatrixTexture:()=>hx,getInternalFormatForFloat16PackedMatrixTexture:()=>gx,getInternalFormatForFloat32MatrixTexture:()=>px,getInternalFormatForPackedMatrixTexture:()=>mx,getInternalFormatForUnsignedBytesMatrixTexture:()=>fx,uploadDenseMatrixToTexture:()=>y4,uploadPixelDataToTexture:()=>A4});function l4(e){let t=Hn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return PI(e,n)}function u4(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return zI(e,t)}function c4(e){let t=new Uint16Array([0,1,2,2,1,3]);return LI(e,t)}function cp(e,t,n,s,r,a){WI(t,n);let o=BI(e),i=e.TEXTURE_2D;return Ie(e,()=>e.bindTexture(i,o)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),Ie(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function px(e){return e.internalFormatFloat}function d4(e,t,n,s){let[r,a]=op(t,n);return cp(e,r,a,px(s),s.textureFormatFloat,e.FLOAT)}function hx(e){return e.internalFormatHalfFloat}function p4(e,t,n,s){let[r,a]=op(t,n);return cp(e,r,a,hx(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function fx(e){return e.downloadTextureFormat}function h4(e,t,n,s){let[r,a]=op(t,n);return cp(e,r,a,fx(s),e.RGBA,e.UNSIGNED_BYTE)}function mx(e){return e.internalFormatPackedFloat}function f4(e,t,n,s){let[r,a]=Qu(t,n);return cp(e,r,a,mx(s),e.RGBA,e.FLOAT)}function gx(e){return e.internalFormatPackedHalfFloat}function m4(e,t,n,s){let[r,a]=Qu(t,n);return cp(e,r,a,gx(s),e.RGBA,s.textureTypeHalfFloat)}function g4(e,t,n){let s=0,r=3*4,a=3*4+2*4;return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ax(e,t,"clipSpacePos",n,3,a,s)&&ax(e,t,"uv",n,2,a,r)}function y4(e,t,n,s,r,a){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function A4(e,t,n){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function x4(e,t,n,s){let r=e.createBuffer();Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return Ie(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function b4(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function v4(e,t,n,s){let[r,a]=op(t,n),o=4,i=new Uint8Array(VK(t*n,o));return Ie(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function w4(e,t,n,s,r,a,o,i){let l=e,c=new Float32Array(UK(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function k4(e,t,n){let s=new Float32Array(t*n*4);return Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var Om=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Z().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Tm(t,e)):this.gl=Mr(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(Z().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=ip(this.gl,r),Ws(this.gl,a))this.textureHalfFloatExtension=ip(this.gl,a);else if(Z().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Ws(this.gl,s))this.colorBufferHalfFloatExtension=ip(this.gl,s);else if(Z().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Ws(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Ws(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=u4(this.gl),this.indexBuffer=c4(this.gl),this.framebuffer=VI(this.gl),this.textureConfig=rx(this.gl,this.textureHalfFloatExtension)}get debug(){return Z().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ie(e,()=>e.finish()),Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.deleteFramebuffer(this.framebuffer)),Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ie(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),d4(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),p4(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),h4(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),A4(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),y4(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),m4(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),f4(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(ox(this.gl,this.framebuffer),this.outputTexture=null),Ie(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>v4(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return w4(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return b4(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=x4(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Z().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>k4(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=FI(t,e);this.vertexShader==null&&(this.vertexShader=l4(t));let s=OI(t);return Ie(t,()=>t.attachShader(s,this.vertexShader)),Ie(t,()=>t.attachShader(s,n)),MI(t,s),this.debug&&Em(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=g4(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ie(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Em(this.gl,this.program),Ie(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?GI(this.gl,e,t):HI(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ie(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),jI(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=Qu(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Em(this.gl,this.program),lp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ie(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=ip(this.gl,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=XZ(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Rm(this.gl,e,this.framebuffer),this.debug&&lp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Rm(this.gl,this.outputTexture,this.framebuffer),this.debug&&lp(this.gl)):ox(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;Rm(s,e,this.framebuffer),this.debug&&lp(s),this.outputTexture=e,Ie(s,()=>s.viewport(0,0,t,n)),Ie(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function XZ(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:KZ,bincountImpl:I4,bincountReduceImpl:ZZ,ceilImpl:YZ,concatImpl:JZ,equalImpl:QZ,expImpl:eY,expm1Impl:tY,floorImpl:nY,gatherNdImpl:sY,gatherV2Impl:rY,greaterImpl:aY,greaterEqualImpl:oY,lessImpl:iY,lessEqualImpl:lY,linSpaceImpl:uY,logImpl:cY,maxImpl:dY,maximumImpl:pY,minimumImpl:hY,multiplyImpl:fY,negImpl:mY,notEqualImpl:gY,prodImpl:yY,rangeImpl:AY,rsqrtImpl:xY,sigmoidImpl:bY,simpleAbsImpl:S4,sliceImpl:vY,sparseFillEmptyRowsImpl:wY,sparseReshapeImpl:kY,sparseSegmentReductionImpl:C4,sqrtImpl:IY,stridedSliceImpl:SY,stringNGramsImpl:CY,stringSplitImpl:TY,stringToHashBucketFastImpl:NY,subImpl:EY,tileImpl:RY,topKImpl:$Y,transposeImpl:yx,uniqueImpl:DY}=VA;function T4(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function jn(e,t){return t===1?[e]:T4(e,t)}function _Y(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var PY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=jn("rc",t),s=St(t),r=OY(t,e,n),a=MY(t,e[e.length-1],e[e.length-2],n),o=zY(e,n);this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${a}
|
|
|
|
setOutput(vec4(${o}));
|
|
}
|
|
}
|
|
`}}};function FY(e,t){let n=[];for(let s=0;s<=1;s++)for(let r=0;r<=1;r++){let a=`${s===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let o=2;o<e;o++)a=`${t[t.length-1-o]},`+a;n.push(a)}return n}function OY(e,t,n){if(e===1)return`rc > ${t[0]}`;let s="";for(let r=e-2;r<e;r++)s+=`${n[r]} >= ${t[r]}`,r<e-1&&(s+="||");return s}function MY(e,t,n,s){if(e===1)return"";let r=s.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function zY(e,t){let n=e.length,s=FY(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${s[0]}),
|
|
cEdge ? 0. : getA(${s[1]}),
|
|
rEdge ? 0. : getA(${s[2]}),
|
|
rEdge || cEdge ? 0. : getA(${s[3]})`}var N4=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2==1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${s}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${s>0?"}":""}
|
|
`}this.userCode=`
|
|
${LY(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?cx():ux(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function LY(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?nZ(["r","c","d"],"inputShape"):xl(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var BY=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=R4(t,n),r=$4(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=E4(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===Nn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===Nn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===Nn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===Nn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===Nn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=R4(n,s),a=$4(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=E4(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=Z().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function WY(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function E4(e,t,n,s,r){let a=VY(t,s),o;if(r){let[l,c]=Qu(e[0],e[1]);o=l*c}else{let[l,c]=op(e[0],e[1]);o=l*c}let i=WY(n,a);return o*i}function VY(e,t){switch(e){case Nn.PACKED_2X2_FLOAT32:return mx(t);case Nn.PACKED_2X2_FLOAT16:return gx(t);case Nn.UNPACKED_FLOAT32:return px(t);case Nn.UNPACKED_FLOAT16:return hx(t);case Nn.PACKED_4X1_UNSIGNED_BYTE:return fx(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function UY(e){return Z().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Nn.PACKED_2X2_FLOAT32:Nn.UNPACKED_FLOAT32:e?Nn.PACKED_2X2_FLOAT16:Nn.UNPACKED_FLOAT16}function R4(e,t){if(e===Bs.UPLOAD)return Nn.PACKED_2X2_FLOAT32;if(e===Bs.RENDER||e==null)return UY(t);if(e===Bs.DOWNLOAD||e===Bs.PIXELS)return Nn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function $4(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Oo=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},br="if (isnan(x)) return x;",GY="return x;",D4="return abs(x);",HY="return (x >= 0.0) ? x : (exp(x) - 1.0);",jY=br+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,qY=br+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Mm="return x;",XY="return 1.0 / (1.0 + exp(-1.0 * x));",KY="return x;",ZY=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,YY=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,JY=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,QY="return 1.0 / (1.0 + exp(-1.0 * x));",ac=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},eJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=jn("rc",t),s=St(t),r=_Y(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${o}));
|
|
}
|
|
`}},tJ=Ys.whereImpl,nJ=1e-7,sJ=1e-4,zm={};function rJ(e){return e in zm||(zm[e]={}),zm[e]}var aJ=Z().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),oJ=600;function iJ(){return Z().global.screen==null?1024:Z().global.screen.height*Z().global.screen.width*window.devicePixelRatio*oJ/1024/1024}var oc=class extends Ul{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!Z().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Mr(Z().getNumber("WEBGL_VERSION"));this.binaryCache=rJ(Z().getNumber("WEBGL_VERSION")),this.gpgpu=new Om(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new BY(this.gpgpu),this.numMBBeforeWarning=iJ(),this.texData=new Bc(this,ns())}nextDataId(){return oc.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((Z().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Z().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:Bs.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(Z().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:Bs.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new ac(o,Mm):d=new Oo(o,Mm);let p=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,c;l&&(c=v.now());let u;if(s==="complex64"){let d=this.readSync(r.real.dataId),p=this.readSync(r.imag.dataId);u=E.mergeRealAndImagArrays(d,p)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new ac(s,Mm):h=new Oo(s,Mm);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!Z().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Z().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(a!=="complex64"&&Z().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let h=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...Nm(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];u=E.mergeRealAndImagArrays(f,m)}else if(l==null)u=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(s);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(c!=null&&this.disposeIntermediateTensorInfo(c),l!=null){let h=this.gpgpu.gl;Ie(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,u),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ns().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!DI(n))throw Z().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=v.sizeFromShape(t);if(Z().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),p=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(p.texture,...Nm(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let a=Z().getBool("WEBGL_PACK")&&s===!0,o=a?$m(t):t,i=a?new HZ(o):new GZ(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),c=this.texData.get(l.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),u}timerAvailable(){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=v.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,c)=>({name:a[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=aJ){return Z().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){E.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return tJ(e.shape,t)}packedUnaryOp(e,t,n){let s=new ac(e.shape,t),r=this.compileAndRun(s,[e],n);return ns().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=S4(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(Z().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,D4,e.dtype);let t=new Oo(e.shape,D4),n=this.compileAndRun(t,[e]);return ns().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:s}=this.makeTensorInfo(e,t,n);return ns().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){let t=new eJ(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new PY(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[yl(e.shape),...Al(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[yl(t),...Al(t)],a=new N4(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:s,dtype:r}=t,a=$m(s),o,i=Nm(a);n?o=new UZ(a):o=new VZ(a);let l=!0,c=[i],u=this.runWebGLProgram(o,[{shape:a,dtype:r,dataId:e}],r,c,l);return{dtype:r,shape:s,dataId:u.dataId}}runWebGLProgram(e,t,n,s,r=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===ap.DENSE){let m=Nm(e.outputShape);o.texShape=m.map(g=>g*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),v.sizeFromShape(a.shape)===0)return o.values=v.getTypedArrayFromDType(a.dtype,0),a;let i=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(m.dataId);if(g.texture==null){if(!e.packedInputs&&v.sizeFromShape(m.shape)<=Z().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=m.shape)}else if(!!g.isPacked!=!!e.packedInputs)m=g.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),g=this.texData.get(m.dataId);else if(g.isPacked&&!up(g.shape,m.shape)){let y=m,A=m.shape;m.shape=g.shape,m=this.packedReshape(m,A),i.push(m),g=this.texData.get(m.dataId),y.shape=A}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let c={shape:a.shape,texData:o,isUniform:!1},u=WZ(e,l,c),d=this.getAndSaveBinary(u,()=>LZ(this.gpgpu,e,l,c)),p=this.activeTimers!=null,h;p&&(h=this.startTimer()),BZ(this.gpgpu,d,l,c,s),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),p&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let f=Z().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=v.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!Z().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Z().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=j(()=>{if(!Z().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Z().getBool("DEBUG");Z().set("DEBUG",!1);let t=this.abs(Ee(1e-8)).dataSync()[0];if(Z().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?nJ:sJ}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,c;l&&(c=v.now());let u=t.texShape;if(u==null&&(u=KI(n,i),t.texShape=u),r!=null){let d=$m(n),p,h=u[1],f=u[0],m=r instanceof Uint8Array;i?([h,f]=Qu(u[0],u[1]),p=new qZ(d,m)):p=new jZ(d,m);let g=this.makeTensorInfo([f,h],s);m?this.texData.get(g.dataId).usage=Bs.PIXELS:this.texData.get(g.dataId).usage=Bs.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,f,r);let y=[[f,h]],A=!0,x=this.runWebGLProgram(p,[g],s,y,A),b=this.texData.get(x.dataId);t.texture=b.texture,t.texShape=b.texShape,t.isPacked=b.isPacked,t.usage=b.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(x.dataId),t.values=null,l&&(this.uploadWaitMs+=v.now()-c)}else{let d=this.acquireTexture(u,o,s,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=lJ(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}};oc.nextDataId=0;function lJ(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var uJ="3.9.0";function _4(){Z().set("WEBGL_FORCE_F16_TEXTURES",!0)}vu.isBrowser()&&Xi("webgl",()=>new oc,2);var cJ={forceHalfFloat:_4},P4=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,ic=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=Vs(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},Lm=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,dp=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=E.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=Vs(r);let a="";if(s)if(r===0||v.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${St(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?a+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=jn("coords",r);this.enableShapeUniforms?a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Ss(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var dJ={kernelName:Ba,backendName:"webgl",kernelFunc:Ss};function Mo(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=Ss({inputs:{x:s},backend:n}),l=Ss({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var pJ={kernelName:Gc,backendName:"webgl",kernelFunc:Mo},F4="return (a < 0.) ? b * a : a;",O4=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function hJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),i=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new dp(O4,r.shape,o.shape):new ic(F4,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],r.dtype);return n.disposeIntermediateTensorInfo(o),l}var fJ={kernelName:mi,backendName:"webgl",kernelFunc:hJ},M4="return (a < 0.) ? b * a : a;",z4=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function mJ(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new dp(z4,s.shape,r.shape):new ic(M4,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)}var gJ={kernelName:Ja,backendName:"webgl",kernelFunc:mJ},L4="if (isnan(x)) return x;",yJ=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,AJ=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function ut({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),p=n(d.values,l);return i.makeTensorInfo(o.shape,l,p)}let c=Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new ac(o.shape,t):u=new Oo(o.shape,e),i.runWebGLProgram(u,[o],l)}}function En({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:c}=o,u=i;if(s&&l.dtype==="complex64"){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[g,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(x=>{let[b,w]=x,k={dataId:b.dataId,dtype:b.dtype,shape:l.shape},S={dataId:w.dataId,dtype:w.dtype,shape:c.shape},N=new ic(e,l.shape,c.shape);return u.runWebGLProgram(N,[k,S],Bn(b.dtype,w.dtype))}),A=Mo({inputs:{real:g,imag:y},backend:u});return u.disposeIntermediateTensorInfo(g),u.disposeIntermediateTensorInfo(y),A}let d=a||Bn(l.dtype,c.dtype);if((l.dtype==="string"||c.dtype==="string"||u.shouldExecuteOnCPU([l,c]))&&r!=null){let f=u.texData.get(l.dataId).values,m=u.texData.get(c.dataId).values,g=l.dtype==="string"?E.fromUint8ToStringArray(f):f,y=l.dtype==="string"?E.fromUint8ToStringArray(m):m,[A,x]=r(l.shape,c.shape,g,y,d),b=u.makeTensorInfo(x,d),w=u.texData.get(b.dataId);return w.values=A,b}let p=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return p?h=new dp(t,l.shape,c.shape,n):h=new ic(e,l.shape,c.shape),u.runWebGLProgram(h,[l,c],d)}}function Bm(e,t=!1){if(e==="linear")return t?KY:GY;if(e==="relu")return t?YY:jY;if(e==="elu")return t?ZY:HY;if(e==="relu6")return t?JY:qY;if(e==="prelu")return t?z4:M4;if(e==="leakyrelu")return t?O4:F4;if(e==="sigmoid")return t?QY:XY;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var B4=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=Vs(this.outputShape.length);let c=s?e[1]:e[2],u=Math.ceil(c/2),d=s?"i * 2, rc.y":"rc.y, i * 2",p=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${o}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${o}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${o}
|
|
}`,g="result = activation(result);");let y=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let A="rc.x",x="rc.x";e[0]<t[0]?A=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${u}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${u}; i++) {
|
|
int batchA = ${A};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${d});
|
|
vec4 b = getMatrixB(batchB, ${p});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${f[0]});
|
|
result += (${h[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},W4={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},V4=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},U4="return a * b;";function Ax(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=E.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),c=new V4(W4.REAL,s.shape,r.shape),u=new V4(W4.IMAG,s.shape,r.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],p=n.runWebGLProgram(c,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=Mo({inputs:{real:p,imag:h},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[c,u]=fY(s.shape,r.shape,i.values,l.values,a),d=n.makeTensorInfo(u,a),p=n.texData.get(d.dataId);return p.values=c,d}let o;return Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new dp(U4,s.shape,r.shape):o=new ic(U4,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var xJ={kernelName:Ka,backendName:"webgl",kernelFunc:Ax};function bJ(e,t,n){let s=[yl(e.shape),...Al(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[yl(t),...Al(t)],o=new N4(a,s),i=!0,l=[s],c=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:c.dataId,shape:t,dtype:c.dtype}}function be(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(a,i),c=v.sizeFromShape(l);v.assert(i===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let u=o.texData.get(r.dataId);return u.isPacked&&!up(r.shape,l)&&!(u.texture!==null&&up(u.shape,l))?bJ(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var vJ={kernelName:Ti,backendName:"webgl",kernelFunc:be},G4=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${v.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${o}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${o};
|
|
if (${i===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},wJ=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,d=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,p="vec4";t==="all"?(o="1.0",d=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,p="bvec4"):t==="any"&&(o="0.0",d=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,p="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${o});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${u===1}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===2}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===3}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function kJ(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=E.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function vl(e,t,n,s){let r=kJ(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:c}=r[o],u,d;n==="mean"?u=o===0?new G4({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c},i):new G4({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c}):u=new wJ({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c},n),d=a,a=s.runWebGLProgram(u,[a],t),d.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(d)}return a}var IJ=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=St(this.rank),r=SJ(t);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function SJ(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var CJ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=St(this.rank),r=T4("rc",this.rank),a=new Array(this.rank);for(let c=0;c<t.length;c++)a[t[c]]=r[c];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${i}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${i}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Wm(e,t,n){let s=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new CJ(e.shape,t):new IJ(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function TJ(e,t,n,s){let r=t,a=e.shape.length,o=v.parseAxisParam(r,e.shape),i=o,l=E.getAxesPermutation(i,a),c=l!=null,u=e;c&&(u=Wm(e,l,s),i=E.getInnerMostAxes(i.length,a)),E.assertAxesAreInnerMostDims("sum",i,a);let[d,p]=E.computeOutAndReduceShapes(u.shape,i),h=d;n&&(h=E.expandShapeToKeepDim(d,o));let f=v.sizeFromShape(p),g=v.sizeFromShape(e.shape)/f,y=be({inputs:{x:u},attrs:{shape:[g,f]},backend:s}),A=pd(e.dtype),x=vl(y,A,"sum",s),b=be({inputs:{x},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(y),s.disposeIntermediateTensorInfo(x),c&&s.disposeIntermediateTensorInfo(u),b}function Vm(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return TJ(r,a,o,n)}var NJ={kernelName:oo,backendName:"webgl",kernelFunc:Vm};function qn(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let u=0;u<l.length;u++)l[u]=r.shape[a[u]];let c;if(o.shouldExecuteOnCPU([r])){let d=o.texData.get(r.dataId).values,p=yx(d,r.shape,r.dtype,a,l);c=o.makeTensorInfo(l,r.dtype);let h=o.texData.get(c.dataId);h.values=p}else c=Wm(r,a,o);return c}var EJ={kernelName:po,backendName:"webgl",kernelFunc:qn},H4=1e3;function Um({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,d=n?e.shape[c-2]:e.shape[c-1],p=s?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],f=s?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(m),A=v.sizeFromShape(g),x=y===A||y===1||A===1;v.assert(c>=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${g}).`);let w=(y>A?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,f]);v.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[y,d,h]:[y,h,d],S=s?[A,f,p]:[A,p,f],N=be({inputs:{x:e},backend:r,attrs:{shape:k}}),$=be({inputs:{x:t},backend:r,attrs:{shape:S}}),F=[N,$],R=Math.max(y,A),D=n?N.shape[1]:N.shape[2],T=a!=null,O=o!=null,W=l==="leakyrelu",H=l!=null?Bm(l,!0):null,z=T||O||W||H!=null,X;if((h===1||f===1)&&D>H4&&z===!1){let J=N,Q=$;n&&(J=qn({inputs:{x:N},backend:r,attrs:{perm:[0,2,1]}}),F.push(J)),s&&(Q=qn({inputs:{x:$},backend:r,attrs:{perm:[0,2,1]}}),F.push(Q));let ne=f!==1,K=f===1,oe=J;ne&&(oe=be({inputs:{x:J},backend:r,attrs:{shape:[R,D,1]}}),F.push(oe));let ce=f===1?2:1,he=Q;K&&(he=be({inputs:{x:Q},backend:r,attrs:{shape:[R,1,D]}}),F.push(he));let Ae=Ax({inputs:{a:oe,b:he},backend:r});X=Vm({inputs:{x:Ae},backend:r,attrs:{axis:ce,keepDims:!0}}),F.push(Ae)}else{let J=Bn(e.dtype,t.dtype),Q=new B4(k,S,[R,h,f],n,s,T,H,O,W),ne=[N,$];if(a!=null&&ne.push(a),O&&ne.push(o),W){let K=r.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));ne.push(K),F.push(K)}X=r.runWebGLProgram(Q,ne,J)}let te=be({inputs:{x:X},backend:r,attrs:{shape:w}});F.push(X);for(let J of F)r.disposeIntermediateTensorInfo(J);return te}function RJ(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s;return Um({a:r,b:a,transposeA:l,transposeB:c,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:u})}var $J={kernelName:fo,backendName:"webgl",kernelFunc:RJ},j4="return abs(x);";function DJ(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=S4(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new ac(s.shape,j4):r=new Oo(s.shape,j4),n.runWebGLProgram(r,[s],s.dtype)}var _J={kernelName:ni,backendName:"webgl",kernelFunc:DJ},PJ=br+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,FJ=ut({opSnippet:PJ}),OJ={kernelName:jl,backendName:"webgl",kernelFunc:FJ},MJ=br+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,zJ=ut({opSnippet:MJ}),LJ={kernelName:ql,backendName:"webgl",kernelFunc:zJ},q4="return a + b;",BJ=En({opSnippet:q4,packedOpSnippet:q4,supportsComplex:!0,cpuKernelImpl:KZ}),WJ={kernelName:qr,backendName:"webgl",kernelFunc:BJ},VJ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}},UJ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}};function Gm(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Ss({inputs:{x:s[0]},backend:n});if(s.length>Z().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),c=Gm({inputs:s.slice(0,l),backend:n}),u=Gm({inputs:s.slice(l),backend:n});return Gm({inputs:[c,u],backend:n})}let r=s.map(l=>l.dtype).reduce((l,c)=>Bn(l,c)),a=s.map(l=>l.shape),i=Z().getBool("WEBGL_PACK")?new UJ(s[0].shape,a):new VJ(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var GJ={kernelName:wa,backendName:"webgl",kernelFunc:Gm};function HJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=r;u!=null&&(d=qn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,i)),E.assertAxesAreInnerMostDims("all",c,i);let[p,h]=E.computeOutAndReduceShapes(d.shape,c),f=v.sizeFromShape(h),m=be({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=vl(m,m.dtype,"all",n),y;if(o){let A=E.expandShapeToKeepDim(p,l);y=be({inputs:{x:g},backend:n,attrs:{shape:A}})}else y=be({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),y}var jJ={kernelName:Xl,backendName:"webgl",kernelFunc:HJ};function qJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=r;u!=null&&(d=qn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,i)),E.assertAxesAreInnerMostDims("any",c,i);let[p,h]=E.computeOutAndReduceShapes(d.shape,c),f=v.sizeFromShape(h),m=be({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=vl(m,m.dtype,"any",n),y;if(o){let A=E.expandShapeToKeepDim(p,l);y=be({inputs:{x:g},backend:n,attrs:{shape:A}})}else y=be({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),y}var XJ={kernelName:Kl,backendName:"webgl",kernelFunc:qJ},KJ=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${s};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
int inIdx = ${i};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${o} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},ZJ=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=St(i),c=jn("coords",i),u,d;if(a===1){d=i+1;let S=St(d);u=`
|
|
${S} sourceLocR = ${S}(${c.join()}, 0);
|
|
++${c[i-1]};
|
|
${S} sourceLocG = ${S}(${c.join()}, 0);
|
|
++${c[i-2]};
|
|
${S} sourceLocA = ${S}(${c.join()}, 0);
|
|
--${c[i-1]};
|
|
${S} sourceLocB = ${S}(${c.join()}, 0);
|
|
--${c[i-2]};`}else d=i,u=`
|
|
${l} sourceLocR = coords;
|
|
++${c[i-1]};
|
|
${l} sourceLocG = coords;
|
|
++${c[i-2]};
|
|
${l} sourceLocA = coords;
|
|
--${c[i-1]};
|
|
${l} sourceLocB = coords;
|
|
--${c[i-2]};`;let p=["x","y","z","w","u","v"].slice(0,d),h="."+p[d-1],f=p.map(S=>"int "+S),m=jn("sourceLocR",d-1).concat("inIdx.r"),g=jn("sourceLocG",d-1).concat("inIdx.g"),y=jn("sourceLocB",d-1).concat("inIdx.b"),A=jn("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",b=s?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${A.join()})));`,w=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${A.join()}) : 0.)`,k=s?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}
|
|
${k}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${c[i-1]} < ${o[i-1]-1};
|
|
bool hasNextRow = ${c[i-2]} < ${o[i-2]-1};
|
|
${u}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${w};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${w};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function X4(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=E.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new KJ(i,n,s==null),c=[t];s!=null&&c.push(s);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let d=X4(e,t,n,u);return e.disposeIntermediateTensorInfo(u),d}function K4(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=E.computeOptimalWindowSize(a),i=new ZJ(r,o,n,s==null),l=s==null?[t]:[t,s],c=e.runWebGLProgram(i,l,"int32");if(c.shape.length===t.shape.length){let u=K4(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function Z4(e,t,n,s){let r=[n];if(E.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!Z().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[c,u]=E.computeOutAndReduceShapes(l.shape,r),d=v.sizeFromShape(u),p=be({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});a.push(p);let h=X4(e,p,s);a.push(h);let f=be({inputs:{x:h},backend:e,attrs:{shape:c}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return K4(e,t,s)}function YJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=qn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let u=Z4(n,l,o[0],"max");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var JJ={kernelName:ka,backendName:"webgl",kernelFunc:YJ};function QJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=qn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let u=Z4(n,l,o[0],"min");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var eQ={kernelName:Zl,backendName:"webgl",kernelFunc:QJ},tQ=br+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,nQ=ut({opSnippet:tQ}),sQ={kernelName:Yl,backendName:"webgl",kernelFunc:nQ},rQ=br+"return log(x + sqrt(x * x + 1.0));",aQ=ut({opSnippet:rQ}),oQ={kernelName:Jl,backendName:"webgl",kernelFunc:aQ},iQ=br+`
|
|
return atan(x);
|
|
`,lQ=ut({opSnippet:iQ}),uQ={kernelName:Ql,backendName:"webgl",kernelFunc:lQ},cQ=yJ+`
|
|
return atan(a, b);
|
|
`,dQ=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+AJ+`
|
|
return result;
|
|
`,pQ=En({opSnippet:cQ,packedOpSnippet:dQ}),hQ={kernelName:tu,backendName:"webgl",kernelFunc:pQ},fQ=br+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,mQ=ut({opSnippet:fQ}),gQ={kernelName:eu,backendName:"webgl",kernelFunc:mQ},pp=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let S=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${c}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${S} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?m:g:`wR * ${d} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let A="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let b=Math.floor(a/4)*4,w=a%4,k=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${A}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${h});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
getValue(batch, xR, xC + 3 * ${c}, d)
|
|
);
|
|
|
|
${k}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${w===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${w===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${w===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},xx=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,d=e.dilationWidth,p=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let A=t==="avg",x="0.0";if(A||(x="-1.0 / 1e-20"),n){let $=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${d}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${$} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let k=Math.floor(a/4)*4,S=a%4,N=`
|
|
if (${A}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${y});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${k}; wC += 4) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
|
|
);
|
|
|
|
${N}
|
|
}
|
|
|
|
int xC = xCCorner + ${k};
|
|
if (${S===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${N}
|
|
} else if (${S===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${N}
|
|
} else if (${S===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${N}
|
|
}
|
|
}
|
|
setOutput(${w});
|
|
}
|
|
}
|
|
`}};function yQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;ec(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))return Ss({inputs:{x:r},backend:n});let d=new pp(u,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var AQ={kernelName:Ia,backendName:"webgl",kernelFunc:yQ};function xQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s,u=[1,1,1],d=E.computePool3DInfo(r.shape,a,o,u,i,l,c),p=new xx(d,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var bQ={kernelName:Uc,backendName:"webgl",kernelFunc:xQ},vQ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=i-1-e.padInfo.top,u=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${c}, ${u});
|
|
const float avgMultiplier = float(${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${i};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},wQ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,h=u-1-e.padInfo.front,f=d-1-e.padInfo.top,m=p-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${f}, ${m});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${u};
|
|
wD += ${i}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${c}) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function kQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=E.computePool3DInfo(o.shape,i,l,d,c,u),h=new wQ(p);return n.runWebGLProgram(h,[r],o.dtype)}var IQ={kernelName:hh,backendName:"webgl",kernelFunc:kQ};function SQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;ec([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=E.computePool2DInfo(o.shape,i,l,1,c),d=new vQ(u);return n.runWebGLProgram(d,[r],o.dtype)}var CQ={kernelName:ph,backendName:"webgl",kernelFunc:SQ};function TQ(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return Um({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var NQ={kernelName:Sa,backendName:"webgl",kernelFunc:TQ},EQ=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(E.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${o};
|
|
float scale = ${i};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},RQ=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(E.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${o};
|
|
vec4 scale = ${i};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},$Q=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;v.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[s,r,a],u=null;o!=null&&(u=o.shape,c.push(o));let d=null;i!=null&&(d=i.shape,c.push(i));let p=Z().getBool("WEBGL_PACK_NORMALIZATION")?new RQ(s.shape,r.shape,a.shape,u,d,l):new EQ(s.shape,r.shape,a.shape,u,d,l);return t.runWebGLProgram(p,c,c[0].dtype)},DQ={kernelName:za,backendName:"webgl",kernelFunc:$Q},_Q=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=St(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=PQ(this.rank),s,r=e.map((a,o)=>`sourceLoc.${bx[o]} = start[${o}] + coords.${bx[o]};`);s=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${s}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},bx=["x","y","z","w","u","v"];function PQ(e){if(e===1)return"sourceLoc";if(e<=6)return bx.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var FQ=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=St(this.rank),n=jn("coords",this.rank),s=jn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
|
|
result.x = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.y = ${a};
|
|
--${s[this.rank-1]};
|
|
}
|
|
`,i=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${s[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${s[u]} = ${n[u]} + start[${u}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${o}
|
|
${i}
|
|
setOutput(result);
|
|
}
|
|
`}};function OQ(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=yn.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function lc(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=yn.parseSliceParams(r,a,o);if(yn.assertParamsValid(r,i,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),p=vY(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}let{isPacked:c}=n.texData.get(r.dataId),u=yn.isSliceContinous(r.shape,i,l);if(c||!u){let d=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new FQ(l):new _Q(l),p=[i];return n.runWebGLProgram(d,[r],r.dtype,p)}return n.uploadToGPU(r.dataId),OQ(r,i,l,n)}var MQ={kernelName:Di,backendName:"webgl",kernelFunc:lc},zQ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((A,x)=>A*x),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=[],f=be({inputs:{x:r},backend:n,attrs:{shape:l}}),m=qn({inputs:{x:f},backend:n,attrs:{perm:c}}),g=be({inputs:{x:m},backend:n,attrs:{shape:u}}),y=lc({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(A=>n.disposeIntermediateTensorInfo(A)),y},LQ={kernelName:si,backendName:"webgl",kernelFunc:zQ};function BQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),c=I4(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var WQ={kernelName:fh,backendName:"webgl",kernelFunc:BQ},VQ="return float(a != b);",Y4=En({opSnippet:VQ,cpuKernelImpl:gY,dtype:"bool"}),UQ={kernelName:bi,backendName:"webgl",kernelFunc:Y4};function hp(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Ss({inputs:{x:r.complexTensorInfos.real},backend:n})}var GQ={kernelName:Qc,backendName:"webgl",kernelFunc:hp},HQ="return float(int(x));";function jQ(e,t){let n=new Oo(e.shape,HQ),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function vx(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Ss({inputs:{x:r},backend:n});let o=Xt(r.shape),i=vx({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Mo({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=hp({inputs:{input:r},backend:n}),i=vx({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Ss({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return jQ(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=Y4({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var qQ={kernelName:Ca,backendName:"webgl",kernelFunc:vx},J4="return ceil(x);",XQ=ut({opSnippet:J4,packedOpSnippet:J4,cpuKernelImpl:YZ}),KQ={kernelName:Ta,backendName:"webgl",kernelFunc:XQ},ZQ=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},YQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function JQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;Z().getBool("WEBGL_PACK_CLIP")?i=new YQ(r.shape):i=new ZQ(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var QQ={kernelName:Xr,backendName:"webgl",kernelFunc:JQ},eee=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function Q4(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function tee(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new eee(s.shape),o=[Q4(s,r.complexTensorInfos.real),Q4(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var nee={kernelName:Hc,backendName:"webgl",kernelFunc:tee},see=class{constructor(e){this.outputShape=[],this.outputShape=E.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},ree=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=E.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=St(s),a=jn("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let l=o[t],c=o.slice(-2),u=o.join(),d=`if (${l} < ${i[0]}) {
|
|
return getChannel(
|
|
getT0(${u}), vec2(${c.join()}));
|
|
}`;for(let f=1;f<i.length;f++){let m=i[f-1];d+=`
|
|
if (${l} < ${i[f]} && ${l} >= ${i[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${Hm(o,l,m)}),
|
|
vec2(${Hm(c,l,m)}));
|
|
}`}let p=i.length,h=i[i.length-1];d+=`
|
|
return getChannel(
|
|
getT${p}(${Hm(o,l,h)}),
|
|
vec2(${Hm(c,l,h)}));`,this.userCode=`
|
|
float getValue(${o.map(f=>"int "+f)}) {
|
|
${d}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[s-1]} = ${a[s-1]} + 1;
|
|
if (${a[s-1]} < ${n[s-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[s-2]} = ${a[s-2]} + 1;
|
|
if (${a[s-2]} < ${n[s-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[s-1]} = ${a[s-1]} - 1;
|
|
if (${a[s-2]} < ${n[s-2]} &&
|
|
${a[s-1]} < ${n[s-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Hm(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function jm(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Ss({inputs:{x:r.complexTensorInfos.imag},backend:n})}var aee={kernelName:Kc,backendName:"webgl",kernelFunc:jm};function uc(e,t,n){let s=e[0].dtype;if(s==="complex64"){let u=e.map(m=>hp({inputs:{input:m},backend:n})),d=e.map(m=>jm({inputs:{input:m},backend:n})),p=uc(u,t,n),h=uc(d,t,n),f=Mo({inputs:{real:p,imag:h},backend:n});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let u=e.map(y=>{let A=v.sizeFromShape(y.shape.slice(t));return be({inputs:{x:y},backend:n,attrs:{shape:[-1,A]}})}),d=u.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),p=E.computeOutShape(u.map(y=>y.shape),1),h=u[0].shape[0]===1,f=JZ(d,p,s,h),m=E.computeOutShape(e.map(y=>y.shape),t),g=n.makeTensorInfo(m,s,f);return u.forEach(y=>n.disposeIntermediateTensorInfo(y)),g}if(e.length>Z().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),d=uc(e.slice(0,u),t,n),p=uc(e.slice(u),t,n),h=uc([d,p],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),h}if(Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new ree(e.map(d=>d.shape),t);return n.runWebGLProgram(u,e,s)}let{tensors2D:a,outShape:o}=oee(e,t,n),i=new see(a.map(u=>u.shape)),l=n.runWebGLProgram(i,a,s);a.forEach(u=>n.disposeIntermediateTensorInfo(u));let c=be({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),c}function oee(e,t,n){let s=E.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>be({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function eS(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=E.computeOutShape(t.map(c=>c.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(c=>v.sizeFromShape(c.shape)>0);if(i.length===1)return Ss({inputs:{x:i[0]},backend:n});let l=i.map(c=>c.shape);return E.assertParamsConsistent(l,a),uc(i,a,n)}var iee={kernelName:ri,backendName:"webgl",kernelFunc:eS},tS=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,y=m?2:3,A=m?3:1,x="",b="";n&&(s?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${i}, ${l});
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${A}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${c};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${w}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},lee=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${a}, ${o});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${s});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${u}; wF++) {
|
|
int xF = xFCorner + wF * ${i};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},uee=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length);let{dataFormat:n}=t,s=Hn(),r=n==="channelsLast",a=r?0:1,o=r?1:2,i=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let c=0;c<=1;c++)for(let u=0;u<=1;u++)l+=`
|
|
blockIndex = rc.y + ${u};
|
|
pos = rc.x + ${c};
|
|
|
|
${i}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${a}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${o}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${c*2+u}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${c*2+u}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${s.output} = result;
|
|
}
|
|
`}};function nS({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,c=s.texData.get(e.dataId),u=n.inChannels,d=l[0]*l[1]*l[2],p=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,y=[];if(!((d===1||p===1)&&u>H4)&&c.isPacked&&h&&c.texture!=null&&l[2]%2!=0&&v.arraysEqual(c.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),w={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},k=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,v.assert(up(c.shape,w.shape),()=>`packed reshape ${c.shape} to ${w.shape} isn't free`);let S=be({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(S);let N=Um({a:w,b:S,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),$=s.texData.get(N.dataId);v.assert($.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=k,$.shape=n.outShape,g=Ss({inputs:{x:N},backend:s}),g.shape=n.outShape,y.push(N)}else{let b=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],w=be({inputs:{x:e},backend:s,attrs:{shape:[1,b,n.inChannels]}}),k=be({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),S=Um({a:w,b:k,transposeA:f,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=be({inputs:{x:S},backend:s,attrs:{shape:n.outShape}}),y.push(w),y.push(k),y.push(S)}for(let b of y)s.disposeIntermediateTensorInfo(b);return g}function sS({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:d,outHeight:p,dataFormat:h}=n,f=h==="channelsLast",m=l*c*u,g=p*d,y=[m,g],A=!0,x=!1,b=[],w=be({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),k=be({inputs:{x:t},backend:s,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});b.push(w),b.push(k);let S=new uee(y,n),N=[w.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],$=s.runWebGLProgram(S,[w],"float32",N),F=be({inputs:{x:$},backend:s,attrs:{shape:[1,y[0],y[1]]}});b.push($),b.push(F);let R=r!=null,D=a!=null,T=i==="leakyrelu",O=i?Bm(i,!0):null,W=new B4(F.shape,k.shape,[1,g,n.outChannels],A,x,R,O,D,T),H=[F,k];if(r&&H.push(r),D&&H.push(a),T){let J=s.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));H.push(J),b.push(J)}let z=s.runWebGLProgram(W,H,"float32"),X=f?[1,p,d,n.outChannels]:[1,n.outChannels,p,d],te=be({inputs:{x:z},backend:s,attrs:{shape:X}});b.push(z);for(let J of b)s.disposeIntermediateTensorInfo(J);return te}function cee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s,d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))h=nS({x:r,filter:a,convInfo:p,backend:n});else if(Z().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=sS({x:r,filter:a,convInfo:p,backend:n});else{let m=new tS(p);h=n.runWebGLProgram(m,[r,a],"float32")}let f=be({inputs:{x:h},backend:n,attrs:{shape:p.outShape}});return n.disposeIntermediateTensorInfo(h),f}var dee={kernelName:Na,backendName:"webgl",kernelFunc:cee},pee=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},hee=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,c=a?2:3,u=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${u}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},fee=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${s} - ${o};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},mee=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=s-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${i}, ${l}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${s} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function gee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,filterShape:u}=s,d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,u,o,1,i,c,!1,d),h=new pee(p);return n.runWebGLProgram(h,[r,a],"float32")}var yee={kernelName:mh,backendName:"webgl",kernelFunc:gee};function Aee(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s,d=E.convertConv2DDataFormat(c),p=E.computeConv2DInfo(o,a.shape,i,1,l,u,!1,d),h=new hee(p);return n.runWebGLProgram(h,[r,a],"float32")}var xee={kernelName:Ea,backendName:"webgl",kernelFunc:Aee};function bee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=E.computeConv3DInfo(r.shape,a.shape,o,l,i),u=new lee(c);return n.runWebGLProgram(u,[r,a],"float32")}var vee={kernelName:jc,backendName:"webgl",kernelFunc:bee};function wee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,c=E.computeConv3DInfo(r.shape,l,o,1,i),u=new fee(c);return n.runWebGLProgram(u,[r,a],"float32")}var kee={kernelName:gh,backendName:"webgl",kernelFunc:wee};function Iee(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,c=E.computeConv3DInfo(l,a.shape,i,1,o),u=new mee(c);return n.runWebGLProgram(u,[r,a],"float32")}var See={kernelName:yh,backendName:"webgl",kernelFunc:Iee},Cee=L4+`
|
|
return cos(x);
|
|
`,Tee=ut({opSnippet:Cee}),Nee={kernelName:Ra,backendName:"webgl",kernelFunc:Tee},Eee=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,Ree=ut({opSnippet:Eee}),$ee={kernelName:$a,backendName:"webgl",kernelFunc:Ree},Dee=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[c]=t,[u,d]=n;this.outputShape=[c,u,d,l];let p=s==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,y]=u>1?[`${(o-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[A,x,b]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${A});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${p} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},_ee=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,u=new Dee(r.shape,a.shape,i,l,c);return n.runWebGLProgram(u,[r,a,o],"float32")},Pee={kernelName:oi,backendName:"webgl",kernelFunc:_ee},rS=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"0.0":`getX(${aS(s,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${St(s)} coords = getOutputCoords();
|
|
int end = ${oS(s,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${o}) {
|
|
int idx = ${i};
|
|
${oS(s,"coords")} = idx;
|
|
