mirror of https://github.com/vladmandic/human
7196 lines
1.3 MiB
7196 lines
1.3 MiB
/*
|
|
Human
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var YT=Object.create,Kd=Object.defineProperty,QT=Object.getOwnPropertyDescriptor,Qw=Object.getOwnPropertyNames,ZT=Object.getPrototypeOf,JT=Object.prototype.hasOwnProperty,e$=e=>Kd(e,"__esModule",{value:!0}),Mt=(e,t)=>function(){return t||(0,e[Qw(e)[0]])((t={exports:{}}).exports,t),t.exports},Ee=(e,t)=>{for(var n in t)Kd(e,n,{get:t[n],enumerable:!0})},t$=(e,t,n,s)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of Qw(t))!JT.call(e,r)&&(n||r!=="default")&&Kd(e,r,{get:()=>t[r],enumerable:!(s=QT(t,r))||s.enumerable});return e},ka=(e,t)=>t$(e$(Kd(e!=null?YT(ZT(e)):{},"default",!t&&e&&e.__esModule?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),n$=Mt({"src/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(O){}function s(O,T,M){this.low=O|0,this.high=T|0,this.unsigned=!!M}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(O){return(O&&O.__isLong__)===!0}s.isLong=r;var a={},i={};function o(O,T){var M,W,j;return T?(O>>>=0,(j=0<=O&&O<256)&&(W=i[O],W)?W:(M=l(O,(O|0)<0?-1:0,!0),j&&(i[O]=M),M)):(O|=0,(j=-128<=O&&O<128)&&(W=a[O],W)?W:(M=l(O,O<0?-1:0,!1),j&&(a[O]=M),M))}s.fromInt=o;function u(O,T){if(isNaN(O))return T?x:v;if(T){if(O<0)return x;if(O>=g)return E}else{if(O<=-b)return P;if(O+1>=b)return R}return O<0?u(-O,T).neg():l(O%m|0,O/m|0,T)}s.fromNumber=u;function l(O,T,M){return new s(O,T,M)}s.fromBits=l;var c=Math.pow;function p(O,T,M){if(O.length===0)throw Error("empty string");if(O==="NaN"||O==="Infinity"||O==="+Infinity"||O==="-Infinity")return v;if(typeof T=="number"?(M=T,T=!1):T=!!T,M=M||10,M<2||36<M)throw RangeError("radix");var W;if((W=O.indexOf("-"))>0)throw Error("interior hyphen");if(W===0)return p(O.substring(1),T,M).neg();for(var j=u(c(M,8)),X=v,Y=0;Y<O.length;Y+=8){var Z=Math.min(8,O.length-Y),te=parseInt(O.substring(Y,Y+Z),M);if(Z<8){var J=u(c(M,Z));X=X.mul(J).add(u(te))}else X=X.mul(j),X=X.add(u(te))}return X.unsigned=T,X}s.fromString=p;function d(O,T){return typeof O=="number"?u(O,T):typeof O=="string"?p(O,T):l(O.low,O.high,typeof T=="boolean"?T:O.unsigned)}s.fromValue=d;var h=1<<16,f=1<<24,m=h*h,g=m*m,b=g/2,y=o(f),v=o(0);s.ZERO=v;var x=o(0,!0);s.UZERO=x;var k=o(1);s.ONE=k;var I=o(1,!0);s.UONE=I;var $=o(-1);s.NEG_ONE=$;var R=l(-1,2147483647,!1);s.MAX_VALUE=R;var E=l(-1,-1,!0);s.MAX_UNSIGNED_VALUE=E;var P=l(0,-2147483648,!1);s.MIN_VALUE=P;var A=s.prototype;A.toInt=function(){return this.unsigned?this.low>>>0:this.low},A.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},A.toString=function(T){if(T=T||10,T<2||36<T)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(P)){var M=u(T),W=this.div(M),j=W.mul(M).sub(this);return W.toString(T)+j.toInt().toString(T)}else return"-"+this.neg().toString(T);for(var X=u(c(T,6),this.unsigned),Y=this,Z="";;){var te=Y.div(X),J=Y.sub(te.mul(X)).toInt()>>>0,se=J.toString(T);if(Y=te,Y.isZero())return se+Z;for(;se.length<6;)se="0"+se;Z=""+se+Z}},A.getHighBits=function(){return this.high},A.getHighBitsUnsigned=function(){return this.high>>>0},A.getLowBits=function(){return this.low},A.getLowBitsUnsigned=function(){return this.low>>>0},A.getNumBitsAbs=function(){if(this.isNegative())return this.eq(P)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,M=31;M>0&&(T&1<<M)==0;M--);return this.high!=0?M+33:M+1},A.isZero=function(){return this.high===0&&this.low===0},A.eqz=A.isZero,A.isNegative=function(){return!this.unsigned&&this.high<0},A.isPositive=function(){return this.unsigned||this.high>=0},A.isOdd=function(){return(this.low&1)===1},A.isEven=function(){return(this.low&1)===0},A.equals=function(T){return r(T)||(T=d(T)),this.unsigned!==T.unsigned&&this.high>>>31===1&&T.high>>>31===1?!1:this.high===T.high&&this.low===T.low},A.eq=A.equals,A.notEquals=function(T){return!this.eq(T)},A.neq=A.notEquals,A.ne=A.notEquals,A.lessThan=function(T){return this.comp(T)<0},A.lt=A.lessThan,A.lessThanOrEqual=function(T){return this.comp(T)<=0},A.lte=A.lessThanOrEqual,A.le=A.lessThanOrEqual,A.greaterThan=function(T){return this.comp(T)>0},A.gt=A.greaterThan,A.greaterThanOrEqual=function(T){return this.comp(T)>=0},A.gte=A.greaterThanOrEqual,A.ge=A.greaterThanOrEqual,A.compare=function(T){if(r(T)||(T=d(T)),this.eq(T))return 0;var M=this.isNegative(),W=T.isNegative();return M&&!W?-1:!M&&W?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},A.comp=A.compare,A.negate=function(){return!this.unsigned&&this.eq(P)?P:this.not().add(k)},A.neg=A.negate,A.add=function(T){r(T)||(T=d(T));var M=this.high>>>16,W=this.high&65535,j=this.low>>>16,X=this.low&65535,Y=T.high>>>16,Z=T.high&65535,te=T.low>>>16,J=T.low&65535,se=0,ne=0,oe=0,ae=0;return ae+=X+J,oe+=ae>>>16,ae&=65535,oe+=j+te,ne+=oe>>>16,oe&=65535,ne+=W+Z,se+=ne>>>16,ne&=65535,se+=M+Y,se&=65535,l(oe<<16|ae,se<<16|ne,this.unsigned)},A.subtract=function(T){return r(T)||(T=d(T)),this.add(T.neg())},A.sub=A.subtract,A.multiply=function(T){if(this.isZero())return v;if(r(T)||(T=d(T)),n){var M=n.mul(this.low,this.high,T.low,T.high);return l(M,n.get_high(),this.unsigned)}if(T.isZero())return v;if(this.eq(P))return T.isOdd()?P:v;if(T.eq(P))return this.isOdd()?P:v;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(y)&&T.lt(y))return u(this.toNumber()*T.toNumber(),this.unsigned);var W=this.high>>>16,j=this.high&65535,X=this.low>>>16,Y=this.low&65535,Z=T.high>>>16,te=T.high&65535,J=T.low>>>16,se=T.low&65535,ne=0,oe=0,ae=0,de=0;return de+=Y*se,ae+=de>>>16,de&=65535,ae+=X*se,oe+=ae>>>16,ae&=65535,ae+=Y*J,oe+=ae>>>16,ae&=65535,oe+=j*se,ne+=oe>>>16,oe&=65535,oe+=X*J,ne+=oe>>>16,oe&=65535,oe+=Y*te,ne+=oe>>>16,oe&=65535,ne+=W*se+j*J+X*te+Y*Z,ne&=65535,l(ae<<16|de,ne<<16|oe,this.unsigned)},A.mul=A.multiply,A.divide=function(T){if(r(T)||(T=d(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return l(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?x:v;var W,j,X;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return x;if(T.gt(this.shru(1)))return I;X=x}else{if(this.eq(P)){if(T.eq(k)||T.eq($))return P;if(T.eq(P))return k;var Y=this.shr(1);return W=Y.div(T).shl(1),W.eq(v)?T.isNegative()?k:$:(j=this.sub(T.mul(W)),X=W.add(j.div(T)),X)}else if(T.eq(P))return this.unsigned?x:v;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();X=v}for(j=this;j.gte(T);){W=Math.max(1,Math.floor(j.toNumber()/T.toNumber()));for(var Z=Math.ceil(Math.log(W)/Math.LN2),te=Z<=48?1:c(2,Z-48),J=u(W),se=J.mul(T);se.isNegative()||se.gt(j);)W-=te,J=u(W,this.unsigned),se=J.mul(T);J.isZero()&&(J=k),X=X.add(J),j=j.sub(se)}return X},A.div=A.divide,A.modulo=function(T){if(r(T)||(T=d(T)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return l(M,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},A.mod=A.modulo,A.rem=A.modulo,A.not=function(){return l(~this.low,~this.high,this.unsigned)},A.and=function(T){return r(T)||(T=d(T)),l(this.low&T.low,this.high&T.high,this.unsigned)},A.or=function(T){return r(T)||(T=d(T)),l(this.low|T.low,this.high|T.high,this.unsigned)},A.xor=function(T){return r(T)||(T=d(T)),l(this.low^T.low,this.high^T.high,this.unsigned)},A.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?l(this.low<<T,this.high<<T|this.low>>>32-T,this.unsigned):l(0,this.low<<T-32,this.unsigned)},A.shl=A.shiftLeft,A.shiftRight=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?l(this.low>>>T|this.high<<32-T,this.high>>T,this.unsigned):l(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},A.shr=A.shiftRight,A.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var M=this.high;if(T<32){var W=this.low;return l(W>>>T|M<<32-T,M>>>T,this.unsigned)}else return T===32?l(M,0,this.unsigned):l(M>>>T-32,0,this.unsigned)},A.shru=A.shiftRightUnsigned,A.shr_u=A.shiftRightUnsigned,A.toSigned=function(){return this.unsigned?l(this.low,this.high,!1):this},A.toUnsigned=function(){return this.unsigned?this:l(this.low,this.high,!0)},A.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},A.toBytesLE=function(){var T=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},A.toBytesBE=function(){var T=this.high,M=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},s.fromBytes=function(T,M,W){return W?s.fromBytesLE(T,M):s.fromBytesBE(T,M)},s.fromBytesLE=function(T,M){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,M)},s.fromBytesBE=function(T,M){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],M)}}}),s$=Mt({"(disabled):src/node_modules/node-fetch/browser.js"(){}}),r$=Mt({"(disabled):util"(){}}),a$=Mt({"src/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(l){var c=this,p=u();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=p(" "),c.s1=p(" "),c.s2=p(" "),c.s0-=p(l),c.s0<0&&(c.s0+=1),c.s1-=p(l),c.s1<0&&(c.s1+=1),c.s2-=p(l),c.s2<0&&(c.s2+=1),p=null}function i(l,c){return c.c=l.c,c.s0=l.s0,c.s1=l.s1,c.s2=l.s2,c}function o(l,c){var p=new a(l),d=c&&c.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&i(d,p),h.state=function(){return i(p,{})}),h}function u(){var l=4022871197,c=function(p){p=String(p);for(var d=0;d<p.length;d++){l+=p.charCodeAt(d);var h=.02519603282416938*l;l=h>>>0,h-=l,h*=l,l=h>>>0,h-=l,l+=h*4294967296}return(l>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),i$=Mt({"src/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(u){var l=this,c="";l.x=0,l.y=0,l.z=0,l.w=0,l.next=function(){var d=l.x^l.x<<11;return l.x=l.y,l.y=l.z,l.z=l.w,l.w^=l.w>>>19^d^d>>>8},u===(u|0)?l.x=u:c+=u;for(var p=0;p<c.length+64;p++)l.x^=c.charCodeAt(p)|0,l.next()}function i(u,l){return l.x=u.x,l.y=u.y,l.z=u.z,l.w=u.w,l}function o(u,l){var c=new a(u),p=l&&l.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&i(p,c),d.state=function(){return i(c,{})}),d}s&&s.exports?s.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),o$=Mt({"src/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(u){var l=this,c="";l.next=function(){var d=l.x^l.x>>>2;return l.x=l.y,l.y=l.z,l.z=l.w,l.w=l.v,(l.d=l.d+362437|0)+(l.v=l.v^l.v<<4^(d^d<<1))|0},l.x=0,l.y=0,l.z=0,l.w=0,l.v=0,u===(u|0)?l.x=u:c+=u;for(var p=0;p<c.length+64;p++)l.x^=c.charCodeAt(p)|0,p==c.length&&(l.d=l.x<<10^l.x>>>4),l.next()}function i(u,l){return l.x=u.x,l.y=u.y,l.z=u.z,l.w=u.w,l.v=u.v,l.d=u.d,l}function o(u,l){var c=new a(u),p=l&&l.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&i(p,c),d.state=function(){return i(c,{})}),d}s&&s.exports?s.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),u$=Mt({"src/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(u){var l=this;l.next=function(){var p=l.x,d=l.i,h,f,m;return h=p[d],h^=h>>>7,f=h^h<<24,h=p[d+1&7],f^=h^h>>>10,h=p[d+3&7],f^=h^h>>>3,h=p[d+4&7],f^=h^h<<7,h=p[d+7&7],h=h^h<<13,f^=h^h<<9,p[d]=f,l.i=d+1&7,f};function c(p,d){var h,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,h=0;h<d.length;++h)m[h&7]=m[h&7]<<15^d.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],p.x=m,p.i=0,h=256;h>0;--h)p.next()}c(l,u)}function i(u,l){return l.x=u.x.slice(),l.i=u.i,l}function o(u,l){u==null&&(u=+new Date);var c=new a(u),p=l&&l.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.x&&i(p,c),d.state=function(){return i(c,{})}),d}s&&s.exports?s.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),l$=Mt({"src/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(u){var l=this;l.next=function(){var p=l.w,d=l.X,h=l.i,f,m;return l.w=p=p+1640531527|0,m=d[h+34&127],f=d[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[h]=m^f,l.i=h,m+(p^p>>>16)|0};function c(p,d){var h,f,m,g,b,y=[],v=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,v=Math.max(v,d.length)),m=0,g=-32;g<v;++g)d&&(f^=d.charCodeAt((g+32)%d.length)),g===0&&(b=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(b=b+1640531527|0,h=y[g&127]^=f+b,m=h==0?m+1:0);for(m>=128&&(y[(d&&d.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],h=y[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,y[m]=f^h;p.w=b,p.X=y,p.i=m}c(l,u)}function i(u,l){return l.i=u.i,l.w=u.w,l.X=u.X.slice(),l}function o(u,l){u==null&&(u=+new Date);var c=new a(u),p=l&&l.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.X&&i(p,c),d.state=function(){return i(c,{})}),d}s&&s.exports?s.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),c$=Mt({"src/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(u){var l=this,c="";l.next=function(){var d=l.b,h=l.c,f=l.d,m=l.a;return d=d<<25^d>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-d|0,l.b=d=d<<20^d>>>12^h,l.c=h=h-f|0,l.d=f<<16^h>>>16^m,l.a=m-d|0},l.a=0,l.b=0,l.c=-1640531527,l.d=1367130551,u===Math.floor(u)?(l.a=u/4294967296|0,l.b=u|0):c+=u;for(var p=0;p<c.length+20;p++)l.b^=c.charCodeAt(p)|0,l.next()}function i(u,l){return l.a=u.a,l.b=u.b,l.c=u.c,l.d=u.d,l}function o(u,l){var c=new a(u),p=l&&l.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&i(p,c),d.state=function(){return i(c,{})}),d}s&&s.exports?s.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),d$=Mt({"(disabled):crypto"(){}}),p$=Mt({"src/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,i=6,o=52,u="random",l=r.pow(a,i),c=r.pow(2,o),p=c*2,d=a-1,h;function f(k,I,$){var R=[];I=I==!0?{entropy:!0}:I||{};var E=y(b(I.entropy?[k,x(s)]:k==null?v():k,3),R),P=new m(R),A=function(){for(var O=P.g(i),T=l,M=0;O<c;)O=(O+M)*a,T*=a,M=P.g(1);for(;O>=p;)O/=2,T/=2,M>>>=1;return(O+M)/T};return A.int32=function(){return P.g(4)|0},A.quick=function(){return P.g(4)/4294967296},A.double=A,y(x(P.S),s),(I.pass||$||function(O,T,M,W){return W&&(W.S&&g(W,P),O.state=function(){return g(P,{})}),M?(r[u]=O,T):O})(A,E,"global"in I?I.global:this==r,I.state)}function m(k){var I,$=k.length,R=this,E=0,P=R.i=R.j=0,A=R.S=[];for($||(k=[$++]);E<a;)A[E]=E++;for(E=0;E<a;E++)A[E]=A[P=d&P+k[E%$]+(I=A[E])],A[P]=I;(R.g=function(O){for(var T,M=0,W=R.i,j=R.j,X=R.S;O--;)T=X[W=d&W+1],M=M*a+X[d&(X[W]=X[j=d&j+T])+(X[j]=T)];return R.i=W,R.j=j,M})(a)}function g(k,I){return I.i=k.i,I.j=k.j,I.S=k.S.slice(),I}function b(k,I){var $=[],R=typeof k,E;if(I&&R=="object")for(E in k)try{$.push(b(k[E],I-1))}catch(P){}return $.length?$:R=="string"?k:k+"\0"}function y(k,I){for(var $=k+"",R,E=0;E<$.length;)I[d&E]=d&(R^=I[d&E]*19)+$.charCodeAt(E++);return x(I)}function v(){try{var k;return h&&(k=h.randomBytes)?k=k(a):(k=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(k)),x(k)}catch(R){var I=n.navigator,$=I&&I.plugins;return[+new Date,n,$,n.screen,x(s)]}}function x(k){return String.fromCharCode.apply(0,k)}if(y(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{h=d$()}catch(k){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+u]=f})(typeof self!="undefined"?self:e,[],Math)}}),Xd=Mt({"src/node_modules/seedrandom/index.js"(e,t){var n=a$(),s=i$(),r=o$(),a=u$(),i=l$(),o=c$(),u=p$();u.alea=n,u.xor128=s,u.xorwow=r,u.xorshift7=a,u.xor4096=i,u.tychei=o,t.exports=u}}),Zw=Mt({"(disabled):src/node_modules/string_decoder/index.js"(){}}),ug=Mt({"(disabled):fs"(){}}),gd=Mt({"(disabled):path"(){}}),h$=Mt({"(disabled):worker_threads"(){}}),f$=Mt({"(disabled):perf_hooks"(){}}),m$=Mt({"(disabled):os"(){}}),g$=Mt({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=(()=>{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return Ce.buffer!=nn&&rs(Ce.buffer),lc}function i(){return Ce.buffer!=nn&&rs(Ce.buffer),cc}function o(){return Ce.buffer!=nn&&rs(Ce.buffer),bu}function u(){return Ce.buffer!=nn&&rs(Ce.buffer),dc}function l(){return Ce.buffer!=nn&&rs(Ce.buffer),pc}function c(){return Ce.buffer!=nn&&rs(Ce.buffer),hc}function p(){return Ce.buffer!=nn&&rs(Ce.buffer),fc}var d=typeof r!="undefined"?r:{},h,f;d.ready=new Promise(function(N,D){h=N,f=D});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},d),b=[],y="./this.program",v=(N,D)=>{throw D},x=typeof window=="object",k=typeof importScripts=="function",I=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",$=d.ENVIRONMENT_IS_PTHREAD||!1,R="";function E(N){return d.locateFile?d.locateFile(N,R):R+N}var P,A,O,T;function M(N){if(N instanceof Nu)return;J("exiting due to exception: "+N)}var W,j,X;if(I){k?R=gd().dirname(R)+"/":R=__dirname+"/",X=()=>{j||(W=ug(),j=gd())},P=function(B,Q){return X(),B=j.normalize(B),W.readFileSync(B,Q?void 0:"utf8")},O=D=>{var B=P(D,!0);return B.buffer||(B=new Uint8Array(B)),B},A=(D,B,Q)=>{X(),D=j.normalize(D),W.readFile(D,function(ue,pe){ue?Q(ue):B(pe.buffer)})},process.argv.length>1&&(y=process.argv[1].replace(/\\/g,"/")),b=process.argv.slice(2),process.on("uncaughtException",function(D){if(!(D instanceof Nu))throw D}),process.on("unhandledRejection",function(D){throw D}),v=(D,B)=>{if(Lr())throw process.exitCode=D,B;M(B),process.exit(D)},d.inspect=function(){return"[Emscripten Module object]"};let N;try{N=h$()}catch(D){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),D}global.Worker=N.Worker}else(x||k)&&(k?R=self.location.href:typeof document!="undefined"&&document.currentScript&&(R=document.currentScript.src),typeof s!="undefined"&&s&&(R=s),R.indexOf("blob:")!==0?R=R.substr(0,R.replace(/[?#].*/,"").lastIndexOf("/")+1):R="",I||(P=N=>{var D=new XMLHttpRequest;return D.open("GET",N,!1),D.send(null),D.responseText},k&&(O=N=>{var D=new XMLHttpRequest;return D.open("GET",N,!1),D.responseType="arraybuffer",D.send(null),new Uint8Array(D.response)}),A=(N,D,B)=>{var Q=new XMLHttpRequest;Q.open("GET",N,!0),Q.responseType="arraybuffer",Q.onload=()=>{if(Q.status==200||Q.status==0&&Q.response){D(Q.response);return}B()},Q.onerror=B,Q.send(null)}),T=N=>document.title=N);I&&typeof performance=="undefined"&&(global.performance=f$().performance);var Y=console.log.bind(console),Z=console.warn.bind(console);I&&(X(),Y=N=>W.writeSync(1,N+`
|
|
`),Z=N=>W.writeSync(2,N+`
|
|
`));var te=d.print||Y,J=d.printErr||Z;Object.assign(d,g),g=null,d.arguments&&(b=d.arguments),d.thisProgram&&(y=d.thisProgram),d.quit&&(v=d.quit);var se=4;function ne(N){ne.shown||(ne.shown={}),ne.shown[N]||(ne.shown[N]=1,J(N))}function oe(N,D){if(typeof WebAssembly.Function=="function"){for(var B={i:"i32",j:"i64",f:"f32",d:"f64"},Q={parameters:[],results:D[0]=="v"?[]:[B[D[0]]]},ue=1;ue<D.length;++ue)Q.parameters.push(B[D[ue]]);return new WebAssembly.Function(Q,N)}var pe=[1,0,1,96],ye=D.slice(0,1),Te=D.slice(1),bt={i:127,j:126,f:125,d:124};pe.push(Te.length);for(var ue=0;ue<Te.length;++ue)pe.push(bt[Te[ue]]);ye=="v"?pe.push(0):pe=pe.concat([1,bt[ye]]),pe[1]=pe.length-2;var us=new Uint8Array([0,97,115,109,1,0,0,0].concat(pe,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),ls=new WebAssembly.Module(us),Uc=new WebAssembly.Instance(ls,{e:{f:N}}),Tu=Uc.exports.f;return Tu}var ae=[],de;function me(){if(ae.length)return ae.pop();try{Fn.grow(1)}catch(N){throw N instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":N}return Fn.length-1}function ke(N,D){for(var B=N;B<N+D;B++){var Q=Ei(B);Q&&de.set(Q,B)}}var Ie=0,Re=N=>{Ie=N},Pe=Atomics.load,Xe=Atomics.store,Je=Atomics.compareExchange,Ye;d.wasmBinary&&(Ye=d.wasmBinary);var tt=d.noExitRuntime||!0;typeof WebAssembly!="object"&&$i("no native wasm support detected");var Ce,ut,at=!1,Jt;function Nt(N,D){N||$i(D)}function In(N){var D=d["_"+N];return D}function Rt(N,D,B,Q,ue){var pe={string:function(Tn){var Mi=0;if(Tn!=null&&Tn!==0){var ox=(Tn.length<<2)+1;Mi=zi(ox),Ms(Tn,Mi,ox)}return Mi},array:function(Tn){var Mi=zi(Tn.length);return Ls(Tn,Mi),Mi}};function ye(Tn){return D==="string"?tn(Tn):D==="boolean"?Boolean(Tn):Tn}var Te=In(N),bt=[],us=0;if(Q)for(var ls=0;ls<Q.length;ls++){var Uc=pe[B[ls]];Uc?(us===0&&(us=Lf()),bt[ls]=Uc(Q[ls])):bt[ls]=Q[ls]}var Tu=Te.apply(null,bt);function XT(Tn){return us!==0&&Lc(us),ye(Tn)}return Tu=XT(Tu),Tu}function en(N,D,B,Q){B=B||[];var ue=B.every(function(ye){return ye==="number"}),pe=D!=="string";return pe&&ue&&!Q?In(N):function(){return Rt(N,D,B,arguments,Q)}}var Cn=1;function Nn(N){var D=new TextDecoder(N);this.decode=B=>(B.buffer instanceof SharedArrayBuffer&&(B=new Uint8Array(B)),D.decode.call(D,B))}var Yt=typeof TextDecoder!="undefined"?new Nn("utf8"):void 0;function Dn(N,D,B){for(var Q=D+B,ue=D;N[ue]&&!(ue>=Q);)++ue;if(ue-D>16&&N.subarray&&Yt)return Yt.decode(N.subarray(D,ue));for(var pe="";D<ue;){var ye=N[D++];if(!(ye&128)){pe+=String.fromCharCode(ye);continue}var Te=N[D++]&63;if((ye&224)==192){pe+=String.fromCharCode((ye&31)<<6|Te);continue}var bt=N[D++]&63;if((ye&240)==224?ye=(ye&15)<<12|Te<<6|bt:ye=(ye&7)<<18|Te<<12|bt<<6|N[D++]&63,ye<65536)pe+=String.fromCharCode(ye);else{var us=ye-65536;pe+=String.fromCharCode(55296|us>>10,56320|us&1023)}}return pe}function tn(N,D){return N?Dn(i(),N,D):""}function zs(N,D,B,Q){if(!(Q>0))return 0;for(var ue=B,pe=B+Q-1,ye=0;ye<N.length;++ye){var Te=N.charCodeAt(ye);if(Te>=55296&&Te<=57343){var bt=N.charCodeAt(++ye);Te=65536+((Te&1023)<<10)|bt&1023}if(Te<=127){if(B>=pe)break;D[B++]=Te}else if(Te<=2047){if(B+1>=pe)break;D[B++]=192|Te>>6,D[B++]=128|Te&63}else if(Te<=65535){if(B+2>=pe)break;D[B++]=224|Te>>12,D[B++]=128|Te>>6&63,D[B++]=128|Te&63}else{if(B+3>=pe)break;D[B++]=240|Te>>18,D[B++]=128|Te>>12&63,D[B++]=128|Te>>6&63,D[B++]=128|Te&63}}return D[B]=0,B-ue}function Ms(N,D,B){return zs(N,i(),D,B)}function Ci(N){for(var D=0,B=0;B<N.length;++B){var Q=N.charCodeAt(B);Q>=55296&&Q<=57343&&(Q=65536+((Q&1023)<<10)|N.charCodeAt(++B)&1023),Q<=127?++D:Q<=2047?D+=2:Q<=65535?D+=3:D+=4}return D}var Js=typeof TextDecoder!="undefined"?new Nn("utf-16le"):void 0;function Ls(N,D){a().set(N,D)}function gu(N,D,B){for(var Q=0;Q<N.length;++Q)a()[D++>>0]=N.charCodeAt(Q);B||(a()[D>>0]=0)}function Ni(N,D){return N%D>0&&(N+=D-N%D),N}var nn,lc,cc,bu,dc,pc,Vv,hc,fc;$&&(nn=d.buffer);function rs(N){nn=N,d.HEAP8=lc=new Int8Array(N),d.HEAP16=bu=new Int16Array(N),d.HEAP32=pc=new Int32Array(N),d.HEAPU8=cc=new Uint8Array(N),d.HEAPU16=dc=new Uint16Array(N),d.HEAPU32=Vv=new Uint32Array(N),d.HEAPF32=hc=new Float32Array(N),d.HEAPF64=fc=new Float64Array(N)}var mc=d.INITIAL_MEMORY||16777216;if($)Ce=d.wasmMemory,nn=d.buffer;else if(d.wasmMemory)Ce=d.wasmMemory;else if(Ce=new WebAssembly.Memory({initial:mc/65536,maximum:32768,shared:!0}),!(Ce.buffer instanceof SharedArrayBuffer))throw J("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),I&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Ce&&(nn=Ce.buffer),mc=nn.byteLength,rs(nn);var Fn,Ti=[],er=[],lh=[],gc=[],Mr=!1,ch=!1,bc=0;function Lr(){return tt||bc>0}function sn(){if(d.preRun)for(typeof d.preRun=="function"&&(d.preRun=[d.preRun]);d.preRun.length;)Wv(d.preRun.shift());kc(Ti)}function yu(){Mr=!0,!$&&kc(er)}function dh(){$||($e.terminateAllThreads(),ch=!0)}function ph(){if(!$){if(d.postRun)for(typeof d.postRun=="function"&&(d.postRun=[d.postRun]);d.postRun.length;)vu(d.postRun.shift());kc(gc)}}function Wv(N){Ti.unshift(N)}function Uv(N){er.unshift(N)}function vu(N){gc.unshift(N)}var tr=0,yc=null,as=null;function xu(N){tr++,d.monitorRunDependencies&&d.monitorRunDependencies(tr)}function Gv(N){if(tr--,d.monitorRunDependencies&&d.monitorRunDependencies(tr),tr==0&&(yc!==null&&(clearInterval(yc),yc=null),as)){var D=as;as=null,D()}}d.preloadedImages={},d.preloadedAudios={};function $i(N){$?postMessage({cmd:"onAbort",arg:N}):d.onAbort&&d.onAbort(N),N="Aborted("+N+")",J(N),at=!0,Jt=1,N+=". Build with -s ASSERTIONS=1 for more info.";var D=new WebAssembly.RuntimeError(N);throw f(D),D}var hh="data:application/octet-stream;base64,";function vc(N){return N.startsWith(hh)}function xc(N){return N.startsWith("file://")}var rn;rn="tfjs-backend-wasm-threaded-simd.wasm",vc(rn)||(rn=E(rn));function wc(N){try{if(N==rn&&Ye)return new Uint8Array(Ye);if(O)return O(N);throw"both async and sync fetching of the wasm failed"}catch(D){$i(D)}}function _i(){if(!Ye&&(x||k)){if(typeof fetch=="function"&&!xc(rn))return fetch(rn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+rn+"'";return N.arrayBuffer()}).catch(function(){return wc(rn)});if(A)return new Promise(function(N,D){A(rn,function(B){N(new Uint8Array(B))},D)})}return Promise.resolve().then(function(){return wc(rn)})}function fh(){var N={env:Fc,wasi_snapshot_preview1:Fc};function D(ye,Te){var bt=ye.exports;if(d.asm=bt,wh(d.asm.emscripten_tls_init),Fn=d.asm.__indirect_function_table,Uv(d.asm.__wasm_call_ctors),ut=Te,!$){var us=$e.unusedWorkers.length;$e.unusedWorkers.forEach(function(ls){$e.loadWasmModuleToWorker(ls,function(){--us||Gv("wasm-instantiate")})})}}$||xu("wasm-instantiate");function B(ye){D(ye.instance,ye.module)}function Q(ye){return _i().then(function(Te){return WebAssembly.instantiate(Te,N)}).then(function(Te){return Te}).then(ye,function(Te){J("failed to asynchronously prepare wasm: "+Te),$i(Te)})}function ue(){return!Ye&&typeof WebAssembly.instantiateStreaming=="function"&&!vc(rn)&&!xc(rn)&&typeof fetch=="function"?fetch(rn,{credentials:"same-origin"}).then(function(ye){var Te=WebAssembly.instantiateStreaming(ye,N);return Te.then(B,function(bt){return J("wasm streaming compile failed: "+bt),J("falling back to ArrayBuffer instantiation"),Q(B)})}):Q(B)}if(d.instantiateWasm)try{var pe=d.instantiateWasm(N,D);return pe}catch(ye){return J("Module.instantiateWasm callback failed with error: "+ye),!1}return ue().catch(f),{}}var Hv,qv,mh={};function kc(N){for(;N.length>0;){var D=N.shift();if(typeof D=="function"){D(d);continue}var B=D.func;typeof B=="number"?D.arg===void 0?Ei(B)():Ei(B)(D.arg):B(D.arg===void 0?null:D.arg)}}function Ai(N){var D=Lf(),B=N();return Lc(D),B}function sT(N){return N}function jv(N){var D=/\b_Z[\w\d_]+/g;return N.replace(D,function(B){var Q=B;return B===Q?B:Q+" ["+B+"]"})}function gh(N){l()[N>>2]=0;var D=$e.pthreads[N];delete $e.pthreads[N],D.worker.terminate(),Mf(N),$e.runningWorkers.splice($e.runningWorkers.indexOf(D.worker),1),D.worker.pthread=void 0}function bh(N){var D=$e.pthreads[N];D.worker.postMessage({cmd:"cancel"})}function Sc(N){var D=$e.pthreads[N];if(D){l()[N>>2]=0;var B=D.worker;$e.returnWorkerToPool(B)}}function Ic(N){qT(N)}function yh(N){if(N instanceof Nu||N=="unwind")return Jt;v(1,N)}var $e={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){$?$e.initWorker():$e.initMainThread()},initMainThread:function(){for(var N=8,D=0;D<N;++D)$e.allocateUnusedWorker()},initWorker:function(){tt=!1},pthreads:{},setExitStatus:function(N){Jt=N},terminateAllThreads:function(){for(var N in $e.pthreads){var D=$e.pthreads[N];D&&D.worker&&$e.returnWorkerToPool(D.worker)}for(var B=0;B<$e.unusedWorkers.length;++B){var Q=$e.unusedWorkers[B];Q.terminate()}$e.unusedWorkers=[]},returnWorkerToPool:function(N){$e.runWithoutMainThreadQueuedCalls(function(){delete $e.pthreads[N.pthread.threadInfoStruct],$e.unusedWorkers.push(N),$e.runningWorkers.splice($e.runningWorkers.indexOf(N),1),Mf(N.pthread.threadInfoStruct),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){l()[ix>>2]=0;try{N()}finally{l()[ix>>2]=1}},receiveObjectTransfer:function(N){},threadInit:function(){for(var N in $e.tlsInitFunctions)$e.tlsInitFunctions[N]()},loadWasmModuleToWorker:function(N,D){N.onmessage=B=>{var Q=B.data,ue=Q.cmd;if(N.pthread&&($e.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),Q.targetThread&&Q.targetThread!=Mc()){var pe=$e.pthreads[Q.targetThread];pe?pe.worker.postMessage(Q,Q.transferList):J('Internal error! Worker sent a message "'+ue+'" to target pthread '+Q.targetThread+", but that thread no longer exists!"),$e.currentProxiedOperationCallerThread=void 0;return}ue==="processQueuedMainThreadWork"?tx():ue==="spawnThread"?Nc(Q):ue==="cleanupThread"?Sc(Q.thread):ue==="killThread"?gh(Q.thread):ue==="cancelThread"?bh(Q.thread):ue==="loaded"?(N.loaded=!0,D&&D(N),N.runPthread&&(N.runPthread(),delete N.runPthread)):ue==="print"?te("Thread "+Q.threadId+": "+Q.text):ue==="printErr"?J("Thread "+Q.threadId+": "+Q.text):ue==="alert"?alert("Thread "+Q.threadId+": "+Q.text):Q.target==="setimmediate"?N.postMessage(Q):ue==="onAbort"?d.onAbort&&d.onAbort(Q.arg):J("worker sent an unknown command "+ue),$e.currentProxiedOperationCallerThread=void 0},N.onerror=B=>{var Q="worker sent an error!";throw J(Q+" "+B.filename+":"+B.lineno+": "+B.message),B},I&&(N.on("message",function(B){N.onmessage({data:B})}),N.on("error",function(B){N.onerror(B)}),N.on("detachedExit",function(){})),N.postMessage({cmd:"load",urlOrBlob:d.mainScriptUrlOrBlob||s,wasmMemory:Ce,wasmModule:ut})},allocateUnusedWorker:function(){var N=E("tfjs-backend-wasm-threaded-simd.worker.js");$e.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return $e.unusedWorkers.length==0&&($e.allocateUnusedWorker(),$e.loadWasmModuleToWorker($e.unusedWorkers[0])),$e.unusedWorkers.pop()}};function vh(){var N=Mc(),D=l()[N+44>>2],B=l()[N+48>>2],Q=D-B;ax(D,Q),Lc(D)}d.establishStackSpace=vh;function Cc(N){if($)return Wr(1,0,N);try{Ic(N)}catch(D){yh(D)}}var Br=[];function Ei(N){var D=Br[N];return D||(N>=Br.length&&(Br.length=N+1),Br[N]=D=Fn.get(N)),D}function xh(N,D){return Ei(N)(D)}d.invokeEntryPoint=xh;function Kv(){var N=new Error;if(!N.stack){try{throw new Error}catch(D){N=D}if(!N.stack)return"(no stack trace available)"}return N.stack.toString()}function wh(N,D,B){$e.tlsInitFunctions.push(N)}function Xv(N,D){Fn.set(N,D),Br[N]=D}var Vr;I?Vr=()=>{var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:$?Vr=()=>performance.now()-d.__performance_now_clock_drift:Vr=()=>performance.now();var kh=!0;function Sh(N){return l()[ex()>>2]=N,N}function Ih(N,D){var B;if(N===0)B=Date.now();else if((N===1||N===4)&&kh)B=Vr();else return Sh(28),-1;return l()[D>>2]=B/1e3|0,l()[D+4>>2]=B%1e3*1e3*1e3|0,0}function Ch(N,D){return Ih(N,D)}function Nh(N){nx(N,!k,1,!x),$e.threadInit()}function Th(N){$?postMessage({cmd:"cleanupThread",thread:N}):Sc(N)}function Nc(N){var D=$e.getNewWorker();if(!D)return 6;$e.runningWorkers.push(D);var B=$e.pthreads[N.pthread_ptr]={worker:D,threadInfoStruct:N.pthread_ptr};D.pthread=B;var Q={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr};return D.runPthread=()=>{Q.time=performance.now(),D.postMessage(Q,N.transferList)},D.loaded&&(D.runPthread(),delete D.runPthread),0}function $h(N,D,B,Q){if(typeof SharedArrayBuffer=="undefined")return J("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var ue=[],pe=0;if($&&(ue.length===0||pe))return sx(687865856,N,D,B,Q);if(pe)return pe;var ye={startRoutine:B,pthread_ptr:N,arg:Q,transferList:ue};return $?(ye.cmd="spawnThread",postMessage(ye,ue),0):Nc(ye)}function _h(){return 2097152}function Ah(N,D){if(N==D)postMessage({cmd:"processQueuedMainThreadWork"});else if($)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var B=$e.pthreads[N],Q=B&&B.worker;if(!Q)return;Q.postMessage({cmd:"processThreadQueue"})}return 1}function Eh(){$i("")}function Rh(){I||k||ne("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Tc(){return 2147483648}function Dh(N,D,B){i().copyWithin(N,D,D+B)}function Fh(){return I?m$().cpus().length:navigator.hardwareConcurrency}function Wr(N,D){var B=arguments.length-2,Q=arguments;return Ai(function(){for(var ue=B,pe=zi(ue*8),ye=pe>>3,Te=0;Te<B;Te++){var bt=Q[2+Te];p()[ye+Te]=bt}return rx(N,ue,pe,D)})}var wu=[];function Oh(N,D,B){wu.length=D;for(var Q=B>>3,ue=0;ue<D;ue++)wu[ue]=p()[Q+ue];var pe=N<0,ye=pe?mh[-N-1]:ef[N];return ye.apply(null,wu)}function Ph(N){try{return Ce.grow(N-nn.byteLength+65535>>>16),rs(Ce.buffer),1}catch(D){}}function zh(N){var D=i().length;if(N=N>>>0,N<=D)return!1;var B=Tc();if(N>B)return!1;for(var Q=1;Q<=4;Q*=2){var ue=D*(1+.2/Q);ue=Math.min(ue,N+100663296);var pe=Math.min(B,Ni(Math.max(N,ue),65536)),ye=Ph(pe);if(ye)return!0}return!1}var Me={inEventHandler:0,removeAllEventListeners:function(){for(var N=Me.eventHandlers.length-1;N>=0;--N)Me._removeHandler(N);Me.eventHandlers=[],Me.deferredCalls=[]},registerRemoveEventListeners:function(){Me.removeEventListenersRegistered||(lh.push(Me.removeAllEventListeners),Me.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,D,B){function Q(ye,Te){if(ye.length!=Te.length)return!1;for(var bt in ye)if(ye[bt]!=Te[bt])return!1;return!0}for(var ue in Me.deferredCalls){var pe=Me.deferredCalls[ue];if(pe.targetFunction==N&&Q(pe.argsList,B))return}Me.deferredCalls.push({targetFunction:N,precedence:D,argsList:B}),Me.deferredCalls.sort(function(ye,Te){return ye.precedence<Te.precedence})},removeDeferredCalls:function(N){for(var D=0;D<Me.deferredCalls.length;++D)Me.deferredCalls[D].targetFunction==N&&(Me.deferredCalls.splice(D,1),--D)},canPerformEventHandlerRequests:function(){return Me.inEventHandler&&Me.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Me.canPerformEventHandlerRequests())for(var N=0;N<Me.deferredCalls.length;++N){var D=Me.deferredCalls[N];Me.deferredCalls.splice(N,1),--N,D.targetFunction.apply(null,D.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,D){for(var B=0;B<Me.eventHandlers.length;++B)Me.eventHandlers[B].target==N&&(!D||D==Me.eventHandlers[B].eventTypeString)&&Me._removeHandler(B--)},_removeHandler:function(N){var D=Me.eventHandlers[N];D.target.removeEventListener(D.eventTypeString,D.eventListenerFunc,D.useCapture),Me.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var D=function(ue){++Me.inEventHandler,Me.currentEventHandler=N,Me.runDeferredCalls(),N.handlerFunc(ue),Me.runDeferredCalls(),--Me.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=D,N.target.addEventListener(N.eventTypeString,D,N.useCapture),Me.eventHandlers.push(N),Me.registerRemoveEventListeners();else for(var B=0;B<Me.eventHandlers.length;++B)Me.eventHandlers[B].target==N.target&&Me.eventHandlers[B].eventTypeString==N.eventTypeString&&Me._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(N,D,B,Q,ue){Ai(function(){var pe=zi(12);l()[pe>>2]=B,l()[pe+4>>2]=Q,l()[pe+8>>2]=ue,zf(N,637534208,D,Q,pe)})},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return $e.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Mh(N){var D=Ci(N)+1,B=Pf(D);return Ms(N,B,D),B}function Lh(N,D,B,Q){Ai(function(){var ue=zi(12),pe=0;D&&(pe=Mh(D)),l()[ue>>2]=pe,l()[ue+4>>2]=B,l()[ue+8>>2]=Q,zf(N,657457152,0,pe,ue)})}function Bh(N,D,B,Q){D=D?tn(D):"",Lh(N,D,B,Q)}function Vh(N){return N>2?tn(N):N}var Wh=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Uh(N){N=Vh(N);var D=Wh[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return D}function ku(N){return Uh(N)}function $c(N,D,B){var Q=ku(N);if(!Q)return-4;if(Q.canvasSharedPtr&&(l()[Q.canvasSharedPtr>>2]=D,l()[Q.canvasSharedPtr+4>>2]=B),Q.offscreenCanvas||!Q.controlTransferredOffscreen){Q.offscreenCanvas&&(Q=Q.offscreenCanvas);var ue=!1;if(Q.GLctxObject&&Q.GLctxObject.GLctx){var pe=Q.GLctxObject.GLctx.getParameter(2978);ue=pe[0]===0&&pe[1]===0&&pe[2]===Q.width&&pe[3]===Q.height}Q.width=D,Q.height=B,ue&&Q.GLctxObject.GLctx.viewport(0,0,D,B)}else if(Q.canvasSharedPtr){var ye=l()[Q.canvasSharedPtr+8>>2];return Bh(ye,N,D,B),1}else return-4;return 0}function _c(N,D,B){return $?Wr(2,1,N,D,B):$c(N,D,B)}function Gh(N,D,B){var Q=ku(N);return Q?$c(N,D,B):_c(N,D,B)}function Hh(){throw"unwind"}function qh(N){var D=N.getExtension("ANGLE_instanced_arrays");if(D)return N.vertexAttribDivisor=function(B,Q){D.vertexAttribDivisorANGLE(B,Q)},N.drawArraysInstanced=function(B,Q,ue,pe){D.drawArraysInstancedANGLE(B,Q,ue,pe)},N.drawElementsInstanced=function(B,Q,ue,pe,ye){D.drawElementsInstancedANGLE(B,Q,ue,pe,ye)},1}function jh(N){var D=N.getExtension("OES_vertex_array_object");if(D)return N.createVertexArray=function(){return D.createVertexArrayOES()},N.deleteVertexArray=function(B){D.deleteVertexArrayOES(B)},N.bindVertexArray=function(B){D.bindVertexArrayOES(B)},N.isVertexArray=function(B){return D.isVertexArrayOES(B)},1}function Kh(N){var D=N.getExtension("WEBGL_draw_buffers");if(D)return N.drawBuffers=function(B,Q){D.drawBuffersWEBGL(B,Q)},1}function Xh(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var gt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(D){gt.lastError||(gt.lastError=D)},getNewId:function(N){for(var D=gt.counter++,B=N.length;B<D;B++)N[B]=null;return D},getSource:function(N,D,B,Q){for(var ue="",pe=0;pe<D;++pe){var ye=Q?l()[Q+pe*4>>2]:-1;ue+=tn(l()[B+pe*4>>2],ye<0?void 0:ye)}return ue},createContext:function(N,D){N.getContextSafariWebGL2Fixed||(N.getContextSafariWebGL2Fixed=N.getContext,N.getContext=function(ue,pe){var ye=N.getContextSafariWebGL2Fixed(ue,pe);return ue=="webgl"==ye instanceof WebGLRenderingContext?ye:null});var B=N.getContext("webgl",D);if(!B)return 0;var Q=gt.registerContext(B,D);return Q},registerContext:function(N,D){var B=Pf(8);l()[B+4>>2]=Mc();var Q={handle:B,attributes:D,version:D.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=Q),gt.contexts[B]=Q,(typeof D.enableExtensionsByDefault=="undefined"||D.enableExtensionsByDefault)&>.initExtensions(Q),B},makeContextCurrent:function(N){return gt.currentContext=gt.contexts[N],d.ctx=Dc=gt.currentContext&>.currentContext.GLctx,!(N&&!Dc)},getContext:function(N){return gt.contexts[N]},deleteContext:function(N){gt.currentContext===gt.contexts[N]&&(gt.currentContext=null),typeof Me=="object"&&Me.removeAllHandlersOnTarget(gt.contexts[N].GLctx.canvas),gt.contexts[N]&>.contexts[N].GLctx.canvas&&(gt.contexts[N].GLctx.canvas.GLctxObject=void 0),Jv(gt.contexts[N].handle),gt.contexts[N]=null},initExtensions:function(N){if(N||(N=gt.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var D=N.GLctx;qh(D),jh(D),Kh(D),D.disjointTimerQueryExt=D.getExtension("EXT_disjoint_timer_query"),Xh(D);var B=D.getSupportedExtensions()||[];B.forEach(function(Q){!Q.includes("lose_context")&&!Q.includes("debug")&&D.getExtension(Q)})}}},Yh=["default","low-power","high-performance"];function Qh(N,D){var B=D>>2,Q=l()[B+6],ue={alpha:!!l()[B+0],depth:!!l()[B+1],stencil:!!l()[B+2],antialias:!!l()[B+3],premultipliedAlpha:!!l()[B+4],preserveDrawingBuffer:!!l()[B+5],powerPreference:Yh[Q],failIfMajorPerformanceCaveat:!!l()[B+7],majorVersion:l()[B+8],minorVersion:l()[B+9],enableExtensionsByDefault:l()[B+10],explicitSwapControl:l()[B+11],proxyContextToMainThread:l()[B+12],renderViaOffscreenBackBuffer:l()[B+13]},pe=ku(N);if(!pe||ue.explicitSwapControl)return 0;var ye=gt.createContext(pe,ue);return ye}function Zh(N,D){return Qh(N,D)}var Ri={mappings:{},buffers:[null,[],[]],printChar:function(N,D){var B=Ri.buffers[N];D===0||D===10?((N===1?te:J)(Dn(B,0)),B.length=0):B.push(D)},varargs:void 0,get:function(){Ri.varargs+=4;var N=l()[Ri.varargs-4>>2];return N},getStr:function(N){var D=tn(N);return D},get64:function(N,D){return N}};function Ac(N){return $?Wr(3,1,N):0}function Ec(N,D,B,Q,ue){if($)return Wr(4,1,N,D,B,Q,ue)}function Rc(N,D,B,Q){if($)return Wr(5,1,N,D,B,Q);for(var ue=0,pe=0;pe<B;pe++){var ye=l()[D>>2],Te=l()[D+4>>2];D+=8;for(var bt=0;bt<Te;bt++)Ri.printChar(N,i()[ye+bt]);ue+=Te}return l()[Q>>2]=ue,0}function Jh(N){Re(N)}$e.init();var Dc,ef=[null,Cc,_c,Ac,Ec,Rc],Yv=!1,Fc={__clock_gettime:Ch,__emscripten_init_main_thread_js:Nh,__emscripten_thread_cleanup:Th,__pthread_create_js:$h,_emscripten_default_pthread_stack_size:_h,_emscripten_notify_thread_queue:Ah,abort:Eh,emscripten_check_blocking_allowed:Rh,emscripten_get_heap_max:Tc,emscripten_get_now:Vr,emscripten_memcpy_big:Dh,emscripten_num_logical_cores:Fh,emscripten_receive_on_main_thread_js:Oh,emscripten_resize_heap:zh,emscripten_set_canvas_element_size:Gh,emscripten_unwind_to_js_event_loop:Hh,emscripten_webgl_create_context:Zh,exit:Ic,fd_close:Ac,fd_seek:Ec,fd_write:Rc,memory:Ce||d.wasmMemory,setTempRet0:Jh},Qv=fh(),tf=d.___wasm_call_ctors=function(){return(tf=d.___wasm_call_ctors=d.asm.__wasm_call_ctors).apply(null,arguments)},nf=d._init=function(){return(nf=d._init=d.asm.init).apply(null,arguments)},sf=d._init_with_threads_count=function(){return(sf=d._init_with_threads_count=d.asm.init_with_threads_count).apply(null,arguments)},rf=d._get_threads_count=function(){return(rf=d._get_threads_count=d.asm.get_threads_count).apply(null,arguments)},af=d._register_tensor=function(){return(af=d._register_tensor=d.asm.register_tensor).apply(null,arguments)},of=d._dispose_data=function(){return(of=d._dispose_data=d.asm.dispose_data).apply(null,arguments)},uf=d._dispose=function(){return(uf=d._dispose=d.asm.dispose).apply(null,arguments)},lf=d._Abs=function(){return(lf=d._Abs=d.asm.Abs).apply(null,arguments)},cf=d._Add=function(){return(cf=d._Add=d.asm.Add).apply(null,arguments)},df=d._AddN=function(){return(df=d._AddN=d.asm.AddN).apply(null,arguments)},pf=d._All=function(){return(pf=d._All=d.asm.All).apply(null,arguments)},hf=d._Any=function(){return(hf=d._Any=d.asm.Any).apply(null,arguments)},ff=d._ArgMax=function(){return(ff=d._ArgMax=d.asm.ArgMax).apply(null,arguments)},mf=d._AvgPool=function(){return(mf=d._AvgPool=d.asm.AvgPool).apply(null,arguments)},gf=d._BatchMatMul=function(){return(gf=d._BatchMatMul=d.asm.BatchMatMul).apply(null,arguments)},bf=d._Ceil=function(){return(bf=d._Ceil=d.asm.Ceil).apply(null,arguments)},yf=d._ClipByValue=function(){return(yf=d._ClipByValue=d.asm.ClipByValue).apply(null,arguments)},vf=d._Conv2D=function(){return(vf=d._Conv2D=d.asm.Conv2D).apply(null,arguments)},xf=d._Conv2DBackpropInput=function(){return(xf=d._Conv2DBackpropInput=d.asm.Conv2DBackpropInput).apply(null,arguments)},wf=d._Cos=function(){return(wf=d._Cos=d.asm.Cos).apply(null,arguments)},kf=d._Cosh=function(){return(kf=d._Cosh=d.asm.Cosh).apply(null,arguments)},Sf=d._CropAndResize=function(){return(Sf=d._CropAndResize=d.asm.CropAndResize).apply(null,arguments)},If=d._Cumprod=function(){return(If=d._Cumprod=d.asm.Cumprod).apply(null,arguments)},Cf=d._Cumsum=function(){return(Cf=d._Cumsum=d.asm.Cumsum).apply(null,arguments)},Nf=d._DepthToSpace=function(){return(Nf=d._DepthToSpace=d.asm.DepthToSpace).apply(null,arguments)},Tf=d._DepthwiseConv2dNative=function(){return(Tf=d._DepthwiseConv2dNative=d.asm.DepthwiseConv2dNative).apply(null,arguments)},$f=d._Elu=function(){return($f=d._Elu=d.asm.Elu).apply(null,arguments)},_f=d._Equal=function(){return(_f=d._Equal=d.asm.Equal).apply(null,arguments)},Af=d._Exp=function(){return(Af=d._Exp=d.asm.Exp).apply(null,arguments)},Ef=d._FlipLeftRight=function(){return(Ef=d._FlipLeftRight=d.asm.FlipLeftRight).apply(null,arguments)},Oc=d._Floor=function(){return(Oc=d._Floor=d.asm.Floor).apply(null,arguments)},Pc=d._FloorDiv=function(){return(Pc=d._FloorDiv=d.asm.FloorDiv).apply(null,arguments)},Su=d._FusedBatchNorm=function(){return(Su=d._FusedBatchNorm=d.asm.FusedBatchNorm).apply(null,arguments)},Rf=d._FusedConv2D=function(){return(Rf=d._FusedConv2D=d.asm.FusedConv2D).apply(null,arguments)},Df=d._FusedDepthwiseConv2D=function(){return(Df=d._FusedDepthwiseConv2D=d.asm.FusedDepthwiseConv2D).apply(null,arguments)},Di=d._Gather=function(){return(Di=d._Gather=d.asm.Gather).apply(null,arguments)},Iu=d._GatherNd=function(){return(Iu=d._GatherNd=d.asm.GatherNd).apply(null,arguments)},Cu=d._Greater=function(){return(Cu=d._Greater=d.asm.Greater).apply(null,arguments)},Zv=d._GreaterEqual=function(){return(Zv=d._GreaterEqual=d.asm.GreaterEqual).apply(null,arguments)},Fi=d._LeakyRelu=function(){return(Fi=d._LeakyRelu=d.asm.LeakyRelu).apply(null,arguments)},Oi=d._Less=function(){return(Oi=d._Less=d.asm.Less).apply(null,arguments)},Ff=d._LessEqual=function(){return(Ff=d._LessEqual=d.asm.LessEqual).apply(null,arguments)},H=d._Log=function(){return(H=d._Log=d.asm.Log).apply(null,arguments)},ee=d._LogicalAnd=function(){return(ee=d._LogicalAnd=d.asm.LogicalAnd).apply(null,arguments)},ce=d._Max=function(){return(ce=d._Max=d.asm.Max).apply(null,arguments)},Se=d._MaxPool=function(){return(Se=d._MaxPool=d.asm.MaxPool).apply(null,arguments)},Qe=d._Maximum=function(){return(Qe=d._Maximum=d.asm.Maximum).apply(null,arguments)},Ze=d._Mean=function(){return(Ze=d._Mean=d.asm.Mean).apply(null,arguments)},Le=d._Min=function(){return(Le=d._Min=d.asm.Min).apply(null,arguments)},ze=d._Minimum=function(){return(ze=d._Minimum=d.asm.Minimum).apply(null,arguments)},Tt=d._MirrorPad=function(){return(Tt=d._MirrorPad=d.asm.MirrorPad).apply(null,arguments)},is=d._Multiply=function(){return(is=d._Multiply=d.asm.Multiply).apply(null,arguments)},os=d._Neg=function(){return(os=d._Neg=d.asm.Neg).apply(null,arguments)},Pi=d._NonMaxSuppressionV3=function(){return(Pi=d._NonMaxSuppressionV3=d.asm.NonMaxSuppressionV3).apply(null,arguments)},Ur=d._NonMaxSuppressionV4=function(){return(Ur=d._NonMaxSuppressionV4=d.asm.NonMaxSuppressionV4).apply(null,arguments)},Of=d._NonMaxSuppressionV5=function(){return(Of=d._NonMaxSuppressionV5=d.asm.NonMaxSuppressionV5).apply(null,arguments)},an=d._NotEqual=function(){return(an=d._NotEqual=d.asm.NotEqual).apply(null,arguments)},nr=d._OneHot=function(){return(nr=d._OneHot=d.asm.OneHot).apply(null,arguments)},zc=d._PadV2=function(){return(zc=d._PadV2=d.asm.PadV2).apply(null,arguments)},rT=d._Pow=function(){return(rT=d._Pow=d.asm.Pow).apply(null,arguments)},aT=d._Prelu=function(){return(aT=d._Prelu=d.asm.Prelu).apply(null,arguments)},iT=d._Prod=function(){return(iT=d._Prod=d.asm.Prod).apply(null,arguments)},oT=d._RealDiv=function(){return(oT=d._RealDiv=d.asm.RealDiv).apply(null,arguments)},uT=d._Relu=function(){return(uT=d._Relu=d.asm.Relu).apply(null,arguments)},lT=d._Relu6=function(){return(lT=d._Relu6=d.asm.Relu6).apply(null,arguments)},cT=d._ResizeBilinear=function(){return(cT=d._ResizeBilinear=d.asm.ResizeBilinear).apply(null,arguments)},dT=d._Reverse=function(){return(dT=d._Reverse=d.asm.Reverse).apply(null,arguments)},pT=d._RotateWithOffset=function(){return(pT=d._RotateWithOffset=d.asm.RotateWithOffset).apply(null,arguments)},hT=d._Round=function(){return(hT=d._Round=d.asm.Round).apply(null,arguments)},fT=d._Rsqrt=function(){return(fT=d._Rsqrt=d.asm.Rsqrt).apply(null,arguments)},mT=d._ScatterNd=function(){return(mT=d._ScatterNd=d.asm.ScatterNd).apply(null,arguments)},gT=d._SelectV2=function(){return(gT=d._SelectV2=d.asm.SelectV2).apply(null,arguments)},bT=d._Sigmoid=function(){return(bT=d._Sigmoid=d.asm.Sigmoid).apply(null,arguments)},yT=d._Sin=function(){return(yT=d._Sin=d.asm.Sin).apply(null,arguments)},vT=d._Softmax=function(){return(vT=d._Softmax=d.asm.Softmax).apply(null,arguments)},xT=d._SparseFillEmptyRows=function(){return(xT=d._SparseFillEmptyRows=d.asm.SparseFillEmptyRows).apply(null,arguments)},wT=d._SparseReshape=function(){return(wT=d._SparseReshape=d.asm.SparseReshape).apply(null,arguments)},kT=d._SparseSegmentReduction=function(){return(kT=d._SparseSegmentReduction=d.asm.SparseSegmentReduction).apply(null,arguments)},ST=d._Sqrt=function(){return(ST=d._Sqrt=d.asm.Sqrt).apply(null,arguments)},IT=d._Square=function(){return(IT=d._Square=d.asm.Square).apply(null,arguments)},CT=d._SquaredDifference=function(){return(CT=d._SquaredDifference=d.asm.SquaredDifference).apply(null,arguments)},NT=d._Step=function(){return(NT=d._Step=d.asm.Step).apply(null,arguments)},TT=d._StridedSlice=function(){return(TT=d._StridedSlice=d.asm.StridedSlice).apply(null,arguments)},$T=d._Sub=function(){return($T=d._Sub=d.asm.Sub).apply(null,arguments)},_T=d._Sum=function(){return(_T=d._Sum=d.asm.Sum).apply(null,arguments)},AT=d._Tan=function(){return(AT=d._Tan=d.asm.Tan).apply(null,arguments)},ET=d._Tanh=function(){return(ET=d._Tanh=d.asm.Tanh).apply(null,arguments)},RT=d._Tile=function(){return(RT=d._Tile=d.asm.Tile).apply(null,arguments)},DT=d._TopK=function(){return(DT=d._TopK=d.asm.TopK).apply(null,arguments)},FT=d._Transform=function(){return(FT=d._Transform=d.asm.Transform).apply(null,arguments)},OT=d._Transpose=function(){return(OT=d._Transpose=d.asm.Transpose).apply(null,arguments)},PT=d.__FusedMatMul=function(){return(PT=d.__FusedMatMul=d.asm._FusedMatMul).apply(null,arguments)},Pf=d._malloc=function(){return(Pf=d._malloc=d.asm.malloc).apply(null,arguments)},Jv=d._free=function(){return(Jv=d._free=d.asm.free).apply(null,arguments)},zT=d._emscripten_tls_init=function(){return(zT=d._emscripten_tls_init=d.asm.emscripten_tls_init).apply(null,arguments)},ex=d.___errno_location=function(){return(ex=d.___errno_location=d.asm.__errno_location).apply(null,arguments)},Mc=d._pthread_self=function(){return(Mc=d._pthread_self=d.asm.pthread_self).apply(null,arguments)},tx=d._emscripten_main_thread_process_queued_calls=function(){return(tx=d._emscripten_main_thread_process_queued_calls=d.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},MT=d.__emscripten_thread_crashed=function(){return(MT=d.__emscripten_thread_crashed=d.asm._emscripten_thread_crashed).apply(null,arguments)},nx=d.__emscripten_thread_init=function(){return(nx=d.__emscripten_thread_init=d.asm._emscripten_thread_init).apply(null,arguments)},LT=d._emscripten_current_thread_process_queued_calls=function(){return(LT=d._emscripten_current_thread_process_queued_calls=d.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},BT=d._emscripten_main_browser_thread_id=function(){return(BT=d._emscripten_main_browser_thread_id=d.asm.emscripten_main_browser_thread_id).apply(null,arguments)},VT=d._emscripten_sync_run_in_main_thread_2=function(){return(VT=d._emscripten_sync_run_in_main_thread_2=d.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},sx=d._emscripten_sync_run_in_main_thread_4=function(){return(sx=d._emscripten_sync_run_in_main_thread_4=d.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},rx=d._emscripten_run_in_main_runtime_thread_js=function(){return(rx=d._emscripten_run_in_main_runtime_thread_js=d.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},zf=d._emscripten_dispatch_to_thread_=function(){return(zf=d._emscripten_dispatch_to_thread_=d.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},Mf=d.__emscripten_thread_free_data=function(){return(Mf=d.__emscripten_thread_free_data=d.asm._emscripten_thread_free_data).apply(null,arguments)},WT=d.__emscripten_thread_exit=function(){return(WT=d.__emscripten_thread_exit=d.asm._emscripten_thread_exit).apply(null,arguments)},UT=d._memalign=function(){return(UT=d._memalign=d.asm.memalign).apply(null,arguments)},ax=d._emscripten_stack_set_limits=function(){return(ax=d._emscripten_stack_set_limits=d.asm.emscripten_stack_set_limits).apply(null,arguments)},Lf=d.stackSave=function(){return(Lf=d.stackSave=d.asm.stackSave).apply(null,arguments)},Lc=d.stackRestore=function(){return(Lc=d.stackRestore=d.asm.stackRestore).apply(null,arguments)},zi=d.stackAlloc=function(){return(zi=d.stackAlloc=d.asm.stackAlloc).apply(null,arguments)},GT=d.dynCall_iijjiiii=function(){return(GT=d.dynCall_iijjiiii=d.asm.dynCall_iijjiiii).apply(null,arguments)},HT=d.dynCall_jiji=function(){return(HT=d.dynCall_jiji=d.asm.dynCall_jiji).apply(null,arguments)},ix=d.__emscripten_allow_main_runtime_queued_calls=21456;d.cwrap=en,d.keepRuntimeAlive=Lr,d.PThread=$e,d.PThread=$e,d.wasmMemory=Ce,d.ExitStatus=Nu;var Bc;function Nu(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}as=function N(){Bc||Bf(),Bc||(as=N)};function Bf(N){if(N=N||b,tr>0)return;if($){h(d),yu(),postMessage({cmd:"loaded"});return}if(sn(),tr>0)return;function D(){Bc||(Bc=!0,d.calledRun=!0,!at&&(yu(),h(d),d.onRuntimeInitialized&&d.onRuntimeInitialized(),ph()))}d.setStatus?(d.setStatus("Running..."),setTimeout(function(){setTimeout(function(){d.setStatus("")},1),D()},1)):D()}d.run=Bf;function qT(N,D){if(Jt=N,!D&&$)throw Cc(N),"unwind";Lr()||dh(),jT(N)}function jT(N){Jt=N,Lr()||($e.terminateAllThreads(),d.onExit&&d.onExit(N),at=!0),v(N,new Nu(N))}if(d.preInit)for(typeof d.preInit=="function"&&(d.preInit=[d.preInit]);d.preInit.length>0;)d.preInit.pop()();Bf();var Vc;m&&(Vc={uncaughtException:process.listeners("uncaughtException").filter(function(N){return!m.uncaughtException.indexOf(N)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(N){return!m.unhandledRejection.indexOf(N)>-1})});var Wc;if(typeof WasmBackendModule!="undefined")Wc=WasmBackendModule;else if(typeof r!="undefined")Wc=r;else throw new Error("Could not find wasm module in post.js");if(Vc){var KT=Wc._dispose;Wc._dispose=function(){KT(),Vc.uncaughtException.forEach(function(N){process.removeListener("uncaughtException",N)}),Vc.unhandledRejection.forEach(function(N){process.removeListener("unhandledRejection",N)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),b$=Mt({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=(()=>{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},i,o;a.ready=new Promise(function(H,ee){i=H,o=ee});var u;typeof process!="undefined"&&process.listeners&&(u={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var l=Object.assign({},a),c=[],p="./this.program",d=(H,ee)=>{throw ee},h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function b(H){return a.locateFile?a.locateFile(H,g):g+H}var y,v,x,k;function I(H){if(H instanceof Iu)return;A("exiting due to exception: "+H)}var $,R,E;m?(f?g=gd().dirname(g)+"/":g=__dirname+"/",E=()=>{R||($=ug(),R=gd())},y=function(ee,ce){return E(),ee=R.normalize(ee),$.readFileSync(ee,ce?void 0:"utf8")},x=H=>{var ee=y(H,!0);return ee.buffer||(ee=new Uint8Array(ee)),ee},v=(H,ee,ce)=>{E(),H=R.normalize(H),$.readFile(H,function(Se,Qe){Se?ce(Se):ee(Qe.buffer)})},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(H){if(!(H instanceof Iu))throw H}),process.on("unhandledRejection",function(H){throw H}),d=(H,ee)=>{if(bu())throw process.exitCode=H,ee;I(ee),process.exit(H)},a.inspect=function(){return"[Emscripten Module object]"}):(h||f)&&(f?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),s&&(g=s),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",y=H=>{var ee=new XMLHttpRequest;return ee.open("GET",H,!1),ee.send(null),ee.responseText},f&&(x=H=>{var ee=new XMLHttpRequest;return ee.open("GET",H,!1),ee.responseType="arraybuffer",ee.send(null),new Uint8Array(ee.response)}),v=(H,ee,ce)=>{var Se=new XMLHttpRequest;Se.open("GET",H,!0),Se.responseType="arraybuffer",Se.onload=()=>{if(Se.status==200||Se.status==0&&Se.response){ee(Se.response);return}ce()},Se.onerror=ce,Se.send(null)},k=H=>document.title=H);var P=a.print||console.log.bind(console),A=a.printErr||console.warn.bind(console);Object.assign(a,l),l=null,a.arguments&&(c=a.arguments),a.thisProgram&&(p=a.thisProgram),a.quit&&(d=a.quit);var O=4;function T(H){T.shown||(T.shown={}),T.shown[H]||(T.shown[H]=1,A(H))}function M(H,ee){if(typeof WebAssembly.Function=="function"){for(var ce={i:"i32",j:"i64",f:"f32",d:"f64"},Se={parameters:[],results:ee[0]=="v"?[]:[ce[ee[0]]]},Qe=1;Qe<ee.length;++Qe)Se.parameters.push(ce[ee[Qe]]);return new WebAssembly.Function(Se,H)}var Ze=[1,0,1,96],Le=ee.slice(0,1),ze=ee.slice(1),Tt={i:127,j:126,f:125,d:124};Ze.push(ze.length);for(var Qe=0;Qe<ze.length;++Qe)Ze.push(Tt[ze[Qe]]);Le=="v"?Ze.push(0):Ze=Ze.concat([1,Tt[Le]]),Ze[1]=Ze.length-2;var is=new Uint8Array([0,97,115,109,1,0,0,0].concat(Ze,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),os=new WebAssembly.Module(is),Pi=new WebAssembly.Instance(os,{e:{f:H}}),Ur=Pi.exports.f;return Ur}var W=[],j;function X(){if(W.length)return W.pop();try{Js.grow(1)}catch(H){throw H instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":H}return Js.length-1}function Y(H,ee){for(var ce=H;ce<H+ee;ce++){var Se=xu(ce);Se&&j.set(Se,ce)}}var Z=0,te=H=>{Z=H},J;a.wasmBinary&&(J=a.wasmBinary);var se=a.noExitRuntime||!0;typeof WebAssembly!="object"&&Mr("no native wasm support detected");var ne,oe=!1,ae;function de(H,ee){H||Mr(ee)}function me(H){var ee=a["_"+H];return ee}function ke(H,ee,ce,Se,Qe){var Ze={string:function(an){var nr=0;if(an!=null&&an!==0){var zc=(an.length<<2)+1;nr=Su(zc),tt(an,nr,zc)}return nr},array:function(an){var nr=Su(an.length);return at(an,nr),nr}};function Le(an){return ee==="string"?Je(an):ee==="boolean"?Boolean(an):an}var ze=me(H),Tt=[],is=0;if(Se)for(var os=0;os<Se.length;os++){var Pi=Ze[ce[os]];Pi?(is===0&&(is=Oc()),Tt[os]=Pi(Se[os])):Tt[os]=Se[os]}var Ur=ze.apply(null,Tt);function Of(an){return is!==0&&Pc(is),Le(an)}return Ur=Of(Ur),Ur}function Ie(H,ee,ce,Se){ce=ce||[];var Qe=ce.every(function(Le){return Le==="number"}),Ze=ee!=="string";return Ze&&Qe&&!Se?me(H):function(){return ke(H,ee,ce,arguments,Se)}}var Re=1,Pe=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Xe(H,ee,ce){for(var Se=ee+ce,Qe=ee;H[Qe]&&!(Qe>=Se);)++Qe;if(Qe-ee>16&&H.subarray&&Pe)return Pe.decode(H.subarray(ee,Qe));for(var Ze="";ee<Qe;){var Le=H[ee++];if(!(Le&128)){Ze+=String.fromCharCode(Le);continue}var ze=H[ee++]&63;if((Le&224)==192){Ze+=String.fromCharCode((Le&31)<<6|ze);continue}var Tt=H[ee++]&63;if((Le&240)==224?Le=(Le&15)<<12|ze<<6|Tt:Le=(Le&7)<<18|ze<<12|Tt<<6|H[ee++]&63,Le<65536)Ze+=String.fromCharCode(Le);else{var is=Le-65536;Ze+=String.fromCharCode(55296|is>>10,56320|is&1023)}}return Ze}function Je(H,ee){return H?Xe(en,H,ee):""}function Ye(H,ee,ce,Se){if(!(Se>0))return 0;for(var Qe=ce,Ze=ce+Se-1,Le=0;Le<H.length;++Le){var ze=H.charCodeAt(Le);if(ze>=55296&&ze<=57343){var Tt=H.charCodeAt(++Le);ze=65536+((ze&1023)<<10)|Tt&1023}if(ze<=127){if(ce>=Ze)break;ee[ce++]=ze}else if(ze<=2047){if(ce+1>=Ze)break;ee[ce++]=192|ze>>6,ee[ce++]=128|ze&63}else if(ze<=65535){if(ce+2>=Ze)break;ee[ce++]=224|ze>>12,ee[ce++]=128|ze>>6&63,ee[ce++]=128|ze&63}else{if(ce+3>=Ze)break;ee[ce++]=240|ze>>18,ee[ce++]=128|ze>>12&63,ee[ce++]=128|ze>>6&63,ee[ce++]=128|ze&63}}return ee[ce]=0,ce-Qe}function tt(H,ee,ce){return Ye(H,en,ee,ce)}function Ce(H){for(var ee=0,ce=0;ce<H.length;++ce){var Se=H.charCodeAt(ce);Se>=55296&&Se<=57343&&(Se=65536+((Se&1023)<<10)|H.charCodeAt(++ce)&1023),Se<=127?++ee:Se<=2047?ee+=2:Se<=65535?ee+=3:ee+=4}return ee}var ut=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function at(H,ee){Rt.set(H,ee)}function Jt(H,ee,ce){for(var Se=0;Se<H.length;++Se)Rt[ee++>>0]=H.charCodeAt(Se);ce||(Rt[ee>>0]=0)}function Nt(H,ee){return H%ee>0&&(H+=ee-H%ee),H}var In,Rt,en,Cn,Nn,Yt,Dn,tn,zs;function Ms(H){In=H,a.HEAP8=Rt=new Int8Array(H),a.HEAP16=Cn=new Int16Array(H),a.HEAP32=Yt=new Int32Array(H),a.HEAPU8=en=new Uint8Array(H),a.HEAPU16=Nn=new Uint16Array(H),a.HEAPU32=Dn=new Uint32Array(H),a.HEAPF32=tn=new Float32Array(H),a.HEAPF64=zs=new Float64Array(H)}var Ci=a.INITIAL_MEMORY||16777216,Js,Ls=[],gu=[],Ni=[],nn=!1,lc=!1,cc=0;function bu(){return se||cc>0}function dc(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)fc(a.preRun.shift());vu(Ls)}function pc(){nn=!0,vu(gu)}function Vv(){lc=!0}function hc(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)mc(a.postRun.shift());vu(Ni)}function fc(H){Ls.unshift(H)}function rs(H){gu.unshift(H)}function mc(H){Ni.unshift(H)}var Fn=0,Ti=null,er=null;function lh(H){Fn++,a.monitorRunDependencies&&a.monitorRunDependencies(Fn)}function gc(H){if(Fn--,a.monitorRunDependencies&&a.monitorRunDependencies(Fn),Fn==0&&(Ti!==null&&(clearInterval(Ti),Ti=null),er)){var ee=er;er=null,ee()}}a.preloadedImages={},a.preloadedAudios={};function Mr(H){a.onAbort&&a.onAbort(H),H="Aborted("+H+")",A(H),oe=!0,ae=1,H+=". Build with -s ASSERTIONS=1 for more info.";var ee=new WebAssembly.RuntimeError(H);throw o(ee),ee}var ch="data:application/octet-stream;base64,";function bc(H){return H.startsWith(ch)}function Lr(H){return H.startsWith("file://")}var sn;sn="tfjs-backend-wasm.wasm",bc(sn)||(sn=b(sn));function yu(H){try{if(H==sn&&J)return new Uint8Array(J);if(x)return x(H);throw"both async and sync fetching of the wasm failed"}catch(ee){Mr(ee)}}function dh(){if(!J&&(h||f)){if(typeof fetch=="function"&&!Lr(sn))return fetch(sn,{credentials:"same-origin"}).then(function(H){if(!H.ok)throw"failed to load wasm binary file at '"+sn+"'";return H.arrayBuffer()}).catch(function(){return yu(sn)});if(v)return new Promise(function(H,ee){v(sn,function(ce){H(new Uint8Array(ce))},ee)})}return Promise.resolve().then(function(){return yu(sn)})}function ph(){var H={env:Ai,wasi_snapshot_preview1:Ai};function ee(Le,ze){var Tt=Le.exports;a.asm=Tt,ne=a.asm.memory,Ms(ne.buffer),Js=a.asm.__indirect_function_table,rs(a.asm.__wasm_call_ctors),gc("wasm-instantiate")}lh("wasm-instantiate");function ce(Le){ee(Le.instance)}function Se(Le){return dh().then(function(ze){return WebAssembly.instantiate(ze,H)}).then(function(ze){return ze}).then(Le,function(ze){A("failed to asynchronously prepare wasm: "+ze),Mr(ze)})}function Qe(){return!J&&typeof WebAssembly.instantiateStreaming=="function"&&!bc(sn)&&!Lr(sn)&&typeof fetch=="function"?fetch(sn,{credentials:"same-origin"}).then(function(Le){var ze=WebAssembly.instantiateStreaming(Le,H);return ze.then(ce,function(Tt){return A("wasm streaming compile failed: "+Tt),A("falling back to ArrayBuffer instantiation"),Se(ce)})}):Se(ce)}if(a.instantiateWasm)try{var Ze=a.instantiateWasm(H,ee);return Ze}catch(Le){return A("Module.instantiateWasm callback failed with error: "+Le),!1}return Qe().catch(o),{}}var Wv,Uv;function vu(H){for(;H.length>0;){var ee=H.shift();if(typeof ee=="function"){ee(a);continue}var ce=ee.func;typeof ce=="number"?ee.arg===void 0?xu(ce)():xu(ce)(ee.arg):ce(ee.arg===void 0?null:ee.arg)}}function tr(H){return H}function yc(H){var ee=/\b_Z[\w\d_]+/g;return H.replace(ee,function(ce){var Se=ce;return ce===Se?ce:Se+" ["+ce+"]"})}var as=[];function xu(H){var ee=as[H];return ee||(H>=as.length&&(as.length=H+1),as[H]=ee=Js.get(H)),ee}function Gv(){var H=new Error;if(!H.stack){try{throw new Error}catch(ee){H=ee}if(!H.stack)return"(no stack trace available)"}return H.stack.toString()}function $i(H,ee){Js.set(H,ee),as[H]=ee}function hh(){Mr("")}function vc(H,ee,ce){en.copyWithin(H,ee,ee+ce)}function xc(){return 2147483648}function rn(H){try{return ne.grow(H-In.byteLength+65535>>>16),Ms(ne.buffer),1}catch(ee){}}function wc(H){var ee=en.length;H=H>>>0;var ce=xc();if(H>ce)return!1;for(var Se=1;Se<=4;Se*=2){var Qe=ee*(1+.2/Se);Qe=Math.min(Qe,H+100663296);var Ze=Math.min(ce,Nt(Math.max(H,Qe),65536)),Le=rn(Ze);if(Le)return!0}return!1}var _i={mappings:{},buffers:[null,[],[]],printChar:function(H,ee){var ce=_i.buffers[H];ee===0||ee===10?((H===1?P:A)(Xe(ce,0)),ce.length=0):ce.push(ee)},varargs:void 0,get:function(){_i.varargs+=4;var H=Yt[_i.varargs-4>>2];return H},getStr:function(H){var ee=Je(H);return ee},get64:function(H,ee){return H}};function fh(H){return 0}function Hv(H,ee,ce,Se,Qe){}function qv(H,ee,ce,Se){for(var Qe=0,Ze=0;Ze<ce;Ze++){var Le=Yt[ee>>2],ze=Yt[ee+4>>2];ee+=8;for(var Tt=0;Tt<ze;Tt++)_i.printChar(H,en[Le+Tt]);Qe+=ze}return Yt[Se>>2]=Qe,0}function mh(H){te(H)}var kc=!1,Ai={abort:hh,emscripten_memcpy_big:vc,emscripten_resize_heap:wc,fd_close:fh,fd_seek:Hv,fd_write:qv,setTempRet0:mh},sT=ph(),jv=a.___wasm_call_ctors=function(){return(jv=a.___wasm_call_ctors=a.asm.__wasm_call_ctors).apply(null,arguments)},gh=a._init=function(){return(gh=a._init=a.asm.init).apply(null,arguments)},bh=a._init_with_threads_count=function(){return(bh=a._init_with_threads_count=a.asm.init_with_threads_count).apply(null,arguments)},Sc=a._get_threads_count=function(){return(Sc=a._get_threads_count=a.asm.get_threads_count).apply(null,arguments)},Ic=a._register_tensor=function(){return(Ic=a._register_tensor=a.asm.register_tensor).apply(null,arguments)},yh=a._dispose_data=function(){return(yh=a._dispose_data=a.asm.dispose_data).apply(null,arguments)},$e=a._dispose=function(){return($e=a._dispose=a.asm.dispose).apply(null,arguments)},vh=a._Abs=function(){return(vh=a._Abs=a.asm.Abs).apply(null,arguments)},Cc=a._Add=function(){return(Cc=a._Add=a.asm.Add).apply(null,arguments)},Br=a._AddN=function(){return(Br=a._AddN=a.asm.AddN).apply(null,arguments)},Ei=a._All=function(){return(Ei=a._All=a.asm.All).apply(null,arguments)},xh=a._Any=function(){return(xh=a._Any=a.asm.Any).apply(null,arguments)},Kv=a._ArgMax=function(){return(Kv=a._ArgMax=a.asm.ArgMax).apply(null,arguments)},wh=a._AvgPool=function(){return(wh=a._AvgPool=a.asm.AvgPool).apply(null,arguments)},Xv=a._BatchMatMul=function(){return(Xv=a._BatchMatMul=a.asm.BatchMatMul).apply(null,arguments)},Vr=a._Ceil=function(){return(Vr=a._Ceil=a.asm.Ceil).apply(null,arguments)},kh=a._ClipByValue=function(){return(kh=a._ClipByValue=a.asm.ClipByValue).apply(null,arguments)},Sh=a._Conv2D=function(){return(Sh=a._Conv2D=a.asm.Conv2D).apply(null,arguments)},Ih=a._Conv2DBackpropInput=function(){return(Ih=a._Conv2DBackpropInput=a.asm.Conv2DBackpropInput).apply(null,arguments)},Ch=a._Cos=function(){return(Ch=a._Cos=a.asm.Cos).apply(null,arguments)},Nh=a._Cosh=function(){return(Nh=a._Cosh=a.asm.Cosh).apply(null,arguments)},Th=a._CropAndResize=function(){return(Th=a._CropAndResize=a.asm.CropAndResize).apply(null,arguments)},Nc=a._Cumprod=function(){return(Nc=a._Cumprod=a.asm.Cumprod).apply(null,arguments)},$h=a._Cumsum=function(){return($h=a._Cumsum=a.asm.Cumsum).apply(null,arguments)},_h=a._DepthToSpace=function(){return(_h=a._DepthToSpace=a.asm.DepthToSpace).apply(null,arguments)},Ah=a._DepthwiseConv2dNative=function(){return(Ah=a._DepthwiseConv2dNative=a.asm.DepthwiseConv2dNative).apply(null,arguments)},Eh=a._Elu=function(){return(Eh=a._Elu=a.asm.Elu).apply(null,arguments)},Rh=a._Equal=function(){return(Rh=a._Equal=a.asm.Equal).apply(null,arguments)},Tc=a._Exp=function(){return(Tc=a._Exp=a.asm.Exp).apply(null,arguments)},Dh=a._FlipLeftRight=function(){return(Dh=a._FlipLeftRight=a.asm.FlipLeftRight).apply(null,arguments)},Fh=a._Floor=function(){return(Fh=a._Floor=a.asm.Floor).apply(null,arguments)},Wr=a._FloorDiv=function(){return(Wr=a._FloorDiv=a.asm.FloorDiv).apply(null,arguments)},wu=a._FusedBatchNorm=function(){return(wu=a._FusedBatchNorm=a.asm.FusedBatchNorm).apply(null,arguments)},Oh=a._FusedConv2D=function(){return(Oh=a._FusedConv2D=a.asm.FusedConv2D).apply(null,arguments)},Ph=a._FusedDepthwiseConv2D=function(){return(Ph=a._FusedDepthwiseConv2D=a.asm.FusedDepthwiseConv2D).apply(null,arguments)},zh=a._Gather=function(){return(zh=a._Gather=a.asm.Gather).apply(null,arguments)},Me=a._GatherNd=function(){return(Me=a._GatherNd=a.asm.GatherNd).apply(null,arguments)},Mh=a._Greater=function(){return(Mh=a._Greater=a.asm.Greater).apply(null,arguments)},Lh=a._GreaterEqual=function(){return(Lh=a._GreaterEqual=a.asm.GreaterEqual).apply(null,arguments)},Bh=a._LeakyRelu=function(){return(Bh=a._LeakyRelu=a.asm.LeakyRelu).apply(null,arguments)},Vh=a._Less=function(){return(Vh=a._Less=a.asm.Less).apply(null,arguments)},Wh=a._LessEqual=function(){return(Wh=a._LessEqual=a.asm.LessEqual).apply(null,arguments)},Uh=a._Log=function(){return(Uh=a._Log=a.asm.Log).apply(null,arguments)},ku=a._LogicalAnd=function(){return(ku=a._LogicalAnd=a.asm.LogicalAnd).apply(null,arguments)},$c=a._Max=function(){return($c=a._Max=a.asm.Max).apply(null,arguments)},_c=a._MaxPool=function(){return(_c=a._MaxPool=a.asm.MaxPool).apply(null,arguments)},Gh=a._Maximum=function(){return(Gh=a._Maximum=a.asm.Maximum).apply(null,arguments)},Hh=a._Mean=function(){return(Hh=a._Mean=a.asm.Mean).apply(null,arguments)},qh=a._Min=function(){return(qh=a._Min=a.asm.Min).apply(null,arguments)},jh=a._Minimum=function(){return(jh=a._Minimum=a.asm.Minimum).apply(null,arguments)},Kh=a._MirrorPad=function(){return(Kh=a._MirrorPad=a.asm.MirrorPad).apply(null,arguments)},Xh=a._Multiply=function(){return(Xh=a._Multiply=a.asm.Multiply).apply(null,arguments)},gt=a._Neg=function(){return(gt=a._Neg=a.asm.Neg).apply(null,arguments)},Yh=a._NonMaxSuppressionV3=function(){return(Yh=a._NonMaxSuppressionV3=a.asm.NonMaxSuppressionV3).apply(null,arguments)},Qh=a._NonMaxSuppressionV4=function(){return(Qh=a._NonMaxSuppressionV4=a.asm.NonMaxSuppressionV4).apply(null,arguments)},Zh=a._NonMaxSuppressionV5=function(){return(Zh=a._NonMaxSuppressionV5=a.asm.NonMaxSuppressionV5).apply(null,arguments)},Ri=a._NotEqual=function(){return(Ri=a._NotEqual=a.asm.NotEqual).apply(null,arguments)},Ac=a._OneHot=function(){return(Ac=a._OneHot=a.asm.OneHot).apply(null,arguments)},Ec=a._PadV2=function(){return(Ec=a._PadV2=a.asm.PadV2).apply(null,arguments)},Rc=a._Pow=function(){return(Rc=a._Pow=a.asm.Pow).apply(null,arguments)},Jh=a._Prelu=function(){return(Jh=a._Prelu=a.asm.Prelu).apply(null,arguments)},Dc=a._Prod=function(){return(Dc=a._Prod=a.asm.Prod).apply(null,arguments)},ef=a._RealDiv=function(){return(ef=a._RealDiv=a.asm.RealDiv).apply(null,arguments)},Yv=a._Relu=function(){return(Yv=a._Relu=a.asm.Relu).apply(null,arguments)},Fc=a._Relu6=function(){return(Fc=a._Relu6=a.asm.Relu6).apply(null,arguments)},Qv=a._ResizeBilinear=function(){return(Qv=a._ResizeBilinear=a.asm.ResizeBilinear).apply(null,arguments)},tf=a._Reverse=function(){return(tf=a._Reverse=a.asm.Reverse).apply(null,arguments)},nf=a._RotateWithOffset=function(){return(nf=a._RotateWithOffset=a.asm.RotateWithOffset).apply(null,arguments)},sf=a._Round=function(){return(sf=a._Round=a.asm.Round).apply(null,arguments)},rf=a._Rsqrt=function(){return(rf=a._Rsqrt=a.asm.Rsqrt).apply(null,arguments)},af=a._ScatterNd=function(){return(af=a._ScatterNd=a.asm.ScatterNd).apply(null,arguments)},of=a._SelectV2=function(){return(of=a._SelectV2=a.asm.SelectV2).apply(null,arguments)},uf=a._Sigmoid=function(){return(uf=a._Sigmoid=a.asm.Sigmoid).apply(null,arguments)},lf=a._Sin=function(){return(lf=a._Sin=a.asm.Sin).apply(null,arguments)},cf=a._Softmax=function(){return(cf=a._Softmax=a.asm.Softmax).apply(null,arguments)},df=a._SparseFillEmptyRows=function(){return(df=a._SparseFillEmptyRows=a.asm.SparseFillEmptyRows).apply(null,arguments)},pf=a._SparseReshape=function(){return(pf=a._SparseReshape=a.asm.SparseReshape).apply(null,arguments)},hf=a._SparseSegmentReduction=function(){return(hf=a._SparseSegmentReduction=a.asm.SparseSegmentReduction).apply(null,arguments)},ff=a._Sqrt=function(){return(ff=a._Sqrt=a.asm.Sqrt).apply(null,arguments)},mf=a._Square=function(){return(mf=a._Square=a.asm.Square).apply(null,arguments)},gf=a._SquaredDifference=function(){return(gf=a._SquaredDifference=a.asm.SquaredDifference).apply(null,arguments)},bf=a._Step=function(){return(bf=a._Step=a.asm.Step).apply(null,arguments)},yf=a._StridedSlice=function(){return(yf=a._StridedSlice=a.asm.StridedSlice).apply(null,arguments)},vf=a._Sub=function(){return(vf=a._Sub=a.asm.Sub).apply(null,arguments)},xf=a._Sum=function(){return(xf=a._Sum=a.asm.Sum).apply(null,arguments)},wf=a._Tan=function(){return(wf=a._Tan=a.asm.Tan).apply(null,arguments)},kf=a._Tanh=function(){return(kf=a._Tanh=a.asm.Tanh).apply(null,arguments)},Sf=a._Tile=function(){return(Sf=a._Tile=a.asm.Tile).apply(null,arguments)},If=a._TopK=function(){return(If=a._TopK=a.asm.TopK).apply(null,arguments)},Cf=a._Transform=function(){return(Cf=a._Transform=a.asm.Transform).apply(null,arguments)},Nf=a._Transpose=function(){return(Nf=a._Transpose=a.asm.Transpose).apply(null,arguments)},Tf=a.__FusedMatMul=function(){return(Tf=a.__FusedMatMul=a.asm._FusedMatMul).apply(null,arguments)},$f=a._malloc=function(){return($f=a._malloc=a.asm.malloc).apply(null,arguments)},_f=a._free=function(){return(_f=a._free=a.asm.free).apply(null,arguments)},Af=a.___errno_location=function(){return(Af=a.___errno_location=a.asm.__errno_location).apply(null,arguments)},Ef=a._emscripten_main_thread_process_queued_calls=function(){return(Ef=a._emscripten_main_thread_process_queued_calls=a.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},Oc=a.stackSave=function(){return(Oc=a.stackSave=a.asm.stackSave).apply(null,arguments)},Pc=a.stackRestore=function(){return(Pc=a.stackRestore=a.asm.stackRestore).apply(null,arguments)},Su=a.stackAlloc=function(){return(Su=a.stackAlloc=a.asm.stackAlloc).apply(null,arguments)},Rf=a.dynCall_iijjiiii=function(){return(Rf=a.dynCall_iijjiiii=a.asm.dynCall_iijjiiii).apply(null,arguments)},Df=a.dynCall_jiji=function(){return(Df=a.dynCall_jiji=a.asm.dynCall_jiji).apply(null,arguments)};a.cwrap=Ie;var Di;function Iu(H){this.name="ExitStatus",this.message="Program terminated with exit("+H+")",this.status=H}er=function H(){Di||Cu(),Di||(er=H)};function Cu(H){if(H=H||c,Fn>0||(dc(),Fn>0))return;function ee(){Di||(Di=!0,a.calledRun=!0,!oe&&(pc(),i(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),hc()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),ee()},1)):ee()}a.run=Cu;function Zv(H){ae=H,bu()||(a.onExit&&a.onExit(H),oe=!0),d(H,new Iu(H))}if(a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();Cu();var Fi;u&&(Fi={uncaughtException:process.listeners("uncaughtException").filter(function(H){return!u.uncaughtException.indexOf(H)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(H){return!u.unhandledRejection.indexOf(H)>-1})});var Oi;if(typeof r!