val += getX(${aS(s,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function aS(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function oS(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Fee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length,c=E.getAxesPermutation([a],l),u=r;c!=null&&(u=qn({inputs:{x:r},backend:n,attrs:{perm:c}}));let d=E.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let p=u.shape[d],h=Ss({inputs:{x:u},backend:n});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new rS(u.shape,!1,i),g=[[f]],y=h;h=n.runWebGLProgram(m,[h],h.dtype,g),n.disposeIntermediateTensorInfo(y)}if(o){let f=new rS(u.shape,o,i),m=h;h=n.runWebGLProgram(f,[h],h.dtype),n.disposeIntermediateTensorInfo(m)}if(c!=null){let f=E.getUndoAxesPermutation(c),m=qn({inputs:{x:h},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(u),m}return h}var Oee={kernelName:ai,backendName:"webgl",kernelFunc:Fee};function Mee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=I4(l,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(a),u=ZZ(l,c,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var zee={kernelName:Ah,backendName:"webgl",kernelFunc:Mee},Lee=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Bee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;v.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=new Lee(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var Wee={kernelName:ii,backendName:"webgl",kernelFunc:Bee},iS=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Vs(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",c="";n&&(s?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,c="result = activation(result);");let u=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${i};
|
|
int q = d2 - d1 * ${i};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${a}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${o}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${u}
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},lS=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Vs(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,c=e.filterHeight,u=e.filterWidth,d=u,p=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<u;g++)p+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;for(let g=0;g<c;g++){for(let y=0;y<u;y++)p+=`
|
|
xTexelC${y*2} = vec4(0.0);
|
|
xTexelC${y*2}Ready = 0;
|
|
xTexelC${y*2+1} = vec4(0.0);
|
|
xTexelC${y*2+1}Ready = 0;
|
|
xC${y} = vec4(0.0);`;p+=`
|
|
xR = xRCorner + ${g} * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let y=0;y<(d+1)/2;y++){let A=y*2;if(p+=`
|
|
xC = xCCorner + ${A*l};
|
|
`,i===1){if(A<u&&(o%2==1?(p+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
`,l===1&&A>0?p+=`
|
|
xC${A} = vec4(xTexelC${A-2}.zw, xTexelC${A}.xy);
|
|
`:p+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${A} = vec4(previous.zw, xTexelC${A}.xy);
|
|
} else {
|
|
xC${A} = vec4(0.0, 0.0, xTexelC${A}.xy);
|
|
}
|
|
`):p+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
|
|
xC${A} = xTexelC${A};
|
|
`,A+1<u)){let x=o%2==0?v.nearestLargerEven(l):l;l%2==0&&o%2==1||l%2!=0&&o%2!=1?(p+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
`,l>1&&(p+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
`),p+=`
|
|
xC${A+1} = vec4(xTexelC${A}.zw, xTexelC${A+1}.xy);
|
|
`):x===1?p+=`
|
|
xC${A+1} = xTexelC${A};
|
|
`:p+=`
|
|
xCOffset = xC + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
|
|
xC${A+1} = xTexelC${A+1};
|
|
`}}else A<u&&(o%2==1?(p+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
|
|
xC${A} = vec4(xTexelC${A}.zw, xTexelC${A+1}.zw);
|
|
`,A+1<u&&(p+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${A+1} = vec4(xTexelC${A+1}.xy, final.xy);
|
|
`)):(p+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
|
|
xC${A} = vec4(
|
|
xTexelC${A}.xy, xTexelC${A+1}.xy);
|
|
`,A+1<u&&(p+=`
|
|
xC${A+1} = vec4(xTexelC${A}.zw, xTexelC${A+1}.zw);
|
|
`)));A<u&&(p+=`
|
|
wTexel = getW(${g}, ${A}, d1, q);
|
|
dotProd += xC${A} * vec4(wTexel.xz, wTexel.xz);
|
|
`,A+1<u&&(p+=`
|
|
wTexel = getW(${g}, ${A+1}, d1, q);
|
|
dotProd += xC${A+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}p+=`
|
|
}
|
|
`}let h="",f="";n&&(s?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${a};
|
|
int q = d2 - d1 * ${a};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${p}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};function Vee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s,u=l;u==null&&(u=[1,1]),v.assert(E.eitherStridesOrDilationsAreOne(o,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let d=E.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!0),p;Z().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?p=new lS(d):p=new iS(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(p,[r,a],"float32",h)}var Uee={kernelName:Da,backendName:"webgl",kernelFunc:Vee},Gee=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Hee=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${i}; dm++) {
|
|
int d2 = d1 * ${i} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function jee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,filterShape:u}=s,d=E.computeConv2DInfo(r.shape,u,o,i,l,c,!0),p=new Gee(d);return n.runWebGLProgram(p,[r,a],"float32")}var qee={kernelName:xh,backendName:"webgl",kernelFunc:jee};function Xee(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,inputShape:u}=s,d=E.computeConv2DInfo(u,a.shape,o,i,l,c,!0),p=new Hee(d);return n.runWebGLProgram(p,[r,a],"float32")}var Kee={kernelName:bh,backendName:"webgl",kernelFunc:Xee},Zee=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function Yee(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=v.sizeFromShape(s.shape),o=be({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new Zee(a),l=n.runWebGLProgram(i,[o],o.dtype),c=be({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var Jee={kernelName:vh,backendName:"webgl",kernelFunc:Yee},Qee=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:c}=e,{top:u,left:d}=s;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${a});
|
|
const ivec2 pads = ivec2(${u}, ${d});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${o}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${i}; w++) {
|
|
int wIn = wBeg + w * ${c};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function ete(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=E.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),u,d=new Qee(c);u=n.runWebGLProgram(d,[r,a],"float32");let p=be({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),p}var tte={kernelName:qc,backendName:"webgl",kernelFunc:ete};function nte(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=E.decodeEinsumEquation(r,a.length);E.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=E.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:y,expandDims:A}=E.getEinsumPermutation(h,l[g]),x;E.isIdentityPermutation(y)?x=a[g]:(x=qn({inputs:{x:a[g]},backend:n,attrs:{perm:y}}),f.push(x));let b=x.shape.slice();for(let w=0;w<A.length;++w)b.splice(A[w],0,1);v.arraysEqual(x.shape,b)||(x=be({inputs:{x},backend:n,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=Ax({inputs:{a:x,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=Vm({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var ste={kernelName:Xc,backendName:"webgl",kernelFunc:nte},rte="return (x >= 0.0) ? x : (exp(x) - 1.0);",ate=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,ote=ut({opSnippet:rte,packedOpSnippet:ate}),ite={kernelName:Pa,backendName:"webgl",kernelFunc:ote},lte="return (b >= 1.0) ? a : a * (b + 1.0);",ute=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,cte=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new dp(ute,s.shape,r.shape):new ic(lte,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},dte={kernelName:Ih,backendName:"webgl",kernelFunc:cte},pte=`
|
|
return vec4(equal(a, b));
|
|
`,hte="return float(a == b);",fte=En({opSnippet:hte,packedOpSnippet:pte,dtype:"bool",cpuKernelImpl:QZ}),mte={kernelName:li,backendName:"webgl",kernelFunc:fte},gte=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${E.ERF_P};
|
|
float a1 = ${E.ERF_A1};
|
|
float a2 = ${E.ERF_A2};
|
|
float a3 = ${E.ERF_A3};
|
|
float a4 = ${E.ERF_A4};
|
|
float a5 = ${E.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,yte=ut({opSnippet:gte}),Ate={kernelName:nu,backendName:"webgl",kernelFunc:yte},uS="return exp(x);",cS=ut({opSnippet:uS,packedOpSnippet:uS,cpuKernelImpl:eY}),xte={kernelName:Fa,backendName:"webgl",kernelFunc:cS};function wx(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),be({inputs:{x:a},backend:s,attrs:{shape:i}})}var bte={kernelName:ui,backendName:"webgl",kernelFunc:wx},dS="return exp(x) - 1.0;",vte=ut({opSnippet:dS,packedOpSnippet:dS,cpuKernelImpl:tY}),wte={kernelName:ci,backendName:"webgl",kernelFunc:vte},pS=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${o}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${s});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function hS(e,t,n){let s=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=be({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,c=new pS("real",l,t),u=new pS("imag",l,t),d=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],p=n.runWebGLProgram(c,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=Mo({inputs:{real:p,imag:h},backend:n});n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h);let m=be({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function kte(e){let{inputs:t,backend:n}=e,{input:s}=t;return hS(s,!1,n)}var Ite={kernelName:Sh,backendName:"webgl",kernelFunc:kte},Ste=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function fp(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new Ste(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var Cte={kernelName:su,backendName:"webgl",kernelFunc:fp},Tte=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Nte={kernelName:di,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new Tte(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},fS="return floor(x);",Ete=ut({opSnippet:fS,packedOpSnippet:fS,cpuKernelImpl:nY}),Rte={kernelName:Oa,backendName:"webgl",kernelFunc:Ete},$te=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,Dte=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,_te=En({opSnippet:$te,packedOpSnippet:Dte,dtype:"int32"}),Pte={kernelName:Ma,backendName:"webgl",kernelFunc:_te},Fte=class{constructor(e){this.variableNames=["A"];let t=Hn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},Ote=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Hn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},Mte={kernelName:sd,backendName:"webgl",kernelFunc:zte},cc;function zte(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],u=[c,l],d=[c,l,a];(i||o)&&(cc==null&&(cc=document.createElement("canvas").getContext("2d")),cc.canvas.width=l,cc.canvas.height=c,cc.drawImage(r,0,0,l,c),r=cc.canvas);let p=n.makeTensorInfo(u,"int32");n.texData.get(p.dataId).usage=Bs.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),r);let h=Z().getBool("WEBGL_PACK")?new Ote(d):new Fte(d),f=n.runWebGLProgram(h,[p],"int32");return n.disposeData(p.dataId),f}function Lte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=E.convertConv2DDataFormat(u),g=E.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!1,m),y,A=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=nS({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(Z().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)y=sS({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,w=i!=null,k=h==="leakyrelu",S=h?Bm(h,!1):null,N=new tS(g,b,S,w,k),$=[r,a];if(o&&$.push(o),i&&$.push(i),k){let F=n.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));$.push(F),A.push(F)}y=n.runWebGLProgram(N,$,"float32")}let x=be({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return A.push(y),A.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var Bte={kernelName:mo,backendName:"webgl",kernelFunc:Lte};function Wte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:d,activation:p,leakyreluAlpha:h}=s,f=[],m=u;m==null&&(m=[1,1]),v.assert(E.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=E.computeConv2DInfo(r.shape,a.shape,l,m,c,d,!0),y=Z().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,A=p?Bm(p,y):null,x=[r,a],b=o!=null,w=i!=null,k=p==="leakyrelu";if(b&&x.push(o),w&&x.push(i),k){let F=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));x.push(F),f.push(F)}let S;y?S=new lS(g,b,A,w,k):S=new iS(g,b,A,w,k);let N=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],$=n.runWebGLProgram(S,x,"float32",N);return f.forEach(F=>n.disposeIntermediateTensorInfo(F)),$}var Vte={kernelName:go,backendName:"webgl",kernelFunc:Wte},Ute=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=St(t.length),r=St(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${s} strides = ${s}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${a};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function Gte(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,c,u,d]=E.prepareAndValidate(s,r),p=be({inputs:{x:r},backend:n,attrs:{shape:[c,o]}}),h=be({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/u,u]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let y=n.readSync(r.dataId),A=n.bufferSync(s),x=sY(y,A,s.dtype,c,o,u,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,x.values)}let f=new Ute(o,d,[c,u]),m=n.runWebGLProgram(f,[h,p],h.dtype),g=be({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var Hte={kernelName:hi,backendName:"webgl",kernelFunc:Gte},jte=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=St(this.rank),s=qte(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function qte(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("int(getIndices(resRC.x, resRC.z))"):s.push(`${n[r]}`);return s.join()}function mS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],c=E.segment_util.collectGatherOpShapeInfo(r,a,l,i),u=v.sizeFromShape(a.shape),d=[],p=be({inputs:{x:r},backend:n,attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]}}),h=be({inputs:{x:a},backend:n,attrs:{shape:[c.batchSize,u/c.batchSize]}});d.push(p),d.push(h);let f=[c.batchSize,c.outerSize,u/c.batchSize,c.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let A=n.bufferSync(h),x=n.bufferSync(p),b=rY(x,A,f);return d.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(c.outputShape,b.dtype,b.values)}let m=new jte(p.shape,f),g=n.runWebGLProgram(m,[p,h],p.dtype);d.push(g);let y=be({inputs:{x:g},backend:n,attrs:{shape:c.outputShape}});return d.forEach(A=>n.disposeIntermediateTensorInfo(A)),y}var Xte={kernelName:pi,backendName:"webgl",kernelFunc:mS},Kte="return float(a > b);",Zte=`
|
|
return vec4(greaterThan(a, b));
|
|
`,Yte=En({opSnippet:Kte,packedOpSnippet:Zte,cpuKernelImpl:aY,dtype:"bool"}),Jte={kernelName:fi,backendName:"webgl",kernelFunc:Yte},Qte="return float(a >= b);",ene=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,tne=En({opSnippet:Qte,packedOpSnippet:ene,dtype:"bool",cpuKernelImpl:oY}),nne={kernelName:La,backendName:"webgl",kernelFunc:tne};function sne(e){let{inputs:t,backend:n}=e,{input:s}=t;return hS(s,!0,n)}var rne={kernelName:Ch,backendName:"webgl",kernelFunc:sne},ane="return float(!isnan(x) && !isinf(x));",one=ut({opSnippet:ane,dtype:"bool"}),ine={kernelName:ru,backendName:"webgl",kernelFunc:one},lne="return float(isinf(x));",une=ut({opSnippet:lne,dtype:"bool"}),cne={kernelName:au,backendName:"webgl",kernelFunc:une},dne="return float(isnan(x));",pne=ut({opSnippet:dne,dtype:"bool"}),hne={kernelName:ou,backendName:"webgl",kernelFunc:pne},fne="return float(a < b);",mne=`
|
|
return vec4(lessThan(a, b));
|
|
`,gne=En({opSnippet:fne,packedOpSnippet:mne,cpuKernelImpl:iY,dtype:"bool"}),yne={kernelName:gi,backendName:"webgl",kernelFunc:gne},Ane="return float(a <= b);",xne=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,bne=En({opSnippet:Ane,packedOpSnippet:xne,cpuKernelImpl:lY,dtype:"bool"}),vne={kernelName:yi,backendName:"webgl",kernelFunc:bne};function wne(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=uY(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var kne={kernelName:Th,backendName:"webgl",kernelFunc:wne},Ine=`if (x < 0.0) return NAN;
|
|
return log(x);`,Sne=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,Cne=ut({opSnippet:Ine,packedOpSnippet:Sne,cpuKernelImpl:cY}),Tne={kernelName:Wa,backendName:"webgl",kernelFunc:Cne},Nne="return log(1.0 + x);",Ene=ut({opSnippet:Nne}),Rne={kernelName:iu,backendName:"webgl",kernelFunc:Ene},$ne="return float(a >= 1.0 && b >= 1.0);",Dne=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,_ne=En({opSnippet:$ne,packedOpSnippet:Dne,dtype:"bool"}),Pne={kernelName:Ai,backendName:"webgl",kernelFunc:_ne},Fne="return float(!(x >= 1.0));",One=ut({opSnippet:Fne}),Mne={kernelName:lu,backendName:"webgl",kernelFunc:One},zne="return float(a >= 1.0 || b >= 1.0);",Lne=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,Bne=En({opSnippet:zne,packedOpSnippet:Lne,dtype:"bool"}),Wne={kernelName:Zc,backendName:"webgl",kernelFunc:Bne},Vne=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${o}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${i};
|
|
setOutput(val);
|
|
}
|
|
`}},Une=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${i};
|
|
setOutput(result);
|
|
}
|
|
`}},Gne=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,c=Z().getBool("WEBGL_PACK_NORMALIZATION")?new Une(r.shape,a,o,i,l):new Vne(r.shape,a,o,i,l);return n.runWebGLProgram(c,[r],r.dtype)},Hne={kernelName:Yc,backendName:"webgl",kernelFunc:Gne},jne=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${s}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${s})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},qne=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:c,beta:u}=s,d=new jne(r.shape,i,l,c,u);return n.runWebGLProgram(d,[r,a,o],r.dtype)},Xne={kernelName:Nh,backendName:"webgl",kernelFunc:qne};function Kne(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=be({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=vl(i,e.dtype,"max",s),c=be({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}function gS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=u!=null,p=n.shouldExecuteOnCPU([r]),h=r;if(d){if(p){let x=n.texData.get(h.dataId).values,b=new Array(i);for(let S=0;S<b.length;S++)b[S]=r.shape[u[S]];let w=yx(x,r.shape,r.dtype,u,b);h=n.makeTensorInfo(b,r.dtype);let k=n.texData.get(h.dataId);k.values=w}else h=Wm(r,u,n);c=E.getInnerMostAxes(c.length,i)}E.assertAxesAreInnerMostDims("max",c,i);let[f,m]=E.computeOutAndReduceShapes(h.shape,c),g=f;o&&(g=E.expandShapeToKeepDim(f,l));let y;if(p){let x=n.texData.get(h.dataId).values,b=dY(x,v.sizeFromShape(m),g,r.dtype);y=n.makeTensorInfo(g,r.dtype);let w=n.texData.get(y.dataId);w.values=b}else y=Kne(h,m,g,n);return d&&n.disposeIntermediateTensorInfo(h),y}var Zne={kernelName:Va,backendName:"webgl",kernelFunc:gS},Yne=P4+`
|
|
return max(a, b);
|
|
`,Jne=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Lm+`
|
|
return result;
|
|
`,Qne=En({opSnippet:Yne,packedOpSnippet:Jne,cpuKernelImpl:pY}),ese={kernelName:Ua,backendName:"webgl",kernelFunc:Qne};function tse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;ec(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))return Ss({inputs:{x:r},backend:n});let d=new pp(u,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var nse={kernelName:Ga,backendName:"webgl",kernelFunc:tse};function sse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:c}=s,u=[1,1,1],d=E.computePool3DInfo(r.shape,a,o,u,i,c,l),p=new xx(d,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var rse={kernelName:Jc,backendName:"webgl",kernelFunc:sse},ase=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},ose=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=i-1-e.padInfo.front,d=l-1-e.padInfo.top,p=c-1-e.padInfo.left,h=i*l*c-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${u}, ${d}, ${p});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${i};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${c} +
|
|
wR * ${c} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function ise(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=E.computePool3DInfo(o.shape,i,l,d,c,u),h=new xx(p,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new ose(p),g=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var lse={kernelName:Rh,backendName:"webgl",kernelFunc:ise};function use(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;ec([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=E.computePool2DInfo(i.shape,l,c,1,u,d),h=!0,f=new pp(p,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new ase(p),y=n.runWebGLProgram(g,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),y}var cse={kernelName:Eh,backendName:"webgl",kernelFunc:use};function dse(e,t,n,s){let r=new pp(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new pp(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var pse={kernelName:$h,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;v.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let c=[1,1];v.assert(E.eitherStridesOrDilationsAreOne(a,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let u=E.computePool2DInfo(s.shape,r,a,c,o),[d,p]=dse(s,i,u,l);return[d,p]}};function hse(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=be({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=vl(i,"float32","mean",s),c=be({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}var fse={kernelName:Ha,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=v.parseAxisParam(a,s.shape),c=l,u=E.getAxesPermutation(c,i),d=u!=null,p=o.shouldExecuteOnCPU([s]),h=[],f=s;if(d){if(p){let b=o.texData.get(f.dataId).values,w=new Array(i);for(let N=0;N<w.length;N++)w[N]=s.shape[u[N]];let k=yx(b,s.shape,s.dtype,u,w);f=o.makeTensorInfo(w,s.dtype);let S=o.texData.get(f.dataId);S.values=k}else f=Wm(s,u,o);h.push(f),c=E.getInnerMostAxes(c.length,i)}E.assertAxesAreInnerMostDims("sum",c,i);let[m,g]=E.computeOutAndReduceShapes(f.shape,c),y=m;r&&(y=E.expandShapeToKeepDim(m,l));let A=hse(f,g,y,o);for(let x of h)o.disposeIntermediateTensorInfo(x);return A}};function mse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=r;u!=null&&(d=qn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,r.shape.length)),E.assertAxesAreInnerMostDims("min",c,i);let[p,h]=E.computeOutAndReduceShapes(d.shape,c),f=v.sizeFromShape(h),m=be({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=vl(m,m.dtype,"min",n),y;if(o){let A=E.expandShapeToKeepDim(p,l);y=be({inputs:{x:g},backend:n,attrs:{shape:A}})}else y=be({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),y}var gse={kernelName:ja,backendName:"webgl",kernelFunc:mse},yse=P4+`
|
|
return min(a, b);
|
|
`,Ase=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Lm+`
|
|
return result;
|
|
`,xse=En({opSnippet:yse,packedOpSnippet:Ase,cpuKernelImpl:hY}),bse={kernelName:qa,backendName:"webgl",kernelFunc:xse},vse=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let s=e.length,r=St(s),a=t.map(c=>c[0]).join(","),o=t.map((c,u)=>c[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${s}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}},wse=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=St(s),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=jn("rc",s),l=jn("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,p="";if(s===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${d};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${d};
|
|
}
|
|
source -= start;
|
|
`;p=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${u});
|
|
${i[s-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${d}) +
|
|
gte * ((end - 1) * 2 - source + ${d});
|
|
source -= start;
|
|
`;p=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${u});
|
|
${i[s-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${u});
|
|
${i[s-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},kse=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new wse(s.shape,r,a):new vse(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},Ise={kernelName:Xa,backendName:"webgl",kernelFunc:kse},Sse=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,Cse=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+Lm+`
|
|
return result;
|
|
`,Tse=En({opSnippet:Sse,packedOpSnippet:Cse}),Nse={kernelName:uu,backendName:"webgl",kernelFunc:Tse},Ese=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},Rse=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,$se=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,yS=En({opSnippet:Rse,packedOpSnippet:$se,checkOutOfBounds:!0}),Dse={kernelName:_a,backendName:"webgl",kernelFunc:yS},AS="return a - b;",xS=En({opSnippet:AS,packedOpSnippet:AS,supportsComplex:!0,cpuKernelImpl:EY}),_se={kernelName:uo,backendName:"webgl",kernelFunc:xS};function bS(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=gS({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=E.expandShapeToKeepDim(i.shape,o),c=be({inputs:{x:i},backend:n,attrs:{shape:l}}),u=xS({inputs:{a:r,b:c},backend:n}),d=cS({inputs:{x:u},backend:n}),p=Vm({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=be({inputs:{x:p},backend:n,attrs:{shape:l}}),f=yS({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}var Pse={kernelName:io,backendName:"webgl",kernelFunc:bS};function Fse(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:bS({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),c=l.shape[0],u=l.shape[1],d=new Ese(c,u,a),p=[[o]],h=n.runWebGLProgram(d,[l],"int32",p);return i||n.disposeIntermediateTensorInfo(l),h}var Ose={kernelName:Dh,backendName:"webgl",kernelFunc:Fse},vS="return -x;";function Mse(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=mY(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new ac(s.shape,vS):r=new Oo(s.shape,vS),n.runWebGLProgram(r,[s],s.dtype)}var zse={kernelName:xi,backendName:"webgl",kernelFunc:Mse},Lse=Ys.nonMaxSuppressionV3Impl;function Bse(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,c=n.readSync(r.dataId),u=n.readSync(a.dataId),{selectedIndices:d}=Lse(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Wse={kernelName:vi,backendName:"webgl",kernelFunc:Bse},Vse=Ys.nonMaxSuppressionV4Impl;function Use(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),{selectedIndices:p,validOutputs:h}=Vse(u,d,o,i,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Gse={kernelName:cu,backendName:"webgl",kernelFunc:Use},Hse=Ys.nonMaxSuppressionV5Impl;function jse(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:y}=Hse(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var qse={kernelName:wi,backendName:"webgl",kernelFunc:jse},Xse=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${s}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},Kse=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=v.sizeFromShape(r.shape),c=new Xse(l,a,o,i),u=be({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(c,[u],r.dtype);n.disposeIntermediateTensorInfo(u);let p=[...r.shape,a],h=be({inputs:{x:d},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(d),h},Zse={kernelName:Ii,backendName:"webgl",kernelFunc:Kse};function qm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=hp({inputs:{input:s},backend:n}),a=qm({inputs:{x:r},backend:n}),o=jm({inputs:{input:s},backend:n}),i=qm({inputs:{x:o},backend:n}),l=Mo({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return fp({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var Yse={kernelName:Bi,backendName:"webgl",kernelFunc:qm};function wS(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=hp({inputs:{input:s},backend:n}),a=wS({inputs:{x:r},backend:n}),o=jm({inputs:{input:s},backend:n}),i=qm({inputs:{x:o},backend:n}),l=Mo({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return fp({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var Jse={kernelName:ki,backendName:"webgl",kernelFunc:wS};function Qse(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return wx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=wx({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=eS({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var ere={kernelName:Si,backendName:"webgl",kernelFunc:Qse},tre=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let s=e.length,r=St(s),a=t.map(l=>l[0]).join(","),o=t.map((l,c)=>l[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
}
|
|
`}},nre=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=St(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=jn("rc",s),l=jn("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
|
|
if(${c}) {
|
|
`,s===1?"":`}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
|
|
if(${c}) {`],p=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f<m;f++)h+=`
|
|
${d[f]}
|
|
if (${p}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
`;h+=s===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},kS=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(v.sizeFromShape(r.shape)===0){let c=a.map((u,d)=>u[0]+r.shape[d]+u[1]);return fp({backend:n,attrs:{shape:c,value:o,dtype:r.dtype}})}let i=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new nre(r.shape,a,o):new tre(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},sre={kernelName:Za,backendName:"webgl",kernelFunc:kS},rre=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,are=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+Lm+`
|
|
return result;
|
|
`,ore=En({opSnippet:rre,packedOpSnippet:are}),ire={kernelName:Ya,backendName:"webgl",kernelFunc:ore};function lre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],c=v.parseAxisParam(a,r.shape),u=c,d=E.getAxesPermutation(u,i),p=r;d!=null&&(p=qn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=E.getInnerMostAxes(u.length,i),l.push(p)),E.assertAxesAreInnerMostDims("prod",u,i);let h;if(n.shouldExecuteOnCPU([p])){let f=n.texData.get(p.dataId).values,{outVals:m,outShape:g,outDtype:y}=yY(p.shape,p.dtype,f,u);h=n.makeTensorInfo(g,y,m)}else{let[f,m]=E.computeOutAndReduceShapes(p.shape,u),g=v.sizeFromShape(m),y=be({inputs:{x:p},backend:n,attrs:{shape:[-1,g]}}),A=pd(r.dtype),x=vl(y,A,"prod",n);h=be({inputs:{x},backend:n,attrs:{shape:f}}),l.push(y),l.push(x)}if(o){l.push(h);let f=E.expandShapeToKeepDim(h.shape,c);h=be({inputs:{x:h},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var ure={kernelName:Ci,backendName:"webgl",kernelFunc:lre},IS=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=AY(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},cre={kernelName:du,backendName:"webgl",kernelFunc:IS},dre="return 1.0 / x;",pre=ut({opSnippet:dre}),hre={kernelName:pu,backendName:"webgl",kernelFunc:pre},fre=br+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,mre=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,gre=ut({opSnippet:fre,packedOpSnippet:mre}),yre={kernelName:Qa,backendName:"webgl",kernelFunc:gre},Are=br+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,xre=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,bre=ut({opSnippet:Are,packedOpSnippet:xre}),vre={kernelName:to,backendName:"webgl",kernelFunc:bre},wre=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},kre=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]},
|
|
${c[1]/u[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Ire(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=Z().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new kre(r.shape,l,c,a,o):new wre(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],"float32")}var Sre={kernelName:eo,backendName:"webgl",kernelFunc:Ire},Cre=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Tre(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Cre(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Nre={kernelName:Ph,backendName:"webgl",kernelFunc:Tre},Ere=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Rre=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]},
|
|
${c[1]/u[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function $re(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=Z().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Rre(r.shape,l,c,a,o):new Ere(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],r.dtype)}var Dre={kernelName:hu,backendName:"webgl",kernelFunc:$re},_re=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${i[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${i[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Pre(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new _re(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Fre={kernelName:_h,backendName:"webgl",kernelFunc:Pre},Ore=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=St(n);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},Mre=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=jn("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=St(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${i(s.slice())};
|
|
if(${r}){
|
|
result.g = ${l(s.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${c(s.slice())};
|
|
if(${r}) {
|
|
result.a = ${u(s.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function i(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function c(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let f=e.map((y,A)=>p(A,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function p(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function zre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return Ss({inputs:{x:r},backend:n});let l=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Mre(r.shape,i):new Ore(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var Lre={kernelName:Ni,backendName:"webgl",kernelFunc:zre},Bre=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Wre={kernelName:Wi,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Bre(s.shape,a),[c,u]=E.getImageCenter(o,s.shape[1],s.shape[2]),d=[[c,u,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,d)}},Vre=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,Ure=ut({opSnippet:Vre}),Gre={kernelName:Ei,backendName:"webgl",kernelFunc:Ure},Hre="return inversesqrt(x);",jre=ut({opSnippet:Hre,cpuKernelImpl:xY}),qre={kernelName:no,backendName:"webgl",kernelFunc:jre},SS=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=St(r.length),l=St(a.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,d="";s===1?d="i":s===2&&(d="i, coords[1]");let p=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${i} strides = ${i}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${u});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${p};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function Xre(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=E.calculateShapes(a,r,o),p=[d/c,c];if(d===0)return n.makeTensorInfo(o,r.dtype);let h=be({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=be({inputs:{x:a},backend:n,attrs:{shape:[l,c]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new SS(l,i,h.shape.length,f.shape.length,u,p),y=n.runWebGLProgram(g,[f,h,m],f.dtype),A=be({inputs:{x:y},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),A}var Kre={kernelName:Ri,backendName:"webgl",kernelFunc:Xre},Zre=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let c=0;c<t.length;c++)l.push(`${o[c]}`),c<e&&i.push(`${o[c]}`);s=i.join(),r=l.join()}let a=St(n);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${s});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function Yre(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new Zre(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],Bn(r.dtype,a.dtype))}var Jre={kernelName:$i,backendName:"webgl",kernelFunc:Yre},Qre=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${E.SELU_SCALEALPHA};
|
|
float scale = ${E.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,eae=ut({opSnippet:Qre}),tae={kernelName:fu,backendName:"webgl",kernelFunc:eae},CS="return 1.0 / (1.0 + exp(-1.0 * x));",nae=ut({opSnippet:CS,packedOpSnippet:CS,cpuKernelImpl:bY}),sae={kernelName:ro,backendName:"webgl",kernelFunc:nae},rae=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,aae=ut({opSnippet:rae}),oae={kernelName:mu,backendName:"webgl",kernelFunc:aae},iae=L4+`
|
|
return sin(x);
|
|
`,lae=ut({opSnippet:iae}),uae={kernelName:so,backendName:"webgl",kernelFunc:lae},cae=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,dae=ut({opSnippet:cae}),pae={kernelName:_i,backendName:"webgl",kernelFunc:dae},hae=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,fae=ut({opSnippet:hae}),mae={kernelName:gu,backendName:"webgl",kernelFunc:fae},gae=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,A)=>y*A),l=[[0,0]];l.push(...o);for(let y=1+a.length;y<r.shape.length;++y)l.push([0,0]);let c=[],u=kS({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=E.getReshaped(u.shape,a,i,!1),p=E.getPermuted(d.length,a.length,!1),h=E.getReshapedPermuted(u.shape,a,i,!1),f=be({inputs:{x:u},backend:n,attrs:{shape:d}}),m=qn({inputs:{x:f},backend:n,attrs:{perm:p}}),g=be({inputs:{x:m},backend:n,attrs:{shape:h}});return c.push(u),c.push(f),c.push(m),c.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},yae={kernelName:Pi,backendName:"webgl",kernelFunc:gae};function Aae(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=n.readSync(o.dataId)[0],[d,p,h,f,m]=wY(i,s.shape,s.dtype,l,r.dtype,c,u);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var xae={kernelName:Fh,backendName:"webgl",kernelFunc:Aae};function bae(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[c,u,d]=kY(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var vae={kernelName:Oh,backendName:"webgl",kernelFunc:bae};function wae(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=C4(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var kae={kernelName:Mh,backendName:"webgl",kernelFunc:wae};function Iae(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=C4(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var Sae={kernelName:zh,backendName:"webgl",kernelFunc:Iae};function Cae(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,strides:u,outputSize:d}=E.calculateShapes(a,r,i),p=!1,h=new SS(c,l,r.shape.length,a.shape.length,u,[d,1],p),f=n.runWebGLProgram(h,[a,r,o],a.dtype),m=be({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var Tae={kernelName:ed,backendName:"webgl",kernelFunc:Cae};function Nae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=r.shape.length,u=new Array(c).fill(0),d=r.shape.slice();return l.map(p=>{let h=[...d];h[i]=p;let f=lc({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=p,f})}var Eae={kernelName:Fi,backendName:"webgl",kernelFunc:Nae},TS="return sqrt(x);",Rae=ut({opSnippet:TS,packedOpSnippet:TS,cpuKernelImpl:IY}),$ae={kernelName:ao,backendName:"webgl",kernelFunc:Rae},Dae="return x * x;",_ae=ut({opSnippet:Dae}),Pae={kernelName:yu,backendName:"webgl",kernelFunc:_ae},NS="return (a - b) * (a - b);",Fae=En({opSnippet:NS,packedOpSnippet:NS}),Oae={kernelName:lo,backendName:"webgl",kernelFunc:Fae};function Mae({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=br+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,a=new Oo(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var zae={kernelName:ho,backendName:"webgl",kernelFunc:Mae},Lae=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=St(n.length),a=St(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,c)=>(i++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${i-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}};function Bae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{nonStrided:h,$begin:f,$strides:m,size:g,newShape:y,outShape:A}=yn.sliceInfo(r.shape,a,o,i,l,c,u,d,p),x=be({inputs:{x:r},backend:n,attrs:{shape:y}}),b;if(h){let k=lc({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=be({inputs:{x:k},backend:n,attrs:{shape:A}}),n.disposeIntermediateTensorInfo(k)}else if(A.some(k=>k===0))b=n.makeTensorInfo(A,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let N=n.texData.get(x.dataId).values,$=We(x.shape,x.dtype,N),F=SY(A,$,m,f);b=n.makeTensorInfo(A,x.dtype,F.values)}else{let S=new Lae(f,m,A);b=n.runWebGLProgram(S,[x],x.dtype)}let w=be({inputs:{x:b},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),w}var Wae={kernelName:Oi,backendName:"webgl",kernelFunc:Bae};function Vae(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.readSync(u.dataId),h=n.readSync(d.dataId),[f,m]=CY(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Uae={kernelName:td,backendName:"webgl",kernelFunc:Vae};function Gae(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[c,u,d]=TY(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Hae={kernelName:Lh,backendName:"webgl",kernelFunc:Gae};function jae(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=NY(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var qae={kernelName:Bh,backendName:"webgl",kernelFunc:jae},Xae="return tan(x);",Kae=ut({opSnippet:Xae}),Zae={kernelName:Mi,backendName:"webgl",kernelFunc:Kae},Yae=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,Jae=ut({opSnippet:Yae}),Qae={kernelName:co,backendName:"webgl",kernelFunc:Jae},eoe=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=St(this.rank),r=toe(e);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function toe(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function ES(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),c=r.dtype==="string"?l.map(p=>v.decodeString(p)):l,u=We(r.shape,r.dtype,c),d=RY(u,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new eoe(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var noe={kernelName:Kr,backendName:"webgl",kernelFunc:ES},soe=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},roe=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function wl(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function RS(e){let t=1;for(;t<e;)t*=2;return t}function aoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=Z().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=Z().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),c=r.shape,u=c[c.length-1];if(n.shouldExecuteOnCPU([r])||u<i||a>l){let F=n.readSync(r.dataId),[R,D]=$Y(F,c,r.dtype,a,o);return[n.makeTensorInfo(R.shape,R.dtype,R.values),n.makeTensorInfo(D.shape,D.dtype,D.values)]}if(a===0)return c[c.length-1]=0,[n.makeTensorInfo(c,r.dtype,[]),n.makeTensorInfo(c,"int32",[])];if(u===1)return[r,fp({attrs:{shape:c,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),p=d!==null&&d.isPacked,h=p?n.unpackTensor(r):r,m=v.sizeFromShape(c)/u,g=be({inputs:{x:h},attrs:{shape:[m,u]},backend:n});p&&wl(n,h);let y=RS(a),A=RS(u),x=null,b=()=>x===null?[g,g]:[g,x],w=(F,R,D)=>{let T=b(),O=new soe(D),H=[[u],[x===null?1:0],[Number.NEGATIVE_INFINITY],[F],[R]],z=x;x=n.runWebGLProgram(O,T,"int32",H),wl(n,z)};for(let F=1;F<y;F*=2){let R=F*2;for(let D=F;D>=1;D/=2)w(R,D,[m,A])}for(let F=A;F>y;F/=2){let R=b(),D=new roe([m,F/2]),O=[[u],[x===null?1:0],[y]],W=x;x=n.runWebGLProgram(D,R,"int32",O),wl(n,W);let H=y/2,z=H*2;for(let X=H;X>=1;X/=2)w(z,X,x.shape)}let k=x;x=lc({inputs:{x},backend:n,attrs:{begin:0,size:[m,a]}}),wl(n,k);let S=mS({inputs:{x:g,indices:x},backend:n,attrs:{axis:1,batchDims:1}});wl(n,g);let N=c.slice(0,-1);N.push(a),k=x,x=be({inputs:{x},attrs:{shape:N},backend:n}),wl(n,k);let $=S;return S=be({inputs:{x:S},attrs:{shape:N},backend:n}),wl(n,$),[S,x]}var ooe={kernelName:Au,backendName:"webgl",kernelFunc:aoe},ioe=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${i} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${o} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function loe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],y=new ioe(d,p,o,i,l,g);return n.runWebGLProgram(y,[r,a],"float32")}var uoe={kernelName:zi,backendName:"webgl",kernelFunc:loe};function coe(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;ec(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:c}=DY(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([c.length],"int32",c)]}var doe={kernelName:Wh,backendName:"webgl",kernelFunc:coe};function poe(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],c=new Array(i-1),u=0;for(let m=0;m<i;m++)m!==a&&(c[u++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[a]=m;let g=lc({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),y=be({inputs:{x:g},backend:n,attrs:{shape:c}});f[m]=y,d.push(g)}return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var hoe={kernelName:Li,backendName:"webgl",kernelFunc:poe},foe=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,d=`
|
|
sumValue += dot(values, segFilter);
|
|
`,p="";r%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${u===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function moe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],c=0,u=E.getAxesPermutation([c],i),d=r;u!=null&&(d=qn({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(d),c=E.getInnerMostAxes(1,i)[0]);let p=E.segment_util.computeOutShape(d.shape,c,o),h=v.sizeFromShape([d.shape[c]]),f=be({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(f);let m=pd(r.dtype),g=(b,w,k,S,N)=>{let $=b.shape[0],F=b.shape[1],R=E.segment_util.segOpComputeOptimalWindowSize(F,N),D={windowSize:R,inSize:F,batchSize:$,numSegments:N},T=new foe(D,w),O=n.compileAndRun(T,[b,k],S);if(l.push(O),O.shape[1]===N)return O;let W=IS({backend:n,attrs:{start:0,stop:N,step:1,dtype:"float32"}}),H=ES({inputs:{x:W},backend:n,attrs:{reps:[F/R]}});return l.push(W),l.push(H),g(O,w,H,S,N)},y=g(f,"unsortedSegmentSum",a,m,o),A=be({inputs:{x:y},backend:n,attrs:{shape:p}}),x=A;if(u!=null){l.push(A);let b=E.getUndoAxesPermutation(u);x=qn({inputs:{x},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var goe={kernelName:nd,backendName:"webgl",kernelFunc:moe},yoe=[Hne,Xne,$J,_J,OJ,LJ,WJ,GJ,jJ,XJ,JJ,eQ,sQ,oQ,hQ,uQ,gQ,bQ,AQ,IQ,CQ,NQ,DQ,LQ,WQ,qQ,KQ,QQ,nee,pJ,iee,yee,xee,dee,kee,See,vee,Nee,$ee,Pee,Oee,zee,Wee,qee,Kee,Uee,Jee,tte,ste,ite,dte,mte,Ate,xte,bte,wte,Ite,Cte,Nte,Rte,Pte,Mte,Bte,Vte,Hte,Xte,Jte,nne,dJ,rne,aee,ine,cne,hne,fJ,yne,vne,kne,Rne,Tne,Pne,Mne,Wne,Zne,rse,nse,lse,cse,pse,ese,fse,gse,bse,Ise,Nse,Ose,xJ,zse,Wse,Gse,qse,UQ,Zse,Jse,ere,sre,ire,gJ,ure,cre,GQ,Dse,hre,vre,yre,vJ,Sre,Nre,Dre,Fre,Lre,Wre,Gre,qre,Kre,Jre,tae,sae,oae,uae,pae,MQ,Pse,mae,yae,xae,vae,kae,Sae,Tae,Eae,$ae,Pae,Oae,zae,Wae,Uae,Hae,qae,_se,NJ,Zae,Qae,noe,ooe,uoe,EJ,doe,hoe,goe,Yse];for(let e of yoe)Yr(e);var us;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(us||(us={}));var mp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(mp||(mp={}));var $S;function Aoe(e){$S=e.wasm.cwrap(fo,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function xoe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s,p=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let N=n.dataIdMap.get(o.dataId);if(N.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${N.shape.length}.`);f=N.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=mp[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],A=c?a.shape[1]:a.shape[2],x=r.shape[0],b=n.makeOutput([x,y,A],r.dtype),w=n.dataIdMap.get(b.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),S=new Uint8Array(new Int32Array(a.shape).buffer);return $S(p,k,r.shape.length,h,S,a.shape.length,l,c,g,f,m,d||0,w),b}var boe={kernelName:fo,backendName:"wasm",setupFunc:Aoe,kernelFunc:xoe};function Rn(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function s(r){let{backend:a,inputs:{x:o}}=r,i=a.dataIdMap.get(o.dataId).id,l=a.makeOutput(o.shape,o.dtype),c=a.dataIdMap.get(l.dataId).id;return v.sizeFromShape(l.shape)===0||t(i,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:s}}var voe=Rn(ni);function Xn(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:c,b:u}=l,d=i.dataIdMap.get(c.dataId).id,p=i.dataIdMap.get(u.dataId).id,h=n!=null?n:c.dtype,f=E.assertAndGetBroadcastShape(c.shape,u.shape),m=i.makeOutput(f,h);if(v.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),A=i.dataIdMap.get(m.dataId).id,x=()=>s(d,g,c.shape.length,p,y,u.shape.length,us[c.dtype],A);if(t&&c.dtype==="float32")return x(),m;let b=E.getBroadcastDims(c.shape,f),w=E.getBroadcastDims(u.shape,f),k=b.every((N,$)=>N===$),S=w.every((N,$)=>N===$);if(k&&S)return x(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var woe=!0,koe=Xn(qr,woe),DS;function Ioe(e){DS=e.wasm.cwrap(wa,null,["array","number","number","number"])}function Soe(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return DS(a,r.length,us[s.dtype],o),s}var Coe={kernelName:wa,backendName:"wasm",setupFunc:Ioe,kernelFunc:Soe};function Xm(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var Toe={kernelName:Ba,backendName:"wasm",kernelFunc:Xm},_S;function Noe(e){_S=e.wasm.cwrap(po,null,["number","array","number","number","number","array","number"])}function dc(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=Roe(t.x.shape,s.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=Eoe(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let f=Xm({inputs:t,backend:n});return f.shape=i,f}let c=n.makeOutput(i,l.dtype),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(c.dataId).id,p=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return _S(u,h,l.shape.length,us[l.dtype],d,p,a.length),c}function Eoe(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function Roe(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var $oe={kernelName:po,backendName:"wasm",kernelFunc:dc,setupFunc:Noe};function zo(e,t,n){let s=e.shape,r=e.shape.length,a=v.parseAxisParam(t,s),o=a,i=E.getAxesPermutation(o,r),l=null,c=!1;if(i!=null){let u=new Array(r);for(let h=0;h<u.length;h++)u[h]=s[i[h]];o=E.getInnerMostAxes(o.length,r),l=dc({inputs:{x:e},attrs:{perm:i},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(c=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:c}}var PS;function Doe(e){PS=e.wasm.cwrap(Xl,null,["number, number, number"])}function _oe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=zo(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;c=u,l=x}let f=c.shape.length;E.assertAxesAreInnerMostDims("all",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),y=v.sizeFromShape(g),A=t.makeOutput(m,o.dtype);if(v.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;PS(l,y,x)}if(h&&t.disposeData(u.dataId),a){let x=E.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var Poe={kernelName:Xl,backendName:"wasm",setupFunc:Doe,kernelFunc:_oe},FS;function Foe(e){FS=e.wasm.cwrap(Kl,null,["number, number, number"])}function Ooe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=zo(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;c=u,l=x}let f=c.shape.length;E.assertAxesAreInnerMostDims("any",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),y=v.sizeFromShape(g),A=t.makeOutput(m,o.dtype);if(v.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;FS(l,y,x)}if(h&&t.disposeData(u.dataId),a){let x=E.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var Moe={kernelName:Kl,backendName:"wasm",setupFunc:Foe,kernelFunc:Ooe},OS;function zoe(e){OS=e.wasm.cwrap(ka,null,["number","number","number","number","number"])}function Loe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:c,axes:u,inputWasTransposed:d}=zo(a,r,t);if(d){let y=t.dataIdMap.get(c.dataId).id;y!==o&&(l=c,i=y)}let p=l.shape.slice(0,-1),h=t.makeOutput(p,"int32"),f=t.dataIdMap.get(h.dataId).id,m=v.sizeFromShape(h.shape),g=l.shape[u[0]];return OS(i,us[l.dtype],m,g,f),d&&t.disposeData(c.dataId),h}var Boe={kernelName:ka,backendName:"wasm",kernelFunc:Loe,setupFunc:zoe},MS;function Woe(e){MS=e.wasm.cwrap(Ia,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Voe(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=n,u=E.computePool2DInfo(r.shape,o,i,1,l,c),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,y=u.strideHeight,A=u.strideWidth,x=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let b=s.makeOutput(u.outShape,"float32"),w=s.dataIdMap.get(b.dataId).id;return MS(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,y,A,x,w),b}var Uoe={kernelName:Ia,backendName:"wasm",setupFunc:Woe,kernelFunc:Voe};function cs(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a);return v.assert(a===v.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var Goe={kernelName:Ti,backendName:"wasm",kernelFunc:cs},zS;function Hoe(e){zS=e.wasm.cwrap(Sa,null,["number","array","number","number","array","number","number","number","number"])}function joe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=g===y||g===1||y===1;v.assert(l>=2&&c>=2&&A,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>y?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);v.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let w=o?[g,u,p]:[g,p,u],k=i?[y,h,d]:[y,d,h],S=cs({inputs:{x:r},backend:n,attrs:{shape:w}}),N=cs({inputs:{x:a},backend:n,attrs:{shape:k}}),$=n.dataIdMap.get(S.dataId).id,F=n.dataIdMap.get(N.dataId).id,R=o?S.shape[2]:S.shape[1],D=i?N.shape[1]:N.shape[2],T=Math.max(g,y),O=n.makeOutput([T,R,D],S.dtype),W=n.dataIdMap.get(O.dataId).id,H=new Uint8Array(new Int32Array(S.shape).buffer),z=new Uint8Array(new Int32Array(N.shape).buffer);return zS($,H,S.shape.length,F,z,N.shape.length,o,i,W),n.disposeData(S.dataId),n.disposeData(N.dataId),O.shape=b,O}var qoe={kernelName:Sa,backendName:"wasm",setupFunc:Hoe,kernelFunc:joe};function gp(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=yn.parseSliceParams(t,n,s),i=yn.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),c=r.makeOutput(o,t.dtype),u=v.computeStrides(t.shape),d=r.dataIdMap.get(c.dataId);if(i){let f=yn.computeFlatOffset(a,u);return t.dtype==="string"?d.stringBytes=l.slice(f,f+v.sizeFromShape(o)):r.typedArrayFromHeap(c).set(l.subarray(f,f+v.sizeFromShape(o))),c}if(t.dtype==="string"){let f=Im(l,a,o,t.shape,t.dtype);return d.stringBytes=f,c}let p=r.typedArrayFromHeap(c),h=t.shape.length;if(h===2)Xoe(l,u[0],p,a,o);else if(h===3)Koe(l,u[0],u[1],p,a,o);else if(h===4)Zoe(l,u[0],u[1],u[2],p,a,o);else{let f=Im(l,a,o,t.shape,t.dtype);p.set(f)}return c}function Xoe(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let c=o;c<l;c++){let u=c*t+i;n.set(e.subarray(u,u+r[1]),a),a+=r[1]}}function Koe(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],c=r[2],u=i+a[0],d=l+a[1];for(let p=i;p<u;p++)for(let h=l;h<d;h++){let f=p*t+h*n+c;s.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function Zoe(e,t,n,s,r,a,o){let i=0,l=a[0],c=a[1],u=a[2],d=l+o[0],p=c+o[1],h=u+o[2],f=a[3];for(let m=l;m<d;m++)for(let g=c;g<p;g++)for(let y=u;y<h;y++){let A=m*t+g*n+y*s+f;r.set(e.subarray(A,A+o[3]),i),i+=o[3]}}var Yoe={kernelName:Di,backendName:"wasm",kernelFunc:gp};function Joe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((y,A)=>y*A),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=cs({inputs:{x:r},backend:n,attrs:{shape:l}}),f=dc({inputs:{x:h},backend:n,attrs:{perm:c}}),m=cs({inputs:{x:f},backend:n,attrs:{shape:u}}),g=gp({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var Qoe={kernelName:si,backendName:"wasm",kernelFunc:Joe};function Km(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var eie={kernelName:Ca,backendName:"wasm",kernelFunc:Km},tie=Rn(Ta),LS;function nie(e){LS=e.wasm.cwrap(Xr,null,["number","number","number","number"])}function sie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id;return LS(i,a,o,c),l}var rie={kernelName:Xr,backendName:"wasm",setupFunc:nie,kernelFunc:sie};function BS(e){let{inputs:t,backend:n}=e,s=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=E.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>v.sizeFromShape(h.shape)>0);if(a.length===1)return Xm({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(v.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(E.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(x=>{let b=v.sizeFromShape(x.shape.slice(s));return cs({inputs:{x},backend:n,attrs:{shape:[-1,b]}})}),f=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=E.computeOutShape(h.map(x=>x.shape),1);let m=h[0].shape[0]===1,g=HA(f,r,t[0].dtype,m),y=E.computeOutShape(a.map(x=>x.shape),s);o.shape=y;let A=n.dataIdMap.get(o.dataId);return A.stringBytes=E.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),o}let l=v.sizeFromShape(a[0].shape.slice(0,s)),c=0,u=a.map(h=>{let f=v.sizeFromShape(h.shape.slice(s));return c+=f,f}),d=a.map(h=>n.typedArrayFromHeap(h)),p=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let f=h*c;for(let m=0;m<d.length;m++){let g=u[m],y=h*g,A=d[m].subarray(y,y+g);p.set(A,f),f+=g}}return o}var aie={kernelName:ri,backendName:"wasm",kernelFunc:BS},WS;function oie(e){WS=e.wasm.cwrap(Na,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function iie(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:d,dataFormat:p}=n,h=E.convertConv2DDataFormat(p),f=E.computeConv2DInfo(r.shape,a.shape,l,c,u,d,!1,h),m=f.filterHeight,g=f.filterWidth,y=f.padInfo.top,A=f.padInfo.right,x=f.padInfo.bottom,b=f.padInfo.left,w=f.dilationHeight,k=f.dilationWidth,S=f.strideHeight,N=f.strideWidth,$=f.inChannels,F=f.outChannels,R=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let D=s.makeOutput(f.outShape,"float32"),T=s.dataIdMap.get(D.dataId).id;return WS(o,r.shape[0],r.shape[1],r.shape[2],i,m,g,y,A,x,b,R,w,k,S,N,$,F,T),D}var lie={kernelName:Na,backendName:"wasm",setupFunc:oie,kernelFunc:iie},VS;function uie(e){VS=e.wasm.cwrap(Ea,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function cie(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,inputShape:u}=s,d=1,p=E.convertConv2DDataFormat(l),h=E.computeConv2DInfo(u,a.shape,o,d,i,c,!1,p),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:y,inHeight:A,inWidth:x,outChannels:b,outHeight:w,outWidth:k,strideHeight:S,strideWidth:N}=h,$=m-1-h.padInfo.top,F=g-1-h.padInfo.left,R=h.dataFormat==="channelsLast",D=v.computeStrides(h.inShape),T=v.computeStrides(r.shape),[O,W,H]=v.computeStrides(a.shape),z=D[0],X=R?D[1]:D[2],te=R?D[2]:1,J=R?1:D[1],Q=T[0],ne=R?T[1]:T[2],K=R?T[2]:1,oe=R?1:T[1],ce=t.makeOutput(h.inShape,"float32"),he=t.dataIdMap.get(ce.dataId).id,Ae=t.dataIdMap.get(r.dataId).id,Se=t.dataIdMap.get(a.dataId).id;return VS(Ae,Se,f,m,g,A,x,y,w,k,b,S,N,$,F,O,W,H,z,X,te,J,Q,ne,K,oe,he),ce}var die={kernelName:Ea,backendName:"wasm",setupFunc:uie,kernelFunc:cie},pie=Rn(Ra),hie=Rn($a),kx;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(kx||(kx={}));var US;function fie(e){US=e.wasm.cwrap(oi,null,["number","number","number","number","array","number","number","number","number","number"])}function mie(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:c}=n,u=l.shape[0],[d,p]=o,h=[u,d,p,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=Km({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,y=t.dataIdMap.get(l.dataId).id,A=t.dataIdMap.get(c.dataId).id,x=t.makeOutput(h,"float32"),b=t.dataIdMap.get(x.dataId).id,w=new Uint8Array(new Int32Array(i.shape).buffer);return US(g,y,A,u,w,d,p,kx[r],a,b),m!=null&&t.disposeData(m.dataId),x}var gie={kernelName:oi,backendName:"wasm",setupFunc:fie,kernelFunc:mie},GS;function yie(e){GS=e.wasm.cwrap(ai,null,["number","number","number","number","number","number"])}function Aie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let c=E.getAxesPermutation([a],l),u=r;c!==null&&(u=dc({inputs:{x:r},attrs:{perm:c},backend:n}));let d=E.getInnerMostAxes(1,l)[0];E.assertAxesAreInnerMostDims("cumsum",[d],l);let p=n.makeOutput(u.shape,u.dtype),h=u.shape[d],f=n.dataIdMap.get(u.dataId).id,m=n.dataIdMap.get(p.dataId).id;GS(f,o?1:0,i?1:0,h,m,us[r.dtype]);let g=p;if(c!==null){let y=E.getUndoAxesPermutation(c);g=dc({inputs:{x:p},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(p.dataId)}return g}var xie={kernelName:ai,backendName:"wasm",setupFunc:yie,kernelFunc:Aie},HS;function bie(e){HS=e.wasm.cwrap(ii,null,["number","number","number","array","number","array","array","number","number"])}function vie(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s;v.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=t.makeOutput(f,"float32"),y=t.dataIdMap.get(r.dataId).id,A=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),x=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),w=t.dataIdMap.get(m.dataId).id;return HS(y,a,o==="NHWC"?1:0,A,r.shape.length-1,x,b,f.length,w),m}var wie={kernelName:ii,backendName:"wasm",setupFunc:bie,kernelFunc:vie},jS;function kie(e){jS=e.wasm.cwrap(Da,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Iie(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:d}=n,p=c==null?[1,1]:c,h=E.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,A=h.padInfo.bottom,x=h.padInfo.left,b=h.dilationHeight,w=h.dilationWidth,k=h.strideHeight,S=h.strideWidth,N=h.inChannels,$=h.outChannels,F=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let R=s.makeOutput(h.outShape,"float32"),D=s.dataIdMap.get(R.dataId).id;return jS(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,y,A,x,F,b,w,k,S,N,$,D),R}var Sie={kernelName:Da,backendName:"wasm",setupFunc:kie,kernelFunc:Iie},Cie=Rn(Pa),Tie=!1,Nie=Xn(li,Tie,"bool"),Eie=Rn(Fa);function Ix(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),cs({inputs:{x:r},backend:s,attrs:{shape:i}})}var Rie={kernelName:ui,backendName:"wasm",kernelFunc:Ix};function qS(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var $ie={kernelName:su,backendName:"wasm",kernelFunc:qS},XS;function Die(e){XS=e.wasm.cwrap(di,null,["number","number","number","number","number","number"])}function _ie(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,c,u]=s.shape;return XS(a,i,l,c,u,o),r}var Pie={kernelName:di,backendName:"wasm",kernelFunc:_ie,setupFunc:Die},Fie=Rn(Oa),Oie=!1,Mie=Xn(Ma,Oie),KS;function zie(e){KS=e.wasm.cwrap(za,null,["number","number","number","number","number","number","number"])}function Lie(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:c}=n,u=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=c!=null?t.dataIdMap.get(c.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(v.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return KS(u,d,p,h,f,r,g),m}var Bie={kernelName:za,backendName:"wasm",setupFunc:zie,kernelFunc:Lie},ZS;function Wie(e){ZS=e.wasm.cwrap(mo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Vie(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=E.computeConv2DInfo(r.shape,a.shape,l,u,c,p),g=mp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=s.dataIdMap.get(r.dataId).id,A=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let K=s.dataIdMap.get(o.dataId);if(K.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${K.shape.length}.`);if(K.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${K.shape}) does not match the number of output channels (${x})`);b=K.id}let w=m.filterHeight,k=m.filterWidth,S=m.padInfo.top,N=m.padInfo.right,$=m.padInfo.bottom,F=m.padInfo.left,R=m.dilationHeight,D=m.dilationWidth,T=m.strideHeight,O=m.strideWidth,W=m.inChannels,H=m.padInfo.type==="SAME"?1:0,z=m.batchSize,X=m.inHeight,te=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=s.makeOutput(m.outShape,"float32"),Q=s.dataIdMap.get(J.dataId).id,ne=i==null?0:s.dataIdMap.get(i.dataId).id;return ZS(y,z,X,te,A,w,k,b,S,N,$,F,H,R,D,T,O,W,x,g,ne,f||0,Q),J}var Uie={kernelName:mo,backendName:"wasm",setupFunc:Wie,kernelFunc:Vie},YS;function Gie(e){YS=e.wasm.cwrap(go,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Hie(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=E.computeConv2DInfo(r.shape,a.shape,l,u,c,p,!0),g=mp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=s.dataIdMap.get(r.dataId).id,A=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let K=s.dataIdMap.get(o.dataId);if(K.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${K.shape.length}.`);if(K.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${K.shape}) does not match the number of output channels (${x})`);b=K.id}let w=m.filterHeight,k=m.filterWidth,S=m.padInfo.top,N=m.padInfo.right,$=m.padInfo.bottom,F=m.padInfo.left,R=m.dilationHeight,D=m.dilationWidth,T=m.strideHeight,O=m.strideWidth,W=m.inChannels,H=m.padInfo.type==="SAME"?1:0,z=m.batchSize,X=m.inHeight,te=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=s.makeOutput(m.outShape,"float32"),Q=s.dataIdMap.get(J.dataId).id,ne=i==null?0:s.dataIdMap.get(i.dataId).id;return YS(y,z,X,te,A,w,k,b,S,N,$,F,H,R,D,T,O,W,x,g,ne,f||0,Q),J}var jie={kernelName:go,backendName:"wasm",setupFunc:Gie,kernelFunc:Hie},JS;function qie(e){JS=e.wasm.cwrap(hi,null,["number","number","number","number","number","number","array","number"])}function Xie(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=F2.prepareAndValidate(s,r),c=t.makeOutput(a,s.dtype);if(o===0)return c;let u=r.shape,d=u[u.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),y=t.dataIdMap.get(c.dataId).id;return JS(h,us[s.dtype],m,o,d,i,g,y),c}var Kie={kernelName:hi,backendName:"wasm",setupFunc:qie,kernelFunc:Xie},QS;function Zie(e){QS=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Yie(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],c=E.segment_util.collectGatherOpShapeInfo(r,a,l,i),u=cs({inputs:{x:r},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),d=v.sizeFromShape(a.shape),p=cs({inputs:{x:a},attrs:{shape:[c.batchSize,d/c.batchSize]},backend:t}),h=[c.batchSize,c.outerSize,d/c.batchSize,c.sliceSize],f=t.makeOutput(h,r.dtype);if(v.sizeFromShape(r.shape)===0)return f;let m=u.shape.length-1,y=t.dataIdMap.get(u.dataId).id,x=t.dataIdMap.get(p.dataId).id,b=t.dataIdMap.get(f.dataId).id,w=new Uint8Array(new Int32Array(v.computeStrides(u.shape)).buffer),k=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer);return QS(y,us[r.dtype],w,m,x,c.batchSize,k,b),t.disposeData(u.dataId),t.disposeData(p.dataId),f.shape=c.outputShape,f}var Jie={kernelName:pi,backendName:"wasm",setupFunc:Zie,kernelFunc:Yie},Qie=!1,ele=Xn(fi,Qie,"bool"),tle=!1,nle=Xn(La,tle,"bool"),eC;function sle(e){eC=e.wasm.cwrap(mi,null,["number","number","number"])}function rle(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,t.dtype);if(v.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;eC(r,n,o)}return a}var ale={kernelName:mi,backendName:"wasm",setupFunc:sle,kernelFunc:rle},ole=!1,ile=Xn(gi,ole,"bool"),lle=!1,ule=Xn(yi,lle,"bool"),cle=Rn(Wa),dle=!1,ple=Xn(Ai,dle,"bool"),tC;function hle(e){tC=e.wasm.cwrap(Va,null,["number, number, number"])}function fle(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=zo(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;c=u,l=x}let f=c.shape.length;E.assertAxesAreInnerMostDims("max",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),y=v.sizeFromShape(g),A=t.makeOutput(m,o.dtype);if(v.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;tC(l,y,x)}if(h&&t.disposeData(u.dataId),a){let x=E.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var mle={kernelName:Va,backendName:"wasm",setupFunc:hle,kernelFunc:fle},gle=!1,yle=Xn(Ua,gle),nC;function Ale(e){nC=e.wasm.cwrap(Ga,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function xle(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=n,u=E.computePool2DInfo(r.shape,o,i,1,l,c),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,y=u.dilationHeight,A=u.dilationWidth,x=u.strideHeight,b=u.strideWidth,w=u.inChannels,k=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let S=s.makeOutput(u.outShape,"float32"),N=s.dataIdMap.get(S.dataId).id;return nC(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,y,A,x,b,w,k,N),S}var ble={kernelName:Ga,backendName:"wasm",setupFunc:Ale,kernelFunc:xle},sC;function vle(e){sC=e.wasm.cwrap(Ha,null,["number, number, number"])}function wle(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=zo(o,r,t),f=d;if(h){let b=t.dataIdMap.get(u.dataId).id;b!==i&&(c=u,l=b,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("mean",f,c.shape.length);let[m,g]=E.computeOutAndReduceShapes(c.shape,f),y=v.sizeFromShape(g),A=c;c.dtype!=="float32"&&(A=Km({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(A.dataId).id);let x=t.makeOutput(m,"float32");if(v.sizeFromShape(c.shape)!==0){let b=t.dataIdMap.get(x.dataId).id;sC(l,y,b)}if(h&&t.disposeData(u.dataId),a){let b=E.expandShapeToKeepDim(x.shape,p);x.shape=b}return c.dtype!=="float32"&&t.disposeData(A.dataId),x}var kle={kernelName:Ha,backendName:"wasm",setupFunc:vle,kernelFunc:wle},rC;function Ile(e){rC=e.wasm.cwrap(ja,null,["number, number, number"])}function Sle(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=zo(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(c=u,l=x)}let f=c.shape.length;E.assertAxesAreInnerMostDims("min",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),y=v.sizeFromShape(g),A=t.makeOutput(m,c.dtype);if(v.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;rC(l,y,x)}if(h&&t.disposeData(u.dataId),a){let x=E.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var Cle={kernelName:ja,backendName:"wasm",setupFunc:Ile,kernelFunc:Sle},Tle=!1,Nle=Xn(qa,Tle),Sx;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(Sx||(Sx={}));var aC;function Ele(e){aC=e.wasm.cwrap(Xa,null,["number","array","number","number","array","array","number","number"])}function Rle(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=s.map(f=>f[0]),d=s.map(f=>f[1]),p=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(d).buffer);return aC(o,c,t.shape.length,us[t.dtype],p,h,Sx[r],l),i}var $le={kernelName:Xa,backendName:"wasm",kernelFunc:Rle,setupFunc:Ele},Dle=!0,_le=Xn(Ka,Dle),Ple=Rn(xi);function Cx(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var oC;function Fle(e){oC=e.wasm.cwrap(vi,"number",["number","number","number","number","number"])}function Ole(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,c=t.dataIdMap.get(i.dataId).id,u=t.dataIdMap.get(l.dataId).id,d=oC(c,u,a,r,o),{pSelectedIndices:p,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=Cx(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",p)}var Mle={kernelName:vi,backendName:"wasm",setupFunc:Fle,kernelFunc:Ole},iC;function zle(e){iC=e.wasm.cwrap(cu,"number",["number","number","number","number","number","bool"])}function Lle(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=iC(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Cx(t,p);t.wasm._free(m);let y=t.makeOutput([f],"int32",h),A=t.makeOutput([],"int32",g);return[y,A]}var Ble={kernelName:cu,backendName:"wasm",setupFunc:zle,kernelFunc:Lle},lC;function Wle(e){lC=e.wasm.cwrap(wi,"number",["number","number","number","number","number","number"])}function Vle(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=lC(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Cx(t,p);t.wasm._free(g);let y=t.makeOutput([f],"int32",h),A=t.makeOutput([f],"float32",m);return[y,A]}var Ule={kernelName:wi,backendName:"wasm",setupFunc:Wle,kernelFunc:Vle},Gle=!1,Hle=Xn(bi,Gle,"bool"),uC;function jle(e){uC=e.wasm.cwrap(Ii,null,["number","number","number","number","number"])}function qle(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),c=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return uC(d,a,o,i,c),l}var Xle={kernelName:Ii,backendName:"wasm",setupFunc:jle,kernelFunc:qle};function Kle(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var Zle={kernelName:ki,backendName:"wasm",kernelFunc:Kle};function Yle(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Ix({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=Ix({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=BS({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeData(u.dataId)),c}var Jle={kernelName:Si,backendName:"wasm",kernelFunc:Yle},cC;function Qle(e){cC=e.wasm.cwrap(Za,null,["number","array","number","number","array","array","number","number"])}function eue(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(v.sizeFromShape(t.shape)===0)return qS({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=s.map(m=>m[0]),p=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(d).buffer),f=new Uint8Array(new Int32Array(p).buffer);return cC(o,u,t.shape.length,us[t.dtype],h,f,r,c),i}var dC={kernelName:Za,backendName:"wasm",kernelFunc:eue,setupFunc:Qle},tue=!1,nue=Xn(Ya,tue),pC;function sue(e){pC=e.wasm.cwrap(Ja,null,["number","number","number"])}function rue(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=n.makeOutput(s.shape,"float32"),l=n.dataIdMap.get(i.dataId).id;return pC(a,o,l),i}var aue={kernelName:Ja,backendName:"wasm",setupFunc:sue,kernelFunc:rue},hC;function oue(e){hC=e.wasm.cwrap(Ci,null,["number","number","number","number"])}function iue(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=zo(o,r,t),f=d;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(c=u,l=x,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("prod",f,c.shape.length);let[m,g]=E.computeOutAndReduceShapes(c.shape,f),y=v.sizeFromShape(g),A=t.makeOutput(m,c.dtype);if(v.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;hC(l,y,us[A.dtype],x)}if(h&&t.disposeData(u.dataId),a){let x=E.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var lue={kernelName:Ci,backendName:"wasm",setupFunc:oue,kernelFunc:iue},uue=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=XA(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},cue={kernelName:du,backendName:"wasm",kernelFunc:uue},due=!0,pue=Xn(_a,due),hue=Rn(Qa),fue=Rn(to),fC;function mue(e){fC=e.wasm.cwrap(eo,null,["number","number","number","number","number","number","number","number","number","number"])}function gue(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,[u,d,p,h]=r.shape,f=[u,l,c,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=Km({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let y=m.id,A=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return A;let x=t.dataIdMap.get(A.dataId).id;return fC(y,u,d,p,h,l,c,a?1:0,o?1:0,x),g!=null&&t.disposeData(g.dataId),A}var yue={kernelName:eo,backendName:"wasm",setupFunc:mue,kernelFunc:gue},mC;function Aue(e){mC=e.wasm.cwrap(Ni,null,["number","array","number","array","number","number"])}function xue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=v.parseAxisParam(a,r.shape);if(r.shape.length===0)return Xm({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);mC(l,u,o.length,d,r.shape.length,c);let p=cs({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),p}var bue={kernelName:Ni,backendName:"wasm",kernelFunc:xue,setupFunc:Aue},gC;function vue(e){gC=e.wasm.cwrap(Wi,null,["number","number","number","number","number","number","number","number","array","number","number"])}function wue(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[d,p,h,f]=r.shape,[m,g]=E.getImageCenter(i,p,h),y=o===0,A=255,x=typeof o=="number"?[o,o,o,y?0:A]:[...o,A],b=new Uint8Array(new Int32Array(x).buffer);return gC(c,d,p,h,f,a,m,g,b,x.length,u),l}var kue={kernelName:Wi,backendName:"wasm",kernelFunc:wue,setupFunc:vue},Iue=Rn(Ei),Sue=Rn(no),yC;function Cue(e){yC=e.wasm.cwrap(Ri,null,["number","number","number","number","number","number","array","number","number"])}function Tue(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(v.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=O2.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(d).buffer),A=t.dataIdMap.get(i.dataId).id;return yC(f,g,us[a.dtype],l,c,u,y,p,A),i}var Nue={kernelName:Ri,backendName:"wasm",setupFunc:Cue,kernelFunc:Tue},AC;function Eue(e){AC=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Rue(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,c=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(c.dataId).id,d=s.shape.length,p=r.shape.length,h=d===0||d>1||p===1?1:v.sizeFromShape(r.shape.slice(1));return AC(o,i,l,h,u),c}var $ue={kernelName:$i,backendName:"wasm",kernelFunc:Rue,setupFunc:Eue},xC;function Due(e){xC=e.wasm.cwrap(ro,null,["number","number"])}function _ue(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||xC(s,a),r}var Pue={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Due,kernelFunc:_ue},Fue=Rn(so),bC;function Oue(e){bC=e.wasm.cwrap(io,null,["number","number","number","number"])}function Mue(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=v.sizeFromShape(n.shape)/i;return v.sizeFromShape(a.shape)===0||bC(r,o,i,l),a}var zue={kernelName:io,backendName:"wasm",setupFunc:Oue,kernelFunc:Mue};function Lue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let c=dC.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=E.getReshaped(c.shape,a,i,!1),d=E.getPermuted(u.length,a.length,!1),p=E.getReshapedPermuted(c.shape,a,i,!1),m=cs({inputs:{x:c},backend:n,attrs:{shape:u}}),A=dc({inputs:{x:m},backend:n,attrs:{perm:d}}),w=cs({inputs:{x:A},backend:n,attrs:{shape:p}});return n.disposeData(c.dataId),n.disposeData(m.dataId),n.disposeData(A.dataId),w}var Bue={kernelName:Pi,backendName:"wasm",kernelFunc:Lue};function Wue(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=v.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(d=>{let p=[...u];p[i]=d;let h=gp({inputs:{x:r},attrs:{begin:c,size:p},backend:s});return c[i]+=d,h})}var Vue={kernelName:Fi,backendName:"wasm",kernelFunc:Wue},Uue=Rn(ao),Gue=Rn(yu),Hue=!0,jue=Xn(lo,Hue),vC;function que(e){vC=e.wasm.cwrap(ho,null,["number","number","number"])}function Xue(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return vC(o,r,l),i}var Kue={kernelName:ho,backendName:"wasm",setupFunc:que,kernelFunc:Xue},wC;function Zue(e){wC=e.wasm.cwrap(Oi,null,["number","array","number","array","array","array","array","array","number","number"])}function Yue(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i}=s;i==null&&(i=new Array(a.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,h=E.slice_util.maskToAxes(u);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&p!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.shape.length-a.length,m=E.slice_util.maskToAxes(d),g=r.shape.slice();m.forEach(R=>{a[R]=0,o[R]=1,g.splice(R,0,1)});let y=cs({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:A,end:x,strides:b}=E.slice_util.getNormalizedAxes(y.shape,h,f,a,o,i,l,c,u);a=A,o=x,i=b;let w=E.slice_util.maskToAxes(p);w.forEach(R=>{o[R]=a[R]+1,i[R]=1});let k=E.slice_util.computeOutShape(a,o,i),S=k.filter((R,D)=>w.indexOf(D)===-1);if(i.every(R=>R===1)){let R=gp({inputs:{x:y},attrs:{begin:a,size:k},backend:t});t.disposeData(y.dataId);let D=cs({inputs:{x:R},attrs:{shape:S},backend:t});return t.disposeData(R.dataId),D}let $=t.makeOutput(S,"float32");if(!S.some(R=>R===0)){let R=t.dataIdMap.get(y.dataId).id,D=new Uint8Array(new Int32Array(v.computeStrides(y.shape)).buffer),T=new Uint8Array(new Int32Array(a).buffer),O=new Uint8Array(new Int32Array(o).buffer),W=new Uint8Array(new Int32Array(i).buffer),H=new Uint8Array(new Int32Array(S).buffer),z=new Uint8Array(new Int32Array(v.computeStrides(S)).buffer),X=t.dataIdMap.get($.dataId).id;wC(R,D,y.shape.length,T,O,W,H,z,S.length,X)}t.disposeData(y.dataId);let F=cs({inputs:{x:$},attrs:{shape:S},backend:t});return t.disposeData($.dataId),F}var Jue={kernelName:Oi,backendName:"wasm",setupFunc:Zue,kernelFunc:Yue},Que=!0,ece=Xn(uo,Que),kC;function tce(e){kC=e.wasm.cwrap(oo,null,["number, number, number"])}function nce(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=zo(o,r,t),f=d;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(c=u,l=x,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("sum",f,c.shape.length);let[m,g]=E.computeOutAndReduceShapes(c.shape,f),y=v.sizeFromShape(g),A=t.makeOutput(m,c.dtype);if(v.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;kC(l,y,x)}if(h&&t.disposeData(u.dataId),a){let x=E.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var sce={kernelName:oo,backendName:"wasm",setupFunc:tce,kernelFunc:nce},rce=Rn(Mi),ace=Rn(co),IC;function oce(e){IC=e.wasm.cwrap(Kr,null,["number","array","number","array","number","number"])}function ice(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let p=0;p<i.length;p++)i[p]=r.shape[p]*o[p];let l=new Uint8Array(new Int32Array(r.shape).buffer),c=new Uint8Array(new Int32Array(i).buffer),u=n.makeOutput(i,r.dtype),d=n.dataIdMap.get(u.dataId).id;return IC(a,l,r.shape.length,c,i.length,us[u.dtype],d),u}var lce={kernelName:Kr,backendName:"wasm",setupFunc:oce,kernelFunc:ice},SC;function uce(e){SC=e.wasm.cwrap(Au,null,["number","array","number","number","number","bool","number","number"])}var cce=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let c=t.makeOutput(l,s.dtype),u=t.dataIdMap.get(c.dataId).id,d=t.makeOutput(l,"int32"),p=t.dataIdMap.get(d.dataId).id;return SC(o,i,s.shape.length,us[s.dtype],r,a,u,p),[c,d]},dce={kernelName:Au,backendName:"wasm",setupFunc:uce,kernelFunc:cce},CC;function pce(e){CC=e.wasm.cwrap(zi,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function hce(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],y=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),A=t.makeOutput(g,r.dtype),x=t.dataIdMap.get(A.dataId).id,w=t.dataIdMap.get(r.dataId).id,S=t.dataIdMap.get(a.dataId).id,N=o==="nearest"?1:2,$;switch(i){case"constant":$=1;break;case"reflect":$=2;break;case"wrap":$=3;break;case"nearest":$=4;break;default:$=1;break}return CC(w,S,a.shape[0]>1,u,f,m,h,p,d,y,r.shape.length-1,N,$,l,x),A}var fce={kernelName:zi,backendName:"wasm",setupFunc:pce,kernelFunc:hce};function mce(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==a&&(l[c++]=r.shape[h]);let u=new Array(o),d=new Array(i).fill(0),p=r.shape.slice();p[a]=1;for(let h=0;h<u.length;h++)d[a]=h,u[h]=gp({inputs:{x:r},attrs:{begin:d,size:p},backend:n});return u.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:l}))}var gce={kernelName:Li,backendName:"wasm",kernelFunc:mce};function yce(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var Ace={kernelName:Bi,backendName:"wasm",kernelFunc:yce},xce=[voe,koe,Coe,Poe,Moe,Boe,Uoe,qoe,Qoe,eie,tie,rie,aie,lie,die,pie,hie,gie,xie,wie,Sie,Cie,Nie,Eie,Rie,$ie,Pie,Fie,Mie,boe,Bie,Uie,jie,Kie,Jie,ele,nle,Toe,ale,ile,ule,cle,ple,mle,yle,ble,kle,Cle,Nle,$le,_le,Ple,Mle,Ble,Ule,Hle,Xle,Zle,Jle,dC,nue,aue,lue,cue,pue,hue,fue,Goe,yue,bue,kue,Sue,Iue,Nue,$ue,Pue,Fue,Yoe,zue,Bue,Vue,Uue,Gue,jue,Kue,Jue,ece,sce,rce,ace,lce,dce,fce,$oe,gce,Ace];for(let e of xce)Yr(e);var Tx=Z();Tx.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Tx.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Tx.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var TC=Qo(vN()),bce='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',vce=Qo(wN()),NC=class extends Ul{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Bc(this,ns())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let c=t;this.dataIdMap.set(e,{id:a,stringBytes:c,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=v.sizeFromShape(n),i=o*v.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:s,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let a=this.wasm.HEAPU8.slice(t,t+v.sizeFromShape(s)*v.bytesPerElement(n));return Ice(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function wce(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function EC(e,t,n){if(Zm!=null)return Zm;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),Ap!=null&&Ap[s]!=null?Ap[s]:n+s}async function kce(){let[e,t]=await Promise.all([Z().getAsync("WASM_HAS_SIMD_SUPPORT"),Z().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let c=bce,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return i.endsWith(".wasm")?EC(e,t,yp!=null?yp:l):l+i},Nx&&(r.instantiateWasm=wce(EC(e,t,yp!=null?yp:"")));let a=!1;r.onAbort=()=>{if(a||xp)return;xp=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&Zm==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+TC.default.toString()],{type:"text/javascript"}),o=(0,TC.default)(r)):o=(0,vce.default)(r),o.then(i=>{a=!0,xp=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function Ice(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Sce=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Zm=null,yp=null,Ap={},xp=!1,Nx=!1;function Cce(e,t=!1){if(V2("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),xp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Zm=e,Nx=t}function RC(e,t=!1){if(xp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")yp=e;else{Ap=e;let n=Sce.filter(s=>Ap[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Nx=t}var Tce="3.9.0",Nce=2;Xi("wasm",async()=>{let{wasm:e}=await kce();return new NC(e)},Nce);var zr=Z();zr.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);zr.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);zr.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD",()=>4);zr.registerFlag("WEBGPU_USE_NAIVE_CONV2D",()=>!1);zr.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);zr.registerFlag("WEBGPU_CONV_SEPARATE_IM2COL_SHADER",()=>!1);zr.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);zr.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);zr.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);zr.registerFlag("WEBGPU_USE_IMPORT",()=>!1);function Ece(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function ln(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";throw Error(`GPU for rank ${e} is not yet supported`)}function Ym(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function He(){return`
|
|
let index = getGlobalIndex(globalId, localId);
|
|
`}function Me(){return`
|
|
[[stage(compute), workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)]]
|
|
fn main([[builtin(local_invocation_id)]] localId : vec3<u32>, [[builtin(global_invocation_id)]] globalId : vec3<u32>)
|
|
`}function Rce(e,t,n,s=!1){let r=`
|
|
let workGroupSizeX = ${n.workGroupSize[0]}u;
|
|
let workGroupSizeY = ${n.workGroupSize[1]}u;
|
|
let workGroupSizeZ = ${n.workGroupSize[2]}u;`;if(s===!0){let h=_C(t.shape),f=`
|
|
[[block]] struct Matrix0 {
|
|
numbers: array<${Ym(t.dtype,n.isVec4)}>;
|
|
};
|
|
[[block]] struct Uniform {
|
|
size : i32;
|
|
numChannels : i32;
|
|
outShapeStrides : vec2<i32>;
|
|
dispatchSize : vec3<u32>;
|
|
};
|
|
|
|
[[group(0), binding(0)]] var<storage, write> result : Matrix0;
|
|
[[group(0), binding(2)]] var<uniform> uniforms: Uniform;
|
|
`;return[$C,f,r,DC,h,n.getUserCode()].join(`
|
|
`)}let a=[],o="[[block]] struct Uniforms { NAN : f32; ";n.variableNames.forEach((h,f)=>{o+=`${h.charAt(0).toLowerCase()+h.slice(1)}Shape : ${ln(e[f].shape.length)}; `}),o+=`outShape : ${ln(t.shape.length)} ; `;let i=t.shape.length-1;o+=`
|
|
outShapeStrides: ${ln(i)}; `,n.size!=null&&(o+="size : i32; "),o+="dispatchSize : vec3<u32>; ",n.uniforms&&(o+=n.uniforms),o+="};",a.push(o),a.push(`
|
|
[[block]] struct Matrix0 {
|
|
numbers: array<${Ym(t.dtype,n.isVec4)}>;
|
|
};
|
|
|
|
[[group(0), binding(0)]] var<storage, write> result : Matrix0;
|
|
`),n.variableNames.forEach((h,f)=>{a.push(`
|
|
[[block]] struct Matrix${1+f} {
|
|
numbers: array<${Ym(e[f].dtype,n.isVec4)}>;
|
|
};
|
|
[[group(0), binding(${1+f})]] var<storage, read> ${h} : Matrix${1+f};
|
|
`)}),o!==""&&a.push(`
|
|
[[group(0), binding(${1+n.variableNames.length})]] var<uniform> uniforms : Uniforms;
|
|
`),a.push(r);let[l,c]=Fce(t.shape,n.dispatchLayout),u=_C(t.shape),d=[$C,a.join(`
|
|
`),DC,u,l,$ce(t.shape,t.dtype,n.isVec4)];if(c===t.shape.length){let h=e.map(f=>Dce(f,t.shape,n.isVec4,n.dispatchLayout.x.length===t.shape.length)).join(`
|
|
`);d.push(h)}return d.push(n.getUserCode()),d.join(`
|
|
`)}var $C=`
|
|
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
|
|
var res: i32 = a / b;
|
|
let mod: i32 = a % b;
|
|
if (sign < 0. && mod != 0) {
|
|
res = res - 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
fn isNanCustom(val : f32) -> bool {
|
|
if (val > 0.0) {
|
|
return false;
|
|
}
|
|
if (val < 0.0) {
|
|
return false;
|
|
}
|
|
if (val == 0.0) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
fn isNanCustomVec4F32(val : vec4<f32>) -> vec4<f32> {
|
|
var res = vec4<f32> (0.0);
|
|
for (var i = 0u; i < 4u; i = i + 1u) {
|
|
if (isNanCustom(val[i])) {
|
|
res[i] = 1.0;
|
|
} else {
|
|
res[i] = 0.0;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// Checks whether coordinates lie within the bounds of the shape.
|
|
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
|
|
return all(coord >= vec4<i32>(0)) &&
|
|
all(coord < shape);
|
|
}
|
|
|
|
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
|
|
return all(coord >= vec3<i32>(0)) &&
|
|
all(coord < shape);
|
|
}
|
|
|
|
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
|
|
return all(coord >= vec2<i32>(0)) &&
|
|
all(coord < shape);
|
|
}
|
|
`,DC=`
|
|
fn getFlatIndex1D(coord : i32, shape : i32) -> i32 {
|
|
return coord;
|
|
}
|
|
|
|
fn getFlatIndex2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
|
|
return i32(dot(vec2<f32>(coords), vec2<f32>(f32(shape.y), 1.0)));
|
|
}
|
|
|
|
fn getFlatIndex3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
|
|
return i32(dot(vec3<f32>(coords), vec3<f32>(f32(shape.y) * f32(shape.z), f32(shape.z), 1.0)));
|
|
}
|
|
|
|
fn getFlatIndex4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
|
|
return i32(dot(vec4<f32>(coords), vec4<f32>(
|
|
f32(shape.y) * f32(shape.z) * f32(shape.w), f32(shape.z) * f32(shape.w), f32(shape.w), 1.0)));
|
|
}
|
|
|
|
// Only used when the y/z dimension of workgroup size is 1.
|
|
fn getGlobalIndex(globalId : vec3<u32>, localId : vec3<u32>) -> i32 {
|
|
if (uniforms.dispatchSize.y == 1u && uniforms.dispatchSize.z == 1u) {
|
|
return i32(globalId.x);
|
|
}
|
|
let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +
|
|
localId.y * workGroupSizeX + localId.x;
|
|
let workGroupID = (globalId - localId)/vec3<u32>(
|
|
workGroupSizeX, workGroupSizeY, workGroupSizeZ);
|
|
return i32((workGroupID.z * uniforms.dispatchSize.x * uniforms.dispatchSize.y +
|
|
workGroupID.y * uniforms.dispatchSize.x + workGroupID.x) *
|
|
(workGroupSizeX * workGroupSizeY * workGroupSizeZ) +
|
|
localInvocationIndex);
|
|
}
|
|
`;function $ce(e,t,n){let s=e.length,r=Ym(t,n),a;if(n?a=`fn setOutputFlat(flatIndex : i32, value : vec4<f32>) {
|
|
result.numbers[flatIndex] = ${r}(value);
|
|
}
|
|
fn setOutputFlatI32(flatIndex : i32, value : vec4<i32>) {
|
|
result.numbers[flatIndex] = ${r}(value);
|
|
}`:a=`fn setOutputFlat(flatIndex : i32, value : f32) {
|
|
result.numbers[flatIndex] = ${r}(value);
|
|
}
|
|
fn setOutputFlatI32(flatIndex : i32, value : i32) {
|
|
result.numbers[flatIndex] = ${r}(value);
|
|
}`,s>=2){switch(s){case 2:a+=`
|
|
fn getOutputFlatIndex(coords : vec2<i32>) -> i32 {
|
|
return i32(dot(vec2<f32>(coords), vec2<f32>(f32(uniforms.outShapeStrides), 1.0)));
|
|
}
|
|
`;break;case 3:a+=`
|
|
fn getOutputFlatIndex(coords : vec3<i32>) -> i32 {
|
|
return i32(dot(vec3<f32>(coords), vec3<f32>(f32(uniforms.outShapeStrides.x), f32(uniforms.outShapeStrides.y), 1.0)));
|
|
}
|
|
`;break;case 4:a+=`
|
|
fn getOutputFlatIndex(coords : vec4<i32>) -> i32 {
|
|
return i32(dot(vec4<f32>(coords), vec4<f32>(
|
|
f32(uniforms.outShapeStrides.x), f32(uniforms.outShapeStrides.y), f32(uniforms.outShapeStrides.z), 1.0)));
|
|
}
|
|
`;break;default:v.assert(!1,()=>`Unsupported ${s}D shape`);break}let o=["d0","d1","d2","d3"].slice(0,s),i=ln(s);n?a+=`
|
|
fn setOutput(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<f32>) {
|
|
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
|
|
setOutputFlat(flatIndex / 4, value);
|
|
}
|
|
fn setOutputI32(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<i32>) {
|
|
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
|
|
setOutputFlatI32(flatIndex / 4, value);
|
|
}
|
|
`:a+=`
|
|
fn setOutput(${o.map(l=>`${l} : i32`).join(", ")}, value : f32) {
|
|
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
|
|
setOutputFlat(flatIndex, value);
|
|
}
|
|
fn setOutputI32(${o.map(l=>`${l} : i32`).join(", ")}, value : i32) {
|
|
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
|
|
setOutputFlatI32(flatIndex, value);
|
|
}
|
|
`}return a}function Dce(e,t,n,s){let r=_ce(e,n);return e.shape.length<=t.length&&(r+=Pce(e,t,n,s)),r}function _ce(e,t){let n=e.name,s=e.shape.length,r=ln(s),a="get"+n.charAt(0).toUpperCase()+n.slice(1),o=["d0","d1","d2","d3"].slice(0,s),i=o.map(u=>`${u} : i32`).join(", ");if(s<1)return t?`
|
|
fn ${a}() -> vec4<f32> {
|
|
return vec4<f32>(${n}.numbers[0]);
|
|
}
|
|
`:`
|
|
fn ${a}() ->f32 {
|
|
return f32(${n}.numbers[0]);
|
|
}
|
|
`;let l=`uniforms.${n.charAt(0).toLowerCase()+n.slice(1)}Shape`,c=`${s}D`;return s===0&&(c="1D"),t?`
|
|
fn ${a}(${i}) -> vec4<f32> {
|
|
return vec4<f32>(${n}.numbers[getFlatIndex${c}(${r}(${o.join(",")}),
|
|
${l}) / 4]);
|
|
}
|
|
`:`
|
|
fn ${a}(${i}) -> f32 {
|
|
return f32(${n}.numbers[getFlatIndex${c}(${r}(${o.join(",")}),
|
|
${l})]);
|
|
}
|
|
`}function Pce(e,t,n,s){let r=e.name,a=r.charAt(0).toUpperCase()+r.slice(1),o="get"+a+"AtOutCoords",i=e.shape.length,l=t.length,c=ln(l);if(v.arraysEqual(e.shape,t)&&s)return n?`
|
|
fn ${o}ByGlobalId(globalId : vec3<u32>, globalIndex : i32) -> vec4<f32> {
|
|
return vec4<f32>(${r}.numbers[globalIndex]);
|
|
}
|
|
|
|
fn ${o}ByCoords(coords : ${c}) -> vec4<f32> {
|
|
return vec4<f32>(${r}.numbers[${l>1?"getOutputFlatIndex(coords)":"coords"} / 4]);
|
|
}
|
|
`:`
|
|
fn ${o}ByGlobalId(globalId : vec3<u32>, globalIndex : i32) -> f32 {
|
|
return f32(${r}.numbers[globalIndex]);
|
|
}
|
|
|
|
fn ${o}ByCoords(coords : ${c}) -> f32 {
|
|
return f32(${r}.numbers[${l>1?"getOutputFlatIndex(coords)":"coords"}]);
|
|
}
|
|
`;let u=E.getBroadcastDims(e.shape,t),d=l-i,p="";if(i===0)return n?`
|
|
fn ${o}ByGlobalId(globalId : vec3<u32>, globalIndex : i32) -> vec4<f32> {
|
|
return get${a}();
|
|
}
|
|
|
|
fn ${o}ByCoords(coords : ${c}) -> vec4<f32> {
|
|
return get${a}();
|
|
}
|
|
`:`
|
|
fn ${o}ByGlobalId(globalId : vec3<u32>, globalIndex : i32) -> f32{
|
|
return get${a}();
|
|
}
|
|
|
|
fn ${o}ByCoords(coords : ${c}) -> f32{
|
|
return get${a}();
|
|
}
|
|
`;l<2&&u.length>=1?p="coords = 0;":p=u.map(g=>`coords[${g+d}] = 0;`).join(`
|
|
`);let h="";if(l<2&&i>0)h="coords";else if(l>1){let g=ln(i),y=e.shape.map((A,x)=>`coords[${x+d}]`).join(", ");h=`${g}(${y})`}else h="coords";let f=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,m=`${i}D`;return n?`
|
|
fn ${o}ByGlobalId(globalId : vec3<u32>, globalIndex : i32) -> vec4<f32> {
|
|
var coords = getOutputCoords(globalId, globalIndex);
|
|
${p}
|
|
return ${r}.numbers[getFlatIndex${m}(${h}, ${f}) / 4];
|
|
}
|
|
|
|
fn ${o}ByCoords(coordsIn : ${c}) -> vec4<f32> {
|
|
var coords = coordsIn;
|
|
${p}
|
|
return ${r}.numbers[getFlatIndex${m}(${h}, ${f}) / 4];
|
|
}
|
|
`:`
|
|
fn ${o}ByGlobalId(globalId : vec3<u32>, globalIndex : i32) -> f32 {
|
|
var coords = getOutputCoords(globalId, globalIndex);
|
|
${p}
|
|
return f32(${r}.numbers[getFlatIndex${m}(${h}, ${f})]);
|
|
}
|
|
|
|
fn ${o}ByCoords(coordsIn : ${c}) -> f32 {
|
|
var coords = coordsIn;
|
|
${p}
|
|
return f32(${r}.numbers[getFlatIndex${m}(${h}, ${f})]);
|
|
}
|
|
`}function Fce(e,t){let{x:n,y:s=[],z:r=[]}=t,a=e.length;if(n.length===a)return[`fn getOutputCoords(globalId : vec3<u32>, globalIndex : i32) -> ${ln(a)}{
|
|
return getCoordsFromFlatIndex(i32(globalIndex));
|
|
}
|
|
`,a];let o="",i=[n,s,r],l=0;for(let p=0;p<i.length;p++){let h=i[p];if(h.length!==0)if(l+=h.length,h.length===1)o+=`let d${h[0]} = i32(globalId[${p}]);`;else{let f=Ece(h,"uniforms.outShape");o+=`var index${p} = i32(globalId[${p}]);`;for(let m=0;m<f.length;m++)o+=`let d${h[m]} = index${p} / ${f[m]};`,m===f.length-1?o+=`let d${h[m+1]} = index${p} - d${h[m]} * ${f[m]};`:o+=`index${p} = index${p} - d${h[m]} * ${f[m]};`}}let c=[];for(let p=0;p<l;p++)c.push(`d${p}`);let u=ln(l),d=`fn getOutputCoords(globalId : vec3<u32>, globalIndex : i32) -> ${u} {
|
|
${o}
|
|
`;return c.length===0?d+=`return ${u}(0); }`:d+=`return ${u}(${c.join(",")}); }`,[d,l]}function _C(e){let t=e.length;if(t<=1)return"fn getCoordsFromFlatIndex(index : i32) -> i32 { return index; }";let n=v.computeStrides(e),s=ln(t),r=[];for(let o=0;o<t;o++)r.push(`d${o}`);if(n.length===1)return` fn getCoordsFromFlatIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
|
|
return vec2<i32>(d0, d1);
|
|
}`;let a="var index2 = index;"+n.map((o,i)=>{let l=`let ${r[i]} = index2 / uniforms.outShapeStrides[${i}]`,c=i===n.length-1?`let ${r[i+1]} = index2 - ${r[i]} * uniforms.outShapeStrides[${i}]`:`index2 = index2 - ${r[i]} * uniforms.outShapeStrides[${i}]`;return`${l}; ${c};`}).join("");return`
|
|
fn getCoordsFromFlatIndex(index : i32) -> ${s} {
|
|
${a}
|
|
return ${s}(${r.join(",")});
|
|
}
|
|
`}var PC={};Le(PC,{ArrayBufferToTypedArray:()=>FC,GPUBytesPerElement:()=>Dx,computeDispatch:()=>Be,computeWorkGroupSizeForConv2d:()=>Ex,computeWorkGroupSizeForMatMul:()=>Rx,computeWorkPerThreadForConv2d:()=>$x,flatDispatchLayout:()=>it,isWebGPUSupported:()=>_x,tilesFitEvenlyIntoShape:()=>ua});var pc=65535,kl=e=>{let t=1;for(let n=0;n<e.length;n++)t*=e[n];return t};function ua(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((n,s)=>n%e[s]==0)}function Be(e,t,n=[1,1,1],s=[1,1,1]){let[r,a,o]=[Math.ceil(kl(e.x.map(l=>t[l]))/(n[0]*s[0])),e.y?Math.ceil(kl(e.y.map(l=>t[l]))/(n[1]*s[1])):1,e.z?Math.ceil(kl(e.z.map(l=>t[l]))/(n[2]*s[2])):1];if(r<=pc&&a<=pc&&o<=pc)return[r,a,o];v.assert(r>pc&&e.y===void 0&&e.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let i=Math.ceil(Math.sqrt(r));return i>pc?(i=Math.ceil(Math.cbrt(r)),v.assert(i<=pc,()=>"Total dispatch size exceeds WebGPU maximum."),[i,i,i]):[i,i,1]}function Ex(e,t){let n=kl(e.x.map(r=>t[r])),s=kl(e.y.map(r=>t[r]));return n<=4?[4,16,1]:s<=4?[16,4,1]:[16,16,1]}function Rx(e,t,n){return e===1?[32,1,1]:n===1?[1,32,1]:[8,8,1]}function $x(e,t){let n=kl(e.x.map(r=>t[r])),s=kl(e.y.map(r=>t[r]));return n<=4?[1,2,1]:s<=4?[2,1,1]:[2,2,1]}function it(e){return{x:e.map((t,n)=>n)}}function Dx(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function FC(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string"){let n=new Int32Array(e),s=new ArrayBuffer(n.length),r=new Uint8Array(s);for(let a=0;a<n.length;a++)r[a]=n[a];return r}else throw new Error(`Unknown dtype ${t}`)}function _x(){return!!navigator.gpu}var je;(function(e){e[e.MUL=0]="MUL",e[e.ADD=1]="ADD",e[e.SUB=2]="SUB",e[e.DIV=3]="DIV",e[e.EQUAL=4]="EQUAL",e[e.GREATER=5]="GREATER",e[e.GREATER_EQUAL=6]="GREATER_EQUAL",e[e.LESS=7]="LESS",e[e.LESS_EQUAL=8]="LESS_EQUAL",e[e.LOGICAL_AND=9]="LOGICAL_AND",e[e.NOT_EQUAL=10]="NOT_EQUAL",e[e.SQUARED_DIFFERENCE=11]="SQUARED_DIFFERENCE",e[e.INT_DIV=12]="INT_DIV",e[e.POW=13]="POW",e[e.PRELU=14]="PRELU",e[e.MAX=15]="MAX",e[e.MIN=16]="MIN",e[e.COMPLEX_MULTIPLY_REAL=17]="COMPLEX_MULTIPLY_REAL",e[e.COMPLEX_MULTIPLY_IMAG=18]="COMPLEX_MULTIPLY_IMAG"})(je||(je={}));var Oce="return a + b;",Mce="return areal * breal - aimag * bimag;",zce="return areal * bimag + aimag * breal;",Lce="return a / b;",Bce="return a * b;",Wce="return (a - b) * (a - b);",Vce="return a - b;",Uce="return f32(a == b);",Gce="return vec4<f32>(a == b);",Hce="return f32(a > b);",jce="return vec4<f32>(a > b);",qce="return f32(a >= b);",Xce="return vec4<f32>(a >= b);",Kce="return f32(a < b);",Zce="return vec4<f32>(a < b);",Yce="return f32(a <= b);",Jce="return vec4<f32>(a <= b);",Qce="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",ede=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
|
|
vec4<f32>(b >= vec4<f32>(1.0)));`,tde=`
|
|
if (isNanCustom(a)) { return a; }
|
|
if (isNanCustom(b)) { return b; }
|
|
`,OC=`
|
|
if (isNaN.r > 0.) {
|
|
resultTemp.r = uniforms.NAN;
|
|
}
|
|
if (isNaN.g > 0.) {
|
|
resultTemp.g = uniforms.NAN;
|
|
}
|
|
if (isNaN.b > 0.) {
|
|
resultTemp.b = uniforms.NAN;
|
|
}
|
|
if (isNaN.a > 0.) {
|
|
resultTemp.a = uniforms.NAN;
|
|
}
|
|
`,nde=`
|
|
let s = sign(a) * sign(b);
|
|
let ia = i32(round(a));
|
|
let ib = i32(round(b));
|
|
return f32(idiv(ia, ib, s));
|
|
`,sde=`
|
|
let ia = vec4<i32>(round(a));
|
|
let ib = vec4<i32>(round(b));
|
|
let cond = ib != vec4<i32>(0);
|
|
var resultTemp = vec4<i32>(0);
|
|
let s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4<f32>(resultTemp);
|
|
`,rde="return f32(a != b);",ade="return vec4<f32>(a != b);",ode=`
|
|
if(a < 0.0 && floor(b) < b) {
|
|
return uniforms.NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
if (round(abs(b) % 2.0) != 1.0) {
|
|
return pow(abs(a), b);
|
|
}
|
|
return sign(a) * pow(abs(a), b);
|
|
`,ide=`
|
|
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
|
|
let isModRound1 = vec4<f32>(isModRound1Bool);
|
|
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
|
|
var resultTemp = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
let isExpZero = b == vec4<f32>(0.0);
|
|
if (isExpZero.r) {
|
|
resultTemp.r = 1.0;
|
|
}
|
|
if (isExpZero.g) {
|
|
resultTemp.g = 1.0;
|
|
}
|
|
if (isExpZero.b) {
|
|
resultTemp.b = 1.0;
|
|
}
|
|
if (isExpZero.a) {
|
|
resultTemp.a = 1.0;
|
|
}
|
|
let isNaN = vec4<f32>(a < vec4<f32>(0.0)) * vec4<f32>(floor(b) < b);
|
|
${OC}
|
|
return resultTemp;
|
|
`,lde="if (a < 0.0) { return b * a; } return a;",ude=`
|
|
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
|
|
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
|
|
`;function MC(e,t){let n=t?OC:tde;return t?`
|
|
var resultTemp = vec4<f32>(${e}(a, b));
|
|
let isNaN = min(vec4<f32>(isNanCustomVec4F32(a)) + vec4<f32>(isNanCustomVec4F32(b)), vec4<f32>(1.0));
|
|
`+n+`
|
|
return resultTemp;
|
|
`:n+`
|
|
return ${e}(a, b);
|
|
`}function bp(e,t){switch(e){case je.MUL:return Bce;case je.ADD:return Oce;case je.SUB:return Vce;case je.DIV:return Lce;case je.EQUAL:return t?Gce:Uce;case je.GREATER:return t?jce:Hce;case je.GREATER_EQUAL:return t?Xce:qce;case je.LESS:return t?Zce:Kce;case je.LESS_EQUAL:return t?Jce:Yce;case je.LOGICAL_AND:return t?ede:Qce;case je.NOT_EQUAL:return t?ade:rde;case je.SQUARED_DIFFERENCE:return Wce;case je.INT_DIV:return t?sde:nde;case je.PRELU:return t?ude:lde;case je.MAX:return MC("max",t);case je.MIN:return MC("min",t);case je.POW:return t?ide:ode;case je.COMPLEX_MULTIPLY_REAL:return Mce;case je.COMPLEX_MULTIPLY_IMAG:return zce;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var Fe;(function(e){e[e.ABS=0]="ABS",e[e.CEIL=1]="CEIL",e[e.COS=2]="COS",e[e.COSH=3]="COSH",e[e.ELU=4]="ELU",e[e.EXP=5]="EXP",e[e.EXPM1=6]="EXPM1",e[e.FLOOR=7]="FLOOR",e[e.LINEAR=8]="LINEAR",e[e.LOG=9]="LOG",e[e.LOGICAL_NOT=10]="LOGICAL_NOT",e[e.NEG=11]="NEG",e[e.PRELU=12]="PRELU",e[e.RELU=13]="RELU",e[e.RELU6=14]="RELU6",e[e.RSQRT=15]="RSQRT",e[e.SIN=16]="SIN",e[e.SINH=17]="SINH",e[e.SIGMOID=18]="SIGMOID",e[e.SQRT=19]="SQRT",e[e.SQUARE=20]="SQUARE",e[e.TANH=21]="TANH",e[e.TO_INT=22]="TO_INT"})(Fe||(Fe={}));var cde="return abs(a);",dde="return ceil(a);",pde="return cos(a);",hde=`
|
|
let e2x = exp(-a);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,fde="return exp(a) - 1.0;",mde="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",gde=`
|
|
var resFloat = exp(a) - vec4<f32>(1.0);
|
|
if (a.r >= 0.0) {
|
|
resFloat.r = a.r;
|
|
}
|
|
if (a.g >= 0.0) {
|
|
resFloat.g = a.g;
|
|
}
|
|
if (a.b >= 0.0) {
|
|
resFloat.b = a.b;
|
|
}
|
|
if (a.a >= 0.0) {
|
|
resFloat.a = a.a;
|
|
}
|
|
return resFloat;
|
|
`,yde="return exp(a);",Ade="return floor(a);",xde="return a;",bde=`if (a < 0.0) { return 1.0/0.0; }
|
|
return log(a);`,vde="return f32(!(a >= 1.0));",wde="return -a;",kde="return (a < 0.0) ? b * a : a;",Ide="return max(a, 0.0);",Sde="return clamp(a, 0.0, 6.0);",Cde="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",Tde=`
|
|
var resFloat = a * vec4<f32>(a >= vec4<f32>(0.0));
|
|
let isNaN = isNan(a);
|
|
|
|
if (isNaN.r) {
|
|
resFloat.r = a.r;
|
|
}
|
|
if (isNaN.g) {
|
|
resFloat.g = a.g;
|
|
}
|
|
if (isNaN.b) {
|
|
resFloat.b = a.b;
|
|
}
|
|
if (isNaN.a) {
|
|
resFloat.a = a.a;
|
|
}
|
|
return resFloat;
|
|
`,Nde="return 1.0/sqrt(a);",Ede="return 1.0 / (1.0 + exp(-1.0 * a));",Rde="return sin(a);",$de=`
|
|
let e2x = exp(a);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Dde="return sqrt(a);",_de="return a * a;",Pde=`
|
|
let e2x = exp(-2.0 * abs(a));
|
|
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,Fde="return f32(i32((a)));";function hc(e,t){switch(e){case Fe.ABS:return cde;case Fe.COS:return pde;case Fe.COSH:return hde;case Fe.CEIL:return dde;case Fe.ELU:return t?gde:mde;case Fe.EXP:return yde;case Fe.EXPM1:return fde;case Fe.FLOOR:return Ade;case Fe.LINEAR:return xde;case Fe.LOG:return bde;case Fe.LOGICAL_NOT:return vde;case Fe.NEG:return wde;case Fe.PRELU:return kde;case Fe.RELU:return t?Tde:Ide;case Fe.RELU6:return t?Cde:Sde;case Fe.RSQRT:return Nde;case Fe.SIGMOID:return Ede;case Fe.SIN:return Rde;case Fe.SINH:return $de;case Fe.SQRT:return Dde;case Fe.SQUARE:return _de;case Fe.TANH:return Pde;case Fe.TO_INT:return Fde;default:throw new Error(`BinaryType ${e} is not implemented!`)}}function Lo(e,t=!1){if(e===null)return null;if(e==="linear")return hc(Fe.LINEAR);if(e==="relu")return hc(Fe.RELU,t);if(e==="elu")return hc(Fe.ELU,t);if(e==="relu6")return hc(Fe.RELU6,t);if(e==="prelu")return bp(je.PRELU,t);if(e==="sigmoid")return hc(Fe.SIGMOID);throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`)}function zC(e,t){let n={RowPerThread:e[1],ColPerThread:e[0],TileAOuter:t[1]*e[1],TileBOuter:t[0]*e[0],TileInner:t[0]*e[0]};return`
|
|
var<workgroup> mm_Asub : array<array<vec4<f32>, ${n.TileInner/n.ColPerThread}>, ${n.TileAOuter}>;
|
|
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${n.TileBOuter/n.ColPerThread}>, ${n.TileInner}>;
|
|
|
|
let RowPerThread = ${n.RowPerThread};
|
|
let ColPerThread = ${n.ColPerThread}; // only support ColPerThread = 4
|
|
let TileAOuter = ${n.TileAOuter};
|
|
let TileBOuter = ${n.TileBOuter};
|
|
let TileInner = ${n.TileInner};
|
|
|
|
${Me()} {
|
|
|
|
let tileRow = i32(localId.y) * RowPerThread;
|
|
let tileCol = i32(localId.x);
|
|
|
|
let globalRow = i32(globalId.y) * RowPerThread;
|
|
let globalCol = i32(globalId.x);
|
|
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
|
|
|
|
var acc: array<vec4<f32>, ${n.RowPerThread}>;
|
|
var ACached : vec4<f32>;
|
|
var BCached : array<vec4<f32>, 4>;
|
|
|
|
// Loop over shared dimension.