="undefined")Oi=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")Oi=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Fi){var Ff=Oi._dispose;Oi._dispose=function(){Ff(),Fi.uncaughtException.forEach(function(H){process.removeListener("uncaughtException",H)}),Fi.unhandledRejection.forEach(function(H){process.removeListener("unhandledRejection",H)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),y$=1e-7,v$=1e-4,Yd=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},ol=class{refCount(e){return On("refCount")}incRef(e){return On("incRef")}timerAvailable(){return!0}time(e){return On("time")}read(e){return On("read")}readSync(e){return On("readSync")}readToGPU(e,t){return On("readToGPU")}numDataIds(){return On("numDataIds")}disposeData(e,t){return On("disposeData")}write(e,t,n){return On("write")}move(e,t,n,s,r){return On("move")}memory(){return On("memory")}floatPrecision(){return On("floatPrecision")}epsilon(){return this.floatPrecision()===32?y$:v$}dispose(){return On("dispose")}};function On(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function Jw(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,bd(e,t,n)}function x$(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,bd(e,n,s),bd(t,n,s)}function Hu(e,t,n){return Math.max(e,Math.min(t,n))}function w$(e){return e%2===0?e:e+1}function bd(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function k$(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function S$(e,t){let n=Math.random();return t*n+(1-n)*e}function I$(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function F(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function pn(e,t,n=""){F(Ir(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Sa(e){F(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ia(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||Qt(e)&&!n)for(let s=0;s<e.length;++s)ia(e[s],t,n);else t.push(e);return t}function dt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function C$(e){return e.length===0}function Ir(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function eo(e){return e%1===0}function N$(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function T$(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function $$(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return Jw(t),t}function Vu(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function _$(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,i=()=>{if(e()){s();return}a++;let o=t(a);if(n!=null&&a>=n){r();return}setTimeout(i,o)};i()})}function A$(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function ts(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),F(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),F(e.every(s=>eo(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function ek(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:ts(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(a!=null){if(a[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(a[i]==null||a[i]>o)&&e[o]===1&&(n.push(e[o]),s.push(o)),a[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),s.push(o))}return{newShape:n,keptDims:s}}function tk(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function nk(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function sk(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function rk(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function E$(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Qt(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function nm(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function ak(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function ir(e){return typeof e=="string"||e instanceof String}function ik(e){return typeof e=="boolean"}function ok(e){return typeof e=="number"}function Qd(e){return Array.isArray(e)?Qd(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":ok(e)?"float32":ir(e)?"string":ik(e)?"bool":"float32"}function fr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function yd(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function co(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function uk(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let i=0;i<a;i++)r[i]=n[e+i]}else{let a=t[0],i=t.slice(1),o=i.reduce((u,l)=>u*l)*(s?2:1);for(let u=0;u<a;u++)r[u]=uk(e+u*o,i,n,s)}return r}function Xi(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return uk(0,e,t,n)}function lg(e,t){let n=Zd(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function Zd(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function R$(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return Xi(e,new Float32Array(n));if(t==="int32")return Xi(e,new Int32Array(n));if(t==="bool")return Xi(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function cg(e){e.forEach(t=>{F(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function D$(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function F$(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function dg(e){return e&&e.then&&typeof e.then=="function"}var ux="tfjsflags",O$=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=P$,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(K().getBool("IS_TEST")||K().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];K().getBool("IS_TEST")||K().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(dg(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);ux in e&&e[ux].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=M$(s,r)})}};function P$(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(z$(t,s[0],s[1]),s.join("="))),t}function z$(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function M$(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function K(){return lk}var lk=null;function L$(e){lk=e}var Vf;function ck(){if(Vf==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Vf=e}return Vf}function B$(){let e=ck();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function pg(e,t){let n=B$();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var po="Abs",ul="Acos",ll="Acosh",Cr="Add",Ia="AddN",cl="All",dl="Any",Ca="ArgMax",pl="ArgMin",hl="Asin",fl="Asinh",ml="Atan",gl="Atanh",bl="Atan2",Na="AvgPool",hg="AvgPoolGrad",Jd="AvgPool3D",fg="AvgPool3DGrad",Ta="BatchMatMul",ho="BatchToSpaceND",mg="Bincount",V$="BroadcastTo",gg="BroadcastArgs",$a="Cast",_a="Ceil",Nr="ClipByValue",ep="Complex",tp="ComplexAbs",fo="Concat",Aa="Conv2D",bg="Conv2DBackpropFilter",Ea="Conv2DBackpropInput",np="Conv3D",yg="Conv3DBackpropFilterV2",vg="Conv3DBackpropInputV2",Ra="Cos",Da="Cosh",mo="Cumprod",Fa="Cumsum",go="CropAndResize",xg="DenseBincount",bo="DepthToSpace",Oa="DepthwiseConv2dNative",wg="DepthwiseConv2dNativeBackpropFilter",kg="DepthwiseConv2dNativeBackpropInput",Sg="Diag",sp="Dilation2D",sm="Dilation2DBackpropInput",rm="Dilation2DBackpropFilter",Pa="RealDiv",rp="Einsum",za="Elu",Ig="EluGrad",yl="Erf",yo="Equal",Ma="Exp",vo="ExpandDims",xo="Expm1",Cg="FFT",vl="Fill",wo="FlipLeftRight",La="Floor",Ba="FloorDiv",Va="FusedBatchNorm",ko="GatherV2",So="GatherNd",Io="Greater",Wa="GreaterEqual",Ua="Identity",Ng="IFFT",ap="Imag",xl="IsFinite",wl="IsInf",kl="IsNan",Ga="LeakyRelu",Co="Less",No="LessEqual",Tg="LinSpace",Ha="Log",Sl="Log1p",To="LogicalAnd",Il="LogicalNot",ip="LogicalOr",W$="LogSoftmax",upe="LowerBound",op="LRN",$g="LRNGrad",qa="Max",ja="Maximum",Ka="MaxPool",_g="MaxPoolGrad",up="MaxPool3D",Ag="MaxPool3DGrad",Eg="MaxPoolWithArgmax",Xa="Mean",Ya="Min",Qa="Minimum",Za="MirrorPad",Cl="Mod",Rg="Multinomial",Ja="Multiply",$o="Neg",_o="NotEqual",Ao="NonMaxSuppressionV3",Nl="NonMaxSuppressionV4",Eo="NonMaxSuppressionV5",Ro="OnesLike",Do="OneHot",Fo="Pack",ei="PadV2",lpe="Pool",ti="Pow",ni="Prelu",si="Prod",Tl="Range",lp="Real",$l="Reciprocal",ri="Relu",Oo="Reshape",_l="ResizeNearestNeighbor",Dg="ResizeNearestNeighborGrad",ai="ResizeBilinear",Fg="ResizeBilinearGrad",ii="Relu6",Po="Reverse",zo="Round",oi="Rsqrt",Mo="ScatterNd",Og="SearchSorted",Lo="Select",Al="Selu",Bo="Slice",ui="Sin",Vo="Sinh",El="Sign",li="Sigmoid",Rl="Softplus",ci="Sqrt",di="Sum",Wo="SpaceToBatchND",Uo="SplitV",pi="Softmax",cp="SparseFillEmptyRows",Dl="SparseReshape",dp="SparseSegmentMean",pp="SparseSegmentSum",hp="SparseToDense",hi="SquaredDifference",Fl="Square",Go="StridedSlice",fp="StringNGrams",Pg="StringSplit",zg="StringToHashBucketFast",fi="Sub",Ho="Tan",mi="Tanh",Tr="Tile",qo="TopK",jo="Transform",Hs="Transpose",Mg="Unique",Ko="Unpack",mp="UnsortedSegmentSum",cpe="UpperBound",Xo="ZerosLike",gi="Step",vd="FromPixels",Yo="RotateWithOffset",oa="_FusedMatMul",ua="FusedConv2D",la="FusedDepthwiseConv2D";function ar(...e){K().getBool("IS_TEST")||K().getBool("PROD")||console.warn(...e)}function U$(...e){K().getBool("IS_TEST")||K().getBool("PROD")||console.log(...e)}var to=pg("kernelRegistry",()=>new Map),qu=pg("gradRegistry",()=>new Map);function am(e,t){let n=Lg(e,t);return to.get(n)}function lx(e){return qu.get(e)}function im(e){let t=to.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,i]=r,[o]=a.split("_");o===e&&n.push(i)}return n}function Ol(e){let{kernelName:t,backendName:n}=e,s=Lg(t,n);to.has(s)&&ar(`The kernel '${t}' for backend '${n}' is already registered`),to.set(s,e)}function G$(e){let{kernelName:t}=e;qu.has(t)&&K().getBool("DEBUG")&&ar(`Overriding the gradient for '${t}'`),qu.set(t,e)}function dpe(e,t){let n=Lg(e,t);if(!to.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);to.delete(n)}function ppe(e){if(!qu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);qu.delete(e)}function hpe(e,t){im(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});Ol(r)})}function Lg(e,t){return`${t}_${e}`}var w={};Ee(w,{arraysEqual:()=>Ir,assert:()=>F,assertNonNegativeIntegerDimensions:()=>cg,assertNonNull:()=>Sa,assertShapesMatch:()=>pn,bytesFromStringArray:()=>ak,bytesPerElement:()=>nm,checkConversionForErrors:()=>sk,clamp:()=>Hu,computeStrides:()=>co,createScalarValue:()=>Y$,createShuffledIndices:()=>$$,decodeString:()=>xd,distSquared:()=>I$,encodeString:()=>zl,fetch:()=>Z$,fingerPrint64:()=>X$,flatten:()=>ia,getArrayFromDType:()=>nk,getTypedArrayFromDType:()=>tk,hasEncodingLoss:()=>E$,hexToLong:()=>Pl,indexToLoc:()=>F$,inferDtype:()=>Qd,inferFromImplicitShape:()=>A$,isBoolean:()=>ik,isFunction:()=>fr,isInt:()=>eo,isNumber:()=>ok,isPromise:()=>dg,isScalarShape:()=>C$,isString:()=>ir,isTypedArray:()=>Qt,isValidDtype:()=>rk,locToIndex:()=>D$,makeOnesTypedArray:()=>lg,makeZerosNestedTypedArray:()=>R$,makeZerosTypedArray:()=>Zd,nearestDivisor:()=>yd,nearestLargerEven:()=>w$,now:()=>ju,parseAxisParam:()=>ts,randUniform:()=>S$,repeatedTry:()=>_$,rightPad:()=>Vu,shuffle:()=>Jw,shuffleCombo:()=>x$,sizeFromShape:()=>dt,sizeToSquarishShape:()=>T$,squeezeShape:()=>ek,sum:()=>k$,swap:()=>bd,tanh:()=>N$,toNestedArray:()=>Xi,toTypedArray:()=>gp});var cx=ka(n$()),Xr=cx.default||cx;function Pl(e){return Xr.fromString(e,!0,16)}var dk=Pl("c3a5c85c97cb3127"),jr=Pl("b492b66fbe98f273"),on=Pl("9ae16a3b2f90404f");function om(e){return e.xor(e.shru(47))}function pk(e,t,n){let s=e.slice(t,t+n);return Xr.fromBytes(Array.from(s),!0,!0)}function lt(e,t){return pk(e,t,8)}function dx(e,t){return pk(e,t,4)}function Bt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function ur(e,t,n=Pl("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function H$(e,t,n,s,r,a){r=r.add(e),a=Bt(a.add(r).add(s),21);let i=r;return r=r.add(t),r=r.add(n),a=a.add(Bt(r,44)),[r.add(s),a.add(i)]}function Gc(e,t,n,s){return H$(lt(e,t),lt(e,t+8),lt(e,t+16),lt(e,t+24),n,s)}function q$(e,t=e.length){if(t>=8){let n=on.add(t*2),s=lt(e,0).add(on),r=lt(e,t-8),a=Bt(r,37).mul(n).add(s),i=Bt(s,25).add(r).mul(n);return ur(a,i,n)}if(t>=4){let n=on.add(t*2),s=dx(e,0);return ur(s.shl(3).add(t),dx(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),i=t+(r<<2);return om(on.mul(a).xor(dk.mul(i))).mul(on)}return on}function j$(e,t=e.length){let n=on.add(t*2),s=lt(e,0).mul(jr),r=lt(e,8),a=lt(e,t-8).mul(n),i=lt(e,t-16).mul(on);return ur(Bt(s.add(r),43).add(Bt(a,30)).add(i),s.add(Bt(r.add(on),18)).add(a),n)}function K$(e,t=e.length){let n=on.add(t*2),s=lt(e,0).mul(on),r=lt(e,8),a=lt(e,t-8).mul(n),i=lt(e,t-16).mul(on),o=Bt(s.add(r),43).add(Bt(a,30)).add(i),u=ur(o,s.add(Bt(r.add(on),18)).add(a),n),l=lt(e,16).mul(n),c=lt(e,24),p=o.add(lt(e,t-32)).mul(n),d=u.add(lt(e,t-24)).mul(n);return ur(Bt(l.add(c),43).add(Bt(p,30)).add(d),l.add(Bt(c.add(s),18)).add(p),n)}function X$(e,t=e.length){let n=Xr.fromNumber(81,!0);if(t<=32)return t<=16?q$(e,t):j$(e,t);if(t<=64)return K$(e,t);let s=n,r=n.mul(jr).add(113),a=om(r.mul(on).add(113)).mul(on),i=[Xr.UZERO,Xr.UZERO],o=[Xr.UZERO,Xr.UZERO];s=s.mul(on).add(lt(e,0));let u=0,l=(t-1>>6)*64,c=l+(t-1&63)-63;do s=Bt(s.add(r).add(i[0]).add(lt(e,u+8)),37).mul(jr),r=Bt(r.add(i[1]).add(lt(e,u+48)),42).mul(jr),s=s.xor(o[1]),r=r.add(i[0]).add(lt(e,u+40)),a=Bt(a.add(o[0]),33).mul(jr),i=Gc(e,u,i[1].mul(jr),s.add(o[0])),o=Gc(e,u+32,a.add(o[1]),r.add(lt(e,u+16))),[a,s]=[s,a],u+=64;while(u!==l);let p=jr.add(a.and(255).shl(1));return u=c,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),s=Bt(s.add(r).add(i[0]).add(lt(e,u+8)),37).mul(p),r=Bt(r.add(i[1]).add(lt(e,u+48)),42).mul(p),s=s.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(lt(e,u+40))),a=Bt(a.add(o[0]),33).mul(p),i=Gc(e,u,i[1].mul(p),s.add(o[0])),o=Gc(e,u+32,a.add(o[1]),r.add(lt(e,u+16))),[a,s]=[s,a],ur(ur(i[0],o[0],p).add(om(r).mul(dk)).add(a),ur(i[1],o[1],p).add(s),p)}function Y$(e,t){return t==="string"?zl(e):gp([e],t)}function Q$(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function gp(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ia(e)),K().getBool("DEBUG")&&sk(e,t),Q$(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function ju(){return K().platform.now()}function Z$(e,t){return K().platform.fetch(e,t)}function zl(e,t="utf-8"){return t=t||"utf-8",K().platform.encode(e,t)}function xd(e,t="utf-8"){return t=t||"utf-8",K().platform.decode(e,t)}var J$=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new t_)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,i=ju();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let u of s)u.dataSync();a=Promise.resolve({kernelMs:ju()-i})}if(K().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let u=0;u<s.length;u++){let l=s[u];l.data().then(c=>{e_(c,l.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(u=>u.kernelMs),extraInfo:a.then(u=>u.getExtraProfileInfo!=null?u.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(i=>{Promise.all([i.data(),s,a]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function e_(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var t_=class{logKernelProfile(e,t,n,s,r,a){let i=typeof s=="number"?Vu(`${s}ms`,9):s.error,o=Vu(e,25),u=t.rank,l=t.size,c=Vu(t.shape.toString(),14),p="";for(let d in r){let h=r[d];if(h!=null){let f=h.shape||t.shape,m=f.length;p+=`${d}: ${m}D ${m>0?f:""} `}}console.log(`%c${o} %c${i} %c${u}D ${c} %c${l} %c${p} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function n_(e,t,n){let s={},r={};for(let u=0;u<t.length;u++)s[t[u].id]=!0;for(let u=0;u<e.length;u++){let l=e[u],c=l.inputs;for(let p in c){let d=c[p],h=!1;for(let f=0;f<t.length;f++)if(s[d.id]){l.outputs.forEach(m=>s[m.id]=!0),h=!0,r[l.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let i={};for(let u=e.length-1;u>=0;u--){let l=e[u],c=l.inputs;for(let p=0;p<l.outputs.length;p++)if(a[l.outputs[p].id]){for(let d in c)a[c[d].id]=!0,i[l.id]=!0;break}}let o=[];for(let u=0;u<e.length;u++){let l=e[u];if(r[l.id]&&i[l.id]){let c={};for(let d in l.inputs){let h=l.inputs[d];s[h.id]&&(c[d]=h)}let p=Object.assign({},l);p.inputs=c,p.outputs=l.outputs,o.push(p)}}return o}function s_(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],i=[];if(a.outputs.forEach(u=>{let l=e[u.id];l!=null?i.push(l):i.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let o=a.gradient(i);for(let u in a.inputs){if(!(u in o))throw new Error(`Cannot backprop through input ${u}. Available gradients found: ${Object.keys(o)}.`);let l=n(()=>o[u]());if(l.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${u} must have 'float32' dtype, but has '${l.dtype}'`);let c=a.inputs[u];if(!Ir(l.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${u}' has shape '${l.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=l;else{let p=e[c.id];e[c.id]=s(p,l),p.dispose()}}}}var px=20,$u=3,Wf=7;function r_(e,t,n,s){let r=co(t),a=a_(e,t,n,r),i=t.length,o=rd(e,t,n,r,a),u=["Tensor"];return s&&(u.push(` dtype: ${n}`),u.push(` rank: ${i}`),u.push(` shape: [${t}]`),u.push(" values:")),u.push(o.map(l=>" "+l).join(`
|
|
`)),u.join(`
|
|
`)}function a_(e,t,n,s){let r=dt(t),a=s[s.length-1],i=new Array(a).fill(0),o=t.length,u=n==="complex64"?Du(e):e;if(o>1)for(let l=0;l<r/a;l++){let c=l*a;for(let p=0;p<a;p++)i[p]=Math.max(i[p],Ru(u[c+p],0,n).length)}return i}function Ru(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(Wf))} + ${parseFloat(e[1].toFixed(Wf))}j`:ir(e)?s=`'${e}'`:n==="bool"?s=hk(e):s=parseFloat(e.toFixed(Wf)).toString(),Vu(s,t)}function hk(e){return e===0?"false":"true"}function rd(e,t,n,s,r,a=!0){let i=n==="complex64"?2:1,o=t[0],u=t.length;if(u===0){if(n==="complex64"){let m=Du(e);return[Ru(m[0],0,n)]}return n==="bool"?[hk(e[0])]:[e[0].toString()]}if(u===1){if(o>px){let g=$u*i,b=Array.from(e.slice(0,g)),y=Array.from(e.slice((o-$u)*i,o*i));return n==="complex64"&&(b=Du(b),y=Du(y)),["["+b.map((v,x)=>Ru(v,r[x],n)).join(", ")+", ..., "+y.map((v,x)=>Ru(v,r[o-$u+x],n)).join(", ")+"]"]}let m=n==="complex64"?Du(e):Array.from(e);return["["+m.map((g,b)=>Ru(g,r[b],n)).join(", ")+"]"]}let l=t.slice(1),c=s.slice(1),p=s[0]*i,d=[];if(o>px){for(let m=0;m<$u;m++){let g=m*p,b=g+p;d.push(...rd(e.slice(g,b),l,n,c,r,!1))}d.push("...");for(let m=o-$u;m<o;m++){let g=m*p,b=g+p;d.push(...rd(e.slice(g,b),l,n,c,r,m===o-1))}}else for(let m=0;m<o;m++){let g=m*p,b=g+p;d.push(...rd(e.slice(g,b),l,n,c,r,m===o-1))}let h=u===2?",":"";d[0]="["+d[0]+h;for(let m=1;m<d.length-1;m++)d[m]=" "+d[m]+h;let f=`,
|
|
`;for(let m=2;m<u;m++)f+=`
|
|
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(a?"":f),d}function Du(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Wt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=dt(e),n!=null){let s=n.length;F(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||nk(t,this.size),this.strides=co(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return cs().makeTensor(this.values,this.shape,this.dtype)}},cs=null,Hi=null,i_=null;function o_(e){cs=e}function u_(e){Hi=e}function l_(e){i_=e}var et=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=dt(e),this.strides=co(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Hi.buffer(this.shape,this.dtype,e)}bufferSync(){return Hi.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Xi(this.shape,e,this.dtype==="complex64")}arraySync(){return Xi(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=cs().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>xd(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),cs().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=cs().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>xd(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await cs().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(cs().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Hi.print(this,e)}clone(){return this.throwIfDisposed(),Hi.clone(this)}toString(e=!1){let t=this.dataSync();return r_(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Hi.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),cs().makeVariable(this,e,t,n)}};Object.defineProperty(et,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function c_(){return pg("Tensor",()=>et)}c_();var wd=class extends et{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Ir(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);cs().disposeTensor(this),this.dataId=e.dataId,cs().incRef(this,null)}dispose(){cs().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(wd,Symbol.hasInstance,{value:e=>e instanceof et&&e.assign!=null&&e.assign instanceof Function});var _s={};Ee(_s,{assertTypesMatch:()=>yk,getTensorsInContainer:()=>Bg,isTensorInList:()=>h_,makeTypesMatch:()=>xt});var d_=(e=>(e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6",e))(d_||{}),fk=(e=>(e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64",e))(fk||{}),mk=(e=>(e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64",e))(mk||{}),gk=(e=>(e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64",e))(gk||{}),bk=(e=>(e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64",e))(bk||{}),p_={float32:gk,int32:fk,bool:mk,complex64:bk};function cn(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return p_[e][t]}function bp(e){return cn(e,"int32")}function xt(e,t){if(e.dtype===t.dtype)return[e,t];let n=cn(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function yk(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function h_(e,t){return t.some(n=>n.id===e.id)}function Bg(e){let t=[];return vk(e,t,new Set),t}function vk(e,t,n){if(e==null)return;if(e instanceof et){t.push(e);return}if(!f_(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),vk(a,t,n))}}function f_(e){return Array.isArray(e)||typeof e=="object"}function Uf(e){return e.kernelName!=null}var hx=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},um=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new hx}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(ar(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new J$(this.backendInstance),!0}setupRegisteredKernels(){im(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){im(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof ol)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,ar(`Initialization of backend ${e} failed`),ar(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return ar(`Initialization of backend ${e} failed`),ar(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return um.nextTensorId++}nextVariableId(){return um.nextVariableId++}clone(e){let t=z.runKernel(Ua,{x:e}),n={x:e},s=a=>({x:()=>{let i="float32",o={x:a},u={dtype:i};return z.runKernel($a,o,u)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(am(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=s-t-r-a;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,u=Uf(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Uf(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=am(h,this.backendName);F(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let b=this.backend.numDataIds();o=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let y=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,b,y);let v=y.map(x=>x.rank!=null?x:this.makeTensorFromTensorInfo(x));if(s){let x=this.getTensorsForGradient(h,f,v);n=this.saveTensorsForBackwardMode(x)}return v}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};i=()=>{let m=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,f));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(u,m,g),g}}let{inputs:l,attrs:c}=e,p=Uf(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(u,l,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),s&&this.addTapeNode(u,l,t,p,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:u,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(l).map(h=>l[h]!=null?l[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=lx(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],i;s.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(u=>t[u])):i=r.map(u=>t[u]);let o=n.filter((u,l)=>a[l]);return i.concat(o)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&ir(e[0])&&(r=e.map(o=>zl(o)));let a=s.write(r,t,n),i=new et(t,n,a,this.nextTensorId());if(this.trackTensor(i,s),n==="string"){let o=this.state.tensorInfo.get(a),u=ak(r);this.state.numBytes+=u-o.bytes,o.bytes=u}return i}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r={dataId:e,shape:t,dtype:n};return this.makeTensorFromTensorInfo(r,s)}makeTensorFromTensorInfo(e,t){let{dataId:n,shape:s,dtype:r}=e,a=new et(s,r,n,this.nextTensorId());return this.trackTensor(a,t),a}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new wd(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*nm(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof wd||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*nm(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=lx(e);o!=null&&(s=o.gradFunc),s!=null&&(i.gradient=u=>(u=u.map((l,c)=>{if(l==null){let p=n[c],d=Zd(p.size,p.dtype);return this.makeTensor(d,p.shape,p.dtype)}return l}),s(u.length>1?u:u[0],r,a))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Bg(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(r instanceof et,()=>"The result y returned by f() must be a tensor.");let a=n_(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?m_(r.shape):n,s_(i,a,u=>this.tidy(u),g_);let o=t.map(u=>i[u.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(u=>{for(let l of u.saved)l.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return F(fr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(i=>i instanceof et),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((i,o)=>{s[o]=i});let r=(i,o)=>(n=e(...t,o),F(n.value instanceof et,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(fr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(i,o)=>{let u=n.gradFunc(i,o),l=Array.isArray(u)?u:[u];F(l.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(l.every(p=>p instanceof et),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return l.forEach((p,d)=>{c[d]=()=>p}),c};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=ju(),n=await this.backend.time(e);return n.wallMs=ju()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new hx;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}},Vg=um;Vg.nextTensorId=0;Vg.nextVariableId=0;function m_(e){let t=lg(dt(e),"float32");return z.makeTensor(t,e,"float32")}function xk(){let e=ck();if(e._tfengine==null){let t=new O$(e);e._tfengine=new Vg(t)}return L$(e._tfengine.ENV),o_(()=>e._tfengine),e._tfengine}var z=xk();function g_(e,t){let n={a:e,b:t};return z.runKernel(Cr,n)}var yp={};Ee(yp,{isBrowser:()=>wk,isMobile:()=>v_,mockIsMobile:()=>y_});function b_(){return typeof navigator!="undefined"&&navigator!=null}var lm;function y_(e){lm=e}function v_(e){if(lm!==void 0)return lm;if(e||b_()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function wk(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Kn=K();Kn.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Kn.registerFlag("IS_BROWSER",()=>wk());Kn.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Kn.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Kn.registerFlag("PROD",()=>!1);Kn.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Kn.getBool("DEBUG"));Kn.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Kn.registerFlag("IS_TEST",()=>!1);Kn.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Kn.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Kn.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function Rs(e,t){let n=e;if(Qt(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||Qt(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&K().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&kk(e,s,[]),s}function kk(e,t,n){if(n=n||[],!Array.isArray(e)&&!Qt(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)kk(e[r],s,n.concat(r))}function fx(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function _(e,t,n,s="numeric"){if(e instanceof et)return fx(s,e.dtype,t,n),e;let r=Qd(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),fx(s,r,t,n),e==null||!Qt(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let u=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${u}'`)}let a=Rs(e,r);!Qt(e)&&!Array.isArray(e)&&(e=[e]);let o=r!=="string"?gp(e,r):ia(e,[],!0);return z.makeTensor(o,a,r)}function Ku(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,i)=>_(a,`${t}[${i}]`,n,s))}var x_="__op";function L(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+x_;let r=(...a)=>{z.startScope(n);try{let i=s(...a);return dg(i)&&console.error("Cannot return a Promise inside of tidy."),z.endScope(i),i}catch(i){throw z.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function w_(e,t){let n=_(e,"real","complex"),s=_(t,"imag","complex");pn(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return z.runKernel(ep,r)}var mr=L({complex_:w_});function $r(e,t,n,s){if(s==null&&(s=Qd(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Qt(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){cg(t);let r=dt(t),a=dt(n);F(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let i=0;i<n.length;++i){let o=n[i],u=i===n.length-1?o!==dt(t.slice(i)):!0;F(n[i]===t[i]||!u,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!Qt(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?gp(e,s):ia(e,[],!0),z.makeTensor(e,t,s)}function ms(e,t,n){let s=Rs(e,n);return $r(e,t,s,n)}var cm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},kd=4;async function k_(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],u=Array.isArray(e)?e[i].tensor:e[o];if(u.dtype!=="float32"&&u.dtype!=="int32"&&u.dtype!=="bool"&&u.dtype!=="string"&&u.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${u.dtype}`);let l={name:o,shape:u.shape,dtype:u.dtype};if(u.dtype==="string"){let c=new Promise(async p=>{let d=await u.bytes(),h=d.reduce((g,b)=>g+b.length,0)+kd*d.length,f=new Uint8Array(h),m=0;for(let g=0;g<d.length;g++){let b=d[g],y=new Uint8Array(new Uint32Array([b.length]).buffer);f.set(y,m),m+=kd,f.set(b,m),m+=b.length}p(f)});s.push(c)}else s.push(u.data());t!=null&&(l.group=t),n.push(l)}let a=await Promise.all(s);return{data:S_(a),specs:n}}function Sk(e,t){let n={},s,r=0;for(let a of t){let i=a.name,o=a.dtype,u=a.shape,l=dt(u),c;if("quantization"in a){let p=a.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${a.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${a.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=cm[p.dtype],h=e.slice(r,r+l*d),f=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=g*p.scale+p.min}}else if(p.dtype==="float16")s===void 0&&(s=__()),c=s(f);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(o==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=l*d}else if(o==="string"){let p=dt(a.shape);c=[];for(let d=0;d<p;d++){let h=new Uint32Array(e.slice(r,r+kd))[0];r+=kd;let f=new Uint8Array(e.slice(r,r+h));c.push(f),r+=h}}else{let p=cm[o],d=e.slice(r,r+l*p);if(o==="float32")c=new Float32Array(d);else if(o==="int32")c=new Int32Array(d);else if(o==="bool")c=new Uint8Array(d);else if(o==="complex64"){c=new Float32Array(d);let h=new Float32Array(c.length/2),f=new Float32Array(c.length/2);for(let b=0;b<h.length;b++)h[b]=c[b*2],f[b]=c[b*2+1];let m=ms(h,u,"float32"),g=ms(f,u,"float32");n[i]=mr(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=l*p}o!=="complex64"&&(n[i]=ms(c,u,o))}return n}function S_(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var Wg=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function mx(e){return Wg?Buffer.byteLength(e):new Blob([e]).size}function I_(e){if(Wg)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function C_(e){if(Wg){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function Ug(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function gx(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Ik(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function Gg(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Ml(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:mx(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:mx(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function N_(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)===0;)r-=8388608,s<<=1;return s&=-8388609,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function T_(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function $_(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function __(){let e=N_(),t=T_(),n=$_();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let i=0;i<s.length;i++){let o=s[i],u=e[n[o>>10]+(o&1023)]+t[o>>10];a[i]=u}return new Float32Array(r)}}var wt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return wt.instance==null&&(wt.instance=new wt),wt.instance}static registerSaveRouter(e){wt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){wt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return wt.getHandlers(e,"save")}static getLoadHandlers(e,t){return wt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?wt.getInstance().loadRouters:wt.getInstance().saveRouters).forEach(a=>{let i=a(e,n);i!==null&&s.push(i)}),s}},A_=e=>wt.registerSaveRouter(e),E_=e=>wt.registerLoadRouter(e),R_=e=>wt.getSaveHandlers(e),D_=(e,t)=>wt.getLoadHandlers(e,t),dm="tensorflowjs",pm=1,Jr="models_store",or="model_info_store";function Ck(){if(!K().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function hm(e){let t=e.result;t.createObjectStore(Jr,{keyPath:"modelPath"}),t.createObjectStore(or,{keyPath:"modelPath"})}var ca=class{constructor(e){if(this.indexedDB=Ck(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(dm,pm);r.onupgradeneeded=()=>hm(r),r.onsuccess=()=>{let a=r.result;if(t==null){let i=a.transaction(Jr,"readonly"),u=i.objectStore(Jr).get(this.modelPath);u.onsuccess=()=>{if(u.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(u.result.modelArtifacts)},u.onerror=l=>(a.close(),s(u.error)),i.oncomplete=()=>a.close()}else{let i=Ml(t),o=a.transaction(or,"readwrite"),u=o.objectStore(or),l=u.put({modelPath:this.modelPath,modelArtifactsInfo:i}),c;l.onsuccess=()=>{c=a.transaction(Jr,"readwrite");let d=c.objectStore(Jr).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});d.onsuccess=()=>n({modelArtifactsInfo:i}),d.onerror=h=>{u=o.objectStore(or);let f=u.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(d.error)),f.onerror=m=>(a.close(),s(d.error))}},l.onerror=p=>(a.close(),s(l.error)),o.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};ca.URL_SCHEME="indexeddb://";var Nk=e=>K().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ca.URL_SCHEME)?F_(e.slice(ca.URL_SCHEME.length)):null;wt.registerSaveRouter(Nk);wt.registerLoadRouter(Nk);function F_(e){return new ca(e)}function O_(e){return e.startsWith(ca.URL_SCHEME)?e.slice(ca.URL_SCHEME.length):e}var P_=class{constructor(){this.indexedDB=Ck()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(dm,pm);n.onupgradeneeded=()=>hm(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(or,"readonly"),i=r.objectStore(or).getAll();i.onsuccess=()=>{let o={};for(let u of i.result)o[u.modelPath]=u.modelArtifactsInfo;e(o)},i.onerror=o=>(s.close(),t(i.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=O_(e),new Promise((t,n)=>{let s=this.indexedDB.open(dm,pm);s.onupgradeneeded=()=>hm(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(or,"readwrite"),i=a.objectStore(or),o=i.get(e),u;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let l=i.delete(e),c=()=>{u=r.transaction(Jr,"readwrite");let d=u.objectStore(Jr).delete(e);d.onsuccess=()=>t(o.result.modelArtifactsInfo),d.onerror=h=>n(o.error)};l.onsuccess=c,l.onerror=p=>(c(),r.close(),n(o.error))}},o.onerror=l=>(r.close(),n(o.error)),a.oncomplete=()=>{u==null?r.close():u.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},Us="/",qi="tensorflowjs_models",Tk="info",z_="model_topology",M_="weight_specs",L_="weight_data",B_="model_metadata";function $k(e){return{info:[qi,e,Tk].join(Us),topology:[qi,e,z_].join(Us),weightSpecs:[qi,e,M_].join(Us),weightData:[qi,e,L_].join(Us),modelMetadata:[qi,e,B_].join(Us)}}function _k(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function V_(e){let t=e.split(Us);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Us)}function W_(e){return e.startsWith(da.URL_SCHEME)?e.slice(da.URL_SCHEME.length):e}var da=class{constructor(e){if(!K().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=$k(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=Ml(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,I_(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw _k(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=C_(a),t}};da.URL_SCHEME="localstorage://";var Ak=e=>K().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(da.URL_SCHEME)?U_(e.slice(da.URL_SCHEME.length)):null;wt.registerSaveRouter(Ak);wt.registerLoadRouter(Ak);function U_(e){return new da(e)}var G_=class{constructor(){F(K().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=qi+Us,n=Us+Tk;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=V_(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=W_(e);let t=$k(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return _k(t),n}},Yi="://",zn=class{constructor(){this.managers={}}static getInstance(){return zn.instance==null&&(zn.instance=new zn),zn.instance}static registerManager(e,t){F(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Yi)&&(e=e.slice(0,e.indexOf(Yi))),F(e.length>0,()=>"scheme must not be an empty string.");let n=zn.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function ad(e){if(e.indexOf(Yi)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${zn.getSchemes().join(",")}`);return{scheme:e.split(Yi)[0],path:e.split(Yi)[1]}}async function Ek(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=wt.getLoadHandlers(e);F(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=wt.getSaveHandlers(t);F(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let i=a[0],o=ad(e).scheme,u=ad(e).path,l=o===ad(e).scheme,c=await r.load();n&&l&&await zn.getManager(o).removeModel(u);let p=await i.save(c);return n&&!l&&await zn.getManager(o).removeModel(u),p.modelArtifactsInfo}async function H_(){let e=zn.getSchemes(),t={};for(let n of e){let s=await zn.getManager(n).listModels();for(let r in s){let a=n+Yi+r;t[a]=s[r]}}return t}async function q_(e){let t=ad(e);return zn.getManager(t.scheme).removeModel(t.path)}async function j_(e,t){return Ek(e,t,!1)}async function K_(e,t){return Ek(e,t,!0)}var X_=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(K().get("IS_BROWSER")){K().setPlatform("browser",new X_);try{zn.registerManager(da.URL_SCHEME,new G_)}catch(e){}try{zn.registerManager(ca.URL_SCHEME,new P_)}catch(e){}}var Y_={importFetch:()=>s$()},Gf,Q_=class{constructor(){this.util=r$(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return K().global.fetch!=null?K().global.fetch(e,t):(Gf==null&&(Gf=Y_.importFetch()),Gf(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};K().get("IS_NODE")&&!K().get("IS_BROWSER")&&K().setPlatform("node",new Q_);function Ae(e,t="float32",n){return t=t||"float32",cg(e),new Wt(e,t,n)}function Z_(e,t){let n=_(e,"x","cast");if(!rk(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return z.runKernel($a,s,r)}var le=L({cast_:Z_});function J_(e){let n={x:_(e,"x","clone","string_or_numeric")};return z.runKernel(Ua,n)}var lr=L({clone_:J_});function eA(e,t=!1){console.log(e.toString(t))}xk();var tA={buffer:Ae,cast:le,clone:lr,print:eA};u_(tA);var An={};Ee(An,{browserFiles:()=>uA,browserHTTPRequest:()=>hA,concatenateArrayBuffers:()=>Ug,copyModel:()=>j_,decodeWeights:()=>Sk,encodeWeights:()=>k_,fromMemory:()=>mA,fromMemorySync:()=>Pk,getLoadHandlers:()=>D_,getModelArtifactsForJSON:()=>Gg,getModelArtifactsInfoForJSON:()=>Ml,getSaveHandlers:()=>R_,http:()=>qg,isHTTPScheme:()=>mm,listModels:()=>H_,loadWeights:()=>lA,moveModel:()=>K_,registerLoadRouter:()=>E_,registerSaveRouter:()=>A_,removeModel:()=>q_,weightsLoaderFactory:()=>Dk,withSaveHandler:()=>gA,withSaveHandlerSync:()=>bA});var nA="model",sA=".json",rA=".weights.bin";function bx(e){return new Promise(t=>setTimeout(t)).then(e)}var fm=class{constructor(e){if(!K().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(fm.URL_SCHEME)&&(e=e.slice(fm.URL_SCHEME.length)),(e==null||e.length===0)&&(e=nA),this.modelJsonFileName=e+sA,this.weightDataFileName=e+rA}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=Ik(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await bx(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await bx(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Ml(e)}}}},Sd=fm;Sd.URL_SCHEME="downloads://";var aA=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let o=Gg(r,u=>this.loadWeights(u));e(o)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,Ug(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let i=a.target.result;n(i)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>gx(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let i=gx(a);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),n.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},iA=e=>K().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Sd.URL_SCHEME)?oA(e.slice(Sd.URL_SCHEME.length)):null;wt.registerSaveRouter(iA);function oA(e="model"){return new Sd(e)}function uA(e){return new aA(e)}function yx(e,t,n,s){i(e),n=n==null?0:n,s=s==null?1:s,o(n,s);let r=0,a=u=>(u.then(l=>{let c=n+ ++r/e.length*(s-n);return t(c),l}),u);function i(u){F(u!=null&&Array.isArray(u)&&u.length>0,()=>"promises must be a none empty array")}function o(u,l){F(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${u}`),F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${l}`),F(l>=u,()=>`startFraction must be no more than endFraction, but got startFraction ${u} and endFraction ${l}`)}return Promise.all(e.map(a))}async function Rk(e,t){t==null&&(t={});let n=t.fetchFunc==null?K().platform.fetch:t.fetchFunc,s=e.map(p=>n(p,t.requestInit,{isBinary:!0})),r=0,a=.5,o=(t.onProgress==null?await Promise.all(s):await yx(s,t.onProgress,r,a)).map(p=>p.arrayBuffer()),u=.5,l=1;return t.onProgress==null?await Promise.all(o):await yx(o,t.onProgress,u,l)}async function lA(e,t="",n,s){return Dk(i=>Rk(i,{requestInit:s}))(e,t,n)}function Dk(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},i=s!=null?s.map(()=>!1):[],o=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let b="quantization"in g?g.quantization.dtype:g.dtype,y=cm[b]*dt(g.shape),v=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:y})};s!=null?s.forEach((x,k)=>{x===g.name&&(v(),i[k]=!0)}):v(),o.push(g.name),m+=y})}),!i.every(h=>h)){let h=s.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let u=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),l=[];u.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;l.push(m)})});let c=await e(l),p={},d=0;return u.forEach(h=>{let f=t[h].paths.length,m=0;for(let x=0;x<f;x++)m+=c[d+x].byteLength;let g=new ArrayBuffer(m),b=new Uint8Array(g),y=0;for(let x=0;x<f;x++){let k=new Uint8Array(c[d+x]);b.set(k,y),y+=k.byteLength}a[h].forEach(x=>{let k=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),I=Sk(k,[x.manifestEntry]);for(let $ in I)p[$]=I[$]}),d+=f}),p}}var cA="application/octet-stream",dA="application/json",Hg=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=K().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=Ik(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:dA}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:cA}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Ml(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Gg(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=pA(t),r=this.weightPathPrefix||n,a=[];for(let l of e)a.push(...l.weights);let i=[],o=[];for(let l of e)for(let c of l.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(c)):i.push(r+c+s);this.weightUrlConverter&&i.push(...await Promise.all(o));let u=await Rk(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Ug(u)]}};Hg.URL_SCHEME_REGEX=/^https?:\/\//;function pA(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function mm(e){return e.match(Hg.URL_SCHEME_REGEX)!=null}var Fk=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>mm(s)):n=mm(e),n)return qg(e,t)}return null};wt.registerSaveRouter(Fk);wt.registerLoadRouter(Fk);function qg(e,t){return new Hg(e,t)}function hA(e,t){return qg(e,t)}var Hf=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},Ok=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},fA=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function mA(e,t,n,s){let r=arguments;return new fA(Pk(...r))}function Pk(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Hf(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Hf({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Hf({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function gA(e){return new Ok(e)}function bA(e){return new Ok(e)}var yA={};Ee(yA,{confusionMatrix:()=>TA});function vA(e,t,n=!1,s=!1){let r=_(e,"a","matMul"),a=_(t,"b","matMul");[r,a]=xt(r,a);let i={a:r,b:a},o={transposeA:n,transposeB:s};return z.runKernel(Ta,i,o)}var Ve=L({matMul_:vA});function xA(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:_(e,"indices","oneHot","int32")},i={depth:t,onValue:n,offValue:s};return z.runKernel(Do,a,i)}var Id=L({oneHot_:xA});function fpe(){K().set("PROD",!0)}function mpe(){K().set("DEBUG",!0)}function gpe(){K().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function zk(e){K().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}l_(zk);function bpe(){z.disposeVariables()}function ds(){return z}function gm(){return z.memory()}function ype(e){return z.profile(e)}function q(e,t){return z.tidy(e,t)}function De(e){Bg(e).forEach(n=>n.dispose())}function qt(e){return z.keep(e)}function vpe(e){return z.time(e)}function xpe(e){return z.setBackend(e)}function wpe(){return z.ready()}function kpe(){return z.backendName}function Spe(e){z.removeBackend(e)}function Ipe(e){return z.findBackend(e)}function Cpe(e){return z.findBackendFactory(e)}function vp(e,t,n=1){return z.registerBackend(e,t,n)}function wA(){return z.backend}function Npe(e,t){K().setPlatform(e,t)}function kA(e){let n={input:_(e,"input","imag")};return z.runKernel(ap,n)}var xp=L({imag_:kA});function SA(e){let n={x:_(e,"x","neg")};return z.runKernel($o,n)}var vt=L({neg_:SA});function IA(e){let n={input:_(e,"input","real")};return z.runKernel(lp,n)}var Xu=L({real_:IA});function CA(e,t,n){let s=_(e,"x","transpose");if(t==null&&(t=s.shape.map((i,o)=>o).reverse()),F(s.rank===t.length,()=>`Error in transpose: rank of input ${s.rank} must match length of perm ${t}.`),t.forEach(i=>{F(i>=0&&i<s.rank,()=>`All entries in 'perm' must be between 0 and ${s.rank-1} but got ${t}`)}),s.rank<=1)return s.clone();let r={x:s},a={perm:t};return s.dtype==="complex64"?q(()=>{let i=Xu(s),o=xp(s);return i=z.runKernel(Hs,{x:i},a),o=z.runKernel(Hs,{x:o},a),n&&(o=vt(o)),mr(i,o)}):z.runKernel(Hs,r,a)}var Ge=L({transpose_:CA});function NA(e,t,n){let s=_(e,"labels","confusionMatrix"),r=_(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),F(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),F(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=Id(le(s,"int32"),n),i=Id(le(r,"int32"),n),o=Ge(a),u=Ve(o,i);return le(u,"int32")}var TA=L({confusionMatrix_:NA}),Qo={};Ee(Qo,{assertAndGetBroadcastShape:()=>rt,getBroadcastDims:()=>Mk,getReductionAxes:()=>At});function Mk(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,i=e[a]||1;(t[t.length-1-r]||1)>1&&i===1&&s.unshift(a)}return s}function At(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,i=t[a];(r==null||r===1&&i>1)&&n.unshift(a)}return n}function rt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let i=t[t.length-r-1];if(i==null&&(i=1),a===1)n.unshift(i);else if(i===1)n.unshift(a);else if(a!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(a)}return n}var Lk={};Ee(Lk,{fromPixels:()=>OA,fromPixelsAsync:()=>DA,toPixels:()=>FA});function $A(e,t,n){if(Sa(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=Rs(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return $r(e,t,s,n)}var Gr;function Bk(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r&&r&&e.readyState<2)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.");if(am(vd,z.backendName)!=null){let f={pixels:e},m={numChannels:t};return z.runKernel(vd,f,m)}let[l,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(i)p=e.getContext("2d").getImageData(0,0,l,c).data;else if(s||n)p=e.data;else if(a||r||o){if(Gr==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Gr=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Gr=document.createElement("canvas").getContext("2d");Gr.canvas.width=l,Gr.canvas.height=c,Gr.drawImage(e,0,0,l,c),p=Gr.getImageData(0,0,l,c).data}let d;if(t===4)d=new Int32Array(p);else{let f=l*c;d=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)d[m*t+g]=p[m*4+g]}return $A(d,[c,l,t],"int32")}function _A(e){return e!=null&&e.data instanceof Uint8Array}function AA(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function EA(e){return e!=null&&e.width!==0&&e.height!==0}function RA(e){return AA()&&!(e instanceof ImageBitmap)&&EA(e)&&!_A(e)}async function DA(e,t=3){let n=null;if(K().getBool("WRAP_TO_IMAGEBITMAP")&&RA(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return Bk(n,t)}async function FA(e,t){let n=_(e,"img","toPixels");if(!(e instanceof et)){let l=n;n=le(l,"int32"),l.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,u=new Uint8ClampedArray(r*s*4);for(let l=0;l<s*r;++l){let c=[0,0,0,255];for(let d=0;d<a;d++){let h=i[l*a+d];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(c[0]=h*o,c[1]=h*o,c[2]=h*o):c[d]=h*o}let p=l*4;u[p+0]=Math.round(c[0]),u[p+1]=Math.round(c[1]),u[p+2]=Math.round(c[2]),u[p+3]=Math.round(c[3])}if(t!=null){t.width=r,t.height=s;let l=t.getContext("2d"),c=new ImageData(u,r,s);l.putImageData(c,0,0)}return n!==e&&n.dispose(),u}var OA=L({fromPixels_:Bk}),Vk={};Ee(Vk,{prepareAndValidate:()=>Wk});function Wk(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(dt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],i=1;for(let p=0;p<r.length-1;++p)i*=r[p];let o=e.shape,u=r.slice();u.pop();let l=1;for(let p=a;p<n;++p)l*=o[p],u.push(o[p]);let c=[...co(e.shape).map(p=>p/l),1].slice(0,a);return[u,i,l,c]}var Uk={};Ee(Uk,{calculateShapes:()=>Gk,validateInput:()=>Kg,validateUpdateShape:()=>jg});function jg(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(a+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+s])throw new Error(a+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function Kg(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}jg(n,t,e)}function Gk(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,i=1;for(let p=r;p<a;++p)i*=n[p];let o=r<1?1:r,u=dt(t.shape)/o,l=[...co(n.slice(0,r)),1],c=dt(n);return{sliceRank:r,numUpdates:u,sliceSize:i,strides:l,outputSize:c}}var kt={};Ee(kt,{assertParamsValid:()=>zA,computeFlatOffset:()=>WA,computeOutShape:()=>LA,getNormalizedAxes:()=>BA,isSliceContinous:()=>VA,maskToAxes:()=>MA,parseSliceParams:()=>Jk,sliceInfo:()=>UA,startForAxis:()=>Qk,startIndicesWithElidedDims:()=>Kk,stopForAxis:()=>Zk,stopIndicesWithElidedDims:()=>Xk,stridesForAxis:()=>Yk,stridesWithElidedDims:()=>Hk});var bm=-2,PA=-1;function zA(e,t,n){let s=e.shape.length;F(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),F(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)F(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function MA(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function LA(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function Hk(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function qk(e,t,n){return n<=e?n:n-(t-1)}function jk(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function BA(e,t,n,s,r,a,i,o,u){let l=e.length,c=new Array(l),p=new Array(l),d=new Array(l);if(t.length&&n>0){let h=t[0],f=n+1;c=Kk(i,h,f,s,e),p=Xk(o,h,f,r,e),d=Hk(a,h,f,e)}else for(let h=0;h<l;h++)c[h]=Qk(i,s,a,e,h,u),p[h]=Zk(o,r,a,e,h,u),d[h]=Yk(a,h,u);return{begin:c,end:p,strides:d}}function Kk(e,t,n,s,r){let a=[...r],i=jk(n,t);for(let o=0;o<a.length;o++)if(i.indexOf(o)>-1)a[o]=0;else{let u=qk(t,n,o),l=s[u];e&1<<u&&(l=0),a[o]=l}return a}function Xk(e,t,n,s,r){let a=[...r],i=jk(n,t);for(let o=0;o<a.length;o++)if(i.indexOf(o)>-1)a[o]=Number.MAX_SAFE_INTEGER;else{let u=qk(t,n,o),l=s[u];e&1<<u&&(l=Number.MAX_SAFE_INTEGER),a[o]=l}for(let o=0;o<a.length;o++){let u=r[o];a[o]<0&&(a[o]+=u),a[o]=Hu(0,a[o],r[o])}return a}function Yk(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function Qk(e,t,n,s,r,a){let i=t[r],o=n[r]||1;(e&1<<r||a&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let u=s[r];return i<0&&(i+=u),i=Hu(0,i,u-1),i}function Zk(e,t,n,s,r,a){let i=t[r],o=n[r]||1;(e&1<<r||a&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let u=s[r];return i<0&&(i+=u),o>0?i=Hu(0,i,u):i=Hu(-1,i,u-1),i}function VA(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function WA(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function Jk(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(i=>{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((i,o)=>i>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-s[o])),[s,a]}function UA(e,t,n,s,r,a,i,o,u){let l;if(s==null?(l=new Array(t.length),l.fill(1)):l=s,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let c=!1,p={dims:l.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:l.slice(),beginMask:r,endMask:a,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:u};for(let v=0;v<p.dims;v++)c&&(1<<v&o)!==0&&p.numAddAxisAfterEllipsis++,1<<v&i&&(c=!0);c||(p.ellipsisMask|=1<<p.dims,p.dims++);let d={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};GA(p,d);let h=!0,f=!0,m=!0,g=[],b=[];for(let v=0;v<e.length;++v){if(d.strides[v]===0)throw Error(`strides[${v}] must be non-zero`);let x=!!(d.shrinkAxisMask&1<<v),k=e[v];if(k===-1){g.push(x?1:-1);continue}let I=[d.beginMask&1<<v,d.endMask&1<<v],$=[d.strides[v]>0?0:-1,d.strides[v]>0?k:k-1];if(x&&d.strides[v]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&d.strides[v]===1;let R=!!(d.beginMask&1<<v&&d.endMask&1<<v);if(d.beginValid&&d.endValid){if(x){let O=d.begin[v]<0?k+d.begin[v]:d.begin[v];if(d.begin[v]=O,d.end[v]=d.begin[v]+1,O<0||O>=k)throw Error(`slice index ${d.begin[v]} of dimension ${v} out of bounds.`)}else d.begin[v]=vx(d.begin[v],0,d.strides[v],k,I,$),d.end[v]=vx(d.end[v],1,d.strides[v],k,I,$);let A=d.strides[v]===1&&d.begin[v]===0&&d.end[v]===k;h=h&&A,f=f&&(v===0&&d.strides[v]===1||A)}else h=h&&d.strides[v]===1&&R,f=f&&(v===0&&d.strides[v]===1||R);let E,P=!1;if(d.beginValid&&d.endValid?(E=d.end[v]-d.begin[v],P=!0):x?(E=1,P=!0):R&&k>=0&&(d.strides[v]<0?E=-k:E=k,P=!0),P){let A;E===0||E<0!=d.strides[v]<0?A=0:A=Math.trunc(E/d.strides[v])+(E%d.strides[v]!==0?1:0),g.push(A)}else g.push(-1)}for(let v=0;v<d.finalShapeGatherIndices.length;++v){let x=d.finalShapeGatherIndices[v];x>=0?b.push(g[x]):x===bm&&b.push(1)}return{finalShapeSparse:b.filter((v,x)=>d.finalShapeGatherIndices[x]!==bm),finalShape:b,isIdentity:h,sliceDim0:f,isSimpleSlice:m,begin:d.begin,end:d.end,strides:d.strides}}function GA(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let s=0;s<e.dims;s++)if(1<<s&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-s)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=s}else if(1<<s&e.newAxisMask)t.finalShapeGatherIndices.push(bm),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[s]),e.end!=null&&(t.end[n]=e.end[s]),t.strides[n]=e.strides[s],e.beginMask&1<<s&&(t.beginMask|=1<<n),e.endMask&1<<s&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<s?(t.finalShapeGatherIndices.push(PA),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(s)),t.inputShapeGatherIndicesSparse[n]=s,n++}}function vx(e,t,n,s,r,a){if(r[t])return n>0?a[t]:a[t+1&1];{let i=e<0?s+e:e;return i<a[0]?a[0]:i>a[1]?a[1]:i}}var re={};Ee(re,{Serializable:()=>eS,SerializationMap:()=>Yr,registerClass:()=>_r});var eS=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Yr=class{constructor(){this.classNameMap={}}static getMap(){return Yr.instance==null&&(Yr.instance=new Yr),Yr.instance}static register(e){Yr.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function _r(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Yr.register(e)}var HA={};Ee(HA,{TEST_EPSILON_FLOAT16:()=>tS,encodeStrings:()=>nS,expectArrayBuffersEqual:()=>ZA,expectArraysClose:()=>jA,expectArraysEqual:()=>XA,expectNumbersClose:()=>YA,expectPromiseToFail:()=>KA,expectValuesInRange:()=>QA,testEpsilon:()=>Xg});var qA=.001,tS=.1;function jA(e,t,n){return n==null&&(n=Xg()),ym(e,t,(s,r)=>Yg(s,r,n))}function Xg(){return z.backend.floatPrecision()===32?qA:tS}function ym(e,t,n){let s=!0;if((Qt(e)||Qt(t))&&(s=!1),Qt(e)&&Qt(t)&&(s=!0),s){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Rs(e),o=Rs(t);if(!Ir(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=Qt(e)?e:ia(e),a=Qt(t)?t:ia(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`);for(let i=0;i<a.length;++i){let o=r[i],u=a[i];if(!n(o,u))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${u}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`)}}function KA(e,t){e().then(()=>t.fail(),()=>t())}function XA(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return ir(e)||ir(e[0])||ir(t)||ir(t[0])?ym(e,n,(s,r)=>s==r):ym(e,t,(s,r)=>Yg(s,r,0))}function YA(e,t,n){if(n==null&&(n=Xg()),!Yg(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Yg(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function QA(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function ZA(e,t){let n=new Float32Array(e),s=new Float32Array(t);if(n.length!==s.length)throw new Error(`Expected ArrayBuffer to be of length ${s.length}, but it was ${n.length}`);for(let r=0;r<s.length;r++)if(n[r]!==s[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${s[r]} but got ${n[r]} instead`)}function nS(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?nS(n):e[t]=zl(n)}return e}var Tpe="0.0.0";function JA(e,t){let n=_(e,"a","add"),s=_(t,"b","add");[n,s]=xt(n,s);let r={a:n,b:s};return z.runKernel(Cr,r)}var ie=L({add_:JA});function eE(e,t){let n=_(e,"a","floorDiv"),s=_(t,"b","floorDiv");[n,s]=xt(n,s);let r={a:n,b:s};return z.runKernel(Ba,r)}var sS=L({floorDiv_:eE});function tE(e,t){let n=_(e,"a","div"),s=_(t,"b","div");if([n,s]=xt(n,s),n.dtype==="int32"&&s.dtype==="int32")return sS(n,s);let r={a:n,b:s},a={};return z.runKernel(Pa,r,a)}var xe=L({div_:tE});function nE(e,t){let n=_(e,"a","mul"),s=_(t,"b","mul");[n,s]=xt(n,s);let r={a:n,b:s};return z.runKernel(Ja,r)}var V=L({mul_:nE});function sE(e){let t=_(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return z.runKernel(tp,n)}else{let n={x:t};return z.runKernel(po,n)}}var Lt=L({abs_:sE});function rE(e){let n={x:_(e,"x","acos")};return z.runKernel(ul,n)}var aE=L({acos_:rE});function iE(e){let n={x:_(e,"x","acosh")};return z.runKernel(ll,n)}var oE=L({acosh_:iE});function uE(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>_(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!Ir(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return z.runKernel(Ia,s)}var lE=L({addN_:uE});function cE(e,t=null,n=!1){let r={x:_(e,"x","all","bool")},a={axis:t,keepDims:n};return z.runKernel(cl,r,a)}var rS=L({all_:cE});function dE(e,t=null,n=!1){let r={x:_(e,"x","any","bool")},a={axis:t,keepDims:n};return z.runKernel(dl,r,a)}var vm=L({any_:dE});function pE(e,t=0){let s={x:_(e,"x","argMax")},r={axis:t};return z.runKernel(Ca,s,r)}var Yu=L({argMax_:pE});function hE(e,t=0){let s={x:_(e,"x","argMin")},r={axis:t};return z.runKernel(pl,s,r)}var fE=L({argMin_:hE});function mE(e){let n={x:_(e,"x","asin")};return z.runKernel(hl,n)}var gE=L({asin_:mE});function bE(e){let n={x:_(e,"x","asinh")};return z.runKernel(fl,n)}var yE=L({asinh_:bE});function vE(e){let n={x:_(e,"x","atan")};return z.runKernel(ml,n)}var xE=L({atan_:vE});function wE(e,t){let n=_(e,"a","atan2"),s=_(t,"b","atan2");[n,s]=xt(n,s);let r={a:n,b:s};return z.runKernel(bl,r)}var kE=L({atan2_:wE});function SE(e){let n={x:_(e,"x","atanh")};return z.runKernel(gl,n)}var IE=L({atanh_:SE});function CE(e,t,n,s,r="NHWC",a){let i=e[3],o=[...t,i],u=oS(r);return Ll(e,o,n,a,s,null,null,u)}function aS(e,t,n,s,r,a,i="channelsLast"){let[o,u]=Cd(t),l;if(i==="channelsLast")l=[o,u,e[3],e[3]];else if(i==="channelsFirst")l=[o,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Ll(e,l,n,s,r,a,!1,i)}function NE(e,t,n,s,r,a,i="NDHWC"){let[o,u,l]=xm(t),c,p;if(i==="NDHWC")p="channelsLast",c=[o,u,l,e[4],e[4]];else if(i==="NCDHW")p="channelsFirst",c=[o,u,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return iS(e,c,n,s,r,!1,p,a)}function Ll(e,t,n,s,r,a,i=!1,o="channelsLast"){let[u,l,c,p]=[-1,-1,-1,-1];if(o==="channelsLast")[u,l,c,p]=e;else if(o==="channelsFirst")[u,p,l,c]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,h,,f]=t,[m,g]=Cd(n),[b,y]=Cd(s),v=Qi(d,b),x=Qi(h,y),{padInfo:k,outHeight:I,outWidth:$}=_E(r,l,c,m,g,v,x,a,o),R=i?f*p:f,E;return o==="channelsFirst"?E=[u,R,I,$]:o==="channelsLast"&&(E=[u,I,$,R]),{batchSize:u,dataFormat:o,inHeight:l,inWidth:c,inChannels:p,outHeight:I,outWidth:$,outChannels:R,padInfo:k,strideHeight:m,strideWidth:g,filterHeight:d,filterWidth:h,effectiveFilterHeight:v,effectiveFilterWidth:x,dilationHeight:b,dilationWidth:y,inShape:e,outShape:E,filterShape:t}}function iS(e,t,n,s,r,a=!1,i="channelsLast",o){let[u,l,c,p,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[u,l,c,p,d]=e;else if(i==="channelsFirst")[u,d,l,c,p]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,f,m,,g]=t,[b,y,v]=xm(n),[x,k,I]=xm(s),$=Qi(h,x),R=Qi(f,k),E=Qi(m,I),{padInfo:P,outDepth:A,outHeight:O,outWidth:T}=AE(r,l,c,p,b,y,v,$,R,E,o),M=a?g*d:g,W;return i==="channelsFirst"?W=[u,M,A,O,T]:i==="channelsLast"&&(W=[u,A,O,T,M]),{batchSize:u,dataFormat:i,inDepth:l,inHeight:c,inWidth:p,inChannels:d,outDepth:A,outHeight:O,outWidth:T,outChannels:M,padInfo:P,strideDepth:b,strideHeight:y,strideWidth:v,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:$,effectiveFilterHeight:R,effectiveFilterWidth:E,dilationDepth:x,dilationHeight:k,dilationWidth:I,inShape:e,outShape:W,filterShape:t}}function TE(e,t,n,s,r){s==null&&(s=Qg(e,t,n));let a=e[0],i=e[1],o=na((a-t+2*s)/n+1,r),u=na((i-t+2*s)/n+1,r);return[o,u]}function $E(e,t,n,s,r,a){r==null&&(r=Qg(e,t,s));let i=e[0],o=e[1],u=e[2],l=na((i-t+2*r)/s+1,a),c=na((o-t+2*r)/s+1,a),p=na((u-t+2*r)/s+1,a);return[l,c,p,n]}function Qg(e,t,n,s=1){let r=Qi(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function Cd(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function xm(e){return typeof e=="number"?[e,e,e]:e}function Qi(e,t){return t<=1?e:e+(e-1)*(t-1)}function _E(e,t,n,s,r,a,i,o,u){let l,c,p;if(typeof e=="number"){l={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=TE([t,n],a,s,e,o);c=h[0],p=h[1]}else if(e==="same"){c=Math.ceil(t/s),p=Math.ceil(n/r);let d=Math.max(0,(c-1)*s+a-t),h=Math.max(0,(p-1)*r+i-n),f=Math.floor(d/2),m=d-f,g=Math.floor(h/2),b=h-g;l={top:f,bottom:m,left:g,right:b,type:"SAME"}}else if(e==="valid")l={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/s),p=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let d=u==="channelsLast"?e[1][0]:e[2][0],h=u==="channelsLast"?e[1][1]:e[2][1],f=u==="channelsLast"?e[2][0]:e[3][0],m=u==="channelsLast"?e[2][1]:e[3][1];l={top:d,bottom:h,left:f,right:m,type:d===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=na((t-a+d+h)/s+1,o),p=na((n-i+f+m)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:l,outHeight:c,outWidth:p}}function AE(e,t,n,s,r,a,i,o,u,l,c){let p,d,h,f;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=$E([t,n,s,1],o,1,r,e,c);d=g[0],h=g[1],f=g[2]}else if(e==="same"){d=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/i);let m=(d-1)*r+o-t,g=(h-1)*a+u-n,b=(f-1)*i+l-s,y=Math.floor(m/2),v=m-y,x=Math.floor(g/2),k=g-x,I=Math.floor(b/2),$=b-I;p={top:x,bottom:k,left:I,right:$,front:y,back:v,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/r),h=Math.ceil((n-u+1)/a),f=Math.ceil((s-l+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:d,outHeight:h,outWidth:f}}function na(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function gr(e){let[t,n,s]=Cd(e);return t===1&&n===1&&s===1}function Ps(e,t){return gr(e)||gr(t)}function oS(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function hn(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")F(eo(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(s=>{s.forEach(r=>{F(eo(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function EE(e,t){let s={x:_(e,"x","reshape","string_or_numeric")},r={shape:t};return z.runKernel(Oo,s,r)}var U=L({reshape_:EE});function RE(e,t,n,s,r){let a=_(e,"x","avgPool","float32"),i=1;F(Ps(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=a,u=!1;a.rank===3&&(u=!0,o=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),hn("avgPool",s,r);let l={x:o},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=z.runKernel(Na,l,c);return p=le(p,a.dtype),u?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Zg=L({avgPool_:RE});function DE(e,t,n,s,r,a="NDHWC"){let i=_(e,"x","avgPool3d","float32"),o=i,u=!1;i.rank===4&&(u=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),F(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),hn("avgPool3d",s,r);let l={x:o},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=z.runKernel(Jd,l,c);return p=le(p,o.dtype),u?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var uS=L({avgPool3d_:DE});function FE(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=Ku(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${a.dtype}. `)}),n.length===1)return lr(n[0]);let s=n,r={axis:t};return z.runKernel(fo,s,r)}var Ot=L({concat_:FE});function OE(e){let n={x:_(e,"x","sigmoid","float32")};return z.runKernel(li,n)}var qs=L({sigmoid_:OE});function PE(e,t,n){let s=_(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return z.runKernel(Bo,r,a)}var qe=L({slice_:PE});function zE(e){let n={x:_(e,"x","tanh","float32")};return z.runKernel(mi,n)}var Qu=L({tanh_:zE});function ME(e,t,n,s,r,a){let i=_(e,"forgetBias","basicLSTMCell"),o=_(t,"lstmKernel","basicLSTMCell"),u=_(n,"lstmBias","basicLSTMCell"),l=_(s,"data","basicLSTMCell"),c=_(r,"c","basicLSTMCell"),p=_(a,"h","basicLSTMCell"),d=Ot([l,p],1),h=Ve(d,o),f=ie(h,u),m=f.shape[0],g=f.shape[1]/4,b=[m,g],y=qe(f,[0,0],b),v=qe(f,[0,g],b),x=qe(f,[0,g*2],b),k=qe(f,[0,g*3],b),I=ie(V(qs(y),Qu(v)),V(c,qs(ie(i,x)))),$=V(Qu(I),qs(k));return[I,$]}var $pe=L({basicLSTMCell_:ME});function LE(e,t,n){let s=_(e,"x","batchToSpaceND"),r=t.reduce((o,u)=>o*u);F(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(s.shape[0]%r===0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},i={blockShape:t,crops:n};return z.runKernel(ho,a,i)}var Jg=L({batchToSpaceND_:LE});function BE(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function VE(e,t,n,s,r,a){a==null&&(a=.001);let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),u=_(n,"variance","batchNorm"),l;r!=null&&(l=_(r,"scale","batchNorm"));let c;s!=null&&(c=_(s,"offset","batchNorm")),F(o.rank===u.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(l==null||o.rank===l.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:BE(i),scale:l,offset:c,mean:o,variance:u},h={varianceEpsilon:a},f=z.runKernel(Va,d,h);return U(f,i.shape)}var Zu=L({batchNorm_:VE});function WE(e,t,n,s,r,a){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),u=_(n,"variance","batchNorm"),l;r!=null&&(l=_(r,"scale","batchNorm"));let c;return s!=null&&(c=_(s,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${u.rank}.`),l!=null&&F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&F(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Zu(i,o,u,c,l,a)}var UE=L({batchNorm2d_:WE});function GE(e,t,n,s,r,a){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),u=_(n,"variance","batchNorm"),l;r!=null&&(l=_(r,"scale","batchNorm"));let c;return s!=null&&(c=_(s,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${u.rank}.`),l!=null&&F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&F(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Zu(i,o,u,c,l,a)}var HE=L({batchNorm3d_:GE});function qE(e,t,n,s,r,a){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),u=_(n,"variance","batchNorm"),l;r!=null&&(l=_(r,"scale","batchNorm"));let c;return s!=null&&(c=_(s,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${u.rank}.`),l!=null&&F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&F(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Zu(i,o,u,c,l,a)}var jE=L({batchNorm4d_:qE});function KE(e,t,n){let s=_(e,"x","bincount"),r=_(t,"weights","bincount");F(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},i={size:n};return z.runKernel(mg,a,i)}var lS=L({bincount_:KE});function XE(e,t){let n=_(e,"s0","broadcastArgs","int32"),s=_(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return z.runKernel(gg,r)}var YE=L({broadcastArgs_:XE});function QE(e,t){let n=_(e,"broadcastTo","x"),s=n.shape;if(t.some(l=>!(l>0)||l%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=U(n,l)}let r=n.shape,a=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])a[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return lr(n);let o={x:n},u={reps:a};return z.runKernel(Tr,o,u)}var id=L({broadcastTo_:QE});function ZE(e){let n={x:_(e,"x","ceil","float32")};return z.runKernel(_a,n)}var JE=L({ceil_:ZE});function eR(e,t,n){let s=_(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return z.runKernel(Nr,r,a)}var Vn=L({clipByValue_:eR});function tR(e){return Ot(e,0)}var nR=L({concat1d_:tR});function sR(e,t){return Ot(e,t)}var rR=L({concat2d_:sR});function aR(e,t){return Ot(e,t)}var iR=L({concat3d_:aR});function oR(e,t){return Ot(e,t)}var uR=L({concat4d_:oR});function lR(e,t,n,s,r="NHWC",a=[1,1],i){let o=_(e,"x","conv2d","float32"),u=_(t,"filter","conv2d","float32"),l=o,c=!1;o.rank===3&&(c=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(l.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${u.rank}.`),hn("conv2d",s,i);let p=r==="NHWC"?l.shape[3]:l.shape[1];F(p===u.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${u.shape[2]}.`),F(Ps(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let d={x:l,filter:u},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:i},f=z.runKernel(Aa,d,h);return c?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var pa=L({conv2d_:lR});function cR(e,t,n,s,r="NWC",a=1,i){let o=_(e,"x","conv1d"),u=_(t,"filter","conv1d"),l=o,c=!1;o.rank===2&&(c=!0,l=U(o,[1,o.shape[0],o.shape[1]])),F(l.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${l.rank}.`),F(u.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${u.rank}.`),hn("conv1d",s,i),F(l.shape[2]===u.shape[1],()=>`Error in conv1d: depth of input (${l.shape[2]}) must match input depth for filter ${u.shape[1]}.`),F(Ps(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),F(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=U(u,[1,u.shape[0],u.shape[1],u.shape[2]]),d=U(l,[l.shape[0],1,l.shape[1],l.shape[2]]),g=pa(d,p,[1,n],s,"NHWC",[1,a],i);return c?U(g,[g.shape[2],g.shape[3]]):U(g,[g.shape[0],g.shape[2],g.shape[3]])}var cS=L({conv1d_:cR});function dR(e,t,n,s,r,a="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,u=t,l=!1;t.rank===3&&(l=!0,u=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(u.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${u.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?o[3]:o[1],p=a==="NHWC"?u.shape[3]:u.shape[1];F(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),F(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),hn("conv2dDerInput",r,i);let d={dy:u,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:i,inputShape:o},f=z.runKernel(Ea,d,h);return l?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var eb=L({conv2DBackpropInput_:dR});function pR(e,t,n,s,r,a){let i=_(e,"x","conv2dTranspose"),o=_(t,"filter","conv2dTranspose");return eb(n,i,o,s,r,"NHWC",a)}var dS=L({conv2dTranspose_:pR});function hR(e,t,n,s,r="NDHWC",a=[1,1,1]){let i=_(e,"x","conv3d"),o=_(t,"filter","conv3d"),u=i,l=!1;i.rank===4&&(l=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(u.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${u.