|
|
var globalColA = tileCol;
|
|
let RowPerThreadB = TileInner / ${t[1]};
|
|
let tileRowB = i32(localId.y) * RowPerThreadB;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Asub[inputRow][inputCol] = mm_readA(globalRow + innerRow, globalColA, globalId);
|
|
}
|
|
globalColA = globalColA + TileInner / ColPerThread;
|
|
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(t * TileInner + inputRow, globalCol, globalId);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileInner / ColPerThread; k = k + 1) {
|
|
BCached[0] = mm_Bsub[k * ColPerThread][tileCol];
|
|
BCached[1] = mm_Bsub[k * ColPerThread + 1][tileCol];
|
|
BCached[2] = mm_Bsub[k * ColPerThread + 2][tileCol];
|
|
BCached[3] = mm_Bsub[k * ColPerThread + 3][tileCol];
|
|
|
|
for (var i = 0; i < RowPerThread; i = i + 1) {
|
|
ACached = mm_Asub[tileRow + i][k];
|
|
acc[i] = BCached[0] * ACached.x + acc[i];
|
|
acc[i] = BCached[1] * ACached.y + acc[i];
|
|
acc[i] = BCached[2] * ACached.z + acc[i];
|
|
acc[i] = BCached[3] * ACached.w + acc[i];
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol,
|
|
acc[innerRow], globalId);
|
|
}
|
|
}`}function Ode(e){return`
|
|
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
|
|
let tileSize = ${e[0]*4};
|
|
${Me()} {
|
|
let tileCol = i32(localId.x);
|
|
let globalCol = i32(globalId.x);
|
|
let globalRow = i32(globalId.y);
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / tileSize + 1;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
var acc = vec4<f32>(0.0);
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
let colA = t * tileSize / 4 + tileCol;
|
|
mm_Asub[tileCol] = mm_readA(globalRow, colA, globalId);
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < tileSize / 4; k = k + 1) {
|
|
let rowB = t * tileSize + k * 4;
|
|
let BCached0 = mm_readB(rowB, globalCol, globalId);
|
|
let BCached1 = mm_readB(rowB + 1, globalCol, globalId);
|
|
let BCached2 = mm_readB(rowB + 2, globalCol, globalId);
|
|
let BCached3 = mm_readB(rowB + 3, globalCol, globalId);
|
|
|
|
let ACached = mm_Asub[k];
|
|
acc = acc + BCached0 * ACached.x;
|
|
acc = acc + BCached1 * ACached.y;
|
|
acc = acc + BCached2 * ACached.z;
|
|
acc = acc + BCached3 * ACached.w;
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
|
|
mm_write(globalRow, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var Mde=class{constructor(e,t,n,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[16,16,1],this.isVec4=!0,this.vecSize=4,this.outputShape=t,this.workGroupSize=Rx(t[1],e[2],t[2]),this.dispatchLayout={x:[2],y:[1],z:[0]},t[1]===1&&(n=1),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.vecSize,n,1]);let o=s!=null,i=a!=null;o&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.aShape=e,this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`matMulPackedVec4_${n}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}`}getShapeFit(){let e=this.aShape[2],t=this.outputShape[2],n=[this.outputShape[0],e,t],s=this.workGroupSize[1]*this.workPerThread,r=this.workGroupSize[0]*this.vecSize,a=r,o=[s,a],i=[a,r];return[ua(o,this.aShape.slice(1)),ua(i,n.slice(1))]}getUserCode(){let e=this.fitA?"return A.numbers[batch * batchASize + row * uniforms.dimInner / 4 + col]":`if (coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A.numbers[batch * batchASize + row * uniforms.dimInner / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,t=this.fitB?"return B.numbers[batch * batchBSize + row * uniforms.dimBOuter / 4 + col]":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,n="",s="";if(this.activation){let o=Lo(this.activation,this.isVec4);this.hasPreluActivationWeights?n=`fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
|
|
${o}
|
|
}`:n=`
|
|
fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
${o}
|
|
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
|
|
${n}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2] / ${this.vecSize};
|
|
let batch = i32(globalId.z);
|
|
${e};
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2] / ${this.vecSize};
|
|
let batch = i32(globalId.z);
|
|
${t};
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : vec4<f32>, globalId : vec3<u32>) {
|
|
if (row < uniforms.aShape[1] && col * 4 < uniforms.bShape[2])
|
|
{
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col * 4);
|
|
${r}
|
|
${s}
|
|
setOutput(outCoord[0], outCoord[1], outCoord[2], value);
|
|
}
|
|
}
|
|
${this.outputShape[1]>1?zC([this.vecSize,this.workPerThread,1],this.workGroupSize):Ode(this.workGroupSize)}
|
|
|
|
`}};function Px(e,t){let n=t[1]*e[1],s=t[0]*e[0],r=n>s?n:s;return`
|
|
var<workgroup> mm_Asub : array<array<f32, ${r}>, ${n}>;
|
|
var<workgroup> mm_Bsub : array<array<f32, ${s}>, ${r}>;
|
|
${Me()} {
|
|
let tileRow = i32(localId.y) * ${e[1]};
|
|
let tileCol = i32(localId.x) * ${e[0]};
|
|
|
|
let globalRow = i32(globalId.y) * ${e[1]};
|
|
let globalCol = i32(globalId.x) * ${e[0]};
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / ${r} + 1;
|
|
|
|
var acc : array<array<f32, ${e[0]}>, ${e[1]}>;
|
|
var ACached : f32;
|
|
var BCached : array<f32, ${e[0]}>;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = 0.0;
|
|
}
|
|
}
|
|
|
|
let ColPerThreadA = ${r} / ${t[0]};
|
|
let tileColA = i32(localId.x) * ColPerThreadA;
|
|
let RowPerThreadB = ${r} / ${t[1]};
|
|
let tileRowB = i32(localId.y) * RowPerThreadB;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ColPerThreadA; innerCol = innerCol + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileColA + innerCol;
|
|
|
|
mm_Asub[inputRow][inputCol] = mm_readA(
|
|
globalRow + innerRow,
|
|
t * ${r} + inputCol, globalId);
|
|
}
|
|
}
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol + innerCol;
|
|
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(
|
|
t * ${r} + inputRow,
|
|
globalCol + innerCol, globalId);
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${r}; k = k + 1) {
|
|
for (var inner = 0; inner < ${e[0]}; inner = inner + 1) {
|
|
BCached[inner] = mm_Bsub[k][tileCol + inner];
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
ACached = mm_Asub[tileRow + innerRow][k];
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
|
|
}
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
|
|
if ((globalCol + innerCol) < uniforms.dimBOuter &&
|
|
(globalRow + innerRow) < uniforms.dimAOuter) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol + innerCol,
|
|
acc[innerRow][innerCol], globalId);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`}function zde(e){return`
|
|
let TileSize = ${e[0]*4};
|
|
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
|
|
|
|
${Me()} {
|
|
let tileCol = i32(localId.x);
|
|
let globalCol = i32(globalId.x);
|
|
let globalRow = i32(globalId.y);
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / TileSize + 1;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
var acc = 0.0;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
let colA = t * TileSize + tileCol * 4;
|
|
mm_Asub[tileCol] = vec4<f32>(mm_readA(globalRow, colA, globalId),
|
|
mm_readA(globalRow, colA + 1, globalId),
|
|
mm_readA(globalRow, colA + 2, globalId),
|
|
mm_readA(globalRow, colA + 3, globalId));
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileSize / 4; k = k + 1) {
|
|
let rowB = t * TileSize + k * 4;
|
|
let BCached = vec4<f32>(mm_readB(rowB, globalCol, globalId),
|
|
mm_readB(rowB + 1, globalCol, globalId),
|
|
mm_readB(rowB + 2, globalCol, globalId),
|
|
mm_readB(rowB + 3, globalCol, globalId));
|
|
|
|
let ACached = mm_Asub[k];
|
|
acc = acc + dot(ACached, BCached);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
|
|
mm_write(globalRow, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var LC=class{constructor(e,t,n,s=!1,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[16,16,1],this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let l=s?e[1]:e[2];this.workGroupSize=Rx(t[1],l,t[2]),(t[1]===1||t[2]===1)&&(n=1),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]),v.arraysEqual(this.dispatch,[1,1,1])&&(n=1,this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]));let c=a!=null,u=i!=null;c&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.aShape=e,this.transposeA=s,this.transposeB=r,this.addBias=c,this.activation=o,this.hasPreluActivationWeights=u;let d=this.outputShape[2],p=this.transposeB?[this.outputShape[0],d,l]:[this.outputShape[0],l,d];[this.fitA,this.fitB]=this.getShapeFit(p),this.shaderKey=`matMulPacked_${this.workPerThread}_${s}_${r}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}`}getShapeFit(e){let t=this.workGroupSize[1]*this.workPerThread,n=this.workGroupSize[0]*this.workPerThread,s=t>n?t:n;this.outputShape[1]===1&&(s*=4),v.assert(s%this.workGroupSize[0]==0&&s%this.workGroupSize[1]==0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let r=[t,s],a=[s,n];return[ua(r,this.aShape.slice(1)),ua(a,e.slice(1))]}getUserCode(){let e;this.transposeA===!1?e=this.fitA?"return A.numbers[batch * batchASize + row * uniforms.dimInner + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A.numbers[batch * batchASize + row * uniforms.dimInner + col];
|
|
}
|
|
return 0.0;`:e=this.fitA?"return A.numbers[batch * batchASize + col * uniforms.dimAOuter + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A.numbers[batch* batchASize + col * uniforms.dimAOuter + row];
|
|
}
|
|
return 0.0;`;let t;this.transposeB===!1?t=this.fitB?"return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;`:t=this.fitB?"return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];
|
|
}
|
|
return 0.0;`;let n="",s="";if(this.activation){let o=Lo(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
|
|
${o}
|
|
}`:n=`
|
|
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${o}
|
|
}
|
|
`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = i32(globalId.z);
|
|
${e}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
${r}
|
|
${s}
|
|
setOutput(batch, row, col, value);
|
|
}
|
|
${this.outputShape[1]>1?Px([this.workPerThread,this.workPerThread,1],this.workGroupSize):zde(this.workGroupSize)}
|
|
`}};function Lde(e){let t=e[1]/2,n=e[0],s=t>n?t:n;return`
|
|
var<workgroup> mm_Asub1 : array<array<f32, ${s}>, ${t}>;
|
|
var<workgroup> mm_Bsub1 : array<array<f32, ${n}>, ${s}>;
|
|
var<workgroup> mm_Asub2 : array<array<f32, ${s}>, ${t}>;
|
|
var<workgroup> mm_Bsub2 : array<array<f32, ${n}>, ${s}>;
|
|
|
|
// If the output size is small for matrix multiplication, avoid to use vec4
|
|
// and handle some elements per thread to optimally utilize the ALU.
|
|
// Introduces two shared memory buffers, some logical threads could handle
|
|
// arithmetic operations and others handle IO operations between barrier api,
|
|
// makes ALUs and load/store units work simultaneously, could improves
|
|
// the performance.
|
|
${Me()} {
|
|
let tileRow = i32(localId.y);
|
|
let tileCol = i32(localId.x);
|
|
let globalRow = i32(globalId.y);
|
|
let globalCol = i32(globalId.x);
|
|
|
|
// uniforms.dimInner should be greater than 0.
|
|
let numTiles = (uniforms.dimInner - 1) / ${s} + 1;
|
|
var acc = 0.0;
|
|
|
|
var globalColA = tileCol;
|
|
var globalRowB = tileRow;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
if (t == 0) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
}
|
|
} else {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${s}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub2[subRow][k] * mm_Bsub2[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
if (t != 0) {
|
|
t = t + 1;
|
|
}
|
|
|
|
if (t < numTiles) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub2[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub2[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${s}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub1[subRow][k] * mm_Bsub1[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
let writeCol = (globalRow - tileRow) / 2 + tileRow - ${t};
|
|
if (tileRow >= ${t} && writeCol >= 0) {
|
|
mm_write(writeCol, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var Bde=class{constructor(e,t,n,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[8,16,1],v.assert(e[1]<=16||t[2]<=16,()=>"This program can be only used when A width or B Height are small"),this.outputShape=n,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(n[2]/this.workGroupSize[0]),Math.ceil(n[1]*2/this.workGroupSize[1]),n[0]];let o=s!=null;o&&this.variableNames.push("bias");let i=a!=null;i&&this.variableNames.push("preluActivationWeights"),this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,this.shaderKey=`matMulSmallOutputSize_${this.activation}`}getUserCode(){let e=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A.numbers[batch * batchASize + row * uniforms.dimInner + col];
|
|
}
|
|
return 0.0;`,t=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;`,n="",s="";if(this.activation){let o=Lo(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
|
|
${o}
|
|
}`:n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${o}
|
|
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = i32(globalId.z);
|
|
${e}
|
|
}
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimBOuter))) {
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
var value = valueIn;
|
|
${r}
|
|
${s}
|
|
setOutput(batch, row, col, value);
|
|
}
|
|
}
|
|
${Lde(this.workGroupSize)}
|
|
`}};function st(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a),i=v.sizeFromShape(o);return v.assert(a===i,()=>`The new shape (${o}) has ${i} elements and the old shape (${s.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var Wde={kernelName:Ti,backendName:"webgpu",kernelFunc:st};function Fx({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,d=n?e.shape[c-2]:e.shape[c-1],p=s?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],f=s?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(m),A=v.sizeFromShape(g),x=y===A||y===1||A===1;v.assert(c>=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${g}).`);let w=(y>A?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,f]);v.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[y,d,h]:[y,h,d],S=s?[A,f,p]:[A,p,f],N=st({inputs:{x:e},backend:r,attrs:{shape:k}}),$=st({inputs:{x:t},backend:r,attrs:{shape:S}}),F=[N,$],R=Math.max(y,A),D=d%4==0&&f%4==0&&!n&&!s&&f>=32,T;!n&&!s&&(h<=16&&(f<=512||p>=2*f)||f<=16&&(h<=512||d>=2*h))?T=new Bde(k,S,[R,h,f],a,l,o):D?T=new Mde(k,[R,h,f],Z().get("WEBGPU_MATMUL_WORK_PER_THREAD"),a,l,o):T=new LC(k,[R,h,f],Z().get("WEBGPU_MATMUL_WORK_PER_THREAD"),n,s,a,l,o);let O=[N,$];a&&O.push(a),o&&O.push(o);let W=[{type:"int32",data:[h]},{type:"int32",data:[f]},{type:"int32",data:[d]}],H=r.runWebGPUProgram(T,O,e.dtype,W),z=st({inputs:{x:H},backend:r,attrs:{shape:w}});F.push(H);for(let X of F)r.disposeData(X.dataId);return z}function Vde(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s;return Fx({a:r,b:a,transposeA:l,transposeB:c,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:u})}var Ude={kernelName:fo,backendName:"webgpu",kernelFunc:Vde},BC=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e,this.size=v.sizeFromShape(this.outputShape)}getUserCode(){return`
|
|
fn binaryOpComplex(
|
|
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
|
|
${bp(this.op,!1)}
|
|
}
|
|
|
|
${Me()} {
|
|
${He()}
|
|
if(index < uniforms.size) {
|
|
let areal = getARealAtOutCoordsByGlobalId(globalId, index);
|
|
let aimag = getAImagAtOutCoordsByGlobalId(globalId, index);
|
|
let breal = getBRealAtOutCoordsByGlobalId(globalId, index);
|
|
let bimag = getBImagAtOutCoordsByGlobalId(globalId, index);
|
|
setOutputFlat(index, binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
}
|
|
`}},Gde=class{constructor(e,t,n,s){this.variableNames=["A","B"];let r=256;this.workGroupSize=[r,1,1],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.dispatchLayout=it(this.outputShape),this.lastDimensionSize=s?n[0]:t[0],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4,this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.useSharedMemoryWithB=s,this.op=e,this.size=v.sizeFromShape(this.outputShape),this.sizeFit=this.size%(this.workGroupSize[0]*this.workPerThread)==0,this.shaderKey=`binaryShared_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}_${this.sizeFit}`}getUserCode(){let e=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",t=this.useSharedMemoryWithB?`let a = getAAtOutCoordsByCoords(coords);
|
|
let b = sharedBuf[${e}];`:`let a = sharedBuf[${e}];
|
|
let b = getBAtOutCoordsByCoords(coords);`,n=this.sizeFit?`let coords = getCoordsFromFlatIndex(flatIndex);
|
|
|
|
${t}
|
|
setOutputFlat(flatIndex, binaryOperation(a, b));`:`if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromFlatIndex(flatIndex);
|
|
|
|
${t}
|
|
setOutputFlat(flatIndex, binaryOperation(a, b));
|
|
}`;return`
|
|
fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${bp(this.op,!1)}
|
|
}
|
|
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
|
|
${Me()} {
|
|
${He()}
|
|
|
|
// Fill in the shared memory buffer. Here we need a loop to make sure
|
|
// that all data in A|B are uploaded when |sharedMemorySize| is larger
|
|
// than work group size.
|
|
for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {
|
|
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}.numbers[localIndex]);
|
|
}
|
|
workgroupBarrier();
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
|
|
${n}
|
|
}
|
|
}
|
|
`}},Hde=class{constructor(e,t,n){this.variableNames=["A","B"],this.workPerThread=4,this.isVec4=!0;let s=128;this.workGroupSize=[s,1,1],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.op=e,this.fitShape=this.size%this.workGroupSize[0]==0,this.shaderKey=`binaryVec4_${e}_${this.fitShape}`,this.size=v.sizeFromShape(this.outputShape)/this.workPerThread}getUserCode(){let e,n=`fn binaryOperation(a : vec4<f32>, b : vec4<f32>) -> vec4<f32> {
|
|
${bp(this.op,this.isVec4)}
|
|
}`;return this.fitShape?e=`
|
|
${n}
|
|
${Me()} {
|
|
${He()}
|
|
let a = vec4<f32>(A.numbers[index]);
|
|
let b = vec4<f32>(B.numbers[index]);
|
|
setOutputFlat(index, binaryOperation(a, b));
|
|
}
|
|
`:e=`
|
|
${n}
|
|
${Me()} {
|
|
${He()}
|
|
if (index < uniforms.size) {
|
|
let a = vec4<f32>(A.numbers[index]);
|
|
let b = vec4<f32>(B.numbers[index]);
|
|
setOutputFlat(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`,e}},WC=class{constructor(e,t,n){this.variableNames=["A","B"];let s=128;this.workGroupSize=[s,1,1],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.dispatchLayout=it(this.outputShape),this.size=v.sizeFromShape(this.outputShape),this.sizeFit=this.size%s==0,this.shapesFit=v.arraysEqual(t,n)&&this.sizeFit,this.workPerThread=this.sizeFit||this.shapesFit?1:2,this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey=`binary_${e}_${this.sizeFit}_${this.shapesFit}`,this.op=e}getUserCode(){let e,n=` fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${bp(this.op,!1)}
|
|
}`;return this.shapesFit?e=`
|
|
${n}
|
|
${Me()} {
|
|
${He()}
|
|
|
|
let a = f32(A[index]);
|
|
let b = f32(B[index]);
|
|
setOutputFlat(index, binaryOperation(a, b));
|
|
}
|
|
`:this.sizeFit?e=`
|
|
${n}
|
|
${Me()} {
|
|
${He()}
|
|
|
|
let coords = getCoordsFromFlatIndex(index);
|
|
|
|
let a = getAAtOutCoordsByCoords(coords);
|
|
let b = getBAtOutCoordsByCoords(coords);
|
|
setOutputFlat(index, binaryOperation(a, b));
|
|
}
|
|
`:e=`
|
|
${n}
|
|
${Me()} {
|
|
${He()}
|
|
for (var i = 0; i < ${this.workPerThread}; i = i + 1 ) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromFlatIndex(flatIndex);
|
|
|
|
let a = getAAtOutCoordsByCoords(coords);
|
|
let b = getBAtOutCoordsByCoords(coords);
|
|
setOutputFlat(flatIndex, binaryOperation(a, b));
|
|
}
|
|
}
|
|
}
|
|
`,e}};function VC(e,t,n){if(v.arraysEqual(t,n)&&v.sizeFromShape(t)%4==0)return new Hde(e,t,n);let r=t.length===1&&n.length>1&&t[0]<1024,a=n.length===1&&t.length>1&&n[0]<1024;return r||a?new Gde(e,t,n,a):new WC(e,t,n)}function nr(e){let{inputs:t}=e,{x:n}=t;return e.backend.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var jde={kernelName:Ba,backendName:"webgpu",kernelFunc:nr};function fc(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.tensorMap.get(a.dataId),i=nr({inputs:{x:s},backend:n}),l=nr({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var qde={kernelName:Gc,backendName:"webgpu",kernelFunc:fc},Jm=class{constructor(e,t){this.variableNames=["A"];let n=128;this.workGroupSize=[n,1,1],this.outputShape=e,this.size=v.sizeFromShape(this.outputShape),this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
|
|
fn unaryOperation(a : f32) -> f32 {
|
|
${hc(this.op,!1)}
|
|
}
|
|
${Me()} {
|
|
${He()}
|
|
if (index < uniforms.size) {
|
|
let a = getAAtOutCoordsByGlobalId(globalId, index);
|
|
setOutputFlat(index, unaryOperation(a));
|
|
}
|
|
}
|
|
`}};function $n({opType:e,cpuKernelImpl:t,dtype:n}){return({inputs:s,backend:r})=>{let{x:a}=s,o=r,i=n||a.dtype;if(o.shouldExecuteOnCPU([a])&&t!=null){let c=o.tensorMap.get(a.dataId),u=t(c.values,i);return o.makeTensorInfo(a.shape,i,u)}let l=new Jm(a.shape,e);return o.runWebGPUProgram(l,[a],i)}}function Kn({opSnippet:e,cpuKernelImpl:t,supportsComplex:n=!1,dtype:s}){return({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(n&&o.dtype==="complex64"){let d=l.tensorMap.get(o.dataId),p=l.tensorMap.get(i.dataId),h,f;if(e!==je.MUL)[h,f]=[[d.complexTensorInfos.real,p.complexTensorInfos.real],[d.complexTensorInfos.imag,p.complexTensorInfos.imag]].map(g=>{let[y,A]=g,x={dataId:y.dataId,dtype:y.dtype,shape:o.shape},b={dataId:A.dataId,dtype:A.dtype,shape:i.shape},w=VC(e,o.shape,i.shape);return l.runWebGPUProgram(w,[x,b],Bn(y.dtype,A.dtype))});else{let g=new BC(je.COMPLEX_MULTIPLY_REAL,o.shape,i.shape),y=new BC(je.COMPLEX_MULTIPLY_IMAG,o.shape,i.shape),A=[{dataId:d.complexTensorInfos.real.dataId,dtype:d.complexTensorInfos.real.dtype,shape:o.shape},{dataId:d.complexTensorInfos.imag.dataId,dtype:d.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:i.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:i.shape}];h=l.runWebGPUProgram(g,A,"float32"),f=l.runWebGPUProgram(y,A,"float32")}let m=fc({inputs:{real:h,imag:f},backend:l});return l.disposeData(h.dataId),l.disposeData(f.dataId),m}let c=s||Bn(o.dtype,i.dtype);if((o.dtype==="string"||i.dtype==="string"||l.shouldExecuteOnCPU([o,i]))&&t!=null){let d=l.tensorMap.get(o.dataId).values,p=l.tensorMap.get(i.dataId).values,h=o.dtype==="string"?E.fromUint8ToStringArray(d):d,f=o.dtype==="string"?E.fromUint8ToStringArray(p):p,[m,g]=t(o.shape,i.shape,h,f,c);return l.makeTensorInfo(g,c,m)}let u=VC(e,o.shape,i.shape);return l.runWebGPUProgram(u,[o,i],c)}}var{addImpl:Xde,ceilImpl:Kde,concatImpl:Zde,equalImpl:Yde,expImpl:Jde,expm1Impl:Qde,floorImpl:epe,gatherNdImpl:tpe,gatherV2Impl:npe,greaterEqualImpl:spe,greaterImpl:rpe,lessEqualImpl:ape,lessImpl:ope,logImpl:ipe,maxImpl:lpe,maximumImpl:upe,minimumImpl:cpe,multiplyImpl:dpe,negImpl:ppe,notEqualImpl:hpe,prodImpl:fpe,rangeImpl:mpe,rsqrtImpl:gpe,simpleAbsImpl:ype,sliceImpl:Ape,stridedSliceImpl:xpe,stringNGramsImpl:bpe,subImpl:vpe,tileImpl:wpe,transposeImpl:kpe,uniqueImpl:Ige}=VA,Ipe=$n({opType:Fe.ABS,cpuKernelImpl:ype}),Spe={kernelName:ni,backendName:"webgpu",kernelFunc:Ipe},Cpe=Kn({opSnippet:je.ADD,cpuKernelImpl:Xde,supportsComplex:!0}),Tpe={kernelName:qr,backendName:"webgpu",kernelFunc:Cpe},Npe=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.outputShape=e[0],this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=[];this.variableNames.forEach(s=>{e.push(`let v${s} = get${s}AtOutCoordsByCoords(coords);`)});let t=this.variableNames.map(s=>`v${s}`).join(" + ");return`
|
|
${Me()} {
|
|
${He()}
|
|
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromFlatIndex(flatIndex);
|
|
${e.join(`
|
|
`)}
|
|
setOutputFlat(flatIndex, ${t});
|
|
}
|
|
}
|
|
}
|
|
`}};function Epe(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return nr({inputs:{x:s[0]},backend:n});let r=s.map(i=>i.dtype).reduce((i,l)=>Bn(i,l)),a=s.map(i=>i.shape),o=new Npe(a);return n.runWebGPUProgram(o,s,r)}var Rpe={kernelName:wa,backendName:"webgpu",kernelFunc:Epe},UC=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="axis : i32;";let s=[t];E.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),s,e.length),this.op=n==="min"?"<":">";let[r,a]=E.computeOutAndReduceShapes(e,s);this.outputShape=r.length===0?[1]:r;let o=v.sizeFromShape(a);this.reductionFactor=2;let i=256,l=Math.min(Math.ceil(o/this.reductionFactor),i);this.workGroupSize=[l,1,1],this.dispatchLayout={x:[],y:this.outputShape.map((c,u)=>u)},this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.inputShape=e,this.shaderKey=`argMinMax${this.op}`}getUserCode(){let e=this.workGroupSize[0]>1,t=`
|
|
var<workgroup> xBestIndices : array<i32, ${this.workGroupSize[0]}>;
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`,n=`
|
|
xBestIndices[localId.x] = bestIndex;
|
|
xBestValues[localId.x] = bestValue;
|
|
|
|
for(var currentSize = WorkGroupSize; currentSize > 1; currentSize = DIV_CEIL(currentSize, ${this.reductionFactor})) {
|
|
workgroupBarrier();
|
|
|
|
for (var w = 0; w < ${this.reductionFactor}; w = w + 1) {
|
|
let i = i32(localId.x) * ${this.reductionFactor} + w;
|
|
if (i < currentSize) {
|
|
let candidateIndex = xBestIndices[i];
|
|
let candidate = xBestValues[i];
|
|
if(candidate ${this.op} bestValue && !isNanCustom(candidate)) {
|
|
bestValue = candidate;
|
|
bestIndex = candidateIndex;
|
|
}
|
|
}
|
|
}
|
|
|
|
xBestIndices[localId.x] = bestIndex;
|
|
xBestValues[localId.x] = bestValue;
|
|
}
|
|
|
|
if (localId.x == 0u) {
|
|
setOutputFlatI32(flatOutputIndex, i32(bestIndex));
|
|
}
|
|
`,s=ln(this.outputShape.length),r=(i,l)=>this.outputShape.length===1?i:`${i}[${l}]`,a=i=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape[${i}]`;return`
|
|
fn DIV_CEIL(a : i32, b : i32) -> i32 {
|
|
return ((a - 1) / b + 1);
|
|
}
|
|
|
|
let WorkGroupSize = ${this.workGroupSize[0]};
|
|
|
|
${e?t:""}
|
|
|
|
// In order to get a flattened index into the input tensor, we need to
|
|
// add back the index along the reduced dimension to |outputCoords|.
|
|
// This function outputs the offset to the first value along
|
|
// |axis| and the stride to get the next value of the input along |axis|.
|
|
fn getInputCoordInfo(globalId : vec3<u32>, globalIndex : i32) -> vec2<i32>{
|
|
let outputCoords : ${s} = getOutputCoords(globalId, globalIndex);
|
|
var i = ${this.outputShape.length-1};
|
|
|
|
var stride = 1;
|
|
var inputStride = 1;
|
|
var offset = 0;
|
|
|
|
for (var r = 1; r <= ${this.inputShape.length}; r = r + 1) {
|
|
let length = ${a(`${this.inputShape.length} - r`)};
|
|
if (${this.inputShape.length} - r == uniforms.axis) {
|
|
inputStride = stride;
|
|
} else {
|
|
offset = offset + ${r("outputCoords","i")} * stride;
|
|
i = i - 1;
|
|
}
|
|
stride = stride * length;
|
|
}
|
|
|
|
return vec2<i32>(offset, inputStride);
|
|
}
|
|
|
|
fn getInputIndex(coordInfo : vec2<i32>, index : i32) -> i32{
|
|
return coordInfo[0] + coordInfo[1] * index;
|
|
}
|
|
|
|
${Me()} {
|
|
${He()}
|
|
let coordInfo = getInputCoordInfo(globalId, index);
|
|
|
|
var bestIndex = 0;
|
|
var bestValue = x.numbers[getInputIndex(coordInfo, bestIndex)];
|
|
|
|
let Length = ${a("uniforms.axis")};
|
|
let WorkPerThread = DIV_CEIL(Length, WorkGroupSize);
|
|
|
|
for (var w = 0; w < WorkPerThread; w = w + 1) {
|
|
let i = i32(globalId.x) * WorkPerThread + w;
|
|
if (i < Length) {
|
|
let candidate = x.numbers[getInputIndex(coordInfo, i)];
|
|
if (candidate ${this.op} bestValue && !isNanCustom(f32(candidate))) {
|
|
bestValue = candidate;
|
|
bestIndex = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
let flatOutputIndex = i32(globalId.y);
|
|
${e?n:"setOutputFlatI32(flatOutputIndex, bestIndex);"}
|
|
}
|
|
`}},$pe=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout={x:[0],y:[1]},this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return`
|
|
let TILE_DIM = ${this.workGroupSize[0]};
|
|
var<workgroup> tile : array<array<f32, ${this.workGroupSize[0]+1}>, ${this.workGroupSize[0]}>;
|
|
${Me()} {
|
|
${He()}
|
|
let workGroupID = (globalId - localId)/vec3<u32>(${this.workGroupSize[0]}u, ${this.workGroupSize[1]}u, ${this.workGroupSize[2]}u);
|
|
var x = i32(workGroupID.x) * TILE_DIM + i32(localId.x);
|
|
var y = i32(workGroupID.y) * TILE_DIM + i32(localId.y);
|
|
let width = uniforms.outShape[0];
|
|
let height = uniforms.outShape[1];
|
|
if (x < width && y < height) {
|
|
tile[localId.y][localId.x] =
|
|
A.numbers[y * width + x];
|
|
}
|
|
workgroupBarrier();
|
|
|
|
x = i32(workGroupID.y) * TILE_DIM + i32(localId.x);
|
|
y = i32(workGroupID.x) * TILE_DIM + i32(localId.y);
|
|
if (x < height && y < width) {
|
|
setOutputFlat((y * height + x), tile[localId.x]
|
|
[localId.y]);
|
|
}
|
|
}
|
|
`}},Dpe=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`,this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=ln(this.outputShape.length),t=_pe(this.newDim);return`
|
|
${Me()} {
|
|
${He()}
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let resRC = getCoordsFromFlatIndex(flatIndex);
|
|
setOutputFlat(flatIndex, A.numbers[getFlatIndex${this.outputShape.length}D(
|
|
${e}(${t}), uniforms.aShape)]);
|
|
}
|
|
}
|
|
}
|
|
`}};function _pe(e){let t=e.length;if(t>4)throw Error(`Transpose for rank ${t} is not yet supported`);let n=new Array(t);for(let s=0;s<e.length;s++)n[e[s]]=`resRC[${s}]`;return n.join()}function Il(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let u=0;u<l.length;u++)l[u]=r.shape[a[u]];if(n.shouldExecuteOnCPU([r])){let d=o.tensorMap.get(r.dataId).values,p=kpe(d,r.shape,r.dtype,a,l);return n.makeTensorInfo(l,r.dtype,p)}if(r.shape.length===2&&v.arraysEqual(a,[1,0])){let u=new $pe(r.shape,a);return o.runWebGPUProgram(u,[r],r.dtype)}let c=new Dpe(r.shape,a);return o.runWebGPUProgram(c,[r],r.dtype)}var Ppe={kernelName:po,backendName:"webgpu",kernelFunc:Il};function Fpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Il({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let u=new UC(l.shape,o[0],"max"),d=[{type:"int32",data:[o[0]]}],p=n.runWebGPUProgram(u,[l],"int32",d);return c.forEach(h=>n.disposeData(h.dataId)),p}var Ope={kernelName:ka,backendName:"webgpu",kernelFunc:Fpe};function Mpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Il({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let u=new UC(l.shape,o[0],"min"),d=[{type:"int32",data:[o[0]]}],p=n.runWebGPUProgram(u,[l],"int32",d);return c.forEach(h=>n.disposeData(h.dataId)),p}var zpe={kernelName:Zl,backendName:"webgpu",kernelFunc:Mpe},GC=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>; pad : vec2<i32>; dilation : vec2<i32>; convDims : vec2<i32>; filterDims : vec2<i32>;",this.workGroupSize=[128,1,1],this.outputShape=e.outShape,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
|
|
${Me()} {
|
|
${He()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
|
|
var count = 0.0;
|
|
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
|
|
let xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= uniforms.convDims.x) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
|
|
let xC = xCCorner + wC;
|
|
if (xC < 0 || xC >= uniforms.convDims.y) {
|
|
continue;
|
|
}
|
|
|
|
let value = getX(batch, xR, xC, coords[3]);
|
|
${e}
|
|
}
|
|
}
|
|
|
|
setOutput(batch, coords[1], coords[2], coords[3], ${t});
|
|
}
|
|
}
|
|
`}},HC=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>;",this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
|
|
${Me()} {
|
|
${He()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
let batch = coords[0];
|
|
let d = coords[3];
|
|
|
|
if (all(coords < uniforms.outShape)) {
|
|
let xRCCorner = coords.yz * uniforms.stride;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
let value = getX(batch, xRCorner, xCCorner, d);
|
|
setOutput(batch, coords[1], coords[2], d, value);
|
|
}
|
|
}
|
|
`}};function Lpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1,u=E.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))return nr({inputs:{x:r},backend:n});let d,p=[{type:"int32",data:[u.strideHeight,u.strideWidth]}];return u.filterHeight===1&&u.filterWidth===1?d=new HC(u):(d=new GC(u,"avg"),p.push({type:"int32",data:[u.padInfo.top,u.padInfo.left]},{type:"int32",data:[u.dilationHeight,u.dilationWidth]},{type:"int32",data:[u.inHeight,u.inWidth]},{type:"int32",data:[u.effectiveFilterHeight,u.effectiveFilterWidth]})),n.runWebGPUProgram(d,[r],r.dtype,p)}var Bpe={kernelName:Ia,backendName:"webgpu",kernelFunc:Lpe};function Wpe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return Fx({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var Vpe={kernelName:Sa,backendName:"webgpu",kernelFunc:Wpe},Upe=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.outputShape=t,this.rank=t.length,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${ln(e.length)}; `,this.shaderKey="slice",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=ln(this.rank),t=Gpe(this.rank),n;return this.start.length===1?n=this.outputShape.map((r,a)=>"sourceLoc = uniforms.start + coords;"):n=this.outputShape.map((r,a)=>`sourceLoc.${Ox[a]} = uniforms.start[${a}] + coords.${Ox[a]};`),`
|
|
${Me()} {
|
|
${He()}
|
|
if (index < uniforms.size) {
|
|
var sourceLoc : ${e};
|
|
let coords = getOutputCoords(globalId, index);
|
|
${n.join(`
|
|
`)}
|
|
setOutputFlat(index, getSource(${t}));
|
|
}
|
|
}
|
|
`}},Ox=["x","y","z","w","u","v"];function Gpe(e){if(e===1)return"sourceLoc";if(e<=6)return Ox.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function vp(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=yn.parseSliceParams(r,a,o);if(yn.assertParamsValid(r,i,l),n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.tensorMap.get(r.dataId),p=Ape(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}if(v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);let c=new Upe(i,l),u=[{type:"int32",data:i}];return n.runWebGPUProgram(c,[r],r.dtype,u)}var Hpe={kernelName:Di,backendName:"webgpu",kernelFunc:vp},jpe=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((A,x)=>A*x),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=[],f=st({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Il({inputs:{x:f},backend:n,attrs:{perm:c}}),g=st({inputs:{x:m},backend:n,attrs:{shape:u}}),y=vp({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(A=>n.disposeData(A.dataId)),y},qpe={kernelName:si,backendName:"webgpu",kernelFunc:jpe},jC=Kn({opSnippet:je.NOT_EQUAL,dtype:"bool",cpuKernelImpl:hpe}),Xpe={kernelName:bi,backendName:"webgpu",kernelFunc:jC};function wp(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return nr({inputs:{x:r.complexTensorInfos.real},backend:n})}var Kpe={kernelName:Qc,backendName:"webgpu",kernelFunc:wp};function Zpe(e,t){let n=new Jm(e.shape,Fe.TO_INT),s=t.runWebGPUProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function Mx(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return nr({inputs:{x:r},backend:n});let o=Xt(r.shape),i=Mx({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=fc({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeData(i.dataId),l}if(r.dtype==="complex64"){let o=wp({inputs:{input:r},backend:n}),i=Mx({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeData(o.dataId),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=nr({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return Zpe(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=jC({inputs:{a:r,b:o},backend:n});return n.disposeData(o.dataId),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var Ype={kernelName:Ca,backendName:"webgpu",kernelFunc:Mx},Jpe=$n({opType:Fe.CEIL,cpuKernelImpl:Kde}),Qpe={kernelName:Ta,backendName:"webgpu",kernelFunc:Jpe},ehe=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32; maxVal : f32;",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.outputShape=e,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4",this.size=v.sizeFromShape(this.outputShape)/4}getUserCode(){return`
|
|
${Me()} {
|
|
${He()}
|
|
if(index < uniforms.size) {
|
|
let value = getAAtOutCoordsByGlobalId(globalId, index);
|
|
var clampedValue : vec4<f32>;
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
if (isNanCustom(value[i])) {
|
|
clampedValue[i] = value[i];
|
|
} else {
|
|
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
|
|
}
|
|
}
|
|
|
|
setOutputFlat(index, clampedValue);
|
|
}
|
|
}
|
|
`}},the=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32; maxVal : f32;",this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){return`
|
|
${Me()} {
|
|
${He()}
|
|
if(index < uniforms.size) {
|
|
let value = getAAtOutCoordsByGlobalId(globalId, index);
|
|
if (isNanCustom(value)) {
|
|
setOutputFlat(index, value);
|
|
return;
|
|
}
|
|
setOutputFlat(index, clamp(value, uniforms.minVal, uniforms.maxVal));
|
|
}
|
|
}
|
|
`}};function nhe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i,l=[{type:"float32",data:[a]},{type:"float32",data:[o]}];return v.sizeFromShape(r.shape)%4==0?i=new ehe(r.shape):i=new the(r.shape),n.runWebGPUProgram(i,[r],r.dtype,l)}var she={kernelName:Xr,backendName:"webgpu",kernelFunc:nhe},rhe=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.outputShape=E.computeOutShape(e,1),this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shapes=e,this.shaderKey=`concat${e}`,this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=new Array(this.shapes.length-1),t=[];if(e.length>0){e[0]=this.shapes[0][1];for(let a=1;a<e.length;a++)e[a]=e[a-1]+this.shapes[a][1];t.push(`if (yC < ${e[0]}){ setOutput(coords.x, coords.y, getT0(yR, yC)); }`);for(let a=1;a<e.length;a++){let o=e[a-1];t.push(`elseif (yC < ${e[a]}){ setOutput(coords.x, coords.y, getT${a}(yR, yC - ${o})); }`)}let s=e.length,r=e[e.length-1];t.push(`else { setOutput(coords.x, coords.y, getT${s}(yR, yC - ${r})); }`)}else t.push("setOutput(coords.x, coords.y, getT0(yR, yC));");return`
|
|
${Me()} {
|
|
${He()}
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromFlatIndex(flatIndex);
|
|
let yR = coords.x;
|
|
let yC = coords.y;
|
|
|
|
${t.join(`
|
|
`)}
|
|
}
|
|
}
|
|
}
|
|
`}};function Qm(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return nr({inputs:{x:r.complexTensorInfos.imag},backend:n})}var ahe={kernelName:Kc,backendName:"webgpu",kernelFunc:Qm};function zx(e,t,n){let s=e[0].dtype;if(s==="complex64"){let u=e.map(m=>wp({inputs:{input:m},backend:n})),d=e.map(m=>Qm({inputs:{input:m},backend:n})),p=zx(u,t,n),h=zx(d,t,n),f=fc({inputs:{real:p,imag:h},backend:n});return u.forEach(m=>n.disposeData(m.dataId)),d.forEach(m=>n.disposeData(m.dataId)),n.disposeData(p.dataId),n.disposeData(h.dataId),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let u=e.map(y=>{let A=v.sizeFromShape(y.shape.slice(t));return st({inputs:{x:y},backend:n,attrs:{shape:[-1,A]}})}),d=u.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),p=E.computeOutShape(u.map(y=>y.shape),1),h=u[0].shape[0]===1,f=Zde(d,p,s,h),m=E.computeOutShape(e.map(y=>y.shape),t),g=n.makeTensorInfo(m,s,f);return u.forEach(y=>n.disposeData(y.dataId)),g}let{tensors2D:a,outShape:o}=ohe(e,t,n),i=new rhe(a.map(u=>u.shape)),l=n.runWebGPUProgram(i,a,a[0].dtype);a.forEach(u=>n.disposeData(u.dataId));let c=st({inputs:{x:l},backend:n,attrs:{shape:o}});return n.disposeData(l.dataId),c}function ohe(e,t,n){let s=E.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>st({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape.slice(0,t)),v.sizeFromShape(a.shape.slice(t))]}})),outShape:s}}function qC(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=E.computeOutShape(t.map(c=>c.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(c=>v.sizeFromShape(c.shape)>0);if(i.length===1)return nr({inputs:{x:i[0]},backend:n});let l=i.map(c=>c.shape);return E.assertParamsConsistent(l,a),zx(i,a,n)}var ihe={kernelName:ri,backendName:"webgpu",kernelFunc:qC},lhe=class{constructor(e,t){this.variableNames=["A"],this.uniforms=`pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; outWidth : i32; itemsPerBlockRow : i32;
|
|
inChannels : i32;`,this.workPerThread=4,this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.isChannelsLast=t,this.shaderKey=`im2col_${this.isChannelsLast}`,this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=this.isChannelsLast?0:1,t=this.isChannelsLast?1:2;return`
|
|
${Me()} {
|
|
${He()}
|
|
|
|
for(var i = 0; i<${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
|
|
let rc = getCoordsFromFlatIndex(flatIndex);
|
|
|
|
if(flatIndex < uniforms.size) {
|
|
let blockIndex = rc[0];
|
|
let pos = rc[1];
|
|
|
|
let offsetY = blockIndex / uniforms.outWidth * uniforms.stride[1] - uniforms.pad[1];
|
|
let d0 = offsetY + uniforms.dilation[1] * pos / uniforms.itemsPerBlockRow;
|
|
var value = 0.0;
|
|
if(d0 < uniforms.aShape[${e}] && d0 >= 0) {
|
|
let offsetX = (blockIndex % uniforms.outWidth) * uniforms.stride[0] -
|
|
uniforms.pad[0];
|
|
let d1 = offsetX + uniforms.dilation[0] * ((pos %
|
|
uniforms.itemsPerBlockRow) / uniforms.inChannels);
|
|
let ch = pos % uniforms.inChannels;
|
|
if(d1 < uniforms.aShape[${t}] && d1 >= 0) {
|
|
value = getA(d0, d1, ch);
|
|
}
|
|
}
|
|
setOutputFlat(flatIndex, value);
|
|
}
|
|
}
|
|
}
|
|
`}};function XC({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,c=n.dataFormat==="channelsLast",u=!1,d=!1,p=c?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],h=st({inputs:{x:e},backend:s,attrs:{shape:[1,p,n.inChannels]}}),f=st({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),m=Fx({a:h,b:f,transposeA:u,transposeB:d,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),g=st({inputs:{x:m},backend:s,attrs:{shape:n.outShape}});return s.disposeData(h.dataId),s.disposeData(f.dataId),s.disposeData(m.dataId),g}function uhe({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:c,inChannels:u,strideWidth:d,strideHeight:p,padInfo:h,outWidth:f,outHeight:m,dilationWidth:g,dilationHeight:y,dataFormat:A}=n,x=A==="channelsLast",b=l*c*u,w=m*f,k=[w,b],S=!1,N=!1,$=[],F=st({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),R=st({inputs:{x:t},backend:s,attrs:{shape:[1,b,-1]}});$.push(F),$.push(R);let D=new lhe(k,x),T=[{type:"int32",data:[h.left,h.top]},{type:"int32",data:[d,p]},{type:"int32",data:[g,y]},{type:"int32",data:[f]},{type:"int32",data:[u*l]},{type:"int32",data:[u]}],O=s.runWebGPUProgram(D,[F],F.dtype,T),W=st({inputs:{x:O},backend:s,attrs:{shape:[1,k[0],k[1]]}});$.push(O),$.push(W);let H=[1,k[0],k[1]],z=new LC(H,[1,w,n.outChannels],Z().get("WEBGPU_MATMUL_WORK_PER_THREAD"),S,N),X=H[1],te=H[2],J=n.outChannels,Q=[{type:"int32",data:[X]},{type:"int32",data:[J]},{type:"int32",data:[te]}],ne=s.runWebGPUProgram(z,[W,R],W.dtype,Q),K=x?[1,m,f,n.outChannels]:[1,n.outChannels,m,f],oe=st({inputs:{x:ne},backend:s,attrs:{shape:K}});$.push(ne);for(let ce of $)s.disposeData(ce.dataId);return oe}var KC=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.uniforms=`filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>;
|
|
dimAOuter : i32; dimBOuter : i32; dimInner : i32;`,this.isVec4=!0,this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=[8,8,1];let a=[4,4,1];this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,a),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,this.hasLeakyreluAlpha=r,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.hasLeakyreluAlpha&&this.variableNames.push("leakyreluAlpha"),[this.fitA,this.fitB]=this.getShapeFit(a),this.shaderKey=`conv2DMMVec4_${this.activation}_${this.fitA}_${this.fitB}`}getShapeFit(e){let t=this.workGroupSize[1]*e[1],n=this.workGroupSize[0]*e[0],s=n,r=[t,s],a=[s,n],o=this.outputShape[1]*this.outputShape[2],i=this.outputShape[3],l=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[ua(r,[o,l]),ua(a,[l,i])]}getSampleAWithRemainder(e){return`let flatIndex${e} = getFlatIndex4D(coord, uniforms.xShape);
|
|
let divBy4Remainder${e} = flatIndex${e} % 4;
|
|
let divBy4Index${e} = flatIndex${e} / 4;
|
|
let curData${e} = x.numbers[divBy4Index${e}];
|
|
if (divBy4Remainder${e} == 0) {
|
|
temp = curData${e};
|
|
} else {
|
|
// TODO: This could end up being a redundant load with another one in
|
|
// the same shader invocation. Perhaps there's an opportunity for
|
|
// optimization
|
|
let nextData${e} = x.numbers[divBy4Index${e} + 1];
|
|
if (divBy4Remainder${e} == 1) {
|
|
temp = vec4<f32>(curData${e}.yzw, nextData${e}.x);
|
|
} elseif (divBy4Remainder${e} == 2) {
|
|
temp = vec4<f32>(curData${e}.zw, nextData${e}.xy);
|
|
} elseif (divBy4Remainder${e} == 3) {
|
|
temp = vec4<f32>(curData${e}.w, nextData${e}.xyz);
|
|
}
|
|
}
|
|
`}getUserCode(){let t=zC([4,4,1],this.workGroupSize),r=`let outRow = r / uniforms.outShape[2];
|
|
let outCol = r % uniforms.outShape[2];
|
|
let WRow = c / (uniforms.filterDims[1] * uniforms.xShape[3]);
|
|
let WCol = c / uniforms.xShape[3] % uniforms.filterDims[1];
|
|
let inChCoord = c % uniforms.xShape[3];
|
|
var coord = vec4<i32>(
|
|
batch,
|
|
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
|
|
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
|
|
inChCoord);
|
|
var resData = vec4<f32>(0.0);
|
|
${this.convInfo.inChannels%4===0?`// The bounds checking is always needed since we use it to pad zero for
|
|
// the 'same' padding type.
|
|
if (coordsInBounds4D(coord, uniforms.xShape)) {
|
|
resData = x.numbers[getFlatIndex4D(coord, uniforms.xShape) / 4];
|
|
} else {
|
|
resData = vec4<f32>(0.0); }`:`var temp = vec4<f32>(0.0);
|
|
${this.getSampleAWithRemainder(1)}
|
|
resData = temp;
|
|
if (WCol == (uniforms.filterDims[1] - 1)) {
|
|
coord = vec4<i32>(
|
|
coord.x, coord.y + 1, coord.z + 1 - uniforms.filterDims[1], 0);
|
|
${this.getSampleAWithRemainder(2)}
|
|
if (inChCoord == 0) {
|
|
resData = vec4<f32>(resData.xyz, temp.x);
|
|
} elseif (inChCoord == 1) {
|
|
resData = vec4<f32>(resData.xy, temp.xy);
|
|
} else {
|
|
resData = vec4<f32>(resData.x, temp.xyz);
|
|
}
|
|
}
|
|
`}
|
|
return resData;`,a=this.fitA?`${r}`:`if (r < uniforms.dimAOuter && c < uniforms.dimInner) {
|
|
${r}
|
|
}
|
|
return vec4<f32>(0.0);
|
|
`,o=this.fitB?"return W.numbers[row * uniforms.dimBOuter / 4 + col];":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return W.numbers[row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0);
|
|
`,i="",l="";if(this.activation){let d=Lo(this.activation,this.isVec4);if(this.hasPreluActivationWeights)i=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
|
|
${d}
|
|
}`;else{if(this.hasLeakyreluAlpha)throw i=`fn activation(a: vec4<f32>) -> vec4<f32> {
|
|
let b = getLeakyreluAlphaAtOutCoords();
|
|
${d}
|
|
}`,new Error("Leakyrelu is not supported.");i=`
|
|
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
${d}
|
|
}`}l="value = activation(value, outCoord);"}let c=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
|
|
${i}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let r = row;
|
|
let c = col * 4;
|
|
var batch = i32(globalId.z);
|
|
${a}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
${o}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : vec4<f32>, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
if (row < uniforms.dimAOuter && col * 4 < uniforms.dimBOuter)
|
|
{
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col * 4);
|
|
${c}
|
|
${l}
|
|
setOutput(outCoord[0], outCoord[1], outCoord[2], outCoord[3],
|
|
value);
|
|
}
|
|
}
|
|
${t}
|
|
`}},ZC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=Ex(this.dispatchLayout,this.outputShape),this.elementsPerThread=$x(this.dispatchLayout,this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}_${this.fitA}_${this.fitB}`}getShapeFit(){let e=this.workGroupSize[1]*this.elementsPerThread[1],t=this.workGroupSize[0]*this.elementsPerThread[0],n=e>t?e:t;v.assert(n%this.workGroupSize[0]==0&&n%this.workGroupSize[1]==0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let s=[e,n],r=[n,t],a=this.outputShape[1]*this.outputShape[2],o=this.outputShape[3],i=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[ua(s,[a,i]),ua(r,[i,o])]}getUserCode(){let e=Px(this.elementsPerThread,this.workGroupSize),t=`
|
|
let outRow = row / uniforms.outShape[2];
|
|
let outCol = row % uniforms.outShape[2];
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * uniforms.xShape[3]);
|
|
let WCol = col / uniforms.xShape[3] % uniforms.filterDims[1];
|
|
let coord = vec4<i32>(
|
|
batch,
|
|
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
|
|
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
|
|
col % uniforms.xShape[3]);
|
|
// The bounds checking is always needed since we use it to pad zero for the
|
|
// 'same' padding type.
|
|
if(coordsInBounds4D(coord, uniforms.xShape)) {
|
|
return x.numbers[getFlatIndex4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;`,n=this.fitA?`${t}`:`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
${t}
|
|
}
|
|
return 0.0;
|
|
`,s=this.fitB?"return W.numbers[row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return W.numbers[row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;
|
|
`,r="",a="";if(this.activation){let l=Lo(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a: f32, outCoord : vec4<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
|
|
${l}
|
|
}`:r=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
${l}
|
|
}
|
|
`,a="value = activation(value, outCoord);"}let o=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
|
|
${r}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
${n}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${s}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col);
|
|
${o}
|
|
${a}
|
|
result.numbers[getFlatIndex4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
${e}
|
|
`}},YC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>;",this.workGroupSize=[128,1,1],this.outputShape=e.outShape,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,this.shaderKey=`conv2DNaive_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let r=Lo(this.activation);this.hasPreluActivationWeights?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32{
|
|
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
|
|
${r}
|
|
}`:e=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32{
|
|
${r}
|
|
}
|
|
`,t="value = activation(value, outCoord);"}let n=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
|
|
${e}
|
|
fn readInp(batch : i32, row : i32, col : i32, chan : i32) -> f32 {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if(coordsInBounds4D(coord, uniforms.xShape)) {
|
|
return getX(batch, row, col, chan);
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn readFilt(row : i32, col : i32, xChannel : i32, outChannel : i32) -> f32{
|
|
let coord = vec4<i32>(row, col, xChannel, outChannel);
|
|
if(coordsInBounds4D(coord, uniforms.wShape)) {
|
|
return getW(row, col, xChannel, outChannel);
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn writeResult(batch : i32, row : i32, col : i32, chan : i32, value : f32) {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if (coordsInBounds4D(coord, uniforms.outShape)) {
|
|
${n}
|
|
${t}
|
|
setOutput(batch, row, col, chan, value);
|
|
}
|
|
}
|
|
|
|
${Me()} {
|
|
${He()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
let batch = coords[0];
|
|
let outChannel = coords[3];
|
|
|
|
var acc = 0.0;
|
|
|
|
for (var row = 0; row < uniforms.filterDims[0]; row = row + 1) {
|
|
for (var col = 0; col < uniforms.filterDims[1]; col = col + 1) {
|
|
for (var xChannel = 0; xChannel < uniforms.xShape[3]; xChannel = xChannel + 1) {
|
|
let coordRow = coords[1] * uniforms.stride[0] + uniforms.dilation[0] * row - uniforms.pad[0];
|
|
let coordCol = coords[2] * uniforms.stride[1] + uniforms.dilation[1] * col - uniforms.pad[1];
|
|
let v = readInp(batch, coordRow, coordCol, xChannel);
|
|
let f = readFilt(row, col, xChannel, outChannel);
|
|
acc = acc + v * f;
|
|
}
|
|
}
|
|
}
|
|
|
|
writeResult(batch, coords[1], coords[2], outChannel, acc);
|
|
}
|
|
`}};function che(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=n,d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d);if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))return XC({x:r,filter:a,convInfo:p,backend:s});if(Z().getBool("WEBGPU_CONV_SEPARATE_IM2COL_SHADER")&&r.shape[0]===1)return uhe({x:r,filter:a,convInfo:p,backend:s});let h,f=[p.padInfo.top,p.padInfo.left],m=[{type:"int32",data:[p.filterHeight,p.filterWidth]},{type:"int32",data:[...f]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.dilationHeight,p.dilationWidth]}],g=Z().getBool("WEBGPU_USE_NAIVE_CONV2D");if(g?h=new YC(p):(p.inChannels%4==0||p.inChannels===3&&p.padInfo.type==="VALID")&&p.outChannels%4==0&&p.outChannels>=64?h=new KC(p):h=new ZC(p),!g){let y=p.outShape[1]*p.outShape[2],A=p.outShape[3],x=p.filterHeight*p.filterWidth*p.inShape[3];m.push({type:"int32",data:[y]},{type:"int32",data:[A]},{type:"int32",data:[x]})}return s.runWebGPUProgram(h,[r,a],r.dtype,m)}var dhe={kernelName:Na,backendName:"webgpu",kernelFunc:che},phe=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pads : vec2<i32>; stride : vec2<i32>; outBackprop : vec4<i32>; dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.outputShape=e.inShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=Ex(this.dispatchLayout,this.outputShape),this.elementsPerThread=$x(this.dispatchLayout,this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.shaderKey=`conv2DDerInputMM_${this.elementsPerThread}`}getUserCode(){return`
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
|
|
let outRow = row / uniforms.outShape[2];
|
|
let outCol = row % uniforms.outShape[2];
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
|
|
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
|
|
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
|
|
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
let coord = vec4<i32>(
|
|
batch,
|
|
i32(xR),
|
|
i32(xC),
|
|
col % uniforms.outBackprop[3]);
|
|
return x.numbers[getFlatIndex4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let coordX = uniforms.filterDims.x - 1 -
|
|
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let coordY = uniforms.filterDims.y - 1 -
|
|
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
|
|
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
|
|
coordX >= 0 && coordY >= 0) {
|
|
let coord = vec4<i32>(coordX, coordY, col,
|
|
row % uniforms.outBackprop[3]);
|
|
return W.numbers[getFlatIndex4D(coord, uniforms.wShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col);
|
|
result.numbers[getFlatIndex4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
|
|
${Px(this.elementsPerThread,this.workGroupSize)}
|
|
`}},hhe=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>; pads : vec2<i32>; stride : vec2<i32>; outBackprop : vec4<i32>;",this.workGroupSize=[64,1,1],this.outputShape=e.inShape,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,n=this.isChannelsLast?3:1;return`
|
|
${Me()} {
|
|
${He()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
let batch = coords[0];
|
|
let d1 = coords[${n}];
|
|
|
|
let dyCorner = vec2<i32>(coords[${e}]), coords[${t}]) - uniforms.pads;
|
|
let dyRCorner = dyCorner.x;
|
|
let dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
|
|
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
|
|
let wRPerm = uniforms.filterDims.x - 1 - wR;
|
|
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
|
|
wRPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyR = dyR;
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
|
|
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
|
|
let wCPerm = uniforms.filterDims.y - 1 - wC;
|
|
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
|
|
fract(dyC) > 0.0 || wCPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyC = dyC;
|
|
|
|
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
|
|
if (${this.isChannelsLast}) {
|
|
let xValue = getDy(batch, idyR, idyC, d2);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
} else {
|
|
let xValue = getDy(batch, d2, idyR, idyC);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(coords[0], coords[1], coords[2], coords[3], dotProd);
|
|
}
|
|
}
|
|
`}};function fhe(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s,d=E.convertConv2DDataFormat(c),p=E.computeConv2DInfo(o,a.shape,i,1,l,u,!1,d),h=[{type:"int32",data:[p.filterHeight,p.filterWidth]},{type:"int32",data:[p.filterHeight-1-p.padInfo.top,p.filterWidth-1-p.padInfo.left]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.batchSize,p.outHeight,p.outWidth,p.outChannels]}],f;if(Z().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new hhe(p);else{f=new phe(p);let m=p.inShape[1]*p.inShape[2],g=p.inShape[3],y=p.filterHeight*p.filterWidth*p.outChannels;h.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[y]})}return n.runWebGPUProgram(f,[r,a],"float32",h)}var mhe={kernelName:Ea,backendName:"webgpu",kernelFunc:fhe},ghe=$n({opType:Fe.COS}),yhe={kernelName:Ra,backendName:"webgpu",kernelFunc:ghe},Ahe=$n({opType:Fe.COSH}),xhe={kernelName:$a,backendName:"webgpu",kernelFunc:Ahe},bhe=class{constructor(e,t,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32;",this.workGroupSize=[64,1,1];let[r]=t;this.outputShape=[r,n[0],n[1],e],this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=s==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[n,s,r]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[a,o,i]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
|
|
fn writeResult(coords : vec4<i32>, value : f32) {
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
setOutput(coords[0], coords[1], coords[2], coords[3], value);
|
|
}
|
|
}
|
|
${Me()} {
|
|
${He()}
|
|
let height_ratio = f32(${n});
|
|
let width_ratio = f32(${a});
|
|
let coords = getOutputCoords(globalId, index);
|
|
let b = coords[0];
|
|
let y = coords[1];
|
|
let x = coords[2];
|
|
let d = coords[3];
|
|
// get box vals
|
|
let y1 = getBoxes(b, 0);
|
|
let x1 = getBoxes(b, 1);
|
|
let y2 = getBoxes(b, 2);
|
|
let x2 = getBoxes(b, 3);
|
|
// get image in batch index
|
|
let bInd = i32(round(getBoxInd(b)));
|
|
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
|
|
return;
|
|
}
|
|
let height_scale = ${s};
|
|
let width_scale = ${o};
|
|
let in_y = ${r};
|
|
if( in_y < 0.0 || in_y > ${e} ) {
|
|
writeResult(coords, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let in_x = ${i};
|
|
if( in_x < 0.0 || in_x > ${t} ) {
|
|
writeResult(coords, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
|
|
if(${this.methodId} == 1) {
|
|
// Compute the four integer indices.
|
|
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
|
|
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
|
|
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
|
|
let top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
let newValue = top + (bottom - top) * fracCR.y;
|
|
writeResult(coords, newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let sourceNearestCR = vec2<i32>(floor(
|
|
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
|
|
let newValue = getImage(
|
|
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
writeResult(coords,newValue);
|
|
}
|
|
}
|
|
`}},vhe=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,u=new bhe(r.shape[3],a.shape,i,l),d=[{type:"float32",data:[c]}];return n.runWebGPUProgram(u,[r,a,o],"float32",d)},whe={kernelName:oi,backendName:"webgpu",kernelFunc:vhe},khe=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.uniforms="blockSize : i32;",this.outputShape=e,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.size=v.sizeFromShape(this.outputShape),this.dataFormat=t}getUserCode(){return`
|
|
${Me()} {
|
|
${He()}
|
|
if (index < uniforms.size) {
|
|
let coords = getOutputCoords(globalId, index);
|
|
let b = coords[0];
|
|
let h = ${this.getHeightCoordString()};
|
|
let w = ${this.getWidthCoordString()};
|
|
let d = ${this.getDepthCoordString()};
|
|
|
|
let in_h = h / uniforms.blockSize;
|
|
let offset_h = h % uniforms.blockSize;
|
|
let in_w = w / uniforms.blockSize;
|
|
let offset_w = w % uniforms.blockSize;
|
|
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
let in_d = d + offset_d;
|
|
|
|
let rlt = ${this.getInputSamplingString()};
|
|
setOutputFlat(index, rlt);
|
|
}
|
|
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Ihe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=[{type:"int32",data:[a]}],g=new khe(f,o);return n.runWebGPUProgram(g,[r],r.dtype,m)}var She={kernelName:ii,backendName:"webgpu",kernelFunc:Ihe},JC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; inDims : vec2<i32>;",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[0,1],y:[2],z:[3]},this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,4,4]),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise3x3_${n}`}getUserCode(){let e="",t="";if(this.activation){let r=Lo(this.activation,this.isVec4);this.hasPreluActivation?e=`fn activation(a : vec4<f32>, globalId : vec3<u32>, globalIndex : i32) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsAtOutCoordsByGlobalId(globalId, globalIndex);
|
|
${r}
|
|
}`:e=`
|
|
fn activation(a : vec4<f32>, globalId : vec3<u32>, globalIndex : i32) -> vec4<f32> {
|
|
${r}
|
|
}
|
|
`,t="dotProd[i] = activation(dotProd[i], globalId, index);"}let n=this.addBias?"dotProd[i] = dotProd[i] + getBiasAtOutCoordsByCoords(coords);":"";return`
|
|
${e}
|
|
|
|
${Me()} {
|
|
${He()}
|
|
let batch = 0;
|
|
let r = i32(globalId.x);
|
|
let c = i32(globalId.y) * 4;
|
|
let d2 = i32(globalId.z) * 4;
|
|
let xRCCorner = vec2<i32>(r, c) * uniforms.stride - uniforms.pad;
|
|
let d1 = d2;
|
|
let q = 0;
|
|
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var wVals : array<vec4<f32>, 9>;
|
|
wVals[0] = getW(0, 0, d1, q);
|
|
wVals[1] = getW(0, 1, d1, q);
|
|
wVals[2] = getW(0, 2, d1, q);
|
|
wVals[3] = getW(1, 0, d1, q);
|
|
wVals[4] = getW(1, 1, d1, q);
|
|
wVals[5] = getW(1, 2, d1, q);
|
|
wVals[6] = getW(2, 0, d1, q);
|
|
wVals[7] = getW(2, 1, d1, q);
|
|
wVals[8] = getW(2, 2, d1, q);
|
|
|
|
var xVals : array<array<vec4<f32>, 6>, 3>;
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
let xR = xRCorner + wR * uniforms.dilation[0];
|
|
for (var wC = 0; wC < 6; wC = wC + 1) {
|
|
let xC = xCCorner + wC * uniforms.dilation[1];
|
|
if (xR < 0 || xR >= uniforms.inDims[0] || xC < 0 || xC >= uniforms.inDims[1]) {
|
|
xVals[wR][wC] = vec4<f32>(0.0);
|
|
} else {
|
|
xVals[wR][wC] = getX(batch, xR, xC, d1);
|
|
}
|
|
}
|
|
}
|
|
|
|
var dotProd : array<vec4<f32>, 4>;
|
|
dotProd[0] = vec4<f32>(0.0);
|
|
dotProd[1] = vec4<f32>(0.0);
|
|
dotProd[2] = vec4<f32>(0.0);
|
|
dotProd[3] = vec4<f32>(0.0);
|
|
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
for (var wC = 0; wC < 3; wC = wC + 1) {
|
|
let indexW = wR * 3 + wC;
|
|
dotProd[0] = dotProd[0] + xVals[wR][0 + wC] * wVals[indexW];
|
|
dotProd[1] = dotProd[1] + xVals[wR][1 + wC] * wVals[indexW];
|
|
dotProd[2] = dotProd[2] + xVals[wR][2 + wC] * wVals[indexW];
|
|
dotProd[3] = dotProd[3] + xVals[wR][3 + wC] * wVals[indexW];
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
let coords = vec4<i32>(batch, r, c + i, d2);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
${n}
|
|
${t}
|
|
setOutput(coords[0], coords[1], coords[2], coords[3], dotProd[i]);
|
|
}
|
|
}
|
|
}
|
|
`}},QC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; inDims : vec2<i32>;",this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise_${this.convInfo.filterHeight}_${this.convInfo.filterWidth}_${this.activation}_${this.convInfo.outChannels/this.convInfo.inChannels}`}getUserCode(){let e=this.convInfo.outChannels/this.convInfo.inChannels,t="",n="";if(this.activation){let a=Lo(this.activation,!1);this.hasPreluActivation?t=`fn activation(a : f32, globalId : vec3<u32>, index : i32) -> f32 {
|
|
let b = getPreluActivationWeightsAtOutCoordsByGlobalId(globalId, index);
|
|
${a}
|
|
}`:t=`
|
|
fn activation(a : f32, globalId : vec3<u32>, index : i32) -> f32 {
|
|
${a}
|
|
}
|
|
`,n="dotProd = activation(dotProd, globalId, index);"}let s=this.addBias?"dotProd = dotProd + getBiasAtOutCoordsByGlobalId(globalId, index);":"";return`
|
|
${t}
|
|
|
|
fn writeResult(batch : i32, row : i32, col : i32, chan : i32, value : f32) {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if (coordsInBounds4D(coord, uniforms.outShape)) {
|
|
setOutput(batch, row, col, chan, value);
|
|
}
|
|
}
|
|
|
|
${Me()} {
|
|
${He()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let d2 = coords[3];
|
|
let d1 = d2 / ${e};
|
|
let q = d2 - d1 * ${e};
|
|
|
|
let inputRowStart = xRCCorner.x;
|
|
let inputColStart = xRCCorner.y;
|
|
let inputRowEnd = inputRowStart + ${this.convInfo.filterHeight} * uniforms.dilation[0];
|
|
let inputColEnd = inputColStart + ${this.convInfo.filterWidth} * uniforms.dilation[1];
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
|
|
// Extract if checking out of for loop for performance.
|
|
if (inputRowStart >= 0 && inputColStart >= 0 &&
|
|
inputRowEnd < uniforms.inDims[0] && inputColEnd < uniforms.inDims[1]) {
|
|
// Here using a constant value |this.convInfo.filterHeight| instead
|
|
// of uniform value is in order to loop unrolling.
|
|
for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
} else {
|
|
for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
if (xR < 0 || xR >= uniforms.inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
if (xC < 0 || xC >= uniforms.inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
}
|
|
|
|
${s}
|
|
${n}
|
|
writeResult(batch, coords[1], coords[2], d2, dotProd);
|
|
}
|
|
`}};function Che(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s,u=l;u==null&&(u=[1,1]);let d=E.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!0),p;d.batchSize===1&&d.inHeight===d.outHeight&&d.inWidth===d.outWidth&&d.strideHeight===1&&d.strideWidth===1&&d.filterHeight===d.filterWidth&&d.inChannels===d.outChannels&&d.filterHeight===3&&d.inChannels%4==0?p=new JC(d):p=new QC(d);let h=[{type:"int32",data:[d.padInfo.top,d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.dilationHeight,d.dilationWidth]},{type:"int32",data:[d.inHeight,d.inWidth]}];return n.runWebGPUProgram(p,[r,a],r.dtype,h)}var The={kernelName:Da,backendName:"webgpu",kernelFunc:Che},e6=Kn({opSnippet:je.MUL,cpuKernelImpl:dpe,supportsComplex:!0}),Nhe={kernelName:Ka,backendName:"webgpu",kernelFunc:e6},Ehe=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="reduceSize : i32;",this.inputShape=[e.batchSize,e.inSize];let[s]=E.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=s.length===0?[1]:s,this.reductionFactor=2;let r=256,a=Math.min(Math.ceil(e.inSize/this.reductionFactor),r);this.workGroupSize=[a,1,1],this.dispatchLayout={x:[],y:this.outputShape.map((o,i)=>i)},this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.reduceType=t,this.shaderKey=`reduce_${t}_${n}`}getUserCode(){let e=this.workGroupSize[0]>1,t="",n="0.0";this.reduceType==="min"||this.reduceType==="max"?(t=`
|
|
if (isNanCustom(candidate)) {
|
|
bestValue = uniforms.NAN;
|
|
} elseif (candidate ${this.reduceType==="min"?"<":">"}
|
|
bestValue)
|
|
{ bestValue = candidate; }`,n="f32(x.numbers[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?t=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(t=" bestValue = bestValue * candidate; ",n="1.0");let s=this.reduceType==="mean"?"setOutputFlat(flatOutputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputFlat(flatOutputIndex, bestValue);",r=`
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`,a=`
|
|
xBestValues[localId.x] = bestValue;
|
|
${this.reduceType==="sum"||this.reduceType==="mean"||this.reduceType==="prod"?`bestValue = ${n};`:" "}
|
|
var currentSize = WorkGroupSize;
|
|
for(; currentSize > 1;) {
|
|
workgroupBarrier();
|
|
for (var w = 0; w < ${this.reductionFactor}; w = w + 1) {
|
|
let i = i32(localId.x) * ${this.reductionFactor} + w;
|
|
if (i < currentSize) {
|
|
let candidate = xBestValues[i];
|
|
${t}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
xBestValues[localId.x] = bestValue;
|
|
currentSize = DIV_CEIL(currentSize, ${this.reductionFactor});
|
|
${this.reduceType==="sum"||this.reduceType==="mean"||this.reduceType==="prod"?`if(currentSize > 1) { bestValue = ${n}; }`:""}
|
|
}
|
|
if (localId.x == 0u) {
|
|
${s}
|
|
}
|
|
`;return`
|
|
fn DIV_CEIL(a : i32, b : i32) -> i32 {
|
|
return ((a - 1) / b + 1);
|
|
}
|
|
let WorkGroupSize = ${this.workGroupSize[0]};
|
|
${e?r:""}
|
|
fn getOffset(globalId : vec3<u32>, index : i32) -> i32 {
|
|
let outputCoords = getOutputCoords(globalId, index);
|
|
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
|
|
return offset;
|
|
}
|
|
${Me()} {
|
|
${He()}
|
|
let offset= getOffset(globalId, index);
|
|
var bestValue = ${n};
|
|
let Length = uniforms.reduceSize;
|
|
let WorkPerThread = DIV_CEIL(Length, WorkGroupSize);
|
|
for (var w = 0; w < WorkPerThread; w = w + 1) {
|
|
let i = i32(globalId.x) * WorkPerThread + w;
|
|
if (i < Length) {
|
|
let candidate = f32(x.numbers[offset + i]);
|
|
${t}
|
|
}
|
|
}
|
|
let flatOutputIndex = i32(globalId.y);
|
|
${e?a:s}
|
|
}
|
|
`}};function kp(e,t,n,s,r){let a=e.shape.length,o=[],i=v.parseAxisParam(t,e.shape),l=i,c=E.getAxesPermutation(l,a),u=e;c!=null&&(u=Il({inputs:{x:e},attrs:{perm:c},backend:r}),l=E.getInnerMostAxes(l.length,a),o.push(u)),E.assertAxesAreInnerMostDims(s,l,a);let[d,p]=E.computeOutAndReduceShapes(u.shape,l),h=d;n&&(h=E.expandShapeToKeepDim(d,i));let f;if((s==="max"||s==="prod")&&r.shouldExecuteOnCPU([u])){let m=r.tensorMap.get(u.dataId).values;switch(s){case"max":let g=lpe(m,v.sizeFromShape(p),h,e.dtype);f=r.makeTensorInfo(h,e.dtype,g);break;case"prod":let{outVals:y,outShape:A,outDtype:x}=fpe(u.shape,u.dtype,m,l);f=r.makeTensorInfo(A,x,y);break;default:throw new Error(`${s} CPU implementation is not yet supported.`)}}else{let m=v.sizeFromShape(p),y=v.sizeFromShape(u.shape)/m,A={windowSize:m,inSize:m,batchSize:y,outSize:1},x=s==="mean"?"float32":pd(e.dtype),b=[{type:"int32",data:[m]}],w=new Ehe(A,s,x),k=r.runWebGPUProgram(w,[u],x,b);o.push(k),f=st({inputs:{x:k},attrs:{shape:h},backend:r})}return o.forEach(m=>r.disposeData(m.dataId)),f}function Lx(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return kp(r,a,o,"sum",n)}var Rhe={kernelName:oo,backendName:"webgpu",kernelFunc:Lx};function $he(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=E.decodeEinsumEquation(r,a.length);E.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=E.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:y,expandDims:A}=E.getEinsumPermutation(h,l[g]),x;E.isIdentityPermutation(y)?x=a[g]:(x=Il({inputs:{x:a[g]},backend:n,attrs:{perm:y}}),f.push(x));let b=x.shape.slice();for(let w=0;w<A.length;++w)b.splice(A[w],0,1);v.arraysEqual(x.shape,b)||(x=st({inputs:{x},backend:n,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=e6({inputs:{a:x,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=Lx({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeData(m.dataId);return p}var Dhe={kernelName:Xc,backendName:"webgpu",kernelFunc:$he},_he=$n({opType:Fe.ELU}),Phe={kernelName:Pa,backendName:"webgpu",kernelFunc:_he},Fhe=Kn({opSnippet:je.EQUAL,dtype:"bool",cpuKernelImpl:Yde}),Ohe={kernelName:li,backendName:"webgpu",kernelFunc:Fhe},t6=$n({opType:Fe.EXP,cpuKernelImpl:Jde,dtype:"float32"}),Mhe={kernelName:Fa,backendName:"webgpu",kernelFunc:t6};function Bx(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),st({inputs:{x:a},backend:s,attrs:{shape:i}})}var zhe={kernelName:ui,backendName:"webgpu",kernelFunc:Bx},Lhe=$n({opType:Fe.EXPM1,cpuKernelImpl:Qde}),Bhe={kernelName:ci,backendName:"webgpu",kernelFunc:Lhe},Whe=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32;",this.workPerThread=4,this.workGroupSize=[16,1,1],this.outputShape=e,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="fill",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){return`
|
|
${Me()} {
|
|
${He()}
|
|
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if (flatIndex < uniforms.size) {
|
|
setOutputFlat(flatIndex, uniforms.value);
|
|
}
|
|
}
|
|
}
|
|
`}};function e0(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new Whe(s),i=[{type:"float32",data:[r]}];return t.runWebGPUProgram(o,[],a,i)}}var Vhe={kernelName:su,backendName:"webgpu",kernelFunc:e0},Uhe=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){return`
|
|
${Me()} {
|
|
${He()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getOutputCoords(globalId, index);
|
|
let coordX = uniforms.xShape[2] - coords[2] - 1;
|
|
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
|
|
setOutputFlat(index, outputValue);
|
|
}
|
|
}
|
|
`}},Ghe={kernelName:di,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new Uhe(n.shape);return s.runWebGPUProgram(r,[n],n.dtype)}},Hhe=$n({opType:Fe.FLOOR,cpuKernelImpl:epe}),jhe={kernelName:Oa,backendName:"webgpu",kernelFunc:Hhe},qhe=Kn({opSnippet:je.INT_DIV,dtype:"int32"}),Xhe={kernelName:Ma,backendName:"webgpu",kernelFunc:qhe},Khe=(e,t,n,s,r)=>{let a=[s,...n];return r&&a.push(r),e.createBindGroup({layout:t,entries:a.map((o,i)=>({binding:i,resource:o}))})},n6=(e,t,n,s,r,a=!1)=>{let o={dtype:r.dtype,shape:r.shape},i=Rce(s,o,t,a),l=e.createShaderModule({code:i});return e.createComputePipeline({layout:n,compute:{module:l,entryPoint:"main"}})};function s6(e,t,n,s="",r=""){return(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(o=>o.length).join(",")+n.join(",")+e.variableNames.join(",")+s+r+e.shaderKey}function r6(e){let{externalImage:t,backend:n,attrs:s,outShape:r,useImport:a}=e,{numChannels:o}=s,i=v.sizeFromShape(r),l=v.computeStrides(r),c=n.makeTensorInfo(r,"int32"),u=n.getFromPixelsProgram(a?"import":"copyExternal");u.updateOutputShape(r);let d=[c.shape],p=[c.dtype,a?"import":"copyExternal"],h=s6(u,d,p),f=u.getLayout(n.device),m=n.getAndSavePipeline(h,()=>n6(n.device,u,f.pipelineLayout,[],c,!0));u.setPipeline(m),a||n.queue.copyExternalImageToTexture({source:t,origin:{x:0,y:0}},{texture:u.makeInputTexture(n.device,r[1],r[0])},[r[1],r[0]]);let g=n.tensorMap.get(c.dataId);g.bufferInfo.buffer=n.acquireBuffer(g.bufferInfo.byteSize);let y=[i,o,...l,...u.dispatch];u.setUniform(n.device,y);let A;if(a){let x={source:t};A=n.device.importExternalTexture(x)}else A=u.inputTexture.createView();return n.runFromPixelsProgram(u,g.bufferInfo.buffer,f,A,c.dataId),c}var Zhe={kernelName:sd,backendName:"webgpu",kernelFunc:Yhe},mc;function Yhe(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s;if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,l=typeof HTMLCanvasElement!="undefined"&&r instanceof HTMLCanvasElement,c=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[u,d]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[d,u,a];if(Z().getBool("WEBGPU_USE_IMPORT")&&o)return r6({externalImage:r,backend:n,attrs:s,outShape:p,useImport:!0});if((o||i)&&(mc==null&&(mc=document.createElement("canvas").getContext("2d")),mc.canvas.width=u,mc.canvas.height=d,mc.drawImage(r,0,0,u,d),r=mc.canvas),c||l||o||i)return r6({externalImage:r,backend:n,attrs:s,outShape:p,useImport:!1});let h=r.data,f=h;if(a!=null&&a!==4){f=new Uint8Array(r.width*r.height*a);let y=h.length,A=0;for(let x=0;x<y;x++)x%4<a&&(f[A++]=h[x])}let m=n.makeTensorInfo(p,"int32"),g=n.tensorMap.get(m.dataId);return g.values=new Int32Array(f),n.maybeReleaseBuffer(m.dataId),n.uploadToGPU(m.dataId),m}var Jhe=class{constructor(e,t,n,s,r){this.uniforms="varianceEpsilon : f32;",this.workGroupSize=[128,1,1],this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n),this.outputShape=e,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),s!=null&&(E.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset")),r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale")),this.offsetShape=s,this.scaleShape=r,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetAtOutCoordsByGlobalId(globalId, index)");let t="1.0";this.scaleShape!=null&&(t="getScaleAtOutCoordsByGlobalId(globalId, index)");let n=this.outputShape.length,s=ln(n),r="setOutput(coords[0], coords[1], coords[2], coords[3], value);";return n===2&&(r="setOutput(coords[0], coords[1], value);"),n===3&&(r="setOutput(coords[0], coords[1], coords[2], value);"),`
|
|
fn writeResult(coords : ${s}, value : f32) {
|
|
if (coordsInBounds${n}D(coords, uniforms.outShape)) {
|
|
${r}
|
|
}
|
|
}
|
|
${Me()} {
|
|
${He()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
let xValue = getXAtOutCoordsByGlobalId(globalId, index);
|
|
let meanValue = getMeanAtOutCoordsByGlobalId(globalId, index);
|
|
let varianValue = getVarianceAtOutCoordsByGlobalId(globalId, index);
|
|
let offsetValue = ${e};
|
|
let scaleValue = ${t};
|
|
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
|
|
writeResult(coords,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
|
|
}
|
|
`}},Qhe={kernelName:za,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s,scale:r,offset:a,mean:o,variance:i}=e,{varianceEpsilon:l}=t,c=n,u=[s,o,i],d=null;a!=null&&(d=a.shape,u.push(a));let p=null;r!=null&&(p=r.shape,u.push(r));let h=new Jhe(s.shape,o.shape,i.shape,d,p),f=[{type:"float32",data:[l]}];return c.runWebGPUProgram(h,u,s.dtype,f)}};function efe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=E.convertConv2DDataFormat(u),g=E.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!1,m),y=o!=null,A=i!=null,x;if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))return XC({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});let b=Z().getBool("WEBGPU_USE_NAIVE_CONV2D"),w=g.inChannels%4==0&&g.outChannels%4==0,k=[g.padInfo.top,g.padInfo.left],S=[{type:"int32",data:[g.filterHeight,g.filterWidth]},{type:"int32",data:[...k]},{type:"int32",data:[g.strideHeight,g.strideWidth]},{type:"int32",data:[g.dilationHeight,g.dilationWidth]}];if(b)x=new YC(g,y,h,A);else{w?x=new KC(g,y,h,A):x=new ZC(g,y,h,A);let $=g.outShape[1]*g.outShape[2],F=g.outShape[3],R=g.filterHeight*g.filterWidth*g.inShape[3];S.push({type:"int32",data:[$]},{type:"int32",data:[F]},{type:"int32",data:[R]})}let N=[r,a];return y&&N.push(o),A&&N.push(i),n.runWebGPUProgram(x,N,r.dtype,S)}var tfe={kernelName:mo,backendName:"webgpu",kernelFunc:efe};function nfe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:d,activation:p}=s,h=u;h==null&&(h=[1,1]),v.assert(E.eitherStridesOrDilationsAreOne(l,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${h}'`);let f=E.computeConv2DInfo(r.shape,a.shape,l,h,c,d,!0),m=[r,a],g=o!=null,y=i!=null;g&&m.push(o),y&&m.push(i);let A;f.batchSize===1&&f.inHeight===f.outHeight&&f.inWidth===f.outWidth&&f.strideHeight===1&&f.strideWidth===1&&f.filterHeight===f.filterWidth&&f.inChannels===f.outChannels&&f.filterHeight===3&&f.inChannels%4==0?A=new JC(f,g,p,y):A=new QC(f,g,p,y);let x=[{type:"int32",data:[f.padInfo.top,f.padInfo.left]},{type:"int32",data:[f.strideHeight,f.strideWidth]},{type:"int32",data:[f.dilationHeight,f.dilationWidth]},{type:"int32",data:[f.inHeight,f.inWidth]}];return n.runWebGPUProgram(A,m,"float32",x)}var sfe={kernelName:go,backendName:"webgpu",kernelFunc:nfe},rfe=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.outputShape=t,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.size=v.sizeFromShape(this.outputShape),this.sliceDim=e,this.uniforms=`sliceDim : i32; strides : ${ln(e)};`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
|
|
${Me()} {
|
|
${He()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
var flattenIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexTemp = i32(round(getIndices(coords[0], j)));
|
|
let strideNum = ${e};
|
|
flattenIndex = flattenIndex + indexTemp * strideNum;
|
|
}
|
|
if (index < uniforms.size) {
|
|
setOutputFlat(index, getA(flattenIndex, coords[1]));
|
|
}
|
|
}
|
|
`}};function afe(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,c,u,d]=E.prepareAndValidate(s,r),p=st({inputs:{x:r},backend:n,attrs:{shape:[c,o]}}),h=st({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/u,u]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let A=n.readSync(r.dataId),x=n.bufferSync(s),b=tpe(A,x,s.dtype,c,o,u,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,b.values)}let f=new rfe(o,[c,u]),m=[{type:"int32",data:[o]},{type:"int32",data:d}],g=n.runWebGPUProgram(f,[h,p],h.dtype,m),y=st({inputs:{x:g},backend:n,attrs:{shape:l}});return n.disposeData(p.dataId),n.disposeData(h.dataId),n.disposeData(g.dataId),y}var ofe={kernelName:hi,backendName:"webgpu",kernelFunc:afe},ife=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=lfe(this.aShape,"i32");return`
|
|
${Me()} {
|
|
${He()}
|
|
let resRC = getOutputCoords(globalId, index);
|
|
if (index < uniforms.size) {
|
|
setOutputFlat(index, getA(${e}));
|
|
}
|
|
}
|
|
`}};function lfe(e,t="int"){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push(`${t}(getIndices(resRC.x, resRC.z))`):s.push(`${n[r]}`);return s.join()}function ufe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],c=n.readSync(a.dataId),u=r.shape[l];for(let b=0;b<c.length;++b){let w=c[b];v.assert(w<=u-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${u-1}]`)}let d=E.segment_util.collectGatherOpShapeInfo(r,a,l,i),p=v.sizeFromShape(a.shape),h=[],f=st({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),m=st({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,p/d.batchSize]}});h.push(f),h.push(m);let g=[d.batchSize,d.outerSize,p/d.batchSize,d.sliceSize];if(n.shouldExecuteOnCPU([r,a])){let w=n.tensorMap.get(m.dataId).values,k=We(m.shape,m.dtype,w),N=n.tensorMap.get(f.dataId).values,$=We(f.shape,f.dtype,N),F=npe($,k,g);return h.forEach(R=>n.disposeData(R.dataId)),n.makeTensorInfo(d.outputShape,F.dtype,F.values)}let y=new ife(f.shape,g),A=n.runWebGPUProgram(y,[f,m],f.dtype);h.push(A);let x=st({inputs:{x:A},backend:n,attrs:{shape:d.outputShape}});return h.forEach(b=>n.disposeData(b.dataId)),x}var cfe={kernelName:pi,backendName:"webgpu",kernelFunc:ufe},dfe=Kn({opSnippet:je.GREATER,cpuKernelImpl:rpe,dtype:"bool"}),pfe={kernelName:fi,backendName:"webgpu",kernelFunc:dfe},hfe=Kn({opSnippet:je.GREATER_EQUAL,dtype:"bool",cpuKernelImpl:spe}),ffe={kernelName:La,backendName:"webgpu",kernelFunc:hfe},mfe=Kn({opSnippet:je.LESS,dtype:"bool",cpuKernelImpl:ope}),gfe={kernelName:gi,backendName:"webgpu",kernelFunc:mfe},yfe=Kn({opSnippet:je.LESS_EQUAL,dtype:"bool",cpuKernelImpl:ape}),Afe={kernelName:yi,backendName:"webgpu",kernelFunc:yfe},xfe=$n({opType:Fe.LOG,cpuKernelImpl:ipe}),bfe={kernelName:Wa,backendName:"webgpu",kernelFunc:xfe},vfe=Kn({opSnippet:je.LOGICAL_AND,dtype:"bool"}),wfe={kernelName:Ai,backendName:"webgpu",kernelFunc:vfe},kfe=$n({opType:Fe.LOGICAL_NOT}),Ife={kernelName:lu,backendName:"webgpu",kernelFunc:kfe};function a6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s;return kp(r,a,o,"max",n)}var Sfe={kernelName:Va,backendName:"webgpu",kernelFunc:a6},Cfe=Kn({opSnippet:je.MAX,cpuKernelImpl:upe}),Tfe={kernelName:Ua,backendName:"webgpu",kernelFunc:Cfe};function Nfe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1,u=E.computePool2DInfo(r.shape,a,o,c,i,l),d,p=[];if(u.filterHeight===1&&u.filterWidth===1){if(v.arraysEqual(u.inShape,u.outShape))return nr({inputs:{x:r},backend:n});d=new HC(u),p.push({type:"int32",data:[u.strideHeight,u.strideWidth]})}else d=new GC(u,"max"),p.push({type:"int32",data:[u.strideHeight,u.strideWidth]},{type:"int32",data:[u.padInfo.top,u.padInfo.left]},{type:"int32",data:[u.dilationHeight,u.dilationWidth]},{type:"int32",data:[u.inHeight,u.inWidth]},{type:"int32",data:[u.effectiveFilterHeight,u.effectiveFilterWidth]});return n.runWebGPUProgram(d,[r],r.dtype,p)}var Efe={kernelName:Ga,backendName:"webgpu",kernelFunc:Nfe};function Rfe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{keepDims:a,axis:o}=s;return kp(r,o,a,"mean",n)}var $fe={kernelName:Ha,backendName:"webgpu",kernelFunc:Rfe};function Dfe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return kp(r,a,o,"min",n)}var _fe={kernelName:ja,backendName:"webgpu",kernelFunc:Dfe},Pfe=Kn({opSnippet:je.MIN,cpuKernelImpl:cpe}),Ffe={kernelName:qa,backendName:"webgpu",kernelFunc:Pfe},Ofe=class{constructor(e,t,n){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.outputShape=t.map((s,r)=>s[0]+e[r]+s[1]),this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((s,r)=>{this.uniforms+=` pad${r} : vec2<i32>;`}),this.offset=n==="reflect"?0:1,this.shaderKey=`mirrorPad_${n}`,this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,c)=>`uniforms.pad${c}[0]`).join(","),n=this.xShape.map((l,c)=>`uniforms.pad${c}[0] + uniforms.xShape${e>1?`[${c}]`:""}`).join(","),s=e===1?"start":"start[i]",r=e===1?"end":"end[i]",a=e===1?"outC":"outC[i]",o=ln(e),i=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${Me()} {
|
|
${He()}
|
|
let start = ${o}(${t});
|
|
let end = ${o}(${n});
|
|
var outC = getOutputCoords(globalId, index);
|
|
if (index < uniforms.size) {
|
|
for (var i = 0; i < ${e}; i = i + 1) {
|
|
if (${a} < ${s}) {
|
|
${a} = ${s} * 2 - ${a} - ${this.offset};
|
|
} elseif(${a} >= ${r}) {
|
|
${a} = (${r} - 1) * 2 - ${a} + ${this.offset};
|
|
}
|
|
}
|
|
let coords = outC - start;
|
|
setOutputFlat(index, getX(${i}));
|
|
}
|
|
}
|
|
`}},Mfe={kernelName:Xa,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{paddings:r,mode:a}=t,o=n,i=r.map(u=>({type:"int32",data:[u[0],u[1]]})),l=new Ofe(s.shape,r,a);return o.runWebGPUProgram(l,[s],s.dtype,i)}};function zfe(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.tensorMap.get(s.dataId),[o,i]=ppe(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r=new Jm(s.shape,Fe.NEG);return n.runWebGPUProgram(r,[s],s.dtype)}var Lfe={kernelName:xi,backendName:"webgpu",kernelFunc:zfe};function Bfe(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,c=n.readSync(r.dataId),u=n.readSync(a.dataId),{selectedIndices:d}=Ys.nonMaxSuppressionV3Impl(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Wfe={kernelName:vi,backendName:"webgpu",kernelFunc:Bfe};function Vfe(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:y}=Ys.nonMaxSuppressionV5Impl(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Ufe={kernelName:wi,backendName:"webgpu",kernelFunc:Vfe};function t0(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=wp({inputs:{input:s},backend:n}),a=t0({inputs:{x:r},backend:n}),o=Qm({inputs:{input:s},backend:n}),i=t0({inputs:{x:o},backend:n}),l=fc({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return e0({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var Gfe={kernelName:Bi,backendName:"webgpu",kernelFunc:t0};function o6(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=wp({inputs:{input:s},backend:n}),a=o6({inputs:{x:r},backend:n}),o=Qm({inputs:{input:s},backend:n}),i=t0({inputs:{x:o},backend:n}),l=fc({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return e0({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var Hfe={kernelName:ki,backendName:"webgpu",kernelFunc:o6};function jfe(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Bx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=Bx({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=qC({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeData(u.dataId)),c}var qfe={kernelName:Si,backendName:"webgpu",kernelFunc:jfe},Xfe=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32;",this.workGroupSize=[64,1,1],this.outputShape=t.map((n,s)=>n[0]+e[s]+n[1]),this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((n,s)=>{this.uniforms+=` pad${s} : vec2<i32>;`}),this.xShape=e,this.shaderKey="pad",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=this.xShape.length,t=ln(e),n=this.xShape.map((u,d)=>`uniforms.pad${d}[0]`).join(","),s=this.xShape.map((u,d)=>`uniforms.pad${d}[0] + uniforms.xShape${e>1?`[${d}]`:""}`).join(","),r=e>1?`${t}(${n})`:`${n}`,a=e>1?`${t}(${s})`:`${s}`,o=e>1?"any(outC < start)":"outC < start",i=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${Me()} {
|
|
${He()}
|
|
let start = ${r};
|
|
let end = ${a};
|
|
if (index < uniforms.size) {
|
|
let outC = getOutputCoords(globalId, index);
|
|
|
|
if (${o} || ${i}) {
|
|
setOutputFlat(index, uniforms.constantValue);
|
|
} else {
|
|
let coords = outC - start;
|
|
setOutputFlat(index, getX(${l}));
|
|
}
|
|
}
|
|
}
|
|
`}},i6=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(a.every(c=>v.arraysEqual(c,[0,0])))return nr({inputs:{x:r},backend:n});if(v.sizeFromShape(r.shape)===0){let c=a.map((u,d)=>u[0]+r.shape[d]+u[1]);return e0({backend:n,attrs:{shape:c,value:o,dtype:r.dtype}})}let i=[{type:"float32",data:[o]}];a.map(c=>i.push({type:"int32",data:[c[0],c[1]]}));let l=new Xfe(r.shape,a);return n.runWebGPUProgram(l,[r],r.dtype,i)},Kfe={kernelName:Za,backendName:"webgpu",kernelFunc:i6},Zfe=Kn({opSnippet:je.POW}),Yfe={kernelName:Ya,backendName:"webgpu",kernelFunc:Zfe};function Jfe(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=new WC(je.PRELU,s.shape,r.shape);return n.runWebGPUProgram(a,[s,r],"float32")}var Qfe={kernelName:Ja,backendName:"webgpu",kernelFunc:Jfe};function eme(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return kp(r,a,o,"prod",n)}var tme={kernelName:Ci,backendName:"webgpu",kernelFunc:eme},nme=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=mpe(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},sme={kernelName:du,backendName:"webgpu",kernelFunc:nme},l6=Kn({opSnippet:je.DIV}),rme={kernelName:_a,backendName:"webgpu",kernelFunc:l6},ame=$n({opType:Fe.RELU}),ome={kernelName:Qa,backendName:"webgpu",kernelFunc:ame},ime=$n({opType:Fe.RELU6}),lme={kernelName:to,backendName:"webgpu",kernelFunc:ime},ume=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.alignCorners=s,this.halfPixelCenters=r,this.shaderKey=`resizeBilinear_${s}_${r}_${this.outputShape[1]>1}_${this.outputShape[2]>1}`}getUserCode(){let e=this.alignCorners&&this.outputShape[1]>1,t=this.alignCorners&&this.outputShape[2]>1;return`
|
|
${Me()} {
|
|
${He()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
if (all(coords < uniforms.outShape)) {
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
${e?"f32(uniforms.xShape.y) - 1.0":"f32(uniforms.xShape.y)"},
|
|
${t?"f32(uniforms.xShape.z) - 1.0":"f32(uniforms.xShape.z)"});
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
${e?"f32(uniforms.outShape.y) - 1.0":"f32(uniforms.outShape.y)"},
|
|
${t?"f32(uniforms.outShape.z) - 1.0":"f32(uniforms.outShape.z)"});
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC = ${this.halfPixelCenters?"(vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC - vec2<f32>(0.5)":"vec2<f32>(rc) * effectiveInputOverOutputRatioRC"};
|
|
|
|
// Compute the four integer indices.