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(u.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${u.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(Ps(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),F(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let c={x:u,filter:o},p={strides:n,pad:s,dataFormat:r,dilations:a},d=z.runKernel(np,c,p);return l?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var pS=L({conv3d_:hR});function fR(e,t,n,s,r){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,i=t,o=!1;t.rank===4&&(o=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let u=a[4],l=i.shape[4];F(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(u===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[3]}.`),F(l===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${l}) must match output depth for filter ${n.shape[4]}.`);let c={dy:i,filter:n},p={pad:r,strides:s,inputShape:a},d=z.runKernel(vg,c,p);return o?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var hS=L({conv3DBackpropInput_:fR});function mR(e,t,n,s,r){let a=_(e,"x","conv3dTranspose"),i=_(t,"filter","conv3dTranspose");return hS(n,a,i,s,r)}var gR=L({conv3dTranspose_:mR});function bR(e){let n={x:_(e,"x","cos","float32")};return z.runKernel(Ra,n)}var tb=L({cos_:bR});function yR(e){let n={x:_(e,"x","cosh","float32")};return z.runKernel(Da,n)}var fS=L({cosh_:yR});function vR(e,t=0,n=!1,s=!1){let a={x:_(e,"x","cumprod")},i={axis:t,exclusive:n,reverse:s};return z.runKernel(mo,a,i)}var wm=L({cumprod_:vR});function xR(e,t=0,n=!1,s=!1){let a={x:_(e,"x","cumsum")},i={axis:t,exclusive:n,reverse:s};return z.runKernel(Fa,a,i)}var mS=L({cumsum_:xR});function wR(e,t,n,s=!1){let r=_(e,"x","denseBincount"),a=_(t,"weights","denseBincount");F(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),F(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let i={x:r,weights:a},o={size:n,binaryOutput:s};return z.runKernel(xg,i,o)}var kR=L({denseBincount_:wR});function SR(e,t,n="NHWC"){let s=_(e,"x","depthToSpace","float32"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],i=n==="NHWC"?s.shape[3]:s.shape[1];F(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),F(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),F(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),F(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${s.shape}`);let o={x:s},u={blockSize:t,dataFormat:n};return z.runKernel(bo,o,u)}var IR=L({depthToSpace_:SR});function CR(e,t,n,s,r="NHWC",a=[1,1],i){let o=_(e,"x","depthwiseConv2d","float32"),u=_(t,"filter","depthwiseConv2d","float32"),l=o,c=!1;o.rank===3&&(c=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(l.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${u.rank}.`),F(l.shape[3]===u.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),hn("depthwiseConv2d",s,i);let p={x:l,filter:u},d={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:i},h=z.runKernel(Oa,p,d);return c?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var wp=L({depthwiseConv2d_:CR});function NR(e){let n={x:_(e,"x","diag")};return z.runKernel(Sg,n)}var _pe=L({diag_:NR});function TR(e,t,n,s,r=[1,1],a="NHWC"){let i=_(e,"x","dilation2d"),o=_(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let u=i,l=!1;i.rank===3&&(u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=!0);let c={x:u,filter:o},p={strides:n,pad:s,dilations:r},d=z.runKernel(sp,c,p);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var $R=L({dilation2d_:TR});function _R(e,t){let n=_(e,"a","equal","string_or_numeric"),s=_(t,"b","equal","string_or_numeric");[n,s]=xt(n,s),rt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(yo,r)}var Xn=L({equal_:_R});function AR(e,t,n){let s=_(t,"a","where"),r=_(n,"b","where"),a=_(e,"condition","where","bool"),i=rt(rt(a.shape,s.shape),r.shape),o=id(a,i),u=id(s,i),l=id(r,i),c={condition:o,t:u,e:l};return z.runKernel(Lo,c)}var vn=L({where_:AR});function ER(e){let n={x:_(e,"x","zerosLike")};return z.runKernel(Xo,n)}var je=L({zerosLike_:ER});function RR(e,t){let n=_(e,"a","div"),s=_(t,"b","div");[n,s]=xt(n,s);let r=xe(n,s),a=je(r),i=Xn(s,a);return vn(i,a,r)}var DR=L({divNoNan_:RR});function FR(e,t){let n=_(e,"t1","dot"),s=_(t,"t2","dot");F((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(F(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let i=U(n,[1,-1]),o=U(s,[-1,1]),u=Ve(i,o);return U(u,[])}else if(n.rank===1&&s.rank===2){let i=U(n,[1,-1]),o=U(s,[s.shape[0],s.shape[1]]),u=Ve(i,o);return U(u,[u.size])}else if(n.rank===2&&s.rank===1){let i=U(s,[-1,1]),o=Ve(n,i);return U(o,[o.size])}else{let i=U(s,[s.shape[0],s.shape[1]]);return Ve(n,i)}}var Ape=L({dot_:FR});function OR(e,...t){let n=t.map((r,a)=>_(r,`tensors${a}`,"einsum")),s={equation:e};return z.runKernel(rp,n,s)}var PR=L({einsum_:OR});function zR(e){let n={x:_(e,"x","elu","float32")};return z.runKernel(za,n)}var kp=L({elu_:zR});function MR(e){let t=_(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=le(t,"float32"));let n={x:t};return z.runKernel(yl,n)}var LR=L({erf_:MR});function nb(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function gS(e,t,n){let s=e.length+t.length,r=[],a=0,i=0;for(let o=0;o<s;o++)n.indexOf(o)===-1?r.push(e[a++]):r.push(t[i++]);return r}function bS(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function ha(e,t){let n=t.map(s=>1);return gS(e,n,t)}function BR(e,t,n){F(nb(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function yS(e,t){if(nb(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function sb(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function VR(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function WR(e,t=null,n=!1){let r={x:_(e,"x","max")},a={reductionIndices:t,keepDims:n};return z.runKernel(qa,r,a)}var As=L({max_:WR});function UR(e,t=null,n=!1){let r={x:_(e,"x","min")},a={axis:t,keepDims:n};return z.runKernel(Ya,r,a)}var km=L({min_:UR});function GR(e,t){let n=_(e,"base","pow"),s=_(t,"exp","pow");[n,s]=xt(n,s);let r={a:n,b:s};return z.runKernel(ti,r)}var fa=L({pow_:GR});function we(e,t){if((Qt(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&Qt(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return $r(e,[],[],t)}function HR(e){let n={x:_(e,"x","sqrt","float32")};return z.runKernel(ci,n)}var dn=L({sqrt_:HR});function qR(e){let t=_(e,"x","square"),n={};return z.runKernel("Square",{x:t},n)}var ct=L({square_:qR});function jR(e,t=null,n=!1){let s=_(e,"x","sum");s.dtype==="bool"&&(s=le(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return z.runKernel(di,r,a)}var ve=L({sum_:jR});function KR(e,t="euclidean",n=null,s=!1){e=_(e,"x","norm");let r=vS(e,t,n),a=r.shape;if(s){let i=ts(n,e.shape);a=ha(r.shape,i)}return U(r,a)}function vS(e,t,n=null){if(e.rank===0)return Lt(e);if(e.rank!==1&&n===null)return vS(U(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return ve(Lt(e),n);if(t===1/0)return As(Lt(e),n);if(t===-1/0)return km(Lt(e),n);if(t==="euclidean"||t===2)return dn(ve(fa(Lt(e),we(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return As(ve(Lt(e),n[0]),n[1]-1);if(t===1/0)return As(ve(Lt(e),n[1]),n[0]);if(t===-1/0)return km(ve(Lt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return dn(ve(ct(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var rb=L({norm_:KR});function XR(e,t=null,n=!1){return rb(e,"euclidean",t,n)}var YR=L({euclideanNorm_:XR});function QR(e){let n={x:_(e,"x","exp")};return z.runKernel(Ma,n)}var Yn=L({exp_:QR});function ZR(e,t=0){let n=_(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return z.runKernel(vo,s,r)}var Pn=L({expandDims_:ZR});function JR(e){let n={x:_(e,"x","expm1")};return z.runKernel(xo,n)}var eD=L({expm1_:JR});function tD(e,t){let n=_(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return z.runKernel(Tr,s,r)}var hs=L({tile_:tD});function nD(e,t,n,s="float32"){t==null&&(t=e);let r=Ae([e,t],s),a=e<=t?e:t;for(let o=0;o<a;++o)r.set(1,o,o);let i=U(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return hs(Pn(i,0),[n[0],1,1]);if(n.length===2)return hs(Pn(Pn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return hs(Pn(Pn(Pn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var xS=L({eye_:nD});function Bl(e,t,n){let s={shape:e,value:t,dtype:n};return z.runKernel(vl,{},s)}function sD(e){let n={x:_(e,"x","floor","float32")};return z.runKernel(La,n)}var Sp=L({floor_:sD});function rD(e,t,n=0,s=0){let r=_(e,"x","gather"),a=_(t,"indices","gather","int32"),i={x:r,indices:a},o={axis:n,batchDims:s};return z.runKernel(ko,i,o)}var Ju=L({gather_:rD});function aD(e,t){let n=_(e,"a","greater","string_or_numeric"),s=_(t,"b","greater","string_or_numeric");[n,s]=xt(n,s),rt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(Io,r)}var Un=L({greater_:aD});function iD(e,t){let n=_(e,"a","greaterEqual","string_or_numeric"),s=_(t,"b","greaterEqual","string_or_numeric");[n,s]=xt(n,s),rt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(Wa,r)}var Zo=L({greaterEqual_:iD});function oD(e){let n={x:_(e,"x","isFinite")};return z.runKernel(xl,n)}var Epe=L({isFinite_:oD});function uD(e){let n={x:_(e,"x","isInf")};return z.runKernel(wl,n)}var Rpe=L({isInf_:uD});function lD(e){let n={x:_(e,"x","isNaN")};return z.runKernel(kl,n)}var cD=L({isNaN_:lD});function dD(e,t=.2){let s={x:_(e,"x","leakyRelu")},r={alpha:t};return z.runKernel(Ga,s,r)}var ab=L({leakyRelu_:dD});function pD(e,t){let n=_(e,"a","less","string_or_numeric"),s=_(t,"b","less","string_or_numeric");[n,s]=xt(n,s),rt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(Co,r)}var wS=L({less_:pD});function hD(e,t){let n=_(e,"a","lessEqual","string_or_numeric"),s=_(t,"b","lessEqual","string_or_numeric");[n,s]=xt(n,s),rt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(No,r)}var Jo=L({lessEqual_:hD});function fD(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return z.runKernel(Tg,{},s)}function mD(e,t=5,n=1,s=1,r=.5){let a=_(e,"x","localResponseNormalization");F(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${a.rank}.`),F(eo(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=a,o=!1;a.rank===3&&(o=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let u={x:i},l={depthRadius:t,bias:n,alpha:s,beta:r},c=z.runKernel(op,u,l);return o?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var gD=L({localResponseNormalization_:mD});function bD(e){let n={x:_(e,"x","log","float32")};return z.runKernel(Ha,n)}var Qn=L({log_:bD});function yD(e){let n={x:_(e,"x","log1p")};return z.runKernel(Sl,n)}var ib=L({log1p_:yD});function Dpe(e){return F(fr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=_(t,"x","tf.grad","string_or_numeric"),r=n!=null?_(n,"dy","tf.grad"):null;return z.tidy(()=>{let{value:a,grads:i}=z.gradients(()=>e(s),[s],r);return r!=null&&pn(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Ip(i),i[0]})}}function Fpe(e){return F(fr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=Ku(t,"args","tf.grads","string_or_numeric"),r=n!=null?_(n,"dy","tf.grads"):null;return z.tidy(()=>{let{value:a,grads:i}=z.gradients(()=>e(...s),s,r);return r!=null&&pn(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Ip(i),i})}}function Ope(e){return F(fr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof et,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof et,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=z.gradients(()=>e(t),[t],n);return Ip(s),{grad:s[0],value:r}}}function Ppe(e){return F(fr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(r=>r instanceof et),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof et,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=z.gradients(()=>e(...t),t,n);return n!=null&&pn(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Ip(s.grads),s}}function vD(e,t){F(fr(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(l=>l instanceof wd),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let l in z.registeredVariables)t.push(z.registeredVariables[l])}let s=n?t.filter(l=>!l.trainable):null,r=t.length;t=t.filter(l=>l.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:i,grads:o}=z.gradients(e,t,null,a);F(o.some(l=>l!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let u={};return t.forEach((l,c)=>{o[c]!=null&&(u[l.name]=o[c])}),s!=null&&s.forEach(l=>u[l.name]=null),{value:i,grads:u}}function js(e){return z.customGrad(e)}function Ip(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function xD(e){let n={x:_(e,"x","softplus")};return z.runKernel(Rl,n)}var Vl=L({softplus_:xD});function wD(e){let t=_(e,"x","logSigmoid");return js(s=>({value:vt(Vl(vt(s))),gradFunc:i=>V(i,qs(vt(s)))}))(t)}var zpe=L({logSigmoid_:wD});function kD(e,t){let n=_(e,"a","sub"),s=_(t,"b","sub");[n,s]=xt(n,s);let r={a:n,b:s};return z.runKernel(fi,r)}var ge=L({sub_:kD});function SD(e,t=-1){let n=_(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return js((r,a)=>{let o=As(r,t,!0),u=ge(r,o),l=ge(le(u,"float32"),Qn(ve(Yn(u),t,!0)));return a([l]),{value:l,gradFunc:(p,d)=>{let[h]=d,f=!0,m=Yn(h);return ge(p,V(ve(p,t,f),m))}}})(n)}var kS=L({logSoftmax_:SD});function ID(e,t=null,n=!1){let s=_(e,"x","logSumExp"),r=ts(t,s.shape),a=As(s,r,!0),i=ge(s,a),o=Yn(i),u=ve(o,r),l=Qn(u),c=ie(U(a,l.shape),l);if(n){let p=ha(c.shape,r);return U(c,p)}return c}var CD=L({logSumExp_:ID});function ND(e,t){let n=_(e,"a","logicalAnd","bool"),s=_(t,"b","logicalAnd","bool");rt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(To,r)}var Ds=L({logicalAnd_:ND});function TD(e){let n={x:_(e,"x","logicalNot","bool")};return z.runKernel(Il,n)}var ob=L({logicalNot_:TD});function $D(e,t){let n=_(e,"a","logicalOr","bool"),s=_(t,"b","logicalOr","bool");rt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(ip,r)}var SS=L({logicalOr_:$D});function _D(e,t){let n=_(e,"a","logicalXor","bool"),s=_(t,"b","logicalXor","bool");return rt(n.shape,s.shape),Ds(SS(e,t),ob(Ds(e,t)))}var Mpe=L({logicalXor_:_D}),Hc=2147483648;function AD(e,t,n="left"){let s=_(e,"sortedSequence","searchSorted"),r=_(t,"values","searchSorted"),a=s.shape[s.shape.length-1],i=r.shape[r.shape.length-1],o=U(s,[-1,a]),u=U(r,[-1,i]);if(o.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(o.shape[0]!==u.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(dt(u.shape)>=Hc)throw new Error(`values tensor size must less than ${Hc}`);if(o.shape[1]>=Hc)throw new Error(`trailing dim_size must less than ${Hc} for int32 output type, was ${o.shape[1]}`);let l={sortedSequence:o,values:u},c={side:n};return z.runKernel(Og,l,c)}var IS=L({searchSorted_:AD});function ED(e,t){return IS(e,t,"left")}function RD(e,t,n,s,r){let a=_(e,"x","maxPool"),i=1,o=a,u=!1;a.rank===3&&(u=!0,o=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),F(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(Ps(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),hn("maxPool",s,r);let l={x:o},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=z.runKernel(Ka,l,c);return u?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ub=L({maxPool_:RD});function DD(e,t=[1,1,1],n,s,r,a="NDHWC"){let i=_(e,"x","maxPool3d"),o=i,u=!1;i.rank===4&&(u=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),F(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),hn("maxPool3d",s,r);let l={x:o},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=z.runKernel(up,l,c);return u?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var CS=L({maxPool3d_:DD});function FD(e,t,n,s,r=!1){let i={x:_(e,"x","maxPoolWithArgmax")},o={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},u=z.runKernel(Eg,i,o);return{result:u[0],indexes:u[1]}}var OD=L({maxPoolWithArgmax_:FD});function PD(e,t){let n=_(e,"a","maximum"),s=_(t,"b","maximum");[n,s]=xt(n,s),n.dtype==="bool"&&(n=le(n,"int32"),s=le(s,"int32")),rt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(ja,r)}var Ar=L({maximum_:PD});function zD(e,t=null,n=!1){let r={x:_(e,"x","mean")},a={axis:t,keepDims:n};return z.runKernel(Xa,r,a)}var It=L({mean_:zD});function $t(e,t="float32"){if(t==="complex64"){let s=$t(e,"float32"),r=$t(e,"float32");return mr(s,r)}let n=Zd(dt(e),t);return z.makeTensor(n,e,t)}function Mn(e,t="float32"){if(t==="complex64"){let s=Mn(e,"float32"),r=$t(e,"float32");return mr(s,r)}let n=lg(dt(e),t);return z.makeTensor(n,e,t)}function Lpe(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=_(e,"x","meshgrid",e instanceof et?e.dtype:"float32");if(t===void 0)return[s];let r=_(t,"y","meshgrid",t instanceof et?t.dtype:"float32"),a=dt(s.shape),i=dt(r.shape);return n==="xy"?(s=U(s,[1,-1]),r=U(r,[-1,1]),[Ve(Mn([i,1],s.dtype),s),Ve(r,Mn([1,a],r.dtype))]):(s=U(s,[-1,1]),r=U(r,[1,-1]),[Ve(s,Mn([1,i],s.dtype)),Ve(Mn([a,1],r.dtype),r)])}function MD(e,t){let n=_(e,"a","minimum"),s=_(t,"b","minimum");[n,s]=xt(n,s),n.dtype==="bool"&&(n=le(n,"int32"),s=le(s,"int32")),rt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(Qa,r)}var Cp=L({minimum_:MD});function LD(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=_(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<s.rank;o++)F(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=s.shape[o]-r&&t[o][1]>=0&&t[o][1]<=s.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${s.shape[o]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},i={x:s};return z.runKernel(Za,i,a)}var BD=L({mirrorPad_:LD});function VD(e,t){let n=_(e,"a","mod"),s=_(t,"b","mod");[n,s]=xt(n,s);let r={a:n,b:s};return z.runKernel(Cl,r)}var WD=L({mod_:VD});function UD(e,t=null,n=!1){e=_(e,"x","moments");let s=ts(t,e.shape),r=It(e,s,n),a=r.shape;n||(a=ha(r.shape,s));let i=ct(ge(le(e,"float32"),U(r,a))),o=It(i,s,n);return{mean:r,variance:o}}var lb=L({moments_:UD});function GD(e,t,n,s){let r=_(t,"data","multiRNNCell"),a=Ku(n,"c","multiRNNCell"),i=Ku(s,"h","multiRNNCell"),o=r,u=[];for(let p=0;p<e.length;p++){let d=e[p](o,a[p],i[p]);u.push(d[0]),u.push(d[1]),o=d[1]}let l=[],c=[];for(let p=0;p<u.length;p+=2)l.push(u[p]),c.push(u[p+1]);return[l,c]}var Bpe=L({multiRNNCell_:GD});function HD(e,t,n,s=!1){let r=_(e,"logits","multinomial"),a=r.size,i=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let u={logits:i===1?U(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:s},c=z.runKernel(Rg,u,l);return i===1?U(c,[c.size]):c}var qD=L({multinomial_:HD});function jD(e,t){let n=_(e,"a","notEqual","string_or_numeric"),s=_(t,"b","notEqual","string_or_numeric");[n,s]=xt(n,s),rt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(_o,r)}var el=L({notEqual_:jD});function KD(e){let n={x:_(e,"x","onesLike")};return z.runKernel(Ro,n)}var Zn=L({onesLike_:KD});function XD(e,t){let n=_(e,"v1","outerProduct"),s=_(t,"v2","outerProduct");F(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=U(n,[-1,1]),a=U(s,[1,-1]);return Ve(r,a)}var Vpe=L({outerProduct_:XD});function YD(e,t,n=0){let s=_(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return z.runKernel(ei,a,r)}var bi=L({pad_:YD});function QD(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),bi(e,[t],n)}var Wpe=L({pad1d_:QD});function ZD(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),bi(e,t,n)}var Upe=L({pad2d_:ZD});function JD(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),bi(e,t,n)}var Gpe=L({pad3d_:JD});function e3(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),bi(e,t,n)}var Hpe=L({pad4d_:e3});function t3(e,t,n){let s=_(e,"x","spaceToBatchND");F(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(s.shape.reduce((i,o,u)=>u>0&&u<=t.length?i&&(o+n[u-1][0]+n[u-1][1])%t[u-1]===0:i,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return z.runKernel(Wo,r,a)}var cb=L({spaceToBatchND_:t3});function n3(e,t,n,s,r,a,i){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=_(e,"x","maxPool"),u=o,l=!1;o.rank===3&&(l=!0,u=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(Ps(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=aS(u.shape,t,a,r,s),p=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=r3([c.filterHeight,c.filterWidth],p):d=[[0,0],[0,0]];let h=p[0]===1&&p[1]===1,[f,m]=s3([c.inHeight,c.inWidth],p,d),g=h?s:"valid",b=h?u:cb(u,p,f),v=(n==="avg"?()=>Zg(b,t,a,g,i):()=>ub(b,t,a,g,i))(),x=h?v:Jg(v,p,m);return l?U(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function s3(e,t,n){let s=n.map(c=>c[0]),r=n.map(c=>c[1]),a=e.concat(s,r),i=t.map((c,p)=>(c-a[p]%c)%c),o=r.map((c,p)=>c+i[p]),u=t.map((c,p)=>[s[p],o[p]]),l=t.map((c,p)=>[0,i[p]]);return[u,l]}function r3(e,t){let s=e.map((i,o)=>i+(i-1)*(t[o]-1)).map(i=>i-1),r=s.map(i=>Math.floor(i/2)),a=s.map((i,o)=>i-r[o]);return s.map((i,o)=>[r[o],a[o]])}var qpe=L({pool_:n3});function a3(e,t){let n=_(e,"x","prelu"),s=_(t,"alpha","prelu"),r={x:n,alpha:s};return z.runKernel(ni,r)}var db=L({prelu_:a3});function i3(e,t=null,n=!1){let s=_(e,"x","prod");s.dtype==="bool"&&(s=le(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return z.runKernel(si,r,a)}var NS=L({prod_:i3});function o3(e,t,n){let s=dt(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return z.makeTensor(r,e,n)}var jpe=L({rand_:o3}),pb=ka(Xd()),hb=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=pb.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let i=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},u3=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=pb.alea(r.toString()),this.randn=new hb(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},l3=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=pb.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function c3(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new u3(t,n,s,r),i=Ae(e,s);for(let o=0;o<i.values.length;o++)i.values[o]=a.nextValue();return i.toTensor()}var Kpe=L({randomGamma_:c3});function d3(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new hb(t,n,s,!1,r),i=Ae(e,s);for(let o=0;o<i.values.length;o++)i.values[o]=a.nextValue();return i.toTensor()}var p3=L({randomNormal_:d3});function h3(e,t=0,n=1,s="float32",r){let a=Ae(e,s),i=new l3(t,n,null,r);for(let o=0;o<a.values.length;o++)a.values[o]=i.nextValue();return a.toTensor()}var Wl=L({randomUniform_:h3});function tl(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return z.runKernel(Tl,{},r)}function f3(e){let n={x:_(e,"x","reciprocal")};return z.runKernel($l,n)}var m3=L({reciprocal_:f3});function g3(e){let n={x:_(e,"x","relu")};return z.runKernel(ri,n)}var Ys=L({relu_:g3});function b3(e){let n={x:_(e,"x","relu6")};return z.runKernel(ii,n)}var TS=L({relu6_:b3});function y3(e,t){let s={x:_(e,"x","reverse")},r={dims:t};return z.runKernel(Po,s,r)}var Jn=L({reverse_:y3});function v3(e){let t=_(e,"x","reverse");return F(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Jn(t,0)}var Xpe=L({reverse1d_:v3});function x3(e,t){let n=_(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Jn(n,t)}var Ype=L({reverse2d_:x3});function w3(e,t){let n=_(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Jn(n,t)}var Qpe=L({reverse3d_:w3});function k3(e,t){let n=_(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Jn(n,t)}var Zpe=L({reverse4d_:k3});function S3(e){let n={x:_(e,"x","round")};return z.runKernel(zo,n)}var $S=L({round_:S3});function I3(e){let n={x:_(e,"x","rsqrt","float32")};return z.runKernel(oi,n)}var _S=L({rsqrt_:I3});function C3(e){let n={x:_(e,"x","selu")};return z.runKernel(Al,n)}var AS=L({selu_:C3});function N3(e,t,n,s,r,a=[1,1],i="NHWC"){let o=_(e,"x","separableConv2d"),u=_(t,"depthwiseFilter","separableConv2d"),l=_(n,"pointwiseFilter","separableConv2d"),c=o,p=!1;if(o.rank===3&&(p=!0,c=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),F(u.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${u.rank}.`),F(l.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${l.shape[0]}.`),F(l.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${l.shape[1]}.`);let d=u.shape[2],h=u.shape[3];F(l.shape[2]===d*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*h}, but got ${l.shape[2]}.`);let f=wp(c,u,s,r,i,a),g=pa(f,l,1,"valid",i);return p?U(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var T3=L({separableConv2d_:N3});async function $3(e,t){let n=_(e,"x","setdiff1d"),s=_(t,"y","setdiff1d");F(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),i=new Set(a),o=0;for(let c=0;c<r.length;c++)i.has(r[c])||o++;let u=new Wt([o],n.dtype),l=new Wt([o],"int32");for(let c=0,p=0;c<r.length;c++)i.has(r[c])||(u.values[p]=r[c],l.values[p]=c,p++);return[u.toTensor(),l.toTensor()]}var _3=$3;function A3(e){let n={x:_(e,"x","sign")};return z.runKernel(El,n)}var E3=L({sign_:A3});function R3(e){let n={x:_(e,"x","sin","float32")};return z.runKernel(ui,n)}var ES=L({sin_:R3});function D3(e){let n={x:_(e,"x","sinh")};return z.runKernel(Vo,n)}var RS=L({sinh_:D3});function F3(e,t,n){let s=_(e,"x","slice1d");return F(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),qe(s,[t],[n])}var fb=L({slice1d_:F3});function O3(e,t,n){let s=_(e,"x","slice2d");return F(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),qe(s,t,n)}var DS=L({slice2d_:O3});function P3(e,t,n){let s=_(e,"x","slice3d");return F(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),qe(s,t,n)}var mb=L({slice3d_:P3});function z3(e,t,n){let s=_(e,"x","slice4d");return F(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),qe(s,t,n)}var Nd=L({slice4d_:z3});function M3(e,t=-1){let n=_(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return z.runKernel(pi,s,r)}var gb=L({softmax_:M3});function L3(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return z.runKernel(Cg,t)}var bb=L({fft_:L3});function B3(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return z.runKernel(Ng,t)}var Td=L({ifft_:B3});function V3(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=U(e,[n,t]);s=Td(r)}else{let r=[n,2*(t-1)],a=U(Xu(e),[n,t]),i=U(xp(e),[n,t]),o=Jn(qe(a,[0,1],[n,t-2]),1),u=V(Jn(qe(i,[0,1],[n,t-2]),1),we(-1)),l=Ot([a,o],1),c=Ot([i,u],1),p=U(mr(l,c),[r[0],r[1]]);s=Td(p)}if(s=Xu(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=U(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var FS=L({irfft_:V3});function W3(e,t,n=0){let r={x:_(e,"x","split")},a={numOrSizeSplits:t,axis:n};return z.runKernel(Uo,r,a)}var Bn=L({split_:W3});function U3(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=qe(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=Ot([e,$t(f)],e.shape.length-1),n=t}else r=e;let a=je(r),i=U(mr(r,a),[s,n]),o=bb(i),u=Math.floor(n/2)+1,l=Xu(o),c=xp(o),p=Bn(l,[u,n-u],l.shape.length-1),d=Bn(c,[u,n-u],c.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=u,U(mr(p[0],d[0]),h)}var yb=L({rfft_:U3});function G3(e,t){let n=_(e,"a","squaredDifference"),s=_(t,"b","squaredDifference");[n,s]=xt(n,s),rt(n.shape,s.shape);let r={a:n,b:s},a={};return z.runKernel(hi,r,a)}var OS=L({squaredDifference_:G3});function H3(e,t){let n=_(e,"x","squeeze");return U(n,ek(n.shape,t).newShape)}var br=L({squeeze_:H3});function q3(e,t=0){let n=Ku(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return z.runKernel(Fo,s,r)}var es=L({stack_:q3});function j3(e,t=0){let s={x:_(e,"x","step")},r={alpha:t};return z.runKernel(gi,s,r)}var Np=L({step_:j3});function K3(e,t,n,s,r=0,a=0,i=0,o=0,u=0){let c={x:_(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:u};return z.runKernel(Go,c,p)}var X3=L({stridedSlice_:K3});function Y3(e){let n={x:_(e,"x","tan","float32")};return z.runKernel(Ho,n)}var Q3=L({tan_:Y3});function Zt(e,t){Sa(e);let n=Rs(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return $r(e,null,n,t)}function Zi(e,t,n){if(Sa(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=Rs(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return $r(e,t,s,n)}function Jpe(e,t,n){if(Sa(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=Rs(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return $r(e,t,s,n)}function ehe(e,t,n){if(Sa(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=Rs(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return $r(e,t,s,n)}function the(e,t,n){if(Sa(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=Rs(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,$r(e,t,s,n)}function Z3(e,t=1,n=!0){let s=_(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},i={k:t,sorted:n},[o,u]=z.runKernel(qo,a,i);return{values:o,indices:u}}var J3=L({topk_:Z3});function eF(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new hb(t,n,s,!0,r),i=Ae(e,s);for(let o=0;o<i.values.length;o++)i.values[o]=a.nextValue();return i.toTensor()}var vb=L({truncatedNormal_:eF});function tF(e,t=0){let n=_(e,"x","unique","string_or_numeric");F(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,i]=z.runKernel(Mg,s,r);return{values:a,indices:i}}var xx=L({unique_:tF});function nF(e,t,n){let s=_(e,"x","unsortedSegmentSum"),r=_(t,"segmentIds","unsortedSegmentSum","int32");F(eo(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},i={numSegments:n};return z.runKernel(mp,a,i)}var sF=L({unsortedSegmentSum_:nF});function rF(e,t=0){let n=_(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return z.runKernel(Ko,s,r)}var Fs=L({unstack_:rF});function aF(e,t){return IS(e,t,"right")}function iF(e,t=!0,n,s){return z.makeVariable(e,t,n,s)}function PS(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=Ae(e,"int32"),r=Ae([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let i=s.indexToLoc(n[a]),o=a*e.length;r.values.set(i,o)}return r.toTensor()}async function oF(e){let t=_(e,"condition","whereAsync","bool"),n=await t.data(),s=PS(t.shape,n);return e!==t&&t.dispose(),s}var zS=oF;async function uF(e,t,n){let s=_(e,"tensor","boolMask"),r=_(t,"mask","boolMask","bool"),a=n==null?0:n,i=r.rank,o=s.shape;F(i>0,()=>"mask cannot be scalar"),pn(o.slice(a,a+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let u=1;for(let m=a;m<a+i;m++)u*=o[m];let l=o.slice(0,a).concat([u],o.slice(a+i)),c=U(s,l),p=U(r,[-1]),d=await zS(p),h=br(d,[1]),f=Ju(c,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),c.dispose(),p.dispose(),d.dispose(),f}var nhe=uF;function lF(e,t,n,s,r=!0){let a=_(e,"v","movingAverage"),i=_(t,"x","movingAverage"),o=_(n,"decay","movingAverage");yk(a,i),F(Ir(a.shape,i.shape),()=>"Shape mismatch in v and x");let u=we(1),l=ge(u,o),c=V(ge(i,a),l);if(r){F(s!=null,()=>"When using zeroDebias: true, step is required.");let p=_(s,"step","movingAverage");c=xe(c,ge(u,fa(o,p)))}return ie(a,c)}var she=L({movingAverage_:lF});function cF(e,t,n){let s=_(e,"indices","scatterND","int32"),r=_(t,"updates","scatterND");Kg(r,s,n);let a={indices:s,updates:r},i={shape:n};return z.runKernel(Mo,a,i)}var dF=L({scatterND_:cF});function pF(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function hF(e,t,n,s=0){let r=_(e,"sparseIndices","sparseToDense","int32"),a=_(t,"sparseValues","sparseToDense","string_or_numeric"),i=_(s,"defaultValue","sparseToDense",a.dtype);pF(r,a,n,i);let o={sparseIndices:r,sparseValues:a,defaultValue:i},u={outputShape:n};return z.runKernel(hp,o,u)}var MS=L({sparseToDense_:hF});function fF(e,t){let n=_(t,"indices","gatherND","int32"),r={params:_(e,"x","gatherND","string_or_numeric"),indices:n};return z.runKernel(So,r)}var mF=L({gatherND_:fF});function gF(e,t){if(t==null)return e.shape.slice();if(Ir(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function bF(e,t,n,s){let r=_(e,"x","dropout");if(F(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof et?r.clone():r;let a=gF(r,n),i=1-t,o=xe(Sp(ie(Wl(a,0,1,"float32",s),i)),i);return V(r,o)}var yF=L({dropout_:bF});function vF(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function LS(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let i=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(i)}return Zt(r,"float32")}async function xF(e,t,n=1){let s=_(e,"predictions","inTopK"),r=_(t,"targets","inTopK");F(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),F(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),pn(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];F(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let i=await s.data(),o=await r.data(),[u,l]=[i.length/a,a],c=tk("bool",u);for(let p=0;p<u;p++){let d=p*l,h=i.subarray(d,d+l),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),c[p]=0;for(let m=0;m<n;m++)if(f[m].index===o[p]){c[p]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),ms(c,r.shape,"bool")}var rhe=xF,ma={};Ee(ma,{conv2d:()=>SF,depthwiseConv2d:()=>TF,matMul:()=>_F});function wF(e,t,n,s,r,a="NHWC",i){let o=e;e.rank===3&&(o=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u=t;u.rank===3&&(u=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(u.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${u.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let l=a==="NHWC"?o.shape[3]:o.shape[1],c=a==="NHWC"?u.shape[3]:u.shape[1];F(l===n[2],()=>`Error in conv2dDerFilter: depth of input ${l}) must match input depth in filter (${n[2]}.`),F(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),hn("conv2dDerFilter",r,i);let p={x:o,dy:u},d={strides:s,pad:r,dataFormat:a,dimRoundingMode:i,filterShape:n};return z.runKernel(bg,p,d)}var xb=L({conv2DBackpropFilter_:wF});function Tp(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return V(e,Np(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function $p(e,t){let n=t,s=At(e.shape,t.shape);return s.length>0&&(n=ve(n,s)),U(n,e.shape)}function _p(e,t,n,s){if(t==="linear")return e;if(t==="relu")return Ys(e);if(t==="elu")return kp(e);if(t==="relu6")return TS(e);if(t==="prelu")return db(e,n);if(t==="leakyrelu")return ab(e,s);if(t==="sigmoid")return qs(e);throw new Error(`Unknown fused activation ${t}.`)}var Ap=(e,t)=>!(e>0)||t==="linear";function kF({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:i,bias:o,activation:u="linear",preluActivationWeights:l,leakyreluAlpha:c}){if(u=u||"linear",Ap(z.state.gradientDepth,u)===!1){F(r==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${r} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let I=pa(e,t,n,s,r,a,i);return o!=null&&(I=ie(I,o)),_p(I,u,l,c)}let p=_(e,"x","conv2d","float32"),d=_(t,"filter","conv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=U(p,[1,p.shape[0],p.shape[1],p.shape[2]])),F(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),F(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),hn("fused conv2d",s,i);let m=r==="NHWC"?h.shape[3]:h.shape[1];F(d.shape[2]===m,()=>`Error in conv2d: depth of input (${m}) must match input depth for filter ${d.shape[2]}.`),F(Ps(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let g=Ll(h.shape,d.shape,n,a,s,i),b;o!=null&&(b=_(o,"bias","fused conv2d"),[b]=xt(b,p),r==="NHWC"?rt(g.outShape,b.shape):(F(b.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${b.shape.length}.`),F(b.shape.length===0||b.shape[0]===g.outChannels||b.shape[0]===1,()=>`Error in fused conv2d: bias shape (${b.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let y;if(l!=null){let I=l.shape;if(F(I.length<=1||I.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${I.length}.`),I.length===1)F(I[0]===1||I[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${I}) is not compatible with the number of output channels (${g.outChannels}).`);else if(I.length===3)try{rt(I,g.outShape)}catch($){let R=`Error in fused conv2d: PReLU activation weights (${I}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(R)}y=_(l,"prelu weights","fused conv2d")}let v=(I,$)=>{F(r==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${r} but only NHWC is currently supported.`);let[R,E,P,A]=$,O=Tp(I,P,u);F(gr(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let T=eb(E.shape,O,R,n,s),M=xb(E,O,R.shape,n,s),W=[T,M];if(A!=null){let j=$p(A,O);W.push(j)}return W},x={x:h,filter:d,bias:b,preluActivationWeights:y},k={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:i,activation:u,leakyreluAlpha:c};return o==null?js(($,R,E)=>{let P=z.runKernel(ua,x,k);return E([R,$,P]),f&&(P=U(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:v}})(h,d):js(($,R,E,P)=>{let A=z.runKernel(ua,x,k);return P([R,$,A,E]),f&&(A=U(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:v}})(h,d,b)}var SF=L({fusedConv2d_:kF});function IF(e,t,n,s,r,a=[1,1],i){let o=e;e.rank===3&&(o=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u=t;u.rank===3&&(u=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={x:o,dy:u},c={strides:s,pad:r,dimRoundingMode:i,dilations:a,filterShape:n};return z.runKernel(wg,l,c)}var BS=L({depthwiseConv2dNativeBackpropFilter_:IF});function CF(e,t,n,s,r,a=[1,1],i){let o=t,u=!1;t.rank===3&&(u=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={dy:o,filter:n},c={strides:s,pad:r,dimRoundingMode:i,dilations:a,inputShape:e},p=z.runKernel(kg,l,c);return u?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var VS=L({depthwiseConv2dNativeBackpropInput_:CF});function NF({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:i,bias:o,activation:u="linear",preluActivationWeights:l,leakyreluAlpha:c}){if(Ap(z.state.gradientDepth,u)===!1){let k=wp(e,t,n,s,r,a,i);return o!=null&&(k=ie(k,o)),_p(k,u,l,c)}let p=_(e,"x","depthwiseConv2d","float32"),d=_(t,"filter","depthwiseConv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=U(p,[1,p.shape[0],p.shape[1],p.shape[2]])),F(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),F(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),F(h.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),a==null&&(a=[1,1]),F(Ps(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),hn("fused depthwiseConv2d",s,i);let m=Ll(h.shape,d.shape,n,a,s,i,!0),g;o!=null&&(g=_(o,"bias","fused conv2d"),[g]=xt(g,p),rt(m.outShape,g.shape));let b;l!=null&&(b=_(l,"prelu weights","fused depthwiseConv2d"));let y=(k,I)=>{F(gr(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[$,R,E,P]=I,A=Tp(k,E,u),O=VS(R.shape,A,$,n,s,a,i),T=BS(R,A,$.shape,n,s,a,i);if(P!=null){let M=$p(g,A);return[O,T,M]}return[O,T]},v={x:h,filter:d,bias:g,preluActivationWeights:b},x={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:i,activation:u,leakyreluAlpha:c};return o==null?js((I,$,R)=>{let E=z.runKernel(la,v,x);return R([$,I,E]),f&&(E=U(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:y}})(h,d):js((I,$,R,E)=>{let P=z.runKernel(la,v,x);return E([$,I,P,R]),f&&(P=U(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:y}})(h,d,g)}var TF=L({fusedDepthwiseConv2d_:NF});function $F({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Ap(z.state.gradientDepth,a)===!1){let A=Ve(e,t,n,s);return r!=null&&(A=ie(A,r)),_p(A,a,i,o)}let u=_(e,"a","fused matMul"),l=_(t,"b","fused matMul");[u,l]=xt(u,l);let c=n?u.shape[u.rank-2]:u.shape[u.rank-1],p=s?l.shape[l.rank-1]:l.shape[l.rank-2],d=n?u.shape[u.rank-1]:u.shape[u.rank-2],h=s?l.shape[l.rank-2]:l.shape[l.rank-1],f=u.shape.slice(0,-2),m=l.shape.slice(0,-2),g=dt(f),b=dt(m);F(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${u.shape} and ${l.shape} and transposeA=${n} and transposeB=${s} must match.`);let v=rt(u.shape.slice(0,-2),l.shape.slice(0,-2)).concat([d,h]),x=n?U(u,[g,c,d]):U(u,[g,d,c]),k=s?U(l,[b,h,p]):U(l,[b,p,h]),I;r!=null&&(I=_(r,"bias","fused matMul"),[I]=xt(I,u),rt(v,I.shape));let $;i!=null&&($=_(i,"prelu weights","fused matMul"));let R=(A,O)=>{let[T,M,W,j]=O,X=Tp(U(A,W.shape),W,a),Y,Z;if(!n&&!s?(Y=Ve(X,M,!1,!0),Z=Ve(T,X,!0,!1)):!n&&s?(Y=Ve(X,M,!1,!1),Z=Ve(X,T,!0,!1)):n&&!s?(Y=Ve(M,X,!1,!0),Z=Ve(T,X,!1,!1)):(Y=Ve(M,X,!0,!0),Z=Ve(X,T,!0,!0)),r!=null){let te=$p(j,X);return[Y,Z,te]}else return[Y,Z]},E={a:x,b:k,bias:I,preluActivationWeights:$},P={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:o};return r==null?js((O,T,M)=>{let W=z.runKernel(oa,E,P);return M([O,T,W]),{value:U(W,v),gradFunc:R}})(x,k):js((O,T,M,W)=>{let j=z.runKernel(oa,E,P);return W([O,T,j,M]),{value:U(j,v),gradFunc:R}})(x,k,I)}var _F=L({fusedMatMul_:$F});function AF(e){return LS(e,.54,.46)}var EF=L({hammingWindow_:AF});function RF(e){return LS(e,.5,.5)}var WS=L({hannWindow_:RF});function DF(e,t,n,s=!1,r=0){let a=0,i=[];for(;a+t<=e.size;)i.push(qe(e,a,t)),a+=n;if(s)for(;a<e.size;){let o=a+t-e.size,u=Ot([qe(e,a,t-o),Bl([o],r)]);i.push(u),a+=n}return i.length===0?Zi([],[0,t]):U(Ot(i),[i.length,t])}var US=L({frame_:DF});function FF(e,t,n,s,r=WS){s==null&&(s=vF(t));let a=US(e,t,n),i=V(a,r(t));return yb(i,s)}var OF=L({stft_:FF});function PF(e,t,n,s,r="bilinear",a=0){let i=_(e,"image","cropAndResize"),o=_(t,"boxes","cropAndResize","float32"),u=_(n,"boxInd","cropAndResize","int32"),l=o.shape[0];F(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${l},4] but had shape ${o.shape}.`),F(u.rank===1&&u.shape[0]===l,()=>`Error in cropAndResize: boxInd must be have size [${l}] but had shape ${o.shape}.`),F(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),F(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),F(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let c={image:i,boxes:o,boxInd:u},p={method:r,extrapolationValue:a,cropSize:s};return z.runKernel(go,c,p)}var zF=L({cropAndResize_:PF});function MF(e){let t=_(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return z.runKernel(wo,n,{})}var LF=L({flipLeftRight_:MF});function BF(e){let t=_(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];F(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),F(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,hs(t,r)}var VF=L({grayscaleToRGB_:BF});function WF(e,t,n=0,s=.5){let r=_(e,"image","rotateWithOffset","float32");F(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},i={radians:t,fillValue:n,center:s};return z.runKernel(Yo,a,i)}var UF=L({rotateWithOffset_:WF});function eu(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function GF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=_(e,"boxes","nonMaxSuppression","float32"),i=_(t,"scores","nonMaxSuppression","float32"),o=eu(a,i,n,s,r);n=o.maxOutputSize,s=o.iouThreshold,r=o.scoreThreshold;let u={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return z.runKernel(Ao,{boxes:a,scores:i},u)}var HF=L({nonMaxSuppression_:GF});function qF(e,t,n){let s=jF(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function jF(e,t,n){return XF(e,t,n||KF)}function KF(e,t){return e>t?1:e<t?-1:0}function XF(e,t,n){let s=0,r=e.length,a=0,i=!1;for(;s<r;){a=s+(r-s>>>1);let o=n(t,e[a]);o>0?s=a+1:(r=a,i=!o)}return i?s:-s-1}function GS(e,t,n,s,r){return wb(e,t,n,s,r,0)}function HS(e,t,n,s,r,a){return wb(e,t,n,s,r,0,!1,a,!0)}function qS(e,t,n,s,r,a){return wb(e,t,n,s,r,a,!0)}function wb(e,t,n,s,r,a,i=!1,o=!1,u=!1){let l=[];for(let g=0;g<t.length;g++)t[g]>r&&l.push({score:t[g],boxIndex:g,suppressBeginIndex:0});l.sort(wx);let c=a>0?-.5/a:0,p=[],d=[];for(;p.length<n&&l.length>0;){let g=l.pop(),{score:b,boxIndex:y,suppressBeginIndex:v}=g;if(b<r)break;let x=!1;for(let k=p.length-1;k>=v;--k){let I=YF(e,y,p[k]);if(I>=s){x=!0;break}if(g.score=g.score*QF(s,c,I),g.score<=r)break}g.suppressBeginIndex=p.length,x||(g.score===b?(p.push(y),d.push(g.score)):g.score>r&&qF(l,g,wx))}let h=p.length,f=n-h;o&&f>0&&(p.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:p};return i&&(m.selectedScores=d),u&&(m.validOutputs=h),m}function YF(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),i=Math.min(s[1],s[3]),o=Math.max(s[0],s[2]),u=Math.max(s[1],s[3]),l=Math.min(r[0],r[2]),c=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),d=Math.max(r[1],r[3]),h=(o-a)*(u-i),f=(p-l)*(d-c);if(h<=0||f<=0)return 0;let m=Math.max(a,l),g=Math.max(i,c),b=Math.min(o,p),y=Math.min(u,d),v=Math.max(b-m,0)*Math.max(y-g,0);return v/(h+f-v)}function QF(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function wx(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function ZF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=_(e,"boxes","nonMaxSuppressionAsync"),i=_(t,"scores","nonMaxSuppressionAsync"),o=eu(a,i,n,s,r);n=o.maxOutputSize,s=o.iouThreshold,r=o.scoreThreshold;let u=await Promise.all([a.data(),i.data()]),l=u[0],c=u[1],{selectedIndices:p}=GS(l,c,n,s,r);return a!==e&&a.dispose(),i!==t&&i.dispose(),Zt(p,"int32")}var JF=ZF;function eO(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let i=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),u=eu(i,o,n,s,r,a);n=u.maxOutputSize,s=u.iouThreshold,r=u.scoreThreshold,a=u.softNmsSigma;let l={boxes:i,scores:o},c={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},p=z.runKernel(Eo,l,c);return{selectedIndices:p[0],selectedScores:p[1]}}var tO=L({nonMaxSuppressionWithScore_:eO});async function nO(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let i=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),u=eu(i,o,n,s,r,a);n=u.maxOutputSize,s=u.iouThreshold,r=u.scoreThreshold,a=u.softNmsSigma;let l=await Promise.all([i.data(),o.data()]),c=l[0],p=l[1],{selectedIndices:d,selectedScores:h}=qS(c,p,n,s,r,a);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Zt(d,"int32"),selectedScores:Zt(h)}}var sO=nO;function rO(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let i=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),u=eu(i,o,n,s,r,null),l=u.maxOutputSize,c=u.iouThreshold,p=u.scoreThreshold,d={boxes:i,scores:o},h={maxOutputSize:l,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:a},f=z.runKernel(Nl,d,h);return{selectedIndices:f[0],validOutputs:f[1]}}var aO=L({nonMaxSuppressionPadded_:rO});async function iO(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let i=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),u=eu(i,o,n,s,r,null),l=u.maxOutputSize,c=u.iouThreshold,p=u.scoreThreshold,[d,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=HS(d,h,l,c,p,a);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Zt(f,"int32"),validOutputs:we(m,"int32")}}var oO=iO;function uO(e,t,n=!1,s=!1){let r=_(e,"images","resizeBilinear");F(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,i=!1;r.rank===3&&(i=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:a},u={alignCorners:n,halfPixelCenters:s,size:t},l=z.runKernel(ai,o,u);return i?U(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var lO=L({resizeBilinear_:uO});function cO(e,t,n=!1,s=!1){let r=_(e,"images","resizeNearestNeighbor");F(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,i=!1;r.rank===3&&(i=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:a},u={alignCorners:n,halfPixelCenters:s,size:t},l=z.runKernel(_l,o,u);return i?U(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var dO=L({resizeNearestNeighbor_:cO});function pO(e,t="binary",n=!1,s=.5){let r=_(e,"image","threshold"),a=.2989,i=.587,o=.114,u=r.shape[0]*r.shape[1],l=V(Zt([s]),255),c,p,d,h;if(F(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),F(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),F(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),F(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[c,p,d]=Bn(r,[1,1,1],-1);let g=V(c,a),b=V(p,i),y=V(d,o);h=ie(ie(g,b),y)}else h=e;if(t==="otsu"){let g=lS(le($S(h),"int32"),ms([]),256);l=hO(g,u)}let f=n?Jo(h,l):Un(h,l);return le(V(f,255),"int32")}function hO(e,t){let n=Zt([-1]),s=Zt([0]),r=Zt([0]),a,i,o,u,l,c;for(let p=0;p<e.size-1;p++){a=qe(e,0,p+1),i=qe(e,p+1),l=xe(ve(a),t),c=xe(ve(i),t);let d=ve(V(a,tl(0,a.size)));o=xe(d,ve(a));let h=Bl(i.shape,a.size),f=ie(tl(0,i.size),h),m=V(i,f);u=xe(ve(m),ve(i));let g=ge(o,u),b=ge(o,u),y=V(l,c);r=V(V(y,g),b);let v=Un(r,s);s=vn(v,r,s),n=vn(v,Zt([p]),n)}return n}var fO=L({threshold_:pO});function mO(e,t,n="nearest",s="constant",r=0,a){let i=_(e,"image","transform","float32"),o=_(t,"transforms","transform","float32");F(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),F(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let u={image:i,transforms:o},l={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return z.runKernel(jo,u,l)}var gO=L({transform_:mO});function bO(e,t,n){F(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=_(e,"a","bandPart");F(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,i]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=a),n<0&&(n=i);let o=U(tl(0,a,1,"int32"),[-1,1]),u=tl(0,i,1,"int32"),l=ge(o,u),c=Ds(Jo(l,we(+t,"int32")),Zo(l,we(-n,"int32"))),p=$t([a,i],s.dtype);return U(es(Fs(U(s,[-1,a,i])).map(d=>vn(c,d,p))),r)}var yO=L({bandPart_:bO});function vO(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)F(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=Bn(e,e.shape[0],0).map(r=>br(r,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(z.tidy(()=>{let a=s[r];if(r>0)for(let i=0;i<r;++i){let o=V(ve(V(n[i],a)),n[i]);a=ge(a,o)}return xe(a,rb(a,"euclidean"))}));return t?es(n,0):n}var xO=L({gramSchmidt_:vO});function wO(e,t=!1){if(F(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return kx(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((u,l)=>u*l),s=Fs(U(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(u=>{let[l,c]=kx(u,t);r.push(l),a.push(c)});let i=U(es(r,0),e.shape),o=U(es(a,0),e.shape);return[i,o]}}function kx(e,t=!1){return z.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=xS(n),a=lr(e),i=Zi([[1]],[1,1]),o=lr(i),u=n>=s?s:n;for(let l=0;l<u;++l){let c=a,p=o,d=r;[o,a,r]=z.tidy(()=>{let h=qe(a,[l,l],[n-l,1]),f=rb(h),m=qe(a,[l,l],[1,1]),g=vn(Un(m,0),Zi([[-1]]),Zi([[1]])),b=ge(m,V(g,f)),y=xe(h,b);y.shape[0]===1?o=lr(i):o=Ot([i,qe(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let v=vt(xe(Ve(g,b),f)),x=qe(a,[l,0],[n-l,s]),k=V(v,o),I=Ge(o);if(l===0)a=ge(x,Ve(k,Ve(I,x)));else{let E=ge(x,Ve(k,Ve(I,x)));a=Ot([qe(a,[0,0],[l,s]),E],0)}let $=Ge(k),R=qe(r,[0,l],[n,r.shape[1]-l]);if(l===0)r=ge(R,Ve(Ve(R,o),$));else{let E=ge(R,Ve(Ve(R,o),$));r=Ot([qe(r,[0,0],[n,l]),E],1)}return[o,a,r]}),De([c,p,d])}return!t&&n>s&&(r=qe(r,[0,0],[n,s]),a=qe(a,[0,0],[s,s])),[r,a]})}var kO=L({qr_:wO}),SO=(e=>(e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS",e))(SO||{});function IO(e,t,n=3){let s=_(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=_(t,"weights","computeWeightedLoss"));let a=r==null?s:V(s,r);if(n===0)return a;if(n===2)return ve(a);if(n===1){if(r==null)return It(a);{let i=s.size/r.size,o=xe(ve(a),ve(r));return i>1?xe(o,we(i)):o}}if(n===3){if(r==null)return xe(ve(a),we(s.size));{let i=V(r,Mn(s.shape)),o=le(ve(el(i,we(0))),"float32");return xe(ve(a),o)}}throw Error(`Unknown reduction: ${n}`)}var Qs=L({computeWeightedLoss_:IO});function CO(e,t,n,s=3){let r=_(e,"labels","absoluteDifference"),a=_(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=_(n,"weights","absoluteDifference")),pn(r.shape,a.shape,"Error in absoluteDifference: ");let o=Lt(ge(r,a));return Qs(o,i,s)}var NO=L({absoluteDifference_:CO});function TO(e,t,n,s,r=3){let a=_(e,"labels","cosineDistance"),i=_(t,"predictions","cosineDistance"),o=null;s!=null&&(o=_(s,"weights","cosineDistance")),pn(a.shape,i.shape,"Error in cosineDistance: ");let u=we(1),l=ge(u,ve(V(a,i),n,!0));return Qs(l,o,r)}var $O=L({cosineDistance_:TO});function _O(e,t,n,s=3){let r=_(e,"labels","hingeLoss"),a=_(t,"predictions","hingeLoss"),i=null;n!=null&&(i=_(n,"weights","hingeLoss")),pn(r.shape,a.shape,"Error in hingeLoss: ");let o=we(1);r=ge(V(we(2),r),o);let u=Ys(ge(o,V(r,a)));return Qs(u,i,s)}var AO=L({hingeLoss_:_O});function EO(e,t,n,s=1,r=3){let a=_(e,"labels","huberLoss"),i=_(t,"predictions","huberLoss"),o=null;n!=null&&(o=_(n,"weights","huberLoss")),pn(a.shape,i.shape,"Error in huberLoss: ");let u=we(s),l=Lt(ge(i,a)),c=Cp(l,u),p=ge(l,c),d=ie(V(we(.5),ct(c)),V(u,p));return Qs(d,o,r)}var RO=L({huberLoss_:EO});function DO(e,t,n,s=1e-7,r=3){let a=_(e,"labels","logLoss"),i=_(t,"predictions","logLoss"),o=null;n!=null&&(o=_(n,"weights","logLoss")),pn(a.shape,i.shape,"Error in logLoss: ");let u=we(1),l=we(s),c=vt(V(a,Qn(ie(i,l)))),p=V(ge(u,a),Qn(ie(ge(u,i),l))),d=ge(c,p);return Qs(d,o,r)}var FO=L({logLoss_:DO});function OO(e,t,n,s=3){let r=_(e,"labels","meanSquaredError"),a=_(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=_(n,"weights","meanSquaredError")),pn(r.shape,a.shape,"Error in meanSquaredError: ");let o=OS(r,a);return Qs(o,i,s)}var PO=L({meanSquaredError_:OO});function zO(e,t){let n=_(e,"labels","sigmoidCrossEntropyWithLogits"),s=_(t,"logits","sigmoidCrossEntropyWithLogits");pn(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Ys(s),a=V(s,n),i=ib(Yn(vt(Lt(s))));return ie(ge(r,a),i)}function MO(e,t,n,s=0,r=3){let a=_(e,"multiClassLabels","sigmoidCrossEntropy"),i=_(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=_(n,"weights","sigmoidCrossEntropy")),pn(a.shape,i.shape,"Error in sigmoidCrossEntropy: "),s>0){let l=we(s),c=we(1),p=we(.5);a=ie(V(a,ge(c,l)),V(p,l))}let u=zO(a,i);return Qs(u,o,r)}var LO=L({sigmoidCrossEntropy_:MO});function BO(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return js((r,a,i)=>{let u=CD(a,[n],!0),l=ge(le(a,"float32"),u);i([r,l]);let c=vt(V(l,r));return{value:ve(c,[n]),gradFunc:(h,f)=>{let[m,g]=f,b=ha(h.shape,[n]);return[V(U(h,b),ge(le(m,"float32"),Yn(g))),V(U(h,b),ge(Yn(g),le(m,"float32")))]}}})(e,t)}function VO(e,t,n,s=0,r=3){let a=_(e,"onehotLabels","softmaxCrossEntropy"),i=_(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=_(n,"weights","softmaxCrossEntropy")),pn(a.shape,i.shape,"Error in softmaxCrossEntropy: "),s>0){let l=we(s),c=we(1),p=we(a.shape[1]);a=ie(V(a,ge(c,l)),xe(l,p))}let u=BO(a,i);return Qs(u,o,r)}var WO=L({softmaxCrossEntropy_:VO});function UO(e,t,n,s){let r=_(e,"indices","sparseFillEmptyRows","int32"),a=_(t,"values","sparseFillEmptyRows"),i=_(n,"denseShape","sparseFillEmptyRows","int32"),o=_(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let u={indices:r,values:a,denseShape:i,defaultValue:o},l=z.runKernel(cp,u);return{outputIndices:l[0],outputValues:l[1],emptyRowIndicator:l[2],reverseIndexMap:l[3]}}var GO=L({sparseFillEmptyRows_:UO});function HO(e,t,n){let s=_(e,"inputIndices","sparseReshape","int32"),r=_(t,"inputShape","sparseReshape","int32"),a=_(n,"newShape","sparseReshape","int32");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let i={inputIndices:s,inputShape:r,newShape:a},o=z.runKernel(Dl,i);return{outputIndices:o[0],outputShape:o[1]}}var qO=L({sparseReshape_:HO});function jO(e,t,n){let s=_(e,"data","sparseSegmentMean"),r=_(t,"indices","sparseSegmentMean","int32"),a=_(n,"segmentIds","sparseSegmentMean","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let i={data:s,indices:r,segmentIds:a};return z.runKernel(dp,i)}var KO=L({sparseSegmentMean_:jO});function XO(e,t,n){let s=_(e,"data","sparseSegmentSum"),r=_(t,"indices","sparseSegmentSum","int32"),a=_(n,"segmentIds","sparseSegmentSum","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let i={data:s,indices:r,segmentIds:a};return z.runKernel(pp,i)}var YO=L({sparseSegmentSum_:XO});function QO(e,t,n,s,r,a,i,o){let u=_(e,"data","stringNGrams","string");if(u.dtype!=="string")throw new Error("Data must be of datatype string");if(u.shape.length!==1)throw new Error(`Data must be a vector, saw: ${u.shape}`);let l=_(t,"dataSplits","stringNGrams");if(l.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:i,preserveShortSequences:o},p={data:u,dataSplits:l},d=z.runKernel(fp,p,c);return{nGrams:d[0],nGramsSplits:d[1]}}var ZO=L({stringNGrams_:QO});function JO(e,t,n=!0){let s=_(e,"input","stringSplit","string"),r=_(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},i={input:s,delimiter:r},o=z.runKernel(Pg,i,a);return{indices:o[0],values:o[1],shape:o[2]}}var eP=L({stringSplit_:JO});function tP(e,t){let n=_(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return z.runKernel(zg,r,s)}var nP=L({stringToHashBucketFast_:tP}),ahe={fft:bb,ifft:Td,rfft:yb,irfft:FS},ihe={hammingWindow:EF,hannWindow:WS,frame:US,stft:OF},jn={flipLeftRight:LF,grayscaleToRGB:VF,resizeNearestNeighbor:dO,resizeBilinear:lO,rotateWithOffset:UF,cropAndResize:zF,nonMaxSuppression:HF,nonMaxSuppressionAsync:JF,nonMaxSuppressionWithScore:tO,nonMaxSuppressionWithScoreAsync:sO,nonMaxSuppressionPadded:aO,nonMaxSuppressionPaddedAsync:oO,threshold:fO,transform:gO},sP={bandPart:yO,gramSchmidt:xO,qr:kO},ohe={absoluteDifference:NO,computeWeightedLoss:Qs,cosineDistance:$O,hingeLoss:AO,huberLoss:RO,logLoss:FO,meanSquaredError:PO,sigmoidCrossEntropy:LO,softmaxCrossEntropy:WO},qc={sparseFillEmptyRows:GO,sparseReshape:qO,sparseSegmentMean:KO,sparseSegmentSum:YO},qf={stringNGrams:ZO,stringSplit:eP,stringToHashBucketFast:nP},Er=class extends eS{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(a)}else this.applyGradients(r);return De(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return vD(e,t)}dispose(){this.iterations_!=null&&De(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:we(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Er,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var kb=class extends Er{constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=z.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:q(()=>je(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:q(()=>je(r).variable(a))});let i=Array.isArray(e)?e[s].tensor:e[n];if(i==null)return;let o=this.accumulatedGrads[s].variable,u=this.accumulatedUpdates[s].variable;q(()=>{let l=ie(V(o,this.rho),V(ct(i),1-this.rho)),c=V(xe(dn(ie(u,this.epsilon)),dn(ie(o,this.epsilon))),i),p=ie(V(u,this.rho),V(ct(c),1-this.rho));o.assign(l),u.assign(p);let d=ie(V(c,-this.learningRate),r);r.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(De(this.accumulatedGrads.map(e=>e.variable)),De(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};kb.className="Adadelta";_r(kb);var Sb=class extends Er{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=z.registeredVariables[n];this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:q(()=>Bl(r.shape,this.initialAccumulatorValue).variable(!1))});let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let i=this.accumulatedGrads[s].variable;q(()=>{let o=ie(i,ct(a));i.assign(o);let u=ie(V(xe(a,dn(ie(o,z.backend.epsilon()))),-this.learningRate),r);r.assign(u)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&De(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Sb.className="Adagrad";_r(Sb);var Ib=class extends Er{constructor(e,t,n,s=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],q(()=>{this.accBeta1=we(t).variable(),this.accBeta2=we(n).variable()}),s==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);q(()=>{let n=ge(1,this.accBeta1),s=ge(1,this.accBeta2);t.forEach((r,a)=>{let i=z.registeredVariables[r],o=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:q(()=>je(i).variable(o))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:q(()=>je(i).variable(o))});let u=Array.isArray(e)?e[a].tensor:e[r];if(u==null)return;let l=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,p=ie(V(l,this.beta1),V(u,1-this.beta1)),d=ie(V(c,this.beta2),V(ct(u),1-this.beta2)),h=xe(p,n),f=xe(d,s);l.assign(p),c.assign(d);let m=ie(V(xe(h,ie(dn(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(V(this.accBeta1,this.beta1)),this.accBeta2.assign(V(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&De(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&De(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),q(()=>{this.accBeta1.assign(fa(this.beta1,this.iterations_+1)),this.accBeta2.assign(fa(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Ib.className="Adam";_r(Ib);var Cb=class extends Er{constructor(e,t,n,s=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],q(()=>{this.iteration=we(0).variable(),this.accBeta1=we(t).variable()}),s==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);q(()=>{let n=ge(1,this.accBeta1),s=xe(-this.learningRate,ie(V(this.iteration,this.decay),1));t.forEach((r,a)=>{let i=z.registeredVariables[r],o=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:je(i).variable(o)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:je(i).variable(o)});let u=Array.isArray(e)?e[a].tensor:e[r];if(u==null)return;let l=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,p=ie(V(l,this.beta1),V(u,1-this.beta1)),d=V(c,this.beta2),h=Lt(u),f=Ar(d,h);l.assign(p),c.assign(f);let m=ie(V(xe(s,n),xe(p,ie(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(ie(this.iteration,1)),this.accBeta1.assign(V(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&De(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&De(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Cb.className="Adamax";_r(Cb);var Ep=class extends Er{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=z.registeredVariables[n];q(()=>{let i=ie(V(this.c,r),a);a.assign(i)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=qt(we(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Ep.className="SGD";_r(Ep);var Nb=class extends Ep{constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=we(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=z.registeredVariables[n];this.accumulations[s]==null&&(this.accumulations[s]={originalName:`${n}/momentum`,variable:q(()=>je(r).variable(!1))});let a=this.accumulations[s].variable,i=Array.isArray(e)?e[s].tensor:e[n];i!=null&&q(()=>{let o,u=ie(V(this.m,a),i);this.useNesterov?o=ie(V(this.c,ie(i,V(u,this.m))),r):o=ie(V(this.c,u),r),a.assign(u),r.assign(o)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&De(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Nb.className="Momentum";_r(Nb);var Tb=class extends Er{constructor(e,t=.9,n=0,s=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=z.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=z.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:q(()=>je(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:q(()=>je(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:q(()=>je(r).variable(a))});let i=Array.isArray(e)?e[s].tensor:e[n];if(i==null)return;let o=this.accumulatedMeanSquares[s].variable,u=this.accumulatedMoments[s].variable;q(()=>{let l=ie(V(o,this.decay),V(ct(i),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[s].variable,p=ie(V(c,this.decay),V(i,1-this.decay)),d=xe(V(i,this.learningRate),dn(ge(l,ie(ct(p),this.epsilon)))),h=ie(V(u,this.momentum),d);o.assign(l),c.assign(p),u.assign(h);let f=ge(r,h);r.assign(f)}else{let c=ie(V(o,this.decay),V(ct(i),1-this.decay)),p=ie(V(u,this.momentum),xe(V(i,this.learningRate),dn(ie(c,this.epsilon))));o.assign(c),u.assign(p);let d=ge(r,p);r.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&De(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&De(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&De(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Tb.className="RMSProp";_r(Tb);var Hr=class{static sgd(e){return new Ep(e)}static momentum(e,t,n=!1){return new Nb(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new Tb(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new Ib(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new kb(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new Cb(e,t,n,s,r)}static adagrad(e,t=.1){return new Sb(e,t)}},Li={sgd:Hr.sgd,momentum:Hr.momentum,adadelta:Hr.adadelta,adagrad:Hr.adagrad,rmsprop:Hr.rmsprop,adamax:Hr.adamax,adam:Hr.adam},rP=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function jS(){return new Promise(e=>rP(()=>e()))}var C={};Ee(C,{ERF_A1:()=>mP,ERF_A2:()=>gP,ERF_A3:()=>bP,ERF_A4:()=>yP,ERF_A5:()=>vP,ERF_P:()=>fP,PARALLELIZE_THRESHOLD:()=>$b,SELU_SCALE:()=>XS,SELU_SCALEALPHA:()=>KS,applyActivation:()=>_p,assertAndGetBroadcastShape:()=>rt,assertAxesAreInnerMostDims:()=>BR,assertParamsConsistent:()=>aP,assignToTypedArray:()=>CP,axesAreInnerMostDims:()=>nb,calculateShapes:()=>Gk,checkEinsumDimSizes:()=>EP,checkPadOnDimRoundingMode:()=>hn,combineLocations:()=>gS,complexWithEvenIndex:()=>kP,complexWithOddIndex:()=>SP,computeConv2DInfo:()=>Ll,computeConv3DInfo:()=>iS,computeDefaultPad:()=>Qg,computeDilation2DInfo:()=>CE,computeOptimalWindowSize:()=>oP,computeOutAndReduceShapes:()=>bS,computeOutShape:()=>iP,computePool2DInfo:()=>aS,computePool3DInfo:()=>NE,convertConv2DDataFormat:()=>oS,decodeEinsumEquation:()=>_P,eitherStridesOrDilationsAreOne:()=>Ps,expandShapeToKeepDim:()=>ha,exponent:()=>TP,exponents:()=>NP,fromStringArrayToUint8:()=>ZP,fromUint8ToStringArray:()=>QP,getAxesPermutation:()=>yS,getBroadcastDims:()=>Mk,getComplexWithIndex:()=>IP,getEinsumComputePath:()=>RP,getEinsumPermutation:()=>AP,getFusedBiasGradient:()=>$p,getFusedDyActivation:()=>Tp,getImageCenter:()=>uP,getInnerMostAxes:()=>VR,getPermuted:()=>cP,getReductionAxes:()=>At,getReshaped:()=>lP,getReshapedPermuted:()=>dP,getSliceBeginCoords:()=>pP,getSliceSize:()=>hP,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>PP,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>zP,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>MP,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>VP,getSparseReshapeInputOutputMismatchErrorMessage:()=>UP,getSparseReshapeInputOutputMultipleErrorMessage:()=>WP,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>LP,getSparseReshapeNegativeOutputDimErrorMessage:()=>BP,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>jP,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>GP,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>HP,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>qP,getUndoAxesPermutation:()=>sb,isIdentityPermutation:()=>DP,log:()=>U$,mergeRealAndImagArrays:()=>xP,prepareAndValidate:()=>Wk,prepareSplitSize:()=>OP,segment_util:()=>YS,shouldFuse:()=>Ap,slice_util:()=>kt,splitRealAndImagArrays:()=>wP,tupleValuesAreOne:()=>gr,upcastType:()=>cn,validateInput:()=>Kg,validateUpdateShape:()=>jg,warn:()=>ar});function aP(e,t){let n=e[0].length;e.forEach((r,a)=>{F(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let i=0;i<n;i++)F(i===t||r[i]===s[i],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function iP(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var $b=30;function oP(e){return e<=$b?e:yd(e,Math.floor(Math.sqrt(e)))}function uP(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function lP(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let i=0;i<a;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(a+1))}return r}function cP(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?a.push(i):r.push(i);s.push(...r),s.push(0),s.push(...a)}return s}function dP(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function pP(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function hP(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var KS=1.7580993408473768,XS=1.0507009873554805,fP=.3275911,mP=.254829592,gP=-.284496736,bP=1.421413741,yP=-1.453152027,vP=1.061405429;function xP(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function wP(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function kP(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function SP(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function IP(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function CP(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function NP(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function TP(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var jf="->",$P=/->/g,Sx=",",Ix="...";function _P(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace($P,"").length)/jf.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${jf}").`);let[s,r]=e.split(jf);F(s.indexOf(Ix)===-1,()=>`The ellipsis notation ("${Ix}") is not supported yet.`);let a=s.split(Sx),i=a.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let d=0;d<r.length;++d){let h=r[d];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let d=0;d<s.length;++d){let h=s[d];o.indexOf(h)===-1&&h!==Sx&&o.push(h)}let u=new Array(a.length);for(let d=0;d<i;++d){if(new Set(a[d].split("")).size!==a[d].length)throw new Error(`Found duplicate axes in input component ${a[d]}. Support for duplicate axes in input is not implemented yet.`);u[d]=[];for(let h=0;h<a[d].length;++h)u[d].push(o.indexOf(a[d][h]))}let l=o.length,c=r.length,p=[];for(let d=c;d<l;++d)p.push(d);return{allDims:o,summedDims:p,idDims:u}}function AP(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function EP(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let i=0;i<t[r].length;++i)s[t[r][i]]===void 0?s[t[r][i]]=a[i]:F(s[t[r][i]]===a[i],()=>`Expected dimension ${s[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(a)}, but got dimension ${a[i]}`)}}function RP(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)s.push([]);let a=[];for(let i=0;i<n.length;++i){let o=n[i],u=FP(t,o);for(let l of u)a.indexOf(l)===-1&&(s[i].push(l),a.push(l))}return{path:n,steps:s}}function DP(e){return e.every((t,n)=>t===n)}function FP(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function OP(e,t,n=0){let s=[];if(typeof t=="number")F(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let i=t.reduce((o,u)=>u>0?o+u:o);t[a]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}function PP(e){return`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${e}`}function zP(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function MP(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function LP(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function BP(e,t){return`size ${e} must be non-negative, not ${t}`}function VP(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function WP(e,t){let n=dt(e),s=dt(t);return`Input to reshape is a SparseTensor with ${n}
|
|
dense values, but the requested shape requires a multiple of ${s}. inputShape=${e} outputShape= ${t}`}function UP(e,t){let n=dt(e),s=dt(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${s}. inputShape=${e} outputShape=${t}`}function GP(){return"segment ids must be >= 0"}function HP(){return"segment ids are not increasing"}function qP(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function jP(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var YS={};Ee(YS,{collectGatherOpShapeInfo:()=>YP,computeOutShape:()=>XP,segOpComputeOptimalWindowSize:()=>KP});function KP(e,t){let n=!1,s;for(e<=$b?(s=e,n=!0):s=yd(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=yd(e,s+1);return s}function XP(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function YP(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
|
|
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let p=0;p<s;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=e.shape[n],o=[],u=1,l=1,c=1;for(let p=0;p<s;++p)o.push(e.shape[p]),u*=e.shape[p];for(let p=s;p<n;p++)o.push(e.shape[p]),l*=e.shape[p];for(let p=s;p<r;p++)o.push(t.shape[p]);for(let p=n+1;p<a;p++)o.push(e.shape[p]),c*=e.shape[p];return{batchSize:u,sliceSize:c,outerSize:l,dimSize:i,outputShape:o}}function QP(e){try{return e.map(t=>xd(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function ZP(e){return e.map(t=>zl(t))}var ws={};Ee(ws,{nonMaxSuppressionV3Impl:()=>GS,nonMaxSuppressionV4Impl:()=>HS,nonMaxSuppressionV5Impl:()=>qS,whereImpl:()=>PS});var Bs=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Bs.prototype)}},fs=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,fs.prototype)}},G=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,G.prototype)}},Fe=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Fe.prototype)}},QS=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,QS.prototype)}},ZS=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;t<this.maxEntries-e;t++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=e}};function ga(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Cs(e,t){if(!e)throw new QS(t)}function Cx(e,t){let n=0;for(let s of e)s===t&&n++;return n}function bn(e){return e.length===1?e[0]:e}function ht(e){return Array.isArray(e)?e:[e]}function Vs(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function Qr(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Hn={};function _b(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Sm(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Sm(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:Sm(s))}}}function Ul(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,i;if(a in n)i=n[a];else if(a in Hn)i=Hn[a];else if(i=t[a],i==null)throw new G(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let a=e;if(a.className==null||a.config==null)throw new G(`${s}: Improper config format: ${JSON.stringify(a)}.