|
|
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
|
|
let sourceCeilRC = vec2<i32>(
|
|
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
|
|
|
|
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
|
|
|
|
let top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
let newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(b, coords[1], coords[2], d, newValue);
|
|
}
|
|
}
|
|
`}};function cme(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,size:o,halfPixelCenters:i}=s,[l,c]=o,u=new ume(r.shape,l,c,a,i);return n.runWebGPUProgram(u,[r],"float32")}var dme={kernelName:eo,backendName:"webgpu",kernelFunc:cme},pme=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.alignCorners=s,this.halfPixelCenters=r,this.shaderKey=`resizeNearest_${s}_${this.outputShape[1]>1}_${this.outputShape[2]>1}_${r}`}getUserCode(){let e=this.alignCorners?"0.5":"0.0",t;this.halfPixelCenters?t="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":t="vec2<f32>(rc) * effectiveInputOverOutputRatioRC";let n=this.alignCorners&&this.outputShape[1]>1,s=this.alignCorners&&this.outputShape[2]>1;return`
|
|
${Me()} {
|
|
${He()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
if (all(coords < uniforms.outShape)) {
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
${n?"f32(uniforms.xShape.y) - 1.0":"f32(uniforms.xShape.y)"},
|
|
${s?"f32(uniforms.xShape.z) - 1.0":"f32(uniforms.xShape.z)"});
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
${n?"f32(uniforms.outShape.y) - 1.0":"f32(uniforms.outShape.y)"},
|
|
${s?"f32(uniforms.outShape.z) - 1.0":"f32(uniforms.outShape.z)"});
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC = ${t};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
|
|
let sourceNearestRC = vec2<i32>(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${e})));
|
|
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(b, coords[1], coords[2], d, newValue);
|
|
}
|
|
}
|
|
`}};function hme(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=new pme(r.shape,l,c,a,o);return n.runWebGPUProgram(u,[r],r.dtype)}var fme={kernelName:hu,backendName:"webgpu",kernelFunc:hme},mme=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32; centerY : f32; sinRadians : f32;
|
|
cosRadians : f32;`,this.shaderKey="rotate",this.size=v.sizeFromShape(this.outputShape),this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32;",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>;",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
|
|
${Me()} {
|
|
${He()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getOutputCoords(globalId, index);
|
|
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.sinRadians;
|
|
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.cosRadians;
|
|
let coordX = i32(round(coordXFloat + uniforms.centerX));
|
|
let coordY = i32(round(coordYFloat + uniforms.centerY));
|
|
${this.fillSnippet}
|
|
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
|
|
coordY < uniforms.xShape[1]) {
|
|
outputValue = getX(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutputFlat(index, outputValue);
|
|
}
|
|
}
|
|
`}},gme={kernelName:Wi,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new mme(s.shape,a),[c,u]=E.getImageCenter(o,s.shape[1],s.shape[2]),d=[{type:"float32",data:[c]},{type:"float32",data:[u]},{type:"float32",data:[Math.sin(r)]},{type:"float32",data:[Math.cos(r)]}];return typeof a=="number"?d.push({type:"float32",data:[Number.parseFloat(a.toFixed(2))]}):d.push({type:"float32",data:a}),i.runWebGPUProgram(l,[s],s.dtype,d)}},yme=$n({opType:Fe.RSQRT,cpuKernelImpl:gpe}),Ame={kernelName:no,backendName:"webgpu",kernelFunc:yme},u6=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.workGroupSize=[64,1,1],this.workPerThread=4,this.outputShape=a,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let i=t>1;this.shaderKey=`scatter_${n}_${s}_${i}`,this.size=v.sizeFromShape(this.outputShape);let l=ln(r.length);this.uniforms=`updateSize : i32; sliceDim : i32; strides: ${l};`;let c="";n===1?c="i":n===2&&(c="i, j"),this.indicesSnippet=`getIndices(${c})`;let u="";s===1?u="i":s===2&&(u="i, coords[1]"),this.updatesSnippet=`getUpdates(${u})`,this.strideString=i?"uniforms.strides[j]":"uniforms.strides"}getUserCode(){return`
|
|
${Me()} {
|
|
${He()}
|
|
|
|
let globalIndex = index * ${this.workPerThread};
|
|
if (globalIndex < uniforms.size) {
|
|
var sum = vec4<f32>(0.0);
|
|
var found = vec4<bool>(false);
|
|
for (var i = 0; i < uniforms.updateSize; i = i + 1) {
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${this.indicesSnippet}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${this.strideString};
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
let coords = getCoordsFromFlatIndex(curIndex);
|
|
if (flattenedIndex == coords[0]) {
|
|
sum[innerIndex] = sum[innerIndex] + ${this.updatesSnippet};
|
|
found[innerIndex] = true;
|
|
}
|
|
}
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
if (curIndex < uniforms.size)
|
|
{
|
|
setOutputFlat(curIndex, mix(getDefaultValue(), sum[innerIndex], f32(found[innerIndex])));
|
|
}
|
|
}
|
|
}
|
|
}`}};function xme(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=E.calculateShapes(a,r,o),p=[d/c,c];if(d===0)return n.makeTensorInfo(o,r.dtype);let h=st({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=st({inputs:{x:a},backend:n,attrs:{shape:[l,c]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=[{type:"int32",data:[l]},{type:"int32",data:[i]},{type:"int32",data:u}],y=new u6(l,i,h.shape.length,f.shape.length,u,p),A=n.runWebGPUProgram(y,[f,h,m],f.dtype,g),x=st({inputs:{x:A},backend:n,attrs:{shape:o}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(A.dataId),n.disposeData(m.dataId),x}var bme={kernelName:Ri,backendName:"webgpu",kernelFunc:xme},vme=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.outputShape=t,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=n,this.shaderKey="select",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let s=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[],a=[];for(let o=0;o<this.outputShape.length;o++)a.push(`${s[o]}`),o<this.cRank&&r.push(`${s[o]}`);e=r.join(),t=a.join()}return`
|
|
${Me()} {
|
|
${He()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getOutputCoords(globalId, index);
|
|
let cVal = getC(${e});
|
|
if (cVal >= 1.0) {
|
|
setOutputFlat(index, getA(${t}));
|
|
} else {
|
|
setOutputFlat(index, getB(${t}));
|
|
}
|
|
}
|
|
}
|
|
`}};function wme(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new vme(s.shape.length,r.shape,r.shape.length);return n.runWebGPUProgram(o,[s,r,a],Bn(r.dtype,a.dtype))}var kme={kernelName:$i,backendName:"webgpu",kernelFunc:wme},Ime=$n({opType:Fe.SIGMOID}),Sme={kernelName:ro,backendName:"webgpu",kernelFunc:Ime},Cme=$n({opType:Fe.SIN}),Tme={kernelName:so,backendName:"webgpu",kernelFunc:Cme},Nme=$n({opType:Fe.SINH}),Eme={kernelName:_i,backendName:"webgpu",kernelFunc:Nme},c6=Kn({opSnippet:je.SUB,cpuKernelImpl:vpe,supportsComplex:!0}),Rme={kernelName:uo,backendName:"webgpu",kernelFunc:c6};function $me(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=a6({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=E.expandShapeToKeepDim(i.shape,o),c=st({inputs:{x:i},backend:n,attrs:{shape:l}}),u=c6({inputs:{a:r,b:c},backend:n}),d=t6({inputs:{x:u},backend:n}),p=Lx({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=st({inputs:{x:p},backend:n,attrs:{shape:l}}),f=l6({inputs:{a:d,b:h},backend:n});return n.disposeData(i.dataId),n.disposeData(c.dataId),n.disposeData(u.dataId),n.disposeData(d.dataId),n.disposeData(p.dataId),n.disposeData(h.dataId),f}var Dme={kernelName:io,backendName:"webgpu",kernelFunc:$me},_me=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((y,A)=>y*A),l=[[0,0]];l.push(...o);for(let y=1+a.length;y<r.shape.length;++y)l.push([0,0]);let c=[],u=i6({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=E.getReshaped(u.shape,a,i,!1),p=E.getPermuted(d.length,a.length,!1),h=E.getReshapedPermuted(u.shape,a,i,!1),f=st({inputs:{x:u},backend:n,attrs:{shape:d}}),m=Il({inputs:{x:f},backend:n,attrs:{perm:p}}),g=st({inputs:{x:m},backend:n,attrs:{shape:h}});return c.push(u),c.push(f),c.push(m),c.forEach(y=>n.disposeData(y.dataId)),g},Pme={kernelName:Pi,backendName:"webgpu",kernelFunc:_me};function Fme(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,strides:u,outputSize:d}=E.calculateShapes(a,r,i),p=!1,h=[{type:"int32",data:[c]},{type:"int32",data:[l]},{type:"int32",data:u}],f=new u6(c,l,r.shape.length,a.shape.length,u,[d,1],p),m=n.runWebGPUProgram(f,[a,r,o],a.dtype,h),g=st({inputs:{x:m},backend:n,attrs:{shape:i}});return n.disposeData(m.dataId),g}var Ome={kernelName:ed,backendName:"webgpu",kernelFunc:Fme};function Mme(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=r.shape.length,u=new Array(c).fill(0),d=r.shape.slice();return l.map(p=>{let h=[...d];h[i]=p;let f=vp({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=p,f})}var zme={kernelName:Fi,backendName:"webgpu",kernelFunc:Mme},Lme=$n({opType:Fe.SQRT}),Bme={kernelName:ao,backendName:"webgpu",kernelFunc:Lme},Wme={kernelName:yu,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t,r=new Jm(n.shape,Fe.SQUARE);return s.runWebGPUProgram(r,[n],n.dtype)}},Vme=Kn({opSnippet:je.SQUARED_DIFFERENCE}),Ume={kernelName:lo,backendName:"webgpu",kernelFunc:Vme},Gme=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=ln(this.outputShape.length);this.uniforms=`begin : ${t}; strides : ${t}; `,this.shaderKey="stridedSlice",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let s=0;t=this.outputShape.map((r,a)=>(s++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${s-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
|
|
${Me()} {
|
|
${He()}
|
|
if (index < uniforms.size) {
|
|
let coords = getOutputCoords(globalId, index);
|
|
setOutputFlat(index, getX(${t}));
|
|
}
|
|
}
|
|
`}};function Hme(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{nonStrided:h,$begin:f,$strides:m,size:g,newShape:y,outShape:A}=yn.sliceInfo(r.shape,a,o,i,l,c,u,d,p),x=st({inputs:{x:r},backend:n,attrs:{shape:y}}),b;if(h){let k=vp({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=st({inputs:{x:k},backend:n,attrs:{shape:A}}),n.disposeData(k.dataId)}else if(A.some(k=>k===0))b=n.makeTensorInfo(A,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let N=n.tensorMap.get(x.dataId).values,$=We(x.shape,x.dtype,N),F=xpe(A,$,m,f);b=n.makeTensorInfo(A,x.dtype,F.values)}else{let S=new Gme(A),N=[{type:"int32",data:f},{type:"int32",data:m}];b=n.runWebGPUProgram(S,[x],x.dtype,N)}let w=st({inputs:{x:b},backend:n,attrs:{shape:A}});return n.disposeData(x.dataId),n.disposeData(b.dataId),w}var jme={kernelName:Oi,backendName:"webgpu",kernelFunc:Hme};function qme(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.readSync(u.dataId),h=n.readSync(d.dataId),[f,m]=bpe(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Xme={kernelName:td,backendName:"webgpu",kernelFunc:qme},Kme=$n({opType:Fe.TANH}),Zme={kernelName:co,backendName:"webgpu",kernelFunc:Kme},Yme=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.rank=this.outputShape.length,this.size=v.sizeFromShape(this.outputShape),this.shaderKey="tile"}getUserCode(){let e=Jme(this.rank,"uniforms.");return`
|
|
${Me()} {
|
|
${He()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getOutputCoords(globalId, index);
|
|
setOutputFlat(index, getA(${e}));
|
|
}
|
|
}
|
|
`}};function Jme(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e;r++)s.push(`(${n[r]} % ${t}aShape[${r}])`);return s.join()}function Qme(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(n.shouldExecuteOnCPU([r])||r.dtype==="string"||r.shape.length>=5){let l=n.readSync(r.dataId),c=r.dtype==="string"?l.map(p=>v.decodeString(p)):l,u=We(r.shape,r.dtype,c),d=wpe(u,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new Yme(r.shape,a);return n.runWebGPUProgram(o,[r],r.dtype)}var e0e={kernelName:Kr,backendName:"webgpu",kernelFunc:Qme},t0e=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32; fillModeId : i32; fillValue : f32;",this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return`
|
|
fn mapCoord(outCoord : f32, len : f32) -> f32{
|
|
var inCoord = outCoord;
|
|
if(uniforms.fillModeId == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
if (inCoord < -len) {
|
|
inCoord = inCoord + sz2;
|
|
} else {
|
|
inCoord = -inCoord - 1.0;
|
|
}
|
|
}
|
|
} elseif (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} elseif (uniforms.fillModeId == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
|
|
}
|
|
} elseif (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} elseif (uniforms.fillModeId == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
}
|
|
return outCoord;
|
|
}
|
|
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
|
|
channel : i32) -> f32 {
|
|
var outputValue : f32;
|
|
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = uniforms.fillValue;
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
${Me()} {
|
|
${He()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
var outputValue : f32;
|
|
let batch = coords[0];
|
|
let x = coords[2];
|
|
let y = coords[1];
|
|
let channel = coords[3];
|
|
let xf = f32(x);
|
|
let yf = f32(y);
|
|
let a1 = getTransforms(batch, 0);
|
|
let a2 = getTransforms(batch, 1);
|
|
let a3 = getTransforms(batch, 2);
|
|
let b1 = getTransforms(batch, 3);
|
|
let b2 = getTransforms(batch, 4);
|
|
let b3 = getTransforms(batch, 5);
|
|
let c1 = getTransforms(batch, 6);
|
|
let c2 = getTransforms(batch, 7);
|
|
let projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = uniforms.fillValue;
|
|
} else {
|
|
let inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
let inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
|
|
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
|
|
|
|
if (uniforms.interpolationModeId == 1) {
|
|
let coordY = i32(round(mapY));
|
|
let coordX = i32(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
let yFloor = floor(mapY);
|
|
let xFloor = floor(mapX);
|
|
let yCeil = yFloor + 1.0;
|
|
let xCeil = xFloor + 1.0;
|
|
let valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
|
|
let valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(coords[0], coords[1], coords[2], coords[3], outputValue);
|
|
}
|
|
}
|
|
`}};function n0e(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],y=new t0e(g),A=o==="nearest"?1:2,x;switch(i){case"constant":x=1;break;case"reflect":x=2;break;case"wrap":x=3;break;case"nearest":x=4;break;default:x=1;break}let b=[{type:"int32",data:[A]},{type:"int32",data:[x]},{type:"float32",data:[l]}];return n.runWebGPUProgram(y,[r,a],"float32",b)}var s0e={kernelName:zi,backendName:"webgpu",kernelFunc:n0e};function r0e(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],c=new Array(i-1),u=0;for(let m=0;m<i;m++)m!==a&&(c[u++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[a]=m;let g=vp({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),y=st({inputs:{x:g},backend:n,attrs:{shape:c}});f[m]=y,d.push(g)}return d.forEach(m=>n.disposeData(m.dataId)),f}var a0e={kernelName:Li,backendName:"webgpu",kernelFunc:r0e},o0e=[Ude,Spe,Tpe,Rpe,Ope,zpe,Bpe,Vpe,qpe,Ype,Qpe,she,qde,ihe,dhe,mhe,yhe,xhe,whe,She,The,Dhe,Phe,Ohe,zhe,Mhe,Bhe,Vhe,Ghe,Zhe,jhe,Xhe,Qhe,tfe,sfe,ofe,cfe,pfe,ffe,jde,ahe,gfe,Afe,bfe,wfe,Ife,Sfe,Tfe,Efe,$fe,_fe,Ffe,Mfe,Nhe,Lfe,Wfe,Ufe,Xpe,Hfe,qfe,Kfe,Qfe,tme,Yfe,sme,Kpe,rme,ome,lme,Wde,dme,fme,gme,Ame,bme,kme,Sme,Tme,Eme,Hpe,jme,Xme,Dme,Pme,zme,Ome,Bme,Wme,Ume,Rme,Rhe,Zme,e0e,s0e,Ppe,a0e,Gfe];for(let e of o0e)Yr(e);var i0e=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireBuffer(e,t){let n=d6(e,t);if(this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.usedBuffers.has(n)||this.usedBuffers.set(n,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(n).length>0){this.numFreeBuffers--;let r=this.freeBuffers.get(n).shift();return this.usedBuffers.get(n).push(r),r}this.numBytesAllocated+=e;let s=this.device.createBuffer({size:e,usage:t});return this.usedBuffers.get(n).push(s),s}releaseBuffer(e,t,n){if(this.freeBuffers==null)return;let s=d6(t,n);this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.freeBuffers.get(s).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let r=this.usedBuffers.get(s),a=r.indexOf(e);if(a<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");r.splice(a,1),this.numBytesUsed-=t}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}reset(){this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}dispose(){this.freeBuffers==null&&this.usedBuffers==null||(this.freeBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeBuffers=null,this.usedBuffers=null,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0)}};function d6(e,t){return`${e}_${t}`}var p6=class{constructor(){this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.lastUniformData=[],this.inputTexture=null,this.layout=null,this.lastPixelSize={width:0,height:0},this.disposed=!1,this.shaderKey="fromPixels",this.useImport=!1}updateOutputShape(e){v.arraysEqual(this.outputShape,e)||(this.outputShape=e,this.workPerThread=e[2],this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]))}makeFromPixelsSource(){let e=this.useImport?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
|
|
[[binding(1), group(0)]] var src: ${this.useImport?"texture_external":"texture_2d<f32>"};
|
|
|
|
${Me()} {
|
|
${He()}
|
|
let flatIndexBase = index * uniforms.numChannels;
|
|
let coords = getCoordsFromFlatIndex(flatIndexBase);
|
|
let values = ${e};
|
|
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
|
|
let flatIndex = flatIndexBase + i;
|
|
if (flatIndex < uniforms.size) {
|
|
result.numbers[flatIndex] = i32(floor(255.0 * values[i]));
|
|
}
|
|
}
|
|
}
|
|
`}getUserCode(){return this.makeFromPixelsSource()}setPipeline(e){this.pipeline=e}setUniform(e,t){if(!this.uniform){let n=e.createBuffer({size:t.length*4,usage:GPUBufferUsage.UNIFORM|GPUBufferUsage.COPY_DST});this.uniform=n}!t||t.length===this.lastUniformData.length&&t.every((n,s)=>n===this.lastUniformData[s])||(e.queue.writeBuffer(this.uniform,0,new Uint32Array(t)),this.lastUniformData=t)}makeInputTexture(e,t,n){return(!this.inputTexture||this.lastPixelSize.width!==t||this.lastPixelSize.height!==n)&&(this.inputTexture&&this.inputTexture.destroy(),this.inputTexture=e.createTexture({size:[t,n],format:"rgba8unorm",usage:GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING}),this.lastPixelSize.width=t,this.lastPixelSize.height=n),this.inputTexture}dispose(){this.disposed||(this.uniform&&this.uniform.destroy(),this.inputTexture&&this.inputTexture.destroy(),this.disposed=!0)}getLayout(e){return this.layout===null&&(this.layout=this.createTextureLayout(e)),this.layout}createTextureLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,texture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=e.createBindGroupLayout({entries:t}),s=e.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}},l0e=class extends p6{constructor(){super(...arguments);this.layout=null,this.useImport=!0}getUserCode(){return this.makeFromPixelsSource()}getLayout(e){return this.layout===null&&(this.layout=this.createTextureImportLayout(e)),this.layout}createTextureImportLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,externalTexture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=e.createBindGroupLayout({entries:t}),s=e.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}},u0e=Z().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),n0=class extends Ul{constructor(e,t=!1){super();if(this.commandQueueOwnedIds=new WeakSet,this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.disposed=!1,this.uploadWaitMs=0,this.downloadWaitMs=0,this.dispatchNumberInEncoder=0,!_x())throw new Error("WebGPU is not supported on this device");this.layoutCache={},this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=t,this.bufferManager=new i0e(this.device),this.tensorMap=new Bc(this,ns()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),Z().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return n0.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}flushDisposalQueue(){this.tensorDisposalQueue.forEach(e=>{this.maybeReleaseBuffer(e),this.tensorMap.delete(e)}),this.uniformDisposalQueue.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.byteSize,e.usage)),this.tensorDisposalQueue=[],this.uniformDisposalQueue=[]}disposeData(e,t=!1){if(this.tensorMap.has(e)){let n=this.tensorMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDisposalQueue.push(e),!1;this.maybeReleaseBuffer(e);let{complexTensorInfos:s}=this.tensorMap.get(e);s!=null&&(this.disposeData(s.real.dataId,!0),this.disposeData(s.imag.dataId,!0)),this.tensorMap.delete(e)}return!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}getBufferManager(){return this.bufferManager}acquireBuffer(e,t=this.defaultGpuBufferUsage()){return this.bufferManager.acquireBuffer(e,t)}maybeReleaseBuffer(e){let t=this.tensorMap.get(e);t!=null&&t.bufferInfo.buffer!=null&&(this.bufferManager.releaseBuffer(t.bufferInfo.buffer,t.bufferInfo.byteSize,t.bufferInfo.usage),t.bufferInfo.buffer=null)}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,n){if(n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()},r=v.sizeFromShape(t)*Dx(n);return n==="bool"&&e instanceof Uint8Array&&(e=Int32Array.from(e)),this.tensorMap.set(s,{dtype:n,values:e,bufferInfo:{byteSize:r,usage:this.defaultGpuBufferUsage()},refCount:1}),s}move(e,t,n,s,r){if(s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a=v.sizeFromShape(n)*Dx(s);this.tensorMap.set(e,{dtype:s,values:t,bufferInfo:{byteSize:a,usage:this.defaultGpuBufferUsage()},refCount:r})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.flushDisposalQueue()}getBuffer(e){return this.uploadToGPU(e),this.tensorMap.get(e).bufferInfo.buffer}getFromPixelsProgram(e){switch(e){case"copyExternal":return this.fromPixelProgram||(this.fromPixelProgram=new p6),this.fromPixelProgram;case"import":return this.fromPixelImportProgram||(this.fromPixelImportProgram=new l0e),this.fromPixelImportProgram;default:v.assert(!1,()=>"Unsupported fromPixels shape");return}}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.endPass(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e){if(e.values!=null)return e.values;let t=this.acquireBuffer(e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e.bufferInfo.buffer,0,t,0,e.bufferInfo.byteSize),this.submitQueue(),await t.mapAsync(GPUMapMode.READ);let n=t.getMappedRange().slice(0);return t.unmap(),t!=null&&this.bufferManager.releaseBuffer(t,e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),Z().getBool("WEBGPU_USE_PROFILE_TOOL")&&(v.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),n}convertAndCacheOnCPU(e,t){let n=this.tensorMap.get(e);return this.maybeReleaseBuffer(e),n.values=t,n.values}readSync(e){let t=this.tensorMap.get(e),{values:n}=t;if(n==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return n}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:n}=t;if(n!=null)return this.convertAndCacheOnCPU(e,n);let s;if(t.dtype==="complex64"){let r=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),a=r[0],o=r[1];s=E.mergeRealAndImagArrays(a,o)}else{let r=await this.getBufferData(t);s=FC(r,t.dtype)}return this.convertAndCacheOnCPU(e,s),s}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=v.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},i=await Promise.all(r);return o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,c)=>({name:a[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,o}getAndSavePipeline(e,t){return e in this.pipelineCache||(this.pipelineCache[e]=t()),this.pipelineCache[e]}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);return{offset:0,size:t.bufferInfo.byteSize,buffer:t.bufferInfo.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);t.bufferInfo.buffer==null&&(t.bufferInfo.buffer=this.acquireBuffer(t.bufferInfo.byteSize),t.values&&this.queue.writeBuffer(t.bufferInfo.buffer,0,t.values))}makeUniformsDataView(e){let t=this.acquireBuffer(e.byteLength,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);return this.queue.writeBuffer(t,0,e),{offset:0,size:e.byteLength,buffer:t}}arrayToDataView(e,t){let n=4,s=new DataView(new ArrayBuffer(t*n)),r=0;return e.forEach(a=>{let o=a.data;if(a.type!=="int32"&&a.type!=="float32"&&a.type!=="uint32")throw new Error(`${a.type} not supported!`);a.type==="int32"?o.forEach(i=>{s.setInt32(r*n,i,!0),r++}):a.type==="uint32"?o.forEach(i=>{s.setUint32(r*n,i,!0),r++}):o.forEach(i=>{s.setFloat32(r*n,i,!0),r++})}),s}computePadding(e){let t=0,n=0,s=0,r=[];return e.forEach((a,o)=>{a.data.length===0&&(a.data=[1]);let i;switch(a.data.length){case 0:i=1;break;case 1:i=1;break;case 2:i=2;break;case 3:i=4;break;case 4:i=4;break;default:v.assert(!1,()=>`Unsupported ${a.data.length}D shape`)}n=Math.ceil(t/i)*i-t;for(let l=0;l<n;++l)r.push({type:a.type,data:[0]}),s++;r.push({type:a.type,data:a.data}),s=s+a.data.length,t+=a.data.length+n}),this.arrayToDataView(r,s)}createLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}});for(let r=0;r<e;r++)t.push({binding:r+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"read-only-storage"}});t.push({binding:e+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"uniform"}});let n=this.device.createBindGroupLayout({entries:t}),s=this.device.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}getCachedOrCreateLayout(e){return e in this.layoutCache||(this.layoutCache[e]=this.createLayout(e)),this.layoutCache[e]}runWebGPUProgram(e,t,n,s){let r=this.makeTensorInfo(e.outputShape,n),a=this.tensorMap.get(r.dataId);if(v.sizeFromShape(r.shape)===0)return a.values=v.getTypedArrayFromDType(r.dtype,0),r;let o=[{type:"float32",data:[NaN]}],i=t.concat(r).map($=>$.shape),l="int32";i.map($=>{o.push({type:l,data:$})});let c=v.computeStrides(r.shape);o.push({type:l,data:c}),e.size!=null&&o.push({type:l,data:[e.size]}),o.push({type:"uint32",data:e.dispatch}),s&&(o=[...o,...s]);let u=null,d=this.computePadding(o),p=d.byteLength;u=this.makeUniformsDataView(d);let h=t.map(($,F)=>{if($.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU($.dataId),{dtype:this.tensorMap.get($.dataId).dtype,shape:$.shape,name:e.variableNames[F]}});this.uploadToGPU(r.dataId);let f=h.map($=>$.dtype).concat(r.dtype),m=h.map($=>E.getBroadcastDims($.shape,r.shape)),g=h.map($=>v.arraysEqual($.shape,r.shape)).join("_"),y=m.map($=>$.join("_")).join(";"),A=s6(e,i,f,y,g),{bindGroupLayout:x,pipelineLayout:b}=this.getCachedOrCreateLayout(e.variableNames.length),w=this.getAndSavePipeline(A,()=>n6(this.device,e,b,h,r)),k=this.activeTimers!=null,S=Khe(this.device,x,t.map($=>this.tensorToBinding($)),this.tensorToBinding(r),u);this.ensureCommandEncoderReady();let N=this.getComputePass();if(k&&this.supportTimeQuery&&N.writeTimestamp(this.querySet,0),N.setPipeline(w),N.setBindGroup(0,S),N.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),k&&this.supportTimeQuery&&N.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach($=>{this.commandQueueOwnedIds.add($.dataId)}),this.commandQueueOwnedIds.add(r.dataId),u){let $={byteSize:p,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:u.buffer};this.uniformDisposalQueue.push($)}return Z().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),k&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),r}runFromPixelsProgram(e,t,n,s,r){let a=this.device.createBindGroup({layout:n.bindGroupLayout,entries:[{binding:0,resource:{buffer:t}},{binding:1,resource:s},{binding:2,resource:{buffer:e.uniform}}]});this.ensureCommandEncoderReady();let o=this.getComputePass(),i=this.activeTimers!=null;i&&this.supportTimeQuery&&o.writeTimestamp(this.querySet,0),o.setPipeline(e.pipeline),o.setBindGroup(0,a),o.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),i&&this.supportTimeQuery&&o.writeTimestamp(this.querySet,1),this.commandQueueOwnedIds.add(r),this.submitQueue(),i&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)})}async getTimeFromQuerySet(e){let t=this.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),n=this.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,n,0,16),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=new BigUint64Array(n.getMappedRange()),r=Number(s[1]-s[0]);return n.unmap(),this.bufferManager.releaseBuffer(n,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r/1e6}shouldExecuteOnCPU(e,t=u0e){return Z().getBool("WEBGPU_CPU_FORWARD")&&e.every(n=>this.tensorMap.get(n.dataId).bufferInfo.buffer==null&&v.sizeFromShape(n.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDisposalQueue.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.fromPixelProgram&&this.fromPixelProgram.dispose(),this.fromPixelImportProgram&&this.fromPixelImportProgram.dispose(),this.disposed=!0)}};n0.nextDataId=0;var h6={};Le(h6,{WebGPUBackend:()=>n0,webgpu_util:()=>PC});vu.isBrowser()&&_x()&&Xi("webgpu",async()=>{Z().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:Z().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),n={},s=t.features.has("timestamp-query");s?n={requiredFeatures:["timestamp-query"]}:console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.");let r=await t.requestDevice(n);return new n0(r,s)},3);var c0e="3.9.0",d0e="3.9.0",p0e="3.9.0",h0e="3.9.0",f0e="3.9.0",m0e="3.9.0",g0e="3.9.0",y0e="3.9.0",A0e={tfjs:c0e,"tfjs-core":d0e,"tfjs-data":p0e,"tfjs-layers":h0e,"tfjs-converter":f0e,"tfjs-backend-cpu":m0e,"tfjs-backend-webgl":g0e,"tfjs-backend-wasm":y0e};var Wx="2.3.3";var f6=`
|
|
precision highp float;
|
|
attribute vec2 pos;
|
|
attribute vec2 uv;
|
|
varying vec2 vUv;
|
|
uniform float flipY;
|
|
void main(void) {
|
|
vUv = uv;
|
|
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
|
|
}
|
|
`;var m6=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
|
|
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
|
|
}
|
|
`,g6=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
|
|
gl_FragColor.a = c.a;
|
|
}
|
|
`,y6=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform vec2 size;
|
|
uniform sampler2D texture;
|
|
vec2 pixelate(vec2 coord, vec2 size) {
|
|
return floor( coord / size ) * size;
|
|
}
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
vec2 coord = pixelate(vUv, size);
|
|
gl_FragColor += texture2D(texture, coord);
|
|
}
|
|
`,A6=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
|
|
}
|
|
`,x6=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
uniform float m[9];
|
|
void main(void) {
|
|
vec4 c11 = texture2D(texture, vUv - px); // top left
|
|
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
|
|
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
|
|
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
|
|
vec4 c22 = texture2D(texture, vUv); // mid center
|
|
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
|
|
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
|
|
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
|
|
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
|
|
gl_FragColor =
|
|
c11 * m[0] + c12 * m[1] + c22 * m[2] +
|
|
c21 * m[3] + c22 * m[4] + c23 * m[5] +
|
|
c31 * m[6] + c32 * m[7] + c33 * m[8];
|
|
gl_FragColor.a = c22.a;
|
|
}
|
|
`;var Vx=(e,t,n)=>{let s=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(s,(r,a)=>(n[a]=0,r))},b6=class{constructor(t,n,s){ve(this,"uniform",{});ve(this,"attribute",{});ve(this,"gl");ve(this,"id");ve(this,"compile",(t,n)=>{let s=this.gl.createShader(n);if(this.gl.shaderSource(s,t),this.gl.compileShader(s),!this.gl.getShaderParameter(s,this.gl.COMPILE_STATUS))throw new Error(`filter: gl compile failed: ${this.gl.getShaderInfoLog(s)}`);return s});this.gl=t;let r=this.compile(n,this.gl.VERTEX_SHADER),a=this.compile(s,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,a),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS))throw new Error(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)}`);this.gl.useProgram(this.id),Vx(n,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=this.gl.getAttribLocation(this.id,o);Vx(n,"uniform",this.uniform),Vx(s,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=this.gl.getUniformLocation(this.id,o)}};function v6(e={}){let t=0,n=null,s=!1,r=-1,a=[null,null],o=[],i=null,l=null,c=e.canvas||typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(100,100):document.createElement("canvas"),u={},d={INTERMEDIATE:1},p=c.getContext("webgl");if(!p)throw new Error("filter: cannot get webgl context");function h(x,b){if(!(x===c.width&&b===c.height)){if(c.width=x,c.height=b,!i){let w=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);i=p.createBuffer(),p.bindBuffer(p.ARRAY_BUFFER,i),p.bufferData(p.ARRAY_BUFFER,w,p.STATIC_DRAW),p.pixelStorei(p.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}p.viewport(0,0,c.width,c.height),a=[null,null]}}function f(x,b){let w=p.createFramebuffer();p.bindFramebuffer(p.FRAMEBUFFER,w);let k=p.createRenderbuffer();p.bindRenderbuffer(p.RENDERBUFFER,k);let S=p.createTexture();return p.bindTexture(p.TEXTURE_2D,S),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,x,b,0,p.RGBA,p.UNSIGNED_BYTE,null),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.framebufferTexture2D(p.FRAMEBUFFER,p.COLOR_ATTACHMENT0,p.TEXTURE_2D,S,0),p.bindTexture(p.TEXTURE_2D,null),p.bindFramebuffer(p.FRAMEBUFFER,null),{fbo:w,texture:S}}function m(x){return a[x]=a[x]||f(c.width,c.height),a[x]}function g(x=0){var S,N;if(!l)return;let b=null,w=null,k=!1;t===0?b=n:b=((S=m(r))==null?void 0:S.texture)||null,t++,s&&!(x&d.INTERMEDIATE)?(w=null,k=t%2==0):(r=(r+1)%2,w=((N=m(r))==null?void 0:N.fbo)||null),p.bindTexture(p.TEXTURE_2D,b),p.bindFramebuffer(p.FRAMEBUFFER,w),p.uniform1f(l.uniform.flipY,k?-1:1),p.drawArrays(p.TRIANGLES,0,6)}function y(x){if(u[x])return l=u[x],p.useProgram((l==null?void 0:l.id)||null),l;l=new b6(p,f6,x);let b=Float32Array.BYTES_PER_ELEMENT,w=4*b;return p.enableVertexAttribArray(l.attribute.pos),p.vertexAttribPointer(l.attribute.pos,2,p.FLOAT,!1,w,0*b),p.enableVertexAttribArray(l.attribute.uv),p.vertexAttribPointer(l.attribute.uv,2,p.FLOAT,!1,w,2*b),u[x]=l,l}let A={colorMatrix:x=>{let b=new Float32Array(x);b[4]/=255,b[9]/=255,b[14]/=255,b[19]/=255;let w=b[18]===1&&b[3]===0&&b[8]===0&&b[13]===0&&b[15]===0&&b[16]===0&&b[17]===0&&b[19]===0?g6:m6,k=y(w);p.uniform1fv(k==null?void 0:k.uniform.m,b),g()},brightness:x=>{let b=(x||0)+1;A.colorMatrix([b,0,0,0,0,0,b,0,0,0,0,0,b,0,0,0,0,0,1,0])},saturation:x=>{let b=(x||0)*2/3+1,w=(b-1)*-.5;A.colorMatrix([b,w,w,0,0,w,b,w,0,0,w,w,b,0,0,0,0,0,1,0])},desaturate:()=>{A.saturation(-1)},contrast:x=>{let b=(x||0)+1,w=-128*(b-1);A.colorMatrix([b,0,0,0,w,0,b,0,0,w,0,0,b,0,w,0,0,0,1,0])},negative:()=>{A.contrast(-2)},hue:x=>{x=(x||0)/180*Math.PI;let b=Math.cos(x),w=Math.sin(x),k=.213,S=.715,N=.072;A.colorMatrix([k+b*(1-k)+w*-k,S+b*-S+w*-S,N+b*-N+w*(1-N),0,0,k+b*-k+w*.143,S+b*(1-S)+w*.14,N+b*-N+w*-.283,0,0,k+b*-k+w*-(1-k),S+b*-S+w*S,N+b*(1-N)+w*N,0,0,0,0,0,1,0])},desaturateLuminance:()=>{A.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{A.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{A.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{A.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{A.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{A.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{A.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{A.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:x=>{let b=new Float32Array(x),w=1/c.width,k=1/c.height,S=y(x6);p.uniform1fv(S==null?void 0:S.uniform.m,b),p.uniform2f(S==null?void 0:S.uniform.px,w,k),g()},detectEdges:()=>{A.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{A.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{A.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:x=>{let b=x||1;A.convolution.call(this,[0,-1*b,0,-1*b,1+4*b,-1*b,0,-1*b,0])},emboss:x=>{let b=x||1;A.convolution.call(this,[-2*b,-1*b,0,-1*b,1,1*b,0,1*b,2*b])},blur:x=>{let b=x/7/c.width,w=x/7/c.height,k=y(A6);p.uniform2f(k==null?void 0:k.uniform.px,0,w),g(d.INTERMEDIATE),p.uniform2f(k==null?void 0:k.uniform.px,b,0),g()},pixelate:x=>{let b=x/c.width,w=x/c.height,k=y(y6);p.uniform2f(k==null?void 0:k.uniform.size,b,w),g()}};this.add=function(x){let b=Array.prototype.slice.call(arguments,1),w=A[x];o.push({func:w,args:b})},this.reset=function(){o=[]},this.get=function(){return o},this.apply=function(x){h(x.width,x.height),t=0,n||(n=p.createTexture()),p.bindTexture(p.TEXTURE_2D,n),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.NEAREST),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.NEAREST),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,p.RGBA,p.UNSIGNED_BYTE,x);for(let b=0;b<o.length;b++){s=b===o.length-1;let w=o[b];w.func.apply(this,w.args||[])}return c},this.draw=function(x){return this.add("brightness",0),this.apply(x)}}var ie={browser:void 0,node:void 0,worker:void 0,platform:void 0,agent:void 0,initial:!0,backends:[],offscreen:void 0,filter:void 0,tfjs:{version:void 0},wasm:{supported:void 0,backend:void 0,simd:void 0,multithread:void 0},webgl:{supported:void 0,backend:void 0,version:void 0,renderer:void 0},webgpu:{supported:void 0,backend:void 0,adapter:void 0},kernels:[],Canvas:void 0,Image:void 0,ImageData:void 0};async function b0e(){var n;ie.backends=Object.keys(ns().registryFactory),ie.wasm.supported=typeof WebAssembly!="undefined",ie.wasm.backend=ie.backends.includes("wasm"),ie.wasm.supported&&ie.wasm.backend&&ur()==="wasm"&&(ie.wasm.simd=await Z().getAsync("WASM_HAS_SIMD_SUPPORT"),ie.wasm.multithread=await Z().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let e=Cs(100,100),t=e?e.getContext("webgl2"):void 0;if(ie.webgl.supported=typeof t!="undefined",ie.webgl.backend=ie.backends.includes("webgl"),ie.webgl.supported&&ie.webgl.backend&&(ur()==="webgl"||ur()==="humangl")){let s=Tr().gpgpu!=="undefined"?await Tr().getGPGPUContext().gl:null;s&&(ie.webgl.version=s.getParameter(s.VERSION),ie.webgl.renderer=s.getParameter(s.RENDERER))}ie.webgpu.supported=ie.browser&&typeof navigator.gpu!="undefined",ie.webgpu.backend=ie.backends.includes("webgpu"),ie.webgpu.supported&&(ie.webgpu.adapter=(n=await navigator.gpu.requestAdapter())==null?void 0:n.name),ie.kernels=Zr(ur()).map(s=>s.kernelName.toLowerCase())}async function s0(){if(ie.browser=typeof navigator!="undefined",ie.node=typeof process!="undefined",ie.tfjs.version=Zh,ie.offscreen=typeof ie.offscreen=="undefined"?typeof OffscreenCanvas!="undefined":ie.offscreen,typeof navigator!="undefined"){let e=navigator.userAgent.match(/\(([^()]+)\)/g);if(e&&e[0]){let t=e[0].match(/\(([^()]+)\)/g);ie.platform=t&&t[0]?t[0].replace(/\(|\)/g,""):"",ie.agent=navigator.userAgent.replace(e[0],""),ie.platform[1]&&(ie.agent=ie.agent.replace(e[1],"")),ie.agent=ie.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(ie.platform=`${process.platform} ${process.arch}`,ie.agent=`NodeJS ${process.version}`);ie.worker=ie.browser&&ie.offscreen?typeof WorkerGlobalScope!="undefined":void 0,await b0e()}async function w6(e){ie=fn(ie,e)}var r0=2048,pt=null,Gt=null,Bo=null,Ot;function Cs(e,t){let n;if(ie.browser)if(ie.offscreen)n=new OffscreenCanvas(e,t);else{if(typeof document=="undefined")throw new Error("attempted to run in web worker but offscreenCanvas is not supported");n=document.createElement("canvas"),n.width=e,n.height=t}else typeof ie.Canvas!="undefined"?n=new ie.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(n=new globalThis.Canvas(e,t));return n}function Ux(e,t){let n=t||Cs(e.width,e.height);return n.getContext("2d").drawImage(e,0,0),n}function gc(e,t,n=!0){if(!e)return t.debug&&ae("input is missing"),{tensor:null,canvas:null};if(!(e instanceof Ke)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ie.Canvas!="undefined"&&e instanceof ie.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input type is not recognized");if(e instanceof Ke){if(e.isDisposedInternal)throw new Error("input tensor is disposed");if(!e.shape||e.shape.length!==4||e.shape[0]!==1||e.shape[3]!==3)throw new Error(`input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);return{tensor:lr(e),canvas:t.filter.return?Gt:null}}else{if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&ae("input stream is not ready"),{tensor:null,canvas:pt};let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return t.debug&&ae("cannot determine input dimensions"),{tensor:null,canvas:pt};let a=s,o=r;if(a>r0&&(a=r0,o=Math.trunc(a*r/s)),o>r0&&(o=r0,a=Math.trunc(o*s/r)),(t.filter.width||0)>0?a=t.filter.width:(t.filter.height||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("input cannot determine dimension");(!pt||(pt==null?void 0:pt.width)!==a||(pt==null?void 0:pt.height)!==o)&&(pt=Cs(a,o));let i=pt.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,pt==null?void 0:pt.width,pt==null?void 0:pt.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,pt==null?void 0:pt.width,pt==null?void 0:pt.height),(!Gt||pt.width!==Gt.width||(pt==null?void 0:pt.height)!==(Gt==null?void 0:Gt.height))&&(Gt=Cs(pt.width,pt.height)),t.filter.enabled&&ie.webgl.supported){if(Ot||(Ot=ie.browser?new v6({canvas:Gt}):null),ie.filter=!!Ot,!Ot)return{tensor:null,canvas:pt};Ot.reset(),t.filter.brightness!==0&&Ot.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Ot.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Ot.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Ot.add("blur",t.filter.blur),t.filter.saturation!==0&&Ot.add("saturation",t.filter.saturation),t.filter.hue!==0&&Ot.add("hue",t.filter.hue),t.filter.negative&&Ot.add("negative"),t.filter.sepia&&Ot.add("sepia"),t.filter.vintage&&Ot.add("brownie"),t.filter.sepia&&Ot.add("sepia"),t.filter.kodachrome&&Ot.add("kodachrome"),t.filter.technicolor&&Ot.add("technicolor"),t.filter.polaroid&&Ot.add("polaroid"),t.filter.pixelate!==0&&Ot.add("pixelate",t.filter.pixelate),Ot.get()>0?Gt=Ot.apply(pt):Gt=Ot.draw(pt)}else Ux(pt,Gt),Ot&&(Ot=null),ie.filter=!!Ot;if(!n)return{tensor:null,canvas:Gt};if(!Gt)throw new Error("cannot create output canvas");let l,c=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(ie.browser&&Ks)l=Ks?Ks.fromPixels(e):null;else{c=e.data.length/e.height/e.width;let p=new Uint8Array(e.data.buffer);l=jt(p,[e.height,e.width,c],"int32")}else if((!Bo||Gt.width!==Bo.width||(Gt==null?void 0:Gt.height)!==(Bo==null?void 0:Bo.height))&&(Bo=Cs(Gt.width,Gt.height)),Ks&&ie.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=Ks.fromPixels(Gt):(Bo=Ux(Gt),l=Ks.fromPixels(Bo));else{let f=Ux(Gt).getContext("2d").getImageData(0,0,a,o);c=f.data.length/a/o;let m=new Uint8Array(f.data.buffer);l=jt(m,[a,o,c])}if(c===4){let p=Mu(l,[0,0,0],[-1,-1,3]);ee(l),l=p}if(!l)throw new Error("cannot create tensor from input");let u=pe(l,"float32"),d=qt(u,0);return ee([l,u]),{tensor:d,canvas:t.filter.return?Gt:null}}}var Gx=0,Hx=1,jx=0,v0e=async e=>{let t=48,n=$e.resizeBilinear(e,[Math.trunc((e.shape[1]||1)/t),Math.trunc((e.shape[2]||1)/t)]),s=async()=>{let o=ke(n),i=await o.data();return ee(o),i[0]},r=async()=>{let o=await n.data(),i=0;for(let l=0;l<o.length/3;l++)i+=o[3*l+2];return i};if(jx===0){let o=performance.now();await r();let i=performance.now();await s();let l=performance.now();jx=i-o<l-i?1:2}let a=jx===1?await r():await s();return ee(n),a};async function k6(e,t){if(e.cacheSensitivity===0)return!1;let n=await v0e(t),s=100*(Math.max(n,Gx)/Math.min(n,Gx)-1);Gx=n;let r=s<Math.max(e.cacheSensitivity,Hx);return Hx=s>10*e.cacheSensitivity?0:s,r=r&&Hx>0,r}var Wo;var Wge=Number.MAX_SAFE_INTEGER;async function I6(e){return ie.initial&&(Wo=null),Wo?e.debug&&ae("cached model:",Wo.modelUrl):(Wo=await ot(lt(e.modelBasePath,e.face.agegenderrace.modelPath)),!Wo||!Wo.modelUrl?ae("load model failed:",e.face.agegenderrace.modelPath):e.debug&&ae("load model:",Wo.modelUrl)),Wo}var un,a0=[],qx=Number.MAX_SAFE_INTEGER,S6=0;async function C6(e){var t,n;return ie.initial&&(un=null),un?e.debug&&ae("cached model:",un.modelUrl):(un=await ot(lt(e.modelBasePath,((t=e.face.antispoof)==null?void 0:t.modelPath)||"")),!un||!un.modelUrl?ae("load model failed:",(n=e.face.antispoof)==null?void 0:n.modelPath):e.debug&&ae("load model:",un.modelUrl)),un}async function Xx(e,t,n,s){var r;return un?qx<(((r=t.face.antispoof)==null?void 0:r.skipFrames)||0)&&t.skipFrame&&S6===s&&a0[n]?