|
|
'className' and 'config' must set.`);let i=a.className,o,u;if(i in n?[o,u]=n[i]:i in Hn?[o,u]=Hn.className:i in t&&([o,u]=t[i]),o==null)throw new G(`Unknown ${s}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(u!=null){let l={};for(let h of Object.keys(Hn))l[h]=Hn[h];for(let h of Object.keys(n))l[h]=n[h];let c=a.config;c.customObjects=l;let p={...Hn};for(let h of Object.keys(n))Hn[h]=n[h];Sm(a.config);let d=u(o,a.config,n,r);return Hn={...p},d}else{let l={...Hn};for(let p of Object.keys(n))Hn[p]=n[p];let c=new o(a.config);return Hn={...l},c}}}function JP(e,t){return e<t?-1:e>t?1:0}function jc(e,t){return-1*JP(e,t)}function cr(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function ez(e){if(e==null)throw new G(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function yi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new G(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Ab(e,t,n=0,s=1/0){return Cs(n>=0),Cs(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function Vt(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>Vt(n,`element ${s+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${JS(e)}.`)}function JS(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>JS(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function tz(e,t,n){let s=n!=null?n():w.now(),r;return(...i)=>{let o=n!=null?n():w.now();return o-s<t||(s=o,r=e(...i)),r}}function eI(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}var nz=0;function tI(){return nz++}var Kc={};function Rp(e=""){return e in Kc||(Kc[e]=0),Kc[e]+=1,e+Kc[e].toString()}var sz=["channelsFirst","channelsLast"],rz=["nearest","bilinear"],az=["valid","same","causal"],iz=["max","avg"],oz=["sum","mul","concat","ave"],Bi=new Map;function Ct(e){yi(sz,"DataFormat",e)}function uz(e){yi(rz,"InterpolationFormat",e)}function Gn(e){yi(az,"PaddingMode",e)}function nI(e){yi(iz,"PoolMode",e)}var Wu=[],Nx="/";function sa(e,t){Wu.push(e);try{let n=t();return Wu.pop(),n}catch(n){throw Wu.pop(),n}}function lz(){return Wu.length===0?"":Wu.join(Nx)+Nx}function sI(e){if(!aI(e))throw new Error("Not a valid tensor name: '"+e+"'");return lz()+e}function rI(e){if(!aI(e))throw new Error("Not a valid tensor name: '"+e+"'");Bi.has(e)||Bi.set(e,0);let t=Bi.get(e);if(Bi.set(e,Bi.get(e)+1),t>0){let n=`${e}_${t}`;return Bi.set(n,1),n}else return e}var cz=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function aI(e){return!!e.match(cz)}function dz(e){return e===parseInt(e.toString(),10)}function dr(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function no(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function yr(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function ys(e,t){if(t<e)throw new G(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}var Kf;function Dt(){return Kf==null&&(Kf=wA().epsilon()),Kf}function vs(){return"channelsLast"}function Dp(e,t){return le(e,t)}function Gl(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),U(e,n)}function pz(e,t){return q(()=>{if(e.shape.length!==2)throw new G(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Gl(e,1);return Im(n,[1,t,1])})}function hz(e){let t=[dr(e.shape)];return U(e,t)}function fz(e){if(e.rank<=1)throw new G(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],dr(e.shape,1)];return U(e,t)}function ra(e,t,n){return q(()=>{switch(e.rank){case 1:return fb(e,t,n);case 2:return DS(e,[t,0],[n,e.shape[1]]);case 3:return mb(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Nd(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return qe(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return qe(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new G(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Xf(e,t,n){return q(()=>{switch(e.rank){case 1:return fb(e,t,n);case 2:return DS(e,[0,t],[e.shape[0],n]);case 3:return mb(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Nd(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Xc(e,t,n,s){return q(()=>{switch(e.rank){case 1:return fb(e,t,n);case 2:switch(s){case 1:return ra(e,t,n);case 2:return Xf(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return ra(e,t,n);case 2:return mb(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return Xf(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return ra(e,t,n);case 2:return Nd(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Nd(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return Xf(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Eb(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Ot(e,t)}function Tx(e,t){switch(e.rank){case 1:return nR([e,t]);case 2:return rR([e,t],0);case 3:return iR([e,t],0);case 4:return uR([e,t],0);default:throw new G(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Im(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new G(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return hs(e,t)}function Fp(e,t=0,n=1,s,r){return p3(e,t,n,s,r)}function Es(e,t,n,s){if(e.rank<2||t.rank<2)throw new Fe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Fe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return ma.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:s?Cm(e.rank,s,vs()):null,activation:n});{let r=e.shape.slice(),a=r.pop();e=U(e,[-1,a]);let i=t.shape.slice(),o=i.pop(),u=i.pop(),l=[...i,o],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=U(Ge(t,c),[u,-1]);let p=[...r,...l],d=!1,h=!1;return U(ma.matMul({a:e,b:t,transposeA:d,transposeB:h,bias:s?Cm(e.rank,s,vs()):null,activation:n}),p)}}function iI(e,t,n){return q(()=>(Array.isArray(t)?t=Zt(t,"int32"):t=le(t,"int32"),Ju(e,t,n)))}function Hl(e){return V(e,e)}function Cm(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new G(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1,1]):U(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1]):U(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1]):U(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,s[0]]):U(t,[1].concat(s))}else if(e<3)return t;throw new G(`Unsupported input rank by biasAdd: ${t.rank}`)}function ks(e,t,n){return q(()=>(n==null&&(n=vs()),Ct(n),ie(e,Cm(e.rank,t,n))))}function mz(e,t=1){if(t!==1)throw new Fe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return kp(e)}function gz(e){return q(()=>xe(e,ie(Lt(e),1)))}function oI(e,t,n,s){return q(()=>yF(e,t,n,s))}function bz(e){return q(()=>{let t=ie(.5,V(.2,e));return Vn(t,0,1)})}function ql(e,t,n=!1){return n?e():t()}var yz=["fanIn","fanOut","fanAvg"],vz=["normal","uniform","truncatedNormal"];function xz(e){yi(yz,"FanMode",e)}function wz(e){yi(vz,"Distribution",e)}var ns=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Rb=class extends ns{apply(e,t){return $t(e,t)}};Rb.className="Zeros";re.registerClass(Rb);var Op=class extends ns{apply(e,t){return Mn(e,t)}};Op.className="Ones";re.registerClass(Op);var Db=class extends ns{constructor(e){if(super(),typeof e!="object")throw new G(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new G(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return q(()=>V(we(this.value),Mn(e,t)))}getConfig(){return{value:this.value}}};Db.className="Constant";re.registerClass(Db);var Fb=class extends ns{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Wl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Fb.className="RandomUniform";re.registerClass(Fb);var Ob=class extends ns{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Fe(`randomNormal does not support dType ${t}.`);return Fp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Ob.className="RandomNormal";re.registerClass(Ob);var Pb=class extends ns{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Fe(`truncatedNormal does not support dType ${t}.`);return vb(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Pb.className="TruncatedNormal";re.registerClass(Pb);var zb=class extends ns{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return q(()=>{if(e.length!==2||e[0]!==e[1])throw new G("Identity matrix initializer can only be used for 2D square matrices.");return V(this.gain,xS(e[0]))})}getConfig(){return{gain:this.gain}}};zb.className="Identity";re.registerClass(zb);function kz(e,t="channelsLast"){let n,s;if(Ct(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=dr(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=dr(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=dr(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var xn=class extends ns{constructor(e){if(super(),e.scale<0)throw new G(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,xz(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,wz(this.distribution),this.seed=e.seed}apply(e,t){let n=kz(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let i=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Fe(`${this.getClassName()} does not support dType ${t}.`);return vb(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*a);return Wl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};xn.className="VarianceScaling";re.registerClass(xn);var Pp=class extends xn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Pp.className="GlorotUniform";re.registerClass(Pp);var zp=class extends xn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return xn.className}};zp.className="GlorotNormal";re.registerClass(zp);var Mp=class extends xn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Mp.className="HeNormal";re.registerClass(Mp);var Lp=class extends xn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Lp.className="HeUniform";re.registerClass(Lp);var Bp=class extends xn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Bp.className="LeCunNormal";re.registerClass(Bp);var Vp=class extends xn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Vp.className="LeCunNormal";re.registerClass(Vp);var Mb=class extends ns{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Fe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return q(()=>{if(e.length<2)throw new Fe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=Fp(n,0,1,"float32"),r=sP.gramSchmidt(s);return e[0]>e[1]&&(r=Ge(r)),V(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Mb.className="Orthogonal";re.registerClass(Mb);var $x={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function _x(e,t={}){return Ul(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function yt(e){return _b(e)}function ft(e){if(typeof e=="string"){let t=e in $x?$x[e]:e;if(t==="GlorotNormal")return new zp;if(t==="GlorotUniform")return new Pp;if(t==="HeNormal")return new Mp;if(t==="HeUniform")return new Lp;if(t==="LeCunNormal")return new Bp;if(t==="LeCunUniform")return new Vp;{let n={};return n.className=t,n.config={},_x(n)}}else return e instanceof ns?e:_x(e)}function Nm(e){return Array.isArray(e)&&Array.isArray(e[0])}function $d(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Oe(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new G(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function nt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new G(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function _d(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var Ax="Variable",Sz=class{constructor(e,t="float32",n=Ax,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=tI(),n=n==null?Ax:n,this.originalName=sI(n),this.name=rI(this.originalName),this.trainable_=s,this.constraint=r,this.val=iF(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),Iz(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function Iz(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Tm(e){return e.map(t=>t.read())}function Lb(e){e.forEach(t=>{t[0].write(t[1])})}var Ft=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},$s=class{constructor(e,t,n,s,r,a,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=i,this.id=tI(),a!=null&&(this.originalName=sI(a),this.name=rI(this.originalName)),this.rank=t.length}},Cz=0,Wp=class{constructor(e,t){this.callArgs=t,this.id=Cz++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},Nz=0,He=class extends re.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=Nz++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Vs(n)+"_"+Rp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new fs(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new G(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return bn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return bn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Bs(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Bs(`Layer ${this.name} is not connected, no input to return.`);return bn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Bs(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Bs(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return bn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=ht(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=ht(this.inputSpec);if(e.length!==t.length)throw new G(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new G(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let i=s.shape;for(let o in r.axes){let u=Number(o),l=r.axes[o],c=u>=0?i[u]:i[i.length+u];if(l!=null&&[l,null].indexOf(c)===-1)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected axis ${u} of input shape to have value ${l} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],u=s.shape[i];if(o!=null&&u!=null&&o!==u)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=ht(e),s=!0;for(let a of n)if(!(a instanceof $s)){s=!1;break}let r=!0;for(let a of n)if(a instanceof $s){r=!1;break}if(s===r)throw new G("Arguments to apply() must be all SymbolicTensors or all Tensors");return sa(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let i of ht(e))a.push(i.shape);this.build(bn(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),i=ht(a),o=[];for(let u of i)n.indexOf(u)!==-1&&(u=u.clone()),o.push(u);if(a=bn(o),this.activityRegularizer!=null)throw new Fe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=Tz(e),i=this.computeOutputShape(a),o,u=$z(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((l,c)=>new $s(u,l,this,ht(e),t,this.name,c)):o=new $s(u,i,this,ht(e),t,this.name),this.addInboundNode(e,o,null,null,a,i,t),this._refCount++,this.activityRegularizer!=null)throw new Fe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Bs(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Bs(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new fs(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return _d(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Tm(e?this.trainableWeights:this.weights)}setWeights(e){q(()=>{let t=this.weights;if(t.length!==e.length)throw new G(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=Tm(t);for(let r=0;r<s.length;++r){let a=s[r],i=t[r],o=e[r];if(!w.arraysEqual(a.shape,o.shape))throw new G(`Layer weight shape ${a.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}Lb(n)})}addWeight(e,t,n,s,r,a,i,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new G(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=o!=null?o():ft("zeros"));let u=s.apply(t,n),l=new Sz(u,n,e,a,i);return u.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),a==null&&(a=!0),a?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=ht(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,i=null){let o=ht(e);t=ht(t),n=ht(n),s=ht(s),r=$d(r),a=$d(a);let u=[],l=[],c=[];for(let p of o)u.push(p.sourceLayer),l.push(p.nodeIndex),c.push(p.tensorIndex);new Wp({outboundLayer:this,inboundLayers:u,nodeIndices:l,tensorIndices:c,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},i);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function Tz(e){e=ht(e);let t=[];for(let n of e)t.push(n.shape);return bn(t)}function $z(e){return"float32"}function uI(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let i=s.inputTensors[a],o=s.inboundLayers[a],u=s.nodeIndices[a],l=uI(i,o,u);for(let c of l)r.indexOf(c)===-1&&r.push(c)}return r}}}var tu=class extends He{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:Rp("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new G("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new G("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new G("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new $s(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new Wp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new G(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};tu.className="InputLayer";re.registerClass(tu);function lI(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new G("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new tu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}function _z(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return le(t,e.dtype)}catch(n){throw new G(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var ea=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof ea)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=_z(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new G(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof $s){if(this.id2Value[e.id]==null)throw new G(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new G(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof $s){if(this.id2Value[e.id]==null)throw new G(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new G(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&De(this.id2Mask)}},Ad=new ZS,Ed=new ZS;function Az(e){Ad!=null&&Ad.setMaxEntries(e),Ed!=null&&Ed.setMaxEntries(e)}function Fu(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),i=a?e:[e],o=i.map(f=>f.name),u=[],l=t.names();for(let f of o)l.indexOf(f)!==-1?u.push(t.getValue(f)):u.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let c=o.join(",")+"|"+t.names().sort().join(","),p=Ad.get(c),d;if(p==null){let f=Ez(i,t);p=f.sorted,d=f.recipientCounts,Ad.put(c,p),Ed.put(c,d)}d={},r||Object.assign(d,Ed.get(c));let h=new ea(t);for(let f=0;f<p.length;++f){if(s!=null){let E=gm().numTensors;E>s.maxNumTensors&&(s.maxNumTensors=E),E<s.minNumTensors&&(s.minNumTensors=E)}let m=p[f],g=m.sourceLayer;if(g instanceof tu)continue;let b=[],y=[],v=[],x=!1;for(let E of m.inputs){let P=h.getValue(E),A=h.getMask(E);b.push(P),y.push(A),A!=null&&(x=!0),r||(d[E.name]--,d[E.name]===0&&!t.hasKey(E)&&o.indexOf(E.name)===-1&&!P.isDisposed&&E.sourceLayer.stateful!==!0&&v.push(P))}x&&(n=n||{},n.mask=y[0]);let k=ht(g.apply(b,n)),I=null;g.supportsMasking&&(I=g.computeMask(b,y));let $=Dz(m),R=Array.isArray($)?$:[$];for(let E=0;E<R.length;++E){h.hasKey(R[E])||h.add(R[E],k[E],Array.isArray(I)?I[0]:I);let P=o.indexOf(R[E].name);P!==-1&&(u[P]=k[E])}r||De(v)}return h.disposeMasks(),a?u:u[0]}function Ez(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=Ex(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:i,recipientMap:o}=Ex(a,t);for(let u of i)r.has(u.name)||(n.push(u),r.add(u.name));for(let u in o)s[u]==null&&(s[u]=new Set),o[u].forEach(l=>s[u].add(l))}}return{sorted:n,recipientCounts:Rz(s)}}function Rz(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Ex(e,t){let n=new Set,s=[],r={};for(let o of t.names())n.add(o);let a=[],i=[];for(a.push(e);a.length>0;){let o=a[a.length-1];if(n.has(o.name)){a.pop();continue}let u=i[i.length-1]===a.length-1;if(o.inputs.length===0||u)a.pop(),s.push(o),n.add(o.name),u&&i.pop();else{i.push(a.length-1);for(let l of o.inputs)r[l.name]==null&&(r[l.name]=new Set),r[l.name].add(o.name),!n.has(l.name)&&a.push(l)}}return{sorted:s,recipientMap:r}}function Dz(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var Fz=K();Fz.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,Az);var cI={kernelName:po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,Np(le(n,"float32"),-1))}}},Oz={kernelName:ul,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ct(le(n,"float32")),r=dn(ge(we(1),s));return vt(xe(e,r))}}}},Pz={kernelName:ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=dn(ge(ct(le(n,"float32")),1));return xe(e,s)}}}},zz={kernelName:Cr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=rt(n.shape,s.shape);return{a:()=>{let o=e,u=At(n.shape,r);return u.length>0&&(o=ve(o,u)),U(o,n.shape)},b:()=>{let o=e,u=At(s.shape,r);return u.length>0&&(o=ve(o,u)),U(o,s.shape)}}}},Mz={kernelName:Ia,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},Lz={kernelName:Ca,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>je(n)}}},Bz={kernelName:pl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>je(n)}}},Vz={kernelName:hl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,dn(ge(we(1),ct(le(n,"float32")))))}}},Wz={kernelName:fl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=dn(ie(we(1),ct(le(n,"float32"))));return xe(e,s)}}}},Uz={kernelName:bl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=rt(n.shape,s.shape);return{a:()=>{let o=ie(ct(n),ct(s)),u=V(e,xe(s,o)),l=At(n.shape,r);return l.length>0&&(u=ve(u,l)),U(u,n.shape)},b:()=>{let o=ie(ct(n),ct(s)),u=vt(V(e,xe(n,o))),l=At(s.shape,r);return l.length>0&&(u=ve(u,l)),U(u,s.shape)}}}},Gz={kernelName:ml,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,ie(ct(le(n,"float32")),1))}}},Hz={kernelName:gl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,ge(we(1),ct(le(n,"float32"))))}}};function qz(e,t,n,s,r,a){let i=_(e,"dy","avgPool3dGrad"),o=_(t,"input","avgPool3dGrad"),u=i,l=o,c=!1;o.rank===4&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),F(u.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),F(l.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${l.rank}.`),hn("avgPool3dGrad",r,a);let p={dy:u,input:l},d={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=z.runKernel(fg,p,d);return c?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var jz=L({avgPool3dGrad_:qz}),Kz={kernelName:Jd,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:i,dimRoundingMode:o}=n;return{x:()=>jz(e,s,r,a,i,o)}}};function Xz(e,t,n,s,r){let a=_(e,"dy","avgPoolGrad"),i=_(t,"input","avgPoolGrad");F(i.rank===a.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${a.rank})`);let o=i,u=a,l=!1;i.rank===3&&(l=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),F(u.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${u.rank}.`),F(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let c={dy:u,input:o},p={filterSize:n,strides:s,pad:r},d=z.runKernel(hg,c,p);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Yz=L({avgPoolGrad_:Xz}),Qz={kernelName:Na,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:i}=n;return{x:()=>Yz(e,s,r,a,i)}}},Zz={kernelName:Ta,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:i}=n;return!a&&!i?{a:()=>Ve(e,r,!1,!0),b:()=>Ve(s,e,!0,!1)}:!a&&i?{a:()=>Ve(e,r,!1,!1),b:()=>Ve(e,s,!0,!1)}:a&&!i?{a:()=>Ve(r,e,!1,!0),b:()=>Ve(s,e,!1,!1)}:{a:()=>Ve(r,e,!0,!0),b:()=>Ve(e,s,!0,!0)}}},Jz={kernelName:ho,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>cb(e,s,r)}}},eM={kernelName:V$,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,i=Array.from(a);for(let u=r.length-1;u>=0;u--)if(r[u]===a[u])i[u]=1;else if(r[u]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let o=[];for(let u=0;u<i.length;u++)i[u]>1&&o.push(u);return{x:()=>ve(e,o,!0)}}},tM={kernelName:$a,gradFunc:e=>({x:()=>e.clone()})},nM={kernelName:_a,gradFunc:e=>({x:()=>je(e)})},sM={kernelName:Nr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>vn(Ds(Zo(s,r),Jo(s,a)),e,je(e))}}},rM={kernelName:tp,inputsToSave:["x"],gradFunc:cI.gradFunc},aM={kernelName:fo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(u=>u.shape),{axis:r}=n,a=ts(r,t[0].shape)[0],i=s.map(u=>u[a]);return Bn(e,i,a).map(u=>()=>u)}},iM={kernelName:Aa,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:i,pad:o,dataFormat:u}=n;return F(gr(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>eb(s.shape,e,r,i,o,u),filter:()=>xb(s,e,r.shape,i,o,u)}}},oM={kernelName:Ea,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:i,dataFormat:o,dimRoundingMode:u}=n;return{dy:()=>pa(e,r,a,i,o,1,u),filter:()=>xb(e,s,r.shape,a,i,o,u)}}};function uM(e,t,n,s,r){let a=e;e.rank===4&&(a=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),F(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),F(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),F(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),F(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),F(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:a,dy:i},u={strides:s,pad:r,filterShape:n};return z.runKernel(yg,o,u)}var lM=L({conv3DBackpropFilter_:uM}),cM={kernelName:np,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;F(gr(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[i,o]=t;return{x:()=>hS(i.shape,e,o,r,a),filter:()=>lM(i,e,o.shape,r,a)}}},dM={kernelName:Ra,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(vt(ES(le(n,"float32"))),e)}}},pM={kernelName:Da,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(RS(le(n,"float32")),e)}}},hM={kernelName:Fa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:i}=n;return{x:()=>{let o=yS([r],s.rank),u=mS(e,r,a,!i);return o!=null&&(u=Ge(u,o)),u}}}},fM={kernelName:Oa,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:i}=n,o=s==null?[1,1]:s;F(gr(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[u,l]=t;return F(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[3]===l.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),F(Ps(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),hn("depthwiseConv2d",a,i),{x:()=>VS(u.shape,e,l,r,a,o,i),filter:()=>BS(u,e,l.shape,r,a,o,i)}}},mM={kernelName:sp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},i={x:s,filter:r,dy:e};return{x:()=>z.runKernel(sm,a,n),filter:()=>z.runKernel(rm,i,n)}}},gM={kernelName:za,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>z.runKernel(Ig,s)}}},bM={kernelName:yl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=V(Yn(vt(ct(n))),2/Math.sqrt(Math.PI));return{x:()=>V(e,s)}}},yM={kernelName:Ma,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,n)}}},vM={kernelName:vo,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>U(e,n.shape)}}},xM={kernelName:xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,Yn(n))}}},wM={kernelName:La,gradFunc:e=>({x:()=>je(e)})},kM={kernelName:Ba,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=rt(n.shape,s.shape);return{a:()=>{let o=xe(e,le(s,"float32")),u=At(n.shape,r);return u.length>0?U(ve(o,u),n.shape):o},b:()=>{let o=V(e,le(n,"float32")),u=At(s.shape,r);u.length>0&&(o=U(ve(o,u),s.shape));let l=ct(s);return vt(xe(o,le(l,"float32")))}}}},SM={kernelName:Va,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,i,o]=t,u=o==null?we(1):o,l=At(a.shape,r.shape),c=[];if(a.rank===1){for(let x=0;x<r.shape.length-1;++x)c.push(r.shape[x]);c.push(1)}let p=ge(r,a),d=V(e,u),h=_S(ie(i,we(s))),f=V(V(V(h,h),h),we(-.5));return{x:()=>a.rank===1?U(V(V(e,hs(U(h,[1,1,1,a.shape[0]]),c)),u),r.shape):U(V(V(e,h),u),r.shape),mean:()=>{let x=V(V(h,we(-1)),d);return a.rank===1&&(x=ve(x,l)),U(x,a.shape)},variance:()=>{let x=V(V(f,p),d);return a.rank===1&&(x=ve(x,l)),U(x,a.shape)},scale:()=>{let x=V(p,h),k=V(e,x);return a.rank===1&&(k=ve(k,l)),U(k,a.shape)},offset:()=>{let x=e;return a.rank===1&&(x=ve(x,l)),U(x,a.shape)}}}},IM={kernelName:ko,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,i=ts(a,s.shape)[0];return{x:()=>{let u=s.shape,l=r.size,c=u.slice(0,i),p=c.length,d=u.slice(a,u.length).slice(1),h=d.length,f=Rx(0,p),m=Rx(p+1,p+1+h),g=Dx([c,[l],d]),b=U(e,g),y=U(r,[l]),v=Dx([[p],f,m]),x=Ge(b,v),k=sF(x,y,s.shape[i]),I=sb(v);return k=Ge(k,I),k},indices:()=>r}}};function Rx(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function Dx(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var CM={kernelName:Wa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>je(n),b:()=>je(s)}}},NM={kernelName:Ua,gradFunc:e=>({x:()=>le(e,"float32")})},TM={kernelName:xl,gradFunc:e=>({x:()=>je(e)})},$M={kernelName:wl,gradFunc:e=>({x:()=>je(e)})},_M={kernelName:kl,gradFunc:e=>({x:()=>je(e)})},AM={kernelName:Ga,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=Un(s,0);return{x:()=>vn(a,e,V(e,r))}}},EM={kernelName:Sl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,ie(n,1))}}},RM={kernelName:Ha,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,le(n,"float32"))}}},DM={kernelName:W$,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let i=Yn(s);return ge(e,V(ve(e,r,!0),i))}}}};function FM(e,t,n,s=5,r=1,a=1,i=.5){let o={x:e,y:t,dy:n},u={depthRadius:s,bias:r,alpha:a,beta:i};return z.runKernel($g,o,u)}var OM=L({localResponseNormalizationBackprop_:FM}),PM={kernelName:op,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:i,alpha:o,beta:u}=n;return{x:()=>OM(s,r,e,a,i,o,u)}}};function dI(e,t,n,s){return t.rank<n.rank&&(t=U(t,ha(t.shape,s))),e.rank<n.rank&&(e=U(e,ha(e.shape,s))),{x:()=>V(e,le(Xn(n,t),e.dtype))}}var Fx={kernelName:qa,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],i=t[1],o=ts(r,a.shape),u=dI(e,i,a,o);return{x:()=>u.x()}}},zM={kernelName:ja,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>V(e,le(Zo(n,s),"float32")),b:()=>V(e,le(wS(n,s),"float32"))}}};function MM(e,t,n,s,r,a,i){let o=_(e,"dy","maxPool3dGrad"),u=_(t,"input","maxPool3dGrad"),l=_(n,"output","maxPool3dGrad"),c=o,p=u,d=l,h=!1;u.rank===4&&(h=!0,c=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),p=U(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]]),d=U(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),F(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),F(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),F(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),hn("maxPool3dGrad",a,i);let f={dy:c,input:p,output:d},m={filterSize:s,strides:r,pad:a,dimRoundingMode:i},g=z.runKernel(Ag,f,m);return h?U(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var LM=L({maxPool3dGrad_:MM}),BM={kernelName:up,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:i,pad:o,dimRoundingMode:u}=n;return{x:()=>LM(e,s,r,a,i,o,u)}}};function VM(e,t,n,s,r,a,i){let o=_(e,"dy","maxPoolGrad"),u=_(t,"input","maxPoolGrad"),l=_(n,"output","maxPoolGrad");F(u.rank===o.rank,()=>`Rank of input (${u.rank}) does not match rank of dy (${o.rank})`),F(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),F(u.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${u.rank}.`),hn("maxPoolGrad",a,i);let c={dy:o,input:u,output:l},p={filterSize:s,strides:r,pad:a,dimRoundingMode:i};return z.runKernel(_g,c,p)}var WM=L({maxPoolGrad_:VM}),UM={kernelName:Ka,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:i,pad:o}=n;return{x:()=>WM(e,s,r,a,i,o)}}},GM={kernelName:Xa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=ts(r,s.shape),o=bS(s.shape,a)[1],u=dt(o);return{x:()=>{let c=s.shape.slice();a.forEach(h=>{c[h]=1});let p=U(e,c);return xe(V(p,Mn(s.shape,"float32")),u)}}}},HM={kernelName:Ya,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,i]=t,o=ts(r,a.shape),u=dI(e,i,a,o);return{x:()=>u.x()}}},qM={kernelName:Qa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>V(e,le(Jo(n,s),"float32")),b:()=>V(e,le(Un(n,s),"float32"))}}},jM={kernelName:Za,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(i=>i[0]);return{x:()=>qe(e,a,s.shape)}}},KM={kernelName:Cl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=rt(n.shape,s.shape);return{a:()=>{let o=At(n.shape,r);return o.length>0?U(ve(e,o),n.shape):e},b:()=>{let o=V(e,vt(Sp(xe(n,s)))),u=At(s.shape,r);return u.length>0?U(ve(o,u),s.shape):o}}}},XM={kernelName:Ja,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=rt(n.shape,s.shape);return{a:()=>{let o=V(e,le(s,"float32")),u=At(n.shape,r);return u.length>0?U(ve(o,u),n.shape):o},b:()=>{let o=V(e,le(n,"float32")),u=At(s.shape,r);return u.length>0?U(ve(o,u),s.shape):o}}}},YM={kernelName:$o,gradFunc:e=>({x:()=>vt(e)})},QM={kernelName:Do,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>$t(n.shape,"float32")}}},ZM={kernelName:Ro,gradFunc:e=>({x:()=>je(e)})},JM={kernelName:Fo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return Fs(e,s).map(a=>()=>a)}},Ox={kernelName:ei,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(i=>i[0]);return{x:()=>qe(e,a,s.shape)}}},eL={kernelName:ti,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,i=s,o=rt(a.shape,i.shape);return{a:()=>{let c=le(i,"float32"),p=V(e,V(c,fa(a,ge(c,we(1))))),d=At(a.shape,o);return d.length>0&&(p=ve(p,d)),U(p,a.shape)},b:()=>{let c=Un(a,0),p=vn(c,Qn(a),je(a)),d=V(e,V(r,p)),h=At(i.shape,o);return h.length>0&&(d=ve(d,h)),U(d,i.shape)}}}},tL={kernelName:ni,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=Un(n,0);return{x:()=>vn(r,e,V(e,s)),alpha:()=>{let a=vn(r,je(e),V(e,n)),i=At(s.shape,e.shape);return i.length>0&&(a=ve(a,i)),U(a,s.shape)}}}};function nL(e,t,n){let s=e.shape.slice();s[n]=1;let r=U(t,s),a=wm(e,n,!0,!1),i=wm(e,n,!0,!0),o=V(a,i);return V(r,o)}function sL(e,t,n){let s=e.shape.length,r=s-n.length,a=C.getAxesPermutation(n,s),i=e;a!=null&&(i=Ge(e,a));let o=i.shape.slice(),l=o.splice(s-n.length,n.length).reduce((d,h)=>d*h,1);o.push(l);let c=i.reshape(o),p=nL(c,t,r);if(p=p.reshape(i.shape),a!=null){let d=C.getUndoAxesPermutation(a);p=Ge(p,d)}return p}var rL={kernelName:si,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=[];return r==null?a=s.shape.map((i,o)=>o):typeof r=="number"?a=[r]:a=r,{x:()=>sL(s,e,a)}}},aL={kernelName:Pa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=rt(n.shape,s.shape);return{a:()=>{let o=xe(e,le(s,"float32")),u=At(n.shape,r);return u.length>0?U(ve(o,u),n.shape):o},b:()=>{let o=V(e,le(n,"float32")),u=At(s.shape,r);u.length>0&&(o=U(ve(o,u),s.shape));let l=ct(s);return vt(xe(o,le(l,"float32")))}}}},iL={kernelName:$l,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,vt(ct(n)))}}},oL={kernelName:ii,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=V(Jo(n,6),Np(n));return{x:()=>V(e,le(s,"float32"))}}},uL={kernelName:ri,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,le(Np(n),"float32"))}}},lL={kernelName:Oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>U(e,n.shape)}}},cL={kernelName:ai,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>z.runKernel(Fg,r,n)}}},dL={kernelName:_l,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>z.runKernel(Dg,r,n)}}},pL={kernelName:Po,gradFunc:(e,t,n)=>{let{dims:s}=n,r=ts(s,e.shape);return{x:()=>Jn(e,r)}}},hL={kernelName:zo,gradFunc:e=>({x:()=>je(e)})},fL={kernelName:oi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>vt(xe(e,V(fa(n,1.5),2)))}}},mL={kernelName:Lo,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>le(je(n),"float32"),t:()=>V(e,le(n,e.dtype)),e:()=>V(e,le(ob(n),e.dtype))}}},gL={kernelName:Al,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Un(n,we(0)),r=we(KS),a=we(XS),i=V(e,a),o=V(V(e,r),Yn(le(n,"float32")));return vn(s,i,o)}}}},bL={kernelName:li,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,V(n,ge(we(1),n)))}}},yL={kernelName:El,gradFunc:e=>({x:()=>je(e)})},vL={kernelName:ui,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(tb(le(n,"float32")),e)}}},xL={kernelName:Vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(fS(le(n,"float32")),e)}}},wL={kernelName:Bo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,i=s.shape,[o,u]=Jk(s,r,a),l=[];for(let c=0;c<e.rank;c++)l.push([o[c],i[c]-o[c]-u[c]]);return{x:()=>bi(e,l)}}},kL={kernelName:pi,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,i=V(e,s);return{logits:()=>ge(i,V(ve(i,[r],a),s))}}},SL={kernelName:Rl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,qs(n))}}},Px={kernelName:Wo,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>Jg(e,s,r)}}},zx={kernelName:Uo,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>Ot(e,s)}}},IL={kernelName:ci,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,V(dn(le(n,"float32")),2))}}},CL={kernelName:Fl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,V(le(n,"float32"),2))}}},NL={kernelName:hi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=we(2);return{a:()=>V(e,V(r,ge(n,s))),b:()=>V(e,V(r,ge(s,n)))}}},TL={kernelName:gi,gradFunc:e=>({x:()=>je(e)})},$L={kernelName:fi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=rt(n.shape,s.shape);return{a:()=>{let o=e,u=At(n.shape,r);return u.length>0&&(o=ve(o,u)),U(o,n.shape)},b:()=>{let o=e,u=At(s.shape,r);return u.length>0&&(o=ve(o,u)),U(vt(o),s.shape)}}}},_L={kernelName:di,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;ts(a,s.shape).forEach(l=>{r[l]=1});let o=U(e,r),u=V(o,Mn(s.shape,"float32"));return{x:()=>u}}},AL={kernelName:Ho,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,ct(tb(n)))}}},EL={kernelName:mi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(ge(we(1),ct(n)),e)}}},RL={kernelName:Tr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let i=je(s);if(s.rank===1)for(let o=0;o<r[0];++o)i=ie(i,qe(e,[o*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let o=0;o<r[0];++o)for(let u=0;u<r[1];++u)i=ie(i,qe(e,[o*s.shape[0],u*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let o=0;o<r[0];++o)for(let u=0;u<r[1];++u)for(let l=0;l<r[2];++l)i=ie(i,qe(e,[o*s.shape[0],u*s.shape[1],l*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let o=0;o<r[0];++o)for(let u=0;u<r[1];++u)for(let l=0;l<r[2];++l)for(let c=0;c<r[3];++c)i=ie(i,qe(e,[o*s.shape[0],u*s.shape[1],l*s.shape[2],c*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return i}}}},DL={kernelName:Hs,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=sb(r);return{x:()=>Ge(e,a)}}},FL={kernelName:Ko,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>es(e,r)}}},OL={kernelName:mp,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>PL(e,n)}}};function PL(e,t){let n=Ar(t,je(t)),s=Ju(e,n),r=Zo(t,we(0,"int32")),a=s.rank-r.rank;for(let o=0;o<a;++o)r=Pn(r,o+1);r=Ds(r,Mn(s.shape,"bool"));let i=je(s);return vn(r,s,i)}var zL={kernelName:Xo,gradFunc:e=>({x:()=>je(e)})},ML=[cI,Oz,Pz,zz,Mz,Lz,Bz,Vz,Wz,Uz,Gz,Hz,Kz,Qz,Zz,Jz,eM,tM,nM,sM,rM,aM,oM,iM,cM,dM,pM,hM,fM,mM,aL,gM,bM,yM,vM,xM,kM,wM,SM,IM,CM,NM,TM,$M,_M,AM,EM,RM,DM,PM,Fx,Fx,zM,BM,UM,GM,HM,qM,jM,KM,XM,YM,QM,ZM,JM,Ox,Ox,eL,tL,rL,iL,oL,uL,lL,cL,dL,pL,hL,fL,mL,gL,bL,yL,vL,xL,wL,kL,SL,Px,Px,zx,zx,IL,NL,CL,TL,$L,_L,AL,EL,RL,DL,FL,OL,zL];for(let e of ML)G$(e);var LL={};Ee(LL,{maxNorm:()=>BL,minMaxNorm:()=>UL,nonNeg:()=>WL,unitNorm:()=>VL});function Bb(e,t){return q(()=>dn(ve(V(e,e),t,!0)))}var jl=class extends re.Serializable{getConfig(){return{}}},Vb=class extends jl{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return q(()=>{let t=Bb(e,this.axis),n=Vn(t,0,this.maxValue);return V(e,xe(n,ie(Dt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Vb.className="MaxNorm";re.registerClass(Vb);var Wb=class extends jl{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return q(()=>xe(e,ie(Dt(),Bb(e,this.axis))))}getConfig(){return{axis:this.axis}}};Wb.className="UnitNorm";re.registerClass(Wb);var Ub=class extends jl{apply(e){return Ys(e)}};Ub.className="NonNeg";re.registerClass(Ub);var Gb=class extends jl{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return q(()=>{let t=Bb(e,this.axis),n=ie(V(this.rate,Vn(t,this.minValue,this.maxValue)),V(1-this.rate,t));return V(e,xe(n,ie(Dt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Gb.className="MinMaxNorm";re.registerClass(Gb);var Mx={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Pt(e){return _b(e)}function Lx(e,t={}){return Ul(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function zt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in Mx?Mx[e]:e,config:{}};return Lx(n)}else return e instanceof jl?e:Lx(e)}function BL(e){return new Vb(e)}function VL(e){return new Wb(e)}function WL(){return new Ub}function UL(e){return new Gb(e)}var GL={};Ee(GL,{constant:()=>jL,glorotNormal:()=>eB,glorotUniform:()=>JL,heNormal:()=>tB,heUniform:()=>nB,identity:()=>QL,leCunNormal:()=>sB,leCunUniform:()=>rB,ones:()=>qL,orthogonal:()=>aB,randomNormal:()=>XL,randomUniform:()=>KL,truncatedNormal:()=>YL,varianceScaling:()=>ZL,zeros:()=>HL});function HL(){return new Rb}function qL(){return new Op}function jL(e){return new Db(e)}function KL(e){return new Fb(e)}function XL(e){return new Ob(e)}function YL(e){return new Pb(e)}function QL(e){return new zb(e)}function ZL(e){return new xn(e)}function JL(e){return new Pp(e)}function eB(e){return new zp(e)}function tB(e){return new Mp(e)}function nB(e){return new Lp(e)}function sB(e){return new Bp(e)}function rB(e){return new Vp(e)}function aB(e){return new Mb(e)}var iB={};Ee(iB,{Layer:()=>He,RNN:()=>Rr,RNNCell:()=>Yl,activation:()=>EV,add:()=>BV,alphaDropout:()=>SW,average:()=>VV,averagePooling1d:()=>Jy,averagePooling2d:()=>ev,averagePooling3d:()=>tv,avgPool1d:()=>YV,avgPool2d:()=>ZV,avgPool3d:()=>eW,avgPooling1d:()=>QV,avgPooling2d:()=>JV,avgPooling3d:()=>tW,batchNormalization:()=>jV,bidirectional:()=>mW,concatenate:()=>WV,conv1d:()=>kV,conv2d:()=>SV,conv2dTranspose:()=>IV,conv3d:()=>CV,conv3dTranspose:()=>NV,convLstm2d:()=>dW,convLstm2dCell:()=>pW,cropping2D:()=>$V,dense:()=>RV,depthwiseConv2d:()=>AV,dot:()=>qV,dropout:()=>DV,elu:()=>gV,embedding:()=>LV,flatten:()=>OV,gaussianDropout:()=>kW,gaussianNoise:()=>wW,globalAveragePooling1d:()=>nW,globalAveragePooling2d:()=>sW,globalMaxPool1d:()=>bW,globalMaxPool2d:()=>yW,globalMaxPooling1d:()=>s0,globalMaxPooling2d:()=>r0,gru:()=>aW,gruCell:()=>iW,input:()=>nV,inputLayer:()=>mV,layerNormalization:()=>KV,leakyReLU:()=>yV,lstm:()=>oW,lstmCell:()=>uW,masking:()=>IW,maxPool1d:()=>vW,maxPool2d:()=>xW,maxPooling1d:()=>a0,maxPooling2d:()=>i0,maxPooling3d:()=>rW,maximum:()=>UV,minimum:()=>GV,multiply:()=>HV,permute:()=>MV,prelu:()=>vV,reLU:()=>bV,repeatVector:()=>PV,reshape:()=>zV,rnn:()=>hW,separableConv2d:()=>TV,simpleRNN:()=>lW,simpleRNNCell:()=>cW,softmax:()=>xV,spatialDropout1d:()=>FV,stackedRNNCells:()=>fW,thresholdedReLU:()=>wV,timeDistributed:()=>gW,upSampling2d:()=>_V,zeroPadding2d:()=>XV});async function rr(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let i=a;t.push(i.data()),n.push(r),s.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];De(s)}}function pI(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var oB=125,so=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},uB=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},lB=class extends so{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let i=q(()=>ie(this.totals[s],V(r,n)));this.totals[s]=i,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:q(()=>{let s=V(xe(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),qt(t[n])}))}},cB=class extends so{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let i=0;i<a.length;++i)if(typeof a[i]!="number"){let o=a[i];e.push(o.data()),t.push(r),n.push(i)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},dB=class extends so{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||jS,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=oB),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=tz(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await rr(n),s.push(this.yield(e,t,n))),s.push(this.nextFrameFunc()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await rr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await rr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await rr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await rr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await rr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await rr(e),await this.trainEnd(e))}};function hI(e,t){return e==null&&(e={}),e instanceof so?[e]:Array.isArray(e)&&e[0]instanceof so?e:ht(e).map(s=>new dB(s,t))}var Ss=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Ss.checkForDuplicate(t),Ss.constructors[e]==null&&(Ss.constructors[e]=[]),Ss.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Ss.constructors)Ss.constructors[+t].forEach(s=>{if(s===e)throw new G("Duplicate callback constructor.")})}static clear(){Ss.constructors={}}static createCallbacks(e){let t=[];for(let n in Ss.constructors){let s=+n;e>=s&&t.push(...Ss.constructors[s])}return t.map(n=>new n)}},Hb=Ss;Hb.constructors={};function fI(e,t,n,s,r,a,i,o,u){let l=new cB,c=[new lB,...Hb.createCallbacks(t)];e!=null&&c.push(...e),c.push(l);let p=new uB(c);return p.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:i,verbose:t,doValidation:o,metrics:u}),{callbackList:p,history:l}}function gs(e,t={},n=!1){return Ul(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Rd(e,t){return q(()=>{e.dtype!=="float32"&&(e=le(e,"float32"));let n=ve(Hl(e),t,!0),s=Bl(n.shape,Dt()),r=dn(Ar(n,s));return xe(e,r)})}function vi(e,t){return q(()=>It(Hl(ge(t,e)),-1))}function Up(e,t){return q(()=>It(Lt(ge(t,e)),-1))}function nu(e,t){return q(()=>{let n=ge(e,t),s=Vn(Lt(e),Dt(),Number.MAX_VALUE),r=Lt(xe(n,s));return V(100,It(r,-1))})}function pB(e,t){return q(()=>{let n=Vn(t,Dt(),Number.MAX_VALUE),s=Qn(ie(1,n)),r=Vn(e,Dt(),Number.MAX_VALUE),a=Qn(ie(1,r));return It(Hl(ge(s,a)),-1)})}function hB(e,t){return q(()=>{let n=Ar(0,ge(1,V(e,t)));return It(Hl(n),-1)})}function fB(e,t){return q(()=>{let n=Ar(0,ge(1,V(e,t)));return It(n,-1)})}function mB(e,t){return q(()=>{let n=ve(V(e,t),-1),s=As(V(ge(1,e),t),-1);return Ar(0,ie(1,ge(s,n)))})}function gB(e,t){return q(()=>{let n=Math.log(2),s=ge(t,e),r=ge(ie(s,Vl(V(-2,s))),n);return It(r,-1)})}function nl(e,t,n=!1){return q(()=>{if(n)t=gb(t);else{let s=ve(t,t.shape.length-1,!0);t=xe(t,s)}return t=Vn(t,Dt(),1-Dt()),vt(ve(V(le(e,"float32"),Qn(t)),t.shape.length-1))})}function Dd(e,t,n=!1){return q(()=>{let s=le(Sp(hz(e)),"int32");t=Vn(t,Dt(),1-Dt());let r=t.shape,a=U(Id(s,r[r.length-1]),r);return nl(a,t,n)})}function bB(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new G(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return q(()=>{let n=Ys(t),s=vt(Lt(t));return ie(ge(n,V(t,e)),ib(Yn(s)))})}function Gp(e,t){return q(()=>{let n;return n=Vn(t,Dt(),1-Dt()),n=Qn(xe(n,ge(1,n))),It(bB(e,n),-1)})}function yB(e,t){return q(()=>{let n=Vn(e,Dt(),1),s=Vn(t,Dt(),1);return ve(V(e,Qn(xe(n,s))),-1)})}function vB(e,t){return q(()=>{let n=Qn(ie(Dt(),t));return It(ge(t,V(e,n)),-1)})}function qb(e,t){return q(()=>{let n=Rd(e,-1),s=Rd(t,-1),r=V(n,s);return vt(ve(r,-1))})}var Fd={meanSquaredError:vi,meanAbsoluteError:Up,meanAbsolutePercentageError:nu,meanSquaredLogarithmicError:pB,squaredHinge:hB,hinge:fB,categoricalHinge:mB,logcosh:gB,categoricalCrossentropy:nl,sparseCategoricalCrossentropy:Dd,binaryCrossentropy:Gp,kullbackLeiblerDivergence:yB,poisson:vB,cosineProximity:qb};function Yf(e){if(typeof e=="string"){if(e in Fd)return Fd[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new G(t)}else return e}function jb(e,t){return q(()=>{let n=V(.5,Zn(t)),s=Dp(Un(t,n),e.dtype);return It(Xn(e,s),-1)})}function Kb(e,t){return q(()=>Dp(Xn(Yu(e,-1),Yu(t,-1)),"float32"))}function mI(e,t){return q(()=>le(ve(Ds(Xn(e,1),Xn(t,1))),"float32"))}function xB(e,t){return q(()=>le(ve(Ds(Xn(e,1),Xn(t,0))),"float32"))}function wB(e,t){return q(()=>le(ve(Ds(Xn(e,0),Xn(t,1))),"float32"))}function gI(e,t){return q(()=>{let n=mI(e,t),s=wB(e,t),r=ie(n,s);return le(vn(Un(r,0),xe(n,r),0),"float32")})}function kB(e,t){return q(()=>{let n=mI(e,t),s=xB(e,t),r=ie(n,s);return le(vn(Un(r,0),xe(n,r),0),"float32")})}function bI(e,t){return Gp(e,t)}function yI(e,t){return e.rank===t.rank&&(e=br(e,[e.rank-1])),t=Yu(t,-1),t.dtype!==e.dtype&&(t=le(t,e.dtype)),le(Xn(e,t),"float32")}var SB=vi,IB=vi,CB=Up,NB=Up,TB=nu,$B=nu,Xb=nl,_B=qb,vI=Dd,Od={binaryAccuracy:jb,categoricalAccuracy:Kb,precision:gI,categoricalCrossentropy:Xb,sparseCategoricalCrossentropy:vI,mse:SB,MSE:IB,mae:CB,MAE:NB,mape:TB,MAPE:$B,cosine:_B};function AB(e){if(typeof e=="string"&&e in Od)return Od[e];if(typeof e!="string"&&e!=null)return e;throw new G(`Unknown metric ${e}`)}function Yc(e){if(Cs(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Fd))if(Fd[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Od))if(Od[n]===e){t=n;break}return t!==void 0?t:e.name}}function EB(e){let t={Adagrad:()=>Li.adagrad(.01),Adadelta:()=>Li.adadelta(1,.95,Dt()),Adam:()=>Li.adam(.001,.9,.999,Dt()),Adamax:()=>Li.adamax(.002,.9,.999,Dt(),0),RMSProp:()=>Li.rmsprop(.001,.9,0,Dt()),SGD:()=>Li.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new G(`Unknown Optimizer ${e}`)}var Bx=1*1024*1024;function Vx(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!$m(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>Bx&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${Bx}.`)}}function $m(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!$m(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!$m(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function RB(e,t,n,s=console.log){let r=FB(e),a=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let i;if(!r){a.push("Receives inputs"),i=[];for(let c in e.nodesByDepth)i.push(...e.nodesByDepth[c])}s("_".repeat(t)),Pd(a,n,s),s("=".repeat(t));let o=e.layers;for(let c=0;c<o.length;++c)r?OB(o[c],n,s):PB(o[c],n,i,s),s((c===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let u=DB(e),l=_d(e.nonTrainableWeights);s(`Total params: ${u+l}`),s(`Trainable params: ${u}`),s(`Non-trainable params: ${l}`),s("_".repeat(t))}function DB(e){let t;return e.collectedTrainableWeights!=null?t=_d(e.collectedTrainableWeights):t=_d(e.trainableWeights),t}function FB(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let i of r.inboundNodes)if(s.indexOf(i)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Pd(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function OB(e,t,n){let s,r;try{r=e.inboundNodes.map(u=>JSON.stringify(u.inputShapes)).join(",")}catch(u){r="multiple"}try{s=JSON.stringify(e.outputShape)}catch(u){s="multiple"}let a=e.name,i=e.getClassName(),o=[`${a} (${i})`,r,s,e.countParams().toString()];Pd(o,t,n)}function PB(e,t,n,s){let r,a;try{a=e.inboundNodes.map(p=>JSON.stringify(p.inputShapes)).join(",")}catch(p){a="multiple"}try{r=JSON.stringify(e.outputShape)}catch(p){r="multiple"}let i=[];for(let p of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(p)===-1))for(let d=0;d<p.inboundLayers.length;++d){let h=p.inboundLayers[d].name,f=p.nodeIndices[d],m=p.tensorIndices[d];i.push(`${h}[${f}][${m}]`)}let o=e.name,u=e.getClassName(),l=i.length===0?"":i[0],c=[`${o} (${u})`,a,r,e.countParams().toString(),l];Pd(c,t,s);for(let p=1;p<i.length;++p)Pd(["","","","",i[p]],t,s)}function xI(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function sl(e,t){if(e===null)return null;if(typeof e=="string")return Qr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];xI(t,r,a)?n.push(a):n.push(sl(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=Qr(s);n[a]=sl(r,a)}}return n}}function _m(e,t){if(e==null)return null;if(typeof e=="string")return Vs(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];xI(t,r,a)?n.push(a):n.push(_m(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=Vs(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=_m(r,s)}return n}}var wI="0.0.0",Is=class extends He{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=Rp(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],cr(this.inputs).length!==this.inputs.length)throw new G(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);cr(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let y=b.sourceLayer,v=b.nodeIndex,x=b.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(v),this.outputLayersTensorIndices.push(x)}for(let b of this.inputs){let y=b.sourceLayer,v=b.nodeIndex,x=b.tensorIndex;Cs(v===0,"input layer has >1 nodes"),Cs(x===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(v),this.inputLayersTensorIndices.push(x)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let y=this.inputLayers[b];if(!(y instanceof tu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${b} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let t={},n={},s={},r={},a={},i=[],o=(b,y,v,x,k,I)=>{(x==null||k==null||I==null)&&(x=b.sourceLayer,k=b.nodeIndex,I=b.tensorIndex);let $=x.inboundNodes[k];if(v.indexOf($)!==-1)throw new fs(`The tensor ${b.name} at layer "${x.name}" is part of a cycle.`);if(y.indexOf($)!==-1)return;this.containerNodes.add(Is.nodeKey(x,k)),x.id in a||(a[x.id]=Object.keys(a).length),v.indexOf($)===-1&&v.push($);let R=$.inboundLayers.length;for(let E=0;E<R;E++){let P=$.inputTensors[E],A=$.inboundLayers[E],O=$.nodeIndices[E],T=$.tensorIndices[E];o(P,y,v,A,O,T)}for(y.push($);v.indexOf($)>=0;)v.splice(v.indexOf($),1);i.push($)},u=[],l=[];for(let b of this.outputs)o(b,u,l);let c=i.slice().reverse();for(let b of c){n[b.id]=b,b.id in t||(t[b.id]=0);let y=t[b.id],v=s[b.outboundLayer.id]==null?0:s[b.outboundLayer.id];y=Math.max(y,v),s[b.outboundLayer.id]=y,r[b.outboundLayer.id]=b.outboundLayer,t[b.id]=y;for(let x=0;x<b.inboundLayers.length;x++){let k=b.inboundLayers[x],I=b.nodeIndices[x],$=k.inboundNodes[I],R=t[$.id]==null?0:t[$.id];t[$.id]=Math.max(y+1,R),n[$.id]=$}}let p={};for(let b in t){let y=t[b];y in p||(p[y]=[]),p[y].push(n[b])}let d={};for(let b in s){let y=s[b];y in d||(d[y]=[]),d[y].push(r[b])}let h=Object.keys(d).map(b=>parseInt(b,10)).sort(jc);this.layers=[];for(let b of h){let y=d[b];y.sort((v,x)=>{let k=a[v.id],I=a[x.id];return k<I?-1:k>I?1:0});for(let v of y)v instanceof Is&&this.internalContainerRefs.push(v),this.layers.push(v)}this.layersByDepth=d,h=Object.keys(p).map(b=>parseInt(b,10)).sort(jc);let f=this.inputs.slice(),m=[];for(let b of h)for(let y of p[b]){let v=y.outboundLayer;if(v!=null){for(let x of y.inputTensors)if(f.indexOf(x)===-1)throw new fs(`Graph disconnected: cannot obtain value for tensor ${x} at layer "${v.name}". The following previous layers were accessed without issue: ${m}`);for(let x of y.outputTensors)f.push(x);m.push(v.name)}}this.nodesByDepth=p;let g=this.layers.map(b=>b.name);for(let b of g){let y=g.filter(v=>v===b).length;if(y!==1)throw new fs(`The name "${b}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Wp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new G("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let i of a.weights){if(n[i.originalName]!=null)throw new G(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,s++}let r=[];for(let a in e){let i=a;if(n[a]==null){let o=a.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[a]]);else if(t)throw new G(`Provided weight data has no target variable: ${a}`);delete n[i]}if(t){let a=[];for(let i in n)a.push(i);if(a.length>0)throw new G(`${a.length} of ${s} weights are not set: ${a}`)}Lb(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${wI}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=_m(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return q(()=>{e=ht(e);let n=new ea;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return Fu(this.outputs,n,t)})}computeMask(e,t){return q(()=>{e=ht(e);let n;return t==null?n=ga(null,e.length):n=ht(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=$d(e);if(t.length!==this.inputLayers.length)throw new G(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],u=t[i],l=o.name+"_0_0";n[l]=u}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(jc);if(s.length>1)for(let i of s){let o=this.nodesByDepth[i];for(let u of o){let l=u.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(l.id)!==-1)continue;let c=[];for(let f=0;f<u.inboundLayers.length;f++){let m=u.inboundLayers[f],g=u.nodeIndices[f],b=u.tensorIndices[f],y=`${m.name}_${g}_${b}`,v=n[y];c.push(v)}let p=l.computeOutputShape(bn(c)),d=$d(p),h=l.inboundNodes.indexOf(u);for(let f=0;f<d.length;f++){let m=`${l.name}_${h}_${f}`;n[m]=d[f]}}}let r=[],a=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],u=this.outputLayersNodeIndices[i],l=this.outputLayersTensorIndices[i],c=`${o.name}_${u}_${l}`;a.push(c)}for(let i=0;i<a.length;i++){let o=a[i];Cs(o in n),r.push(n[o])}return bn(r)}runInternalGraph(e,t){t==null&&(t=ga(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let u=this.inputs[o],l=e[o],c=t[o];n[u.id]=[l,c]}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(jc);for(let o of s){let u=this.nodesByDepth[o];for(let l of u){let c=l.outboundLayer,p=l.inputTensors,d=l.outputTensors,h=new Array;for(let f of p)f.id in n&&h.push(n[f.id]);if(h.length===p.length){let f={},m,g,b,y;if(l.callArgs!=null&&(f=l.callArgs),h.length===1){let[v,x]=h[0];f.mask==null&&(f.mask=x),b=ht(c.call(v,f)),y=ht(c.computeMask(v,x)),m=[v],g=[x]}else m=h.map(v=>v[0]),g=h.map(v=>v[1]),f.mask==null&&(f.mask=g),b=ht(c.call(m,f)),y=ht(c.computeMask(m,g));if(c.activityRegularizer)throw new Fe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let v=0;v<d.length;++v){let x=d[v],k=b[v],I=y[v];n[x.id]=[k,I]}}}}let r=[],a=[],i=[];for(let o of this.outputs){Cs(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[u,l]=n[o.id];i.push(u.shape),r.push(u),a.push(l)}return[r,a,i]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof Is?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=Is.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new G(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new G("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new G(`No such layer: ${e}`)}calculateLosses(){return q(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=Is.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let i=a.getClassName(),o=a.getConfig(),u=[];for(let c=0;c<a.inboundNodes.length;c++){let p=a.inboundNodes[c],d=Is.nodeKey(a,c),h={};if(this.containerNodes.has(d)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let f=[];for(let m=0;m<p.inboundLayers.length;m++){let g=p.inboundLayers[m],b=p.nodeIndices[m],y=p.tensorIndices[m],v=Is.nodeKey(g,b),x=t[v];x==null&&(x=0),f.push([g.name,x,y,h])}u.push(f)}}}let l={};l.name=a.name,l.className=i,l.config=o,l.inboundNodes=u,n.push(l)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let i=this.inputLayers[a],o=this.inputLayersNodeIndices[a],u=Is.nodeKey(i,o);if(!this.containerNodes.has(u))continue;let l=t[u];l==null&&(l=0);let c=this.inputLayersTensorIndices[a];s.push([i.name,l,c])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let i=this.outputLayers[a],o=this.outputLayersNodeIndices[a],u=Is.nodeKey(i,o);if(!this.containerNodes.has(u))continue;let l=t[u];l==null&&(l=0);let c=this.outputLayersTensorIndices[a];r.push([i.name,l,c])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function i(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function o(m,g){let b=[],y;for(let v of g){let x=v[0],k=v[1],I=v[2];if(y=v[3]==null?{}:v[3],!(x in r)){i(m,g);return}let $=r[x];if($.inboundNodes.length<=k){i(m,g);return}let R=$.inboundNodes[k];b.push(R.outputTensors[I])}b.length>0&&m.apply(bn(b),y)}function u(m){let g=m.name,b=gs(m,t.customObjects!=null?t.customObjects:{});b.setFastWeightInitDuringBuild(s),r[g]=b,m.inboundNodes.forEach(v=>{if(!(v instanceof Array))throw new G(`Corrupted configuration, expected array for nodeData: ${v}`);i(b,v)})}let l=t.name,c=t.layers;for(let m of c)u(m);for(;!ez(a);)for(let m of c){let g=r[m.name];if(g.name in a){let b=a[g.name];delete a[g.name];for(let y of b)o(g,y)}}let p=[],d=[],h=t.inputLayers;for(let m of h){let g=m[0],b=m[1],y=m[2];Cs(g in r);let x=r[g].inboundNodes[b].outputTensors;p.push(x[y])}let f=t.outputLayers;for(let m of f){let g=m[0],b=m[1],y=m[2];Cs(g in r);let x=r[g].inboundNodes[b].outputTensors;d.push(x[y])}return new e({inputs:p,outputs:d,name:l})}get stateful(){if(this._stateful)throw new G("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){q(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function zB(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function kI(e,t){return zB(e,t,"classWeight")}async function SI(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=q(()=>{if(e.shape.length===1)return lr(e);if(e.shape.length===2){if(e.shape[1]>1)return Yu(e,1);if(e.shape[1]===1)return U(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());De(r);let i=[];return a.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Zt(i,"float32")}else return null}function MB(e,t){return V(e,t)}var LB=32;function II(e,t){let n,s,r=t;n=r.xs,s=r.ys,w.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=Wx("input",e.inputNames,n),i=Wx("output",e.outputNames,s),o=a[0].shape[0];w.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let u=0;u<a.length;u++)w.assert(a[u].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[u]} has ${a[u].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let u=0;u<i.length;u++)w.assert(i[u].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[u]} has ${i[u].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:a,ys:i}}function Wx(e,t,n){if(n instanceof et)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new G(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function BB(e){if(e.length===3)throw new Fe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function VB(e,t,n){let s=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,i;if(r)if(Ux(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=BB(n.validationData);a=g.xs,i=g.ys}let o=e.makeTrainFunction(),u=e.getDedupedMetricsNames(),l;r?l=u.slice().concat(u.map(g=>"val_"+g)):l=u.slice();let c=hI(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:d,history:h}=fI(c,p,n.epochs,null,null,WB(t,n),null,r,l);d.setModel(e),e.history=h,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await d.onEpochBegin(f);let b=0,y=0;for(s||(m=await t.iterator());!s||b<n.batchesPerEpoch;){let v=await m.next();if(s&&v.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${b} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(v.value!=null){let{xs:x,ys:k}=II(e,v.value),I={};I.batch=y,I.size=x[0].shape[0],await d.onBatchBegin(y,I);let $=[];if(n.classWeight!=null){let P=kI(n.classWeight,e.outputNames);for(let A=0;A<P.length;++A)$.push(await SI(k[A],null,P[A]))}let R=x.concat(k).concat($),E=o(R);De(R);for(let P=0;P<u.length;++P){let A=u[P],O=E[P];I[A]=O,qt(O)}await d.onBatchEnd(y,I),pI(I),y++,b++}if(s?b>=n.batchesPerEpoch:v.done){if(r){let x;Ux(n.validationData)?x=ht(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):x=ht(e.evaluate(a,i,{batchSize:n.validationBatchSize==null?LB:n.validationBatchSize,verbose:0}));for(let k=0;k<e.metricsNames.length;++k)g[`val_${e.metricsNames[k]}`]=x[k]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(f,g),f++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function WB(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function Ux(e){return typeof e.iterator=="function"}function UB(e){return typeof e.next=="function"}async function GB(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new Fe("Verbose mode is not implemented yet.");w.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=UB(t)?t:await t.iterator(),o=0,u=0;for(;!s||u<n.batches;){let l=await i.next();if(a=q(()=>{if(l.value){let{xs:c,ys:p}=II(e,l.value),d=c.concat(p),h=q(()=>r(d));if(De(d),u===0)for(let m=0;m<h.length;++m)a.push(we(0));let f=d[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],b=a[m];a[m]=q(()=>ie(a[m],V(f,g))),u>0&&De(b)}De(h),o+=f,++u}return a}),l.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let l=0;l<a.length;++l){let c=a[l];a[l]=xe(a[l],o),De(c)}return bn(a)}function Am(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Ou(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>ra(s,t,n-t)):ra(e,t,n-t)}function Yb(e,t){return q(()=>e==null?null:Array.isArray(e)?e.map(n=>Yb(n,t)):iI(e,t.dtype==="int32"?t:le(t,"int32")))}function Em(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function HB(e,t,n,s,r,a,i,o,u,l,c,p,d,h,f){r==null&&(r=32),a==null&&(a=1),c==null&&(c=!0),d==null&&(d=0);let m=!1;if(u!=null&&l!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new G("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),b;g!=null&&(b=ys(0,g)),i==null&&(i=1);let{callbackList:y,history:v}=fI(o,i,a,d,g,h,r,m,p);y.setModel(e),e.history=v,await y.onTrainBegin(),e.stopTraining_=!1;for(let x=d;x<a;++x){await y.onEpochBegin(x);let k={};if(h!=null)throw new Fe("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Fe("batch shuffling is not implemneted yet");c&&w.shuffle(b);let I=Zt(b),$=Em(g,r);for(let R=0;R<$.length;++R){let E={};if(await y.onBatchBegin(R,E),q(()=>{let P=$[R][0],A=$[R][1],O=ra(I,P,A-P);E.batch=R,E.size=A-P;let T=Yb(n,O),M=t(T);for(let W=0;W<s.length;++W){let j=s[W],X=M[W];E[j]=X,qt(X)}if(R===$.length-1&&m){let W=e.testLoop(u,l,r);for(let j=0;j<s.length;++j){let X=s[j],Y=W[j];qt(Y),k["val_"+X]=Y}}}),await y.onBatchEnd(R,E),pI(E),e.stopTraining_)break}I.dispose()}if(await y.onEpochEnd(x,k),e.stopTraining_)break}return await y.onTrainEnd(),await e.history.syncData(),e.history}async function qB(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,i,o,u,l,c,p,d;try{let h=s.batchSize==null?32:s.batchSize;Am(h);let f=!1,m=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,f,h);r=m[0],a=m[1],d=m[2];let g=!1,b;if(s.validationData!=null&&s.validationData.length>0){if(g=!0,s.validationData.length===2)u=s.validationData[0],l=s.validationData[1];else throw s.validationData.length===3?new Fe("validationData including sample weights is not supported yet."):new G(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let E=!0,P=await e.standardizeUserData(u,l,null,null,E,h);c=P[0],p=P[1],b=c.concat(p)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){g=!0;let E=Math.floor(r[0].shape[0]*(1-s.validationSplit)),P=r[0].shape[0];c=Ou(r,E,P),i=r,r=Ou(r,0,E),p=Ou(a,E,P),o=a,a=Ou(a,0,E),b=c.concat(p)}else s.validationSteps!=null&&(g=!0);let y=r.concat(a).concat(d);e.checkTrainableWeightsConsistency();let v=e.makeTrainFunction(),x=e.getDedupedMetricsNames(),k,I;g?(e.makeTestFunction(),k=e.testFunction,I=x.slice().concat(x.map(E=>"val_"+E))):(k=null,b=[],I=x.slice());let $=hI(s.callbacks,s.yieldEvery);return await HB(e,v,y,x,h,s.epochs,s.verbose,$,k,b,s.shuffle,I,s.initialEpoch,null,null)}finally{e.isTraining=!1,ps(r,t),ps(a,n),ps(i,t),ps(o,n),ps(c,u),ps(p,l),d!=null&&De(d)}}function CI(e){let t=[];e instanceof et&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(Gl(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function ps(e,t){if(e==null)return;let n=[];if(t instanceof et)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof et)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function jB(e){return e instanceof et}function Rm(e){return Array.isArray(e)}function Gx(e){return!jB(e)&&!Rm(e)}function Hx(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Rm(e)&&e.length>0)i=!0;else if(Gx(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new G(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let a;if(Gx(e)){e=e,a=[];for(let i of t){if(e[i]==null)throw new G(`No data provided for "${i}". Need data for each key in: ${t}`);a.push(e[i])}}else if(Rm(e)){if(e=e,e.length!==t.length)throw new G(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new G(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=CI(a),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=a[i];if(o.shape.length!==n[i].length)throw new G(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let u=0;u<n[i].length;++u){if(u===0&&!s)continue;let l=o.shape[u],c=n[i][u];if(c!=null&&c>=0&&l!==c)throw new G(`${r} expected a batch of elements where each example has shape [${n[i].slice(1,n[i].length)}] (i.e.,tensor shape [*,${n[i].slice(1,n[i].length)}]) but the ${r} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return a}function KB(e,t,n){let s=cr(e.map(a=>a.shape[0]));s.sort();let r=cr(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new G(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new G(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!w.arraysEqual(s,r))throw new G(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function XB(e,t,n){let s=[vi,Gp,nl];for(let r=0;r<e.length;++r){let a=e[r],i=t[r],o=n[r];if(i!=null){if(i===nl&&a.shape[a.shape.length-1]===1)throw new G(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(i)!==-1){let u=a.shape.slice(1),l=o.slice(1);for(let c=0;c<u.length;++c){let p=u[c],d=l[c];if(d!=null&&p!==d)throw new G(`A target Tensor with shape ${a.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function qx(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new G(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new G(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=a[i];if(o.shape.length!==n[i].length)throw new G(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let u=0;u<n[i].length;++u){if(u===0&&!s)continue;let l=o.shape[u],c=n[i][u];if(c!=null&&c!==l)throw new G(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function YB(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var QB="layers-model",pr=class extends Is{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new G("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");RB(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=EB(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Er))throw new G("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new G(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(Yf(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new G(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(i=>Yf(i))}else{let a=Yf(e.loss);this.outputs.forEach(i=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let i=this.internalOutputShapes[a],o=this.outputNames[a];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],sa("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let i=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([i,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=YB(e.metrics,this.outputNames),r=(a,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[a]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,a])};sa("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let i=s[a];(u=>{let l="",c,p,d;for(let h of u){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===Gp?["accuracy","acc"].indexOf(h)!==-1?p=jb:["crossentropy","ce"].indexOf(h)!==-1&&(p=bI):this.lossFunctions[a]===Dd?["accuracy","acc"].indexOf(h)!==-1?p=yI:["crossentropy","ce"].indexOf(h)!==-1&&(p=vI):["accuracy","acc"].indexOf(h)!==-1?p=Kb:["crossentropy","ce"].indexOf(h)!==-1&&(p=Xb);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),d=p,c=l+g}else d=AB(h),c=l+Yc(h);let f;sa(c,()=>{f=d}),r(a,c,f)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;Am(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let i=a[0].concat(a[1]);this.makeTestFunction();let o=this.testFunction,u=this.testLoop(o,i,s,n.verbose,n.steps);return bn(u)}finally{ps(a[0],e),ps(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),GB(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new G(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new G(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new G("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new ea;if(e instanceof et&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new G(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)a.add(this.inputs[o],e[o])}else for(let o of this.inputs){let u=e[o.name];if(u==null)throw new G(`No value is provided for the model's input ${o.name}`);a.add(o,u)}let i=Fu(r,a);return n?i:i[0]}retrieveSymbolicTensors(e){let t=ga(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=a.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new G(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return q(()=>{let s=this.checkNumSamples(e);if(n)throw new Fe("Verbose predictLoop() is not implemented yet.");let r=Em(s,t),a=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)q(()=>{let u=r[i][0],l=r[i][1],c=Ou(e,u,l),p=[];if(Array.isArray(c))for(let h=0;h<c.length;++h)p.push({key:this.inputs[h],value:c[h]});else p.push({key:this.inputs[0],value:c});let d=new ea(p);return Fu(this.outputs,d)}).forEach((u,l)=>a[l].push(u));return bn(a.map(i=>Ot(i,0)))})}predict(e,t={}){let n=CI(e);qx(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return Am(s),this.predictLoop(n,s)}finally{ps(n,e)}}predictOnBatch(e){qx(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new fs("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let i=this.feedOutputShapes[a];this.feedLossFns[a]===Dd?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=Hx(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=Hx(t,this.feedOutputNames,r,!1,"target"),KB(e,t,null),XB(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!==0)throw new G(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[i,o]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let u=null;if(s!=null){let l=kI(s,this.outputNames);u=[];for(let c=0;c<l.length;++c)u.push(await SI(o[c],null,l[c]))}return[i,o,u]}testLoop(e,t,n,s=0,r){return q(()=>{let a=this.checkNumSamples(t,n,r,"steps"),i=[];if(s>0)throw new Fe("Verbose mode is not implemented yet.");if(r!=null)throw new Fe("steps mode in testLoop() is not implemented yet");{let o=Em(a,n),u=Zt(ys(0,a));for(let l=0;l<o.length;++l){let c=o[l][0],p=o[l][1],d=ra(u,c,p-c),h=Yb(t,d),f=e(h);if(l===0)for(let m=0;m<f.length;++m)i.push(we(0));for(let m=0;m<f.length;++m){let g=f[m];i[m]=ie(i[m],V(p-c,g))}}for(let l=0;l<i.length;++l)i[l]=xe(i[l],a)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;Cx(e,s)>1&&(r+=`_${Cx(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],i=()=>{let c=[];for(let f=0;f<this.inputs.length;++f)c.push({key:this.inputs[f],value:n[f]});let p=new ea(c),d=Fu(this.outputs,p,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let g=this.lossFunctions[f](s[f],d[f]);r[f]!=null&&(g=MB(g,r[f]));let b=It(g);t.push(b),f===0?h=g:h=ie(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],b=this.metricsTensors[f][1];m=It(g(s[b],d[b]))}qt(m),a.push(m)}return h=It(h),this.calculateLosses().forEach(f=>{h=ie(h,f)}),h},o=this.collectedTrainableWeights.map(c=>c.read()),u=!0;return[this.optimizer_.minimize(i,u,o)].concat(a)}}makeTestFunction(){this.testFunction=e=>q(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let u=0;u<this.inputs.length;++u)a.push({key:this.inputs[u],value:s[u]});let i=new ea(a),o=Fu(this.outputs,i);for(let u=0;u<this.lossFunctions.length;++u){let l=this.lossFunctions[u],c=It(l(r[u],o[u]));u===0?n=c:n=ie(n,c),t.push(n)}for(let u=0;u<this.metricsTensors.length;++u){let l=this.metricsTensors[u][0],c=this.metricsTensors[u][1],p=It(l(r[c],o[c]));t.push(p)}return t})}async fit(e,t,n={}){return qB(this,e,t,n)}async fitDataset(e,t){return VB(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],i=this.makeTrainFunction()(s.concat(r)),o=[];for(let u of i){let l=await u.data();o.push(l[0])}return De(i),ps(n[0],e),ps(n[1],t),bn(o)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=gm().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-gm().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Vs(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Vs(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=Vs(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Vs(Yc(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Vs(Yc(e)));{let e={};for(let t in this.metrics)e[t]=Vs(Yc(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=sl(e.optimizer_config),n=gs(t),s;if(typeof e.loss=="string")s=Qr(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>Qr(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=Qr(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>Qr(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=Qr(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let u=An.getSaveHandlers(e);if(u.length===0)throw new G(`Cannot find any save handlers for URL '${e}'`);if(u.length>1)throw new G(`Found more than one (${u.length}) save handlers for URL '${e}'`);e=u[0]}if(e.save==null)throw new G("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await An.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,i={modelTopology:this.toJSON(r,s),format:QB,generatedBy:`TensorFlow.js tfjs-layers v${wI}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){i.trainingConfig=this.getTrainingConfig();let u="optimizer",{data:l,specs:c}=await An.encodeWeights(await this.optimizer.getWeights(),u);n.specs.push(...c),n.data=An.concatenateArrayBuffers([n.data,l])}return this.userDefinedMetadata!=null&&(Vx(this.userDefinedMetadata,this.name,!0),i.userDefinedMetadata=this.userDefinedMetadata),i.weightData=n.data,i.weightSpecs=n.specs,e.save(i)}setUserDefinedMetadata(e){Vx(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};pr.className="Model";re.registerClass(pr);var NI=class extends pr{};NI.className="Functional";re.registerClass(NI);async function ZB(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=sl(n),r=gs(s,t);if(e.weightsManifest!=null){let a=await An.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=a[o.originalName];r.loadWeights(i),De(a)}return r}async function JB(e,t){if(t==null&&(t={}),typeof e=="string"){let n=An.getLoadHandlers(e,t);if(n.length===0)n.push(An.browserHTTPRequest(e,t));else if(n.length>1)throw new G(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return eV(e,void 0,t)}async function eV(e,t,n){if(n==null&&(n={}),e.load==null)throw new G("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,i=s.weightData!=null&&s.weightSpecs!=null&&a,o=gs(sl(r),t,i),u=s.trainingConfig;if(u!=null&&o.loadTrainingConfig(u),s.userDefinedMetadata!=null&&o.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new G("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:l,optimizerWeights:c}=tV(s.weightData,s.weightSpecs);o.loadWeights(l,a),o.optimizer!=null&&c.length>0&&await o.optimizer.setWeights(c),De(l),De(c.map(p=>p.tensor))}return o}function tV(e,t){let n=An.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var Dm=class extends pr{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Rp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new G(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Dm||e instanceof pr,n;if(t){if(n=e,n.outputs.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new G("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new G("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=lI({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new G(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=uI(this.outputs[0])}this.inboundNodes=[],new Wp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:ga(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(nt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new pr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new fs("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new fs("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new fs("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new fs("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new G("Legacy serialization format not supported yet.");r=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let i=new e(a);if(!(i instanceof Dm))throw new Fe(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=gs(o,void 0,s);s&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new G("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new G("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}},Qb=Dm;Qb.className="Sequential";re.registerClass(Qb);function uhe(e){return new pr(e)}function lhe(e){return new Qb(e)}function che(e,t){return t==null&&(t={}),JB(e,t)}function nV(e){return lI(e)}function dhe(e,t){Hb.registerCallbackConstructor(e,t)}var kn=class extends re.Serializable{getConfig(){return{}}},TI=class extends kn{apply(e,t=1){return mz(e,t)}};TI.className="elu";re.registerClass(TI);var $I=class extends kn{apply(e){return AS(e)}};$I.className="selu";re.registerClass($I);var _I=class extends kn{apply(e){return Ys(e)}};_I.className="relu";re.registerClass(_I);var AI=class extends kn{apply(e){return q(()=>Cp(6,Ys(e)))}};AI.className="relu6";re.registerClass(AI);var EI=class extends kn{apply(e){return e}};EI.className="linear";re.registerClass(EI);var RI=class extends kn{apply(e){return qs(e)}};RI.className="sigmoid";re.registerClass(RI);var DI=class extends kn{apply(e){return bz(e)}};DI.className="hardSigmoid";re.registerClass(DI);var FI=class extends kn{apply(e){return Vl(e)}};FI.className="softplus";re.registerClass(FI);var OI=class extends kn{apply(e){return gz(e)}};OI.className="softsign";re.registerClass(OI);var PI=class extends kn{apply(e){return Qu(e)}};PI.className="tanh";re.registerClass(PI);var Zb=class extends kn{apply(e,t=-1){return gb(e,t)}};Zb.className="softmax";re.registerClass(Zb);var zI=class extends kn{apply(e,t=-1){return kS(e,t)}};zI.className="logSoftmax";re.registerClass(zI);var MI=class extends kn{apply(e,t=1){return q(()=>V(qs(V(e,t)),e))}};MI.className="swish";re.registerClass(MI);var LI=class extends kn{apply(e){return q(()=>V(e,Qu(Vl(e))))}};LI.className="mish";re.registerClass(LI);function vr(e){return e.getClassName()}function Qf(e,t={}){return Ul(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function xr(e){if(e==null){let t={};return t.className="linear",t.config={},Qf(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Qf(t)}else return e instanceof kn?e:Qf(e)}function Jb(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var BI=class extends re.Serializable{},Kl=class extends BI{constructor(e){super(),Jb(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return q(()=>{let t=$t([1]);return this.hasL1&&(t=ie(t,ve(V(this.l1,Lt(e))))),this.hasL2&&(t=ie(t,ve(V(this.l2,Hl(e))))),U(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Kl.className="L1L2";re.registerClass(Kl);function sV(e){return Jb(e),new Kl({l1:e!=null?e.l1:null,l2:0})}function rV(e){return Jb(e),new Kl({l2:e!=null?e.l2:null,l1:0})}var jx={l1l2:"L1L2"};function it(e){return _b(e)}function Kx(e,t={}){return Ul(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function mt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in jx?jx[e]:e,config:{}};return Kx(n)}else return e instanceof BI?e:Kx(e)}var ey=class extends He{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Oe(e);let n=Ys(e);return this.maxValue!=null&&(n=Vn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};ey.className="ReLU";re.registerClass(ey);var ty=class extends He{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Oe(e);return ab(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};ty.className="LeakyReLU";re.registerClass(ty);var ny=class extends He{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=ft(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=mt(e.alphaRegularizer),this.alphaConstraint=zt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new G(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=nt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new Ft({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Oe(e),db(e,this.alpha.read())}getConfig(){let e={alphaInitializer:yt(this.alphaInitializer),alphaRegularizer:it(this.alphaRegularizer),alphaConstraint:Pt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};ny.className="PReLU";re.registerClass(ny);var sy=class extends He{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Fe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Oe(e);return kp(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};sy.className="ELU";re.registerClass(sy);var ry=class extends He{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Oe(e);return V(n,le(Un(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};ry.className="ThresholdedReLU";re.registerClass(ry);var ay=class extends He{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new Zb().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Oe(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};ay.className="Softmax";re.registerClass(ay);function Ji(e,t,n){if(typeof e=="number")return ga(e,t);if(e.length!==t)throw new G(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!dz(r))throw new G(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function bs(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-a+1,Math.floor((i+s-1)/s)}function Ns(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+yr([n-t,0]);else if(s==="same")e=e*t;else throw new G(`Unsupport padding mode: ${s}.`);return e}function iy(e,t){return q(()=>(Ct(t),t==="channelsFirst"?Ge(e,[0,2,3,1]):e))}function VI(e,t){return q(()=>(Ct(t),t==="channelsFirst"?Ge(e,[0,2,3,4,1]):e))}function aV(e,t,n,s=1,r="valid",a,i=1){return q(()=>{if(a==null&&(a=vs()),Ct(a),e.shape.length!==3)throw new G(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new G(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new G(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=Ge(e,[0,2,1])),r==="causal")throw new Fe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=cS(e,t,s,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=ks(o,n)),o})}function Xx(e,t,n,s=[1,1],r="valid",a,i,o=null){return q(()=>{if(a==null&&(a=vs()),Ct(a),e.rank!==3&&e.rank!==4)throw new G(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new G(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let u=iy(e,a);if(r==="causal")throw new Fe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return u=ma.conv2d({x:u,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),a==="channelsFirst"&&(u=Ge(u,[0,3,1,2])),u})}function iV(e,t,n,s=[1,1,1],r="valid",a,i){return q(()=>{if(a==null&&(a=vs()),Ct(a),e.rank!==4&&e.rank!==5)throw new G(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new G(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=VI(e,a);if(r==="causal")throw new Fe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=pS(o,t,s,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=ks(o,n)),a==="channelsFirst"&&(o=Ge(o,[0,4,1,2,3])),o})}var oy=class extends He{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",oy.verifyArgs(t),this.rank=e,Vt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Fe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Ji(t.kernelSize,e,"kernelSize"),this.strides=Ji(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Gn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ct(this.dataFormat),this.activation=xr(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=ft(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=zt(t.biasConstraint),this.biasRegularizer=mt(t.biasRegularizer),this.activityRegularizer=mt(t.activityRegularizer),this.dilationRate=Ji(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new G(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new G(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new G(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Cs("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Ab(e.kernelSize,"number",1,3))throw new G(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:vr(this.activation),useBias:this.useBias,biasInitializer:yt(this.biasInitializer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),biasConstraint:Pt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Xl=class extends oy{constructor(e,t){super(e,t),this.kernel=null,Xl.verifyArgs(t),this.filters=t.filters,Vt(this.filters,"filters"),this.kernelInitializer=ft(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=zt(t.kernelConstraint),this.kernelRegularizer=mt(t.kernelRegularizer)}build(e){e=nt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return q(()=>{e=Oe(e);let n,s=this.bias==null?null:this.bias.read(),r=eI(this.activation.getClassName());if(r!=null&&this.rank===2)n=Xx(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=aV(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=Xx(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=iV(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Fe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=nt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=bs(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:yt(this.kernelInitializer),kernelRegularizer:it(this.kernelRegularizer),kernelConstraint:Pt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new G(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},WI=class extends Xl{constructor(e){super(2,e),WI.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Ab(e.kernelSize,"number",1,2))throw new G(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}},Hp=WI;Hp.className="Conv2D";re.registerClass(Hp);var UI=class extends Xl{constructor(e){super(3,e),UI.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new G(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}},qp=UI;qp.className="Conv3D";re.registerClass(qp);var uy=class extends Hp{constructor(e){if(super(e),this.inputSpec=[new Ft({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=nt(e),e.length!==4)throw new G("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ft({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return q(()=>{let n=Oe(e);if(n.shape.length!==4)throw new G(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,i;this.dataFormat==="channelsFirst"?(a=2,i=3):(a=1,i=2);let o=s[a],u=s[i],l=this.kernelSize[0],c=this.kernelSize[1],p=this.strides[0],d=this.strides[1],h=Ns(o,p,l,this.padding),f=Ns(u,d,c,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=Ge(n,[0,2,3,1]));let g=dS(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ge(g,[0,3,1,2])),this.bias!=null&&(g=ks(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=nt(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],u=this.strides[1];return t[n]=this.filters,t[s]=Ns(t[s],o,a,this.padding),t[r]=Ns(t[r],u,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};uy.className="Conv2DTranspose";re.registerClass(uy);var ly=class extends qp{constructor(e){if(super(e),this.inputSpec=[new Ft({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=nt(e),e.length!==5)throw new G("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ft({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return q(()=>{let n=Oe(e);if(n.shape.length!==5)throw new G(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,i,o;this.dataFormat==="channelsFirst"?(o=2,a=3,i=4):(o=1,a=2,i=3);let u=s[o],l=s[a],c=s[i],p=this.kernelSize[0],d=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],b=Ns(u,f,p,this.padding),y=Ns(l,m,d,this.padding),v=Ns(c,g,h,this.padding),x=[r,b,y,v,this.filters];this.dataFormat!=="channelsLast"&&(n=Ge(n,[0,2,3,4,1]));let k=gR(n,this.kernel.read(),x,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(k=Ge(k,[0,4,1,2,3])),this.bias!==null&&(k=ks(k,this.bias.read(),this.dataFormat)),this.activation!==null&&(k=this.activation.apply(k)),k})}computeOutputShape(e){e=nt(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let i=this.kernelSize[0],o=this.kernelSize[1],u=this.kernelSize[2],l=this.strides[0],c=this.strides[1],p=this.strides[2];return t[n]=this.filters,t[s]=Ns(t[s],l,i,this.padding),t[r]=Ns(t[r],c,o,this.padding),t[a]=Ns(t[a],p,u,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};ly.className="Conv3DTranspose";re.registerClass(ly);var GI=class extends Xl{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new G("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new G("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new G(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=ft(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=mt(t.depthwiseRegularizer),this.depthwiseConstraint=zt(t.depthwiseConstraint),this.pointwiseInitializer=ft(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=mt(t.pointwiseRegularizer),this.pointwiseConstraint=zt(t.pointwiseConstraint)}build(e){if(e=nt(e),e.length<this.rank+2)throw new G(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new G(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Ft({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return q(()=>{e=Oe(e);let n;if(this.rank===1)throw new Fe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ge(e,[0,2,3,1])),n=T3(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=ks(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ge(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=yt(this.depthwiseInitializer),e.pointwiseInitializer=yt(this.pointwiseInitializer),e.depthwiseRegularizer=it(this.depthwiseRegularizer),e.pointwiseRegularizer=it(this.pointwiseRegularizer),e.depthwiseConstraint=Pt(this.depthwiseConstraint),e.pointwiseConstraint=Pt(this.pointwiseConstraint),e}};GI.className="SeparableConv";var cy=class extends GI{constructor(e){super(2,e)}};cy.className="SeparableConv2D";re.registerClass(cy);var HI=class extends Xl{constructor(e){super(1,e),HI.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Ab(e.kernelSize,"number",1,1))throw new G(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}},dy=HI;dy.className="Conv1D";re.registerClass(dy);var py=class extends He{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return q(()=>{if(e=Oe(e),this.dataFormat==="channelsLast"){let n=Xc(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Xc(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Xc(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Xc(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};py.className="Cropping2D";re.registerClass(py);var hy=class extends He{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,uz(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return q(()=>{let n=Oe(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=Ge(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],i=this.interpolation==="nearest"?jn.resizeNearestNeighbor(n,[r,a]):jn.resizeBilinear(n,[r,a]);return Ge(i,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?jn.resizeNearestNeighbor(n,[r,a]):jn.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};hy.className="UpSampling2D";re.registerClass(hy);function oV(e,t,n=[1,1],s="valid",r,a){return q(()=>{r==null&&(r=vs()),Ct(r);let i=iy(e,r);if(e.rank!==4)throw new G(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new G(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=wp(i,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(i=Ge(i,[0,3,1,2])),i})}var fy=class extends oy{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=ft(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=zt(e.depthwiseConstraint),this.depthwiseRegularizer=mt(e.depthwiseRegularizer)}build(e){if(e=nt(e),e.length<4)throw new G(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new G(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return q(()=>{e=Oe(e);let n=oV(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=ks(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=nt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=bs(t,this.kernelSize[0],this.padding,this.strides[0]),a=bs(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=yt(this.depthwiseInitializer),e.depthwiseRegularizer=it(this.depthwiseRegularizer),e.depthwiseConstraint=Pt(this.depthwiseRegularizer),e}};fy.className="DepthwiseConv2D";re.registerClass(fy);function qI(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new G("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function jI(e,t,n,s=!1,r,a,i=!1,o=!1){return q(()=>{let u=t.shape.length;if(u<3)throw new G(`Input should be at least 3D, but is ${u}D.`);let l=[1,0].concat(ys(2,u));if(t=Ge(t,l),a!=null)throw new Fe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=le(le(r,"bool"),"float32"),r.rank===u-1&&(r=Pn(r,-1)),r=Ge(r,l)),s&&(t=Jn(t,0),r!=null&&(r=Jn(r,0)));let c=[],p,d=n,h=t.shape[0],f=Fs(t),m;r!=null&&(m=Fs(r));for(let b=0;b<h;++b){let y=f[b],v=q(()=>e(y,d));if(r==null)p=v[0],d=v[1];else{let x=q(()=>{let k=m[b],I=ge(Zn(k),k),$=ie(V(v[0],k),V(d[0],I)),R=d.map((E,P)=>ie(V(v[1][P],k),V(E,I)));return{output:$,newStates:R}});p=x.output,d=x.newStates}o&&c.push(p)}let g;return o&&(g=es(c,1)),[p,g,d]})}var KI=class extends He{constructor(e){super(e);let t;if(e.cell==null)throw new G("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Xp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new G("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Ft({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return ys(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Nm(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return q(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Fe("Constants support is not implemented in RNN yet.");Nm(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new Ft({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),a))throw new G(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(i=>new Ft({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){q(()=>{if(!this.stateful)throw new Bs("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>$t([n,s])):this.states_=[$t([n,this.cell.stateSize])];else if(e==null)De(this.states_),this.keptStates!=null&&(De(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>$t([n,s])):this.states_[0]=$t([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):De(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,i=[n,a];if(!w.arraysEqual(r.shape,i))throw new G(`State ${s} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>qt(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=qI(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],i=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let u of n)this.stateSpec.push(new Ft({shape:u.shape}));i=i.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof $s){let u=[e].concat(a),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let p=super.apply(u,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return q(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=Oe(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new G(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:s},u=jI((h,f)=>{let m=this.cell.call([h].concat(f),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=u[0],c=u[1],p=u[2];this.stateful&&this.resetStates(p,s);let d=this.returnSequences?c:l;return this.returnState?[d].concat(p):d})}getInitialState(e){return q(()=>{let t=$t(e.shape);return t=ve(t,[1,2]),t=Gl(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Im(t,[1,n]):t):this.cell.stateSize>1?[Im(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===KI.className&&(t.cell={className:this.cell.getClassName(),config:n}),{...n,...e,...t}}static fromConfig(e,t,n={}){let s=t.cell,r=gs(s,n);return new e(Object.assign(t,{cell:r}))}},Rr=KI;Rr.className="RNN";re.registerClass(Rr);var Yl=class extends He{},jp=class extends Yl{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Vt(this.units,"units"),this.activation=xr(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=ft(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=mt(e.kernelRegularizer),this.recurrentRegularizer=mt(e.recurrentRegularizer),this.biasRegularizer=mt(e.biasRegularizer),this.kernelConstraint=zt(e.kernelConstraint),this.recurrentConstraint=zt(e.recurrentConstraint),this.biasConstraint=zt(e.biasConstraint),this.dropout=no([1,yr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=no([1,yr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=nt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return q(()=>{if(e=e,e.length!==2)throw new G(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=wr({ones:()=>Zn(e),rate:this.dropout,training:s,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=wr({ones:()=>Zn(n),rate:this.recurrentDropout,training:s,dropoutFunc:this.dropoutFunc}));let r,a=this.dropoutMask,i=this.recurrentDropoutMask;a!=null?r=Es(V(e,a),this.kernel.read()):r=Es(e,this.kernel.read()),this.bias!=null&&(r=ks(r,this.bias.read())),i!=null&&(n=V(n,i));let o=ie(r,Es(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:vr(this.activation),useBias:this.useBias,kernelInitializer:yt(this.kernelInitializer),recurrentInitializer:yt(this.recurrentInitializer),biasInitializer:yt(this.biasInitializer),kernelRegularizer:it(this.kernelRegularizer),recurrentRegularizer:it(this.recurrentRegularizer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return{...e,...t}}};jp.className="SimpleRNNCell";re.registerClass(jp);var my=class extends Rr{constructor(e){e.cell=new jp(e),super(e)}call(e,t){return q(()=>{this.cell.dropoutMask!=null&&(De(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(De(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};my.className="SimpleRNN";re.registerClass(my);var Kp=class extends Yl{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new G("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Vt(this.units,"units"),this.activation=xr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=xr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=ft(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=mt(e.kernelRegularizer),this.recurrentRegularizer=mt(e.recurrentRegularizer),this.biasRegularizer=mt(e.biasRegularizer),this.kernelConstraint=zt(e.kernelConstraint),this.recurrentConstraint=zt(e.recurrentConstraint),this.biasConstraint=zt(e.biasConstraint),this.dropout=no([1,yr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=no([1,yr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=nt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return q(()=>{if(e=e,e.length!==2)throw new G(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=wr({ones:()=>Zn(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=wr({ones:()=>Zn(s),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,a=this.recurrentDropoutMask,i,o,u;0<this.dropout&&this.dropout<1&&(e=V(e,r[0]));let l=Es(e,this.kernel.read());this.useBias&&(l=ks(l,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=V(s,a[0]));let c=this.recurrentKernel.read(),[p,d]=Bn(c,[2*this.units,this.units],c.rank-1),h=Es(s,p),[f,m,g]=Bn(l,3,l.rank-1),[b,y]=Bn(h,2,h.rank-1);i=this.recurrentActivation.apply(ie(f,b)),o=this.recurrentActivation.apply(ie(m,y));let v=Es(V(o,s),d);u=this.activation.apply(ie(g,v));let x=ie(V(i,s),V(ie(1,vt(i)),u));return[x,x]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:vr(this.activation),recurrentActivation:vr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:yt(this.kernelInitializer),recurrentInitializer:yt(this.recurrentInitializer),biasInitializer:yt(this.biasInitializer),kernelRegularizer:it(this.kernelRegularizer),recurrentRegularizer:it(this.recurrentRegularizer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return{...e,...t}}};Kp.className="GRUCell";re.registerClass(Kp);var gy=class extends Rr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Kp(e),super(e)}call(e,t){return q(()=>{this.cell.dropoutMask!=null&&(De(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(De(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};gy.className="GRU";re.registerClass(gy);var Ql=class extends Yl{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Vt(this.units,"units"),this.activation=xr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=xr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=ft(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=mt(e.kernelRegularizer),this.recurrentRegularizer=mt(e.recurrentRegularizer),this.biasRegularizer=mt(e.biasRegularizer),this.kernelConstraint=zt(e.kernelConstraint),this.recurrentConstraint=zt(e.recurrentConstraint),this.biasConstraint=zt(e.biasConstraint),this.dropout=no([1,yr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=no([1,yr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=nt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends ns{apply(i,o){let u=r.apply([a]),l=new Op().apply([a]),c=r.apply([a*2]);return Tx(Tx(u,l),c)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return q(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new G(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=wr({ones:()=>Zn(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=wr({ones:()=>Zn(s),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,i=this.recurrentDropoutMask,o,u,l,c;0<this.dropout&&this.dropout<1&&(e=V(e,a[0]));let p=Es(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=V(s,i[0])),p=ie(p,Es(s,this.recurrentKernel.read())),this.useBias&&(p=ks(p,this.bias.read()));let[d,h,f,m]=Bn(p,4,p.rank-1);o=this.recurrentActivation.apply(d),u=this.recurrentActivation.apply(h),l=ie(V(u,r),V(o,this.activation.apply(f))),c=this.recurrentActivation.apply(m);let g=V(c,this.activation.apply(l));return[g,g,l]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:vr(this.activation),recurrentActivation:vr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:yt(this.kernelInitializer),recurrentInitializer:yt(this.recurrentInitializer),biasInitializer:yt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:it(this.kernelRegularizer),recurrentRegularizer:it(this.recurrentRegularizer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return{...e,...t}}};Ql.className="LSTMCell";re.registerClass(Ql);var by=class extends Rr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Ql(e),super(e)}call(e,t){return q(()=>{this.cell.dropoutMask!=null&&(De(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(De(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};by.className="LSTM";re.registerClass(by);var Xp=class extends Yl{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return q(()=>{e=e;let n=e.slice(1),s=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?s.push(n.splice(0,i.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=s[i],i===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=o.call(a,t),r.push(a.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[a[0]].concat(n)})}build(e){Nm(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{sa(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return{...e,...s}}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(gs(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Tm(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}Lb(t)}};Xp.className="StackedRNNCells";re.registerClass(Xp);function wr(e){let{ones:t,rate:n,training:s=!1,count:r=1,dropoutFunc:a}=e,i=()=>a!=null?a(t(),n):oI(t(),n),o=()=>ql(i,t,s);return!r||r<=1?qt(o().clone()):Array(r).fill(void 0).map(o).map(l=>qt(l.clone()))}var XI=class extends Rr{constructor(e){if(e.unroll)throw new Fe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Fe("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new Ft({ndim:5})]}call(e,t){return q(()=>{if(this.cell.dropoutMask!=null&&(De(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(De(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new G("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return q(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=$t(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){q(()=>{if(!this.stateful)throw new Bs("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>$t(r)):this.states_=[$t(r)];else if(e==null)De(this.states_),this.keptStates!=null&&(De(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>$t(r)):this.states_[0]=$t(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):De(this.states_);for(let i=0;i<this.states_.length;++i){let o=e[i],u=r;if(!w.arraysEqual(o.shape,u))throw new G(`State ${i} is incompatible with layer ${this.name}: expected shape=${u}, received shape=${o.shape}`);this.states_[i]=o}}this.states_=this.states_.map(i=>qt(i.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:i}=this.cell,o=t==="channelsFirst",u=e[o?3:2],l=e[o?4:3],c=bs(u,s[0],r,a[0],i[0]),p=bs(l,s[1],r,a[1],i[1]);return[...e.slice(0,2),...o?[n,c,p]:[c,p,n]]}};XI.className="ConvRNN2D";var Yp=class extends Ql{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:i}=e;super({...e,units:t}),this.filters=t,Vt(this.filters,"filters"),this.kernelSize=Ji(n,2,"kernelSize"),this.kernelSize.forEach(o=>Vt(o,"kernelSize")),this.strides=Ji(s||1,2,"strides"),this.strides.forEach(o=>Vt(o,"strides")),this.padding=r||"valid",Gn(this.padding),this.dataFormat=a||"channelsLast",Ct(this.dataFormat),this.dilationRate=Ji(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Vt(o,"dilationRate"))}build(e){var t;e=nt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let u=this.biasInitializer,l=this.filters;o=new(t=class extends ns{apply(c,p){let d=u.apply([l]),h=Mn([l]),f=u.apply([l*2]);return Eb([d,h,f])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return q(()=>{if(e.length!==3)throw new G(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=wr({ones:()=>Zn(s),rate:this.dropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let o=this.dropoutMask,u=(Z,te,J)=>!te||!te[J]?Z:V(te[J],Z),l=u(s,o,0),c=u(s,o,1),p=u(s,o,2),d=u(s,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=wr({ones:()=>Zn(r),rate:this.recurrentDropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=u(r,h,0),m=u(r,h,1),g=u(r,h,2),b=u(r,h,3),y=3,[v,x,k,I]=Bn(this.kernel.read(),i,y),[$,R,E,P]=this.useBias?Bn(this.bias.read(),i):[null,null,null,null];l=this.inputConv(l,v,$,this.padding),c=this.inputConv(c,x,R,this.padding),p=this.inputConv(p,k,E,this.padding),d=this.inputConv(d,I,P,this.padding);let[A,O,T,M]=Bn(this.recurrentKernel.read(),i,y);f=this.recurrentConv(f,A),m=this.recurrentConv(m,O),g=this.recurrentConv(g,T),b=this.recurrentConv(b,M);let W=this.recurrentActivation.apply(ie(l,f)),j=this.recurrentActivation.apply(ie(c,m)),X=ie(V(j,a),V(W,this.activation.apply(ie(p,g)))),Y=V(this.recurrentActivation.apply(ie(d,b)),this.activation.apply(X));return[Y,Y,X]})}getConfig(){let{units:e,...t}=super.getConfig(),n={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return{...t,...n}}inputConv(e,t,n,s){let r=pa(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?ks(r,n,this.dataFormat):r}recurrentConv(e,t){return pa(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Yp.className="ConvLSTM2DCell";re.registerClass(Yp);var yy=class extends XI{constructor(e){let t=new Yp(e);super({...e,cell:t})}static fromConfig(e,t){return new e(t)}};yy.className="ConvLSTM2D";re.registerClass(yy);var Qp=class extends He{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Oe(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return ql(()=>oI(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Qp.className="Dropout";re.registerClass(Qp);var vy=class extends Qp{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};vy.className="SpatialDropout1D";re.registerClass(vy);var xy=class extends He{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Vt(this.units,"units"),this.activation=xr(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=zt(e.kernelConstraint),this.biasConstraint=zt(e.biasConstraint),this.kernelRegularizer=mt(e.kernelRegularizer),this.biasRegularizer=mt(e.biasRegularizer),this.activityRegularizer=mt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=nt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=nt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Oe(e),s=eI(this.activation.getClassName()),r;return s!=null?r=Es(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=Es(n,this.kernel.read()),this.bias!=null&&(r=ks(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:vr(this.activation),useBias:this.useBias,kernelInitializer:yt(this.kernelInitializer),biasInitializer:yt(this.biasInitializer),kernelRegularizer:it(this.kernelRegularizer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),biasConstraint:Pt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};xy.className="Dense";re.registerClass(xy);var wy=class extends He{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=nt(e);for(let t of e.slice(1))if(t==null)throw new G(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],dr(e,1)]}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Oe(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=Ge(n,s)}return fz(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};wy.className="Flatten";re.registerClass(wy);var ky=class extends He{constructor(e){super(e),this.supportsMasking=!0,this.activation=xr(e.activation)}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Oe(e);return this.activation.apply(n)})}getConfig(){let e={activation:vr(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};ky.className="Activation";re.registerClass(ky);var Sy=class extends He{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return q(()=>(e=Oe(e),pz(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Sy.className="RepeatVector";re.registerClass(Sy);var Iy=class extends He{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let o=0;o<s.length;++o){let u=s[o];if(this.isUnknown(u))if(a===null)a=o;else throw new G("Can only specifiy one unknown dimension.");else r*=u}let i=dr(e);if(a!==null){if(r===0||i%r!==0)throw new G(n);s[a]=i/r}else if(i!==r)throw new G(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Oe(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return U(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Iy.className="Reshape";re.registerClass(Iy);var Cy=class extends He{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=ys(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ft({ndim:this.dims.length+1})]}computeOutputShape(e){e=nt(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return Ge(Oe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Cy.className="Permute";re.registerClass(Cy);var Ny=class extends He{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Oe(e),s=-1;return vm(el(n,this.maskValue),s)}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Oe(e),s=-1,r=!0,a=vm(el(n,this.maskValue),s,r);return V(n,le(a,n.dtype))})}};Ny.className="Masking";re.registerClass(Ny);var Ty=class extends He{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(ht(e.inputLength))}this.inputDim=e.inputDim,Vt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Vt(this.outputDim,"outputDim"),this.embeddingsInitializer=ft(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=mt(e.embeddingsRegularizer),this.activityRegularizer=mt(e.activityRegularizer),this.embeddingsConstraint=zt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return q(()=>this.maskZero?(e=Oe(e),el(e,je(e))):null)}computeOutputShape(e){if(e=nt(e),this.inputLength==null)return[...e,this.outputDim];let t=ht(this.inputLength);if(t.length!==e.length-1)throw new G(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new G(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Oe(e);n.dtype!=="int32"&&(n=Dp(n,"int32"));let s=iI(this.embeddings.read(),U(n,[n.size]));return U(s,nt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:yt(this.embeddingsInitializer),embeddingsRegularizer:it(this.embeddingsRegularizer),activityRegularizer:it(this.activityRegularizer),embeddingsConstraint:Pt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Ty.className="Embedding";re.registerClass(Ty);var xi=class extends He{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Fe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new G("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[nt(e)]),e=e,e.length<2)throw new G(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=cr(t),t.length>1)throw new G(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&cr(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return q(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=yr(s);for(let a of e){let i=a.rank;for(let o=0;o<r-i;++o)a=Gl(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let u=o.rank;if(u==null){let l=o.shape,c=l[0],p=l.slice(1).concat([c]),d=U(o,[c].concat(dr(l.slice(1))));d=Ge(d,[1,0]),d=U(d,p),n.push(d),r=!0}else if(u>1){let l=ys(1,u).concat([0]);n.push(Ge(o,l)),r=!0}else n.push(o)}let a=this.mergeFunction(n),i=a.rank;if(r){if(i==null){let o=a.shape,u=o.length,l=o[u-1],c=[l].concat(o.slice(0,o.length-1));a=U(Ge(U(a,[-1,l]),[1,0]),c)}else if(i>1){let o=[i-1].concat(ys(0,i-1));a=Ge(a,o)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=cr(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return q(()=>{if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an Array");if(!Array.isArray(e))throw new G("`inputs` should be an Array");if(t.length!==e.length)throw new G(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Pn(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=Ds(n,t[s]);return n})}},$y=class extends xi{constructor(e){super(e)}mergeFunction(e){return q(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ie(t,e[n]);return t})}};$y.className="Add";re.registerClass($y);var _y=class extends xi{constructor(e){super(e)}mergeFunction(e){return q(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=V(t,e[n]);return t})}};_y.className="Multiply";re.registerClass(_y);var Ay=class extends xi{constructor(e){super(e)}mergeFunction(e){return q(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ie(t,e[n]);return V(1/e.length,t)})}};Ay.className="Average";re.registerClass(Ay);var Ey=class extends xi{constructor(e){super(e)}mergeFunction(e){return q(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Ar(t,e[n]);return t})}};Ey.className="Maximum";re.registerClass(Ey);var Ry=class extends xi{constructor(e){super(e)}mergeFunction(e){return q(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Cp(t,e[n]);return t})}};Ry.className="Minimum";re.registerClass(Ry);var Dy=class extends xi{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new G("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let i of n)if(w.arraysEqual(i,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new G("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return q(()=>Eb(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new G("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new G("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new G(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return q(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(le(Zn(e[a]),"bool")):t[a].rank<e[a].rank?s.push(Pn(t[a],-1)):s.push(t[a]);let r=Ot(s,this.axis);return rS(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Dy.className="Concatenate";re.registerClass(Dy);function _u(e,t){for(;e<0;)e+=t;return e}function uV(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Fe("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Fe("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return q(()=>{let i;if(s>r){i=s-r;let u=[];for(let l=0;l<i;++l)u.push(1);t=U(t,t.shape.concat(u))}else if(r>s){i=r-s;let u=[];for(let l=0;l<i;++l)u.push(1);e=U(e,e.shape.concat(u))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?o=ve(V(e,t),a[0]):o=ve(V(Ge(e,[1,0]),t),a[1]);else{let u=a[0]!==e.shape.length-1,l=a[1]===t.shape.length-1;o=Ve(e,t,u,l)}if(i>0){let u;s>r?u=s+r-3:u=s-1;let l=[];for(let c=u;c<u+i;++c)l.push(c);o=br(o,l)}return o.shape.length===1&&(o=Pn(o,1)),o})}var Fy=class extends xi{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Fe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new G(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new G(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>_u(r,e[a].shape.length)):s=[_u(this.axes,t.shape.length),_u(this.axes,n.shape.length)],this.normalize&&(t=Rd(t,s[0]),n=Rd(n,s[1])),uV(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[_u(this.axes,e.length),_u(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Fe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Fy.className="Dot";re.registerClass(Fy);var Oy=class extends He{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Oe(e);return ql(()=>ie(Fp(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};Oy.className="GaussianNoise";re.registerClass(Oy);var Py=class extends He{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Oe(e);return this.rate>0&&this.rate<1?ql(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return V(n,Fp(n.shape,1,r))},()=>n,t.training||!1):n})}};Py.className="GaussianDropout";re.registerClass(Py);var zy=class extends He{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Oe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return q(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return ql(()=>{let r=Oe(e),a=1.6732632423543772,i=1.0507009873554805,o=-a*i,u=Zo(Wl(n),this.rate);u=Dp(u,"float32");let l=((1-this.rate)*(1+this.rate*o**2))**-.5,c=-l*o*this.rate,p=ie(V(r,u),V(ie(u,-1),o));return ie(V(p,l),c)},()=>Oe(e),t.training||!1)}return e})}};zy.className="AlphaDropout";re.registerClass(zy);function rl(e,t,n,s,r,a=.001){let i;if(e.rank===2)i=UE(e,t,n,s,r,a);else if(e.rank===3)i=HE(e,t,n,s,r,a);else if(e.rank===4)i=jE(e,t,n,s,r,a);else throw new Fe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function lV(e,t,n,s,r=.001){return q(()=>{let a=lb(e,s),i=a.mean,o=a.variance;return[rl(e,i,o,n,t,r),i,o]})}function cV(e,t,n,s,r=.001){return q(()=>{let a=lb(e,s),i=a.mean,o=a.variance,u=[];for(let f of ys(0,e.rank))s.indexOf(f)!==-1?u.push(1):u.push(e.shape[f]);let l=U(i,u),c=U(o,u),p=t==null?null:U(t,u),d=n==null?null:U(n,u);return[rl(e,l,c,d,p,r),i,o]})}function dV(e,t,n,s,r=.001){return w.arraysEqual(s.slice().sort(),ys(0,e.rank-1))?lV(e,t,n,s,r):cV(e,t,n,s,r)}var My=class extends He{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=ft(e.betaInitializer||"zeros"),this.gammaInitializer=ft(e.gammaInitializer||"ones"),this.movingMeanInitializer=ft(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=ft(e.movingVarianceInitializer||"ones"),this.betaConstraint=zt(e.betaConstraint),this.gammaConstraint=zt(e.gammaConstraint),this.betaRegularizer=mt(e.betaRegularizer),this.gammaRegularizer=mt(e.gammaRegularizer)}build(e){e=nt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new G(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Ft({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return q(()=>{let n=t.training==null?!1:t.training,s=Oe(e),r=s.shape,a=r.length,i=ys(0,a),o=this.axis>=0?this.axis:this.axis+a;i.splice(o,1);let u=ga(1,a);u[o]=r[o];let l=i.slice();l.sort();let c=!w.arraysEqual(l,ys(0,a).slice(0,a-1)),p=()=>{if(c){let b=U(this.movingMean.read(),u),y=U(this.movingVariance.read(),u),v=this.center?U(this.beta.read(),u):null,x=this.scale?U(this.gamma.read(),u):null;return rl(s,b,y,v,x,this.epsilon)}else return rl(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[d,h,f]=dV(s,this.gamma.read(),this.beta.read(),i,this.epsilon),m=(b,y,v)=>{q(()=>{let x=1-v,k=b.read(),I=V(ge(k,y),x);b.write(ge(k,I))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:yt(this.betaInitializer),gammaInitializer:yt(this.gammaInitializer),movingMeanInitializer:yt(this.movingMeanInitializer),movingVarianceInitializer:yt(this.movingVarianceInitializer),betaRegularizer:it(this.betaRegularizer),gammaRegularizer:it(this.gammaRegularizer),betaConstraint:Pt(this.betaConstraint),gammaConstraint:Pt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};My.className="BatchNormalization";re.registerClass(My);var Ly=class extends He{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=ft(e.betaInitializer||"zeros"),this.gammaInitializer=ft(e.gammaInitializer||"ones"),this.betaRegularizer=mt(e.betaRegularizer),this.gammaRegularizer=mt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=nt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==cr(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=Oe(e),s=n.shape,r=s.length;return q(()=>{let{mean:i,variance:o}=lb(n,this.axis,!0),u=ga(1,r);for(let f of this.axis)u[f]=s[f];let l=f=>f!=null&&f.shape.length!==r?U(f,u):f,c=this.scale?l(this.gamma.read()):null,p=this.center?l(this.beta.read()):null,d=[],h=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(d.push(s[f]),h.push(1)):(d.push(1),h.push(s[f]));return i=hs(i,d),o=hs(o,d),c!=null&&(c=hs(c,h)),p!=null&&(p=hs(p,h)),rl(n,i,o,p,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:yt(this.betaInitializer),gammaInitializer:yt(this.gammaInitializer),betaRegularizer:it(this.betaRegularizer),gammaRegularizer:it(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Ly.className="LayerNormalization";re.registerClass(Ly);function pV(e,t,n){return q(()=>{if(e.rank!==4)throw new G(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new G("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=vs()),n!=="channelsLast"&&n!=="channelsFirst")throw new G(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],bi(e,s)})}var By=class extends He{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?vs():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new G(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new G(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new G(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){e=nt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return q(()=>pV(Oe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};By.className="ZeroPadding2D";re.registerClass(By);function Zp(e,t,n,s,r,a){return q(()=>{Ct(r),nI(a),Gn(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=vs()),a==null&&(a="max"),e=iy(e,r);let i,o=s==="same"?"same":"valid";return a==="max"?i=ub(e,t,n,o):i=Zg(e,t,n,o),r==="channelsFirst"&&(i=Ge(i,[0,3,1,2])),i})}function YI(e,t,n,s,r,a){return q(()=>{Ct(r),nI(a),Gn(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=vs()),a==null&&(a="max"),e=VI(e,r);let i,o=s==="same"?"same":"valid";return a==="max"?i=CS(e,t,n,o):i=uS(e,t,n,o),r==="channelsFirst"&&(i=Ge(i,[0,4,1,2,3])),i})}var QI=class extends He{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new G(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Vt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new G(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Vt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Gn(this.padding),this.inputSpec=[new Ft({ndim:3})]}computeOutputShape(e){e=nt(e);let t=bs(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return q(()=>{this.invokeCallHook(e,t),e=Gl(Oe(e),2);let n=this.poolingFunction(Oe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return br(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Vy=class extends QI{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ct(r),Gn(s),Zp(e,t,n,s,r,"max")}};Vy.className="MaxPooling1D";re.registerClass(Vy);var Wy=class extends QI{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ct(r),Gn(s),Zp(e,t,n,s,r,"avg")}};Wy.className="AveragePooling1D";re.registerClass(Wy);var ZI=class extends He{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new G(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Vt(this.poolSize,"poolSize"),Vt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),Gn(this.padding),this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){e=nt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=bs(t,this.poolSize[0],this.padding,this.strides[0]),n=bs(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return q(()=>(this.invokeCallHook(e,t),this.poolingFunction(Oe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Uy=class extends ZI{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ct(r),Gn(s),Zp(e,t,n,s,r,"max")}};Uy.className="MaxPooling2D";re.registerClass(Uy);var Gy=class extends ZI{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ct(r),Gn(s),Zp(e,t,n,s,r,"avg")}};Gy.className="AveragePooling2D";re.registerClass(Gy);var JI=class extends He{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new G(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Vt(this.poolSize,"poolSize"),Vt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),Gn(this.padding),this.inputSpec=[new Ft({ndim:5})]}computeOutputShape(e){e=nt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=bs(t,this.poolSize[0],this.padding,this.strides[0]),n=bs(n,this.poolSize[1],this.padding,this.strides[1]),s=bs(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return q(()=>(this.invokeCallHook(e,t),this.poolingFunction(Oe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Hy=class extends JI{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ct(r),Gn(s),YI(e,t,n,s,r,"max")}};Hy.className="MaxPooling3D";re.registerClass(Hy);var qy=class extends JI{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ct(r),Gn(s),YI(e,t,n,s,r,"avg")}};qy.className="AveragePooling3D";re.registerClass(qy);var e0=class extends He{constructor(e){super(e),this.inputSpec=[new Ft({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Fe}},jy=class extends e0{constructor(e){super(e||{})}call(e,t){return q(()=>{let n=Oe(e);return It(n,1)})}};jy.className="GlobalAveragePooling1D";re.registerClass(jy);var Ky=class extends e0{constructor(e){super(e||{})}call(e,t){return q(()=>{let n=Oe(e);return As(n,1)})}};Ky.className="GlobalMaxPooling1D";re.registerClass(Ky);var t0=class extends He{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Fe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Xy=class extends t0{call(e,t){return q(()=>{let n=Oe(e);return this.dataFormat==="channelsLast"?It(n,[1,2]):It(n,[2,3])})}};Xy.className="GlobalAveragePooling2D";re.registerClass(Xy);var Yy=class extends t0{call(e,t){return q(()=>{let n=Oe(e);return this.dataFormat==="channelsLast"?As(n,[1,2]):As(n,[2,3])})}};Yy.className="GlobalMaxPooling2D";re.registerClass(Yy);var n0=class extends He{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=gs(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},Qy=class extends n0{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=nt(e),e.length<3)throw new G(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=nt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return q(()=>(e=Oe(e),jI((a,i)=>[Oe(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Qy.className="TimeDistributed";re.registerClass(Qy);function hV(e){yi(oz,"BidirectionalMergeMode",e)}var fV="concat",Zy=class extends n0{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=gs(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=gs(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?fV:e.mergeMode,hV(this.mergeMode),e.weights)throw new Fe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):bn(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=qI(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],i=[];if(n!=null){let u=n.length;if(u%2>0)throw new G("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let l=n.map(c=>new Ft({shape:c.shape}));this.forwardLayer.stateSpec=l.slice(0,u/2),this.backwardLayer.stateSpec=l.slice(u/2),i.push(...l)}if(s!=null)throw new Fe("Support for constants in Bidirectional layers is not implemented yet.");let o=a[0]instanceof $s;for(let u of a)if(u instanceof $s!==o)throw new G("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let u=[e].concat(a),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let p=super.apply(u,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return q(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),u=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:u}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=Jn(r,1));let i;return this.mergeMode==="concat"?i=Eb([s,r]):this.mergeMode==="sum"?i=ie(s,r):this.mergeMode==="ave"?i=V(.5,ie(s,r)):this.mergeMode==="mul"?i=V(s,r):this.mergeMode==null&&(i=[s,r]),this.returnState?this.mergeMode==null?i.concat(a):[i].concat(a):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){sa(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),sa(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=gs(t.layer);if(delete t.layer,t.numConstants!=null)throw new Fe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};Zy.className="Bidirectional";re.registerClass(Zy);function mV(e){return new tu(e)}function gV(e){return new sy(e)}function bV(e){return new ey(e)}function yV(e){return new ty(e)}function vV(e){return new ny(e)}function xV(e){return new ay(e)}function wV(e){return new ry(e)}function kV(e){return new dy(e)}function SV(e){return new Hp(e)}function IV(e){return new uy(e)}function CV(e){return new qp(e)}function NV(e){return new ly(e)}function TV(e){return new cy(e)}function $V(e){return new py(e)}function _V(e){return new hy(e)}function AV(e){return new fy(e)}function EV(e){return new ky(e)}function RV(e){return new xy(e)}function DV(e){return new Qp(e)}function FV(e){return new vy(e)}function OV(e){return new wy(e)}function PV(e){return new Sy(e)}function zV(e){return new Iy(e)}function MV(e){return new Cy(e)}function LV(e){return new Ty(e)}function BV(e){return new $y(e)}function VV(e){return new Ay(e)}function WV(e){return new Dy(e)}function UV(e){return new Ey(e)}function GV(e){return new Ry(e)}function HV(e){return new _y(e)}function qV(e){return new Fy(e)}function jV(e){return new My(e)}function KV(e){return new Ly(e)}function XV(e){return new By(e)}function Jy(e){return new Wy(e)}function YV(e){return Jy(e)}function QV(e){return Jy(e)}function ev(e){return new Gy(e)}function ZV(e){return ev(e)}function JV(e){return ev(e)}function tv(e){return new qy(e)}function eW(e){return tv(e)}function tW(e){return tv(e)}function nW(e){return new jy(e)}function sW(e){return new Xy(e)}function s0(e){return new Ky(e)}function r0(e){return new Yy(e)}function a0(e){return new Vy(e)}function i0(e){return new Uy(e)}function rW(e){return new Hy(e)}function aW(e){return new gy(e)}function iW(e){return new Kp(e)}function oW(e){return new by(e)}function uW(e){return new Ql(e)}function lW(e){return new my(e)}function cW(e){return new jp(e)}function dW(e){return new yy(e)}function pW(e){return new Yp(e)}function hW(e){return new Rr(e)}function fW(e){return new Xp(e)}function mW(e){return new Zy(e)}function gW(e){return new Qy(e)}var bW=s0,yW=r0,vW=a0,xW=i0;function wW(e){return new Oy(e)}function kW(e){return new Py(e)}function SW(e){return new zy(e)}function IW(e){return new Ny(e)}var CW={};Ee(CW,{MAPE:()=>PW,MSE:()=>LW,binaryAccuracy:()=>NW,binaryCrossentropy:()=>TW,categoricalAccuracy:()=>_W,categoricalCrossentropy:()=>AW,cosineProximity:()=>DW,mape:()=>zW,meanAbsoluteError:()=>FW,meanAbsolutePercentageError:()=>OW,meanSquaredError:()=>MW,mse:()=>BW,precision:()=>EW,recall:()=>RW,sparseCategoricalAccuracy:()=>$W});function NW(e,t){return jb(e,t)}function TW(e,t){return bI(e,t)}function $W(e,t){return yI(e,t)}function _W(e,t){return Kb(e,t)}function AW(e,t){return Xb(e,t)}function EW(e,t){return gI(e,t)}function RW(e,t){return kB(e,t)}function DW(e,t){return qb(e,t)}function FW(e,t){return Up(e,t)}function OW(e,t){return nu(e,t)}function PW(e,t){return nu(e,t)}function zW(e,t){return nu(e,t)}function MW(e,t){return vi(e,t)}function LW(e,t){return vi(e,t)}function BW(e,t){return vi(e,t)}var VW={};Ee(VW,{modelFromJSON:()=>ZB});var WW={};Ee(WW,{l1:()=>GW,l1l2:()=>UW,l2:()=>HW});function UW(e){return new Kl(e)}function GW(e){return sV(e)}function HW(e){return rV(e)}var qW=class extends so{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof pr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Qc(e,t){return e<t}function Yx(e,t){return e>t}var jW=class extends qW{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Fe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Qc:this.mode==="max"?this.monitorFunc=Yx:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Yx:this.monitorFunc=Qc,this.monitorFunc===Qc&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Qc?1/0:-1/0}async onEpochEnd(e,t){await rr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function KW(e){return new jW(e)}var phe={earlyStopping:KW},XW=K();XW.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var o0=(e=>(e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF",e))(o0||{}),Qx;(e=>{let t;(n=>{n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Qx||(Qx={}));var nv={};function hhe(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};nv[e]=n}function u0(e){return nv[e]}function fhe(e){delete nv[e]}function S(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let o=a.inputIndexStart,u=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?o+1:a.inputIndexEnd;if(a.type==="tensor")return un(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(o,u).map(d=>un(d,n,s,r));let l=un(t.inputNames.slice(o)[0],n,s,r),c=l.dataSync();return a.type==="number"?c[0]:w.toNestedArray(l.shape,c)}let i=t.attrParams[e];return i&&i.value}function un(e,t,n,s){let[r,a]=_n(e);if(s!=null){let o=s.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[zd(r,o)]);return i!==void 0?t[zd(r,i)][a]:void 0}function YW(e,t,n){return t[zd(e,n.currentContextId)]}function Ts(e,t){let[n,s,r]=_n(e);return[zd(n,t&&t.currentContextId),s,r]}function zd(e,t){return t?`${e}-${t}`:e}function _n(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function od(e,t,n){let s=S("pad",e,t,n);if(s==="explicit"){s=S("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function Ws(e){return e.kept?e:lr(e)}var l0={};Ee(l0,{json:()=>QW});var QW=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],c0={};Ee(c0,{json:()=>ZW});var ZW=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],d0={};Ee(d0,{json:()=>JW});var JW=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],p0={};Ee(p0,{json:()=>e4});var e4=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],h0={};Ee(h0,{json:()=>t4});var t4=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],f0={};Ee(f0,{json:()=>n4});var n4=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],m0={};Ee(m0,{json:()=>s4});var s4=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],g0={};Ee(g0,{json:()=>r4});var r4=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],b0={};Ee(b0,{json:()=>a4});var a4=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],y0={};Ee(y0,{json:()=>i4});var i4=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],v0={};Ee(v0,{json:()=>o4});var o4=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],x0={};Ee(x0,{json:()=>u4});var u4=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],w0={};Ee(w0,{json:()=>l4});var l4=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],k0={};Ee(k0,{json:()=>c4});var c4=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],S0={};Ee(S0,{json:()=>d4});var d4=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],I0={};Ee(I0,{json:()=>p4});var p4=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],C0={};Ee(C0,{json:()=>h4});var h4=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],N0={};Ee(N0,{json:()=>f4});var f4=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],T0={};Ee(T0,{json:()=>m4});var m4=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],Zx=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[l0,c0,d0,p0,h0,f0,m0,g0,b0,y0,v0,x0,w0,k0,S0,I0,C0,N0,T0],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],i=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),o=[],u=[],l={},c={};t!=null&&(l=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let p=Object.keys(i);p.forEach(f=>{let m=i[f];m.inputNames.forEach((g,b)=>{let[y,,v]=Ts(g),x=i[y];if(x.outputs!=null){let k=x.outputs.indexOf(v);if(k!==-1){let I=`${y}:${k}`;m.inputNames[b]=I}}m.inputs.push(x),x.children.push(m)})}),Object.keys(c).length===0?p.forEach(f=>{let m=i[f];m.children.length===0&&u.push(m)}):Object.keys(c).forEach(f=>{let[m]=Ts(f),g=i[m];g!=null&&(g.signatureKey=c[f],u.push(g))}),Object.keys(l).length>0?Object.keys(l).forEach(f=>{let[m]=Ts(f),g=i[m];g&&(g.signatureKey=l[f],o.push(g))}):o=s;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:i,inputs:o,outputs:u,weights:r,placeholders:s,signature:t,functions:d};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=u0(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.slice(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,i;switch(r.type){case"string":i=Fm(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Fm(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=Vm(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Vm(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=Pm(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=Pm(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=Bm(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Bm(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=Om(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Om(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=Um(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Um(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=Lm(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Lm(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=Wm(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Wm(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=zm(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=zm(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=Mm(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Mm(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=Jx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Jx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:i,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((c,p)=>(c[p.name]=this.mapNode(p),p.op==="Const"&&s.push(c[p.name]),c),{}));let a=[],i=[];e.signature.inputArg.forEach(c=>{let[p]=Ts(c.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:sv(c.type),type:"dtype"}},children:[]};d.signatureKey=c.name,a.push(d),r[p]=d}),Object.keys(r).forEach(c=>{let p=r[c];p.inputNames.forEach((d,h)=>{let[f,,m]=Ts(d),g=r[f];if(g.outputs!=null){let b=g.outputs.indexOf(m);if(b!==-1){let y=`${f}:${b}`;p.inputNames[h]=y}}p.inputs.push(g),g.children.push(p)})});let u=e.ret;e.signature.outputArg.forEach(c=>{let[p,d]=Ts(u[c.name]),h=r[p];h!=null&&(h.defaultOutput=d,i.push(h))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:i,weights:s,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function g4(e){let t=K().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function $0(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):g4(e);return t?n:n.toLowerCase()}function Fm(e,t,n,s=!1){let r=e[t];return r!=null?$0(r.s,s):n}function Om(e,t,n){let s=e[t];return s?s.b:n}function Pm(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function sv(e){switch(typeof e=="string"&&(e=o0[e]),e){case 1:case 19:return"float32";case 3:case 9:case 6:case 4:return"int32";case 10:return"bool";case 2:return"float32";case 7:return"string";default:return null}}function Jx(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function zm(e,t,n){let s=e[t];return s&&s.type?sv(s.type):n}function Mm(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>sv(r)):n}function _0(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Lm(e,t,n){let s=e[t];return s&&s.shape?_0(s.shape):n}function Bm(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function Vm(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>$0(a,s)):n}function Wm(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>_0(r)):n}function Um(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var b4=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return un(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return un(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Pm(this.node.rawAttrs,e,t);if(n.s!=null)return Fm(this.node.rawAttrs,e,t);if(n.b!=null)return Om(this.node.rawAttrs,e,t);if(n.shape!=null)return Lm(this.node.rawAttrs,e,t);if(n.type!=null)return zm(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Bm(this.node.rawAttrs,e,t);if(n.list.s!=null)return Vm(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Wm(this.node.rawAttrs,e,t);if(n.list.b!=null)return Um(this.node.rawAttrs,e,t);if(n.list.type!=null)return Mm(this.node.rawAttrs,e,t)}return t}},y4=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ie(S("a",e,t,n),S("b",e,t,n))];case"AddN":return[lE(S("tensors",e,t,n))];case"FloorMod":case"Mod":return[WD(S("a",e,t,n),S("b",e,t,n))];case"Mul":return[V(S("a",e,t,n),S("b",e,t,n))];case"RealDiv":case"Div":return[xe(S("a",e,t,n),S("b",e,t,n))];case"DivNoNan":return[DR(S("a",e,t,n),S("b",e,t,n))];case"FloorDiv":return[sS(S("a",e,t,n),S("b",e,t,n))];case"Sub":return[ge(S("a",e,t,n),S("b",e,t,n))];case"Minimum":return[Cp(S("a",e,t,n),S("b",e,t,n))];case"Maximum":return[Ar(S("a",e,t,n),S("b",e,t,n))];case"Pow":return[fa(S("a",e,t,n),S("b",e,t,n))];case"SquaredDifference":return[OS(S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},v4=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Lt(S("x",e,t,n))];case"Acos":return[aE(S("x",e,t,n))];case"Acosh":return[oE(S("x",e,t,n))];case"Asin":return[gE(S("x",e,t,n))];case"Asinh":return[yE(S("x",e,t,n))];case"Atan":return[xE(S("x",e,t,n))];case"Atan2":return[kE(S("x",e,t,n),S("y",e,t,n))];case"Atanh":return[IE(S("x",e,t,n))];case"Ceil":return[JE(S("x",e,t,n))];case"Complex":return[mr(S("real",e,t,n),S("imag",e,t,n))];case"Cos":return[tb(S("x",e,t,n))];case"Cosh":return[fS(S("x",e,t,n))];case"Elu":return[kp(S("x",e,t,n))];case"Erf":return[LR(S("x",e,t,n))];case"Exp":return[Yn(S("x",e,t,n))];case"Expm1":return[eD(S("x",e,t,n))];case"Floor":return[Sp(S("x",e,t,n))];case"Log":return[Qn(S("x",e,t,n))];case"Log1p":return[ib(S("x",e,t,n))];case"Imag":return[xp(S("x",e,t,n))];case"Neg":return[vt(S("x",e,t,n))];case"Reciprocal":return[m3(S("x",e,t,n))];case"Real":return[Xu(S("x",e,t,n))];case"Relu":return[Ys(S("x",e,t,n))];case"Round":return[$S(S("x",e,t,n))];case"Selu":return[AS(S("x",e,t,n))];case"Sigmoid":return[qs(S("x",e,t,n))];case"Sin":return[ES(S("x",e,t,n))];case"Sign":return[E3(S("x",e,t,n))];case"Sinh":return[RS(S("x",e,t,n))];case"Softplus":return[Vl(S("x",e,t,n))];case"Sqrt":return[dn(S("x",e,t,n))];case"Square":return[ct(S("x",e,t,n))];case"Tanh":return[Qu(S("x",e,t,n))];case"Tan":return[Q3(S("x",e,t,n))];case"ClipByValue":return[Vn(S("x",e,t,n),S("clipValueMin",e,t,n),S("clipValueMax",e,t,n))];case"Relu6":return[TS(S("x",e,t,n))];case"Rsqrt":return[_S(un(e.inputNames[0],t,n))];case"Prod":return[NS(S("x",e,t,n),S("axes",e,t,n))];case"LeakyRelu":return[ab(S("x",e,t,n),S("alpha",e,t,n))];case"Prelu":return[db(S("x",e,t,n),S("alpha",e,t,n))];case"IsNan":return[cD(un(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function qn(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];w.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function ew(e){return!(typeof e=="number"||e.some(t=>t<0))}function Au(e,t,n){let s=Gm(e,n),r=!ew(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=Gm(a.shape,s)}),!ew(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function Gm(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var x4=class{constructor(e,t,n,s,r,a,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=we(0),qt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),qn(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,qt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return ms([],[0].concat(this.elementShape));let n=this.readMany(e);return qn(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),es(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return ms([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return qn(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Ot(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,Fs(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];q(()=>{t=U(t,[1,n,r]);for(let o=0;o<e.length;++o){let u=o===0?0:s[o-1],l=[0,u,0],c=[1,e[o],r];a[o]=U(qe(t,l,c),this.elementShape)}return a});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,a)}},ro=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);qn(t,r.shape,"TensorList shape mismatch: "),qt(r)}),this.idTensor=we(0),this.maxNumElements=s,qt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new ro([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);qn(e,this.elementShape,"TensorList shape mismatch: ");let s=Au(this.elementShape,this.tensors,e);return q(()=>{let r=this.tensors.map(a=>U(a,s));return es(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Au(this.elementShape,this.tensors,e),s=this.tensors.pop();return qn(s.shape,e,"TensorList shape mismatch: "),U(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(qn(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");qt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new ro([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;n<Math.min(this.tensors.length,e);++n)t.tensors[n]=this.tensors[n];return t}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);qn(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=Au(this.elementShape,this.tensors,t);return U(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);qn(this.elementShape,t.shape,"TensorList shape mismatch: "),qt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);qn(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=Au(this.elementShape,this.tensors,n);return e.length===0?ms([],[0].concat(s)):q(()=>{let r=e.map(a=>U(this.tensors[a],s));return es(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);qn(this.elementShape,t,"TensorList shape mismatch: ");let n=Au(this.elementShape,this.tensors,t);return this.size()===0?ms([],[0].concat(n)):q(()=>{let s=this.tensors.map(r=>U(r,n));return Ot(s,0)})}};function w4(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);qn(r,t,"TensorList shape mismatch: ");let a=Fs(e);return new ro(a,t,s)}function k4(e,t,n){return new ro([],e,t,n)}function S4(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new ro([],n,e.dtype,s),i=Fs(e,0);return t.forEach((o,u)=>{a.setItem(o,i[u])}),a}function I4(e,t,n){let s=0,r=t.map(c=>(s+=c,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),i=Gm(a,n),o=s===0?0:e.size/s,u=q(()=>{let c=[];e=U(e,[1,s,o]);for(let p=0;p<t.length;++p){let d=p===0?0:r[p-1],h=[0,d,0],f=[1,t[p],o];c[p]=U(qe(e,h,f),i)}return e.dispose(),c}),l=new ro([],n,e.dtype,t.length);for(let c=0;c<u.length;c++)l.setItem(c,u[c]);return l}var C4=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=S("thenBranch",e,t,n),r=S("elseBranch",e,t,n),a=S("cond",e,t,n),i=S("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=S("body",e,t,n),r=S("cond",e,t,n),a=S("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),o=a.map(c=>c.id),u=await i[0].data();i.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&c.dispose()});let l=a;for(;u[0];){let c=l;l=await n.functionMap[s].executeFunctionAsync(l,n.tensorArrayMap,n.tensorListMap);let p=l.map(h=>h.id);c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let d=await n.functionMap[r].executeFunctionAsync(l,n.tensorArrayMap,n.tensorListMap);u=await d[0].data(),d.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return l}case"LoopCond":{let s=S("pred",e,t,n);return[Ws(s)]}case"Switch":{let s=S("pred",e,t,n),r=S("data",e,t,n);return r.kept||(r=Ws(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>un(r,t,n)!==void 0);if(s){let r=un(s,t,n);return[Ws(r)]}return}case"Enter":{let s=S("frameName",e,t,n),r=S("tensor",e,t,n);return n.enterFrame(s),[Ws(r)]}case"Exit":{let s=S("tensor",e,t,n);return n.exitFrame(),[Ws(s)]}case"NextIteration":{let s=S("tensor",e,t,n);return n.nextIteration(),[Ws(s)]}case"TensorArrayV3":{let s=S("size",e,t,n),r=S("dtype",e,t,n),a=S("elementShape",e,t,n),i=S("dynamicSize",e,t,n),o=S("clearAfterRead",e,t,n),u=S("identicalElementShapes",e,t,n),l=S("name",e,t,n),c=new x4(l,r,s,a,u,i,o);return n.addTensorArray(c),[c.idTensor,we(1)]}case"TensorArrayWriteV3":{let s=S("tensorArrayId",e,t,n),r=S("index",e,t,n),a=S("tensor",e,t,n),i=n.getTensorArray(s.id);return i.write(r,a),[i.idTensor]}case"TensorArrayReadV3":{let s=S("tensorArrayId",e,t,n),r=S("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),a=S("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),a=S("tensor",e,t,n),i=n.getTensorArray(s.id);return i.scatter(r,a),[i.idTensor]}case"TensorArrayConcatV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=S("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=S("tensorArrayId",e,t,n),r=S("tensor",e,t,n),a=S("lengths",e,t,n),i=n.getTensorArray(s.id);return i.split(a,r),[i.idTensor]}case"TensorArraySizeV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[we(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=S("tensorListId",e,t,n),r=S("index",e,t,n),a=S("tensor",e,t,n),i=n.getTensorList(s.id);return i.setItem(r,a),[i.idTensor]}case"TensorListGetItem":{let s=S("tensorListId",e,t,n),r=S("index",e,t,n),a=S("elementShape",e,t,n),i=S("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,i)]}case"TensorListScatterV2":case"TensorListScatter":{let s=S("indices",e,t,n),r=S("tensor",e,t,n),a=S("elementShape",e,t,n),i=S("numElements",e,t,n),o=S4(r,s,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=S("elementShape",e,t,n),r=S("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let i=S(a,e,t,n),o=k4(s,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let s=S("tensorListId",e,t,n),r=S("indices",e,t,n),a=S("elementShape",e,t,n),i=S("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,i,a)]}case"TensorListStack":{let s=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n),i=S("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,i)]}case"TensorListFromTensor":{let s=S("tensor",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n),i=w4(s,r,a);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let s=S("tensorListId",e,t,n),r=n.getTensorList(s.id),a=S("dtype",e,t,n),i=S("elementShape",e,t,n);return[r.concat(a,i)]}case"TensorListPushBack":{let s=S("tensorListId",e,t,n),r=S("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=S("tensor",e,t,n),r=S("elementShape",e,t,n),a=S("lengths",e,t,n),i=I4(s,a,r);return n.addTensorList(i),[i.idTensor]}case"TensorListLength":{let s=S("tensorListId",e,t,n),r=n.getTensorList(s.id);return[we(r.size(),"int32")]}case"TensorListResize":{let s=S("tensorListId",e,t,n),r=S("size",e,t,n),i=n.getTensorList(s.id).resize(r);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function tw(e,t,n){let[s,r]=S("fusedOps",e,t,n),a=s==="biasadd",i=!a,o=r==="prelu",u=s==="fusedbatchnorm",l=S("numArgs",e,t,n);if(a){if(o&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&a&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(u)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=S("strides",e,t,n),p=od(e,t,n),d=S("dataFormat",e,t,n).toUpperCase(),h=S("dilations",e,t,n),[f,m]=S("args",e,t,n);i&&(m=f,f=void 0);let g=S("leakyreluAlpha",e,t,n);return{stride:c,pad:p,dataFormat:d,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var N4=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=S("stride",e,t,n),r=S("pad",e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),i=S("dilation",e,t,n);return[cS(S("x",e,t,n),S("filter",e,t,n),s,r,a,i)]}case"Conv2D":{let s=S("strides",e,t,n),r=od(e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),i=S("dilations",e,t,n);return[pa(S("x",e,t,n),S("filter",e,t,n),[s[1],s[2]],r,a,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:i,biasArg:o,preluArg:u,activationFunc:l,leakyreluAlpha:c}=tw(e,t,n);return[ma.conv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[i[1],i[2]],bias:o,activation:l,preluActivationWeights:u,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:i,biasArg:o,preluArg:u,activationFunc:l,leakyreluAlpha:c}=tw(e,t,n);return[ma.depthwiseConv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[i[1],i[2]],bias:o,activation:l,preluActivationWeights:u,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=S("outputShape",e,t,n),r=S("strides",e,t,n),a=od(e,t,n);return[dS(S("x",e,t,n),S("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=S("strides",e,t,n),r=od(e,t,n),a=S("dilations",e,t,n),i=S("dataFormat",e,t,n).toUpperCase();return[wp(S("input",e,t,n),S("filter",e,t,n),[s[1],s[2]],r,i,[a[1],a[2]])]}case"Conv3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),i=S("dilations",e,t,n);return[pS(S("x",e,t,n),S("filter",e,t,n),[s[1],s[2],s[3]],r,a,[i[1],i[2],i[3]])]}case"AvgPool":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[Zg(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[ub(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n),i=S("includeBatchInIndex",e,t,n),{result:o,indexes:u}=OD(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,i);return[o,u]}case"AvgPool3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[uS(S("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[CS(S("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("dilations",e,t,n),i=s[1],o=s[2],u=a[1],l=a[2];return[$R(S("x",e,t,n),S("filter",e,t,n),[i,o],r,[u,l],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},T4=(e,t,n)=>{switch(e.op){case"Fill":{let s=S("shape",e,t,n),r=S("dtype",e,t,n),a=S("value",e,t,n);return[Bl(s,a,r)]}case"LinSpace":{let s=S("start",e,t,n),r=S("stop",e,t,n),a=S("num",e,t,n);return[fD(s,r,a)]}case"Multinomial":{let s=S("logits",e,t,n),r=S("numSamples",e,t,n),a=S("seed",e,t,n);return[qD(s,r,a)]}case"OneHot":{let s=S("indices",e,t,n),r=S("depth",e,t,n),a=S("onValue",e,t,n),i=S("offValue",e,t,n);return[Id(s,r,a,i)]}case"Ones":return[Mn(S("shape",e,t,n),S("dtype",e,t,n))];case"OnesLike":return[Zn(S("x",e,t,n))];case"RandomUniform":return[Wl(S("shape",e,t,n),S("minval",e,t,n),S("maxval",e,t,n),S("dtype",e,t,n))];case"Range":{let s=S("start",e,t,n),r=S("stop",e,t,n),a=S("step",e,t,n);return[tl(s,r,a,S("dtype",e,t,n))]}case"TruncatedNormal":{let s=S("shape",e,t,n),r=S("mean",e,t,n),a=S("stdDev",e,t,n),i=S("seed",e,t,n);return[vb(s,r,a,S("dtype",e,t,n),i)]}case"Zeros":return[$t(S("shape",e,t,n),S("dtype",e,t,n))];case"ZerosLike":return[je(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Zf(e,t,n){let s=S("boxes",e,t,n),r=S("scores",e,t,n),a=S("maxOutputSize",e,t,n),i=S("iouThreshold",e,t,n),o=S("scoreThreshold",e,t,n),u=S("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:i,scoreThreshold:o,softNmsSigma:u}}var $4=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:i,scoreThreshold:o,softNmsSigma:u}=Zf(e,t,n),l=await jn.nonMaxSuppressionWithScoreAsync(s,r,a,i,o,u);return[l.selectedIndices,l.