(qx++,a0[n]):(qx=0,new Promise(async a=>{let o=$e.resizeBilinear(e,[(un==null?void 0:un.inputs[0].shape)?un.inputs[0].shape[2]:0,(un==null?void 0:un.inputs[0].shape)?un.inputs[0].shape[1]:0],!1),i=un==null?void 0:un.predict(o),l=(await i.data())[0];a0[n]=Math.round(100*l)/100,S6=s,ee([o,i]),a(a0[n])})):null}var Lr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Kx={count:468,mouth:13,symmetryLine:[13,Lr.midwayBetweenEyes[0]]},Ip={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Zx=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Sp=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],Cl=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var w0e=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],k0e=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],I0e=[33,133,362,263,1,78,308],qge=w0e.map(e=>Sp[e]),Xge=k0e.map(e=>Sp[e]),Kge=I0e.map(e=>Sp[e]);var T6=e=>({startPoint:_e(e,[0,0],[-1,2]),endPoint:_e(e,[0,2],[-1,2])});var Cp=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],o0=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2],Yx=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],Jx=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],N6=(e,t)=>{let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s}},Qx=(e,t,n)=>{let s=t.shape[1],r=t.shape[2];return $e.cropAndResize(t,[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]],[0],n)},Tp=(e,t=1.5)=>{let n=o0(e),s=Cp(e),r=[t*s[0]/2,t*s[1]/2];return{startPoint:[n[0]-r[0],n[1]-r[1]],endPoint:[n[0]+r[0],n[1]+r[1]],landmarks:e.landmarks}},Np=e=>{let t=o0(e),n=Cp(e),s=Math.max(...n)/2;return{startPoint:[Math.round(t[0]-s),Math.round(t[1]-s)],endPoint:[Math.round(t[0]+s),Math.round(t[1]+s)],landmarks:e.landmarks}},i0=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return{startPoint:[Math.min(...t),Math.min(...n)],endPoint:[Math.max(...t),Math.max(...n)],landmarks:e}},l0=[[1,0,0],[0,1,0],[0,0,1]],S0e=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),C0e=(e,t)=>S0e(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var E6=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Tl=(e,t)=>{let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n},T0e=(e,t)=>{let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n},R6=(e,t)=>{let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(Tl(e[r],T0e(t,a)))}return n},$6=(e,t)=>{let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=E6(t[0],t[1]),o=R6(a,r),i=E6(-t[0],-t[1]);return R6(o,i)},N0e=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-Tl(t[0],n),-Tl(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]},E0e=(e,t)=>[Tl(e,t[0]),Tl(e,t[1])];function D6(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let c=r*(l+.5);for(let u=0;u<o;u++){let d=r*(u+.5);for(let p=0;p<i;p++)n.push([d,c])}}}return n}function _6(e,t,n,s,r){let a=Cp({startPoint:t.startPoint,endPoint:t.endPoint}),o=e.map(d=>[a[0]/r*(d[0]-r/2),a[1]/r*(d[1]-r/2),d[2]||0]),i=n!==0?$6(n,[0,0]):l0,l=n!==0?o.map(d=>[...E0e(d,i),d[2]]):o,c=n!==0?N0e(s):l0,u=[...o0({startPoint:t.startPoint,endPoint:t.endPoint}),1];return l.map(d=>[Math.round(d[0]+Tl(u,c[0])),Math.round(d[1]+Tl(u,c[1])),Math.round(d[2]||0)])}function eb(e,t,n){let s=e.landmarks.length>=Kx.count?Kx.symmetryLine:Ip.symmetryLine,r=C0e(e.landmarks[s[0]],e.landmarks[s[1]]),a=o0({startPoint:e.startPoint,endPoint:e.endPoint}),o=[a[0]/t.shape[2],a[1]/t.shape[1]],i=$e.rotateWithOffset(t,r,0,o),l=$6(-r,a),c=Qx({startPoint:e.startPoint,endPoint:e.endPoint},i,[n,n]),u=fe(c,255);return ee(c),ee(i),[r,l,u]}var P6=6,Us,tb=[],F6=null,Gs=0,Ep=()=>Gs;async function O6(e){var t,n;return ie.initial&&(Us=null),Us?e.debug&&ae("cached model:",Us.modelUrl):(Us=await ot(lt(e.modelBasePath,((t=e.face.detector)==null?void 0:t.modelPath)||"")),!Us||!Us.modelUrl?ae("load model failed:",(n=e.face.detector)==null?void 0:n.modelPath):e.debug&&ae("load model:",Us.modelUrl)),Gs=Us.inputs[0].shape?Us.inputs[0].shape[2]:0,Gs===-1&&(Gs=64),tb=D6(Gs),F6=dr(tb),Us}function R0e(e){let t=_e(e,[0,1],[-1,2]),n=ue(t,F6),s=_e(e,[0,3],[-1,2]),r=fe(s,Gs),a=fe(n,Gs),o=fe(r,2),i=xe(a,o),l=ue(a,o),c=L(i,Gs),u=L(l,Gs);return Eu([c,u],1)}async function M6(e,t){var c,u,d,p;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return{boxes:[]};let[n,s,r]=j(()=>{let h=$e.resizeBilinear(e,[Gs,Gs]),f=xe(fe(h,127.5),.5),m=Us==null?void 0:Us.execute(f),g;if(Array.isArray(m)){let b=m.sort((N,$)=>N.size-$.size),w=kt([b[0],b[2]],2),k=kt([b[1],b[3]],2),S=kt([k,w],1);g=dt(S,0)}else g=dt(m);let y=R0e(g),A=_e(g,[0,0],[-1,1]),x=dt(ss(A));return[g,y,x]}),a=await $e.nonMaxSuppressionAsync(s,r,((c=t.face.detector)==null?void 0:c.maxDetected)||0,((u=t.face.detector)==null?void 0:u.iouThreshold)||0,((d=t.face.detector)==null?void 0:d.minConfidence)||0),o=await a.array();ee(a);let i=[],l=await r.data();for(let h=0;h<o.length;h++){let f=l[o[h]];if(f>(((p=t.face.detector)==null?void 0:p.minConfidence)||0)){let m=_e(s,[o[h],0],[1,-1]),g=j(()=>G(dt(_e(n,[o[h],P6-1],[1,-1])),[P6,-1]));i.push({box:T6(m),landmarks:g,anchor:tb[o[h]],confidence:f}),ee(m)}}return ee(n),ee(s),ee(r),{boxes:i,scaleFactor:[e.shape[2]/Gs,e.shape[1]/Gs]}}var rb={};Fc(rb,{connected:()=>sb,kpt:()=>nb});var nb=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftThumb","leftHand","rightThumb","rightHand"],sb={leftLeg:["leftHip","leftKnee","leftAnkle","leftHeel","leftFoot"],rightLeg:["rightHip","rightKnee","rightAnkle","rightHeel","rightFoot"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist","leftPalm"],rightArm:["rightShoulder","rightElbow","rightWrist","rightPalm"],leftHand:[],rightHand:[],head:[]};var z6={initial:!0},cn=[null,null],Vo=[[0,0],[0,0]],ab=Number.MAX_SAFE_INTEGER,ob,ib=null,Uo=[[0,0],[0,0],[0,0],[0,0]];async function L6(e){var t,n,s;if(z6.initial&&(cn[0]=null),!cn[0]&&((t=e.body.detector)==null?void 0:t.modelPath)){cn[0]=await ot(lt(e.modelBasePath,((n=e.body.detector)==null?void 0:n.modelPath)||""));let r=Object.values(cn[0].modelSignature.inputs);Vo[0][0]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[1].size):0,Vo[0][1]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[2].size):0,!cn[0]||!cn[0].modelUrl?ae("load model failed:",(s=e.body.detector)==null?void 0:s.modelPath):e.debug&&ae("load model:",cn[0].modelUrl)}else e.debug&&cn[0]&&ae("cached model:",cn[0].modelUrl);return cn[0]}async function B6(e){var t;if(z6.initial&&(cn[1]=null),cn[1])e.debug&&ae("cached model:",cn[1].modelUrl);else{cn[1]=await ot(lt(e.modelBasePath,e.body.modelPath||""));let n=Object.values(cn[1].modelSignature.inputs);Vo[1][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Vo[1][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0,((t=e.body.modelPath)==null?void 0:t.includes("lite"))?ob=["ld_3d","output_segmentation","output_heatmap","world_3d","output_poseflag"]:ob=["Identity","Identity_2","Identity_3","Identity_4","Identity_1"],!cn[1]||!cn[1].modelUrl?ae("load model failed:",e.body.modelPath):e.debug&&ae("load model:",cn[1].modelUrl)}return cn[1]}function $0e(e,t){let n=e.map(o=>o.position[0]),s=e.map(o=>o.position[1]),r=[Math.min(...n),Math.min(...s),Math.max(...n)-Math.min(...n),Math.max(...s)-Math.min(...s)],a=[r[0]/t[0],r[1]/t[1],r[2]/t[0],r[3]/t[1]];return{keypointsBox:r,keypointsBoxRaw:a}}async function D0e(e){let t={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;Uo=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],t.pad=Ms(e,Uo),t.resize=$e.resizeBilinear(t.pad,[Vo[1][0],Vo[1][1]]);let n=fe(t.resize,255);return Object.keys(t).forEach(s=>ee(t[s])),n}function _0e(e,t){for(let n of e)n.position=[n.position[0]*(t[0]+Uo[2][0]+Uo[2][1])/t[0]-Uo[2][0],n.position[1]*(t[1]+Uo[1][0]+Uo[1][1])/t[1]-Uo[1][0],n.position[2]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1],n.position[2]];return e}async function P0e(e,t,n){var d;let s={};s.input=await D0e(e),[s.ld,s.segmentation,s.heatmap,s.world,s.poseflag]=await((d=cn[1])==null?void 0:d.execute(s.input,ob));let r=await s.ld.data(),a=[],o=5;for(let p=0;p<r.length/o;p++){let h=(100-Math.trunc(100/(1+Math.exp(r[o*p+3]))))/100,f=[r[o*p+0]/Vo[1][0],r[o*p+1]/Vo[1][1],r[o*p+2]+0],m=[Math.trunc(n[0]*f[0]),Math.trunc(n[1]*f[1]),f[2]];a.push({part:nb[p],positionRaw:f,position:m,score:h})}let i=Math.round(100*a.reduce((p,h)=>p+=h.score,0)/a.length)/100;if(i<(t.body.minConfidence||0))return null;let l=_0e(a,n),c=$0e(l,[n[0],n[1]]);Object.keys(s).forEach(p=>ee(s[p]));let u={};for(let[p,h]of Object.entries(sb)){let f=[];for(let m=0;m<h.length-1;m++){let g=l.find(A=>A.part===h[m]),y=l.find(A=>A.part===h[m+1]);g&&y&&g.score>(t.body.minConfidence||0)&&y.score>(t.body.minConfidence||0)&&f.push([g.position,y.position])}u[p]=f}return{id:0,score:i,box:c.keypointsBox,boxRaw:c.keypointsBoxRaw,keypoints:l,annotations:u}}async function lb(e,t){let n=[e.shape[2]||0,e.shape[1]||0];return ab<(t.body.skipFrames||0)&&t.skipFrame?ab++:(ib=await P0e(e,t,n),ab=0),ib?[ib]:[]}var yc=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var sr,Nl=0,u0=[],ub=Number.MAX_SAFE_INTEGER;async function W6(e){if(ie.initial&&(sr=null),sr)e.debug&&ae("cached model:",sr.modelUrl);else{Ac(["floormod"],e),sr=await ot(lt(e.modelBasePath,e.object.modelPath||""));let t=Object.values(sr.modelSignature.inputs);Nl=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0,!sr||!sr.modelUrl?ae("load model failed:",e.object.modelPath):e.debug&&ae("load model:",sr.modelUrl)}return sr}async function F0e(e,t,n){if(!e)return[];let s=[],r=await e.array(),a=dt(e);ee(e);let o=xn(a,6,1);ee(a);let i=Tn([o[1],o[0],o[3],o[2]],1),l=dt(i);ee(i);let c=dt(o[4]),u=dt(o[5]);o.forEach(f=>ee(f));let d=await $e.nonMaxSuppressionAsync(l,c,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);ee(l),ee(c),ee(u);let p=await d.data();ee(d);let h=0;for(let f of p){let m=Math.trunc(100*r[0][f][4])/100,g=r[0][f][5],y=yc[g].label,[A,x]=[r[0][f][0]/Nl,r[0][f][1]/Nl],b=[A,x,r[0][f][2]/Nl-A,r[0][f][3]/Nl-x],w=[Math.trunc(b[0]*t[0]),Math.trunc(b[1]*t[1]),Math.trunc(b[2]*t[0]),Math.trunc(b[3]*t[1])];s.push({id:h++,score:m,class:g,label:y,box:w,boxRaw:b})}return s}async function cb(e,t){return ub<(t.object.skipFrames||0)&&t.skipFrame&&u0.length>0?(ub++,u0):(ub=0,!ie.kernels.includes("mod")||!ie.kernels.includes("sparsetodense")?u0:new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=$e.resizeBilinear(e,[Nl,Nl]),a=t.object.enabled?sr==null?void 0:sr.execute(r,["tower_0/detections"]):null;ee(r);let o=await F0e(a,s,t);u0=o,n(o)}))}var hb={};Fc(hb,{connected:()=>pb,kpt:()=>db});var db=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],pb={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var dn,Zn={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},fb=Number.MAX_SAFE_INTEGER;async function mb(e){return ie.initial&&(dn=null),dn?e.debug&&ae("cached model:",dn.modelUrl):(dn=await ot(lt(e.modelBasePath,e.body.modelPath||"")),!dn||!dn.modelUrl?ae("load model failed:",e.body.modelPath):e.debug&&ae("load model:",dn.modelUrl)),dn}function O0e(e,t){let[n,s]=e.shape;return j(()=>{let r=(i,l)=>xe(i,L(fe(i,Ee(l,"int32")),Ee(l,"int32"))),a=G(e,[s*n]),o=Wn(a,0).dataSync()[0];if(o>t){let i=Fs(a,0),l=r(i,n).dataSync()[0],c=fe(i,Ee(n,"int32")).dataSync()[0];return[l,c,o]}return[0,0,o]})}async function gb(e,t){var n;return fb<(((n=t.body)==null?void 0:n.skipFrames)||0)&&t.skipFrame&&Object.keys(Zn.keypoints).length>0?(fb++,[Zn]):(fb=0,new Promise(async s=>{var u;let r=j(()=>{if(!(dn==null?void 0:dn.inputs[0].shape))return null;let d=$e.resizeBilinear(e,[dn.inputs[0].shape[2],dn.inputs[0].shape[1]],!1);return L(d,2).sub(1)}),a;if(t.body.enabled&&(a=await(dn==null?void 0:dn.predict(r))),ee(r),a){Zn.keypoints.length=0;let d=a.squeeze();ee(a);let p=d.unstack(2);ee(d);for(let h=0;h<p.length;h++){let[f,m,g]=O0e(p[h],t.body.minConfidence);g>(((u=t.body)==null?void 0:u.minConfidence)||0)&&Zn.keypoints.push({score:Math.round(100*g)/100,part:db[h],positionRaw:[f/dn.inputs[0].shape[2],m/dn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*f/dn.inputs[0].shape[2]),Math.round(e.shape[1]*m/dn.inputs[0].shape[1])]})}p.forEach(h=>ee(h))}Zn.score=Zn.keypoints.reduce((d,p)=>p.score>d?p.score:d,0);let o=Zn.keypoints.map(d=>d.position[0]),i=Zn.keypoints.map(d=>d.position[1]);Zn.box=[Math.min(...o),Math.min(...i),Math.max(...o)-Math.min(...o),Math.max(...i)-Math.min(...i)];let l=Zn.keypoints.map(d=>d.positionRaw[0]),c=Zn.keypoints.map(d=>d.positionRaw[1]);Zn.boxRaw=[Math.min(...l),Math.min(...c),Math.max(...l)-Math.min(...l),Math.max(...c)-Math.min(...c)];for(let[d,p]of Object.entries(pb)){let h=[];for(let f=0;f<p.length-1;f++){let m=Zn.keypoints.find(y=>y.part===p[f]),g=Zn.keypoints.find(y=>y.part===p[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}Zn.annotations[d]=h}s([Zn])}))}var M0e=["angry","disgust","fear","happy","sad","surprise","neutral"],pn,c0=[],V6=0,yb=Number.MAX_SAFE_INTEGER,Ab=[.2989,.587,.114];async function U6(e){var t,n;return ie.initial&&(pn=null),pn?e.debug&&ae("cached model:",pn.modelUrl):(pn=await ot(lt(e.modelBasePath,((t=e.face.emotion)==null?void 0:t.modelPath)||"")),!pn||!pn.modelUrl?ae("load model failed:",(n=e.face.emotion)==null?void 0:n.modelPath):e.debug&&ae("load model:",pn.modelUrl)),pn}async function xb(e,t,n,s){var r;return pn?yb<(((r=t.face.emotion)==null?void 0:r.skipFrames)||0)&&t.skipFrame&&V6===s&&c0[n]&&c0[n].length>0?(yb++,c0[n]):(yb=0,new Promise(async a=>{var g,y;let o=$e.resizeBilinear(e,[(pn==null?void 0:pn.inputs[0].shape)?pn.inputs[0].shape[2]:0,(pn==null?void 0:pn.inputs[0].shape)?pn.inputs[0].shape[1]:0],!1),[i,l,c]=xn(o,3,3);ee(o);let u=L(i,Ab[0]),d=L(l,Ab[1]),p=L(c,Ab[2]);ee(i),ee(l),ee(c);let h=ef([u,d,p]);ee(u),ee(d),ee(p);let f=j(()=>L(xe(h,.5),2));ee(h);let m=[];if((g=t.face.emotion)==null?void 0:g.enabled){let A=await(pn==null?void 0:pn.predict(f)),x=await A.data();ee(A);for(let b=0;b<x.length;b++)x[b]>(((y=t.face.emotion)==null?void 0:y.minConfidence)||0)&&m.push({score:Math.min(.99,Math.trunc(100*x[b])/100),emotion:M0e[b]});m.sort((b,w)=>w.score-b.score)}ee(f),c0[n]=m,V6=s,a(m)})):null}var rr,Go=0,z0e=2.3,bb=Lr.leftEyeLower0,vb=Lr.rightEyeLower0,xc={leftBounds:[bb[0],bb[bb.length-1]],rightBounds:[vb[0],vb[vb.length-1]]},bc={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function G6(e){var t,n;return ie.initial&&(rr=null),rr?e.debug&&ae("cached model:",rr.modelUrl):(rr=await ot(lt(e.modelBasePath,((t=e.face.iris)==null?void 0:t.modelPath)||"")),!rr||!rr.modelUrl?ae("load model failed:",(n=e.face.iris)==null?void 0:n.modelPath):e.debug&&ae("load model:",rr.modelUrl)),Go=rr.inputs[0].shape?rr.inputs[0].shape[2]:0,Go===-1&&(Go=64),rr}function d0(e,t,n,s){for(let r=0;r<Zx.length;r++){let{key:a,indices:o}=Zx[r],i=Lr[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let c=o[l];e[i[l]]=[t[c][0],t[c][1],(t[c][2]+e[i[l]][2])/2]}}}var L0e=e=>{let t=e[xc.leftBounds[0]][2],n=e[xc.rightBounds[0]][2];return t-n},H6=(e,t,n,s,r=!1,a)=>{let o=Np(Tp(i0([e[n],e[s]]),z0e)),i=Cp(o),l=$e.cropAndResize(t,[[o.startPoint[1]/a,o.startPoint[0]/a,o.endPoint[1]/a,o.endPoint[0]/a]],[0],[Go,Go]);if(r&&ie.kernels.includes("flipleftright")){let c=$e.flipLeftRight(l);ee(l),l=c}return{box:o,boxSize:i,crop:l}},j6=(e,t,n,s=!1)=>{let r=[];for(let a=0;a<bc.numCoordinates;a++){let o=e[a*3],i=e[a*3+1],l=e[a*3+2];r.push([(s?1-o/Go:o/Go)*n[0]+t.startPoint[0],i/Go*n[1]+t.startPoint[1],l])}return{rawCoords:r,iris:r.slice(bc.index)}},q6=(e,t,n)=>{let s=e[Lr[`${n}EyeUpper0`][bc.upperCenter]][2],r=e[Lr[`${n}EyeLower0`][bc.lowerCenter]][2],a=(s+r)/2;return t.map((o,i)=>{let l=a;return i===2?l=s:i===4&&(l=r),[o[0],o[1],l]})};async function X6(e,t,n,s){if(!rr)return n.debug&&ae("face mesh iris detection requested, but model is not loaded"),e;let{box:r,boxSize:a,crop:o}=H6(e,t,xc.leftBounds[0],xc.leftBounds[1],!0,s),{box:i,boxSize:l,crop:c}=H6(e,t,xc.rightBounds[0],xc.rightBounds[1],!0,s),u=kt([o,c]);ee(o),ee(c);let d=rr.predict(u);ee(u);let p=await d.data();ee(d);let h=p.slice(0,bc.numCoordinates*3),{rawCoords:f,iris:m}=j6(h,r,a,!0),g=p.slice(bc.numCoordinates*3),{rawCoords:y,iris:A}=j6(g,i,l),x=L0e(e);Math.abs(x)<30?(d0(e,f,"left",null),d0(e,y,"right",null)):x<1?d0(e,f,"left",["EyeUpper0","EyeLower0"]):d0(e,y,"right",["EyeUpper0","EyeLower0"]);let b=q6(e,m,"left"),w=q6(e,A,"right");return e.concat(b).concat(w)}var Br=[],ar=null,vr=0,wb=Number.MAX_SAFE_INTEGER,K6=0;async function Z6(e,t){var a,o,i,l,c,u,d,p,h,f,m,g;if(!t.skipFrame||(K6!==((a=t.face.detector)==null?void 0:a.maxDetected)||!((o=t.face.mesh)==null?void 0:o.enabled))&&wb>(((i=t.face.detector)==null?void 0:i.skipFrames)||0)){let y=await M6(e,t);Br=[];for(let A of y.boxes){let x=await A.box.startPoint.data(),b=await A.box.endPoint.data(),w=await A.landmarks.array();Br.push({startPoint:x,endPoint:b,landmarks:w,confidence:A.confidence})}y.boxes.forEach(A=>ee([A.box.startPoint,A.box.endPoint,A.landmarks]));for(let A=0;A<Br.length;A++){let x=N6({startPoint:Br[A].startPoint,endPoint:Br[A].endPoint},y.scaleFactor),b=Tp(x),w=Np(b);Br[A]={...w,confidence:Br[A].confidence,landmarks:Br[A].landmarks}}wb=0}else wb++;let n=[],s=[],r=0;for(let y of Br){let A=0,x,b={id:r++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if(((l=t.face.detector)==null?void 0:l.rotation)&&((c=t.face.mesh)==null?void 0:c.enabled)&&ie.kernels.includes("rotatewithoffset"))[A,x,b.tensor]=eb(y,e,vr);else{x=l0;let w=Qx({startPoint:y.startPoint,endPoint:y.endPoint},e,((u=t.face.mesh)==null?void 0:u.enabled)?[vr,vr]:[Ep(),Ep()]);b.tensor=fe(w,255),ee(w)}if(b.boxScore=Math.round(100*y.confidence)/100,(d=t.face.mesh)==null?void 0:d.enabled)if(!ar)t.debug&&ae("face mesh detection requested, but model is not loaded");else{let[w,k,S]=ar.execute(b.tensor);ee(w);let N=(await k.data())[0];ee(k);let $=G(S,[-1,3]),F=await $.array();if(ee(S),ee($),N<(((p=t.face.detector)==null?void 0:p.minConfidence)||1))y.confidence=N;else{((h=t.face.iris)==null?void 0:h.enabled)&&(F=await X6(F,b.tensor,t,vr)),b.mesh=_6(F,y,A,x,vr),b.meshRaw=b.mesh.map(R=>[R[0]/(e.shape[2]||0),R[1]/(e.shape[1]||0),(R[2]||0)/vr]),y={...Tp(i0(b.mesh),1.5),confidence:y.confidence};for(let R of Object.keys(Lr))b.annotations[R]=Lr[R].map(D=>b.mesh[D]);((f=t.face.detector)==null?void 0:f.rotation)&&t.face.mesh.enabled&&((m=t.face.description)==null?void 0:m.enabled)&&ie.kernels.includes("rotatewithoffset")&&(ee(b.tensor),[A,x,b.tensor]=eb(y,e,vr)),b.box=Yx(y,e),b.boxRaw=Jx(y,e),b.score=Math.round(100*N||100*y.confidence||0)/100,b.faceScore=Math.round(100*N)/100,y={...Np(y),confidence:y.confidence,faceConfidence:N}}}else{b.box=Yx(y,e),b.boxRaw=Jx(y,e),b.score=Math.round(100*y.confidence||0)/100,b.mesh=y.landmarks.map(w=>[(y.startPoint[0]+y.endPoint[0])/2+(y.endPoint[0]+y.startPoint[0])*w[0]/Ep(),(y.startPoint[1]+y.endPoint[1])/2+(y.endPoint[1]+y.startPoint[1])*w[1]/Ep()]),b.meshRaw=b.mesh.map(w=>[w[0]/(e.shape[2]||0),w[1]/(e.shape[1]||0),(w[2]||0)/vr]);for(let w of Object.keys(Ip))b.annotations[w]=[b.mesh[Ip[w]]]}n.push(b),s.push(y)}return((g=t.face.mesh)==null?void 0:g.enabled)&&(Br=s.filter(y=>{var A;return y.confidence>(((A=t.face.detector)==null?void 0:A.minConfidence)||0)})),K6=n.length,n}async function Y6(e){var t,n;return ie.initial&&(ar=null),ar?e.debug&&ae("cached model:",ar.modelUrl):(ar=await ot(lt(e.modelBasePath,((t=e.face.mesh)==null?void 0:t.modelPath)||"")),!ar||!ar.modelUrl?ae("load model failed:",(n=e.face.mesh)==null?void 0:n.modelPath):e.debug&&ae("load model:",ar.modelUrl)),vr=ar.inputs[0].shape?ar.inputs[0].shape[2]:0,vr===-1&&(vr=64),ar}var J6=Cl,Q6=Sp;var Yn,p0=[],e8=0,kb=Number.MAX_SAFE_INTEGER;async function t8(e){var n,s;let t=lt(e.modelBasePath,((n=e.face.description)==null?void 0:n.modelPath)||"");return ie.initial&&(Yn=null),Yn?e.debug&&ae("cached model:",t):(Yn=await ot(t),Yn?e.debug&&ae("load model:",t):ae("load model failed:",((s=e.face.description)==null?void 0:s.modelPath)||"")),Yn}function Ib(e){return j(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Ke))return null;let s=[[.05,.15,.85,.85]];if(!(Yn==null?void 0:Yn.inputs[0].shape))return null;let r=n.shape.length===3?$e.cropAndResize(qt(n,0),s,[0],[Yn.inputs[0].shape[2],Yn.inputs[0].shape[1]]):$e.cropAndResize(n,s,[0],[Yn.inputs[0].shape[2],Yn.inputs[0].shape[1]]);return L(r,255)})}async function Sb(e,t,n,s){var r,a,o;return Yn?kb<(((r=t.face.description)==null?void 0:r.skipFrames)||0)&&t.skipFrame&&e8===s&&((a=p0[n])==null?void 0:a.age)&&((o=p0[n])==null?void 0:o.age)>0?(kb++,p0[n]):(kb=0,new Promise(async i=>{var d,p;let l=Ib(e),c,u={age:0,gender:"unknown",genderScore:0,descriptor:[]};if(((d=t.face.description)==null?void 0:d.enabled)&&(c=await(Yn==null?void 0:Yn.predict(l))),ee(l),c){let h=await c.find(b=>b.shape[1]===1).data(),f=Math.trunc(200*Math.abs(h[0]-.5))/100;f>(((p=t.face.description)==null?void 0:p.minConfidence)||0)&&(u.gender=h[0]<=.5?"female":"male",u.genderScore=Math.min(.99,f));let m=Fs(c.find(b=>b.shape[1]===100),1),g=(await m.data())[0];ee(m);let y=await c.find(b=>b.shape[1]===100).data();u.age=Math.round(y[g-1]>y[g+1]?10*g-100*y[g-1]:10*g+100*y[g+1])/10;let x=await c.find(b=>b.shape[1]===1024).data();u.descriptor=[...x],c.forEach(b=>ee(b))}p0[n]=u,e8=s,i(u)})):null}function h0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Rp(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function n8(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return $e.cropAndResize(t,a,[0],n)}function s8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function f0(e,t=1.5){let n=Rp(e),s=h0(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function m0(e){let t=Rp(e),n=h0(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}var r8=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var Cb=class{constructor(t){ve(this,"model");ve(this,"anchors");ve(this,"anchorsTensor");ve(this,"inputSize");ve(this,"inputSizeTensor");ve(this,"doubleInputSizeTensor");this.model=t,this.anchors=r8.map(n=>[n.x,n.y]),this.anchorsTensor=dr(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=Yt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Yt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return j(()=>{let n=_e(t,[0,0],[-1,2]),s=_e(t,[0,2],[-1,2]),r=ue(fe(n,this.inputSizeTensor),this.anchorsTensor),a=fe(s,this.doubleInputSizeTensor),o=L(xe(r,a),this.inputSizeTensor),i=L(ue(r,a),this.inputSizeTensor);return Eu([o,i],1)})}normalizeLandmarks(t,n){return j(()=>{let s=ue(fe(G(t,[-1,7,2]),this.inputSizeTensor),this.anchors[n]);return L(s,this.inputSizeTensor)})}async getBoxes(t,n){let s={};s.batched=this.model.predict(t),s.predictions=dt(s.batched),s.scores=j(()=>dt(ss(_e(s.predictions,[0,0],[-1,1]))));let r=await s.scores.data();s.boxes=_e(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await $e.nonMaxSuppressionAsync(s.norm,s.scores,3*n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let i of a){let l=_e(s.norm,[i,0],[1,-1]),c=j(()=>G(this.normalizeLandmarks(_e(s.predictions,[i,5],[1,14]),i),[-1,2]));o.push({box:l,palmLandmarks:c,confidence:r[i]})}for(let i of Object.keys(s))ee(s[i]);return o}async estimateHandBounds(t,n){let s=t.shape[1],r=t.shape[2],a=j(()=>xe(fe($e.resizeBilinear(t,[this.inputSize,this.inputSize]),127.5),1)),o=await this.getBoxes(a,n);ee(a);let i=[];if(!o||o.length===0)return i;for(let l of o){let c=await l.box.data(),u=c.slice(0,2),d=c.slice(2,4),p=await l.palmLandmarks.array();ee(l.box),ee(l.palmLandmarks),i.push(s8({startPoint:u,endPoint:d,palmLandmarks:p,confidence:l.confidence},[r/this.inputSize,s/this.inputSize]))}return i}};function B0e(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function a8(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return B0e(n)}var o8=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Ho(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function W0e(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function i8(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(Ho(e[r],W0e(t,a)))}return n}function Tb(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=o8(t[0],t[1]),o=i8(a,r),i=o8(-t[0],-t[1]);return i8(o,i)}function l8(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-Ho(t[0],n),-Ho(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function Nb(e,t){return[Ho(e,t[0]),Ho(e,t[1])]}var V0e=5,u8=1.65,c8=[0,5,9,13,17,1,2],U0e=0,G0e=2,Eb=class{constructor(t,n){ve(this,"handDetector");ve(this,"handPoseModel");ve(this,"inputSize");ve(this,"storedBoxes");ve(this,"skipped");ve(this,"detectedHands");this.handDetector=t,this.handPoseModel=n,this.inputSize=this.handPoseModel&&this.handPoseModel.inputs[0].shape?this.handPoseModel.inputs[0].shape[2]:0,this.storedBoxes=[],this.skipped=0,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>Nb([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return f0(m0(r),V0e)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=f0(m0(n),u8);s.palmLandmarks=[];for(let r=0;r<c8.length;r++)s.palmLandmarks.push(t[c8[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=h0(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(h=>[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=Tb(s,[0,0]),c=i.map(h=>[...Nb(h,l),h[2]]),u=l8(r),d=[...Rp(n),1],p=[Ho(d,u[0]),Ho(d,u[1])];return c.map(h=>[Math.trunc(h[0]+p[0]),Math.trunc(h[1]+p[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.skipFrame)&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipFrame&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let a=[];for(let o=0;o<this.storedBoxes.length;o++){let i=this.storedBoxes[o];if(!!i)if(n.hand.landmarks){let l=n.hand.rotation?a8(i.palmLandmarks[U0e],i.palmLandmarks[G0e]):0,c=Rp(i),u=[c[0]/t.shape[2],c[1]/t.shape[1]],d=n.hand.rotation&&ie.kernels.includes("rotatewithoffset")?$e.rotateWithOffset(t,l,0,u):t.clone(),p=Tb(-l,c),h=s?this.getBoxForPalmLandmarks(i.palmLandmarks,p):i,f=n8(h,d,[this.inputSize,this.inputSize]),m=fe(f,255);ee(f),ee(d);let[g,y]=await this.handPoseModel.predict(m);ee(m);let A=(await g.data())[0];if(ee(g),A>=n.hand.minConfidence/4){let x=G(y,[-1,3]),b=await x.array();ee(y),ee(x);let w=this.transformRawCoords(b,h,l,p),k=this.getBoxForHandLandmarks(w);this.storedBoxes[o]={...k,confidence:A};let S={landmarks:w,confidence:A,boxConfidence:i.confidence,fingerConfidence:A,box:{topLeft:k.startPoint,bottomRight:k.endPoint}};a.push(S)}else this.storedBoxes[o]=null;ee(y)}else{let l=f0(m0(i),u8),c={confidence:i.confidence,boxConfidence:i.confidence,fingerConfidence:0,box:{topLeft:l.startPoint,bottomRight:l.endPoint},landmarks:[]};a.push(c)}}return this.storedBoxes=this.storedBoxes.filter(o=>o!==null),this.detectedHands=a.length,a.length>n.hand.maxDetected&&(a.length=n.hand.maxDetected),a}};var Je={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>Je.nameMapping[e],getPoints:e=>Je.pointsMapping[e]},ds={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>ds.nameMapping[e]},Ze={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>Ze.nameMapping[e]},g0=class{constructor(t){ve(this,"name");ve(this,"curls");ve(this,"directions");ve(this,"weights");ve(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}addCurl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}addDirection(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}setWeight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var jo=new g0("thumbs up");jo.addCurl(Je.thumb,ds.none,1);jo.addDirection(Je.thumb,Ze.verticalUp,1);jo.addDirection(Je.thumb,Ze.diagonalUpLeft,.25);jo.addDirection(Je.thumb,Ze.diagonalUpRight,.25);for(let e of[Je.index,Je.middle,Je.ring,Je.pinky])jo.addCurl(e,ds.full,1),jo.addDirection(e,Ze.horizontalLeft,1),jo.addDirection(e,Ze.horizontalRight,1);var en=new g0("victory");en.addCurl(Je.thumb,ds.half,.5);en.addCurl(Je.thumb,ds.none,.5);en.addDirection(Je.thumb,Ze.verticalUp,1);en.addDirection(Je.thumb,Ze.diagonalUpLeft,1);en.addCurl(Je.index,ds.none,1);en.addDirection(Je.index,Ze.verticalUp,.75);en.addDirection(Je.index,Ze.diagonalUpLeft,1);en.addCurl(Je.middle,ds.none,1);en.addDirection(Je.middle,Ze.verticalUp,1);en.addDirection(Je.middle,Ze.diagonalUpLeft,.75);en.addCurl(Je.ring,ds.full,1);en.addDirection(Je.ring,Ze.verticalUp,.2);en.addDirection(Je.ring,Ze.diagonalUpLeft,1);en.addDirection(Je.ring,Ze.horizontalLeft,.2);en.addCurl(Je.pinky,ds.full,1);en.addDirection(Je.pinky,Ze.verticalUp,.2);en.addDirection(Je.pinky,Ze.diagonalUpLeft,1);en.addDirection(Je.pinky,Ze.horizontalLeft,.2);en.setWeight(Je.index,2);en.setWeight(Je.middle,2);var d8=[jo,en];var H0e=.7,El={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function p8(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function h8(e,t){if(!e||!t)return[0,0];let n=p8(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=p8(e[1],e[2],t[1],t[2]);return[n,s]}function f8(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function j0e(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],c=e[2]-t[2],u=e[2]-n[2],d=t[2]-n[2],p=Math.sqrt(s*s+o*o+c*c),h=Math.sqrt(r*r+i*i+u*u),f=Math.sqrt(a*a+l*l+d*d),m=(f*f+p*p-h*h)/(2*f*p);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let y;return g>El.NO_CURL_START_LIMIT?y=ds.none:g>El.HALF_CURL_START_LIMIT?y=ds.half:y=ds.full,y}function m8(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=Ze.horizontalLeft:r=Ze.horizontalRight:s===Math.abs(t)?t>0?r=Ze.horizontalLeft:r=Ze.horizontalRight:n>0?r=Ze.horizontalLeft:r=Ze.horizontalRight,r}function g8(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=Ze.verticalDown:r=Ze.verticalUp:s===Math.abs(t)?t<0?r=Ze.verticalDown:r=Ze.verticalUp:n<0?r=Ze.verticalDown:r=Ze.verticalUp,r}function q0e(e,t,n,s,r,a,o,i){let l,c=g8(e,t,n,s),u=m8(r,a,o,i);return c===Ze.verticalUp?u===Ze.horizontalLeft?l=Ze.diagonalUpLeft:l=Ze.diagonalUpRight:u===Ze.horizontalLeft?l=Ze.diagonalDownLeft:l=Ze.diagonalDownRight,l}function X0e(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],c=t[1]-n[1],u=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),d=Math.max(Math.abs(i),Math.abs(l),Math.abs(c)),p=0,h=0,f=0,m=d/(u+1e-5);m>1.5?p+=El.DISTANCE_VOTE_POWER:m>.66?h+=El.DISTANCE_VOTE_POWER:f+=El.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),y=Math.sqrt(a*a+l*l),A=Math.sqrt(o*o+c*c),x=Math.max(g,y,A),b=e[0],w=e[1],k=n[0],S=n[1];x===g?(k=n[0],S=n[1]):x===A&&(b=t[0],w=t[1]);let F=h8([b,w],[k,S]),R=f8(F,El.TOTAL_ANGLE_VOTE_POWER);p+=R[0],h+=R[1],f+=R[2];for(let T of s){let O=f8(T,El.SINGLE_ANGLE_VOTE_POWER);p+=O[0],h+=O[1],f+=O[2]}let D;return p===Math.max(p,h,f)?D=g8(l,i,c,d):f===Math.max(h,f)?D=m8(a,r,o,u):D=q0e(l,i,c,d,a,r,o,u),D}function y8(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of Je.all){let o=Je.getPoints(a),i=[],l=[];for(let c of o){let u=e[c[0]],d=e[c[1]],p=h8(u,d),h=p[0],f=p[1];i.push(h),l.push(f)}t.push(i),n.push(l)}for(let a of Je.all){let o=a===Je.thumb?1:0,i=Je.getPoints(a),l=e[i[o][0]],c=e[i[o+1][1]],u=e[i[3][1]],d=j0e(l,c,u),p=X0e(l,c,u,t[a].slice(o));s[a]=d,r[a]=p}return{curls:s,directions:r}}function y0(e){if(!e||e.length===0)return null;let t=y8(e),n={};for(let s of Je.all)n[Je.getName(s)]={curl:ds.getName(t.curls[s]),direction:Ze.getName(t.directions[s])};return n}function A8(e){let t=[];if(!e||e.length===0)return t;let n=y8(e);for(let s of d8){let r=s.matchAgainst(n.curls,n.directions);r>=H0e&&t.push({name:s.name,confidence:r})}return t}var x8={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},ca,da,b8;async function Rb(e,t){let n=await b8.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let u of Object.keys(x8))a[u]=x8[u].map(d=>n[r].landmarks[d]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let u of o)u[0]<i[0]&&(i[0]=u[0]),u[1]<i[1]&&(i[1]=u[1]),u[0]>i[2]&&(i[2]=u[0]),u[1]>i[3]&&(i[3]=u[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let c=y0(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,boxScore:Math.round(100*n[r].boxConfidence)/100,fingerScore:Math.round(100*n[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:c})}return s}async function $b(e){var n,s,r,a,o,i;ie.initial&&(ca=null,da=null),!ca||!da?([ca,da]=await Promise.all([e.hand.enabled?ot(lt(e.modelBasePath,((n=e.hand.detector)==null?void 0:n.modelPath)||""),{fromTFHub:(((s=e.hand.detector)==null?void 0:s.modelPath)||"").includes("tfhub.dev")}):null,e.hand.landmarks?ot(lt(e.modelBasePath,((r=e.hand.skeleton)==null?void 0:r.modelPath)||""),{fromTFHub:(((a=e.hand.skeleton)==null?void 0:a.modelPath)||"").includes("tfhub.dev")}):null]),e.hand.enabled&&(!ca||!ca.modelUrl?ae("load model failed:",((o=e.hand.detector)==null?void 0:o.modelPath)||""):e.debug&&ae("load model:",ca.modelUrl),!da||!da.modelUrl?ae("load model failed:",((i=e.hand.skeleton)==null?void 0:i.modelPath)||""):e.debug&&ae("load model:",da.modelUrl))):(e.debug&&ae("cached model:",ca.modelUrl),e.debug&&ae("cached model:",da.modelUrl));let t=new Cb(ca);return b8=new Eb(t,da),[ca,da]}function $p(e,t=[1,1]){let n=[e.map(i=>i[0]),e.map(i=>i[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[s[0],s[1],r[0]-s[0],r[1]-s[1]],o=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:o}}function v8(e,t=[1,1]){let n=[e.map(c=>c[0]),e.map(c=>c[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[(s[0]+r[0])/2,(s[1]+r[1])/2],o=Math.max(a[0]-s[0],a[1]-s[1],-a[0]+r[0],-a[1]+r[1]),i=[Math.trunc(a[0]-o),Math.trunc(a[1]-o),Math.trunc(2*o),Math.trunc(2*o)],l=[i[0]/t[0],i[1]/t[1],i[2]/t[0],i[3]/t[1]];return{box:i,boxRaw:l}}function A0(e,t){let n=[e[2]*t,e[3]*t];return[e[0]-(n[0]-e[2])/2,e[1]-(n[1]-e[3])/2,n[0],n[1]]}function Db(e){return[Math.max(0,e[1]),Math.max(0,e[0]),Math.min(1,e[3]+e[1]),Math.min(1,e[2]+e[0])]}var Rt=[null,null],K0e=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],qo=[[0,0],[0,0]],Z0e=["hand","fist","pinch","point","face","tip","pinchtip"],w8=4,k8=1.6,Y0e=512,J0e=1.4,x0=0,Xo=[0,0],Dn={boxes:[],hands:[]},I8={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]};async function S8(e){var t,n;if(ie.initial&&(Rt[0]=null),Rt[0])e.debug&&ae("cached model:",Rt[0].modelUrl);else{Ac(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),Rt[0]=await ot(lt(e.modelBasePath,((t=e.hand.detector)==null?void 0:t.modelPath)||""));let s=Object.values(Rt[0].modelSignature.inputs);qo[0][0]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[1].size):0,qo[0][1]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[2].size):0,!Rt[0]||!Rt[0].modelUrl?ae("load model failed:",(n=e.hand.detector)==null?void 0:n.modelPath):e.debug&&ae("load model:",Rt[0].modelUrl)}return Rt[0]}async function C8(e){var t,n;if(ie.initial&&(Rt[1]=null),Rt[1])e.debug&&ae("cached model:",Rt[1].modelUrl);else{Rt[1]=await ot(lt(e.modelBasePath,((t=e.hand.skeleton)==null?void 0:t.modelPath)||""));let s=Object.values(Rt[1].modelSignature.inputs);qo[1][0]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[1].size):0,qo[1][1]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[2].size):0,!Rt[1]||!Rt[1].modelUrl?ae("load model failed:",(n=e.hand.skeleton)==null?void 0:n.modelPath):e.debug&&ae("load model:",Rt[1].modelUrl)}return Rt[1]}async function Q0e(e,t){let n=[];if(!e||!Rt[0])return n;let s={},r=(e.shape[2]||1)/(e.shape[1]||1),a=Math.min(Math.round((e.shape[1]||0)/8)*8,Y0e),o=Math.round(a*r/8)*8;s.resize=$e.resizeBilinear(e,[a,o]),s.cast=pe(s.resize,"int32"),[s.rawScores,s.rawBoxes]=await Rt[0].executeAsync(s.cast,K0e),s.boxes=dt(s.rawBoxes,[0,2]),s.scores=dt(s.rawScores,[0]);let i=Vn(s.scores,1);ee(i[w8]),i.splice(w8,1),s.filtered=Tn(i,1),ee(i),s.max=Wn(s.filtered,1),s.argmax=Fs(s.filtered,1);let l=0;s.nms=await $e.nonMaxSuppressionAsync(s.boxes,s.max,t.hand.maxDetected,t.hand.iouThreshold,t.hand.minConfidence);let c=await s.nms.data(),u=await s.max.data(),d=await s.argmax.data();for(let p of Array.from(c)){let h=_e(s.boxes,p,1),f=await h.data();ee(h);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=A0(m,J0e),y=Db(g),A=[Math.trunc(m[0]*Xo[0]),Math.trunc(m[1]*Xo[1]),Math.trunc(m[2]*Xo[0]),Math.trunc(m[3]*Xo[1])],x=u[p],b=Z0e[d[p]],w={id:l++,score:x,box:A,boxRaw:g,boxCrop:y,label:b};n.push(w)}return Object.keys(s).forEach(p=>ee(s[p])),n.sort((p,h)=>h.score-p.score),n.length>(t.hand.maxDetected||1)&&(n.length=t.hand.maxDetected||1),n}async function _b(e,t,n){let s={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&Rt[1]&&n.hand.landmarks&&t.score>(n.hand.minConfidence||0)){let r={};r.crop=$e.cropAndResize(e,[t.boxCrop],[0],[qo[1][0],qo[1][1]],"bilinear"),r.cast=pe(r.crop,"float32"),r.div=fe(r.cast,255),[r.score,r.keypoints]=Rt[1].execute(r.div);let a=(await r.score.data())[0],o=(100-Math.trunc(100/(1+Math.exp(a))))/100;if(o>=(n.hand.minConfidence||0)){s.fingerScore=o,r.reshaped=G(r.keypoints,[-1,3]);let c=(await r.reshaped.array()).map(u=>[u[0]/qo[1][1],u[1]/qo[1][0],u[2]||0]).map(u=>[u[0]*t.boxRaw[2],u[1]*t.boxRaw[3],u[2]||0]);s.keypoints=c.map(u=>[Xo[0]*(u[0]+t.boxRaw[0]),Xo[1]*(u[1]+t.boxRaw[1]),u[2]||0]),s.landmarks=y0(s.keypoints);for(let u of Object.keys(I8))s.annotations[u]=I8[u].map(d=>s.landmarks&&s.keypoints[d]?s.keypoints[d]:null)}Object.keys(r).forEach(i=>ee(r[i]))}return s}async function Pb(e,t){var n,s;return!Rt[0]||!Rt[1]||!((n=Rt[0])==null?void 0:n.inputs[0].shape)||!((s=Rt[1])==null?void 0:s.inputs[0].shape)?[]:(Xo=[e.shape[2]||0,e.shape[1]||0],x0++,t.skipFrame&&x0<=(t.hand.skipFrames||0)?Dn.hands:new Promise(async r=>{t.skipFrame&&Dn.hands.length===t.hand.maxDetected?Dn.hands=await Promise.all(Dn.boxes.map(o=>_b(e,o,t))):t.skipFrame&&x0<3*(t.hand.skipFrames||0)&&Dn.hands.length>0?Dn.hands=await Promise.all(Dn.boxes.map(o=>_b(e,o,t))):(Dn.boxes=await Q0e(e,t),Dn.hands=await Promise.all(Dn.boxes.map(o=>_b(e,o,t))),x0=0);let a=[...Dn.boxes];if(Dn.boxes.length=0,t.cacheSensitivity>0)for(let o=0;o<Dn.hands.length;o++){let i=v8(Dn.hands[o].keypoints,Xo);if(i.box[2]/(e.shape[2]||1)>.05&&i.box[3]/(e.shape[1]||1)>.05&&Dn.hands[o].fingerScore&&Dn.hands[o].fingerScore>(t.hand.minConfidence||0)){let l=A0(i.box,k8),c=A0(i.boxRaw,k8),u=Db(c);Dn.boxes.push({...a[o],box:l,boxRaw:c,boxCrop:u})}}r(Dn.hands)}))}var zb={};Fc(zb,{connected:()=>v0,horizontal:()=>Fb,kpt:()=>b0,relative:()=>Mb,vertical:()=>Ob});var b0=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Fb=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],Ob=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],Mb=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],v0={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var T8=.005,Ts={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function Lb(e){for(let t of Fb){let n=e.keypoints.findIndex(r=>r.part===t[0]),s=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[0]<e.keypoints[s].position[0]){let r=e.keypoints[n];e.keypoints[n]=e.keypoints[s],e.keypoints[s]=r}}for(let t of Ob){let n=e.keypoints.findIndex(r=>r&&r.part===t[0]),s=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[1]<e.keypoints[s].position[1]&&e.keypoints.splice(n,1)}for(let[t,n]of Mb){let s=e.keypoints.findIndex(c=>c&&c.part===t[0]),r=e.keypoints.findIndex(c=>c&&c.part===t[1]),a=e.keypoints.findIndex(c=>c&&c.part===n[0]),o=e.keypoints.findIndex(c=>c&&c.part===n[1]);if(!e.keypoints[a]||!e.keypoints[o])continue;let i=e.keypoints[s]?[Math.abs(e.keypoints[a].position[0]-e.keypoints[s].position[0]),Math.abs(e.keypoints[o].position[0]-e.keypoints[s].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[o].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[a].position[0]-e.keypoints[r].position[0])]:[0,0];if(i[0]>i[1]||l[0]>l[1]){let c=e.keypoints[s];e.keypoints[s]=e.keypoints[r],e.keypoints[r]=c}}}function N8(e){for(let t=0;t<e.length;t++)if(e[t]&&Ts.keypoints[t]){let n=[Math.abs(e[t].positionRaw[0]-Ts.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-Ts.keypoints[t].positionRaw[1])];n[0]<T8&&n[1]<T8?e[t]=Ts.keypoints[t]:Ts.keypoints[t]=e[t]}else Ts.keypoints[t]=e[t];return e}function E8(e,t){let n={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;Ts.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],n.pad=Ms(e,Ts.padding),n.resize=$e.resizeBilinear(n.pad,[t,t]);let s=pe(n.resize,"int32");return Object.keys(n).forEach(r=>ee(n[r])),s}function R8(e,t){e.keypoints=e.keypoints.filter(s=>s&&s.position);for(let s of e.keypoints)s.position=[s.position[0]*(t[0]+Ts.padding[2][0]+Ts.padding[2][1])/t[0]-Ts.padding[2][0],s.position[1]*(t[1]+Ts.padding[1][0]+Ts.padding[1][1])/t[1]-Ts.padding[1][0]],s.positionRaw=[s.position[0]/t[0],s.position[1]/t[1]];let n=$p(e.keypoints.map(s=>s.position),t);return e.box=n.box,e.boxRaw=n.boxRaw,e}var Fn,w0=0,Bb=Number.MAX_SAFE_INTEGER,Dp={boxes:[],bodies:[]};async function $8(e){return ie.initial&&(Fn=null),Fn?e.debug&&ae("cached model:",Fn.modelUrl):(Ac(["size"],e),Fn=await ot(lt(e.modelBasePath,e.body.modelPath||"")),!Fn||!Fn.modelUrl?ae("load model failed:",e.body.modelPath):e.debug&&ae("load model:",Fn.modelUrl)),w0=Fn.inputs[0].shape?Fn.inputs[0].shape[2]:0,w0===-1&&(w0=256),Fn}async function ege(e,t,n,s){let r=e[0][0],a=[],o=0;for(let d=0;d<r.length;d++)if(o=r[d][2],o>t.body.minConfidence){let p=[(s[3]-s[1])*r[d][1]+s[1],(s[2]-s[0])*r[d][0]+s[0]];a.push({score:Math.round(100*o)/100,part:b0[d],positionRaw:p,position:[Math.round((n.shape[2]||0)*p[0]),Math.round((n.shape[1]||0)*p[1])]})}o=a.reduce((d,p)=>p.score>d?p.score:d,0);let i=[],l=$p(a.map(d=>d.position),[n.shape[2],n.shape[1]]),c={};for(let[d,p]of Object.entries(v0)){let h=[];for(let f=0;f<p.length-1;f++){let m=a.find(y=>y.part===p[f]),g=a.find(y=>y.part===p[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}c[d]=h}let u={id:0,score:o,box:l.box,boxRaw:l.boxRaw,keypoints:a,annotations:c};return Lb(u),i.push(u),i}async function tge(e,t,n,s){let r=[];for(let a=0;a<e[0].length;a++){let o=e[0][a],i=Math.round(100*o[51+4])/100;if(i>t.body.minConfidence){let l=[];for(let p=0;p<17;p++){let h=o[3*p+2];if(h>t.body.minConfidence){let f=[(s[3]-s[1])*o[3*p+1]+s[1],(s[2]-s[0])*o[3*p+0]+s[0]];l.push({part:b0[p],score:Math.round(100*h)/100,positionRaw:f,position:[Math.round((n.shape[2]||0)*f[0]),Math.round((n.shape[1]||0)*f[1])]})}}let c=$p(l.map(p=>p.position),[n.shape[2],n.shape[1]]),u={};for(let[p,h]of Object.entries(v0)){let f=[];for(let m=0;m<h.length-1;m++){let g=l.find(A=>A.part===h[m]),y=l.find(A=>A.part===h[m+1]);g&&y&&g.score>(t.body.minConfidence||0)&&y.score>(t.body.minConfidence||0)&&f.push([g.position,y.position])}u[p]=f}let d={id:a,score:i,box:c.box,boxRaw:c.boxRaw,keypoints:[...l],annotations:u};Lb(d),r.push(d)}}return r.sort((a,o)=>o.score-a.score),r.length>t.body.maxDetected&&(r.length=t.body.maxDetected),r}async function Wb(e,t){return!Fn||!(Fn==null?void 0:Fn.inputs[0].shape)?[]:(t.skipFrame||(Dp.boxes.length=0),Bb++,t.skipFrame&&Bb<=(t.body.skipFrames||0)?Dp.bodies:new Promise(async n=>{let s={};Bb=0,s.input=E8(e,w0),s.res=await(Fn==null?void 0:Fn.predict(s.input));let r=await s.res.array();Dp.bodies=s.res.shape[2]===17?await ege(r,t,e,[0,0,1,1]):await tge(r,t,e,[0,0,1,1]);for(let a of Dp.bodies)R8(a,[e.shape[2]||1,e.shape[1]||1]),N8(a.keypoints);Object.keys(s).forEach(a=>ee(s[a])),n(Dp.bodies)}))}var Ns,k0=[],Vb=Number.MAX_SAFE_INTEGER,I0=2.5;async function D8(e){if(!Ns||ie.initial){Ns=await ot(lt(e.modelBasePath,e.object.modelPath||""));let t=Object.values(Ns.modelSignature.inputs);if(Ns.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Ns.inputSize)throw new Error(`cannot determine model inputSize: ${e.object.modelPath}`);!Ns||!Ns.modelUrl?ae("load model failed:",e.object.modelPath):e.debug&&ae("load model:",Ns.modelUrl)}else e.debug&&ae("cached model:",Ns.modelUrl);return Ns}async function nge(e,t,n,s){let r=0,a=[];for(let c of[1,2,4])j(async()=>{var g,y;let u=c*13,d=(g=e.find(A=>A.shape[1]===u**2&&A.shape[2]===yc.length))==null?void 0:g.squeeze(),p=(y=e.find(A=>A.shape[1]===u**2&&A.shape[2]<yc.length))==null?void 0:y.squeeze(),f=await p.reshape([-1,4,p.shape[1]/4]).argMax(2).array(),m=await d.array();for(let A=0;A<d.shape[0];A++)for(let x=0;x<d.shape[1];x++){let b=m[A][x];if(b>s.object.minConfidence&&x!==61){let w=(.5+Math.trunc(A%u))/u,k=(.5+Math.trunc(A/u))/u,S=f[A].map(W=>W*(u/c/t)),[N,$]=[w-I0/c*S[0],k-I0/c*S[1]],[F,R]=[w+I0/c*S[2]-N,k+I0/c*S[3]-$],D=[N,$,F,R];D=D.map(W=>Math.max(0,Math.min(W,1)));let T=[D[0]*n[0],D[1]*n[1],D[2]*n[0],D[3]*n[1]],O={id:r++,score:Math.round(100*b)/100,class:x+1,label:yc[x].label,box:T.map(W=>Math.trunc(W)),boxRaw:D};a.push(O)}}});e.forEach(c=>ee(c));let o=a.map(c=>[c.boxRaw[1],c.boxRaw[0],c.boxRaw[3],c.boxRaw[2]]),i=a.map(c=>c.score),l=[];if(o&&o.length>0){let c=await $e.nonMaxSuppressionAsync(o,i,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);l=await c.data(),ee(c)}return a=a.filter((c,u)=>l.includes(u)).sort((c,u)=>u.score-c.score),a}async function Ub(e,t){return Vb<(t.object.skipFrames||0)&&t.skipFrame&&k0.length>0?