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:i,scoreThreshold:o}=Zf(e,t,n),u=S("padToMaxOutputSize",e,t,n),l=await jn.nonMaxSuppressionPaddedAsync(s,r,a,i,o,u);return[l.selectedIndices,l.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:i,scoreThreshold:o}=Zf(e,t,n);return[await jn.nonMaxSuppressionAsync(s,r,a,i,o)]}case"Where":{let s=le(S("condition",e,t,n),"bool"),r=[await zS(s)];return s.dispose(),r}case"ListDiff":return _3(S("x",e,t,n),S("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},_4=(e,t,n)=>{switch(e.op){case"LowerBound":{let s=S("sortedSequence",e,t,n),r=S("values",e,t,n);return[ED(s,r)]}case"TopKV2":{let s=S("x",e,t,n),r=S("k",e,t,n),a=S("sorted",e,t,n),i=J3(s,r,a);return[i.values,i.indices]}case"UpperBound":{let s=S("sortedSequence",e,t,n),r=S("values",e,t,n);return[aF(s,r)]}case"Unique":{let s=S("x",e,t,n),r=xx(s);return[r.values,r.indices]}case"UniqueV2":{let s=S("x",e,t,n),r=S("axis",e,t,n),a=xx(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},A4=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=S("default",e,t,n);return[un(e.name,t,n)||s];case"Placeholder":return[un(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let l=S("x",e,t,n);return[Ws(l)]}case"IdentityN":return S("x",e,t,n).map(l=>Ws(l));case"Snapshot":let r=S("x",e,t,n);return[Ws(r)];case"Shape":return[Zt(S("x",e,t,n).shape,"int32")];case"ShapeN":return S("x",e,t,n).map(l=>Zt(l.shape));case"Size":return[we(S("x",e,t,n).size,"int32")];case"Rank":return[we(S("x",e,t,n).rank,"int32")];case"NoOp":return[we(1)];case"Print":let a=S("x",e,t,n),i=S("data",e,t,n),o=S("message",e,t,n),u=S("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let l=0;l<i.length;l++)console.log(Array.prototype.slice.call(i[l].dataSync()).slice(0,u));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},E4=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=we(0),this.tensorMap=new Map,qt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return we(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),q(()=>{let s=Fs(t),r=n.length,a=s.length;w.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let i=0;i<r;i++){let o=n[i],u=s[i];qt(u),this.tensorMap.set(o,u)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return q(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],i=this.findWithDefault(a,t);s.push(i)}return es(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},R4=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=S("keyDType",e,t,n),a=S("valueDType",e,t,n),i=new E4(r,a);return s.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=S("tableHandle",e,t,n,s),a=S("keys",e,t,n),i=S("values",e,t,n);return[await s.getHashTableById(r.id).import(a,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=S("tableHandle",e,t,n,s),a=S("keys",e,t,n),i=S("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=S("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},D4=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=S("images",e,t,n),r=S("size",e,t,n),a=S("alignCorners",e,t,n),i=S("halfPixelCenters",e,t,n);return[jn.resizeBilinear(s,[r[0],r[1]],a,i)]}case"ResizeNearestNeighbor":{let s=S("images",e,t,n),r=S("size",e,t,n),a=S("alignCorners",e,t,n),i=S("halfPixelCenters",e,t,n);return[jn.resizeNearestNeighbor(s,[r[0],r[1]],a,i)]}case"CropAndResize":{let s=S("image",e,t,n),r=S("boxes",e,t,n),a=S("boxInd",e,t,n),i=S("cropSize",e,t,n),o=S("method",e,t,n),u=S("extrapolationValue",e,t,n);return[jn.cropAndResize(s,r,a,i,o,u)]}case"ImageProjectiveTransformV3":{let s=S("images",e,t,n),r=S("transforms",e,t,n),a=S("outputShape",e,t,n),i=S("fillValue",e,t,n),o=S("interpolation",e,t,n),u=S("fillMode",e,t,n);return[jn.transform(s,r,o.toLowerCase(),u.toLowerCase(),i,a)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},F4=(e,t,n)=>{switch(e.op){case"Equal":return[Xn(S("a",e,t,n),S("b",e,t,n))];case"NotEqual":return[el(S("a",e,t,n),S("b",e,t,n))];case"Greater":return[Un(S("a",e,t,n),S("b",e,t,n))];case"GreaterEqual":return[Zo(S("a",e,t,n),S("b",e,t,n))];case"Less":return[wS(S("a",e,t,n),S("b",e,t,n))];case"LessEqual":return[Jo(S("a",e,t,n),S("b",e,t,n))];case"LogicalAnd":return[Ds(S("a",e,t,n),S("b",e,t,n))];case"LogicalNot":return[ob(S("a",e,t,n))];case"LogicalOr":return[SS(S("a",e,t,n),S("b",e,t,n))];case"Select":case"SelectV2":return[vn(S("condition",e,t,n),S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},O4=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ve(S("a",e,t,n),S("b",e,t,n),S("transposeA",e,t,n),S("transposeB",e,t,n))];case"Einsum":return[PR(S("equation",e,t,n),...S("tensors",e,t,n))];case"Transpose":return[Ge(S("x",e,t,n),S("perm",e,t,n))];case"_FusedMatMul":let[s,r]=S("fusedOps",e,t,n),a=s==="biasadd",i=r==="prelu",o=S("numArgs",e,t,n),u=S("leakyreluAlpha",e,t,n);if(a){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[l,c]=S("args",e,t,n);return[ma.matMul({a:S("a",e,t,n),b:S("b",e,t,n),transposeA:S("transposeA",e,t,n),transposeB:S("transposeB",e,t,n),bias:l,activation:r,preluActivationWeights:c,leakyreluAlpha:u})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},P4=(e,t,n)=>{switch(e.op){case"EuclideanNorm":return[YR(S("x",e,t,n),S("axis",e,t,n),S("keepDims",e,t,n))];case"FusedBatchNorm":case"FusedBatchNormV2":return[Zu(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"FusedBatchNormV3":return[Zu(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"LRN":return[gD(S("x",e,t,n),S("radius",e,t,n),S("bias",e,t,n),S("alpha",e,t,n),S("beta",e,t,n))];case"Softmax":return[gb(S("x",e,t,n))];case"LogSoftmax":return[kS(S("x",e,t,n))];case"SparseToDense":return[MS(S("sparseIndices",e,t,n),S("outputShape",e,t,n),S("sparseValues",e,t,n),S("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},z4=(e,t,n)=>{switch(e.op){case"Max":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[As(S("x",e,t,n),i,o)]}case"Mean":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[It(S("x",e,t,n),i,o)]}case"Min":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[km(S("x",e,t,n),i,o)]}case"Sum":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[ve(S("x",e,t,n),i,o)]}case"All":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[rS(S("x",e,t,n),i,o)]}case"Any":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[vm(S("x",e,t,n),i,o)]}case"ArgMax":{let i=S("axis",e,t,n);return[Yu(S("x",e,t,n),i)]}case"ArgMin":{let i=S("axis",e,t,n);return[fE(S("x",e,t,n),i)]}case"Prod":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[NS(S("x",e,t,n),i,o)]}case"Cumprod":{let i=S("axis",e,t,n),o=S("exclusive",e,t,n),u=S("reverse",e,t,n);return[wm(S("x",e,t,n),i,o,u)]}case"Cumsum":{let i=S("axis",e,t,n),o=S("exclusive",e,t,n),u=S("reverse",e,t,n);return[mS(S("x",e,t,n),i,o,u)]}case"Bincount":let s=S("x",e,t,n),r=S("weights",e,t,n),a=S("size",e,t,n);return[lS(s,r,a)];case"DenseBincount":{let i=S("x",e,t,n),o=S("weights",e,t,n),u=S("size",e,t,n),l=S("binaryOutput",e,t,n);return[kR(i,o,u,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},M4=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=S("n",e,t,n),r=S("axis",e,t,n),a=S("tensors",e,t,n);return a=a.slice(0,s),[Ot(a,r)]}case"Gather":{let s=S("x",e,t,n),r=S("indices",e,t,n);return[Ju(s,le(r,"int32"),0)]}case"GatherV2":{let s=S("axis",e,t,n),r=S("batchDims",e,t,n),a=S("x",e,t,n),i=S("indices",e,t,n);return[Ju(a,le(i,"int32"),s,r)]}case"Reverse":{let s=S("dims",e,t,n),r=[];for(let i=0;i<s.length;i++)s[i]&&r.push(i);let a=S("x",e,t,n);return[Jn(a,r)]}case"ReverseV2":{let s=S("axis",e,t,n),r=S("x",e,t,n);return[Jn(r,s)]}case"Slice":{let s=S("begin",e,t,n),r=S("size",e,t,n);return[qe(S("x",e,t,n),s,r)]}case"StridedSlice":{let s=S("begin",e,t,n),r=S("end",e,t,n),a=S("strides",e,t,n),i=S("beginMask",e,t,n),o=S("endMask",e,t,n),u=S("ellipsisMask",e,t,n),l=S("newAxisMask",e,t,n),c=S("shrinkAxisMask",e,t,n),p=S("x",e,t,n);return[X3(p,s,r,a,i,o,u,l,c)]}case"Pack":return q(()=>{let s=S("axis",e,t,n),r=S("tensors",e,t,n),a=r[0].shape,i=br(r[0]).shape,o=r.map(u=>{let l=w.arraysEqual(u.shape,a);if(!l&&!w.arraysEqual(br(u).shape,i))throw new Error("the input tensors shape does not match");return l?u:U(u,a)});return[es(o,s)]});case"Unpack":{let s=S("axis",e,t,n),r=S("tensor",e,t,n);return Fs(r,s)}case"Tile":{let s=S("reps",e,t,n);return[hs(S("x",e,t,n),s)]}case"Split":case"SplitV":{let s=S("axis",e,t,n),r=S("numOrSizeSplits",e,t,n),a=S("x",e,t,n);return Bn(a,r,s)}case"ScatterNd":{let s=S("indices",e,t,n),r=S("values",e,t,n),a=S("shape",e,t,n);return[dF(s,r,a)]}case"GatherNd":{let s=S("x",e,t,n),r=S("indices",e,t,n);return[mF(s,r)]}case"SparseToDense":{let s=S("sparseIndices",e,t,n),r=S("outputShape",e,t,n),a=S("sparseValues",e,t,n),i=S("defaultValue",e,t,n);return[MS(s,a,r,a.dtype===i.dtype?i:le(i,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},L4=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:i}=qc.sparseFillEmptyRows(S("indices",e,t,n),S("values",e,t,n),S("denseShape",e,t,n),S("defaultValue",e,t,n));return[s,r,a,i]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=qc.sparseReshape(S("inputIndices",e,t,n),S("inputShape",e,t,n),S("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[qc.sparseSegmentMean(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];case"SparseSegmentSum":return[qc.sparseSegmentSum(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},B4=(e,t,n)=>{switch(e.op){case"FFT":return[bb(S("x",e,t,n))];case"IFFT":return[Td(S("x",e,t,n))];case"RFFT":return[yb(S("x",e,t,n))];case"IRFFT":return[FS(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},V4=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=qf.stringNGrams(S("data",e,t,n),S("dataSplits",e,t,n),S("separator",e,t,n),S("nGramWidths",e,t,n),S("leftPad",e,t,n),S("rightPad",e,t,n),S("padWidth",e,t,n),S("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=qf.stringSplit(S("input",e,t,n),S("delimiter",e,t,n),S("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[qf.stringToHashBucketFast(S("input",e,t,n),S("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},W4=(e,t,n)=>{switch(e.op){case"Cast":return[le(S("x",e,t,n),S("dtype",e,t,n))];case"ExpandDims":{let s=S("axis",e,t,n);return[Pn(S("x",e,t,n),s)]}case"Squeeze":{let s=S("axis",e,t,n);return[br(S("x",e,t,n),s)]}case"Reshape":return[U(S("x",e,t,n),S("shape",e,t,n))];case"MirrorPad":return[BD(S("x",e,t,n),S("padding",e,t,n),S("mode",e,t,n))];case"PadV2":case"Pad":return[bi(S("x",e,t,n),S("padding",e,t,n),S("constantValue",e,t,n))];case"SpaceToBatchND":{let s=S("blockShape",e,t,n),r=S("paddings",e,t,n);return[cb(S("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=S("blockShape",e,t,n),r=S("crops",e,t,n);return[Jg(S("x",e,t,n),s,r)]}case"DepthToSpace":{let s=S("blockSize",e,t,n),r=S("dataFormat",e,t,n).toUpperCase();return[IR(S("x",e,t,n),s,r)]}case"BroadcastTo":return[id(S("x",e,t,n),S("shape",e,t,n))];case"BroadcastArgs":return[YE(S("s0",e,t,n),S("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function nw(e,t,n,s){let r=((a,i,o)=>{switch(a.category){case"arithmetic":return q(()=>y4(a,i,o));case"basic_math":return q(()=>v4(a,i,o));case"control":return C4(a,i,o);case"convolution":return q(()=>N4(a,i,o));case"creation":return q(()=>T4(a,i,o));case"dynamic":return $4(a,i,o);case"evaluation":return q(()=>_4(a,i,o));case"image":return q(()=>D4(a,i,o));case"graph":return q(()=>A4(a,i,o));case"logical":return q(()=>F4(a,i,o));case"matrices":return q(()=>O4(a,i,o));case"normalization":return q(()=>P4(a,i,o));case"reduction":return q(()=>z4(a,i,o));case"slice_join":return q(()=>M4(a,i,o));case"sparse":return q(()=>L4(a,i,o));case"spectral":return q(()=>B4(a,i,o));case"string":return q(()=>V4(a,i,o));case"transformation":return q(()=>W4(a,i,o));case"hash_table":return R4(a,i,o,s);case"custom":let u=u0(a.op);if(u&&u.customExecutor)return u.customExecutor(new b4(a,i,o));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var sw=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function rw(e,t,n,s){let r=new Set,a=[],i=null,o=null,u=new Set,l=Object.keys(e).map(d=>_n(d)[0]),c=[];s!=null&&(c=s.map(d=>_n(d.name)[0]));let p=[...t];for(;p.length>0;){let d=p.pop();if((A0(d)||j4(d)||K4(d))&&i==null&&(i=d,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(d.name),n[d.name]==null&&l.indexOf(d.name)===-1&&c.indexOf(d.name)===-1){if(d.inputs.length===0){a.push(d.name);continue}d.inputs.forEach(h=>{u.has(h.name)||(u.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:i,syncInputs:o}}function U4(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],i=Object.keys(r).map(c=>_n(c)[0]).map(c=>e.nodes[c]),o=e.initNodes;i.forEach(c=>{s.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{s.has(c.name)&&a.push(c)}),o!=null&&o.forEach(c=>{s.has(c.name)&&a.push(c)});let u=new Set,l=[];for(;a.length>0;){let c=a.pop();u.add(c.name),t[c.name]||l.push(c),c.children.forEach(p=>{!u.has(p.name)&&s.has(p.name)&&p.inputs.every(d=>u.has(d.name))&&a.push(p)})}return l}var G4=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],H4=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],q4=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function A0(e){return G4.indexOf(e.op)>=0}function j4(e){return H4.indexOf(e.op)>=0}function K4(e){return q4.indexOf(e.op)>=0}var Hm=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Hm(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=rw(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let i=t.map(u=>u.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${s}]`)}return U4(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(c=>this.graph.nodes[_n(c)[0]]),r=t.map(c=>_n(c)[0]),a=r.map(c=>this.graph.nodes[c]);this.resetIntermediateTensors(),a.length===0&&(a=this._outputs);let i=this.getCompilationKey(s,a),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,a),this.compiledMap.set(i,o));let u={},l={};return q(()=>{let c=new sw(this.weightMap,u,l,this.functionExecutorMap),p={...this.weightMap};Object.keys(e).forEach(f=>{let[m,g]=_n(f),b=[];b[g]=e[f],p[m]=b});let d=this.getFrozenTensorIds(p),h={};for(let f=0;f<o.length;f++){let m=o[f];if(!p[m.name]){let g=nw(m,p,c,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);p[m.name]=g,this.checkTensorForDisposal(m.name,m,p,c,d,r,h)}}return this.parent==null&&c.dispose(d),t.map(f=>un(f,p,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,i){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let u=YW(o.name,n,s);u!=null&&u.forEach(l=>{if(l&&!l.kept&&!r.has(l.id)){let c=i[l.id];if(c===1){if(!this.keepTensorForDebug)l.dispose();else{let[p,d]=Ts(t.name,s);this.intermediateTensors[p]?this.intermediateTensors[p][d]=l:(this.intermediateTensors[p]=[],this.intermediateTensors[p][d]=l)}delete i[l.id]}else c!=null&&i[l.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(n=>{n&&!n.kept&&!n.isDisposed&&!this.keepIds.has(n.id)&&n.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=K().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(l){console.warn(l.message)}this.resetIntermediateTensors();let a=new sw(this.weightMap,s,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,a,t,n);let i=t.map(l=>un(l,this.tensorsMap,a)),o=i.map(l=>l.id),u=Object.keys(e).map(l=>e[l].id);return this.keepIds=new Set([...o,...u,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&a.dispose(this.keepIds),i}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,i)=>(r[this.inputs[i].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(y=>this.graph.nodes[_n(y)[0]]),i=n.map(y=>_n(y)[0]),o=i.map(y=>this.graph.nodes[y]);o.length===0&&(o=this._outputs);let{usedNodes:u,missingInputs:l,dynamicNode:c,syncInputs:p}=rw(e,o,this.weightMap,this._initNodes),d=[...a,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),h={...this.weightMap};Object.keys(e).forEach(y=>{let[v,x]=_n(y),k=[];k[x]=e[y],h[v]=k});let f={},m=this.getFrozenTensorIds(h),g={};for(;d.length>0;){let y=this.processStack(a,d,t,h,g,m,i,f,u);await Promise.all(y)}c==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let b=o.filter(y=>!A0(y)&&!un(y.name,h,t)).map(y=>y.name);if(b.length>0){let y="";throw c!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${b}] from the provided inputs [${r}]. Consider providing the following inputs: [${l}]. ${y}`)}return h}processStack(e,t,n,s,r,a,i,o,u){let l=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let p="";if(c.node.op==="Enter"&&S("isConstant",c.node,s,n)&&([p]=Ts(c.node.name,n)),s[c.node.name]==null){let d=nw(c.node,s,n,this._resourceManager);p||([p]=Ts(c.node.name,n));let h=n.currentContext;w.isPromise(d)?l.push(d.then(f=>(s[p]=f,n.currentContext=h,this.checkTensorForDisposal(p,c.node,s,n,a,i,o),this.processChildNodes(c.node,t,n,s,r,u),f))):(s[p]=d,this.checkTensorForDisposal(p,c.node,s,n,a,i,o),this.processChildNodes(c.node,t,n,s,r,u))}else this.processChildNodes(c.node,t,n,s,r,u)}return l}processChildNodes(e,t,n,s,r,a){e.children.forEach(i=>{let[o]=Ts(i.name,n);r[o]||!a.has(i.name)||(i.op==="Merge"?i.inputNames.some(u=>!!un(u,s,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(u=>!!un(u,s,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=_n(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,i=a.length===n.shape.length&&n.shape.every((o,u)=>a[u]===-1||a[u]===o);w.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&w.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=_n(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=_n(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},X4=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Y4="?tfjs-format=file",Q4="model.json",E0=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new X4}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=An.browserHTTPRequest(e,this.loadOptions);else{let t=An.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(An.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return w.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=An.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Hm(Zx.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=Zx.Instance.transformGraph(e.modelInitializer);this.initializer=new Hm(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=An.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof et)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function mhe(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=Z4(e));let n=new E0(e,t);return await n.load(),n}function ghe(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide a url or an IOHandler that loads the model");if(!e.load)throw new Error(`modelUrl IO Handler ${e} has no load function`);let t=new E0(e);return t.load(),t}function Z4(e){return e.endsWith("/")||(e=e+"/"),`${e}${Q4}${Y4}`}var bhe="0.0.0",J4={};Ee(J4,{CSVDataset:()=>U0,Dataset:()=>su,FileDataSource:()=>Y0,TextLineDataset:()=>W0,URLDataSource:()=>Q0,array:()=>kU,csv:()=>DU,func:()=>FU,generator:()=>OU,microphone:()=>zU,version_data:()=>MU,webcam:()=>PU,zip:()=>SU});var eU=ka(Xd()),tU=ka(Xd());function nU(e,t){return Md(e,t)}function Md(e,t,n=new Map,s=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(ao(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let i in e){let o=e[i],u=Md(o,t,n,s);a[i]=u}return s.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function sU(e,t=D0){return R0(e,t)}function R0(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(ao(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let i in s){let o=e.map(l=>l[i]),u=R0(o,t,n);a[i]=u}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function D0(e){return e===null?null:ao(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function F0(e,t){let n=new Map;Md(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(w.isPromise(a)){let i=await a;n.set(r,i)}}return Md(e,t,n)}function ao(e){let t=!1;if(K().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=Zw();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof et)&&!(e instanceof Promise)&&!t)}function rU(e){return e==null||aU(e)||Array.isArray(e)||typeof e=="object"&&e instanceof et||w.isTypedArray(e)}function aU(e){return e===null||typeof e!="object"&&typeof e!="function"}function iU(e){return nU(e,oU)}function oU(e){return e instanceof et?{value:e.clone(),recurse:!1}:ao(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var O0=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},P0=class extends O0{constructor(){super(P0.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}},z0=P0;z0.INITIAL_CAPACITY=32;function M0(e){return new cU(e)}function rv(e){return new dU(e)}function uU(e,t){return new L0(e,t)}function lU(e,t=B0.FAIL){return new xU(e,t)}var Gt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new yU(this,e)}filter(e){return new gU(this,e)}map(e){return new bU(this,e)}mapAsync(e){return new aw(this,e)}serialMapAsync(e){return new aw(this,e).serial()}flatmap(e){return new vU(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new mU(this,e,t)}columnMajorBatch(e,t=!0,n=D0){return this.rowMajorBatch(e,t).map(r=>sU(r,n))}concatenate(e,t){return new L0(M0([this,e]),t)}take(e){return e<0||e==null?this:new fU(this,e)}skip(e){return e<0||e==null?this:new hU(this,e)}prefetch(e){return new V0(this,e)}shuffle(e,t){return new wU(this,e,t)}serial(){return new pU(this)}},cU=class extends Gt{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:iU(e),done:!1}}},dU=class extends Gt{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},pU=class extends Gt{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},hU=class extends Gt{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;De(e.value)}return this.upstream.next()}},fU=class extends Gt{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},mU=class extends Gt{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},gU=class extends Gt{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;De(e.value)}}},bU=class extends Gt{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=_s.getTensorsInContainer(e.value),n=this.transform(e.value),s=_s.getTensorsInContainer(n);for(let r of t)_s.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},yU=class extends Gt{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},aw=class extends Gt{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=_s.getTensorsInContainer(e.value),n=await this.transform(e.value),s=_s.getTensorsInContainer(n);for(let r of t)_s.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},av=class extends Gt{constructor(){super(),this.outputQueue=new z0,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},vU=class extends av{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=_s.getTensorsInContainer(e.value),n=this.transform(e.value),s=_s.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)_s.isTensorInList(r,s)||r.dispose();return!0}},L0=class extends Gt{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},B0=(e=>(e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST",e))(B0||{}),xU=class extends Gt{constructor(e,t=0){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof Gt?{value:a.next().then(o=>(t++,o.done&&n++,o.value)),recurse:!1}:{value:null,recurse:!0}}let r=await F0(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case 0:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case 1:return{value:null,done:!0};case 2:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},V0=class extends Gt{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new O0(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},wU=class extends V0{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=tU.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},su=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),$n(async()=>(await n.iterator()).columnMajorBatch(e,t,IU),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,$n(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,$n(async()=>(await t.iterator()).filter(s=>q(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return $n(async()=>(await t.iterator()).map(n=>q(()=>e(n))),this.size)}mapAsync(e){let t=this;return $n(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return $n(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,$n(async()=>{let s=rv(async()=>({value:await t.iterator(),done:!1}));return uU(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,$n(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=eU.alea(t||w.now().toString());return $n(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,$n(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};su.MAX_BUFFER_SIZE=1e4;function $n(e,t=null){return new class extends su{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function kU(e){return $n(async()=>M0(e),e.length)}function SU(e){if(!ao(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return $n(async()=>{let n=await F0(e,s=>{if(s instanceof su)return{value:s.iterator(),recurse:!1};if(ao(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return lU(n,1)},t)}function IU(e){if(e===null)return null;let t=e[0];return rU(t)?{value:CU(e),recurse:!1}:{value:null,recurse:!0}}function CU(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof et?es(e):ms(e)}var W0=class extends su{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},Zc='"',Eu=Symbol("out"),iw=Symbol("field"),Jc=Symbol("quote"),Jf=Symbol("quoteafterquote"),ow=Symbol("quoteinquote"),U0=class extends su{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new W0(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],u=null;if(o==="")if(i&&i.default!==void 0)u=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);u=void 0}else{let l=Number(o);if(isNaN(l))i&&i.dtype==="bool"?u=this.getBoolean(o):u=o;else if(!i||!i.dtype)u=l;else switch(i.dtype){case"float32":u=l;break;case"int32":u=Math.floor(l);break;case"bool":u=this.getBoolean(o);break;default:u=l}}i&&i.isLabel?s[a]=u:n[a]=u}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=Eu;for(let i=0;i<r;i++)switch(a){case Eu:switch(e.charAt(i)){case Zc:s=i+1,a=Jc;break;case this.delimiter:if(s=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=Eu;break;default:a=iw,s=i;break}break;case iw:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(s,i)),a=Eu,s=i+1;break;default:}break;case Jc:switch(e.charAt(i)){case Zc:a=Jf;break;default:}break;case Jf:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(s,i-1)),a=Eu,s=i+1;break;case Zc:a=Jc;break;default:a=ow;break}break;case ow:switch(e.charAt(i)){case Zc:a=Jc;break;default:}break;default:}if(a===Jf?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},G0=class extends Gt{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!K().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new G0(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),ms(n,t)}},H0=class extends Gt{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Zt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,i=r+n,o=s+a;this.cropBox=Zi([a,r,o,i],[1,4])}else this.cropBox=Zi([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!K().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new H0(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Lk.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return q(()=>{let t=Pn(le(e,"float32"),0),n;n=jn.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return U(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},q0=class{},j0=class extends Gt{split(e){return new NU(this,e)}},NU=class extends j0{constructor(e,t){super(),this.upstream=e,this.impl=new TU(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},TU=class extends av{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},$U=class extends Gt{decodeUTF8(){return new _U(this)}},_U=class extends j0{constructor(e){super(),this.upstream=e,this.impl=new AU(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},AU=class extends av{constructor(e){if(super(),this.upstream=e,K().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=Zw();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return K().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},K0=class extends $U{constructor(e,t={}){super(),this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(K().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=i=>{let o=r.result;if(o instanceof ArrayBuffer&&(o=new Uint8Array(o)),!(o instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(o)},r.onabort=i=>n(new Error("Aborted")),r.onerror=i=>n(new Error(i.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function EU(e,t={},n){let s,r;typeof e=="string"?s=e:(s=e.url,r=RU(e));let a=await(n||w.fetch)(s,r);if(a.ok){let i=new Uint8Array(await a.arrayBuffer());return new K0(i,t)}else throw new Error(a.statusText)}var RU=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function X0(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var Y0=class extends q0{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(X0(this.input)&&K().get("IS_NODE")){let e=ug();this.input=e.readFileSync(this.input.slice(7))}return new K0(this.input,this.options)}},Q0=class extends q0{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return X0(this.url)?new Y0(this.url,this.fileOptions).iterator():EU(this.url,this.fileOptions)}};function DU(e,t={}){return new U0(new Q0(e),t)}function FU(e){let t=rv(e);return $n(async()=>t)}function OU(e){return $n(async()=>{let t=await e();return rv(()=>t.next())})}async function PU(e,t){return H0.create(e,t)}async function zU(e){return G0.create(e)}var MU="0.0.0";function be(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var LU=ws.whereImpl,Z0=class extends ol{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new Yd(this,ds())}nextDataId(){return Z0.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,K().get("IS_NODE")&&C.warn(`
|
|
============================
|
|
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>w.decodeString(s));return Ae(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ae(e.shape,e.dtype,t)}makeOutput(e,t,n){return ds().makeTensorFromTensorInfo(this.makeTensorInfo(t,n,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){be([e],"where");let t=this.readSync(e.dataId);return LU(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},J0=Z0;J0.nextDataId=0;var iv={};Ee(iv,{addImpl:()=>tC,bincountImpl:()=>uv,bincountReduceImpl:()=>nC,ceilImpl:()=>sC,concatImpl:()=>lv,equalImpl:()=>rC,expImpl:()=>iC,expm1Impl:()=>uC,floorImpl:()=>lC,gatherNdImpl:()=>cC,gatherV2Impl:()=>dC,greaterEqualImpl:()=>hC,greaterImpl:()=>pC,lessEqualImpl:()=>mC,lessImpl:()=>fC,linSpaceImpl:()=>gC,logImpl:()=>bC,maxImpl:()=>yC,maximumImpl:()=>vC,minimumImpl:()=>xC,multiplyImpl:()=>cv,negImpl:()=>wC,notEqualImpl:()=>kC,prodImpl:()=>SC,rangeImpl:()=>pv,rsqrtImpl:()=>IC,scatterImpl:()=>Ki,sigmoidImpl:()=>TG,simpleAbsImpl:()=>eC,sliceImpl:()=>Bd,sparseFillEmptyRowsImpl:()=>NC,sparseReshapeImpl:()=>TC,sparseSegmentReductionImpl:()=>hv,sqrtImpl:()=>AG,squaredDifferenceImpl:()=>$C,stridedSliceImpl:()=>_C,stringNGramsImpl:()=>AC,stringSplitImpl:()=>EC,stringToHashBucketFastImpl:()=>RC,subImpl:()=>DC,tileImpl:()=>FC,topKImpl:()=>PC,transposeImpl:()=>dv,uniqueImpl:()=>zC});function eC(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var BU=e=>{let{x:t}=e.inputs,n=e.backend;be(t,"abs");let s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=eC(r),n.makeOutput(s,t.shape,t.dtype)},VU={kernelName:po,backendName:"cpu",kernelFunc:BU};function Et(e){return(t,n,s,r,a)=>{let i=C.assertAndGetBroadcastShape(t,n),o=i.length,u=w.computeStrides(i),l=w.sizeFromShape(i),c=w.getTypedArrayFromDType(a,l),p=t.length,d=n.length,h=w.computeStrides(t),f=w.computeStrides(n),m=C.getBroadcastDims(t,i),g=C.getBroadcastDims(n,i);if(m.length+g.length===0)for(let b=0;b<c.length;++b)c[b]=e(s[b%s.length],r[b%r.length]);else for(let b=0;b<c.length;++b){let y=w.indexToLoc(b,o,u),v=y.slice(-p);m.forEach($=>v[$]=0);let x=w.locToIndex(v,p,h),k=y.slice(-d);g.forEach($=>k[$]=0);let I=w.locToIndex(k,d,f);c[b]=e(s[x],r[I])}return[c,i]}}function En(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(s.shape,"complex64"),u=n.data.get(o.dataId);return u.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var WU={kernelName:ep,backendName:"cpu",kernelFunc:En};function Ld(e,t,n="float32"){if(n==="complex64"){let r=Ld(e,t,"float32"),a=Ld(e,t,"float32");return En({inputs:{real:r,imag:a},backend:e})}let s=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function Os(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var UU={kernelName:Ua,backendName:"cpu",kernelFunc:Os};function ba(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var GU={kernelName:lp,backendName:"cpu",kernelFunc:ba};function kr(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Os({inputs:{x:r},backend:n});let i=Ld(n,r.shape,r.dtype),o=kr({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),u=En({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),u}if(r.dtype==="complex64"){let i=ba({inputs:{input:r},backend:n}),o=kr({inputs:{x:i},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,a)){let i=Os({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:a}}if(a==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(a==="bool"){let i=n.data.get(r.dataId).values,o=w.toTypedArray([0],r.dtype),[u,l]=Et((c,p)=>c!==p?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(l,"bool",u)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var HU={kernelName:$a,backendName:"cpu",kernelFunc:kr};function Ht(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:i,b:o}=r,u=a;be([i,o],e);let l=u.data.get(i.dataId).values,c=u.data.get(o.dataId).values,p=i.dtype==="string"?C.fromUint8ToStringArray(l):l,d=i.dtype==="string"?C.fromUint8ToStringArray(c):c,h=s||i.dtype,[f,m]=t(i.shape,o.shape,p,d,h);return u.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:i,b:o}=r,u=a;if(i.dtype==="complex64"||o.dtype==="complex64"){let l=kr({inputs:{x:i},backend:u,attrs:{dtype:"complex64"}}),c=u.data.get(l.dataId),p=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,h=u.data.get(p.dataId).values,f=u.data.get(d.dataId).values,m=kr({inputs:{x:o},backend:u,attrs:{dtype:"complex64"}}),g=u.data.get(m.dataId),b=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,v=u.data.get(b.dataId).values,x=u.data.get(y.dataId).values,[k,I,$]=n(i.shape,o.shape,h,f,v,x),R=u.makeTensorInfo($,"float32",k),E=u.makeTensorInfo($,"float32",I),P=En({inputs:{real:R,imag:E},backend:u});return u.disposeIntermediateTensorInfo(l),u.disposeIntermediateTensorInfo(m),u.disposeIntermediateTensorInfo(R),u.disposeIntermediateTensorInfo(E),P}else{let l=u.data.get(i.dataId).values,c=u.data.get(o.dataId).values,p=s||i.dtype,[d,h]=t(i.shape,o.shape,l,c,p);return u.makeTensorInfo(h,p,d)}}}function ov(e){return(t,n,s,r,a,i)=>{let o=C.assertAndGetBroadcastShape(t,n),u=w.sizeFromShape(o),l=o.length,c=w.computeStrides(o),p=w.getTypedArrayFromDType("float32",u),d=w.getTypedArrayFromDType("float32",u),h=C.getBroadcastDims(t,o),f=C.getBroadcastDims(n,o),m=C.mergeRealAndImagArrays(s,r),g=C.mergeRealAndImagArrays(a,i),b=t.length,y=w.computeStrides(t),v=n.length,x=w.computeStrides(n);if(h.length+f.length===0)for(let k=0;k<p.length;k++){let I=k%m.length,$=k%g.length,R=e(m[I*2],m[I*2+1],g[$*2],g[$*2+1]);p[k]=R.real,d[k]=R.imag}else for(let k=0;k<p.length;k++){let I=w.indexToLoc(k,l,c),$=I.slice(-b);h.forEach(O=>$[O]=0);let R=w.locToIndex($,b,y),E=I.slice(-v);f.forEach(O=>E[O]=0);let P=w.locToIndex(E,v,x),A=e(m[R*2],m[R*2+1],g[P*2],g[P*2+1]);p[k]=A.real,d[k]=A.imag}return[p,d,o]}}var tC=Et((e,t)=>e+t),qU=ov((e,t,n,s)=>({real:e+n,imag:t+s})),io=Ht(Cr,tC,qU),jU={kernelName:Cr,backendName:"cpu",kernelFunc:io};function uv(e,t,n,s,r){let a=w.sizeFromShape(s),i=w.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let u=e[o];if(u<0)throw new Error("Input x must be non-negative!");u>=r||(a>0?i[u]+=t[o]:i[u]+=1)}return i}function nC(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],i=Ae([r,n],t.dtype);for(let o=0;o<r;o++)for(let u=0;u<a;u++){let l=e.get(o,u);if(l<0)throw new Error("Input x must be non-negative!");l>=n||(s?i.set(1,o,l):t.size>0?i.set(i.get(o,l)+t.get(o,u),o,l):i.set(i.get(o,l)+1,o,l))}return i}function Dr(e){return(t,n,s)=>{let r=w.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function st(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:i}=s;if(be(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=a,u=o.data.get(i.dataId).values,l=w.sizeFromShape(i.shape),c=n||i.dtype,p=w.getArrayFromDType(c,l);for(let d=0;d<l;++d)p[d]=t(u[d],r);return o.makeTensorInfo(i.shape,c,p)}}function ru(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:i}=s;if(be(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=a,u=o.data.get(i.dataId).values,l=n||i.dtype,c=t(u,l,r);return o.makeTensorInfo(i.shape,l,c)}}var sC=Dr(e=>Math.ceil(e)),KU=ru(_a,sC),XU={kernelName:_a,backendName:"cpu",kernelFunc:KU};function lv(e,t,n,s){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(i=>{let o=w.sizeFromShape(i.shape);r.set(i.vals,a),a+=o})}else{let a=0;e.forEach(i=>{let o=n==="string"?C.fromUint8ToStringArray(i.vals):i.vals,u=0;for(let l=0;l<i.shape[0];++l){let c=l*t[1]+a;for(let p=0;p<i.shape[1];++p)r[c+p]=o[u++]}a+=i.shape[1]})}return r}var rC=Et((e,t)=>e===t?1:0),aC=Ht(yo,rC,null,"bool"),YU={kernelName:yo,backendName:"cpu",kernelFunc:aC},iC=Dr(e=>Math.exp(e)),oC=ru(Ma,iC,"float32"),QU={kernelName:Ma,backendName:"cpu",kernelFunc:oC},uC=Dr(e=>Math.expm1(e)),ZU=ru(xo,uC),JU={kernelName:xo,backendName:"cpu",kernelFunc:ZU},lC=Dr(e=>Math.floor(e)),eG=ru(La,lC),tG={kernelName:La,backendName:"cpu",kernelFunc:eG};function cC(e,t,n,s,r,a,i,o,u){let l=Ae([s,a],n);for(let c=0;c<s;c++){let p=[],d=0;for(let h=0;h<r;h++){let f=e[c*r+h];d+=f*i[h],p.push(f)}if(d<0||d>=u/a)throw new Error(`Invalid indices: ${p} does not index into ${o}`);for(let h=0;h<a;h++)l.values[c*a+h]=t.get(...t.indexToLoc(d*a+h))}return l}function dC(e,t,n){let s=Ae(n,e.dtype);for(let r=0;r<s.size;++r){let i=s.indexToLoc(r).slice(),o=i[0],u=i[2],l=t.locToIndex([o,u]);i[2]=t.values[l];let c=e.locToIndex(i);0<=c&&c<e.values.length&&(s.values[r]=e.values[c])}return s}var pC=Et((e,t)=>e>t?1:0),nG=Ht(Io,pC,null,"bool"),sG={kernelName:Io,backendName:"cpu",kernelFunc:nG},hC=Et((e,t)=>e>=t?1:0),rG=Ht(Wa,hC,null,"bool"),aG={kernelName:Wa,backendName:"cpu",kernelFunc:rG},fC=Et((e,t)=>e<t?1:0),iG=Ht(Co,fC,null,"bool"),oG={kernelName:Co,backendName:"cpu",kernelFunc:iG},mC=Et((e,t)=>e<=t?1:0),uG=Ht(No,mC,null,"bool"),lG={kernelName:No,backendName:"cpu",kernelFunc:uG};function gC(e,t,n){let s=(t-e)/(n-1),r=w.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var bC=Dr(e=>Math.log(e)),cG=ru(Ha,bC),dG={kernelName:Ha,backendName:"cpu",kernelFunc:cG};function yC(e,t,n,s){let r=w.getTypedArrayFromDType(s,w.sizeFromShape(n));for(let a=0;a<r.length;++a){let i=a*t,o=e[i];for(let u=0;u<t;++u){let l=e[i+u];(Number.isNaN(l)||l>o)&&(o=l)}r[a]=o}return r}var vC=Et((e,t)=>Math.max(e,t)),pG=Ht(ja,vC),hG={kernelName:ja,backendName:"cpu",kernelFunc:pG},xC=Et((e,t)=>Math.min(e,t)),fG=Ht(Qa,xC),mG={kernelName:Qa,backendName:"cpu",kernelFunc:fG},cv=Et((e,t)=>e*t),gG=ov((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),Jp=Ht(Ja,cv,gG),bG={kernelName:Ja,backendName:"cpu",kernelFunc:Jp};function wC(e,t,n){let s=w.createScalarValue(-1,n);return cv([],t,s,e,n)}function yG(e){let{inputs:t,backend:n}=e,{x:s}=t;be(s,"neg");let r=n.data.get(s.dataId).values,[a,i]=wC(r,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,a)}var vG={kernelName:$o,backendName:"cpu",kernelFunc:yG},kC=Et((e,t)=>e!==t?1:0),xG=Ht(_o,kC,null,"bool"),wG={kernelName:_o,backendName:"cpu",kernelFunc:xG};function dv(e,t,n,s,r){let a=t.length,i=w.sizeFromShape(t),o=w.computeStrides(t),u=w.computeStrides(r),l=w.getTypedArrayFromDType(n,w.sizeFromShape(r));for(let c=0;c<i;++c){let p=w.indexToLoc(c,a,o),d=new Array(p.length);for(let f=0;f<d.length;f++)d[f]=p[s[f]];let h=w.locToIndex(d,a,u);l[h]=e[c]}return l}function wn(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;be(r,"transpose");let i=r.shape.length,o=new Array(i);for(let p=0;p<o.length;p++)o[p]=r.shape[a[p]];let u=s.data.get(r.dataId).values,l=dv(u,r.shape,r.dtype,a,o);return{dataId:s.write(l,o,r.dtype),shape:o,dtype:r.dtype}}var kG={kernelName:Hs,backendName:"cpu",kernelFunc:wn};function SC(e,t,n,s){let[r,a]=C.computeOutAndReduceShapes(e,s),i=cn(t,"int32"),o=w.makeZerosTypedArray(w.sizeFromShape(r),i),u=w.sizeFromShape(a);for(let l=0;l<o.length;++l){let c=l*u,p=1;for(let d=0;d<u;++d)p*=n[c+d];o[l]=p}return{outVals:o,outShape:r,outDtype:i}}function SG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;be(r,"prod");let o=r.shape.length,u=w.parseAxisParam(a,r.shape),l=C.getAxesPermutation(u,o),c=u,p=r,d=[];l!=null&&(p=wn({inputs:{x:r},backend:n,attrs:{perm:l}}),d.push(p),c=C.getInnerMostAxes(c.length,o));let h=n.data.get(p.dataId).values,{outVals:f,outShape:m,outDtype:g}=SC(p.shape,p.dtype,h,c),b=m;return i&&(b=C.expandShapeToKeepDim(m,u)),d.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(b,g,f)}var IG={kernelName:si,backendName:"cpu",kernelFunc:SG};function pv(e,t,n,s){let r=e===t,a=e<t&&n<0,i=t<e&&n>1;if(r||a||i)return w.makeZerosTypedArray(0,s);let o=Math.abs(Math.ceil((t-e)/n)),u=w.makeZerosTypedArray(o,s);t<e&&n===1&&(n=-1),u[0]=e;for(let l=1;l<u.length;l++)u[l]=u[l-1]+n;return u}var IC=Dr(e=>1/Math.sqrt(e)),CG=ru(oi,IC),NG={kernelName:oi,backendName:"cpu",kernelFunc:CG};function Ki(e,t,n,s,r,a,i,o,u,l){let c=[s/r,r],p=e.values,d=t.values;if(s===0)return Ae(n,t.dtype);let h=Ae(c,t.dtype);typeof u=="string"||typeof u=="number"?h.values.fill(u):typeof u=="boolean"&&h.values.fill(+u);for(let f=0;f<a;f++){let m=[],g=0;for(let b=0;b<i;b++){let y=p[f*i+b];m.push(y),g+=y*o[b]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let b=0;b<r;b++)l?h.values[g*r+b]+=d[f*r+b]:h.values[g*r+b]=t.rank===0?d[0]:d[f*r+b]}return h}var TG=Dr(e=>1/(1+Math.exp(-e))),CC=st(li,e=>1/(1+Math.exp(-e))),$G={kernelName:li,backendName:"cpu",kernelFunc:CC};function Bd(e,t,n,s,r){let a=kt.isSliceContinous(s,t,n),i=w.sizeFromShape(n),o=w.computeStrides(s);if(a){let p=kt.computeFlatOffset(t,o);return r==="string"?e.slice(p,p+i):e.subarray(p,p+i)}let u=r==="string"?C.fromUint8ToStringArray(e):e,l=Ae(s,r,u),c=Ae(n,r);for(let p=0;p<c.size;++p){let d=c.indexToLoc(p),h=d.map((f,m)=>f+t[m]);c.set(l.get(...h),...d)}return r==="string"?C.fromStringArrayToUint8(c.values):c.values}function ya(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:i}=s;be(r,"slice");let[o,u]=kt.parseSliceParams(r,a,i);kt.assertParamsValid(r,o,u);let l=n.data.get(r.dataId).values,c=Bd(l,o,u,r.shape,r.dtype);return n.makeTensorInfo(u,r.dtype,c)}var _G={kernelName:Bo,backendName:"cpu",kernelFunc:ya};function NC(e,t,n,s,r,a,i){let o=t[0],u=a[0],l=new Array(u),c=new Array(o),p=t[1];if(u===0){if(o!==0)throw new Error(C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=w.getArrayFromDType(n,0),b=w.getArrayFromDType(r,0);return[g,[0,p],b,l,c]}let d=!0,h=0,f=new Array(u).fill(0);for(let g=0;g<o;++g){let b=e[g*p];if(b<0)throw new Error(C.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,b));if(b>=u)throw new Error(C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,b,u));++f[b],d=d&&b>=h,h=b}let m=!0;for(let g=0;g<u;++g){let b=f[g]===0;l[g]=b,m=m&&!b,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&d){let g=e,b=s;for(let y=0;y<o;++y)c[y]=y;return[g,[o,p],b,l,c]}else{let g=f[u-1],b=w.getArrayFromDType(n,g*p),y=w.getArrayFromDType(r,g),v=new Array(u).fill(0);for(let x=0;x<o;++x){let k=e[x*p],I=v[k],$=(k===0?0:f[k-1])+I;v[k]++;for(let R=0;R<p;++R)b[$*p+R]=e[x*p+R];y[$]=s[x],c[x]=$}for(let x=0;x<u;++x)if(v[x]===0){let I=x===0?0:f[x-1];b[I*p+0]=x;for(let $=1;$<p;++$)b[I*p+$]=0;y[I]=i}return[b,[g,p],y,l,c]}}function TC(e,t,n,s,r){let a=w.sizeFromShape(s),i=t[0],o=r.length,u=[],l=1,c=-1;for(let g=0;g<o;++g){let b=r[g];if(b===-1){if(c!==-1)throw new Error(C.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(c,g));c=g,u.push(1)}else{if(b<0)throw new Error(C.getSparseReshapeNegativeOutputDimErrorMessage(g,b));l*=b,u.push(b)}}if(c!==-1){if(l<=0)throw new Error(C.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let g=Math.trunc(a/l);if(l*g!==a)throw new Error(C.getSparseReshapeInputOutputMultipleErrorMessage(s,u));u[c]=g}if(w.sizeFromShape(u)!==a)throw new Error(C.getSparseReshapeInputOutputMismatchErrorMessage(s,u));let d=s.length,h=[];if(d>0){h[d-1]=1;for(let g=d-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(o>0){f[o-1]=1;for(let g=o-2;g>=0;--g)f[g]=f[g+1]*u[g+1]}let m=w.getArrayFromDType(n,i*o);for(let g=0;g<i;++g){let b=0;for(let y=0;y<d;++y)b+=e[g*d+y]*h[y];for(let y=0;y<o;++y)m[g*o+y]=Math.trunc(b/f[y]),b%=f[y]}return[m,[i,o],u]}function hv(e,t,n,s,r,a=!1,i=0){let o=s.length,u=[t[0],e.length/t[0]],l=u[1],p=o>0?r[o-1]+1:0;if(p<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let h=d.reduce((v,x)=>v*x,1),f=w.getArrayFromDType(n,h);if(o===0)return p>0&&f.fill(i),[f,d];if(p<=0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,g=1,b=0,y=r[m];for(;;){let v=0;if(g<o){if(v=r[g],y===v){++g;continue}if(y>=v)throw new Error(C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(y<0||y>=p)throw new Error(C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y,p));y>b&&f.fill(i,b*l,y*l);for(let x=m;x<g;++x){let k=s[x];if(k<0||k>=u[0])throw new Error(C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,s[x],u[0]));for(let I=0;I<l;I++)f[y*l+I]+=e[k*l+I]}if(a)for(let x=0;x<l;x++)f[y*l+x]/=g-m;if(m=g,++g,b=y+1,y=v,g>o)break}return b<p&&f.fill(i,b*l,p*l),[f,d]}var AG=Dr(e=>Math.sqrt(e)),EG=st(ci,e=>Math.sqrt(e)),RG={kernelName:ci,backendName:"cpu",kernelFunc:EG},$C=Et((e,t)=>{let n=e-t;return n*n}),DG=Ht(hi,$C),FG={kernelName:hi,backendName:"cpu",kernelFunc:DG};function _C(e,t,n,s){let r=Ae(e,t.dtype);for(let a=0;a<r.size;a++){let i=r.indexToLoc(a),o=new Array(i.length);for(let u=0;u<o.length;u++)o[u]=i[u]*n[u]+s[u];r.set(t.get(...o),...i)}return r}var OG=class{constructor(e,t,n,s,r,a){this.separator=w.encodeString(e),this.nGramWidths=t,this.leftPad=w.encodeString(n),this.rightPad=w.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let i=0;i<r;++i){let o=this.getPadWidth(a),u=Math.max(0,o-i),l=Math.max(0,o-(r-(i+1))),c=a-(u+l),p=t+(u>0?0:i-o),d=0;d+=u*this.leftPad.length;for(let b=0;b<c;++b)d+=e[p+b].length;d+=l*this.rightPad.length,d+=(u+l+c-1)*this.separator.length,n[s+i]=new Uint8Array(d);let f=n[s+i],m=0,g=b=>b.forEach(y=>f[m++]=y);for(let b=0;b<u;++b)g(this.leftPad),g(this.separator);for(let b=0;b<c-1;++b)g(e[p+b]),g(this.separator);if(c>0){g(e[p+c-1]);for(let b=0;b<l;++b)g(this.separator),g(this.rightPad)}else{for(let b=0;b<l-1;++b)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let u=1;u<s;++u){let l=t[u]>=o;if(l=l&&t[u]<=n,!l)throw new Error(`Invalid split value ${t[u]}, must be in [${o}, ${n}]`);o=t[u]}if(o!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${o}`)}let r=s-1,a=w.getArrayFromDType("int32",s);if(n===0||s===0){let o=new Array(n);for(let u=0;u<=r;++u)a[u]=0;return[o,a]}a[0]=0;for(let o=1;o<=r;++o){let u=t[o]-t[o-1],l=0;this.nGramWidths.forEach(c=>{l+=this.getNumNGrams(u,c)}),this.preserveShort&&u>0&&l===0&&(l=1),a[o]=a[o-1]+l}let i=new Array(a[r]);for(let o=0;o<r;++o){let u=t[o],l=a[o];if(this.nGramWidths.forEach(c=>{let p=t[o+1]-t[o],d=this.getNumNGrams(p,c);this.createNGrams(e,u,i,l,d,c),l+=d}),this.preserveShort&&l===a[o]){let c=t[o+1]-t[o];if(c===0)continue;let p=c+2*this.padWidth,d=1;this.createNGrams(e,u,i,l,d,p)}}return[i,a]}};function AC(e,t,n,s,r,a,i,o){return new OG(n,s,r,a,i,o).compute(e,t)}function PG(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],i=e.indexOf(a);for(;i!==-1;){let o=e.subarray(0,i);(!n||o.length!==0)&&s.push(o),e=e.subarray(i+1),i=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let i=e.subarray(r,a);(!n||i.length!==0)&&s.push(i),r=a+1}}function EC(e,t,n){let s=e.length,r=[],a=0,i=0,o=new Array(s);for(let d=0;d<s;++d){let h=r.length;PG(e[d],t,n,r);let f=r.length-h;o[d]=f,a+=f,i=Math.max(i,f)}let u=w.getArrayFromDType("int32",a*2),l=new Array(a),c=[s,i],p=0;for(let d=0;d<s;++d)for(let h=0;h<o[d];++h)u[p*2]=d,u[p*2+1]=h,l[p]=r[p],++p;return[u,l,c]}function RC(e,t){let n=w.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=w.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var DC=Et((e,t)=>e-t),zG=ov((e,t,n,s)=>({real:e-n,imag:t-s})),fv=Ht(fi,DC,zG),MG={kernelName:fi,backendName:"cpu",kernelFunc:fv};function FC(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=Ae(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),i=new Array(e.rank);for(let u=0;u<i.length;u++)i[u]=a[u]%e.shape[u];let o=e.locToIndex(i);s.values[r]=e.values[o]}return s}var Pu=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function OC(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let o=s-n+1,u=t-n+1,l=Math.log(o),c=.5*Math.exp(2*l/3),p=.5*Math.sqrt(l*c*(o-c)/o)*Math.sign(u-o/2),d=Math.max(n,Math.floor(t-u*c/o+p)),h=Math.min(s,Math.floor(t+(o-u)*c/o+p));OC(e,t,d,h)}let r=e[t],a=n,i=s;for(w.swap(e,n,t),Pu(e[s],r)>0&&w.swap(e,n,s);a<i;){for(w.swap(e,a,i),a++,i--;Pu(e[a],r)<0;)a=a+1;for(;Pu(e[i],r)>0;)i=i-1}Pu(e[n],r)===0?w.swap(e,n,i):(i=i+1,w.swap(e,i,s)),i<=t&&(n=i+1),t<=i&&(s=i-1)}}function PC(e,t,n,s,r){let a=t[t.length-1],[i,o]=[e.length/a,a],u=w.getTypedArrayFromDType(n,i*s),l=w.getTypedArrayFromDType("int32",i*s);for(let p=0;p<i;p++){let d=p*o,h=e.subarray(d,d+o),f=new Array(h.length);h.forEach((y,v)=>f[v]={value:y,index:v}),s<f.length&&(OC(f,s),f=f.slice(0,s)),r&&f.sort(Pu);let m=p*s,g=u.subarray(m,m+s),b=l.subarray(m,m+s);for(let y=0;y<s;y++)g[y]=f[y].value,b[y]=f[y].index}let c=t.slice();return c[c.length-1]=s,[Ae(c,n,u),Ae(c,"int32",l)]}function zC(e,t,n,s){let r=w.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let i={},o=new Int32Array(n[r]),u=new Wt(a,s,e),l=[],c=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(c)m=e[f].toString();else{let g=[];for(let b=0;b<a[0];b++)for(let y=0;y<a[2];y++)g.push(u.get(b,f,y));m=g.join(",")}if(i[m]!==void 0)o[f]=i[m];else{let g=Object.keys(i).length;i[m]=g,o[f]=g,l.push(f)}}let p=a.slice();p[1]=Object.keys(i).length;let d=new Wt(p,s);l.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let b=0;b<a[2];b++)d.set(u.get(g,f,b),g,m,b)});let h=n.slice();return h[r]=p[1],{outputValues:d.values,outputShape:h,indices:o}}var yhe="0.0.0";vp("cpu",()=>new J0,1);var MC=st(za,e=>e>=0?e:Math.exp(e)-1),LG={kernelName:za,backendName:"cpu",kernelFunc:MC};function LC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;be([r],"leakyRelu");let i=w.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,u=w.getTypedArrayFromDType("float32",i);for(let l=0;l<o.length;l++)u[l]=o[l]<0?a*o[l]:o[l];return n.makeTensorInfo(r.shape,"float32",u)}var BG={kernelName:Ga,backendName:"cpu",kernelFunc:LC},VG=Et((e,t)=>e<0?t*e:e);function BC(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;be([s,r],"prelu");let a=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,[o,u]=VG(s.shape,r.shape,a,i,"float32");return n.makeTensorInfo(u,"float32",o)}var WG={kernelName:ni,backendName:"cpu",kernelFunc:BC},VC=st(ri,e=>Math.max(0,e)),UG={kernelName:ri,backendName:"cpu",kernelFunc:VC},WC=st(ii,e=>Math.min(Math.max(0,e),6)),GG={kernelName:ii,backendName:"cpu",kernelFunc:WC};function Vd(e,t,n,s,r){if(n==="linear")return Os({inputs:{x:t},backend:e});if(n==="relu")return VC({inputs:{x:t},backend:e});if(n==="elu")return MC({inputs:{x:t},backend:e});if(n==="relu6")return WC({inputs:{x:t},backend:e});if(n==="prelu")return BC({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return LC({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return CC({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function pt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,i=w.sizeFromShape(r.shape),o=w.inferFromImplicitShape(a,i),u=w.sizeFromShape(o);w.assert(i===u,()=>`The new shape (${o}) has ${u} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let l=n.data.get(r.dataId);if(l.complexTensorInfos!=null){let c=l.complexTensorInfos.real,p=l.complexTensorInfos.imag;c.shape=o,p.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var HG={kernelName:Oo,backendName:"cpu",kernelFunc:pt};function UC(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:i,transposeB:o}=s;be([r,a],"matMul");let u=r.shape.length,l=a.shape.length,c=i?r.shape[u-2]:r.shape[u-1],p=o?a.shape[l-1]:a.shape[l-2],d=i?r.shape[u-1]:r.shape[u-2],h=o?a.shape[l-2]:a.shape[l-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),b=w.sizeFromShape(m),v=Qo.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);w.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,c,d]:[g,d,c],k=o?[b,h,p]:[b,p,h],I=pt({inputs:{x:r},backend:n,attrs:{shape:x}}),$=pt({inputs:{x:a},backend:n,attrs:{shape:k}}),R=i?I.shape[1]:I.shape[2],E=i?I.shape[2]:I.shape[1],P=o?$.shape[1]:$.shape[2],A=Math.max(g,b),O=n.data.get(I.dataId).values,T=n.data.get($.dataId).values,M=w.computeStrides(I.shape),W=w.computeStrides($.shape),[j,X,Y]=i?[M[0],1,M[1]]:[M[0],M[1],1],[Z,te,J]=o?[1,W[1],W[0]]:[W[1],1,W[0]],se=E*P,ne=Ae([A,E,P],I.dtype),oe=ne.values,ae=n.blockSize;for(let de=0;de<A;de++)for(let me=0;me<E;me+=ae)for(let ke=0;ke<P;ke+=ae)for(let Ie=0;Ie<R;Ie+=ae){let Re=Math.min(me+ae,E),Pe=Math.min(ke+ae,P),Xe=Math.min(Ie+ae,R);for(let Je=me;Je<Re;Je++)for(let Ye=ke;Ye<Pe;Ye++){let tt=0;for(let Ce=Ie;Ce<Xe;Ce++){let ut=Math.min(de,g-1)*j,at=Math.min(de,b-1)*J,Jt=O[ut+Je*X+Ce*Y],Nt=T[Ce*Z+Ye*te+at];tt+=Jt*Nt}oe[de*se+(Je*P+Ye)]+=tt}}return n.disposeIntermediateTensorInfo(I),n.disposeIntermediateTensorInfo($),n.makeTensorInfo(v,ne.dtype,ne.values)}var qG={kernelName:Ta,backendName:"cpu",kernelFunc:UC};function jG(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:i,preluActivationWeights:o}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=s,d,h,f,m=[];d=UC({inputs:{a:r,b:a},attrs:{transposeA:u,transposeB:l},backend:n}),i&&(h=io({inputs:{a:d,b:i},backend:n}),m.push(d),d=h),c&&(f=Vd(n,d,c,o,p),m.push(d),d=f);for(let b of m)n.disposeIntermediateTensorInfo(b);return d}var KG={kernelName:oa,backendName:"cpu",kernelFunc:jG},XG=st(ul,e=>Math.acos(e)),YG={kernelName:ul,backendName:"cpu",kernelFunc:XG},QG=st(ll,e=>Math.acosh(e)),ZG={kernelName:ll,backendName:"cpu",kernelFunc:QG};function JG(e){let{inputs:t,backend:n}=e,s=t;be(t,"addN");let r=s.map(o=>n.data.get(o.dataId).values),a=Ae(s[0].shape,s[0].dtype),i=a.values;for(let o=0;o<s.length;o++){let u=r[o];for(let l=0;l<i.length;l++)i[l]+=u[l]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var eH={kernelName:Ia,backendName:"cpu",kernelFunc:JG};function tH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;be(r,"all");let o=w.parseAxisParam(a,r.shape),u=o,l=C.getAxesPermutation(u,r.shape.length),c=r;l!=null&&(c=wn({inputs:{x:r},backend:n,attrs:{perm:l}}),u=C.getInnerMostAxes(u.length,r.shape.length)),C.assertAxesAreInnerMostDims("all",u,c.shape.length);let[p,d]=C.computeOutAndReduceShapes(c.shape,u),h=w.sizeFromShape(d),f=w.makeZerosTypedArray(w.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let b=0;b<f.length;++b){let y=b*h,v=m[y];for(let x=0;x<h;++x){let k=m[y+x];v=v&&k}f[b]=v}l!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(i){let b=C.expandShapeToKeepDim(p,o),y=pt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var nH={kernelName:cl,backendName:"cpu",kernelFunc:tH};function sH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;be(r,"any");let o=w.parseAxisParam(a,r.shape),u=o,l=C.getAxesPermutation(u,r.shape.length),c=r;l!=null&&(c=wn({inputs:{x:r},backend:n,attrs:{perm:l}}),u=C.getInnerMostAxes(u.length,r.shape.length)),C.assertAxesAreInnerMostDims("any",u,c.shape.length);let[p,d]=C.computeOutAndReduceShapes(c.shape,u),h=w.sizeFromShape(d),f=w.makeZerosTypedArray(w.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let b=0;b<f.length;++b){let y=b*h,v=m[y];for(let x=0;x<h;++x){let k=m[y+x];v=v||k}f[b]=v}l!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(i){let b=C.expandShapeToKeepDim(p,o),y=pt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var rH={kernelName:dl,backendName:"cpu",kernelFunc:sH};function aH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;be(r,"argMax");let i=w.parseAxisParam(a,r.shape),o=C.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=wn({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=C.getInnerMostAxes(i.length,u.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMax",i,u.shape.length);let[c,p]=C.computeOutAndReduceShapes(u.shape,i),d=w.sizeFromShape(c),h=w.makeZerosTypedArray(d,"int32"),f=w.sizeFromShape(p),m=n.data.get(u.dataId).values;for(let g=0;g<h.length;++g){let b=g*f,y=m[b],v=0;for(let x=0;x<f;++x){let k=m[b+x];k>y&&(y=k,v=x)}h[g]=v}return l.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var iH={kernelName:Ca,backendName:"cpu",kernelFunc:aH};function oH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;be(r,"argMin");let i=w.parseAxisParam(a,r.shape),o=C.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=wn({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=C.getInnerMostAxes(i.length,u.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMin",i,u.shape.length);let[c,p]=C.computeOutAndReduceShapes(u.shape,i),d=w.sizeFromShape(c),h=w.makeZerosTypedArray(d,"int32"),f=w.sizeFromShape(p),m=n.data.get(u.dataId).values;for(let g=0;g<h.length;++g){let b=g*f,y=m[b],v=0;for(let x=0;x<f;++x){let k=m[b+x];k<y&&(y=k,v=x)}h[g]=v}return l.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var uH={kernelName:pl,backendName:"cpu",kernelFunc:oH},lH=st(hl,e=>Math.asin(e)),cH={kernelName:hl,backendName:"cpu",kernelFunc:lH},dH=st(fl,e=>Math.asinh(e)),pH={kernelName:fl,backendName:"cpu",kernelFunc:dH},hH=st(ml,e=>Math.atan(e)),fH={kernelName:ml,backendName:"cpu",kernelFunc:hH},mH=Et((e,t)=>Math.atan2(e,t)),gH=Ht(bl,mH),bH={kernelName:bl,backendName:"cpu",kernelFunc:gH},yH=st(gl,e=>Math.atanh(e)),vH={kernelName:gl,backendName:"cpu",kernelFunc:yH};function mv(e,t,n,s,r,a){let i=r.strideHeight,o=r.strideWidth,u=r.dilationHeight,l=r.dilationWidth,c=r.effectiveFilterHeight,p=r.effectiveFilterWidth,d=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Ae(r.outShape,n),g=m.values,b=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],v=r.outShape[3];for(let x=0;x<r.batchSize;++x){let k=x*b,I=x*s[0];for(let $=0;$<r.inChannels;++$)for(let R=0;R<r.outHeight;++R){let E=R*i-d,P=Math.max(0,E),A=Math.min(r.inHeight,c+E),O=k+R*y;for(let T=0;T<r.outWidth;++T){let M=T*o-h,W=Math.max(0,M),j=Math.min(r.inWidth,p+M),X=f,Y=0,Z=0;for(let J=P;J<A;J+=u){let se=I+J*s[1];for(let ne=W;ne<j;ne+=l){let oe=se+ne*s[2],ae=e[oe+$];a==="max"&&ae>X?X=ae:a==="avg"&&(Y+=ae,Z++)}if(isNaN(X))break}let te=O+T*v+$;g[te]=a==="avg"?Y/Z:X}}}return m}function GC(e,t,n,s,r=!1,a=!1){let i=Ae(s.outShape,"int32"),o=s.strideHeight,u=s.strideWidth,l=s.dilationHeight,c=s.dilationWidth,p=s.effectiveFilterHeight,d=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=Ae(t,n,e);for(let g=0;g<s.batchSize;++g)for(let b=0;b<s.inChannels;++b)for(let y=0;y<s.outHeight;++y){let v=y*o-h,x=v;for(;x<0;)x+=l;let k=Math.min(s.inHeight,p+v);for(let I=0;I<s.outWidth;++I){let $=I*u-f,R=$;for(;R<0;)R+=c;let E=Math.min(s.inWidth,d+$),P=Number.NEGATIVE_INFINITY,A=-1;for(let O=x;O<k;O+=l){let T=O-v;for(let M=R;M<E;M+=c){let W=M-$,j=m.get(g,O,M,b);j>P&&(P=j,r?A=a?((g*s.inHeight+O)*s.inWidth+M)*s.inChannels+b:(O*s.inWidth+M)*s.inChannels+b:A=T*d+W)}}i.set(A,g,y,I,b)}}return i}function HC(e,t,n,s,r,a){let i=r.strideDepth,o=r.strideHeight,u=r.strideWidth,l=r.dilationDepth,c=r.dilationHeight,p=r.dilationWidth,d=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,b=r.padInfo.left,y=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,v=Ae(r.outShape,n),x=v.values,k=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],I=r.outShape[2]*r.outShape[3]*r.outShape[4],$=r.outShape[3]*r.outShape[4],R=r.outShape[4];for(let E=0;E<r.batchSize;++E){let P=E*k,A=E*s[0];for(let O=0;O<r.inChannels;++O)for(let T=0;T<r.outDepth;++T){let M=T*i-m,W=M;for(;W<0;)W+=l;let j=Math.min(r.inDepth,d+M),X=P+T*I;for(let Y=0;Y<r.outHeight;++Y){let Z=Y*o-g,te=Z;for(;te<0;)te+=c;let J=Math.min(r.inHeight,h+Z),se=X+Y*$;for(let ne=0;ne<r.outWidth;++ne){let oe=ne*u-b,ae=oe;for(;ae<0;)ae+=p;let de=Math.min(r.inWidth,f+oe),me=se+ne*R,ke=y,Ie=0,Re=0;for(let Xe=W;Xe<j;Xe+=l){let Je=A+Xe*s[1];for(let Ye=te;Ye<J;Ye+=c){let tt=Je+Ye*s[2];for(let Ce=ae;Ce<de;Ce+=p){let ut=tt+Ce*s[3],at=e[ut+O];if(a==="max"&&at>ke?ke=at:a==="avg"&&(Ie+=at,Re++),isNaN(ke))break}if(isNaN(ke))break}if(isNaN(ke))break}let Pe=me+O;x[Pe]=a==="avg"?Ie/Re:ke}}}}return v}function xH(e,t){let n=Ae(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,u=t.dilationWidth,l=t.effectiveFilterDepth,c=t.effectiveFilterHeight,p=t.effectiveFilterWidth,d=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let b=0;b<t.outDepth;++b){let y=b*s-d,v=y;for(;v<0;)v+=i;let x=Math.min(t.inDepth,l+y);for(let k=0;k<t.outHeight;++k){let I=k*r-h,$=I;for(;$<0;)$+=o;let R=Math.min(t.inHeight,c+I);for(let E=0;E<t.outWidth;++E){let P=E*a-f,A=P;for(;A<0;)A+=u;let O=Math.min(t.inWidth,p+P),T=Number.NEGATIVE_INFINITY,M=-1;for(let W=v;W<x;W+=i){let j=W-y;for(let X=$;X<R;X+=o){let Y=X-I;for(let Z=A;Z<O;Z+=u){let te=Z-P,J=e.get(m,W,X,Z,g);J>=T&&(T=J,M=j*c*p+Y*c+te)}}}n.set(M,m,b,k,E,g)}}}return n}function wH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;be(r,"avgPool");let{filterSize:a,strides:i,pad:o,dimRoundingMode:u}=s,l=1;w.assert(C.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=C.computePool2DInfo(r.shape,a,i,l,o,u),p;if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))p=Os({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),f=mv(d,r.shape,r.dtype,h,c,"avg");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var kH={kernelName:Na,backendName:"cpu",kernelFunc:wH};function SH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:i,pad:o,dimRoundingMode:u,dataFormat:l}=s;be(r,"avgPool3d");let c=C.computePool3DInfo(r.shape,a,i,1,o,u,l),p=n.data.get(r.dataId).values,d=HC(p,r.shape,r.dtype,w.computeStrides(r.shape),c,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var IH={kernelName:Jd,backendName:"cpu",kernelFunc:SH};function CH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:i,strides:o,pad:u,dimRoundingMode:l}=s;be([r,a],"avgPool3DGrad");let c=C.computePool3DInfo(a.shape,i,o,1,u,l),p=c.strideDepth,d=c.strideHeight,h=c.strideWidth,f=c.filterDepth,m=c.filterHeight,g=c.filterWidth,b=c.dilationDepth,y=c.dilationHeight,v=c.dilationWidth,x=c.effectiveFilterDepth,k=c.effectiveFilterHeight,I=c.effectiveFilterWidth,$=x-1-c.padInfo.front,R=I-1-c.padInfo.left,E=k-1-c.padInfo.top,P=Ae(a.shape,"float32"),A=1/(f*m*g),O=n.bufferSync(r);for(let T=0;T<c.batchSize;++T)for(let M=0;M<c.inChannels;++M)for(let W=0;W<c.inDepth;++W)for(let j=0;j<c.inHeight;++j)for(let X=0;X<c.inWidth;++X){let Y=W-$,Z=j-E,te=X-R,J=0;for(let se=0;se<x;se+=b){let ne=(Y+se)/p;if(!(ne<0||ne>=c.outDepth||Math.floor(ne)!==ne))for(let oe=0;oe<k;oe+=y){let ae=(Z+oe)/d;if(!(ae<0||ae>=c.outHeight||Math.floor(ae)!==ae))for(let de=0;de<I;de+=v){let me=(te+de)/h;if(me<0||me>=c.outWidth||Math.floor(me)!==me)continue;J+=O.get(T,ne,ae,me,M)}}}P.set(J*A,T,W,j,X,M)}return n.makeTensorInfo(P.shape,P.dtype,P.values)}var NH={kernelName:fg,backendName:"cpu",kernelFunc:CH};function TH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,i=a;be([r,a],"avgPoolGrad");let{filterSize:o,strides:u,pad:l}=s,c=C.computePool2DInfo(i.shape,o,u,1,l),p=c.strideHeight,d=c.strideWidth,h=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,g=c.dilationWidth,b=c.effectiveFilterHeight,y=c.effectiveFilterWidth,v=y-1-c.padInfo.left,x=b-1-c.padInfo.top,k=Ae(i.shape,"float32"),I=1/(h*f),$=n.data.get(r.dataId).values,R=Ae(r.shape,"float32",$);for(let E=0;E<c.batchSize;++E)for(let P=0;P<c.inChannels;++P)for(let A=0;A<c.inHeight;++A)for(let O=0;O<c.inWidth;++O){let T=A-x,M=O-v,W=0;for(let j=0;j<b;j+=m){let X=(T+j)/p;if(!(X<0||X>=c.outHeight||Math.floor(X)!==X))for(let Y=0;Y<y;Y+=g){let Z=(M+Y)/d;if(Z<0||Z>=c.outWidth||Math.floor(Z)!==Z)continue;W+=R.get(E,X,Z,P)}}k.set(W*I,E,A,O,P)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var $H={kernelName:hg,backendName:"cpu",kernelFunc:TH};function _H(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:i,mean:o,variance:u}=t;w.assert(o.shape.length===u.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(a==null||o.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),be([r,o,u,a,i],"batchNorm");let{varianceEpsilon:l}=s;l==null&&(l=.001);let c=n.data.get(r.dataId).values,p=n.data.get(o.dataId).values,d=n.data.get(u.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=i?n.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),g=f.length,b=h.length,y=d.length,v=p.length,x=0,k=0,I=0,$=0;for(let R=0;R<c.length;++R)m[R]=f[x++]+(c[R]-p[k++])*h[I++]/Math.sqrt(d[$++]+l),x>=g&&(x=0),k>=v&&(k=0),I>=b&&(I=0),$>=y&&($=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var AH={kernelName:Va,backendName:"cpu",kernelFunc:_H};function EH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:i}=s;be([r],"batchToSpaceND");let o=a.reduce((b,y)=>b*y),u=C.getReshaped(r.shape,a,o),l=C.getPermuted(u.length,a.length),c=C.getReshapedPermuted(r.shape,a,o),p=C.getSliceBeginCoords(i,a.length),d=C.getSliceSize(c,i,a.length),h=pt({inputs:{x:r},backend:n,attrs:{shape:u}}),f=wn({inputs:{x:h},backend:n,attrs:{perm:l}}),m=pt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=ya({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var RH={kernelName:ho,backendName:"cpu",kernelFunc:EH};function DH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:i}=s,o=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,l=uv(o,u,a.dtype,a.shape,i);return n.makeTensorInfo([i],a.dtype,l)}var FH={kernelName:mg,backendName:"cpu",kernelFunc:DH};function OH(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,o=C.assertAndGetBroadcastShape(Array.from(a),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var PH={kernelName:gg,backendName:"cpu",kernelFunc:OH},zH=st(Nr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),MH={kernelName:Nr,backendName:"cpu",kernelFunc:zH},LH=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(a.dataId).values,u=n.data.get(i.dataId).values;for(let l=0;l<o.length;l++){let c=o[l],p=u[l];s[l]=Math.hypot(c,p)}return n.makeOutput(s,t.shape,"float32")},BH={kernelName:tp,backendName:"cpu",kernelFunc:LH};function oo(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var VH={kernelName:ap,backendName:"cpu",kernelFunc:oo};function uo(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],i=C.computeOutShape(t.map(m=>m.shape),a);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(m=>w.sizeFromShape(m.shape)>0);if(o.length===1)return Os({inputs:{x:o[0]},backend:n});let u=o.map(m=>m.shape);if(C.assertParamsConsistent(u,a),o[0].dtype==="complex64"){let m=o.map(x=>ba({inputs:{input:x},backend:n})),g=o.map(x=>oo({inputs:{input:x},backend:n})),b=uo({inputs:m,backend:n,attrs:{axis:a}}),y=uo({inputs:g,backend:n,attrs:{axis:a}}),v=En({inputs:{real:b,imag:y},backend:n});return m.forEach(x=>n.disposeIntermediateTensorInfo(x)),g.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),v}let l=o.map(m=>{let g=w.sizeFromShape(m.shape.slice(a));return pt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),c=l.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));i=C.computeOutShape(l.map(m=>m.shape),1);let p=l[0].shape[0]===1,d=lv(c,i,t[0].dtype,p),h=C.computeOutShape(o.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,d);return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var WH={kernelName:fo,backendName:"cpu",kernelFunc:uo};function qC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dataFormat:u,dilations:l,dimRoundingMode:c}=s;be([r,a],"conv2d");let p=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(r.shape,a.shape,i,l,o,c,!1,p),h=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,g=d.dilationWidth,b=d.padInfo.left,y=d.padInfo.top,v=d.dataFormat==="channelsLast",x=new Wt(d.outShape,r.dtype),k=w.computeStrides(r.shape),I=w.computeStrides(a.shape),$=k[0],R=v?k[1]:k[2],E=v?k[2]:1,P=v?1:k[1],A=x.strides[0],O=v?x.strides[1]:x.strides[2],T=v?x.strides[2]:1,M=v?1:x.strides[1],W=n.data.get(r.dataId).values,j=n.data.get(a.dataId).values,X=x.values;for(let Y=0;Y<d.batchSize;++Y){let Z=Y*$,te=Y*A;for(let J=0;J<d.outHeight;++J){let se=te+J*O,ne=J*d.strideHeight-y;for(let oe=0;oe<h;++oe){let ae=ne+oe*m;if(ae<0||ae>=d.inHeight)continue;let de=oe*I[0],me=Z+ae*R;for(let ke=0;ke<d.outWidth;++ke){let Ie=se+ke*T,Re=ke*d.strideWidth-b;for(let Pe=0;Pe<f;++Pe){let Xe=Re+Pe*g;if(Xe<0||Xe>=d.inWidth)continue;let Je=de+Pe*I[1],Ye=me+Xe*E,tt=Je;for(let Ce=0;Ce<d.inChannels;++Ce){let ut=W[Ye+Ce*P];for(let at=0;at<d.outChannels;++at)X[Ie+at*M]+=ut*j[tt+at];tt+=d.outChannels}}}}}}return n.makeTensorInfo(x.shape,x.dtype,X)}var UH={kernelName:Aa,backendName:"cpu",kernelFunc:qC};function GH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:i,pad:o,dataFormat:u,dimRoundingMode:l,filterShape:c}=s;be([r,a],"conv2dBackpropFilter");let p=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(r.shape,c,i,1,o,l,!1,p),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=d,b=d.dataFormat==="channelsLast",y=new Wt(d.filterShape,"float32"),v=d.padInfo.left,x=d.padInfo.top,k=n.data.get(r.dataId).values,I=n.data.get(a.dataId).values,$=new Wt(r.shape,r.dtype,k),R=new Wt(a.shape,a.dtype,I);for(let E=0;E<m;++E){let P=Math.max(0,Math.ceil((x-E)/h)),A=Math.min(d.outHeight,(d.inHeight+x-E)/h);for(let O=0;O<g;++O){let T=Math.max(0,Math.ceil((v-O)/f)),M=Math.min(d.outWidth,(d.inWidth+v-O)/f);for(let W=0;W<d.inChannels;++W)for(let j=0;j<d.outChannels;++j){let X=0;for(let Y=0;Y<d.batchSize;++Y)for(let Z=P;Z<A;++Z){let te=E+Z*h-x;for(let J=T;J<M;++J){let se=O+J*f-v;b?X+=$.get(Y,te,se,W)*R.get(Y,Z,J,j):X+=$.get(Y,W,te,se)*R.get(Y,j,Z,J)}}y.set(X,E,O,W,j)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var HH={kernelName:bg,backendName:"cpu",kernelFunc:GH};function qH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:i,strides:o,pad:u,dataFormat:l,dimRoundingMode:c}=s;be([r,a],"conv2dBackpropInput");let p=w.computeStrides(a.shape),d=w.computeStrides(r.shape),h=C.convertConv2DDataFormat(l),f=C.computeConv2DInfo(i,a.shape,o,1,u,c,!1,h),m=new Wt(f.inShape,"float32"),g=m.values,b=n.data.get(r.dataId).values,y=n.data.get(a.dataId).values,[v,x,k]=p,{batchSize:I,filterHeight:$,filterWidth:R,inChannels:E,inHeight:P,inWidth:A,outChannels:O,outHeight:T,outWidth:M,strideHeight:W,strideWidth:j}=f;h=f.dataFormat;let X=$-1-f.padInfo.top,Y=R-1-f.padInfo.left,Z=h==="channelsLast",te=m.strides[0],J=Z?m.strides[1]:m.strides[2],se=Z?m.strides[2]:1,ne=Z?1:m.strides[1],oe=d[0],ae=Z?d[1]:d[2],de=Z?d[2]:1,me=Z?1:d[1];for(let ke=0;ke<I;++ke)for(let Ie=0;Ie<E;++Ie)for(let Re=0;Re<P;++Re){let Pe=Re-X,Xe=Math.max(0,Math.ceil(Pe/W)),Je=Math.min(T,($+Pe)/W);for(let Ye=0;Ye<A;++Ye){let tt=Ye-Y,Ce=Math.max(0,Math.ceil(tt/j)),ut=Math.min(M,(R+tt)/j),at=0;for(let Nt=Xe;Nt<Je;++Nt){let In=Nt*W-Pe;for(let Rt=Ce;Rt<ut;++Rt){let en=Rt*j-tt,Cn=oe*ke+ae*Nt+de*Rt,Nn=v*($-1-In)+x*(R-1-en)+k*Ie;for(let Yt=0;Yt<O;++Yt){let Dn=b[Cn+me*Yt],tn=y[Nn+Yt];at+=Dn*tn}}}let Jt=te*ke+J*Re+se*Ye+ne*Ie;g[Jt]=at}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var jH={kernelName:Ea,backendName:"cpu",kernelFunc:qH};function KH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dilations:u}=s;be([r,a],"conv3d");let l=C.computeConv3DInfo(r.shape,a.shape,i,u,o),{filterDepth:c,filterHeight:p,filterWidth:d,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=l,b=g.front,y=g.left,v=g.top,x=new Wt(l.outShape,r.dtype),k=n.data.get(r.dataId).values,I=n.data.get(a.dataId).values,$=x.values,R=w.computeStrides(r.shape),E=w.computeStrides(a.shape);for(let P=0;P<l.batchSize;++P){let A=P*R[0],O=P*x.strides[0];for(let T=0;T<l.outDepth;++T){let M=O+T*x.strides[1],W=T*l.strideDepth-b;for(let j=0;j<c;++j){let X=W+j*h;if(X<0||X>=l.inDepth)continue;let Y=j*E[0],Z=A+X*R[1];for(let te=0;te<l.outHeight;++te){let J=M+te*x.strides[2],se=te*l.strideHeight-v;for(let ne=0;ne<p;++ne){let oe=se+ne*f;if(oe<0||oe>=l.inHeight)continue;let ae=Y+ne*E[1],de=Z+oe*R[2];for(let me=0;me<l.outWidth;++me){let ke=J+me*l.outChannels,Ie=me*l.strideWidth-y;for(let Re=0;Re<d;++Re){let Pe=Ie+Re*m;if(Pe<0||Pe>=l.inWidth)continue;let Xe=ae+Re*E[2],Je=de+Pe*l.inChannels,Ye=Xe;for(let tt=0;tt<l.inChannels;++tt){let Ce=k[Je+tt];for(let ut=0;ut<l.outChannels;++ut)$[ke+ut]+=Ce*I[Ye+ut];Ye+=l.outChannels}}}}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var XH={kernelName:np,backendName:"cpu",kernelFunc:KH};function YH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:i,pad:o,filterShape:u}=s;be([r,a],"conv3dBackpropFilterV2");let l=w.computeStrides(r.shape),c=w.computeStrides(a.shape),p=C.computeConv3DInfo(r.shape,u,i,1,o),d=p.strideDepth,h=p.strideHeight,f=p.strideWidth,m=p.filterDepth,g=p.filterHeight,b=p.filterWidth,y=new Wt(p.filterShape,"float32"),v=y.values,[x,k,I,$]=y.strides,R=n.data.get(a.dataId).values,[E,P,A,O]=c,T=n.data.get(r.dataId).values,[M,W,j,X]=l,Y=p.padInfo.front,Z=p.padInfo.left,te=p.padInfo.top;for(let J=0;J<m;++J){let se=Math.max(0,Math.ceil((Y-J)/d)),ne=Math.min(p.outDepth,(p.inDepth+Y-J)/d),oe=J*x;for(let ae=0;ae<g;++ae){let de=Math.max(0,Math.ceil((te-ae)/h)),me=Math.min(p.outHeight,(p.inHeight+te-ae)/h),ke=ae*k+oe;for(let Ie=0;Ie<b;++Ie){let Re=Math.max(0,Math.ceil((Z-Ie)/f)),Pe=Math.min(p.outWidth,(p.inWidth+Z-Ie)/f),Xe=Ie*I+ke;for(let Je=0;Je<p.inChannels;++Je){let Ye=Je*$+Xe;for(let tt=0;tt<p.outChannels;++tt){let Ce=0;for(let ut=0;ut<p.batchSize;++ut){let at=ut*M,Jt=ut*E;for(let Nt=se;Nt<ne;++Nt){let Rt=(J+Nt*d-Y)*W+at,en=Nt*P+Jt;for(let Cn=de;Cn<me;++Cn){let Yt=(ae+Cn*h-te)*j+Rt,Dn=Cn*A+en;for(let tn=Re;tn<Pe;++tn){let Ms=(Ie+tn*f-Z)*X+Yt,Ci=tn*O+Dn;Ce+=T[Ms+Je]*R[Ci+tt]}}}}v[Ye+tt]=Ce}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var QH={kernelName:yg,backendName:"cpu",kernelFunc:YH};function ZH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:i,strides:o,inputShape:u}=s;be([r],"conv3dBackpropInputV2");let l=w.computeStrides(r.shape),c=w.computeStrides(a.shape),p=C.computeConv3DInfo(u,a.shape,o,1,i),d=new Wt(p.inShape,"float32"),h=d.values,[f,m,g,b]=d.strides,y=n.data.get(r.dataId).values,[v,x,k,I]=l,$=n.data.get(a.dataId).values,[R,E,P,A]=c,{batchSize:O,filterDepth:T,filterHeight:M,filterWidth:W,inChannels:j,inDepth:X,inHeight:Y,inWidth:Z,outChannels:te,outDepth:J,outHeight:se,outWidth:ne,strideDepth:oe,strideHeight:ae,strideWidth:de}=p,me=T-1-p.padInfo.front,ke=M-1-p.padInfo.top,Ie=W-1-p.padInfo.left;for(let Re=0;Re<O;++Re)for(let Pe=0;Pe<j;++Pe)for(let Xe=0;Xe<X;++Xe){let Je=Xe-me,Ye=Math.max(0,Math.ceil(Je/oe)),tt=Math.min(J,(T+Je)/oe);for(let Ce=0;Ce<Y;++Ce){let ut=Ce-ke,at=Math.max(0,Math.ceil(ut/ae)),Jt=Math.min(se,(M+ut)/ae);for(let Nt=0;Nt<Z;++Nt){let In=Nt-Ie,Rt=Math.max(0,Math.ceil(In/de)),en=Math.min(ne,(W+In)/de),Cn=0;for(let Nn=Ye;Nn<tt;++Nn){let Yt=Nn*oe-Je;for(let Dn=at;Dn<Jt;++Dn){let tn=Dn*ae-ut;for(let zs=Rt;zs<en;++zs){let Ms=zs*de-In,Ci=v*Re+x*Nn+k*Dn+I*zs,Js=R*(T-1-Yt)+E*(M-1-tn)+P*(W-1-Ms)+A*Pe;for(let Ls=0;Ls<te;++Ls){let gu=y[Ci+Ls],Ni=$[Js+Ls];Cn+=gu*Ni}}}}h[f*Re+m*Xe+g*Ce+b*Nt+Pe]=Cn}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var JH={kernelName:vg,backendName:"cpu",kernelFunc:ZH},eq=st(Ra,e=>Math.cos(e)),tq={kernelName:Ra,backendName:"cpu",kernelFunc:eq},nq=st(Da,e=>Math.cosh(e)),sq={kernelName:Da,backendName:"cpu",kernelFunc:nq};function rq(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:i}=t,{cropSize:o,method:u,extrapolationValue:l}=s,[c,p,d,h]=r.shape,f=a.shape[0],[m,g]=o,b=Ae([f,m,g,h],"float32"),y=n.data.get(a.dataId).values,v=n.data.get(i.dataId).values,x=n.data.get(r.dataId).values,k=w.computeStrides(r.shape),I=w.computeStrides(b.shape);for(let $=0;$<f;$++){let R=$*4,E=y[R],P=y[R+1],A=y[R+2],O=y[R+3],T=v[$];if(T>=c)continue;let M=m>1?(A-E)*(p-1)/(m-1):0,W=g>1?(O-P)*(d-1)/(g-1):0;for(let j=0;j<m;j++){let X=m>1?E*(p-1)+j*M:.5*(E+A)*(p-1);if(X<0||X>p-1){for(let Y=0;Y<g;Y++)for(let Z=0;Z<h;Z++){let te=Z+Y*I[2]+j*I[1]+$*I[0];b.values[te]=l}continue}if(u==="bilinear"){let Y=Math.floor(X),Z=Math.ceil(X),te=X-Y;for(let J=0;J<g;J++){let se=g>1?P*(d-1)+J*W:.5*(P+O)*(d-1);if(se<0||se>d-1){for(let de=0;de<h;de++){let me=de+J*I[2]+j*I[1]+$*I[0];b.values[me]=l}continue}let ne=Math.floor(se),oe=Math.ceil(se),ae=se-ne;for(let de=0;de<h;de++){let me=de+ne*k[2]+Y*k[1]+T*k[0],ke=x[me];me=de+oe*k[2]+Y*k[1]+T*k[0];let Ie=x[me];me=de+ne*k[2]+Z*k[1]+T*k[0];let Re=x[me];me=de+oe*k[2]+Z*k[1]+T*k[0];let Pe=x[me],Xe=ke+(Ie-ke)*ae,Je=Re+(Pe-Re)*ae;me=de+J*I[2]+j*I[1]+$*I[0],b.values[me]=Xe+(Je-Xe)*te}}}else for(let Y=0;Y<g;++Y){let Z=g>1?P*(d-1)+Y*W:.5*(P+O)*(d-1);if(Z<0||Z>d-1){for(let se=0;se<h;se++){let ne=se+Y*I[2]+j*I[1]+$*I[0];b.values[ne]=l}continue}let te=Math.round(Z),J=Math.round(X);for(let se=0;se<h;se++){let ne=se+te*k[2]+J*k[1]+T*k[0],oe=se+Y*I[2]+j*I[1]+$*I[0];b.values[oe]=x[ne]}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var aq={kernelName:go,backendName:"cpu",kernelFunc:rq};function iq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s;be(r,"cumprod");let u=C.getAxesPermutation([a],r.shape.length),l=r;u!=null&&(l=wn({inputs:{x:r},backend:n,attrs:{perm:u}}));let c=C.getInnerMostAxes(1,r.shape.length)[0];if(c!==l.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${l.shape.length-1} but got axis=${c}`);let p=cn(l.dtype,"int32"),d=w.makeOnesTypedArray(w.sizeFromShape(l.shape),p),h=n.data.get(l.dataId).values,f=l.shape[l.shape.length-1],m=o?(b,y)=>b+f-y-1:(b,y)=>b+y;for(let b=0;b<h.length;b+=f)for(let y=0;y<f;y++){let v=m(b,y);if(y===0)d[v]=i?1:h[v];else{let x=m(b,y-1);d[v]=i?h[x]*d[x]:h[v]*d[x]}}let g=n.makeTensorInfo(l.shape,p,d);if(u!=null){let b=C.getUndoAxesPermutation(u),y=wn({inputs:{x:g},backend:n,attrs:{perm:b}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(l),y}return g}var oq={kernelName:mo,backendName:"cpu",kernelFunc:iq};function uq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s;be(r,"cumsum");let u=C.getAxesPermutation([a],r.shape.length),l=r;u!=null&&(l=wn({inputs:{x:r},backend:n,attrs:{perm:u}}));let c=C.getInnerMostAxes(1,r.shape.length)[0];if(c!==l.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${l.shape.length-1} but got axis=${c}`);let p=cn(l.dtype,"int32"),d=w.makeZerosTypedArray(w.sizeFromShape(l.shape),p),h=n.data.get(l.dataId).values,f=l.shape[l.shape.length-1],m=o?(b,y)=>b+f-y-1:(b,y)=>b+y;for(let b=0;b<h.length;b+=f)for(let y=0;y<f;y++){let v=m(b,y);if(y===0)d[v]=i?0:h[v];else{let x=m(b,y-1);d[v]=i?h[x]+d[x]:h[v]+d[x]}}let g=n.makeTensorInfo(l.shape,p,d);if(u!=null){let b=C.getUndoAxesPermutation(u),y=wn({inputs:{x:g},backend:n,attrs:{perm:b}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(l),y}return g}var lq={kernelName:Fa,backendName:"cpu",kernelFunc:uq};function cq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:i,binaryOutput:o}=s;if(r.shape.length===1){let u=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=uv(u,l,a.dtype,a.shape,i);return n.makeTensorInfo([i],a.dtype,c)}else if(r.shape.length===2){let u=n.bufferSync(r),l=n.bufferSync(a),c=nC(u,l,i,o);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var dq={kernelName:xg,backendName:"cpu",kernelFunc:cq};function pq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:i}=s;w.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=r.shape[0],u=r.shape[1],l=r.shape[2],c=r.shape[3],p=u*a,d=l*a,h=c/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(o*p*d*h),g=0;for(let b=0;b<o;++b)for(let y=0;y<p;++y){let v=Math.floor(y/a),x=y%a;for(let k=0;k<d;++k){let I=Math.floor(k/a),$=k%a,R=(x*a+$)*h;for(let E=0;E<h;++E){let A=E+R+c*(I+l*(v+u*b));m[g++]=f[A]}}}return n.makeTensorInfo([o,p,d,h],r.dtype,m)}var hq={kernelName:bo,backendName:"cpu",kernelFunc:pq};function jC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dilations:u,dimRoundingMode:l}=s;be([r,a],"depthwiseConv2DNative");let c=w.computeStrides(r.shape),p=w.computeStrides(a.shape),d=u;d==null&&(d=[1,1]),w.assert(C.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let h=C.computeConv2DInfo(r.shape,a.shape,i,d,o,l,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:b,padInfo:y}=h,v=y.left,x=y.top,k=h.outChannels/h.inChannels,I=new Wt(h.outShape,r.dtype),$=n.data.get(r.dataId).values,R=n.data.get(a.dataId).values,E=I.values;for(let P=0;P<h.batchSize;++P){let A=P*c[0],O=P*I.strides[0];for(let T=0;T<h.outHeight;++T){let M=O+T*I.strides[1],W=T*h.strideHeight-x;for(let j=0;j<f;++j){let X=W+j*g;if(X<0||X>=h.inHeight)continue;let Y=j*p[0],Z=A+X*c[1];for(let te=0;te<h.outWidth;++te){let J=M+te*I.strides[2],se=te*h.strideWidth-v;for(let ne=0;ne<m;++ne){let oe=se+ne*b;if(oe<0||oe>=h.inWidth)continue;let ae=Y+ne*p[1],de=Z+oe*h.inChannels,me=J,ke=ae;for(let Ie=0;Ie<h.inChannels;++Ie){let Re=$[de+Ie];for(let Pe=0;Pe<k;++Pe)E[me+Pe]+=Re*R[ke+Pe];me+=k,ke+=k}}}}}}return n.makeTensorInfo(I.shape,I.dtype,I.values)}var fq={kernelName:Oa,backendName:"cpu",kernelFunc:jC};function mq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:i,dilations:o,pad:u,dimRoundingMode:l,filterShape:c}=s;be([r,a],"depthwiseConv2dNativeBackpropFilter");let p=C.computeConv2DInfo(r.shape,c,i,o,u,l,!0),{strideHeight:d,strideWidth:h,filterHeight:f,filterWidth:m}=p,g=new Wt(p.filterShape,"float32"),b=p.padInfo.left,y=p.padInfo.top,v=p.outChannels/p.inChannels,x=n.data.get(r.dataId).values,k=new Wt(r.shape,r.dtype,x),I=n.data.get(a.dataId).values,$=new Wt(a.shape,a.dtype,I);for(let R=0;R<f;++R){let E=Math.max(0,Math.ceil((y-R)/d)),P=Math.min(p.outHeight,(p.inHeight+y-R)/d);for(let A=0;A<m;++A){let O=Math.max(0,Math.ceil((b-A)/h)),T=Math.min(p.outWidth,(p.inWidth+b-A)/h);for(let M=0;M<p.outChannels;++M){let W=Math.trunc(M/v),j=M%v,X=0;for(let Y=0;Y<p.batchSize;++Y)for(let Z=E;Z<P;++Z){let te=R+Z*d-y;for(let J=O;J<T;++J){let se=A+J*h-b;X+=k.get(Y,te,se,W)*$.get(Y,Z,J,M)}}g.set(X,R,A,W,j)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var gq={kernelName:wg,backendName:"cpu",kernelFunc:mq};function bq(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:i,dilations:o,pad:u,dimRoundingMode:l,inputShape:c}=s;be([r,a],"depthwiseConv2DNativeBackpropInput");let p=w.computeStrides(r.shape),d=w.computeStrides(a.shape),h=C.computeConv2DInfo(c,a.shape,i,o,u,l,!0),f=new Wt(h.inShape,"float32"),m=f.values,[g,b,y]=f.strides,v=n.data.get(r.dataId).values,[x,k,I]=p,$=n.data.get(a.dataId).values,[R,E,P]=d,{batchSize:A,filterHeight:O,filterWidth:T,inChannels:M,inHeight:W,inWidth:j,outChannels:X,outHeight:Y,outWidth:Z,strideHeight:te,strideWidth:J}=h,se=O-1-h.padInfo.top,ne=T-1-h.padInfo.left,oe=X/M;for(let ae=0;ae<A;++ae)for(let de=0;de<M;++de)for(let me=0;me<W;++me){let ke=me-se,Ie=Math.max(0,Math.ceil(ke/te)),Re=Math.min(Y,(O+ke)/te);for(let Pe=0;Pe<j;++Pe){let Xe=Pe-ne,Je=Math.max(0,Math.ceil(Xe/J)),Ye=Math.min(Z,(T+Xe)/J),tt=0;for(let Ce=Ie;Ce<Re;++Ce){let ut=Ce*te-ke;for(let at=Je;at<Ye;++at){let Jt=at*J-Xe,Nt=x*ae+k*Ce+I*at,In=R*(O-1-ut)+E*(T-1-Jt)+P*de;for(let Rt=0;Rt<oe;++Rt){let en=de*oe+Rt,Cn=v[Nt+en],Nn=$[In+Rt];tt+=Cn*Nn}}}m[g*ae+b*me+y*Pe+de]=tt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var yq={kernelName:kg,backendName:"cpu",kernelFunc:bq};function vq(e){let{inputs:t,backend:n}=e,{x:s}=t,r=w.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,i=Ae([r,r],s.dtype),o=i.values;for(let l=0;l<a.length;l++)o[l*r+l]=a[l];let u=[...s.shape,...s.shape];return n.makeTensorInfo(u,i.dtype,i.values)}var xq={kernelName:Sg,backendName:"cpu",kernelFunc:vq},wq={kernelName:sp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:i,dilations:o}=n,u=t,l=u.data.get(s.dataId).values,c=s.shape.length,p=u.data.get(r.dataId).values,d=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:b,outWidth:y,padInfo:v,strideHeight:x,strideWidth:k,filterHeight:I,filterWidth:$,dilationHeight:R,dilationWidth:E,outShape:P}=C.computeDilation2DInfo(s.shape,r.shape,a,i,"NHWC",o),A=w.sizeFromShape(P),O=P.length,T=w.getArrayFromDType(s.dtype,A);for(let W=0;W<h;++W)for(let j=0;j<b;++j){let X=j*x-v.top;for(let Y=0;Y<y;++Y){let Z=Y*k-v.left;for(let te=0;te<g;++te){let J=Number.MIN_SAFE_INTEGER;for(let ne=0;ne<I;++ne){let oe=X+ne*R;if(oe>=0&&oe<f)for(let ae=0;ae<$;++ae){let de=Z+ae*E;if(de>=0&&de<m){let me=w.locToIndex([W,oe,de,te],c,w.computeStrides(s.shape)),ke=w.locToIndex([ne,ae,te],d,w.computeStrides(r.shape)),Ie=l[me]+p[ke];Ie>J&&(J=Ie)}}}let se=w.locToIndex([W,j,Y,te],O,w.computeStrides(P));T[se]=J}}}return{dataId:u.write(w.toTypedArray(T,s.dtype),P,s.dtype),shape:P,dtype:s.dtype}}},kq={kernelName:rm,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:i,pad:o,dilations:u}=n,l=t,c=w.toNestedArray(s.shape,l.data.get(s.dataId).values),p=w.toNestedArray(r.shape,l.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:b,padInfo:y,strideHeight:v,strideWidth:x,filterHeight:k,filterWidth:I,dilationHeight:$,dilationWidth:R,outShape:E}=C.computeDilation2DInfo(s.shape,r.shape,i,o,"NHWC",u);w.assert(a.rank===E.length,()=>`Error in ${rm}, dy must have the same rank as output ${E.length}, but got ${a.rank}`);let P=w.toNestedArray(E,l.data.get(a.dataId).values),A=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T<d;++T)for(let M=0;M<g;++M){let W=M*v-y.top;for(let j=0;j<b;++j){let X=j*x-y.left;for(let Y=0;Y<m;++Y){let Z=Number.MIN_SAFE_INTEGER,te=0,J=0;for(let se=0;se<k;++se){let ne=W+se*$;if(ne>=0&&ne<h)for(let oe=0;oe<I;++oe){let ae=X+oe*R;if(ae>=0&&ae<f){let de=c[T][ne][ae][Y]+p[se][oe][Y];de>Z&&(Z=de,te=se,J=oe)}}}A[te][J][Y]+=P[T][M][j][Y]}}}return{dataId:l.write(w.toTypedArray(A,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},Sq={kernelName:sm,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:i,pad:o,dilations:u}=n,l=t,c=w.toNestedArray(s.shape,l.data.get(s.dataId).values),p=w.toNestedArray(r.shape,l.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:b,padInfo:y,strideHeight:v,strideWidth:x,filterHeight:k,filterWidth:I,dilationHeight:$,dilationWidth:R,outShape:E}=C.computeDilation2DInfo(s.shape,r.shape,i,o,"NHWC",u);w.assert(a.rank===E.length,()=>`Error in ${sm}, dy must have the same rank as output ${E.length}, but got ${a.rank}`);let P=w.toNestedArray(E,l.data.get(a.dataId).values),A=w.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T<d;++T)for(let M=0;M<g;++M){let W=M*v-y.top;for(let j=0;j<b;++j){let X=j*x-y.left;for(let Y=0;Y<m;++Y){let Z=Number.MIN_SAFE_INTEGER,te=W<0?0:W,J=X<0?0:X;for(let se=0;se<k;++se){let ne=W+se*$;if(ne>=0&&ne<h)for(let oe=0;oe<I;++oe){let ae=X+oe*R;if(ae>=0&&ae<f){let de=c[T][ne][ae][Y]+p[se][oe][Y];de>Z&&(Z=de,te=ne,J=ae)}}}A[T][te][J][Y]+=P[T][M][j][Y]}}}return{dataId:l.write(w.toTypedArray(A,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Zl(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;be(r,"sum");let o;r.dtype==="bool"?o=kr({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=Os({inputs:{x:r},backend:n});let u=o.shape.length,l=w.parseAxisParam(a,o.shape),c=C.getAxesPermutation(l,u),p=l,d=o;c!=null&&(d=wn({inputs:{x:o},backend:n,attrs:{perm:c}}),p=C.getInnerMostAxes(p.length,u)),C.assertAxesAreInnerMostDims("sum",p,d.shape.length);let[h,f]=C.computeOutAndReduceShapes(d.shape,p),m=C.upcastType(d.dtype,"int32"),g=Ld(n,h,m),b=w.sizeFromShape(f),y=n.data.get(g.dataId).values,v=n.data.get(d.dataId).values;for(let x=0;x<y.length;++x){let k=x*b,I=0;for(let $=0;$<b;++$)I+=v[k+$];y[x]=I}if(i){let x=C.expandShapeToKeepDim(g.shape,l),k=g;g=pt({inputs:{x:g},backend:n,attrs:{shape:x}}),n.disposeIntermediateTensorInfo(k)}return n.disposeIntermediateTensorInfo(o),c!=null&&n.disposeIntermediateTensorInfo(d),g}var Iq={kernelName:di,backendName:"cpu",kernelFunc:Zl};function Cq(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:i,summedDims:o,idDims:u}=C.decodeEinsumEquation(r,a.length);C.checkEinsumDimSizes(i.length,u,a);let{path:l,steps:c}=C.getEinsumComputePath(o,u),p=c.length,d=null,h=i.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:b,expandDims:y}=C.getEinsumPermutation(h,u[g]),v;C.isIdentityPermutation(b)?v=a[g]:(v=wn({inputs:{x:a[g]},backend:n,attrs:{perm:b}}),f.push(v));let x=v.shape.slice();for(let k=0;k<y.length;++k)x.splice(y[k],0,1);w.arraysEqual(v.shape,x)||(v=pt({inputs:{x:v},backend:n,attrs:{shape:x}}),f.push(v)),d===null?d=v:(d=Jp({inputs:{a:v,b:d},backend:n}),f.push(d))}m<p-1&&(l[m]>=0&&(d=Zl({inputs:{x:d},backend:n,attrs:{axis:l[m]-(i.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var Nq={kernelName:rp,backendName:"cpu",kernelFunc:Cq};function Tq(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;be([s,r],"eluGrad");let a=new Float32Array(w.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(s.dataId).values;for(let u=0;u<i.length;++u){let l=i[u];l>=1?a[u]=o[u]:a[u]=o[u]*(l+1)}return n.makeTensorInfo(r.shape,"float32",a)}var $q={kernelName:Ig,backendName:"cpu",kernelFunc:Tq},_q=C.ERF_P,Aq=C.ERF_A1,Eq=C.ERF_A2,Rq=C.ERF_A3,Dq=C.ERF_A4,Fq=C.ERF_A5,Oq=st(yl,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+_q*n);return t*(1-((((Fq*s+Dq)*s+Rq)*s+Eq)*s+Aq)*s*Math.exp(-n*n))}),Pq={kernelName:yl,backendName:"cpu",kernelFunc:Oq};function Wd(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,i=r.shape.length,o=r.shape.slice(),u=a;return a<0&&(w.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+a+1),o.splice(u,0,1),pt({inputs:{x:r},backend:n,attrs:{shape:o}})}var zq={kernelName:vo,backendName:"cpu",kernelFunc:Wd},Mq=Et((e,t)=>e/t),gv=Ht(Pa,Mq),qm={kernelName:Pa,backendName:"cpu",kernelFunc:gv};function KC(e,t,n){let s=e.shape,r=s[0],a=s[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,u=i.complexTensorInfos.imag,l=[r,a],c=w.sizeFromShape(l),p=w.getTypedArrayFromDType("float32",c),d=w.getTypedArrayFromDType("float32",c);for(let g=0;g<r;g++){let b=ya({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,a]}}),y=ya({inputs:{x:u},backend:n,attrs:{begin:[g,0],size:[1,a]}}),v=En({inputs:{real:b,imag:y},backend:n}),{real:x,imag:k}=Lq(v,t,n),I=C.mergeRealAndImagArrays(x,k);for(let $=0;$<a;$++){let R=C.getComplexWithIndex(I,$);p[g*a+$]=R.real,d[g*a+$]=R.imag}n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(v)}let h=n.makeTensorInfo(l,"float32",p),f=n.makeTensorInfo(l,"float32",d),m=En({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function Lq(e,t,n){let s=w.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(Bq(s)){let o=jm(a,i,s,t,n),u=[e.shape[0],e.shape[1]];if(t){let l=n.makeTensorInfo(u,"float32",o.real),c=n.makeTensorInfo(u,"float32",o.imag),p=n.makeTensorInfo([],"float32",w.createScalarValue(s,"float32")),d=Os({inputs:{x:p},backend:n}),h=qm.kernelFunc({inputs:{a:l,b:p},backend:n}),f=qm.kernelFunc({inputs:{a:c,b:d},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return o}else{let o=C.mergeRealAndImagArrays(a,i),u=Vq(o,s,t);return C.splitRealAndImagArrays(u)}}function Bq(e){return(e&e-1)===0}function jm(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=C.mergeRealAndImagArrays(e,t),i=n/2,o=C.complexWithEvenIndex(a),u=o.real,l=o.imag,c=[u.length],p=r.makeTensorInfo(c,"float32",u),d=r.makeTensorInfo(c,"float32",l),h=En({inputs:{real:p,imag:d},backend:r}),f=C.complexWithOddIndex(a),m=f.real,g=f.imag,b=[m.length],y=r.makeTensorInfo(b,"float32",m),v=r.makeTensorInfo(b,"float32",g),x=En({inputs:{real:y,imag:v},backend:r}),k=jm(u,l,i,s,r),I=k.real,$=k.imag,R=[I.length],E=r.makeTensorInfo(R,"float32",I),P=r.makeTensorInfo(R,"float32",$),A=En({inputs:{real:E,imag:P},backend:r}),O=jm(m,g,i,s,r),T=O.real,M=O.imag,W=[T.length],j=r.makeTensorInfo(W,"float32",T),X=r.makeTensorInfo(W,"float32",M),Y=En({inputs:{real:j,imag:X},backend:r}),Z=C.exponents(n,s),te=[Z.real.length],J=r.makeTensorInfo(te,"float32",Z.real),se=r.makeTensorInfo(te,"float32",Z.imag),ne=En({inputs:{real:J,imag:se},backend:r}),oe=Jp({inputs:{a:ne,b:Y},backend:r}),ae=io({inputs:{a:A,b:oe},backend:r}),de=fv({inputs:{a:A,b:oe},backend:r}),me=ba({inputs:{input:ae},backend:r}),ke=ba({inputs:{input:de},backend:r}),Ie=oo({inputs:{input:ae},backend:r}),Re=oo({inputs:{input:de},backend:r}),Pe=uo({inputs:[me,ke],backend:r,attrs:{axis:0}}),Xe=uo({inputs:[Ie,Re],backend:r,attrs:{axis:0}}),Je=r.data.get(Pe.dataId).values,Ye=r.data.get(Xe.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(v),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(E),r.disposeIntermediateTensorInfo(P),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(Y),r.disposeIntermediateTensorInfo(J),r.disposeIntermediateTensorInfo(se),r.disposeIntermediateTensorInfo(ne),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(de),r.disposeIntermediateTensorInfo(me),r.disposeIntermediateTensorInfo(Ie),r.disposeIntermediateTensorInfo(ke),r.disposeIntermediateTensorInfo(Re),r.disposeIntermediateTensorInfo(Pe),r.disposeIntermediateTensorInfo(Xe),{real:Je,imag:Ye}}function Vq(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,i=0;for(let o=0;o<t;o++){let u=C.exponent(r*o,t,n),l=C.getComplexWithIndex(e,o);a+=l.real*u.real-l.imag*u.imag,i+=l.real*u.imag+l.imag*u.real}n&&(a/=t,i/=t),C.assignToTypedArray(s,a,i,r)}return s}function Wq(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],i=r/a,o=pt({inputs:{x:s},backend:n,attrs:{shape:[i,a]}}),u=KC(o,!1,n),l=pt({inputs:{x:u},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),l}var Uq={kernelName:Cg,backendName:"cpu",kernelFunc:Wq};function bv(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,i=a||w.inferDtype(r),o=w.getArrayFromDType(i,w.sizeFromShape(s));return Hq(o,r,i),t.makeTensorInfo(s,i,o)}var Gq={kernelName:vl,backendName:"cpu",kernelFunc:bv};function Hq(e,t,n){e.fill(t)}var qq={kernelName:wo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[i,o,u,l]=s.shape,c=r.data.get(s.dataId).values;for(let d=0;d<i;d++){let h=d*u*o*l;for(let f=0;f<o;f++){let m=f*(u*l);for(let g=0;g<u;g++){let b=g*l;for(let y=0;y<l;y++){let v=Math.round(u-g-1),x=h+m+b+y,k=c[x];if(v>=0&&v<u){let I=v*l,$=h+m+I+y;k=c[$]}a[x]=k}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},jq=Et((e,t)=>Math.floor(e/t)),Kq=Ht(Ba,jq,null,"int32"),Xq={kernelName:Ba,backendName:"cpu",kernelFunc:Kq};function Yq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=qC({inputs:{x:r,filter:a},backend:n,attrs:{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:d}});if(i){let g=m;if(c==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let b=pt({inputs:{x:i},backend:n,attrs:{shape:[i.shape[0],1,1]}});m=io({inputs:{a:m,b},backend:n}),n.disposeIntermediateTensorInfo(b)}else m=io({inputs:{a:m,b:i},backend:n});n.disposeIntermediateTensorInfo(g)}if(h){let g=m;if(c==="NCHW"&&h==="prelu"&&o.shape.length===1&&o.shape[0]!==1){let b=pt({inputs:{x:o},backend:n,attrs:{shape:[o.shape[0],1,1]}});m=Vd(n,m,h,b,f),n.disposeIntermediateTensorInfo(b)}else m=Vd(n,m,h,o,f);n.disposeIntermediateTensorInfo(g)}return m}var Qq={kernelName:ua,backendName:"cpu",kernelFunc:Yq};function Zq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=jC({inputs:{x:r,filter:a},backend:n,attrs:{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:d}});if(i){let g=m;m=io({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Vd(n,m,h,o,f),n.disposeIntermediateTensorInfo(g)}return m}var Jq={kernelName:la,backendName:"cpu",kernelFunc:Zq};function e6(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=w.sizeFromShape(s.shape),i=r.shape,o=i[i.length-1],[u,l,c,p]=C.prepareAndValidate(s,r);if(l===0)return n.makeTensorInfo(u,s.dtype,[]);let d=n.data.get(r.dataId).values,h=n.bufferSync(s),f=cC(d,h,s.dtype,l,o,c,p,s.shape,a);return n.makeTensorInfo(u,s.dtype,f.values)}var t6={kernelName:So,backendName:"cpu",kernelFunc:e6};function n6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:i,batchDims:o}=s;be([r,a],"gatherV2");let u=w.parseAxisParam(i,r.shape)[0],l=n.data.get(a.dataId).values,c=r.shape[u];for(let x=0;x<l.length;++x){let k=l[x];w.assert(k<=c-1&&k>=0,()=>`GatherV2: the index value ${k} is not in [0, ${c-1}]`)}let p=o;o==null&&(p=0);let d=w.sizeFromShape(a.shape),h=C.segment_util.collectGatherOpShapeInfo(r,a,u,p),f=pt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=pt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,d/h.batchSize]}}),g=[h.batchSize,h.outerSize,d/h.batchSize,h.sliceSize],b=n.bufferSync(m),y=n.bufferSync(f),v=dC(y,b,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,v.dtype,v.values)}var s6={kernelName:ko,backendName:"cpu",kernelFunc:n6};function r6(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],i=r/a,o=pt({inputs:{x:s},backend:n,attrs:{shape:[i,a]}}),u=KC(o,!0,n),l=pt({inputs:{x:u},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),l}var a6={kernelName:Ng,backendName:"cpu",kernelFunc:r6},i6=st(xl,e=>Number.isFinite(e)?1:0,"bool"),o6={kernelName:xl,backendName:"cpu",kernelFunc:i6},u6=st(wl,e=>Math.abs(e)===1/0?1:0,"bool"),l6={kernelName:wl,backendName:"cpu",kernelFunc:u6},c6=st(kl,e=>Number.isNaN(e)?1:0,"bool"),d6={kernelName:kl,backendName:"cpu",kernelFunc:c6};function p6(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,i=gC(s,r,a);return t.makeTensorInfo([i.length],"float32",i)}var h6={kernelName:Tg,backendName:"cpu",kernelFunc:p6},f6=st(Sl,e=>Math.log1p(e)),m6={kernelName:Sl,backendName:"cpu",kernelFunc:f6},g6=Et((e,t)=>e&&t),b6=Ht(To,g6,null,"bool"),y6={kernelName:To,backendName:"cpu",kernelFunc:b6},v6=st(Il,e=>e?0:1,"bool"),x6={kernelName:Il,backendName:"cpu",kernelFunc:v6},w6=Et((e,t)=>e||t),k6=Ht(ip,w6,null,"bool"),S6={kernelName:ip,backendName:"cpu",kernelFunc:k6};function I6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:i,alpha:o,beta:u}=s;be(r,"LRN");let l=r.shape[3],c=l-1,p=n.data.get(r.dataId).values,d=w.sizeFromShape(r.shape),h=new Float32Array(d);function f(m){let g=m%l,b=m-g+Math.max(0,g-a),y=m-g+Math.min(g+a,c),v=0;for(;b<=y;b++){let x=p[b];v+=x*x}return v}for(let m=0;m<d;m++){let g=f(m),b=p[m]*Math.pow(i+o*g,-u);h[m]=b}return n.makeTensorInfo(r.shape,r.dtype,h)}var C6={kernelName:op,backendName:"cpu",kernelFunc:I6};function N6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:i}=t,{depthRadius:o,bias:u,alpha:l,beta:c}=s;be(i,"LRNGrad");let p=w.sizeFromShape(i.shape),d=i.shape[3],h=n.data.get(i.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(p),b=p;for(let y=0;y<b;y++){let v=y%d,x=y-v+Math.max(0,v-o),k=y-v+Math.min(d,v+o+1),I=0;for(let $=x;$<k;$++)I+=Math.pow(f[$],2);I=l*I+u;for(let $=x;$<k;$++){let R=-2*l*c*f[$]*m[y]/I;y===$&&(R+=Math.pow(I,-c)),R*=h[y],g[$]+=R}}return n.makeTensorInfo(i.shape,r.dtype,g)}var T6={kernelName:$g,backendName:"cpu",kernelFunc:N6};function XC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:i}=s,o=n,u=r.shape,l=u.length,c=w.parseAxisParam(a,u),p=c,d=C.getAxesPermutation(p,l),h=o.data.get(r.dataId).values;if(d!=null){let x=new Array(l);for(let k=0;k<x.length;k++)x[k]=u[d[k]];h=dv(h,u,r.dtype,d,x),p=C.getInnerMostAxes(p.length,l),u=x}be(r,"max"),C.assertAxesAreInnerMostDims("max",p,l);let[f,m]=C.computeOutAndReduceShapes(u,p),g=w.sizeFromShape(m),b=yC(h,g,f,r.dtype),y=o.write(b,f,r.dtype),v=f;return i&&(v=C.expandShapeToKeepDim(f,c)),{dataId:y,shape:v,dtype:r.dtype}}var $6={kernelName:qa,backendName:"cpu",kernelFunc:XC};function _6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;be(r,"maxPool");let{filterSize:a,strides:i,pad:o,dimRoundingMode:u}=s,l=1;w.assert(C.eitherStridesOrDilationsAreOne(i,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=C.computePool2DInfo(r.shape,a,i,l,o,u),p;if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))p=Os({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),f=mv(d,r.shape,r.dtype,h,c,"max");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var A6={kernelName:Ka,backendName:"cpu",kernelFunc:_6};function E6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:i,pad:o,dimRoundingMode:u,dataFormat:l}=s;be(r,"maxPool3d");let c=C.computePool3DInfo(r.shape,a,i,1,o,u,l),p=n.data.get(r.dataId).values,d=HC(p,r.shape,r.dtype,w.computeStrides(r.shape),c,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var R6={kernelName:up,backendName:"cpu",kernelFunc:E6};function D6(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:i,strides:o,pad:u,dimRoundingMode:l}=s;be([r,a],"maxPool3DGrad");let c=C.computePool3DInfo(a.shape,i,o,1,u,l),p=n.bufferSync(a),d=xH(p,c),h=c.strideDepth,f=c.strideHeight,m=c.strideWidth,g=c.dilationDepth,b=c.dilationHeight,y=c.dilationWidth,v=c.effectiveFilterDepth,x=c.effectiveFilterHeight,k=c.effectiveFilterWidth,I=v-1-c.padInfo.front,$=k-1-c.padInfo.left,R=x-1-c.padInfo.top,E=Ae(a.shape,"float32"),P=n.bufferSync(r);for(let A=0;A<c.batchSize;++A)for(let O=0;O<c.inChannels;++O)for(let T=0;T<c.inDepth;++T)for(let M=0;M<c.inHeight;++M)for(let W=0;W<c.inWidth;++W){let j=T-I,X=M-R,Y=W-$,Z=0;for(let te=0;te<v;te+=g){let J=(j+te)/h;if(!(J<0||J>=c.outDepth||Math.floor(J)!==J))for(let se=0;se<x;se+=b){let ne=(X+se)/f;if(!(ne<0||ne>=c.outHeight||Math.floor(ne)!==ne))for(let oe=0;oe<k;oe+=y){let ae=(Y+oe)/m;if(ae<0||ae>=c.outWidth||Math.floor(ae)!==ae)continue;let de=v*x*k-1-d.get(A,J,ne,ae,O),me=te*x*k+se*k+oe,ke=de===me?1:0;if(ke===0)continue;Z+=P.get(A,J,ne,ae,O)*ke}}}E.set(Z,A,T,M,W,O)}return n.makeTensorInfo(E.shape,E.dtype,E.values)}var F6={kernelName:Ag,backendName:"cpu",kernelFunc:D6};function O6(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:i}=t,o=a;be([a,i],"maxPoolGrad");let{filterSize:u,strides:l,pad:c,dimRoundingMode:p}=s,d=C.computePool2DInfo(o.shape,u,l,1,c,p),h=n.data.get(o.dataId).values,f=Ae(d.outShape,o.dtype,GC(h,o.shape,o.dtype,d).values),m=d.strideHeight,g=d.strideWidth,b=d.dilationHeight,y=d.dilationWidth,v=d.effectiveFilterHeight,x=d.effectiveFilterWidth,k=x-1-d.padInfo.left,I=v-1-d.padInfo.top,$=Ae(o.shape,"float32"),R=n.data.get(r.dataId).values,E=Ae(r.shape,"float32",R);for(let P=0;P<d.batchSize;++P)for(let A=0;A<d.inChannels;++A)for(let O=0;O<d.inHeight;++O)for(let T=0;T<d.inWidth;++T){let M=O-I,W=T-k,j=0;for(let X=0;X<v;X+=b){let Y=(M+X)/m;if(!(Y<0||Y>=d.outHeight||Math.floor(Y)!==Y))for(let Z=0;Z<x;Z+=y){let te=(W+Z)/g;if(te<0||te>=d.outWidth||Math.floor(te)!==te)continue;let J=v*x-1-f.get(P,Y,te,A),se=X*x+Z,ne=J===se?1:0;if(ne===0)continue;j+=E.get(P,Y,te,A)*ne}}$.set(j,P,O,T,A)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var P6={kernelName:_g,backendName:"cpu",kernelFunc:O6};function z6(e,t,n,s,r){let a=w.computeStrides(t),i=mv(e,t,n,a,r,"max"),o=GC(e,t,n,r,!0,s);return[i.values,o.values]}var M6={kernelName:Eg,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:i,includeBatchInIndex:o}=t,u=n;be(s,"MaxPoolWithArgmax");let l=u.data.get(s.dataId).values,c=C.computePool2DInfo(s.shape,r,a,[1,1],i),[p,d]=z6(l,s.shape,s.dtype,o,c),h=u.write(p,c.outShape,s.dtype),f=u.write(d,c.outShape,s.dtype);return[{dataId:h,shape:c.outShape,dtype:s.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function L6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s,o=w.parseAxisParam(a,r.shape),l=C.computeOutAndReduceShapes(r.shape,o)[1],c=w.sizeFromShape(l),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([c]));p.push(d);let h=kr({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(h);let f=gv({inputs:{a:h,b:d},backend:n});p.push(f);let m=Zl({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:i}});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var B6={kernelName:Xa,backendName:"cpu",kernelFunc:L6};function V6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;be(r,"min");let o=w.parseAxisParam(a,r.shape),u=o,l=C.getAxesPermutation(u,r.shape.length),c=r;l!=null&&(c=wn({inputs:{x:r},backend:n,attrs:{perm:l}}),u=C.getInnerMostAxes(u.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",u,c.shape.length);let[p,d]=C.computeOutAndReduceShapes(c.shape,u),h=w.sizeFromShape(d),f=w.makeZerosTypedArray(w.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let b=0;b<f.length;++b){let y=b*h,v=m[y];for(let x=0;x<h;++x){let k=m[y+x];(Number.isNaN(k)||k<v)&&(v=k)}f[b]=v}l!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(i){let b=C.expandShapeToKeepDim(p,o),y=pt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var W6={kernelName:Ya,backendName:"cpu",kernelFunc:V6};function U6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:i}=s;be(r,"mirrorPad");let o=a.map((v,x)=>v[0]+r.shape[x]+v[1]),u=a.map(v=>v[0]),l=a.map((v,x)=>v[0]+r.shape[x]),c=i==="reflect"?0:1,p=n.data.get(r.dataId).values,d=r.shape.length,h=w.computeStrides(r.shape),f=w.sizeFromShape(o),m=o.length,g=w.computeStrides(o),b=w.getTypedArrayFromDType(r.dtype,f);for(let v=0;v<f;v++){let x=w.indexToLoc(v,m,g);for(let I=0;I<m;I++)x[I]<u[I]?x[I]=u[I]*2-x[I]-c:x[I]>=l[I]&&(x[I]=(l[I]-1)*2-x[I]+c);x=x.map((I,$)=>I-u[$]);let k=w.locToIndex(x,d,h);b[v]=p[k]}return{dataId:n.write(b,o,r.dtype),shape:o,dtype:r.dtype}}var G6={kernelName:Za,backendName:"cpu",kernelFunc:U6},H6=Et((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),q6=Ht(Cl,H6),j6={kernelName:Cl,backendName:"cpu",kernelFunc:q6},K6=ka(Xd());function YC(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,i=r.shape.length,o=a;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let u=w.parseAxisParam([o],r.shape),l=XC({inputs:{x:r},backend:n,attrs:{reductionIndices:u,keepDims:!1}}),c=C.expandShapeToKeepDim(l.shape,u),p=pt({inputs:{x:l},backend:n,attrs:{shape:c}}),d=fv({inputs:{a:r,b:p},backend:n}),h=oC({inputs:{x:d},backend:n}),f=Zl({inputs:{x:h},backend:n,attrs:{axis:u,keepDims:!1}}),m=pt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=gv({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var X6={kernelName:pi,backendName:"cpu",kernelFunc:YC};function Y6(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:i,normalized:o}=s;be(r,"multinomial");let u=o?r:YC({inputs:{logits:r},backend:n,attrs:{dim:-1}}),l=u.shape[0],c=u.shape[1],p=n.data.get(u.dataId).values,d=[l,a],h=w.makeZerosTypedArray(w.sizeFromShape(d),"int32");for(let f=0;f<l;++f){let m=f*c,g=new Float32Array(c-1);g[0]=p[m];for(let v=1;v<g.length;++v)g[v]=g[v-1]+p[m+v];let b=K6.alea(i.toString()),y=f*a;for(let v=0;v<a;++v){let x=b();h[y+v]=g.length;for(let k=0;k<g.length;k++)if(x<g[k]){h[y+v]=k;break}}}return o||n.disposeIntermediateTensorInfo(u),n.makeTensorInfo(d,"int32",h)}var Q6={kernelName:Rg,backendName:"cpu",kernelFunc:Y6},Z6=ws.nonMaxSuppressionV3Impl;function J6(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u}=s;be(r,"NonMaxSuppression");let l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,{selectedIndices:p}=Z6(l,c,i,o,u);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var ej={kernelName:Ao,backendName:"cpu",kernelFunc:J6},tj=ws.nonMaxSuppressionV4Impl;function nj(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u,padToMaxOutputSize:l}=s;be(r,"NonMaxSuppressionPadded");let c=n.data.get(r.dataId).values,p=n.data.get(a.dataId).values,{selectedIndices:d,validOutputs:h}=tj(c,p,i,o,u,l);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var sj={kernelName:Nl,backendName:"cpu",kernelFunc:nj},rj=ws.nonMaxSuppressionV5Impl;function aj(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u,softNmsSigma:l}=s;be(r,"NonMaxSuppressionWithScore");let c=n.data.get(r.dataId).values,p=n.data.get(a.dataId).values,d=i,h=o,f=u,m=l,{selectedIndices:g,selectedScores:b}=rj(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var ij={kernelName:Eo,backendName:"cpu",kernelFunc:aj};function oj(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:i,offValue:o}=s;be(r,"oneHot");let u=w.sizeFromShape(r.shape),l=new Float32Array(u*a);l.fill(o);let c=n.data.get(r.dataId).values;for(let p=0;p<u;++p)c[p]>=0&&c[p]<a&&(l[p*a+c[p]]=i);return n.makeTensorInfo([...r.shape,a],"int32",l)}var uj={kernelName:Do,backendName:"cpu",kernelFunc:oj};function Ud(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=ba({inputs:{input:s},backend:n}),a=Ud({inputs:{x:r},backend:n}),i=oo({inputs:{input:s},backend:n}),o=Ud({inputs:{x:i},backend:n}),u=En({inputs:{real:a,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),u}else return bv({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var lj={kernelName:Xo,backendName:"cpu",kernelFunc:Ud};function QC(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=ba({inputs:{input:s},backend:n}),a=QC({inputs:{x:r},backend:n}),i=oo({inputs:{input:s},backend:n}),o=Ud({inputs:{x:i},backend:n}),u=En({inputs:{real:a,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),u}else return bv({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var cj={kernelName:Ro,backendName:"cpu",kernelFunc:QC};function ZC(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Wd({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,i=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],u=t.map(c=>{let p=Wd({inputs:{input:c},backend:n,attrs:{dim:r}});return o.push(p),p}),l=uo({inputs:u,backend:n,attrs:{axis:r}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),l}var dj={kernelName:Fo,backendName:"cpu",kernelFunc:ZC};function pj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:i}=s;be(r,"pad");let o=a.map((y,v)=>y[0]+r.shape[v]+y[1]),u=a.map(y=>y[0]),l=n.data.get(r.dataId).values,c=w.sizeFromShape(r.shape),p=r.shape.length,d=w.computeStrides(r.shape),h=w.sizeFromShape(o),f=o.length,m=w.computeStrides(o),g=w.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let y=0;y<c;y++){let x=w.indexToLoc(y,p,d).map((I,$)=>I+u[$]),k=w.locToIndex(x,f,m);g[k]=l[y]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var JC={kernelName:ei,backendName:"cpu",kernelFunc:pj},hj=Et((e,t)=>Math.pow(e,t)),fj=Ht(ti,hj),mj={kernelName:ti,backendName:"cpu",kernelFunc:fj};function gj(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:i}=n,o=pv(s,r,i,a);return t.makeTensorInfo([o.length],a,o)}var bj={kernelName:Tl,backendName:"cpu",kernelFunc:gj},yj=st($l,e=>1/e),vj={kernelName:$l,backendName:"cpu",kernelFunc:yj};function xj(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:i,size:o}=s;be(r,"resizeBilinear");let u=w.computeStrides(r.shape),[l,c]=o,[p,d,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(w.sizeFromShape([p,l,c,f])),b=[a&&l>1?d-1:d,a&&c>1?h-1:h],y=[a&&l>1?l-1:l,a&&c>1?c-1:c],v=0,x=b[0]/y[0],k=b[1]/y[1];for(let I=0;I<p;I++)for(let $=0;$<l;$++){let R;i?R=x*($+.5)-.5:R=x*$;let E=Math.max(0,Math.floor(R)),P=R-E,A=Math.min(d-1,Math.ceil(R)),O=I*u[0]+E*u[1],T=I*u[0]+A*u[1];for(let M=0;M<c;M++){let W;i?W=k*(M+.5)-.5:W=k*M;let j=Math.max(0,Math.floor(W)),X=W-j,Y=Math.min(h-1,Math.ceil(W)),Z=O+j*u[2],te=T+j*u[2],J=O+Y*u[2],se=T+Y*u[2];for(let ne=0;ne<f;ne++){let oe=m[Z+ne],ae=m[te+ne],de=m[J+ne],me=m[se+ne],ke=oe+(de-oe)*X,Ie=ae+(me-ae)*X,Re=ke+(Ie-ke)*P;g[v++]=Re}}}return n.makeTensorInfo([p,l,c,f],"float32",g)}var wj={kernelName:ai,backendName:"cpu",kernelFunc:xj};function kj(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:i}=s;be([a,r],"resizeBilinearGrad");let o=w.computeStrides(r.shape),[u,l,c,p]=r.shape,[,d,h]=a.shape,f=new Float32Array(u*l*c*p),m=[i&&d>1?l-1:l,i&&h>1?c-1:c],g=[i&&d>1?d-1:d,i&&h>1?h-1:h],b=m[0]/g[0],y=m[1]/g[1],v=n.data.get(a.dataId).values,x=0;for(let k=0;k<u;k++){let I=k*o[0];for(let $=0;$<d;$++){let R=$*b,E=Math.floor(R),P=Math.min(Math.ceil(R),l-1),A=I+E*o[1],O=I+P*o[1],T=R-E,M=1-T;for(let W=0;W<h;W++){let j=W*y,X=Math.floor(j),Y=Math.min(Math.ceil(j),c-1),Z=j-X,te=1-Z,J=A+X*o[2],se=A+Y*o[2],ne=O+X*o[2],oe=O+Y*o[2],ae=M*te,de=M*Z,me=T*te,ke=T*Z;for(let Ie=0;Ie<p;Ie++){let Re=v[x++];f[J+Ie]+=Re*ae,f[se+Ie]+=Re*de,f[ne+Ie]+=Re*me,f[oe+Ie]+=Re*ke}}}}return n.makeTensorInfo([u,c,l,p],"float32",f)}var Sj={kernelName:Fg,backendName:"cpu",kernelFunc:kj};function Ij(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:i,size:o}=s;be(r,"resizeNearestNeighbor");let u=w.computeStrides(r.shape),[l,c]=o,[p,d,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(p*l*c*f),b=[a&&l>1?d-1:d,a&&c>1?h-1:h],y=[a&&l>1?l-1:l,a&&c>1?c-1:c],v=b[0]/y[0],x=b[1]/y[1],k=0;for(let I=0;I<p;I++){let $=I*u[0];for(let R=0;R<l;R++){let E=i?v*(R+.5):v*R,P=Math.min(d-1,a?Math.round(E):Math.floor(E));i&&(P=Math.max(0,P));let A=$+P*u[1];for(let O=0;O<c;O++){let T=i?x*(O+.5):x*O,M=Math.min(h-1,a?Math.round(T):Math.floor(T));i&&(M=Math.max(0,M));let W=A+M*u[2];for(let j=0;j<f;j++){let X=m[W+j];g[k++]=X}}}}return n.makeTensorInfo([p,l,c,f],r.dtype,g)}var Cj={kernelName:_l,backendName:"cpu",kernelFunc:Ij};function Nj(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:i}=s;be([a,r],"resizeNearestNeighborGrad");let o=w.computeStrides(r.shape),u=w.computeStrides(a.shape),[l,c,p,d]=r.shape,[,h,f]=a.shape,m=new Float32Array(l*c*p*d),g=n.data.get(a.dataId).values,b=[i&&h>1?c-1:c,i&&f>1?p-1:p],y=[i&&h>1?h-1:h,i&&f>1?f-1:f],v=b[0]/y[0],x=b[1]/y[1],k=1/v,I=1/x,$=Math.ceil(k)*2+2,R=Math.ceil(I)*2+2;for(let E=0;E<l;E++){let P=E*o[0];for(let A=0;A<c;A++){let O=P+A*o[1],T=Math.floor(A*k),M=Math.floor(T-$/2);for(let W=0;W<p;W++){let j=O+W*o[2],X=Math.floor(W*I),Y=Math.floor(X-R/2);for(let Z=0;Z<d;Z++){let te=0;for(let J=0;J<$;J++){let se=J+M;if(se<0||se>=h)continue;let ne=P+se*u[1],oe=se*v,ae=Math.min(c-1,i?Math.round(oe):Math.floor(oe));if(A===ae)for(let de=0;de<R;de++){let me=de+Y;if(me<0||me>=f)continue;let ke=ne+me*u[2],Ie=me*x,Re=Math.min(p-1,i?Math.round(Ie):Math.floor(Ie));W===Re&&(te+=g[ke+Z])}}m[j+Z]=te}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var Tj={kernelName:Dg,backendName:"cpu",kernelFunc:Nj};function $j(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;be(r,"reverse");let i=r.shape.length,o=w.parseAxisParam(a,r.shape);if(i===0)return Os({inputs:{x:r},backend:n});let u=new Wt(r.shape,r.dtype),l=n.bufferSync(r);for(let c=0;c<u.size;c++){let p=u.indexToLoc(c),d=p.slice();o.forEach(h=>d[h]=r.shape[h]-1-d[h]),u.set(l.get(...d),...p)}return n.makeTensorInfo(u.shape,u.dtype,u.values)}var _j={kernelName:Po,backendName:"cpu",kernelFunc:$j},Aj={kernelName:Yo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:i}=t,o=n,u=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[l,c,p,d]=s.shape,[h,f]=C.getImageCenter(i,c,p),m=255,g=Math.sin(r),b=Math.cos(r),y=o.data.get(s.dataId).values;for(let x=0;x<l;x++){let k=x*p*c*d;for(let I=0;I<c;I++){let $=I*(p*d);for(let R=0;R<p;R++){let E=R*d;for(let P=0;P<d;P++){let A=[l,I,R,P],O=A[2],T=A[1],M=(O-h)*b-(T-f)*g,W=(O-h)*g+(T-f)*b;M=Math.round(M+h),W=Math.round(W+f);let j=a;if(typeof a!="number"&&(P===3?j=m:j=a[P]),M>=0&&M<p&&W>=0&&W<c){let Y=W*(p*d),Z=M*d,te=k+Y+Z+P;j=y[te]}let X=k+$+E+P;u[X]=j}}}}return{dataId:o.write(u,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},Ej=st(zo,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),Rj={kernelName:zo,backendName:"cpu",kernelFunc:Ej};function Dj(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:i}=s,{sliceRank:o,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=C.calculateShapes(a,r,i),d=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=Ki(h,f,i,p,l,u,o,c,0,d);return n.makeTensorInfo(i,m.dtype,m.values)}var Fj={kernelName:Mo,backendName:"cpu",kernelFunc:Dj};function Oj(e,t){let n=0,s=e.length,r=0;for(;n<s;)r=Math.floor((n+s)/2),e[r]<t?n=r+1:s=r;return s}function Pj(e,t){let n=0,s=e.length,r=0;for(;n<s;)r=Math.floor((n+s)/2),e[r]<=t?n=r+1:s=r;return s}function zj(e,t,n,s,r,a){let i=w.getArrayFromDType("int32",n*r);for(let o=0;o<n;++o){let u=e.slice(o*s,(o+1)*s),l=o*r;for(let c=0;c<r;++c)i[l+c]=a==="left"?Oj(u,t[c+l]):Pj(u,t[c+l])}return i}function Mj(e){let{inputs:t,backend:n,attrs:s}=e,{sortedSequence:r,values:a}=t,{side:i}=s,o=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,l=zj(o,u,r.shape[0],r.shape[1],a.shape[1],i);return n.makeTensorInfo(a.shape,"int32",l)}var Lj={kernelName:Og,backendName:"cpu",kernelFunc:Mj};function Bj(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;be([s,r,a],"select");let i=s.shape.length,o=n.data.get(s.dataId).values,u=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=cn(r.dtype,a.dtype),p=w.makeZerosTypedArray(w.sizeFromShape(r.shape),c),d=0,h=i===0||i>1||r.shape.length===1?1:w.sizeFromShape(r.shape.slice(1));for(let f=0;f<o.length;f++)for(let m=0;m<h;m++)o[f]===1?p[d++]=u[f]:p[d++]=l[f];return n.makeTensorInfo(r.shape,c,p)}var Vj={kernelName:Lo,backendName:"cpu",kernelFunc:Bj},Wj=C.SELU_SCALEALPHA,Uj=C.SELU_SCALE,Gj=st(Al,e=>e>=0?Uj*e:Wj*(Math.exp(e)-1)),Hj={kernelName:Al,backendName:"cpu",kernelFunc:Gj},qj=st(El,e=>e<0?-1:e>0?1:0),jj={kernelName:El,backendName:"cpu",kernelFunc:qj},Kj=st(ui,e=>Math.sin(e)),Xj={kernelName:ui,backendName:"cpu",kernelFunc:Kj},Yj=st(Vo,e=>Math.sinh(e)),Qj={kernelName:Vo,backendName:"cpu",kernelFunc:Yj},Zj=11920928955078125e-23,uw=Math.log(Zj)+2,Jj=st(Rl,e=>{let t=e>-uw,n=e<uw,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),e5={kernelName:Rl,backendName:"cpu",kernelFunc:Jj};function t5(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:i}=s;be([r],"spaceToBatchND");let o=w.sizeFromShape(a),u=[[0,0]];u.push(...i);for(let I=1+a.length;I<r.shape.length;++I)u.push([0,0]);let l=JC.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:u,constantValue:0}}),c=C.getReshaped(l.shape,a,o,!1),p=C.getPermuted(c.length,a.length,!1),d=C.getReshapedPermuted(l.shape,a,o,!1),m=pt({inputs:{x:l},backend:n,attrs:{shape:c}}),y=wn({inputs:{x:m},backend:n,attrs:{perm:p}}),k=pt({inputs:{x:y},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),k}var n5={kernelName:Wo,backendName:"cpu",kernelFunc:t5};function s5(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:i}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.data.get(s.dataId).values,u=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=n.data.get(i.dataId).values[0],[p,d,h,f,m]=NC(o,s.shape,s.dtype,u,r.dtype,l,c);return[n.makeTensorInfo(d,s.dtype,p),n.makeTensorInfo([d[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var r5={kernelName:cp,backendName:"cpu",kernelFunc:s5};function a5(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(s.dataId).values,u=Array.from(n.data.get(a.dataId).values),[l,c,p]=TC(o,s.shape,s.dtype,i,u);return[n.makeTensorInfo(c,s.dtype,l),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var i5={kernelName:Dl,backendName:"cpu",kernelFunc:a5};function o5(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,[l,c]=hv(i,s.shape,s.dtype,o,u,!0);return n.makeTensorInfo(c,s.dtype,l)}var u5={kernelName:dp,backendName:"cpu",kernelFunc:o5};function l5(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,[l,c]=hv(i,s.shape,s.dtype,o,u);return n.makeTensorInfo(c,s.dtype,l)}var c5={kernelName:pp,backendName:"cpu",kernelFunc:l5};function d5(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:i}=t,{outputShape:o}=s,{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:d}=C.calculateShapes(a,r,o),h=!1,f=n.bufferSync(r),m;switch(a.dtype){case"bool":{let g=n.bufferSync(a),b=Boolean(n.data.get(i.dataId).values[0]);m=Ki(f,g,o,d,c,l,u,p,b,h);break}case"float32":{let g=n.bufferSync(a),b=n.data.get(i.dataId).values[0];m=Ki(f,g,o,d,c,l,u,p,b,h);break}case"int32":{let g=n.bufferSync(a),b=n.data.get(i.dataId).values[0];m=Ki(f,g,o,d,c,l,u,p,b,h);break}case"string":{let g=n.bufferSync(a),b=w.decodeString(n.data.get(i.dataId).values[0]);m=Ki(f,g,o,d,c,l,u,p,b,h);break}default:throw new Error(`Unsupported type ${a.dtype}`)}return n.makeTensorInfo(o,m.dtype,m.values)}var p5={kernelName:hp,backendName:"cpu",kernelFunc:d5};function h5(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:i}=s,o=w.parseAxisParam(i,r.shape)[0],u=C.prepareSplitSize(r,a,o),l=new Array(r.shape.length).fill(0),c=r.shape.slice();return u.map(p=>{let d=[...c];d[o]=p;let h=ya({inputs:{x:r},backend:n,attrs:{begin:l,size:d}});return l[o]+=p,h})}var f5={kernelName:Uo,backendName:"cpu",kernelFunc:h5},m5={kernelName:Fl,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;be(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let o=0;o<r.length;++o){let u=r[o];a[o]=u*u}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},g5=st(gi,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),b5={kernelName:gi,backendName:"cpu",kernelFunc:g5};function y5(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:i,strides:o,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s;be(r,"stridedSlice");let{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:y,end:v,strides:x}=kt.sliceInfo(r.shape,a,i,o,u,l,c,p,d),k;if(m)k=pt({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||b){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let I=kt.computeOutShape(y,v,x),$=ya({inputs:{x:r},backend:n,attrs:{begin:y,size:I}});k=pt({inputs:{x:$},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo($)}else{let I=n.bufferSync(r),$=_C(h,I,x,y);k=n.makeTensorInfo(f,$.dtype,$.values)}return k}var v5={kernelName:Go,backendName:"cpu",kernelFunc:y5};function x5(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:i,rightPad:o,padWidth:u,preserveShortSequences:l}=s,{data:c,dataSplits:p}=t,d=n.data.get(c.dataId).values,h=n.data.get(p.dataId).values,[f,m]=AC(d,h,r,a,i,o,u,l);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var w5={kernelName:fp,backendName:"cpu",kernelFunc:x5};function k5(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:i}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.data.get(a.dataId).values,u=n.data.get(i.dataId).values[0],[l,c,p]=EC(o,u,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",l),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var S5={kernelName:Pg,backendName:"cpu",kernelFunc:k5};function I5(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.data.get(a.dataId).values,o=RC(i,r);return n.makeTensorInfo(a.shape,"int32",o)}var C5={kernelName:zg,backendName:"cpu",kernelFunc:I5},N5=st(Ho,e=>Math.tan(e)),T5={kernelName:Ho,backendName:"cpu",kernelFunc:N5},$5=st(mi,e=>Math.tanh(e)),_5={kernelName:mi,backendName:"cpu",kernelFunc:$5};function A5(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;be(r,"tile");let i=FC(n.bufferSync(r),a);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var E5={kernelName:Tr,backendName:"cpu",kernelFunc:A5};function R5(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:i}=s;be(r,"topk");let o=n.data.get(r.dataId).values,[u,l]=PC(o,r.shape,r.dtype,a,i);return[n.makeTensorInfo(u.shape,u.dtype,u.values),n.makeTensorInfo(l.shape,l.dtype,l.values)]}var D5={kernelName:qo,backendName:"cpu",kernelFunc:R5};function F5(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:i,fillMode:o,fillValue:u,outputShape:l}=n,[c,p,d,h]=r.shape,[f,m]=l!=null?l:[p,d],g=[c,f,m,h],b=w.computeStrides(r.shape),y=b[0],v=b[1],x=b[2],k=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(g));k.fill(u);let I=s.data.get(r.dataId).values,$=s.data.get(a.dataId).values;for(let E=0;E<c;++E){let P=a.shape[0]===1?$:$.subarray(E*8,E*8+8);for(let A=0;A<f;++A)for(let O=0;O<m;++O)for(let T=0;T<h;++T){let M,W=P[6]*O+P[7]*A+1;if(W===0)continue;let j=(P[0]*O+P[1]*A+P[2])/W,X=(P[3]*O+P[4]*A+P[5])/W,Y=lw(j,d,o),Z=lw(X,p,o);switch(i){case"nearest":M=B5(I,p,d,y,v,x,E,Z,Y,T,u);break;case"bilinear":M=V5(I,p,d,y,v,x,E,Z,Y,T,u);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let te=E*y+A*v+O*x+T;k[te]=M}return s.makeTensorInfo(g,r.dtype,k)}return{dataId:s.write(k,g,r.dtype),shape:r.shape,dtype:r.dtype}}var O5={kernelName:jo,backendName:"cpu",kernelFunc:F5};function lw(e,t,n){switch(n){case"reflect":return P5(e,t);case"wrap":return z5(e,t);case"nearest":return L5(e,t);case"constant":default:return M5(e,t)}}function P5(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return w.clamp(0,n,t-1)}function z5(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return w.clamp(0,n,t-1)}function M5(e,t){return e}function L5(e,t){return w.clamp(0,e,t-1)}function zu(e,t,n,s,r,a,i,o,u,l,c){let p=i*s+o*r+u*a+l;return 0<=o&&o<t&&0<=u&&u<n?e[p]:c}function B5(e,t,n,s,r,a,i,o,u,l,c){let p=Math.round(o),d=Math.round(u);return zu(e,t,n,s,r,a,i,p,d,l,c)}function V5(e,t,n,s,r,a,i,o,u,l,c){let p=Math.floor(o),d=Math.floor(u),h=p+1,f=d+1,m=(f-u)*zu(e,t,n,s,r,a,i,p,d,l,c)+(u-d)*zu(e,t,n,s,r,a,i,p,f,l,c),g=(f-u)*zu(e,t,n,s,r,a,i,h,d,l,c)+(u-d)*zu(e,t,n,s,r,a,i,h,f,l,c);return(h-o)*m+(o-p)*g}function W5(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;be(a,"unique");let i=s.data.get(a.dataId).values,{outputValues:o,outputShape:u,indices:l}=zC(i,r,a.shape,a.dtype);return[s.makeTensorInfo(u,a.dtype,o),s.makeTensorInfo([l.length],"int32",l)]}var U5={kernelName:Mg,backendName:"cpu",kernelFunc:W5};function G5(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let i=r.shape.length,o=r.shape[a],u=new Array(i-1),l=0;for(let h=0;h<i;h++)h!==a&&(u[l++]=r.shape[h]);let c=new Array(i).fill(0),p=r.shape.slice();p[a]=1;let d=new Array(o);for(let h=0;h<d.length;h++){c[a]=h;let f=ya({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});d[h]=pt({inputs:{x:f},backend:n,attrs:{shape:u}}),n.disposeIntermediateTensorInfo(f)}return d}var H5={kernelName:Ko,backendName:"cpu",kernelFunc:G5};function q5(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:i}=s;be(r,"unsortedSegmentSum");let o=r.shape.length,u=a.shape.length,l=[],c=[],p=o-u,d=a;for(let f=0;f<p;++f){let m=Wd({inputs:{input:d},backend:n,attrs:{dim:f+1}});d=m,c.push(m)}for(let f=0;f<i;++f){let m=w.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),b=aC({inputs:{a:g,b:d},backend:n}),y=kr({inputs:{x:b},backend:n,attrs:{dtype:"float32"}}),v=Jp({inputs:{a:y,b:r},backend:n}),x=Zl({inputs:{x:v},backend:n,attrs:{axis:0,keepDims:!1}});l.push(x),c.push(g),c.push(b),c.push(y),c.push(v),c.push(x)}let h=ZC({inputs:l,backend:n,attrs:{axis:0}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var j5={kernelName:mp,backendName:"cpu",kernelFunc:q5},K5=[KG,VU,YG,ZG,jU,eH,nH,rH,iH,uH,cH,pH,fH,bH,vH,kH,IH,NH,$H,qG,AH,RH,FH,PH,HU,XU,MH,WU,BH,WH,UH,HH,jH,XH,QH,JH,tq,sq,aq,oq,lq,dq,hq,fq,gq,yq,xq,wq,kq,Sq,Nq,LG,$q,YU,Pq,QU,zq,JU,Uq,Gq,qq,tG,Xq,Qq,Jq,t6,s6,sG,aG,UU,a6,VH,o6,l6,d6,BG,oG,lG,h6,dG,m6,y6,x6,S6,C6,T6,$6,hG,A6,R6,F6,P6,M6,B6,W6,mG,G6,j6,Q6,bG,vG,ej,sj,ij,wG,uj,cj,dj,JC,mj,WG,IG,bj,GU,qm,vj,UG,GG,HG,wj,Sj,Cj,Tj,_j,Aj,Rj,NG,Fj,Lj,Vj,Hj,$G,jj,Xj,Qj,_G,X6,e5,n5,r5,i5,u5,c5,p5,f5,RG,m5,FG,b5,v5,w5,S5,C5,MG,Iq,T5,_5,E5,D5,O5,kG,U5,H5,j5,lj];for(let e of K5)Ol(e);var X5={};Ee(X5,{assertNotComplex:()=>iu,bindCanvasToFramebuffer:()=>oK,bindColorTextureToFramebuffer:()=>ld,bindTextureToProgramUniformSampler:()=>f1,bindTextureUnit:()=>d1,bindVertexBufferToProgramAttribute:()=>Km,callAndCheck:()=>fe,canBeRepresented:()=>e1,createFragmentShader:()=>s1,createFramebuffer:()=>c1,createProgram:()=>r1,createStaticIndexBuffer:()=>o1,createStaticVertexBuffer:()=>i1,createTexture:()=>u1,createVertexShader:()=>n1,getBatchDim:()=>va,getExtensionOrThrow:()=>Mu,getFramebufferErrorMessage:()=>m1,getMaxTexturesInShader:()=>v1,getNumChannels:()=>aK,getProgramUniformLocation:()=>h1,getProgramUniformLocationOrThrow:()=>p1,getRowsCols:()=>xa,getShapeAs3D:()=>cd,getTextureShapeFromLogicalShape:()=>b1,getWebGLDisjointQueryTimerVersion:()=>x1,getWebGLErrorMessage:()=>t1,getWebGLMaxTextureSize:()=>y1,hasExtension:()=>Ln,isCapableOfRenderingToFloatTexture:()=>w1,isDownloadFloatTextureEnabled:()=>k1,isReshapeFree:()=>al,isWebGLFenceEnabled:()=>S1,isWebGLVersionEnabled:()=>Ym,linkProgram:()=>a1,logShaderSourceAndInfoLog:()=>vv,resetMaxTextureSize:()=>uK,resetMaxTexturesInShader:()=>lK,unbindColorTextureFromFramebuffer:()=>Xm,unbindTextureUnit:()=>iK,validateFramebuffer:()=>Lu,validateProgram:()=>ud,validateTextureSize:()=>l1});var Zr={},em={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Y5(e,t){Zr[e]=t}function xs(e,t){if(!(e in Zr)||t!=null){let s=Z5(e,t);if(s!==null)Zr[e]=s;else return console.log("Could not get context for WebGL version",e),null}let n=Zr[e];return n==null||n.isContextLost()?(delete Zr[e],xs(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),Zr[e])}function Q5(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function Z5(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?Q5(e):t;return n.addEventListener("webglcontextlost",s=>{s.preventDefault(),delete Zr[e]},!1),e===1?n.getContext("webgl",em)||n.getContext("experimental-webgl",em):n.getContext("webgl2",em)}function Jl(e,t){return[t,e]}function J5(e,t){return e*t}function ed(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function au(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function eK(e,t){let[n,s]=au(e,t);return n*s*4}function yv(e,t){let n=e,s,r,a,i,o,u,l,c,p,d;return K().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,i=n.RGBA32F,o=n.RED,l=4,c=1,p=n.HALF_FLOAT,d=n.FLOAT,u=n.RGBA8):(s=e.RGBA,r=e.RGBA,a=e.RGBA,i=n.RGBA,o=e.RGBA,l=4,c=4,p=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT,u=e.RGBA),{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:u,downloadUnpackNumChannels:l,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:d}}function fe(e,t){let n=t();return K().getBool("DEBUG")&&tK(e),n}function tK(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+t1(e,t))}var nK=596e-10,sK=65504;function e1(e){return!!(K().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||nK<Math.abs(e)&&Math.abs(e)<sK)}function t1(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Mu(e,t){return Zs(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function n1(e,t){let n=Zs(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(fe(e,()=>e.shaderSource(n,t)),fe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function s1(e,t){let n=Zs(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(fe(e,()=>e.shaderSource(n,t)),fe(e,()=>e.compileShader(n)),K().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw vv(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var rK=/ERROR: [0-9]+:([0-9]+):/g;function vv(e,t){let n=rK.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
|
|
`),a=r.length.toString().length+2,i=r.map((p,d)=>w.rightPad((d+1).toString(),a)+p),o=0;for(let p=0;p<i.length;p++)o=Math.max(i[p].length,o);let u=i.slice(0,s-1),l=i.slice(s-1,s),c=i.slice(s);console.log(u.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${w.rightPad(l[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function r1(e){return Zs(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function a1(e,t){if(fe(e,()=>e.linkProgram(t)),!K().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function ud(e,t){if(fe(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function i1(e,t){let n=Zs(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return fe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),fe(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function o1(e,t){let n=Zs(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return fe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),fe(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function aK(){return K().getNumber("WEBGL_VERSION")===2?1:4}function u1(e){return Zs(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function l1(e,t){let n=K().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function c1(e){return Zs(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Km(e,t,n,s,r,a,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(fe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),fe(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,a,i)),fe(e,()=>e.enableVertexAttribArray(o)),!0)}function d1(e,t,n){g1(e,n),fe(e,()=>e.activeTexture(e.TEXTURE0+n)),fe(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function iK(e,t){g1(e,t),fe(e,()=>e.activeTexture(e.TEXTURE0+t)),fe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function p1(e,t,n){return Zs(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function h1(e,t,n){return e.getUniformLocation(t,n)}function f1(e,t,n,s){fe(e,()=>d1(e,t,s)),fe(e,()=>e.uniform1i(n,s))}function oK(e){fe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),fe(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),fe(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function ld(e,t,n){fe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),fe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function Xm(e,t){fe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),fe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Lu(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+m1(e,t))}function m1(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Zs(e,t,n){let s=fe(e,()=>t());if(s==null)throw new Error(n);return s}function g1(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function va(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function xa(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function cd(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[va(e),...xa(e)]),t}function b1(e,t=!1){let n=K().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?w.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let s=w.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=va(e),a=2,i=2;return e.length&&([a,i]=xa(e)),s=r*(a/2)*(i/2),w.sizeToSquarishShape(s).map(o=>o*2)}return w.sizeToSquarishShape(s)}function td(e){return e%2===0}function al(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||td(n)&&td(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&td(e[0])&&td(t[0])}var dd,pd;function y1(e){if(dd==null){let t=xs(e);dd=t.getParameter(t.MAX_TEXTURE_SIZE)}return dd}function uK(){dd=null}function lK(){pd=null}function v1(e){if(pd==null){let t=xs(e);pd=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,pd)}function x1(e){if(e===0)return 0;let t,n=xs(e);return Ln(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Ln(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Ln(e,t){return e.getExtension(t)!=null}function Ym(e){try{if(xs(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function w1(e){if(e===0)return!1;let t=xs(e);if(e===1){if(!Ln(t,"OES_texture_float"))return!1}else if(!Ln(t,"EXT_color_buffer_float"))return!1;return Qm(t)}function k1(e){if(e===0)return!1;let t=xs(e);if(e===1){if(!Ln(t,"OES_texture_float")||!Ln(t,"WEBGL_color_buffer_float"))return!1}else{if(Ln(t,"EXT_color_buffer_float"))return Qm(t);let s="EXT_color_buffer_half_float";if(Ln(t,s)){let r=t.getExtension(s);return cK(t,r)}return!1}return Qm(t)}function Qm(e){let t=yv(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),i}function cK(e,t){let n=yv(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(i),o}function S1(e){return e!==2?!1:xs(e).fenceSync!=null}function iu(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ne=K();Ne.registerFlag("HAS_WEBGL",()=>Ne.getNumber("WEBGL_VERSION")>0);Ne.registerFlag("WEBGL_VERSION",()=>Ym(2)?2:Ym(1)?1:0);Ne.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ne.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ne.get("WEBGL_VERSION")===2);Ne.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ne.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ne.registerFlag("WEBGL_PACK",()=>Ne.getBool("HAS_WEBGL"));Ne.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_CLIP",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_REDUCE",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_CONV_IM2COL",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>y1(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>v1(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ne.getNumber("WEBGL_VERSION");return e===0?0:x1(e)});Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ne.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!yp.isMobile());Ne.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>w1(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ne.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ne.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ne.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>k1(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_FENCE_API_ENABLED",()=>S1(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ne.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ne.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ne.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>yp.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Ne.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Ne.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Ne.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Ne.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function fn(){let e,t,n,s,r,a,i,o,u,l;return K().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
uint floatToUint = floatBitsToUint(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,u="",l=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,u=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,l=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:u,defineRound:l}}function wi(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let i=`int ${e[a]} = ${n} / ${r}`,o=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${i}; ${o};`}).join("")}function eh(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let i=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,o=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${i}; ${o};`}).join("")}function dK(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function pK(e,t,n="index"){let s=e.map((a,i)=>i),r=dK(s,t);return r.map((a,i)=>{let o=`int ${e[i]} = ${n} / ${r[i]}`,u=i===r.length-1?`int ${e[i+1]} = ${n} - ${e[i]} * ${r[i]}`:`index -= ${e[i]} * ${r[i]}`;return`${o}; ${u};`}).join("")}function xv(e){let t=w.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function wv(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var I1=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:C1}=C;function hK(e,t,n){let s=[];if(e.forEach(h=>{let f=w.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=kv(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
|
|
`),a=e.map(h=>fK(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),i=t.texShape,o=fn(),u=bK(o),l,c,p=xK(o);return t.isPacked?(l=mK(t.logicalShape,i,n.enableShapeUniforms),c=vK(o)):(l=gK(t.logicalShape,i,n.enableShapeUniforms),c=yK(o)),n.packedInputs&&(p+=IK),[p,u,c,r,l,a,n.userCode].join(`
|
|
`)}function ou(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return PK(e,t);case 1:return MK(e,t);case 2:return BK(e,t);case 3:return WK(e,t);case 4:return GK(e,t);case 5:return HK(e);case 6:return qK(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function N1(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return OK(e);case 1:return zK(e,t);case 2:return LK(e,t);case 3:return VK(e,t);default:return UK(e,t)}}function fK(e,t,n=!1,s){let r="";n?r+=N1(e,s):r+=ou(e,s);let a=e.shapeInfo.logicalShape,i=t.logicalShape;return a.length<=i.length&&(n?r+=jK(e,t):r+=KK(e,t)),r}function mK(e,t,n){switch(e.length){case 0:return T1();case 1:return CK(e,t,n);case 2:return DK(e,t,n);case 3:return TK(e,t,n);default:return _K(e,t,n)}}function gK(e,t,n){switch(e.length){case 0:return T1();case 1:return NK(e,t,n);case 2:return FK(e,t,n);case 3:return $K(e,t,n);case 4:return AK(e,t,n);case 5:return EK(e,t);case 6:return RK(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function bK(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function yK(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function vK(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function xK(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${wK}
|
|
${kK}
|
|
${SK}
|
|
`}var wK=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,kK=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,SK=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,IK=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function T1(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function CK(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${s[1]}.0);
|
|
}
|
|
`:s[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${s[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
|
|
}
|
|
`}function NK(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function TK(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function $K(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${eh(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let s=wi(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function _K(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),i=a,o="",u="b, r, c";for(let l=2;l<e.length-1;l++)i*=e[e.length-l-1],o=`
|
|
int b${l} = index / ${i};
|
|
index -= b${l} * ${i};
|
|
`+o,u=`b${l}, `+u;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
${o}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${u});
|
|
}
|
|
`}function AK(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${eh(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let s=wi(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function EK(e,t){let n=wi(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function RK(e,t){let n=wi(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function DK(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function FK(e,t,n){return w.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function ki(e){return`offset${e}`}function OK(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=fn();return`
|
|
vec4 ${n}() {
|
|
return ${s.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function PK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${s}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=ki(n);if(t)return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[o,u]=e.shapeInfo.texShape;return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${o}, ${u}, ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function zK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=fn();if(t)return`
|
|
vec4 ${s}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`;let i=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${s}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${i[0]}, ${i[1]}, index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`}function MK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int index) {
|
|
${uu(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],i=r[1];if(i===1&&a===1)return`
|
|
float ${s}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=ki(n);return i===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:a===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${i}, index + ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function LK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,i=a[0],o=a[1],u=fn();if(a!=null&&w.arraysEqual(n,a))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
|
|
return ${u.texture2D}(${s}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
|
|
|
|
return ${u.texture2D}(${s}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${u.texture2D}(${s}, uv);
|
|
}
|
|
`;let l=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],c=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${c}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${u.texture2D}(${s}, uv);
|
|
}
|
|
`}function BK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&w.arraysEqual(n,a)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let d=a[0],h=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}let{newShape:i,keptDims:o}=w.squeezeShape(n),u=i;if(u.length<n.length){let d=lu(e,u),h=["row","col"];return`
|
|
${ou(d,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${cu(h,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${uu(e)}
|
|
}
|
|
`;let l=a[0],c=a[1],p=ki(s);return c===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:l===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s}Shape[1] + col + ${p};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${p};
|
|
vec2 uv = uvFromFlat(${l}, ${c}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function VK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,i=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let d=n.slice(1),h=[1,2],f=lu(e,d),m=["b","row","col"];return`
|
|
${N1(f,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${cu(m,h)});
|
|
}
|
|
`}let o=fn();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${o.texture2D}(${s}, uv);
|
|
}
|
|
`;let u=i[0],l=i[1],c=Math.ceil(n[2]/2),p=c*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${u}, ${l}, ${p}, ${c}, b, row, col);
|
|
return ${o.texture2D}(${s}, uv);
|
|
}
|
|
`}function WK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],i=n[2],{newShape:o,keptDims:u}=w.squeezeShape(n),l=o;if(l.length<n.length){let m=lu(e,l),g=["row","col","depth"];return`
|
|
${ou(m,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${cu(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${i}, 1)));
|
|
${uu(e)}
|
|
}
|
|
`;let c=e.shapeInfo.texShape,p=c[0],d=c[1],h=e.shapeInfo.flatOffset;if(d===a&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${s}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${i}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(d===i&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${d}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let f=ki(s);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${s}Shape[1] * ${s}Shape[2];
|
|
int stride1 = ${s}Shape[2];
|
|
int index = row * ${a} + col * ${i} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${i} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${d}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function UK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=fn();if(t)return`
|
|
vec4 ${s}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let a=e.shapeInfo.logicalShape,i=a.length,o=e.shapeInfo.texShape,u=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],l=u[0],c=u[1],p=Math.ceil(a[i-1]/2),d=p*Math.ceil(a[i-2]/2),h="int b, int row, int col",f=`b * ${d} + (row / 2) * ${p} + (col / 2)`;for(let m=2;m<i-1;m++)h=`int b${m}, `+h,d*=a[i-m-1],f=`b${m} * ${d} + `+f;return`
|
|
vec4 ${s}(${h}) {
|
|
int index = ${f};
|
|
int texR = index / ${c};
|
|
int texC = index - texR * ${c};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${l});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function GK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],i=n[2]*a,o=n[1]*i,{newShape:u,keptDims:l}=w.squeezeShape(n);if(u.length<n.length){let y=lu(e,u),v=["row","col","depth","depth2"];return`
|
|
${ou(y,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${cu(v,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${a}, 1)));
|
|
${uu(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===o&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${i}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(h===a&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let b=ki(s);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${b});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${d}, ${h}, index + ${b});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function HK(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,i=t[2]*a,o=t[1]*i,{newShape:u,keptDims:l}=w.squeezeShape(t);if(u.length<t.length){let m=lu(e,u),g=["row","col","depth","depth2","depth3"];return`
|
|
${ou(m)}
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${s}(${cu(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${a}, ${r})) +
|
|
depth3;
|
|
${uu(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1];if(h===o&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${a}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=ki(n);return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${a} +
|
|
depth2 * ${r} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function qK(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=w.squeezeShape(t);if(r.length<t.length){let g=lu(e,r),b=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${ou(g)}
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${s}(${cu(b,a)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,u=t[3]*o,l=t[2]*u,c=t[1]*l;if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${l}, ${u}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${uu(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],f=d[1];if(f===c&&p==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${l}, ${u}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===i&&p==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=ki(n);return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${l} + depth * ${u} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${h}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function uu(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function jK(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=C1(e.shapeInfo.logicalShape,t.logicalShape),u=ot(i),l=i-a,c,p=["x","y","z","w","u","v"];a===0?c="":i<2&&o.length>=1?c="coords = 0;":c=o.map(y=>`coords.${p[y+l]} = 0;`).join(`
|
|
`);let d="";i<2&&a>0?d="coords":d=e.shapeInfo.logicalShape.map((y,v)=>`coords.${p[v+l]}`).join(", ");let h="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,b=w.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!b)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!b)i===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let y=a-2,v=a-1;o.indexOf(y)>-1&&o.indexOf(v)>-1?h="return vec4(outputValue.x);":o.indexOf(y)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(v)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${s}(${d});
|
|
${h}
|
|
}
|
|
`}function KK(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,u=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===u&&e.shapeInfo.flatOffset==null&&w.arraysEqual(i,a))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let l=ot(u),c=C1(e.shapeInfo.logicalShape,t.logicalShape),p=u-o,d,h=["x","y","z","w","u","v"];o===0?d="":u<2&&c.length>=1?d="coords = 0;":d=c.map(m=>`coords.${h[m+p]} = 0;`).join(`
|
|
`);let f="";return u<2&&o>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+p]}`).join(", "),`
|
|
float ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${d}
|
|
return get${s}(${f});
|
|
}
|
|