(Vb++,k0):(Vb=0,!ie.kernels.includes("mod")||!ie.kernels.includes("sparsetodense")?k0:new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=$e.resizeBilinear(e,[Ns.inputSize,Ns.inputSize],!1),a=fe(r,255),o=a.transpose([0,3,1,2]);ee(a),ee(r);let i;t.object.enabled&&(i=await Ns.predict(o)),ee(o);let l=await nge(i,Ns.inputSize,s,t);k0=l,n(l)}))}var _p=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],sge=_p.length,Pp=_p.reduce((e,t,n)=>(e[t]=n,e),{}),rge=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],B1e=rge.map(([e,t])=>[Pp[e],Pp[t]]),_8=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function P8(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function F8(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(c,u)=>({id:u,score:c.score,boxRaw:[c.box[0]/r,c.box[1]/s,c.box[2]/r,c.box[3]/s],box:[Math.trunc(c.box[0]*o),Math.trunc(c.box[1]*a),Math.trunc(c.box[2]*o),Math.trunc(c.box[3]*a)],keypoints:c.keypoints.map(({score:d,part:p,position:h})=>({score:d,part:p,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]}))});return e.map((c,u)=>i(c,u))}var Gb=class{constructor(t,n){ve(this,"priorityQueue");ve(this,"numberOfElements");ve(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function Hb(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+sge)}}function jb(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=Hb(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function qb(e,t,n){return e<t?t:e>n?n:e}function O8(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function Xb(e,t){return{x:e.x+t.x,y:e.y+t.y}}var Es,age=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],S0=1,vc=16,oge=50**2;function M8(e,t,n,s,r,a,o=2){let i=y=>({y:a.get(y.y,y.x,e),x:a.get(y.y,y.x,a.shape[2]/2+e)}),l=(y,A,x)=>({y:qb(Math.round(y.y/vc),0,A-1),x:qb(Math.round(y.x/vc),0,x-1)}),[c,u]=s.shape,d=l(t.position,c,u),p=i(d),f=Xb(t.position,p);for(let y=0;y<o;y++){let A=l(f,c,u),x=Hb(A.y,A.x,n,r);f=Xb({x:A.x*vc,y:A.y*vc},{x:x.x,y:x.y})}let m=l(f,c,u),g=s.get(m.y,m.x,n);return{position:f,part:_p[n],score:g}}function ige(e,t,n,s,r){let a=_8.map(([p,h])=>[Pp[p],Pp[h]]),o=a.map(([,p])=>p),i=a.map(([p])=>p),l=t.shape[2],c=o.length,u=new Array(l),d=jb(e.part,vc,n);u[e.part.id]={score:e.score,part:_p[e.part.id],position:d};for(let p=c-1;p>=0;--p){let h=o[p],f=i[p];u[h]&&!u[f]&&(u[f]=M8(p,u[h],f,t,n,r))}for(let p=0;p<c;++p){let h=i[p],f=o[p];u[h]&&!u[f]&&(u[f]=M8(p,u[h],f,t,n,s))}return u}function lge(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-S0,0),c=Math.min(n+S0+1,a);for(let u=l;u<c;++u){let d=Math.max(s-S0,0),p=Math.min(s+S0+1,o);for(let h=d;h<p;++h)if(r.get(u,h,e)>t){i=!1;break}if(!i)break}return i}function uge(e,t){let[n,s,r]=t.shape,a=new Gb(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let c=t.get(o,i,l);c<e||lge(l,c,o,i,t)&&a.enqueue({score:c,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function z8(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{var o;let a=(o=r[s])==null?void 0:o.position;return a?O8(n,t,a.y,a.x)<=oge:!1})}function cge(e,t){return t.reduce((s,{position:r,score:a},o)=>(z8(e,r,o)||(s+=a),s),0)/t.length}function dge(e,t,n,s,r,a){let o=[],i=uge(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),c=jb(l.part,vc,e);if(z8(o,c,l.part.id))continue;let u=ige(l,t,e,n,s);u=u.filter(h=>h.score>a);let d=cge(o,u),p=P8(u);d>a&&o.push({keypoints:u,box:p,score:Math.round(100*d)/100})}return o}async function Kb(e,t){let n=j(()=>{if(!Es.inputs[0].shape)return[];let o=$e.resizeBilinear(e,[Es.inputs[0].shape[2],Es.inputs[0].shape[1]]),i=xe(fe(pe(o,"float32"),127.5),1),c=Es.execute(i,age).map(u=>dt(u,[0]));return c[1]=c[1].sigmoid(),c}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)ee(o);let r=await dge(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return Es.inputs[0].shape?F8(r,[e.shape[1],e.shape[2]],[Es.inputs[0].shape[2],Es.inputs[0].shape[1]]):[]}async function L8(e){return!Es||ie.initial?(Es=await ot(lt(e.modelBasePath,e.body.modelPath||"")),!Es||!Es.modelUrl?ae("load model failed:",e.body.modelPath):e.debug&&ae("load model:",Es.modelUrl)):e.debug&&ae("cached model:",Es.modelUrl),Es}var Hs,Zb=!1;async function Yb(e){return!Hs||ie.initial?(Hs=await ot(lt(e.modelBasePath,e.segmentation.modelPath||"")),!Hs||!Hs.modelUrl?ae("load model failed:",e.segmentation.modelPath):e.debug&&ae("load model:",Hs.modelUrl)):e.debug&&ae("cached model:",Hs.modelUrl),Hs}async function B8(e,t,n){var m,g;if(Zb)return{data:[],canvas:null,alpha:null};Zb=!0,Hs||await Yb(n);let s=gc(e,n),r=((m=s.canvas)==null?void 0:m.width)||0,a=((g=s.canvas)==null?void 0:g.height)||0;if(!s.tensor)return{data:[],canvas:null,alpha:null};let o={};o.resize=$e.resizeBilinear(s.tensor,[Hs.inputs[0].shape?Hs.inputs[0].shape[1]:0,Hs.inputs[0].shape?Hs.inputs[0].shape[2]:0],!1),ee(s.tensor),o.norm=fe(o.resize,255),o.res=Hs.predict(o.norm),o.squeeze=dt(o.res,0),o.squeeze.shape[2]===2?(o.softmax=nl(o.squeeze),[o.bg,o.fg]=Vn(o.softmax,2),o.expand=qt(o.fg,2),o.pad=qt(o.expand,0),o.crop=$e.cropAndResize(o.pad,[[0,0,.5,.5]],[0],[r,a]),o.data=dt(o.crop,0)):o.data=$e.resizeBilinear(o.squeeze,[a,r]);let i=Array.from(await o.data.data());if(ie.node&&!ie.Canvas&&typeof ImageData=="undefined")return n.debug&&ae("canvas support missing"),Object.keys(o).forEach(y=>ee(o[y])),{data:i,canvas:null,alpha:null};let l=Cs(r,a);await Ks.toPixels(o.data,l);let c=l.getContext("2d");n.segmentation.blur&&n.segmentation.blur>0&&(c.filter=`blur(${n.segmentation.blur}px)`);let u=c.getImageData(0,0,r,a),d=Cs(r,a),p=d.getContext("2d");s.canvas&&p.drawImage(s.canvas,0,0),p.globalCompositeOperation="darken",n.segmentation.blur&&n.segmentation.blur>0&&(p.filter=`blur(${n.segmentation.blur}px)`),p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none";let h=p.getImageData(0,0,r,a);for(let y=0;y<r*a;y++)h.data[4*y+3]=u.data[4*y+0];p.putImageData(h,0,0);let f=null;if(t&&d){f=Cs(r,a);let y=gc(t,n);ee(y.tensor);let A=f.getContext("2d");A.drawImage(y.canvas,0,0,f.width,f.height),A.drawImage(d,0,0)}return Object.keys(o).forEach(y=>ee(o[y])),Zb=!1,{data:i,canvas:f||d,alpha:l}}var Fp=class{constructor(){ve(this,"age",null);ve(this,"agegenderrace",null);ve(this,"blazeposedetect",null);ve(this,"blazepose",null);ve(this,"centernet",null);ve(this,"efficientpose",null);ve(this,"embedding",null);ve(this,"emotion",null);ve(this,"facedetect",null);ve(this,"faceiris",null);ve(this,"facemesh",null);ve(this,"faceres",null);ve(this,"gender",null);ve(this,"handpose",null);ve(this,"handskeleton",null);ve(this,"handtrack",null);ve(this,"movenet",null);ve(this,"nanodet",null);ve(this,"posenet",null);ve(this,"segmentation",null);ve(this,"antispoof",null)}};function Jb(e){for(let t of Object.keys(e.models))e.models[t]=null}async function W8(e){var t,n,s,r,a,o,i,l,c,u,d,p,h,f,m,g,y,A,x,b,w,k,S,N,$,F,R,D,T,O,W;ie.initial&&Jb(e),e.config.hand.enabled&&(!e.models.handpose&&((n=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:n.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await $b(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(s=e.config.hand.detector)==null?void 0:s.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await $b(e.config))),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=O6(e.config)),e.config.face.enabled&&((a=e.config.face.mesh)==null?void 0:a.enabled)&&!e.models.facemesh&&(e.models.facemesh=Y6(e.config)),e.config.face.enabled&&((o=e.config.face.iris)==null?void 0:o.enabled)&&!e.models.faceiris&&(e.models.faceiris=G6(e.config)),e.config.face.enabled&&((i=e.config.face.antispoof)==null?void 0:i.enabled)&&!e.models.antispoof&&(e.models.antispoof=C6(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((c=(l=e.config.hand.detector)==null?void 0:l.modelPath)==null?void 0:c.includes("handtrack"))&&(e.models.handtrack=S8(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((d=(u=e.config.hand.detector)==null?void 0:u.modelPath)==null?void 0:d.includes("handtrack"))&&(e.models.handskeleton=C8(e.config)),e.config.body.enabled&&!e.models.posenet&&((h=(p=e.config.body)==null?void 0:p.modelPath)==null?void 0:h.includes("posenet"))&&(e.models.posenet=L8(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((m=(f=e.config.body)==null?void 0:f.modelPath)==null?void 0:m.includes("efficientpose"))&&(e.models.efficientpose=mb(e.config)),e.config.body.enabled&&!e.models.blazepose&&((y=(g=e.config.body)==null?void 0:g.modelPath)==null?void 0:y.includes("blazepose"))&&(e.models.blazepose=B6(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&((A=e.config.body.detector)==null?void 0:A.modelPath)&&((b=(x=e.config.body)==null?void 0:x.modelPath)==null?void 0:b.includes("blazepose"))&&(e.models.blazeposedetect=L6(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((k=(w=e.config.body)==null?void 0:w.modelPath)==null?void 0:k.includes("efficientpose"))&&(e.models.efficientpose=mb(e.config)),e.config.body.enabled&&!e.models.movenet&&((N=(S=e.config.body)==null?void 0:S.modelPath)==null?void 0:N.includes("movenet"))&&(e.models.movenet=$8(e.config)),e.config.object.enabled&&!e.models.nanodet&&((F=($=e.config.object)==null?void 0:$.modelPath)==null?void 0:F.includes("nanodet"))&&(e.models.nanodet=D8(e.config)),e.config.object.enabled&&!e.models.centernet&&((D=(R=e.config.object)==null?void 0:R.modelPath)==null?void 0:D.includes("centernet"))&&(e.models.centernet=W6(e.config)),e.config.face.enabled&&((T=e.config.face.emotion)==null?void 0:T.enabled)&&!e.models.emotion&&(e.models.emotion=U6(e.config)),e.config.face.enabled&&((O=e.config.face.description)==null?void 0:O.enabled)&&!e.models.faceres&&(e.models.faceres=t8(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=Yb(e.config)),e.config.face.enabled&&((W=e.config.face.agegenderrace)==null?void 0:W.enabled)&&!e.models.agegenderrace&&(e.models.agegenderrace=I6(e.config));for await(let H of Object.keys(e.models))e.models[H]&&typeof e.models[H]!="undefined"&&(e.models[H]=await e.models[H])}async function V8(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let n of Object.keys(e.models))if(e.models[n]){let s=[];Array.isArray(e.models[n])?s=e.models[n].filter(r=>r!==null).map(r=>r&&r.executor?r:r.model):s=[e.models[n]];for(let r of s){if(!r){e.config.debug&&ae("model marked as loaded but not defined:",n);continue}let a=[],o=r==null?void 0:r.executor;if(o&&o.graph.nodes)for(let l of Object.values(o.graph.nodes)){let c=l.op.toLowerCase();a.includes(c)||a.push(c)}else!o&&e.config.debug&&ae("model signature not determined:",n);let i=[];for(let l of a)!t.includes(l)&&!e.env.kernels.includes(l)&&!e.env.kernels.includes(l.replace("_",""))&&!e.env.kernels.includes(l.replace("native",""))&&!e.env.kernels.includes(l.replace("v2",""))&&i.push(l);i.length>0&&e.config.debug&&ae("model validation:",n,i)}}}var Wt={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function pge(){let e=Wt.gl;!e||(Wt.extensions=e.getSupportedExtensions())}async function U8(e){var t;if(e.config.backend==="humangl"&&(Wt.name in ns().registry&&(!Wt.gl||!Wt.gl.getParameter(Wt.gl.VERSION))&&(ae("error: humangl backend invalid context"),Jb(e)),!U2(Wt.name))){try{Wt.canvas=await Cs(100,100)}catch(s){ae("error: cannot create canvas:",s);return}try{Wt.gl=(t=Wt.canvas)==null?void 0:t.getContext("webgl2",Wt.webGLattr),Wt.canvas&&(Wt.canvas.addEventListener("webglcontextlost",async s=>{throw ae("error: humangl:",s.type),ae("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("browser webgl error")}),Wt.canvas.addEventListener("webglcontextrestored",s=>{ae("error: humangl context restored:",s)}),Wt.canvas.addEventListener("webglcontextcreationerror",s=>{ae("error: humangl context create:",s)}))}catch(s){ae("error: cannot get WebGL context:",s);return}try{Tm(2,Wt.gl)}catch(s){ae("error: cannot set WebGL context:",s);return}try{let s=new Om(Wt.gl);Xi(Wt.name,()=>new oc(s),Wt.priority)}catch(s){ae("error: cannot register WebGL backend:",s);return}try{Zr("webgl").forEach(r=>{let a={...r,backendName:Wt.name};Yr(a)})}catch(s){ae("error: cannot update WebGL backend registration:",s);return}let n=Tr().getGPGPUContext?Tr().getGPGPUContext().gl:null;if(n)ae(`humangl webgl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`);else{ae("error: no current gl context:",n,Wt.gl);return}try{ms.set("WEBGL_VERSION",2)}catch(s){ae("error: cannot set WebGL backend flags:",s);return}pge(),ae("backend registered:",Wt.name)}}async function C0(e,t=!1){if(e.state="backend",t||ie.initial||e.config.backend&&e.config.backend.length>0&&ur()!==e.config.backend){let n=et();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&ae("running inside web worker"),ie.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&ae("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),ie.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&ae(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),ie.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")ae("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();e.config.debug&&ae("enumerated webgpu adapter:",r)}e.config.backend==="humangl"&&await U8(e);let s=Object.keys(ns().registryFactory);if(e.config.debug&&ae("available backends:",s),s.includes(e.config.backend)||(ae(`error: backend ${e.config.backend} not found in registry`),e.config.backend=ie.node?"tensorflow":"webgl",e.config.debug&&ae(`override: setting backend ${e.config.backend}`)),e.config.debug&&ae("setting backend:",e.config.backend),e.config.backend==="wasm"){if(e.config.debug&&ae("wasm path:",e.config.wasmPath),typeof(Sl==null?void 0:Sl.setWasmPaths)!="undefined")await RC(e.config.wasmPath);else throw new Error("wasm backend is not loaded");let r=await Z().getAsync("WASM_HAS_SIMD_SUPPORT"),a=await Z().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&ae(`wasm execution: ${r?"SIMD":"no SIMD"} ${a?"multithreaded":"singlethreaded"}`),e.config.debug&&!r&&ae("warning: wasm simd support is not enabled")}try{await z3(e.config.backend),await Jh()}catch(r){return ae("error: cannot set backend:",e.config.backend,r),!1}}if(ur()==="humangl"&&(ms.set("CHECK_COMPUTATION_FOR_ERRORS",!1),ms.set("WEBGL_CPU_FORWARD",!0),ms.set("WEBGL_PACK_DEPTHWISECONV",!1),ms.set("WEBGL_USE_SHAPES_UNIFORMS",!0),ms.set("CPU_HANDOFF_SIZE_THRESHOLD",256),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(ae("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),ms.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),Tr().getGPGPUContext)){let s=await Tr().getGPGPUContext().gl;e.config.debug&&ae(`gl version:${s.getParameter(s.VERSION)} renderer:${s.getParameter(s.RENDERER)}`)}ur()==="webgpu"&&(ms.set("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",512),ms.set("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",0),ms.set("WEBGPU_CPU_FORWARD",!0)),M3(),await Jh(),e.performance.backend=Math.trunc(et()-n),e.config.backend=ur(),s0(),e.env=ie}return!0}function Ac(e,t){for(let n of e){let s={kernelName:n,backendName:t.backend,kernelFunc:()=>{t.debug&&ae("kernelFunc",n,t.backend)}};Yr(s)}ie.kernels=Zr(ur()).map(n=>n.kernelName.toLowerCase())}var pa={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},Rl=e=>{if(e&&e.getContext)return e.getContext("2d");throw new Error("invalid canvas")},wc=e=>Math.round(e*180/Math.PI);function Qb(e,t,n,s=0,r){e.fillStyle=r.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function Op(e,t,n,s,r,a){if(e.beginPath(),a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function G8(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t){let r=s[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(s[0],Math.round(s[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function hge(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){G8(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function H8(e,t,n,s=5){let r,a,o;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(n[0],n[1]),r=Math.atan2(n[1]-t[1],n[0]-t[0]),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.moveTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),e.closePath(),e.stroke(),e.fill()}async function e5(e,t,n){let s=fn(pa,n);if(!t||!e)return;let r=Rl(e);r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let c=i[1]>0?`#${i[1]}`:"",u=`${i[0]} ${c}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(u,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(u,6,0+a*s.lineHeight),a+=1}}}async function t5(e,t,n){var a,o,i,l,c;let s=fn(pa,n);if(!t||!e)return;let r=Rl(e);for(let u of t){r.font=s.font,r.strokeStyle=s.color,r.fillStyle=s.color,s.drawBoxes&&Op(r,u.box[0],u.box[1],u.box[2],u.box[3],s);let d=[];if(d.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&d.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&d.push(`age: ${u.age||""}`),u.iris&&d.push(`distance: ${u.iris}`),u.real&&d.push(`Real: ${Math.trunc(100*u.real)}%`),u.emotion&&u.emotion.length>0){let p=u.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);p.length>3&&(p.length=3),d.push(p.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&d.push(`roll: ${wc(u.rotation.angle.roll)}\xB0 yaw:${wc(u.rotation.angle.yaw)}\xB0 pitch:${wc(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&d.push(`gaze: ${wc(u.rotation.gaze.bearing)}\xB0`)),d.length===0&&d.push("face"),r.fillStyle=s.color;for(let p=d.length-1;p>=0;p--){let h=Math.max(u.box[0],0),f=p*s.lineHeight+u.box[1];s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(d[p],h+5,f+16)),r.fillStyle=s.labelColor,r.fillText(d[p],h+4,f+15)}if(r.lineWidth=1,u.mesh&&u.mesh.length>0){if(s.drawPoints)for(let p of u.mesh)Qb(r,p[0],p[1],p[2],s);if(s.drawPolygons){if(r.lineWidth=1,u.mesh.length>450)for(let p=0;p<Cl.length/3;p++){let h=[Cl[p*3+0],Cl[p*3+1],Cl[p*3+2]].map(f=>u.mesh[f]);G8(r,h,s)}if(u.annotations&&u.annotations.leftEyeIris&&u.annotations.leftEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let p=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,h=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;r.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],p,h,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(u.annotations&&u.annotations.rightEyeIris&&u.annotations.rightEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let p=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,h=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;r.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],p,h,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(s.drawGaze&&((a=u.rotation)==null?void 0:a.angle)){r.strokeStyle="pink";let p=u.box[0]+u.box[2]/2-u.box[3]*wc(u.rotation.angle.yaw)/90,h=u.box[1]+u.box[3]/2+u.box[2]*wc(u.rotation.angle.pitch)/90,f=new Path2D(`
|
|
M ${u.box[0]+u.box[2]/2} ${u.box[1]}
|
|
C
|
|
${p} ${u.box[1]},
|
|
${p} ${u.box[1]+u.box[3]},
|
|
${u.box[0]+u.box[2]/2} ${u.box[1]+u.box[3]}
|
|
`),m=new Path2D(`
|
|
M ${u.box[0]} ${u.box[1]+u.box[3]/2}
|
|
C
|
|
${u.box[0]} ${h},
|
|
${u.box[0]+u.box[2]} ${h},
|
|
${u.box[0]+u.box[2]} ${u.box[1]+u.box[3]/2}
|
|
`);r.stroke(m),r.stroke(f)}if(s.drawGaze&&((i=(o=u.rotation)==null?void 0:o.gaze)==null?void 0:i.strength)&&((c=(l=u.rotation)==null?void 0:l.gaze)==null?void 0:c.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.fillStyle="pink";let p=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];H8(r,[u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]],[p[0],p[1]],4);let h=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];H8(r,[u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]],[h[0],h[1]],4)}}}}}async function n5(e,t,n){var a;let s=fn(pa,n);if(!t||!e)return;let r=Rl(e);r.lineJoin="round";for(let o=0;o<t.length;o++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[o].box&&((a=t[o].box)==null?void 0:a.length)===4&&(Op(r,t[o].box[0],t[o].box[1],t[o].box[2],t[o].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+3,1+t[o].box[1]+s.lineHeight,t[o].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+2,0+t[o].box[1]+s.lineHeight,t[o].box[2]))),s.drawPoints&&t[o].keypoints)for(let i=0;i<t[o].keypoints.length;i++)r.fillStyle=s.useDepth&&t[o].keypoints[i].position[2]?`rgba(${127.5+2*(t[o].keypoints[i].position[2]||0)}, ${127.5-2*(t[o].keypoints[i].position[2]||0)}, 255, 0.5)`:s.color,Qb(r,t[o].keypoints[i].position[0],t[o].keypoints[i].position[1],0,s);if(s.drawLabels&&t[o].keypoints){r.font=s.font;for(let i of t[o].keypoints)r.fillStyle=s.useDepth&&i.position[2]?`rgba(${127.5+2*i.position[2]}, ${127.5-2*i.position[2]}, 255, 0.5)`:s.color,r.fillText(`${i.part} ${Math.trunc(100*i.score)}%`,i.position[0]+4,i.position[1]+4)}if(s.drawPolygons&&t[o].keypoints&&t[o].annotations)for(let i of Object.values(t[o].annotations))for(let l of i)hge(r,l,s)}}async function s5(e,t,n){let s=fn(pa,n);if(!t||!e)return;let r=Rl(e);r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,Op(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=s.useDepth?`rgba(${127.5+2*(o[2]||0)}, ${127.5-2*(o[2]||0)}, 255, 0.5)`:s.color,Qb(r,o[0],o[1],0,s);if(s.drawLabels&&a.annotations){let o=(i,l)=>{!i||i.length===0||!i[0]||(r.fillStyle=s.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:s.color,r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4))};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons&&a.annotations){let o=i=>{if(!(!i||i.length===0||!i[0]))for(let l=0;l<i.length;l++)r.beginPath(),r.strokeStyle=s.useDepth?`rgba(${127.5+2*i[l][2]}, ${127.5-2*i[l][2]}, 255, 0.5)`:s.color,r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}async function r5(e,t,n){let s=fn(pa,n);if(!t||!e)return;let r=Rl(e);r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,Op(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}async function j8(e,t,n){let s=fn(pa,n);if(!t||!e)return;let r=Rl(e);r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,Op(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}async function q8(e,t){if(!e||!t)return;Rl(t).drawImage(e,0,0)}async function X8(e,t,n){if(!t||!t.performance||!t||!e)return null;let s=et(),r=fn(pa,n),a=Promise.all([t5(e,t.face,r),n5(e,t.body,r),s5(e,t.hand,r),r5(e,t.object,r),e5(e,t.gesture,r)]);return t.performance.draw=Math.trunc(et()-s),a}var fge=e=>{let t=(d,p)=>Math.atan2(d[1]-p[1],d[0]-p[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=e.mesh[33][2]>e.mesh[263][2],a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],c=Math.sqrt(l[0]**2+l[1]**2);return c=Math.min(c,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:c}},K8=(e,t)=>{let n=g=>{let y=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=y,g[1]/=y,g[2]/=y,g},s=(g,y)=>{let A=g[0]-y[0],x=g[1]-y[1],b=g[2]-y[2];return[A,x,b]},r=(g,y)=>{let A=g[1]*y[2]-g[2]*y[1],x=g[2]*y[0]-g[0]*y[2],b=g[0]*y[1]-g[1]*y[0];return[A,x,b]},a=g=>{let[y,A,x,b,w,k,S,N,$]=g,F,R,D;return b<1?b>-1?(D=Math.asin(b),R=Math.atan2(-S,y),F=Math.atan2(-k,w)):(D=-Math.PI/2,R=-Math.atan2(N,$),F=0):(D=Math.PI/2,R=Math.atan2(N,$),F=0),isNaN(F)&&(F=0),isNaN(R)&&(R=0),isNaN(D)&&(D=0),{pitch:2*-F,yaw:2*-R,roll:2*-D}},o=g=>{let y=(x,b,w,k)=>Math.atan2(k-b,w-x);return{pitch:y(g[10][1],g[10][2],g[152][1],g[152][2]),yaw:y(g[33][0],g[33][2],g[263][0],g[263][2]),roll:y(g[33][0],g[33][1],g[263][0],g[263][1])}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,c=[i[10],i[152],i[234],i[454]].map(g=>[g[0]*t[0]/l,g[1]*t[1]/l,g[2]]),u=n(s(c[1],c[0])),d=n(s(c[3],c[2])),p=n(r(d,u));d=r(u,p);let h=[d[0],d[1],d[2],u[0],u[1],u[2],p[0],p[1],p[2]],f=a(h),m=i.length===478?fge(e):{bearing:0,strength:0};return{angle:f,matrix:h,gaze:m}};var a5=async(e,t)=>{var p,h,f,m;let n,s,r,a,o,i,l,c,u=[];e.state="run:face",n=et();let d=await Z6(t,e.config);if(e.performance.face=Math.trunc(et()-n),!t.shape||t.shape.length!==4)return[];if(!d)return[];for(let g=0;g<d.length;g++){if(e.analyze("Get Face"),!d[g].tensor||d[g].tensor.isDisposedInternal){ae("Face object is disposed:",d[g].tensor);continue}let y=K8(d[g],[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?o=e.config.face.emotion.enabled?xb(d[g].tensor||jt([]),e.config,g,d.length):{}:(e.state="run:emotion",n=et(),o=e.config.face.emotion.enabled?await xb(d[g].tensor||jt([]),e.config,g,d.length):{},e.performance.emotion=Math.trunc(et()-n)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?l=e.config.face.antispoof.enabled?Xx(d[g].tensor||jt([]),e.config,g,d.length):{}:(e.state="run:antispoof",n=et(),l=e.config.face.antispoof.enabled?await Xx(d[g].tensor||jt([]),e.config,g,d.length):{},e.performance.antispoof=Math.trunc(et()-n)),e.analyze("End AntiSpoof:"),e.analyze("Start Description:"),e.config.async?c=e.config.face.description.enabled?Sb(d[g].tensor||jt([]),e.config,g,d.length):[]:(e.state="run:description",n=et(),c=e.config.face.description.enabled?await Sb(d[g].tensor||jt([]),e.config,g,d.length):[],e.performance.embedding=Math.trunc(et()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,c,r,l]=await Promise.all([s,a,o,i,c,r,l])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((h=(p=d[g])==null?void 0:p.annotations)==null?void 0:h.leftEyeIris)&&((m=(f=d[g])==null?void 0:f.annotations)==null?void 0:m.rightEyeIris)&&(delete d[g].annotations.leftEyeIris,delete d[g].annotations.rightEyeIris);let A=d[g].annotations&&d[g].annotations.leftEyeIris&&d[g].annotations.leftEyeIris[0]&&d[g].annotations.rightEyeIris&&d[g].annotations.rightEyeIris[0]&&d[g].annotations.leftEyeIris.length>0&&d[g].annotations.rightEyeIris.length>0&&d[g].annotations.leftEyeIris[0]!==null&&d[g].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(d[g].annotations.leftEyeIris[3][0]-d[g].annotations.leftEyeIris[1][0]),Math.abs(d[g].annotations.rightEyeIris[4][1]-d[g].annotations.rightEyeIris[2][1]))/t.shape[2]:0,x=e.config.face.detector.return?dt(d[g].tensor):null;ee(d[g].tensor),d[g].tensor&&delete d[g].tensor,u.push({...d[g],id:g,age:c.age,gender:c.gender,genderScore:c.genderScore,embedding:c.descriptor,emotion:o,real:l,iris:A!==0?Math.trunc(500/A/11.7)/100:0,rotation:y,tensor:x}),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),u};var Z8=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position[1]<a.position[1]&&r.position[1]<a.position[1]?t.push({body:n,gesture:"i give up"}):a&&s&&s.position[1]<a.position[1]?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position[1]<a.position[1]&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&t.push({body:n,gesture:`leaning ${o.position[1]>i.position[1]?"left":"right"}`})}return t},Y8=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>450){let s=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(s)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));o>10&&t.push({face:n,gesture:`mouth ${Math.trunc(o)}% open`});let i=e[n].mesh[152][2];Math.abs(i)>10&&t.push({face:n,gesture:`head ${i<0?"up":"down"}`})}return t},J8=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.leftEyeIris[0]||!e[n].annotations.rightEyeIris||!e[n].annotations.rightEyeIris[0])continue;let s=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],a=Math.abs(s*r),o=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],i=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(o*i),c=!1;Math.abs(a-l)/Math.max(a,l)<.25&&(c=!0,t.push({iris:n,gesture:"facing center"}));let d=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2],p=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2];(p>.06||d>.06)&&(c=!1),p>.06&&t.push({iris:n,gesture:"looking right"}),d>.06&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||h<.01||f>.022||h>.022)&&(c=!1),(f<.01||h<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||h>.022)&&t.push({iris:n,gesture:"looking up"}),c&&t.push({iris:n,gesture:"looking center"})}return t},Q8=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];if(e[n].annotations)for(let[r,a]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(a)&&a[0]&&s.push({name:r.toLowerCase(),position:a[0]});if(s&&s.length>0){let r=s.reduce((o,i)=>o.position[2]<i.position[2]?o:i);t.push({hand:n,gesture:`${r.name} forward`});let a=s.reduce((o,i)=>o.position[1]<i.position[1]?o:i);t.push({hand:n,gesture:`${a.name} up`})}if(e[n].keypoints){let r=A8(e[n].keypoints);for(let a of r)t.push({hand:n,gesture:a.name})}}return t};var Pe={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function eT(e,t){var o,i,l,c,u,d,p,h,f,m,g,y,A,x,b,w,k,S,N,$,F,R,D,T,O,W,H;let n=performance.now();if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};let s=Date.now()-e.timestamp,r=s<1e3?8-Math.log(s+1):1;if(Pe.canvas=e.canvas,!Pe.body||e.body.length!==Pe.body.length)Pe.body=JSON.parse(JSON.stringify(e.body));else for(let z=0;z<e.body.length;z++){let X=e.body[z].box.map((K,oe)=>((r-1)*Pe.body[z].box[oe]+K)/r),te=e.body[z].boxRaw.map((K,oe)=>((r-1)*Pe.body[z].boxRaw[oe]+K)/r),J=e.body[z].keypoints.map((K,oe)=>({score:K.score,part:K.part,position:[Pe.body[z].keypoints[oe]?((r-1)*Pe.body[z].keypoints[oe].position[0]+K.position[0])/r:K.position[0],Pe.body[z].keypoints[oe]?((r-1)*Pe.body[z].keypoints[oe].position[1]+K.position[1])/r:K.position[1]],positionRaw:[Pe.body[z].keypoints[oe]?((r-1)*Pe.body[z].keypoints[oe].positionRaw[0]+K.positionRaw[0])/r:K.position[0],Pe.body[z].keypoints[oe]?((r-1)*Pe.body[z].keypoints[oe].positionRaw[1]+K.positionRaw[1])/r:K.position[1]]})),Q={},ne={connected:{}};((i=(o=t.body)==null?void 0:o.modelPath)==null?void 0:i.includes("efficientpose"))?ne=hb:((c=(l=t.body)==null?void 0:l.modelPath)==null?void 0:c.includes("blazepose"))?ne=rb:((d=(u=t.body)==null?void 0:u.modelPath)==null?void 0:d.includes("movenet"))&&(ne=zb);for(let[K,oe]of Object.entries(ne.connected)){let ce=[];for(let he=0;he<oe.length-1;he++){let Ae=J.find(Ce=>Ce.part===oe[he]),Se=J.find(Ce=>Ce.part===oe[he+1]);Ae&&Se&&Ae.score>(t.body.minConfidence||0)&&Se.score>(t.body.minConfidence||0)&&ce.push([Ae.position,Se.position])}Q[K]=ce}Pe.body[z]={...e.body[z],box:X,boxRaw:te,keypoints:J,annotations:Q}}if(!Pe.hand||e.hand.length!==Pe.hand.length)Pe.hand=JSON.parse(JSON.stringify(e.hand));else for(let z=0;z<e.hand.length;z++){let X=e.hand[z].box.map((ne,K)=>((r-1)*Pe.hand[z].box[K]+ne)/r),te=e.hand[z].boxRaw.map((ne,K)=>((r-1)*Pe.hand[z].boxRaw[K]+ne)/r);Pe.hand[z].keypoints.length!==e.hand[z].keypoints.length&&(Pe.hand[z].keypoints=e.hand[z].keypoints);let J=e.hand[z].keypoints&&e.hand[z].keypoints.length>0?e.hand[z].keypoints.map((ne,K)=>ne.map((oe,ce)=>((r-1)*(Pe.hand[z].keypoints[K][ce]||1)+(oe||0))/r)):[],Q={};if(Object.keys(Pe.hand[z].annotations).length!==Object.keys(e.hand[z].annotations).length)Pe.hand[z].annotations=e.hand[z].annotations,Q=Pe.hand[z].annotations;else if(e.hand[z].annotations)for(let ne of Object.keys(e.hand[z].annotations))Q[ne]=e.hand[z].annotations[ne]&&e.hand[z].annotations[ne][0]?e.hand[z].annotations[ne].map((K,oe)=>K.map((ce,he)=>((r-1)*Pe.hand[z].annotations[ne][oe][he]+ce)/r)):null;Pe.hand[z]={...e.hand[z],box:X,boxRaw:te,keypoints:J,annotations:Q}}if(!Pe.face||e.face.length!==Pe.face.length)Pe.face=JSON.parse(JSON.stringify(e.face));else for(let z=0;z<e.face.length;z++){let X=e.face[z].box.map((Q,ne)=>((r-1)*Pe.face[z].box[ne]+Q)/r),te=e.face[z].boxRaw.map((Q,ne)=>((r-1)*Pe.face[z].boxRaw[ne]+Q)/r),J={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};J.matrix=(p=e.face[z].rotation)==null?void 0:p.matrix,J.angle={roll:((r-1)*(((f=(h=Pe.face[z].rotation)==null?void 0:h.angle)==null?void 0:f.roll)||0)+(((g=(m=e.face[z].rotation)==null?void 0:m.angle)==null?void 0:g.roll)||0))/r,yaw:((r-1)*(((A=(y=Pe.face[z].rotation)==null?void 0:y.angle)==null?void 0:A.yaw)||0)+(((b=(x=e.face[z].rotation)==null?void 0:x.angle)==null?void 0:b.yaw)||0))/r,pitch:((r-1)*(((k=(w=Pe.face[z].rotation)==null?void 0:w.angle)==null?void 0:k.pitch)||0)+(((N=(S=e.face[z].rotation)==null?void 0:S.angle)==null?void 0:N.pitch)||0))/r},J.gaze={bearing:((r-1)*(((F=($=Pe.face[z].rotation)==null?void 0:$.gaze)==null?void 0:F.bearing)||0)+(((D=(R=e.face[z].rotation)==null?void 0:R.gaze)==null?void 0:D.bearing)||0))/r,strength:((r-1)*(((O=(T=Pe.face[z].rotation)==null?void 0:T.gaze)==null?void 0:O.strength)||0)+(((H=(W=e.face[z].rotation)==null?void 0:W.gaze)==null?void 0:H.strength)||0))/r},Pe.face[z]={...e.face[z],rotation:J,box:X,boxRaw:te}}if(!Pe.object||e.object.length!==Pe.object.length)Pe.object=JSON.parse(JSON.stringify(e.object));else for(let z=0;z<e.object.length;z++){let X=e.object[z].box.map((J,Q)=>((r-1)*Pe.object[z].box[Q]+J)/r),te=e.object[z].boxRaw.map((J,Q)=>((r-1)*Pe.object[z].boxRaw[Q]+J)/r);Pe.object[z]={...e.object[z],box:X,boxRaw:te}}if(e.persons){let z=e.persons;if(!Pe.persons||z.length!==Pe.persons.length)Pe.persons=JSON.parse(JSON.stringify(z));else for(let X=0;X<z.length;X++)Pe.persons[X].box=z[X].box.map((te,J)=>((r-1)*Pe.persons[X].box[J]+te)/r)}e.gesture&&(Pe.gesture=e.gesture);let a=performance.now();return e.performance&&(Pe.performance={...e.performance,interpolate:Math.round(a-n)}),Pe}function T0(e,t,n={order:2}){let s=0;for(let r=0;r<e.length;r++){let a=n.order===2?e[r]-t[r]:Math.abs(e[r]-t[r]);s+=n.order===2?a*a:a**n.order}return s}function tT(e,t,n={order:2}){let s=T0(e,t,n),r=n.order===2?Math.sqrt(s):s**(1/n.order);return Math.max(0,100-r)/100}function nT(e,t,n={order:2,threshold:0}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0||e.length!==t[0].length)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let s=Number.MAX_SAFE_INTEGER,r=-1;for(let a=0;a<t.length;a++){let o=T0(e,t[a],{order:n.order});if(o<s&&(s=o,r=a),s<n.threshold)break}return s=n.order===2?Math.sqrt(s):s**(1/n.order),{index:r,distance:s,similarity:Math.max(0,100-s)/100}}function sT(e,t,n,s,r){var i,l,c,u,d,p,h,f,m,g,y,A,x,b,w,k;let a=0,o=[];for(let S of e){let N={id:a++,face:S,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let O of t)S.box[0]>O.box[0]&&S.box[0]<O.box[0]+O.box[2]&&S.box[1]+S.box[3]>O.box[1]&&S.box[1]+S.box[3]<O.box[1]+O.box[3]&&(N.body=O);if(N.body)for(let O of n)O.box[0]+O.box[2]>N.body.box[0]&&O.box[0]+O.box[2]<N.body.box[0]+N.body.box[2]&&O.box[1]+O.box[3]>N.body.box[1]&&O.box[1]+O.box[3]<N.body.box[1]+N.body.box[3]&&N.hands&&(N.hands.left=O),O.box[0]<N.body.box[0]+N.body.box[2]&&O.box[0]>N.body.box[0]&&O.box[1]+O.box[3]>N.body.box[1]&&O.box[1]+O.box[3]<N.body.box[1]+N.body.box[3]&&N.hands&&(N.hands.right=O);for(let O of s)O.face!==void 0&&O.face===S.id?(i=N.gestures)==null||i.push(O):O.iris!==void 0&&O.iris===S.id?(l=N.gestures)==null||l.push(O):O.body!==void 0&&O.body===((c=N.body)==null?void 0:c.id)?(u=N.gestures)==null||u.push(O):O.hand!==void 0&&O.hand===((p=(d=N.hands)==null?void 0:d.left)==null?void 0:p.id)?(h=N.gestures)==null||h.push(O):O.hand!==void 0&&O.hand===((m=(f=N.hands)==null?void 0:f.right)==null?void 0:m.id)&&((g=N.gestures)==null||g.push(O));let $=[],F=[],R=O=>{O&&O.length===4&&($.push(O[0],O[0]+O[2]),F.push(O[1],O[1]+O[3]))};R((y=N.face)==null?void 0:y.box),R((A=N.body)==null?void 0:A.box),R((b=(x=N.hands)==null?void 0:x.left)==null?void 0:b.box),R((k=(w=N.hands)==null?void 0:w.right)==null?void 0:k.box);let D=Math.min(...$),T=Math.min(...F);N.box=[D,T,Math.max(...$)-D,Math.max(...F)-T],r&&r[1]&&r[2]&&(N.boxRaw=[N.box[0]/r[2],N.box[1]/r[1],N.box[2]/r[2],N.box[3]/r[1]]),o.push(N)}return o}var N0=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,E0=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;async function mge(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(N0);break;case"body":case"full":n=await t(E0);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function gge(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+N0;break;case"full":case"body":n="data:image/jpeg;base64,"+E0;break;default:n=null}let s;typeof Image!="undefined"?s=new Image:ie.Image&&(s=new ie.Image),s.onload=async()=>{let r=Cs(s.naturalWidth,s.naturalHeight);if(!r)ae("Warmup: Canvas not found"),t({});else{let a=r.getContext("2d");a&&a.drawImage(s,0,0);let o=await e.image(r),i=await e.detect(o.tensor,e.config);t(i)}},n?s.src=n:t(null)})}async function yge(e){let t=r=>Buffer.from(r,"base64"),n;if(e.config.warmup==="face"&&(n=t(N0)),(e.config.warmup==="body"||e.config.warmup==="full")&&(n=t(E0)),!n)return null;let s;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&ae("Warmup tfjs-node not loaded");return s}async function rT(e,t){let n=et();if(e.state="warmup",t&&(e.config=fn(e.config,t)),!e.config.warmup||e.config.warmup==="none")return{error:"null"};let s;return new Promise(async r=>{typeof createImageBitmap=="function"?s=await mge(e):typeof Image!="undefined"||ie.Canvas!==void 0?s=await gge(e):s=await yge(e);let a=et();e.config.debug&&ae("Warmup",e.config.warmup,Math.round(a-n),"ms"),e.emit("warmup"),r(s)})}var kc,Mp,zp,R0,oT=class{constructor(t){ve(this,"version");ve(this,"config");ve(this,"result");ve(this,"state");ve(this,"process");ve(this,"tf");ve(this,"env");ve(this,"draw");ve(this,"models");ve(this,"events");ve(this,"faceTriangulation");ve(this,"faceUVMap");ve(this,"performance");Mc(this,kc,void 0);Mc(this,Mp,void 0);Mc(this,zp,void 0);ve(this,"gl");ve(this,"analyze",(...t)=>{if(!Oc(this,Mp))return;let n=this.tf.engine().state.numTensors,s=Oc(this,kc);zc(this,kc,n);let r=n-s;r!==0&&ae(...t,r)});Mc(this,R0,t=>{if(!Oc(this,zp))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof Ke))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});ve(this,"similarity",tT);ve(this,"distance",T0);ve(this,"match",nT);ve(this,"emit",t=>{var n;this.events&&this.events.dispatchEvent&&((n=this.events)==null||n.dispatchEvent(new Event(t)))});s0(),this.env=ie,xa.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${Zh}/dist/`,xa.modelBasePath=this.env.browser?"../models/":"file://models/",xa.backend=this.env.browser?"humangl":"tensorflow",this.version=Wx,Object.defineProperty(this,"version",{value:Wx}),this.config=JSON.parse(JSON.stringify(xa)),Object.seal(this.config),t&&(this.config=fn(this.config,t)),this.tf=Sl,this.state="idle",zc(this,kc,0),zc(this,Mp,!1),zc(this,zp,!1),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new Fp,this.draw={options:pa,canvas:(n,s)=>q8(n,s),face:(n,s,r)=>t5(n,s,r),body:(n,s,r)=>n5(n,s,r),hand:(n,s,r)=>s5(n,s,r),gesture:(n,s,r)=>e5(n,s,r),object:(n,s,r)=>r5(n,s,r),person:(n,s,r)=>j8(n,s,r),all:(n,s,r)=>X8(n,s,r)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[]},this.process={tensor:null,canvas:null},this.faceTriangulation=J6,this.faceUVMap=Q6,this.gl=Wt,this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(xa)),this.config.backend=t}validate(t){return r2(xa,t||this.config)}image(t,n=!0){return gc(t,this.config,n)}async segmentation(t,n){return B8(t,n,this.config)}enhance(t){return Ib(t)}async init(){await C0(this,!0),await this.tf.ready(),w6(this.env)}async load(t){this.state="load";let n=et(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=fn(this.config,t)),ie.initial&&(this.config.debug&&ae(`version: ${this.version}`),this.config.debug&&ae(`tfjs version: ${this.tf.version_core}`),await C0(this)||ae("error: backend check failed"),await Jh(),this.env.browser&&(this.config.debug&&ae("configuration:",this.config),this.config.debug&&ae("tf flags:",this.tf.ENV.flags))),await W8(this),ie.initial&&this.config.debug&&ae("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),ie.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(await V8(this),this.emit("load"));let a=Math.trunc(et()-n);a>(this.performance.load||0)&&(this.performance.load=a)}next(t=this.result){return eT(t,this.config)}async warmup(t){return rT(this,t)}async detect(t,n){return this.state="detect",new Promise(async s=>{var y,A,x,b,w,k,S,N,$,F,R,D,T,O,W,H,z,X,te,J,Q,ne;this.state="config";let r,a;this.config=fn(this.config,n),this.state="check";let o=Oc(this,R0).call(this,t);o&&(ae(o,t),s({error:o}));let i=et();await C0(this),await this.load(),r=et(),this.state="image";let l=gc(t,this.config);if(this.process=l,this.performance.image=Math.trunc(et()-r),this.analyze("Get Image:"),!l.tensor){this.config.debug&&ae("could not convert input to tensor"),s({error:"could not convert input to tensor"});return}this.emit("image"),r=et(),this.config.skipFrame=await k6(this.config,l.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(et()-r),this.analyze("Check Changed:");let c=[],u=[],d=[],p=[];this.state="detect:face",this.config.async?(c=this.config.face.enabled?a5(this,l.tensor):[],this.performance.face&&delete this.performance.face):(r=et(),c=this.config.face.enabled?await a5(this,l.tensor):[],a=Math.trunc(et()-r),a>0&&(this.performance.face=a)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(c=await c),this.analyze("Start Body:"),this.state="detect:body";let h=this.config.body.maxDetected===-1?fn(this.config,{body:{maxDetected:this.config.face.enabled?1*c.length:1}}):this.config;this.config.async?(((y=this.config.body.modelPath)==null?void 0:y.includes("posenet"))?u=this.config.body.enabled?Kb(l.tensor,h):[]:((A=this.config.body.modelPath)==null?void 0:A.includes("blazepose"))?u=this.config.body.enabled?lb(l.tensor,h):[]:((x=this.config.body.modelPath)==null?void 0:x.includes("efficientpose"))?u=this.config.body.enabled?gb(l.tensor,h):[]:((b=this.config.body.modelPath)==null?void 0:b.includes("movenet"))&&(u=this.config.body.enabled?Wb(l.tensor,h):[]),this.performance.body&&delete this.performance.body):(r=et(),((w=this.config.body.modelPath)==null?void 0:w.includes("posenet"))?u=this.config.body.enabled?await Kb(l.tensor,h):[]:((k=this.config.body.modelPath)==null?void 0:k.includes("blazepose"))?u=this.config.body.enabled?await lb(l.tensor,h):[]:((S=this.config.body.modelPath)==null?void 0:S.includes("efficientpose"))?u=this.config.body.enabled?await gb(l.tensor,h):[]:((N=this.config.body.modelPath)==null?void 0:N.includes("movenet"))&&(u=this.config.body.enabled?await Wb(l.tensor,h):[]),a=Math.trunc(et()-r),a>0&&(this.performance.body=a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let f=this.config.hand.maxDetected===-1?fn(this.config,{hand:{maxDetected:this.config.face.enabled?2*c.length:1}}):this.config;this.config.async?(((F=($=this.config.hand.detector)==null?void 0:$.modelPath)==null?void 0:F.includes("handdetect"))?d=this.config.hand.enabled?Rb(l.tensor,f):[]:((D=(R=this.config.hand.detector)==null?void 0:R.modelPath)==null?void 0:D.includes("handtrack"))&&(d=this.config.hand.enabled?Pb(l.tensor,f):[]),this.performance.hand&&delete this.performance.hand):(r=et(),((O=(T=this.config.hand.detector)==null?void 0:T.modelPath)==null?void 0:O.includes("handdetect"))?d=this.config.hand.enabled?await Rb(l.tensor,f):[]:((H=(W=this.config.hand.detector)==null?void 0:W.modelPath)==null?void 0:H.includes("handtrack"))&&(d=this.config.hand.enabled?await Pb(l.tensor,f):[]),a=Math.trunc(et()-r),a>0&&(this.performance.hand=a)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?(((z=this.config.object.modelPath)==null?void 0:z.includes("nanodet"))?p=this.config.object.enabled?Ub(l.tensor,this.config):[]:((X=this.config.object.modelPath)==null?void 0:X.includes("centernet"))&&(p=this.config.object.enabled?cb(l.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=et(),((te=this.config.object.modelPath)==null?void 0:te.includes("nanodet"))?p=this.config.object.enabled?await Ub(l.tensor,this.config):[]:((J=this.config.object.modelPath)==null?void 0:J.includes("centernet"))&&(p=this.config.object.enabled?await cb(l.tensor,this.config):[]),a=Math.trunc(et()-r),a>0&&(this.performance.object=a)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([c,u,d,p]=await Promise.all([c,u,d,p])),this.state="detect:gesture";let m=[];this.config.gesture.enabled&&(r=et(),m=[...Y8(c),...Z8(u),...Q8(d),...J8(c)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(et()-r)),this.performance.total=Math.trunc(et()-i);let g=((ne=(Q=this.process)==null?void 0:Q.tensor)==null?void 0:ne.shape)||[];this.result={face:c,body:u,hand:d,gesture:m,object:p,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),get persons(){return sT(c,u,d,m,g)}},ee(l.tensor),this.emit("detect"),this.state="idle",s(this.result)})}};kc=new WeakMap,Mp=new WeakMap,zp=new WeakMap,R0=new WeakMap;return Age;})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use backend file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|