`}function ot(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function kv(e,t,n){let{newShape:s,keptDims:r}=w.squeezeShape(t),a=t.length,i=e&&a===3&&t[0]===1,o=i?t.slice(1):s,u=!e&&a>1&&!w.arraysEqual(t,n)&&s.length<a||i;return{useSqueezeShape:u,uniformShape:u?o:t,keptDims:r}}function lu(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function cu(e,t){return t.map(n=>e[n]).join(", ")}function XK(e,t,n,s){let r=n.map((c,p)=>{let d={logicalShape:c.shape,texShape:c.isUniform?null:c.texData.texShape,isUniform:c.isUniform,isPacked:c.isUniform?!1:c.texData.isPacked,flatOffset:null};return c.texData!=null&&c.texData.slice!=null&&c.texData.slice.flatOffset>0&&(d.flatOffset=c.texData.slice.flatOffset),{name:t.variableNames[p],shapeInfo:d}}),a=r.map(c=>c.shapeInfo),i={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},o=hK(r,i,t),u=s1(e.gl,o),l=e.createProgram(u);return K().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:u,source:o,webGLProgram:l,inShapeInfos:a,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:{program:t,fragmentShader:u,source:o,webGLProgram:l,inShapeInfos:a,outShapeInfo:i,...$1(e,t,l)}}function $1(e,t,n){let s={},r={},a={},i=[],o,u,l,c=null,p=null;p=e.getUniformLocation(n,"NAN",!1),K().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(n,"INFINITY",!1));let d=!1;for(let h=0;h<t.variableNames.length;h++){let f=t.variableNames[h];s[f]=e.getUniformLocation(n,f,d),s[`offset${f}`]=e.getUniformLocation(n,`offset${f}`,d),t.enableShapeUniforms&&(r[`${f}Shape`]=e.getUniformLocation(n,`${f}Shape`,d),a[`${f}TexShape`]=e.getUniformLocation(n,`${f}TexShape`,d))}return t.enableShapeUniforms&&(o=e.getUniformLocation(n,"outShape",d),l=e.getUniformLocation(n,"outShapeStrides",d),u=e.getUniformLocation(n,"outTexShape",d)),t.customUniforms&&t.customUniforms.forEach((h,f)=>{i[f]=e.getUniformLocation(n,h.name,d)}),{uniformLocations:s,customUniformLocations:i,infLoc:c,nanLoc:p,inShapesLocations:r,inTexShapesLocations:a,outShapeLocation:o,outShapeStridesLocation:l,outTexShapeLocation:u}}function cw(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],i=a.shape;if(!w.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&a.isUniform)return;let o=n.texShape,u=a.isUniform?null:a.texData.texShape;if(!w.arraysEqual(o,u))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${u} must match`)})}function YK(e,t,n,s,r){t.program.enableShapeUniforms||(cw(t.inShapeInfos,n),cw([t.outShapeInfo],[s]));let a=s.texData.texture,i=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a.texture,i[0],i[1]):e.setOutputMatrixTexture(a.texture,i[0],i[1]),e.setProgram(t.webGLProgram),K().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((u,l)=>{let c=t.program.variableNames[l],p=t.uniformLocations[c],d=t.uniformLocations[`offset${c}`],h=t.inShapesLocations[`${c}Shape`],f=t.inTexShapesLocations[`${c}TexShape`];if(h){let{uniformShape:m}=kv(t.program.packedInputs,u.shape,u.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,u.texData.texShape[0],u.texData.texShape[1]),p!=null){if(u.isUniform){if(w.sizeFromShape(u.shape)<2)e.gl.uniform1f(p,u.uniformValues[0]);else{let m=u.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(p,m)}return}u.texData.slice!=null&&d!=null&&e.gl.uniform1i(d,u.texData.slice.flatOffset),e.setInputMatrixTexture(u.texData.texture.texture,p,l)}});let o=t.outShapeLocation;if(o)switch(s.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let u=w.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(u));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(u));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(u));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((u,l)=>{let c=t.customUniformLocations[l],p=r[l];if(u.type==="float")e.gl.uniform1fv(c,p);else if(u.type==="vec2")e.gl.uniform2fv(c,p);else if(u.type==="vec3")e.gl.uniform3fv(c,p);else if(u.type==="vec4")e.gl.uniform4fv(c,p);else if(u.type==="int")e.gl.uniform1iv(c,p);else if(u.type==="ivec2")e.gl.uniform2iv(c,p);else if(u.type==="ivec3")e.gl.uniform3iv(c,p);else if(u.type==="ivec4")e.gl.uniform4iv(c,p);else throw Error(`uniform type ${u.type} is not supported yet.`)}),e.executeProgram()}function QK(e,t,n){let s="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let u=i.texData.texShape,{useSqueezeShape:l,uniformShape:c,keptDims:p}=kv(e.packedInputs,i.shape,u),d="",h="",f="";if(c.length===1&&e.packedInputs){let k=[Math.ceil(u[0]/2),Math.ceil(u[1]/2)];d=`${k[0]>1}_${k[1]>1}`}else if(c.length===2&&!e.packedInputs)h=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!e.packedInputs){let k=w.computeStrides(c);f=`${k[0]===u[1]}_${k[k.length-1]===u[1]}`}let m=i.shape.length,g=c.length===2&&w.arraysEqual(i.shape,u),b=w.sizeFromShape(i.shape)===1,y=C.getBroadcastDims(i.shape,n.shape),v=!e.packedInputs&&m===n.shape.length&&w.arraysEqual(u,n.texData.texShape),x=e.packedInputs||c.length>2?"":`${u[0]>1}_${u[1]>1}`;s+=`${m}_${v}_${l?p:""}_${c.length}_${b}_${y}_${g}_${d}_${h}_${f}_${x}_${o}`}else{let u=i.isUniform?"uniform":i.texData.texShape;s+=`${i.shape}_${u}_${o}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${K().getNumber("WEBGL_VERSION")}`,a}function Sn(e){return K().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var ZK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=fn();this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?eh(["r","c","d"],e):wi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},JK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=fn();this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?eh(["r","c","d"],e):wi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},eX=class{constructor(e){this.variableNames=["A"],this.outTexUsage=3;let t=fn();this.outputShape=e,this.userCode=`
|
|
${I1}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},tX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=3;let t=fn();this.outputShape=e,this.userCode=`
|
|
${I1}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},nX=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=fn();this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?wv():xv(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${s}, 0., 0., 0.);
|
|
}
|
|
`}},sX=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=fn();this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let i=0;i<=1;i++){let o=a*2+i;s+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${i};
|
|
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${a};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${o}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${o}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${o}] = values[2];
|
|
} else {
|
|
result[${o}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?wv():xv(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${s}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},rX={};Ee(rX,{bindVertexProgramAttributeStreams:()=>z1,createBufferFromOutputTexture:()=>B1,createFloat16MatrixTexture:()=>D1,createFloat16PackedMatrixTexture:()=>P1,createFloat32MatrixTexture:()=>R1,createIndexBuffer:()=>E1,createPackedMatrixTexture:()=>O1,createUnsignedBytesMatrixTexture:()=>F1,createVertexBuffer:()=>A1,createVertexShader:()=>_1,downloadByteEncodedFloatMatrixFromOutputTexture:()=>W1,downloadFloat32MatrixFromBuffer:()=>V1,downloadMatrixFromPackedOutputTexture:()=>G1,downloadPackedMatrixFromBuffer:()=>U1,getInternalFormatForFloat16MatrixTexture:()=>Iv,getInternalFormatForFloat16PackedMatrixTexture:()=>Tv,getInternalFormatForFloat32MatrixTexture:()=>Sv,getInternalFormatForPackedMatrixTexture:()=>Nv,getInternalFormatForUnsignedBytesMatrixTexture:()=>Cv,uploadDenseMatrixToTexture:()=>M1,uploadPixelDataToTexture:()=>L1});function _1(e){let t=fn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return n1(e,n)}function A1(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return i1(e,t)}function E1(e){let t=new Uint16Array([0,1,2,2,1,3]);return o1(e,t)}function ec(e,t,n,s,r,a){l1(t,n);let i=u1(e),o=e.TEXTURE_2D;return fe(e,()=>e.bindTexture(o,i)),fe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),fe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),fe(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),fe(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),K().getNumber("WEBGL_VERSION")===1?fe(e,()=>e.texImage2D(o,0,s,t,n,0,r,a,null)):fe(e,()=>e.texStorage2D(o,1,s,t,n)),fe(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[n,t]}}function Sv(e){return e.internalFormatFloat}function R1(e,t,n,s){let[r,a]=Jl(t,n);return ec(e,r,a,Sv(s),s.textureFormatFloat,e.FLOAT)}function Iv(e){return e.internalFormatHalfFloat}function D1(e,t,n,s){let[r,a]=Jl(t,n);return ec(e,r,a,Iv(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function Cv(e){return e.downloadTextureFormat}function F1(e,t,n,s){let[r,a]=Jl(t,n);return ec(e,r,a,Cv(s),e.RGBA,e.UNSIGNED_BYTE)}function Nv(e){return e.internalFormatPackedFloat}function O1(e,t,n,s){let[r,a]=au(t,n);return ec(e,r,a,Nv(s),e.RGBA,e.FLOAT)}function Tv(e){return e.internalFormatPackedHalfFloat}function P1(e,t,n,s){let[r,a]=au(t,n);return ec(e,r,a,Tv(s),e.RGBA,s.textureTypeHalfFloat)}function z1(e,t,n){return fe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Km(e,t,"clipSpacePos",n,3,20,0)&&Km(e,t,"uv",n,2,20,12)}function M1(e,t,n,s,r,a){fe(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,u;r instanceof Uint8Array?(i=new Uint8Array(n*s*4),o=e.UNSIGNED_BYTE,u=e.RGBA):(i=new Float32Array(n*s*4),o=e.FLOAT,u=a.internalFormatPackedFloat),i.set(r),K().getNumber("WEBGL_VERSION")===2?fe(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,s,e.RGBA,o,i)):fe(e,()=>e.texImage2D(e.TEXTURE_2D,0,u,n,s,0,e.RGBA,o,i)),fe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function L1(e,t,n){fe(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?K().getNumber("WEBGL_VERSION")===2?fe(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):fe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):K().getNumber("WEBGL_VERSION")===2?fe(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):fe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),fe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function B1(e,t,n,s){let r=e.createBuffer();fe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let o=4*4*t*n;return fe(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,o,e.STREAM_READ)),fe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),fe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function V1(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function W1(e,t,n,s){let[r,a]=Jl(t,n),i=4,o=new Uint8Array(J5(t*n,i));return fe(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function U1(e,t,n,s,r,a,i,o){let u=e,l=new Float32Array(eK(a,i));return u.bindBuffer(u.PIXEL_PACK_BUFFER,t),u.getBufferSubData(u.PIXEL_PACK_BUFFER,0,l),u.bindBuffer(u.PIXEL_PACK_BUFFER,null),l}function G1(e,t,n){let s=new Float32Array(t*n*4);return fe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var tm=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=K().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Y5(t,e)):this.gl=xs(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),K().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=Mu(this.gl,r),Ln(this.gl,a))this.textureHalfFloatExtension=Mu(this.gl,a);else if(K().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Ln(this.gl,s))this.colorBufferHalfFloatExtension=Mu(this.gl,s);else if(K().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Ln(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Ln(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=A1(this.gl),this.indexBuffer=E1(this.gl),this.framebuffer=c1(this.gl),this.textureConfig=yv(this.gl,this.textureHalfFloatExtension)}get debug(){return K().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;fe(e,()=>e.finish()),fe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),fe(e,()=>e.deleteFramebuffer(this.framebuffer)),fe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),fe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),fe(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),R1(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),D1(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),F1(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),L1(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),M1(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),P1(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),O1(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(Xm(this.gl,this.framebuffer),this.outputTexture=null),fe(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>W1(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return U1(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return V1(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=B1(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(K().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>G1(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=_1(t));let n=r1(t);return fe(t,()=>t.attachShader(n,this.vertexShader)),fe(t,()=>t.attachShader(n,e)),a1(t,n),this.debug&&ud(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=z1(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&fe(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&ud(this.gl,this.program),fe(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?p1(this.gl,e,t):h1(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),fe(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),f1(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=au(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&ud(this.gl,this.program),Lu(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),fe(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),fe(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Mu(this.gl,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=aX(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),ld(this.gl,e,this.framebuffer),this.debug&&Lu(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(ld(this.gl,this.outputTexture,this.framebuffer),this.debug&&Lu(this.gl)):Xm(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;ld(s,e,this.framebuffer),this.debug&&Lu(s),this.outputTexture=e,fe(s,()=>s.viewport(0,0,t,n)),fe(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),fe(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function aX(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:iX,bincountImpl:H1,bincountReduceImpl:oX,ceilImpl:uX,concatImpl:lX,equalImpl:cX,expImpl:dX,expm1Impl:pX,floorImpl:hX,gatherNdImpl:fX,gatherV2Impl:mX,greaterImpl:gX,greaterEqualImpl:bX,lessImpl:yX,lessEqualImpl:vX,linSpaceImpl:xX,logImpl:wX,maxImpl:kX,maximumImpl:SX,minimumImpl:IX,multiplyImpl:CX,negImpl:NX,notEqualImpl:TX,prodImpl:$X,rangeImpl:_X,rsqrtImpl:AX,scatterImpl:EX,sigmoidImpl:RX,simpleAbsImpl:q1,sliceImpl:DX,sparseFillEmptyRowsImpl:FX,sparseReshapeImpl:OX,sparseSegmentReductionImpl:j1,sqrtImpl:PX,stridedSliceImpl:zX,stringNGramsImpl:MX,stringSplitImpl:LX,stringToHashBucketFastImpl:BX,subImpl:VX,tileImpl:WX,topKImpl:UX,transposeImpl:$v,uniqueImpl:GX}=iv;function K1(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function ln(e,t){return t===1?[e]:K1(e,t)}function HX(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var qX=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=Sn(this.outputShape.length),this.rank===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let t=ln("rc",this.rank),n=ot(this.rank),s=this.getOutOfBoundsCondition(t),r=this.getSetup(t),a=this.getOutput(t);this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
|
|
if(${s}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${r}
|
|
|
|
setOutput(vec4(${a}));
|
|
}
|
|
}
|
|
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let s=0;s<=1;s++){let r=`${n===0?"r":"rp1"}, ${s===0?"c":"cp1"}`;for(let a=2;a<this.rank;a++)r=`${e[e.length-1-a]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],s=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
|
|
int r = ${t[0]};
|
|
int c = ${t[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${n};
|
|
bool rEdge = rp1 >= ${s};
|
|
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
|
|
cEdge ? 0. : getA(${t[1]}),
|
|
rEdge ? 0. : getA(${t[2]}),
|
|
rEdge || cEdge ? 0. : getA(${t[3]})`}},X1=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2===1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${s}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${s>0?"}":""}
|
|
`}this.userCode=`
|
|
${jX(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?wv():xv(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function jX(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?pK(["r","c","d"],"inputShape"):wi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var KX=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=pw(t,n),r=hw(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=dw(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return s===3?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===4?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===1?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===0?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===2&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),i}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=pw(n,s),a=hw(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let i=dw(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),o=K().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let u=this.usedTextures[a],l=u.indexOf(e);if(l<0)throw new Error("Cannot release a texture that was never provided by this texture manager");u.splice(l,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function XX(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function dw(e,t,n,s,r){let a=YX(t,s),i;if(r){let[u,l]=au(e[0],e[1]);i=u*l}else{let[u,l]=Jl(e[0],e[1]);i=u*l}let o=XX(n,a);return i*o}function YX(e,t){switch(e){case 3:return Nv(t);case 4:return Tv(t);case 1:return Sv(t);case 0:return Iv(t);case 2:return Cv(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function QX(e){return K().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?3:1:e?4:0}function pw(e,t){if(e===1)return 3;if(e===0||e==null)return QX(t);if(e===3||e===2)return 2;throw new Error(`Unknown logical texture type ${e}`)}function hw(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Gs=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},ss="if (isnan(x)) return x;",ZX="return x;",fw="return abs(x);",JX="return (x >= 0.0) ? x : (exp(x) - 1.0);",e8=ss+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,t8=ss+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Vi="return x;",n8="return 1.0 / (1.0 + exp(-1.0 * x));",s8="return x;",r8=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,a8=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,i8=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,o8="return 1.0 / (1.0 + exp(-1.0 * x));",ta=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},u8=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length);let t=e.length,n=ln("rc",t),s=ot(t),r=HX(t,n),a=n.slice(-2),i=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},l8=ws.whereImpl,c8=1e-7,d8=1e-4,nd={};function p8(e){return e in nd||(nd[e]={}),nd[e]}var h8=K().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),f8=600;function m8(){return K().global.screen==null?1024:K().global.screen.height*K().global.screen.width*window.devicePixelRatio*f8/1024/1024}var Y1=class extends ol{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!K().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof tm)t=e;else{let n=xs(K().getNumber("WEBGL_VERSION"),e);t=new tm(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=xs(K().getNumber("WEBGL_VERSION"));t=new tm(n),this.binaryCache=p8(K().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new KX(this.gpgpu),this.numMBBeforeWarning=m8(),this.texData=new Yd(this,ds())}nextDataId(){return Y1.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((K().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||K().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:1,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(K().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:1,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:i,isPacked:o}=t;if(a!=null){let p;o?p=new ta(i,Vi):p=new Gs(i,Vi);let d=this.runWebGLProgram(p,[{dataId:e,shape:i,dtype:s}],s),h=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let u=this.activeTimers!=null,l;u&&(l=w.now());let c;if(s==="complex64"){let p=this.readSync(r.real.dataId),d=this.readSync(r.imag.dataId);c=C.mergeRealAndImagArrays(p,d)}else c=this.getValuesFromTexture(e);return u&&(this.downloadWaitMs+=w.now()-l),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new ta(s,Vi):h=new Gs(s,Vi);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(K().getBool("DEBUG")&&!K().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&K().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let u=null,l;if(a!=="complex64"&&K().get("WEBGL_BUFFER_SUPPORTED")){l=this.decode(e);let h=this.texData.get(l.dataId);u=this.gpgpu.createBufferFromTexture(h.texture.texture,...ed(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),f=h[0],m=h[1];c=C.mergeRealAndImagArrays(f,m)}else if(u==null)c=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(s);c=this.gpgpu.downloadFloat32MatrixFromBuffer(u,h)}if(l!=null&&this.disposeIntermediateTensorInfo(l),u!=null){let h=this.gpgpu.gl;fe(h,()=>h.deleteBuffer(u))}let p=this.convertAndCacheOnCPU(e,c),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ds().removeDataId(e,this),this.pendingDeletes--),p}readToGPU(e,t={}){let n=this.texData.get(e),{values:s,shape:r,slice:a,dtype:i,isPacked:o,texture:u}=n;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(a!=null){let d;o?d=new ta(r,Vi):d=new Gs(r,Vi);let h=this.runWebGLProgram(d,[{dataId:e,shape:r,dtype:i}],i),f=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),f}if(u==null)throw s!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let l=this.decode(e,t.customTexShape),c=ds().makeTensorFromTensorInfo(l),p=this.texData.get(l.dataId);return{tensorRef:c,...p.texture}}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>w.decodeString(s));return Ae(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ae(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!e1(n))throw K().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=w.sizeFromShape(t);if(K().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),d=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(d.texture.texture,...ed(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let a=K().getBool("WEBGL_PACK")&&s===!0,i=a?cd(t):t,o=a?new tX(i):new eX(i),u=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),l=this.texData.get(u.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(l.texture.texture,l.texShape[0],l.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(u),c}timerAvailable(){return K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),a=w.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=w.sum(o),i.getExtraProfileInfo=()=>o.map((u,l)=>({name:a[l],ms:u})).map(u=>`${u.name}: ${u.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,u=this.dataRefCount.get(o);u>1?this.dataRefCount.set(o,u-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let l=this.texData.get(e);l.texture=null,l.texShape=null,l.isPacked=!1,l.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=h8){return K().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&w.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return l8(e.shape,t)}packedUnaryOp(e,t,n){let s=new ta(e.shape,t),r=this.compileAndRun(s,[e],n);return ds().makeTensorFromTensorInfo(r)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=q1(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(K().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,fw,e.dtype);let t=new Gs(e.shape,fw),n=this.compileAndRun(t,[e]);return ds().makeTensorFromTensorInfo(n)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){return ds().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,n),this)}unpackTensor(e){let t=new u8(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new qX(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[va(e.shape),...xa(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[va(t),...xa(t)],a=new X1(r,n),i=!0,o=[n],u=this.runWebGLProgram(a,[s],e.dtype,o,i);return{dataId:u.dataId,shape:t,dtype:u.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:s,shape:r,dtype:a}=n;if(t!=null){let p=w.sizeFromShape(r),d=t[0]*t[1]*4;w.assert(p<=d,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=cd(r),o;s?o=new JK(i):o=new ZK(i);let u=!0,l=[t!=null?t:ed(i)],c=this.runWebGLProgram(o,[{shape:i,dtype:a,dataId:e}],a,l,u,t);return{dtype:a,shape:r,dataId:c.dataId}}runWebGLProgram(e,t,n,s,r=!1,a){let i=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===0){let g=a!=null?a:ed(e.outputShape);o.texShape=g.map(b=>b*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),w.sizeFromShape(i.shape)===0)return o.values=w.getTypedArrayFromDType(i.dtype,0),i;let u=[],l=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let b=this.texData.get(g.dataId);if(b.texture==null){if(!e.packedInputs&&w.sizeFromShape(g.shape)<=K().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:b.values};e.packedInputs&&(b.isPacked=!0,b.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!b.isPacked!=!!e.packedInputs)g=b.isPacked?this.unpackTensor(g):this.packTensor(g),u.push(g),b=this.texData.get(g.dataId);else if(b.isPacked&&!al(b.shape,g.shape)){let y=g,v=g.shape;g.shape=b.shape,g=this.packedReshape(g,v),u.push(g),b=this.texData.get(g.dataId),y.shape=v}return{shape:g.shape,texData:b,isUniform:!1}});this.uploadToGPU(i.dataId);let c={shape:i.shape,texData:o,isUniform:!1},p=QK(e,l,c),d=this.getAndSaveBinary(p,()=>XK(this.gpgpu,e,l,c)),h=this.activeTimers!=null,f;h&&(f=this.startTimer()),K().get("ENGINE_COMPILE_ONLY")||YK(this.gpgpu,d,l,c,s),u.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(f=this.endTimer(f),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(f)}));let m=K().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let g=w.now();g-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!K().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(K().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=q(()=>{if(!K().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=K().getBool("DEBUG");K().set("DEBUG",!1);let t=this.abs(we(1e-8)).dataSync()[0];if(K().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?c8:d8}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:i,isPacked:o}=t;if(a!=null)return;let u=this.activeTimers!=null,l;u&&(l=w.now());let c=t.texShape;if(c==null&&(c=b1(n,o),t.texShape=c),r!=null){let p=cd(n),d,h=c[1],f=c[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(o||!m)&&([h,f]=au(c[0],c[1])),o?d=new sX(p,m):d=new nX(p,m);let g=m?[f,h]:c,b=this.makeTensorInfo(g,s),y=this.texData.get(b.dataId);m?y.usage=2:y.usage=1,y.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(b.dataId),h,f,r);let v=[[f,h]],x=!0,k=this.runWebGLProgram(d,[b],s,v,x),I=this.texData.get(k.dataId);t.texShape=I.texShape,t.isPacked=I.isPacked,t.usage=I.usage,K().get("ENGINE_COMPILE_ONLY")?this.disposeData(k.dataId):(t.texture=I.texture,t.values=null,this.texData.delete(k.dataId)),this.disposeIntermediateTensorInfo(b),u&&(this.uploadWaitMs+=w.now()-l)}else{let p=this.acquireTexture(c,i,s,o);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=g8(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(s=>{try{this.checkCompletion_(t),s(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await jS(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(vv(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:n,infLoc:s,nanLoc:r,inShapesLocations:a,inTexShapesLocations:i,outShapeLocation:o,outShapeStridesLocation:u,outTexShapeLocation:l}=$1(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=n,e.infLoc=s,e.nanLoc=r,e.inShapesLocations=a,e.inTexShapesLocations=i,e.outShapeLocation=o,e.outShapeStridesLocation=u,e.outTexShapeLocation=l}}},Q1=Y1;Q1.nextDataId=0;function g8(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var vhe="0.0.0";function b8(){K().set("WEBGL_FORCE_F16_TEXTURES",!0)}yp.isBrowser()&&vp("webgl",()=>new Q1,2);var xhe={forceHalfFloat:b8},Z1=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,lo=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=Sn(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},th=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,tc=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=Sn(r);let a="";if(s)if(r===0||w.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${ot(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?a+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let o=ln("coords",r);this.enableShapeUniforms?a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${o[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${o[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${o[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${o[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Rn(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var y8={kernelName:Ua,backendName:"webgl",kernelFunc:Rn};function Fr(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),i=n.texData.get(a.dataId),o=Rn({inputs:{x:s},backend:n}),u=Rn({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:u},a}var v8={kernelName:ep,backendName:"webgl",kernelFunc:Fr},J1="return (a < 0.) ? b * a : a;",e2=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function x8(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,i=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),o=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new tc(e2,r.shape,i.shape):new lo(J1,r.shape,i.shape),u=n.runWebGLProgram(o,[r,i],"float32");return n.disposeIntermediateTensorInfo(i),u}var w8={kernelName:Ga,backendName:"webgl",kernelFunc:x8},t2="return (a < 0.) ? b * a : a;",n2=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function k8(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new tc(n2,s.shape,r.shape):new lo(t2,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],"float32")}var S8={kernelName:ni,backendName:"webgl",kernelFunc:k8},du="if (isnan(x)) return x;",I8=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,C8=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Ke({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:i}=r,o=a,u=s||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let p=o.texData.get(i.dataId),d=n(p.values,u);return o.makeTensorInfo(i.shape,u,d)}let l=K().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return l?c=new ta(i.shape,t):c=new Gs(i.shape,e),o.runWebGLProgram(c,[i],u)}}function jt({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:i,backend:o})=>{let{a:u,b:l}=i,c=o;if(s&&u.dtype==="complex64"){let f=c.texData.get(u.dataId),m=c.texData.get(l.dataId),[g,b]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(v=>{let[x,k]=v,I={dataId:x.dataId,dtype:x.dtype,shape:u.shape},$={dataId:k.dataId,dtype:k.dtype,shape:l.shape},R=new lo(e,u.shape,l.shape);return c.runWebGLProgram(R,[I,$],cn(x.dtype,k.dtype))}),y=Fr({inputs:{real:g,imag:b},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(b),y}let p=a||cn(u.dtype,l.dtype);if((u.dtype==="string"||l.dtype==="string"||c.shouldExecuteOnCPU([u,l]))&&r!=null){let f=c.texData.get(u.dataId).values,m=c.texData.get(l.dataId).values,g=u.dtype==="string"?C.fromUint8ToStringArray(f):f,b=u.dtype==="string"?C.fromUint8ToStringArray(m):m,[y,v]=r(u.shape,l.shape,g,b,p),x=c.makeTensorInfo(v,p),k=c.texData.get(x.dataId);return k.values=y,x}let d=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return d?h=new tc(t,u.shape,l.shape,n):h=new lo(e,u.shape,l.shape),c.runWebGLProgram(h,[u,l],p)}}function nh(e,t=!1){if(e==="linear")return t?s8:ZX;if(e==="relu")return t?a8:e8;if(e==="elu")return t?r8:JX;if(e==="relu6")return t?i8:t8;if(e==="prelu")return t?n2:t2;if(e==="leakyrelu")return t?e2:J1;if(e==="sigmoid")return t?o8:n8;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var s2=class{constructor(e,t,n,s=!1,r=!1,a=!1,i=null,o=!1,u=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=Sn(this.outputShape.length);let l=s?e[1]:e[2],c=Math.ceil(l/2),p=s?"i * 2, rc.y":"rc.y, i * 2",d=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";i&&(o?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:u?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,g="result = activation(result);");let b=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),u&&this.variableNames.push("leakyreluAlpha");let y="rc.x",v="rc.x";e[0]<t[0]?y=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(v=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${c}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${c}; i++) {
|
|
int batchA = ${y};
|
|
int batchB = ${v};
|
|
vec4 a = getMatrixA(batchA, ${p});
|
|
vec4 b = getMatrixB(batchB, ${d});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${f[0]});
|
|
result += (${h[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${b}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},mw={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},gw=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},bw="return a * b;";function _v(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=C.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let o=n.texData.get(s.dataId),u=n.texData.get(r.dataId),l=new gw(mw.REAL,s.shape,r.shape),c=new gw(mw.IMAG,s.shape,r.shape),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:s.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:u.complexTensorInfos.real.dataId,dtype:u.complexTensorInfos.real.dtype,shape:r.shape},{dataId:u.complexTensorInfos.imag.dataId,dtype:u.complexTensorInfos.imag.dtype,shape:r.shape}],d=n.runWebGLProgram(l,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=Fr({inputs:{real:d,imag:h},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let o=n.texData.get(s.dataId),u=n.texData.get(r.dataId),[l,c]=CX(s.shape,r.shape,o.values,u.values,a),p=n.makeTensorInfo(c,a),d=n.texData.get(p.dataId);return d.values=l,p}let i;return K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new tc(bw,s.shape,r.shape):i=new lo(bw,s.shape,r.shape),n.runWebGLProgram(i,[s,r],a)}var N8={kernelName:Ja,backendName:"webgl",kernelFunc:_v};function T8(e,t,n){let s=[va(e.shape),...xa(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[va(t),...xa(t)],i=new X1(a,s),o=!0,u=[s],l=n.runWebGLProgram(i,[r],e.dtype,u,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function he(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,i=n,o=w.sizeFromShape(r.shape),u=w.inferFromImplicitShape(a,o),l=w.sizeFromShape(u);w.assert(o===l,()=>`The new shape (${u}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let c=i.texData.get(r.dataId);return c.isPacked&&!al(r.shape,u)&&!(c.texture!==null&&al(c.shape,u))?T8(r,u,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:u,dtype:r.dtype})}var $8={kernelName:Oo,backendName:"webgl",kernelFunc:he},yw=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let i=Math.floor(n/4)*4,o=n%4,u="sumValue += dot(values, ones);";if(t!=null){let c=1/t;u=`sumValue += dot(values * ${w.isInt(c)?c.toPrecision(2):c}, ones);`}let l="";r%n>0&&(l=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${l}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${u}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${u}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${u}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${u}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},_8=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let u=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?u="sumValue":t==="prod"?u="prodValue":t==="all"?u="allValue":t==="any"&&(u="anyValue");let l=Math.floor(n/4)*4,c=n%4,p=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,d="vec4";t==="all"?(i="1.0",p=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,d="bvec4"):t==="any"&&(i="0.0",p=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,d="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${l}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${l};
|
|
if (${c===1}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===2}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===3}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${u});
|
|
}
|
|
`}};function A8(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=C.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function Si(e,t,n,s){let r=A8(e.shape),a=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:u,outSize:l}=r[i],c,p;n==="mean"?c=i===0?new yw({windowSize:u,inSize:o,batchSize:e.shape[0],outSize:l},o):new yw({windowSize:u,inSize:o,batchSize:e.shape[0],outSize:l}):c=new _8({windowSize:u,inSize:o,batchSize:e.shape[0],outSize:l},n),p=a,a=s.runWebGLProgram(c,[a],t),p.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(p)}return a}var E8=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=ot(this.rank),r=R8(t);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function R8(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var D8=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let l=0;l<n.length;l++)n[l]=e[t[l]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=ot(this.rank),r=K1("rc",this.rank),a=new Array(this.rank);for(let l=0;l<t.length;l++)a[t[l]]=r[l];let i=`vec2(${a.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,u=`getChannel(getA(${a.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${u};
|
|
if(${o}) {
|
|
result[1] = ${u};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${u};
|
|
if(${o}) {
|
|
result[3] = ${u};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function sh(e,t,n){let s=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new D8(e.shape,t):new E8(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function F8(e,t,n,s){let r=t,a=e.shape.length,i=w.parseAxisParam(r,e.shape),o=i,u=C.getAxesPermutation(o,a),l=u!=null,c=e;l&&(c=sh(e,u,s),o=C.getInnerMostAxes(o.length,a)),C.assertAxesAreInnerMostDims("sum",o,a);let[p,d]=C.computeOutAndReduceShapes(c.shape,o),h=p;n&&(h=C.expandShapeToKeepDim(p,i));let f=w.sizeFromShape(d),g=w.sizeFromShape(e.shape)/f,b=he({inputs:{x:c},attrs:{shape:[g,f]},backend:s}),y=bp(e.dtype),v=Si(b,y,"sum",s),x=he({inputs:{x:v},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(b),s.disposeIntermediateTensorInfo(v),l&&s.disposeIntermediateTensorInfo(c),x}function rh(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;return F8(r,a,i,n)}var O8={kernelName:di,backendName:"webgl",kernelFunc:rh};function _t(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,i=n,o=r.shape.length,u=new Array(o);for(let c=0;c<u.length;c++)u[c]=r.shape[a[c]];let l;if(i.shouldExecuteOnCPU([r])){let p=i.texData.get(r.dataId).values,d=$v(p,r.shape,r.dtype,a,u);l=i.makeTensorInfo(u,r.dtype);let h=i.texData.get(l.dataId);h.values=d}else l=sh(r,a,i);return l}var P8={kernelName:Hs,backendName:"webgl",kernelFunc:_t},r2=1e3;function Gd({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:u=null}){let l=e.shape.length,c=t.shape.length,p=n?e.shape[l-2]:e.shape[l-1],d=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[l-1]:e.shape[l-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),b=w.sizeFromShape(m),y=w.sizeFromShape(g),x=Qo.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);w.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[b,p,h]:[b,h,p],I=s?[y,f,d]:[y,d,f],$=he({inputs:{x:e},backend:r,attrs:{shape:k}}),R=he({inputs:{x:t},backend:r,attrs:{shape:I}}),E=[$,R],P=Math.max(b,y),A=n?$.shape[1]:$.shape[2],O=a!=null,T=i!=null,M=u==="leakyrelu",W=u!=null?nh(u,!0):null,j=O||T||M||W!=null,X;if((h===1||f===1)&&A>r2&&j===!1){let Z=$,te=R;n&&(Z=_t({inputs:{x:$},backend:r,attrs:{perm:[0,2,1]}}),E.push(Z)),s&&(te=_t({inputs:{x:R},backend:r,attrs:{perm:[0,2,1]}}),E.push(te));let J=f!==1,se=f===1,ne=Z;J&&(ne=he({inputs:{x:Z},backend:r,attrs:{shape:[P,A,1]}}),E.push(ne));let oe=f===1?2:1,ae=te;se&&(ae=he({inputs:{x:te},backend:r,attrs:{shape:[P,1,A]}}),E.push(ae));let de=_v({inputs:{a:ne,b:ae},backend:r});X=rh({inputs:{x:de},backend:r,attrs:{axis:oe,keepDims:!0}}),E.push(de)}else{let Z=cn(e.dtype,t.dtype),te=new s2(k,I,[P,h,f],n,s,O,W,T,M),J=[$,R];if(a!=null&&J.push(a),T&&J.push(i),M){let se=r.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));J.push(se),E.push(se)}X=r.runWebGLProgram(te,J,Z)}let Y=he({inputs:{x:X},backend:r,attrs:{shape:x}});E.push(X);for(let Z of E)r.disposeIntermediateTensorInfo(Z);return Y}function z8(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:i,preluActivationWeights:o}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=s;return Gd({a:r,b:a,transposeA:u,transposeB:l,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:p,activation:c})}var M8={kernelName:oa,backendName:"webgl",kernelFunc:z8},vw="return abs(x);";function L8(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),i=q1(a.values);return n.makeTensorInfo(s.shape,s.dtype,i)}let r;return K().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new ta(s.shape,vw):r=new Gs(s.shape,vw),n.runWebGLProgram(r,[s],s.dtype)}var B8={kernelName:po,backendName:"webgl",kernelFunc:L8},V8=ss+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,W8=Ke({opSnippet:V8}),U8={kernelName:ul,backendName:"webgl",kernelFunc:W8},G8=ss+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,H8=Ke({opSnippet:G8}),q8={kernelName:ll,backendName:"webgl",kernelFunc:H8},xw="return a + b;",j8=jt({opSnippet:xw,packedOpSnippet:xw,supportsComplex:!0,cpuKernelImpl:iX}),K8={kernelName:Cr,backendName:"webgl",kernelFunc:j8},X8=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}},Y8=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}};function hd(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Rn({inputs:{x:s[0]},backend:n});if(s.length>K().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(s.length/2),l=hd({inputs:s.slice(0,u),backend:n}),c=hd({inputs:s.slice(u),backend:n});return hd({inputs:[l,c],backend:n})}let r=s.map(u=>u.dtype).reduce((u,l)=>cn(u,l)),a=s.map(u=>u.shape),o=K().getBool("WEBGL_PACK")?new Y8(s[0].shape,a):new X8(s[0].shape,a);return n.runWebGLProgram(o,s,r)}var Q8={kernelName:Ia,backendName:"webgl",kernelFunc:hd};function Z8(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s,o=r.shape.length,u=w.parseAxisParam(a,r.shape),l=u,c=C.getAxesPermutation(l,o),p=r;c!=null&&(p=_t({inputs:{x:r},backend:n,attrs:{perm:c}}),l=C.getInnerMostAxes(l.length,o)),C.assertAxesAreInnerMostDims("all",l,o);let[d,h]=C.computeOutAndReduceShapes(p.shape,l),f=w.sizeFromShape(h),m=he({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=Si(m,m.dtype,"all",n),b;if(i){let y=C.expandShapeToKeepDim(d,u);b=he({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=he({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),b}var J8={kernelName:cl,backendName:"webgl",kernelFunc:Z8};function eY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s,o=r.shape.length,u=w.parseAxisParam(a,r.shape),l=u,c=C.getAxesPermutation(l,o),p=r;c!=null&&(p=_t({inputs:{x:r},backend:n,attrs:{perm:c}}),l=C.getInnerMostAxes(l.length,o)),C.assertAxesAreInnerMostDims("any",l,o);let[d,h]=C.computeOutAndReduceShapes(p.shape,l),f=w.sizeFromShape(h),m=he({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=Si(m,m.dtype,"any",n),b;if(i){let y=C.expandShapeToKeepDim(d,u);b=he({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=he({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),b}var tY={kernelName:dl,backendName:"webgl",kernelFunc:eY},nY=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${s};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},sY=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,u=ot(o),l=ln("coords",o),c,p;if(a===1){p=o+1;let $=ot(p);c=`
|
|
${$} sourceLocR = ${$}(${l.join()}, 0);
|
|
++${l[o-1]};
|
|
${$} sourceLocG = ${$}(${l.join()}, 0);
|
|
++${l[o-2]};
|
|
${$} sourceLocA = ${$}(${l.join()}, 0);
|
|
--${l[o-1]};
|
|
${$} sourceLocB = ${$}(${l.join()}, 0);
|
|
--${l[o-2]};`}else p=o,c=`
|
|
${u} sourceLocR = coords;
|
|
++${l[o-1]};
|
|
${u} sourceLocG = coords;
|
|
++${l[o-2]};
|
|
${u} sourceLocA = coords;
|
|
--${l[o-1]};
|
|
${u} sourceLocB = coords;
|
|
--${l[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,p),h="."+d[p-1],f=d.map($=>"int "+$),m=ln("sourceLocR",p-1).concat("inIdx.r"),g=ln("sourceLocG",p-1).concat("inIdx.g"),b=ln("sourceLocB",p-1).concat("inIdx.b"),y=ln("sourceLocA",p-1).concat("inIdx.a"),v=n==="max"?"greaterThan":"lessThan",x=s?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${b.join()}),
|
|
getBestIndicesAChannel(${y.join()})));`,k=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${b.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,I=s?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}
|
|
${I}
|
|
void main() {
|
|
${u} coords = getOutputCoords();
|
|
bool hasNextCol = ${l[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${l[o-2]} < ${i[o-2]-1};
|
|
${c}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${k};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${x}
|
|
vec4 candidate = ${k};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${v}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function a2(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let i=C.computeOptimalWindowSize(a),o={windowSize:i,inSize:a,batchSize:r,outSize:Math.ceil(a/i)},u=new nY(o,n,s==null),l=[t];s!=null&&l.push(s);let c=e.runWebGLProgram(u,l,"int32");if(c.shape[1]===1)return c;let p=a2(e,t,n,c);return e.disposeIntermediateTensorInfo(c),p}function i2(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],i=C.computeOptimalWindowSize(a),o=new sY(r,i,n,s==null),u=s==null?[t]:[t,s],l=e.runWebGLProgram(o,u,"int32");if(l.shape.length===t.shape.length){let c=i2(e,t,n,l);return e.disposeIntermediateTensorInfo(l),c}return l}function o2(e,t,n,s){let r=[n];if(C.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!K().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,u=t;o&&(u=e.unpackTensor(t),a.push(u));let[l,c]=C.computeOutAndReduceShapes(u.shape,r),p=w.sizeFromShape(c),d=he({inputs:{x:u},backend:e,attrs:{shape:[-1,p]}});a.push(d);let h=a2(e,d,s);a.push(h);let f=he({inputs:{x:h},backend:e,attrs:{shape:l}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return i2(e,t,s)}function rY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,i=w.parseAxisParam(a,r.shape),o=C.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=_t({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=C.getInnerMostAxes(i.length,u.shape.length)),C.assertAxesAreInnerMostDims("argMax",[i[0]],u.shape.length);let c=o2(n,u,i[0],"max");return l.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var aY={kernelName:Ca,backendName:"webgl",kernelFunc:rY};function iY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,i=w.parseAxisParam(a,r.shape),o=C.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=_t({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=C.getInnerMostAxes(i.length,u.shape.length)),C.assertAxesAreInnerMostDims("argMin",[i[0]],u.shape.length);let c=o2(n,u,i[0],"min");return l.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var oY={kernelName:pl,backendName:"webgl",kernelFunc:iY},uY=ss+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,lY=Ke({opSnippet:uY}),cY={kernelName:hl,backendName:"webgl",kernelFunc:lY},dY=ss+"return log(x + sqrt(x * x + 1.0));",pY=Ke({opSnippet:dY}),hY={kernelName:fl,backendName:"webgl",kernelFunc:pY},fY=ss+`
|
|
return atan(x);
|
|
`,mY=Ke({opSnippet:fY}),gY={kernelName:ml,backendName:"webgl",kernelFunc:mY},bY=I8+`
|
|
return atan(a, b);
|
|
`,yY=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+C8+`
|
|
return result;
|
|
`,vY=jt({opSnippet:bY,packedOpSnippet:yY}),xY={kernelName:bl,backendName:"webgl",kernelFunc:vY},wY=ss+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,kY=Ke({opSnippet:wY}),SY={kernelName:gl,backendName:"webgl",kernelFunc:kY},il=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideHeight,o=e.strideWidth,u=e.dilationHeight,l=e.dilationWidth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,d=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(f||(b="-1.0 / 1e-20"),n){let $=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${l}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${$} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?m:g:`wR * ${p} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let y="max",v=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(v="avgValue / count");let x=Math.floor(a/4)*4,k=a%4,I=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${y}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
const float initializationValue = ${b};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${b});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${x}; wC += 4) {
|
|
int xC = xCCorner + wC * ${l};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${l}, d),
|
|
getValue(batch, xR, xC + 2 * ${l}, d),
|
|
getValue(batch, xR, xC + 3 * ${l}, d)
|
|
);
|
|
|
|
${I}
|
|
}
|
|
|
|
int xC = xCCorner + ${x};
|
|
if (${k===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${I}
|
|
} else if (${k===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${l}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${I}
|
|
} else if (${k===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${l}, d),
|
|
getValue(batch, xR, xC + 2 * ${l}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${I}
|
|
}
|
|
}
|
|
setOutput(${v});
|
|
}
|
|
`}},Av=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideDepth,o=e.strideHeight,u=e.strideWidth,l=e.dilationDepth,c=e.dilationHeight,p=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",v="0.0";if(y||(v="-1.0 / 1e-20"),n){let E=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${u});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${b});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${l}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${p}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${E} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let x="max",k=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(k="avgValue / count");let I=Math.floor(a/4)*4,$=a%4,R=`
|
|
if (${y}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${x}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${u});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${b});
|
|
const float initializationValue = ${v};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${v});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${l}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${I}; wC += 4) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
|
|
);
|
|
|
|
${R}
|
|
}
|
|
|
|
int xC = xCCorner + ${I};
|
|
if (${$===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${R}
|
|
} else if (${$===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${R}
|
|
} else if (${$===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${R}
|
|
}
|
|
}
|
|
setOutput(${k});
|
|
}
|
|
}
|
|
`}};function IY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;iu(r,"avgPool");let{filterSize:a,strides:i,pad:o,dimRoundingMode:u}=s,l=1;w.assert(C.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=C.computePool2DInfo(r.shape,a,i,l,o,u);if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))return Rn({inputs:{x:r},backend:n});let p=new il(c,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var CY={kernelName:Na,backendName:"webgl",kernelFunc:IY};function NY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:i,pad:o,dimRoundingMode:u,dataFormat:l}=s,c=[1,1,1],p=C.computePool3DInfo(r.shape,a,i,c,o,u,l),d=new Av(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var TY={kernelName:Jd,backendName:"webgl",kernelFunc:NY},$Y=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,u=e.effectiveFilterWidth,l=o-1-e.padInfo.top,c=u-1-e.padInfo.left,p=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${l}, ${c});
|
|
const float avgMultiplier = float(${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},_Y=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,u=e.dilationHeight,l=e.dilationWidth,c=e.effectiveFilterDepth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=c-1-e.padInfo.front,f=p-1-e.padInfo.top,m=d-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${f}, ${m});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${u}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${l}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function AY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,i=a,{filterSize:o,strides:u,pad:l,dimRoundingMode:c}=s,p=[1,1,1],d=C.computePool3DInfo(i.shape,o,u,p,l,c),h=new _Y(d);return n.runWebGLProgram(h,[r],i.dtype)}var EY={kernelName:fg,backendName:"webgl",kernelFunc:AY};function RY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,i=a;iu([r,a],"avgPoolGrad");let{filterSize:o,strides:u,pad:l}=s,c=C.computePool2DInfo(i.shape,o,u,1,l),p=new $Y(c);return n.runWebGLProgram(p,[r],i.dtype)}var DY={kernelName:hg,backendName:"webgl",kernelFunc:RY};function FY(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:i,transposeB:o}=s;return Gd({a:r,b:a,transposeA:i,transposeB:o,backend:n})}var OY={kernelName:Ta,backendName:"webgl",kernelFunc:FY},PY=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="0.0";s!=null&&(C.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},zY=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";s!=null&&(C.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},MY=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:i,scale:o}=e;w.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:u}=n;u==null&&(u=.001);let l=[s,r,a],c=null;i!=null&&(c=i.shape,l.push(i));let p=null;o!=null&&(p=o.shape,l.push(o));let d=K().getBool("WEBGL_PACK_NORMALIZATION")?new zY(s.shape,r.shape,a.shape,c,p,u):new PY(s.shape,r.shape,a.shape,c,p,u);return t.runWebGLProgram(d,l,l[0].dtype)},LY={kernelName:Va,backendName:"webgl",kernelFunc:MY},BY=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ot(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=VY(this.rank),s,r=e.map((a,i)=>`sourceLoc.${Zm[i]} = start[${i}] + coords.${Zm[i]};`);s=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${s}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},Zm=["x","y","z","w","u","v"];function VY(e){if(e===1)return"sourceLoc";if(e<=6)return Zm.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var WY=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=ot(this.rank),n=ln("coords",this.rank),s=ln("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,i=`
|
|
result.x = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.y = ${a};
|
|
--${s[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${s[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,u=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((l,c)=>`start[${c}]`).join()});`:e.map((l,c)=>`${s[c]} = ${n[c]} + start[${c}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${u}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}};function UY(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),i=s.texData.get(a.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=kt.computeFlatOffset(t,w.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let u=s.dataRefCount.get(i.slice.origDataId)||1;return s.dataRefCount.set(i.slice.origDataId,u+1),a}function pu(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:i}=s,[o,u]=kt.parseSliceParams(r,a,i);if(kt.assertParamsValid(r,o,u),w.sizeFromShape(u)===0)return n.makeTensorInfo(u,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),d=DX(p.values,o,u,r.shape,r.dtype);return n.makeTensorInfo(u,r.dtype,d)}let{isPacked:l}=n.texData.get(r.dataId),c=kt.isSliceContinous(r.shape,o,u);if(l||!c){let p=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new WY(u):new BY(u),d=[o];return n.runWebGLProgram(p,[r],r.dtype,d)}return n.uploadToGPU(r.dataId),UY(r,o,u,n)}var GY={kernelName:Bo,backendName:"webgl",kernelFunc:pu},HY=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:i}=s;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=a.reduce((y,v)=>y*v),u=C.getReshaped(r.shape,a,o),l=C.getPermuted(u.length,a.length),c=C.getReshapedPermuted(r.shape,a,o),p=C.getSliceBeginCoords(i,a.length),d=C.getSliceSize(c,i,a.length),h=[],f=he({inputs:{x:r},backend:n,attrs:{shape:u}}),m=_t({inputs:{x:f},backend:n,attrs:{perm:l}}),g=he({inputs:{x:m},backend:n,attrs:{shape:c}}),b=pu({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),b},qY={kernelName:ho,backendName:"webgl",kernelFunc:HY};function jY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:i}=s,o=n.readSync(r.dataId),u=n.readSync(a.dataId),l=H1(o,u,a.dtype,a.shape,i);return n.makeTensorInfo([i],a.dtype,l)}var KY={kernelName:mg,backendName:"webgl",kernelFunc:jY};function XY(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.readSync(s.dataId),i=n.readSync(r.dataId),o=C.assertAndGetBroadcastShape(Array.from(a),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var YY={kernelName:gg,backendName:"webgl",kernelFunc:XY},QY="return float(a != b);",u2=jt({opSnippet:QY,cpuKernelImpl:TX,dtype:"bool"}),ZY={kernelName:_o,backendName:"webgl",kernelFunc:u2};function nc(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Rn({inputs:{x:r.complexTensorInfos.real},backend:n})}var JY={kernelName:lp,backendName:"webgl",kernelFunc:nc},e9="return float(int(x));";function t9(e,t){let n=new Gs(e.shape,e9),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function Jm(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Rn({inputs:{x:r},backend:n});let i=$t(r.shape),o=Jm({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),u=Fr({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),u}if(r.dtype==="complex64"){let i=nc({inputs:{input:r},backend:n}),o=Jm({inputs:{x:i},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,a)){let i=Rn({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:a}}if(a==="int32")return t9(r,n);if(a==="bool"){let i=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),u=u2({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),u}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var n9={kernelName:$a,backendName:"webgl",kernelFunc:Jm},ww="return ceil(x);",s9=Ke({opSnippet:ww,packedOpSnippet:ww,cpuKernelImpl:uX}),r9={kernelName:_a,backendName:"webgl",kernelFunc:s9},a9=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},i9=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function o9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:i}=s,o;K().getBool("WEBGL_PACK_CLIP")?o=new i9(r.shape):o=new a9(r.shape);let u=[[a],[i]];return n.runWebGLProgram(o,[r],r.dtype,u)}var u9={kernelName:Nr,backendName:"webgl",kernelFunc:o9},l9=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function kw(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function c9(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new l9(s.shape),i=[kw(s,r.complexTensorInfos.real),kw(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,i,i[0].dtype)}var d9={kernelName:tp,backendName:"webgl",kernelFunc:c9},p9=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((a,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let i=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${i}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},h9=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=ot(s),a=ln("coords",s),i=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let f=1;f<o.length;f++)o[f]=o[f-1]+e[f][t];let u=i[t],l=i.slice(-2),c=i.join(),p=`if (${u} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${c}), vec2(${l.join()}));
|
|
}`;for(let f=1;f<o.length;f++){let m=o[f-1];p+=`
|
|
if (${u} < ${o[f]} && ${u} >= ${o[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${sd(i,u,m)}),
|
|
vec2(${sd(l,u,m)}));
|
|
}`}let d=o.length,h=o[o.length-1];p+=`
|
|
return getChannel(
|
|
getT${d}(${sd(i,u,h)}),
|
|
vec2(${sd(l,u,h)}));`,this.userCode=`
|
|
float getValue(${i.map(f=>"int "+f)}) {
|
|
${p}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[s-1]} = ${a[s-1]} + 1;
|
|
if (${a[s-1]} < ${n[s-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[s-2]} = ${a[s-2]} + 1;
|
|
if (${a[s-2]} < ${n[s-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[s-1]} = ${a[s-1]} - 1;
|
|
if (${a[s-2]} < ${n[s-2]} &&
|
|
${a[s-1]} < ${n[s-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function sd(e,t,n){let s=e.indexOf(t);return e.map((a,i)=>i===s?`${a} - ${n}`:a).join()}function ah(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Rn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var f9={kernelName:ap,backendName:"webgl",kernelFunc:ah};function ji(e,t,n){let s=e[0].dtype;if(s==="complex64"){let c=e.map(m=>nc({inputs:{input:m},backend:n})),p=e.map(m=>ah({inputs:{input:m},backend:n})),d=ji(c,t,n),h=ji(p,t,n),f=Fr({inputs:{real:d,imag:h},backend:n});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),p.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let c=e.map(b=>{let y=w.sizeFromShape(b.shape.slice(t));return he({inputs:{x:b},backend:n,attrs:{shape:[-1,y]}})}),p=c.map(b=>({vals:n.readSync(b.dataId),shape:b.shape})),d=C.computeOutShape(c.map(b=>b.shape),1),h=c[0].shape[0]===1,f=lX(p,d,s,h),m=C.computeOutShape(e.map(b=>b.shape),t),g=n.makeTensorInfo(m,s,f);return c.forEach(b=>n.disposeIntermediateTensorInfo(b)),g}if(e.length>K().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),p=ji(e.slice(0,c),t,n),d=ji(e.slice(c),t,n),h=ji([p,d],t,n);return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),h}if(K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new h9(e.map(p=>p.shape),t);return n.runWebGLProgram(c,e,s)}let{tensors2D:a,outShape:i}=m9(e,t,n),o=new p9(a.map(c=>c.shape)),u=n.runWebGLProgram(o,a,s);a.forEach(c=>n.disposeIntermediateTensorInfo(c));let l=he({inputs:{x:u},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(u),l}function m9(e,t,n){let s=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>he({inputs:{x:a},attrs:{shape:[-1,w.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function l2(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],i=C.computeOutShape(t.map(l=>l.shape),a);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(l=>w.sizeFromShape(l.shape)>0);if(o.length===1)return Rn({inputs:{x:o[0]},backend:n});let u=o.map(l=>l.shape);return C.assertParamsConsistent(u,a),ji(o,a,n)}var g9={kernelName:fo,backendName:"webgl",kernelFunc:l2},c2=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,u=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,b=m?2:3,y=m?3:1,v="",x="";n&&(s?v=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?v=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:v=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,x="result = activation(result);");let k=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${v}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${u});
|
|
const ivec2 pads = ivec2(${a}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${y}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${b}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${k}
|
|
${x}
|
|
setOutput(result);
|
|
}
|
|
`}},b9=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,u=e.dilationHeight,l=e.dilationWidth,c=e.filterDepth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${a}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${s});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${c}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${l};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},y9=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length);let{dataFormat:n}=t,s=fn(),r=n==="channelsLast",a=r?0:1,i=r?1:2,o=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,u="";for(let l=0;l<=1;l++)for(let c=0;c<=1;c++)u+=`
|
|
blockIndex = rc.y + ${c};
|
|
pos = rc.x + ${l};
|
|
|
|
${o}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${a}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${i}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${l*2+c}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${l*2+c}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${u}
|
|
|
|
${s.output} = result;
|
|
}
|
|
`}};function d2({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:o=null}){let u=e.shape,l=s.texData.get(e.dataId),c=n.inChannels,p=u[0]*u[1]*u[2],d=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,b=[];if(a!=null&&!h&&a.shape.length===3){let x=_t({inputs:{x:a},backend:s,attrs:{perm:[1,2,0]}});b.push(x),a=x}if(!((p===1||d===1)&&c>r2)&&l.isPacked&&h&&l.texture!=null&&u[2]%2!==0&&w.arraysEqual(l.shape.slice(-3),u.slice(-3))){let x=u[0]*u[1]*(u[2]+1),k={dataId:e.dataId,shape:[1,x,n.inChannels],dtype:e.dtype},I=l.shape;l.shape=l.shape.slice(),l.shape[l.shape.length-2]++,w.assert(al(l.shape,k.shape),()=>`packed reshape ${l.shape} to ${k.shape} isn't free`);let $=he({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});b.push($);let R=Gd({a:k,b:$,backend:s,transposeA:f,transposeB:m,bias:r,activation:o,preluActivationWeights:a,leakyreluAlpha:i}),E=s.texData.get(R.dataId);w.assert(E.isPacked,()=>"batchMatMul result is expected to be packed"),l.shape=I,E.shape=n.outShape,g=Rn({inputs:{x:R},backend:s}),g.shape=n.outShape,b.push(R)}else{let x=h?e:_t({inputs:{x:e},backend:s,attrs:{perm:[0,2,3,1]}}),k=x.shape,I=k[0]*k[1]*k[2],$=he({inputs:{x},backend:s,attrs:{shape:[1,I,n.inChannels]}}),R=he({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),E=Gd({a:$,b:R,transposeA:f,transposeB:m,backend:s,bias:r,activation:o,preluActivationWeights:a,leakyreluAlpha:i}),P=[n.batchSize,n.outHeight,n.outWidth,n.outChannels],A=he({inputs:{x:E},backend:s,attrs:{shape:P}});g=h?A:_t({inputs:{x:A},backend:s,attrs:{perm:[0,3,1,2]}}),h||(b.push(x),b.push(A)),b.push($),b.push(R),b.push(E)}for(let x of b)s.disposeIntermediateTensorInfo(x);return g}function p2({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:u,filterHeight:l,inChannels:c,outWidth:p,outHeight:d,dataFormat:h}=n,f=h==="channelsLast",m=u*l*c,g=d*p,b=[m,g],y=!0,v=!1,x=[];if(a!=null&&!f&&a.shape.length===3){let J=_t({inputs:{x:a},backend:s,attrs:{perm:[1,2,0]}});x.push(J),a=J}let k=he({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),I=he({inputs:{x:t},backend:s,attrs:{shape:[1,m,w.sizeFromShape(t.shape)/m]}});x.push(k),x.push(I);let $=new y9(b,n),R=[k.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],E=s.runWebGLProgram($,[k],"float32",R),P=he({inputs:{x:E},backend:s,attrs:{shape:[1,b[0],b[1]]}});x.push(E),x.push(P);let A=r!=null,O=a!=null,T=o==="leakyrelu",M=o?nh(o,!0):null,W=new s2(P.shape,I.shape,[1,g,n.outChannels],y,v,A,M,O,T),j=[P,I];if(r&&j.push(r),O&&j.push(a),T){let J=s.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));j.push(J),x.push(J)}let X=s.runWebGLProgram(W,j,"float32"),Y=[1,d,p,n.outChannels],Z=he({inputs:{x:X},backend:s,attrs:{shape:Y}}),te=f?Z:_t({inputs:{x:Z},backend:s,attrs:{perm:[0,3,1,2]}});f||x.push(Z),x.push(X);for(let J of x)s.disposeIntermediateTensorInfo(J);return te}function v9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dataFormat:u,dilations:l,dimRoundingMode:c}=s,p=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(r.shape,a.shape,i,l,o,c,!1,p),h;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))h=d2({x:r,filter:a,convInfo:d,backend:n});else if(K().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=p2({x:r,filter:a,convInfo:d,backend:n});else{let m=new c2(d);h=n.runWebGLProgram(m,[r,a],"float32")}let f=he({inputs:{x:h},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(h),f}var x9={kernelName:Aa,backendName:"webgl",kernelFunc:v9},w9=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},k9=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,u=a?1:2,l=a?2:3,c=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${c}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${u}], coords[${l}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},S9=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${s} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},I9=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,u=n-1-e.padInfo.top,l=s-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${u}, ${l});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${s} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function C9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:i,pad:o,dataFormat:u,dimRoundingMode:l,filterShape:c}=s,p=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(r.shape,c,i,1,o,l,!1,p),h=new w9(d);return n.runWebGLProgram(h,[r,a],"float32")}var N9={kernelName:bg,backendName:"webgl",kernelFunc:C9};function T9(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:i,strides:o,pad:u,dataFormat:l,dimRoundingMode:c}=s,p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(i,a.shape,o,1,u,c,!1,p),h=new k9(d);return n.runWebGLProgram(h,[r,a],"float32")}var $9={kernelName:Ea,backendName:"webgl",kernelFunc:T9};function _9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dilations:u}=s,l=C.computeConv3DInfo(r.shape,a.shape,i,u,o),c=new b9(l);return n.runWebGLProgram(c,[r,a],"float32")}var A9={kernelName:np,backendName:"webgl",kernelFunc:_9};function E9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:i,pad:o,filterShape:u}=s,l=C.computeConv3DInfo(r.shape,u,i,1,o),c=new S9(l);return n.runWebGLProgram(c,[r,a],"float32")}var R9={kernelName:yg,backendName:"webgl",kernelFunc:E9};function D9(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:i,strides:o,inputShape:u}=s,l=C.computeConv3DInfo(u,a.shape,o,1,i),c=new I9(l);return n.runWebGLProgram(c,[r,a],"float32")}var F9={kernelName:vg,backendName:"webgl",kernelFunc:D9},O9=du+`
|
|
return cos(x);
|
|
`,P9=Ke({opSnippet:O9}),z9={kernelName:Ra,backendName:"webgl",kernelFunc:P9},M9=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,L9=Ke({opSnippet:M9}),B9={kernelName:Da,backendName:"webgl",kernelFunc:L9},V9=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,i,o,u]=e,[l]=t,[c,p]=n;this.outputShape=[l,c,p,u];let d=s==="bilinear"?1:0,[h,f]=[`${i-1}.0`,`${o-1}.0`],[m,g,b]=c>1?[`${(i-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[y,v,x]=p>1?[`${(o-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${y});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${v};
|
|
|
|
float in_y = ${b};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${x};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${d} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},W9=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:i}=t,{cropSize:o,method:u,extrapolationValue:l}=s,c=new V9(r.shape,a.shape,o,u,l);return n.runWebGLProgram(c,[r,a,i],"float32")},U9={kernelName:go,backendName:"webgl",kernelFunc:W9},Sw=class{constructor(e,t,n,s){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let r=this.outputShape.length,a=this.op==="*"?"1.0":"0.0",i=n?a:`getX(${Iw(r,"coords",this.op)})`,o=this.outputShape[this.outputShape.length-1],u="",l="";n?(u=s?`end != ${o-1}`:"end != 0",l=s?"end + 1":"end - 1"):(u=s?`end + pow2 < ${o}`:"end >= pow2",l=s?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${ot(r)} coords = getOutputCoords();
|
|
int end = ${Cw(r,"coords",this.op)};
|
|
float val = ${i};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${u}) {
|
|
int idx = ${l};
|
|
${Cw(r,"coords",this.op)} = idx;
|
|
val ${this.op}= getX(${Iw(r,"coords",this.op)});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function Iw(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function Cw(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function h2(e,t,n,s,r,a){let i=t.shape.length,o=C.getAxesPermutation([s],i),u=t;o!=null&&(u=_t({inputs:{x:t},backend:n,attrs:{perm:o}}));let l=C.getInnerMostAxes(1,i)[0];if(l!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${s}`);let c=u.shape[l],p=Rn({inputs:{x:u},backend:n});for(let d=0;d<=Math.ceil(Math.log2(c))-1;d++){let h=new Sw(e,u.shape,!1,a),f=[[d]],m=p;p=n.runWebGLProgram(h,[p],p.dtype,f),n.disposeIntermediateTensorInfo(m)}if(r){let d=new Sw(e,u.shape,r,a),h=p;p=n.runWebGLProgram(d,[p],p.dtype),n.disposeIntermediateTensorInfo(h)}if(o!=null){let d=C.getUndoAxesPermutation(o),h=_t({inputs:{x:p},backend:n,attrs:{perm:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(u),h}return p}function G9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s;return h2("*",r,n,a,i,o)}var H9={kernelName:mo,backendName:"webgl",kernelFunc:G9};function q9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s;return h2("+",r,n,a,i,o)}var j9={kernelName:Fa,backendName:"webgl",kernelFunc:q9};function K9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:i,binaryOutput:o}=s;if(r.shape.length===1){let u=n.readSync(r.dataId),l=n.readSync(a.dataId),c=H1(u,l,a.dtype,a.shape,i);return n.makeTensorInfo([i],a.dtype,c)}else if(r.shape.length===2){let u=n.bufferSync(r),l=n.bufferSync(a),c=oX(u,l,i,o);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var X9={kernelName:xg,backendName:"webgl",kernelFunc:K9},Y9=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Q9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:i}=s,o=r.shape[0],u=i==="NHWC"?r.shape[1]:r.shape[2],l=i==="NHWC"?r.shape[2]:r.shape[3],c=i==="NHWC"?r.shape[3]:r.shape[1],p=u*a,d=l*a,h=c/(a*a),f=i==="NHWC"?[o,p,d,h]:[o,h,p,d],m=new Y9(f,a,i);return n.runWebGLProgram(m,[r],r.dtype)}var Z9={kernelName:bo,backendName:"webgl",kernelFunc:Q9},f2=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Sn(this.outputShape.length);let a=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,u="",l="";n&&(s?u=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?u=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:u=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,l="result = activation(result);");let c=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${u}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${o};
|
|
int q = d2 - d1 * ${o};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${a}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${i}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${c}
|
|
${l}
|
|
setOutput(result);
|
|
}
|
|
`}},m2=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Sn(this.outputShape.length);let a=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,u=e.dilationWidth,l=e.filterHeight,c=e.filterWidth,p=c,d=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<c;g++)d+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;d+=`
|
|
for (int r = 0; r < ${l}; r++) {
|
|
`;for(let g=0;g<c;g++)d+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;d+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(p+1)/2;g++){let b=g*2;if(d+=`
|
|
xC = xCCorner + ${b*u};
|
|
`,o===1){if(b<c&&(i%2===1?(d+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
`,u===1&&b>0?d+=`
|
|
xC${b} = vec4(xTexelC${b-2}.zw, xTexelC${b}.xy);
|
|
`:d+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${b} = vec4(previous.zw, xTexelC${b}.xy);
|
|
} else {
|
|
xC${b} = vec4(0.0, 0.0, xTexelC${b}.xy);
|
|
}
|
|
`):d+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
xC${b} = xTexelC${b};
|
|
`,b+1<c)){let y=i%2===0?w.nearestLargerEven(u):u;u%2===0&&i%2===1||u%2!==0&&i%2!==1?(d+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
`,u>1&&(d+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
`),d+=`
|
|
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.xy);
|
|
`):y===1?d+=`
|
|
xC${b+1} = xTexelC${b};
|
|
`:d+=`
|
|
xCOffset = xC + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b+1} = xTexelC${b+1};
|
|
`}}else b<c&&(i%2===1?(d+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
|
|
`,b+1<c&&(d+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${b+1} = vec4(xTexelC${b+1}.xy, final.xy);
|
|
`)):(d+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b} = vec4(
|
|
xTexelC${b}.xy, xTexelC${b+1}.xy);
|
|
`,b+1<c&&(d+=`
|
|
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
|
|
`)));b<c&&(d+=`
|
|
wTexel = getW(r, ${b}, d1, q);
|
|
dotProd += xC${b} * vec4(wTexel.xz, wTexel.xz);
|
|
`,b+1<c&&(d+=`
|
|
wTexel = getW(r, ${b+1}, d1, q);
|
|
dotProd += xC${b+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}d+=`
|
|
}
|
|
`,d+=`
|
|
}
|
|
`;let h="",f="";n&&(s?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${a};
|
|
int q = d2 - d1 * ${a};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${d}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};function J9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dilations:u,dimRoundingMode:l}=s,c=u;c==null&&(c=[1,1]),w.assert(C.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let p=C.computeConv2DInfo(r.shape,a.shape,i,c,o,l,!0),d;K().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels===1?d=new m2(p):d=new f2(p);let h=[[p.padInfo.top,p.padInfo.left],[p.strideHeight,p.strideWidth],[p.dilationHeight,p.dilationWidth],[p.inHeight,p.inWidth]];return n.runWebGLProgram(d,[r,a],"float32",h)}var eQ={kernelName:Oa,backendName:"webgl",kernelFunc:J9},tQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},nQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function sQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:i,dilations:o,pad:u,dimRoundingMode:l,filterShape:c}=s,p=C.computeConv2DInfo(r.shape,c,i,o,u,l,!0),d=new tQ(p);return n.runWebGLProgram(d,[r,a],"float32")}var rQ={kernelName:wg,backendName:"webgl",kernelFunc:sQ};function aQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:i,dilations:o,pad:u,dimRoundingMode:l,inputShape:c}=s,p=C.computeConv2DInfo(c,a.shape,i,o,u,l,!0),d=new nQ(p);return n.runWebGLProgram(d,[r,a],"float32")}var iQ={kernelName:kg,backendName:"webgl",kernelFunc:aQ},oQ=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function uQ(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=w.sizeFromShape(s.shape),i=he({inputs:{x:s},backend:n,attrs:{shape:[a]}}),o=new oQ(a),u=n.runWebGLProgram(o,[i],i.dtype),l=he({inputs:{x:u},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),l}var lQ={kernelName:Sg,backendName:"webgl",kernelFunc:uQ},cQ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:i,filterWidth:o,dilationHeight:u,dilationWidth:l}=e,{top:c,left:p}=s;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${a});
|
|
const ivec2 pads = ivec2(${c}, ${p});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${u};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${l};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function dQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dilations:u}=s,l=C.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",u),c,p=new cQ(l);c=n.runWebGLProgram(p,[r,a],"float32");let d=he({inputs:{x:c},backend:n,attrs:{shape:l.outShape}});return n.disposeIntermediateTensorInfo(c),d}var pQ={kernelName:sp,backendName:"webgl",kernelFunc:dQ};function hQ(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:i,summedDims:o,idDims:u}=C.decodeEinsumEquation(r,a.length);C.checkEinsumDimSizes(i.length,u,a);let{path:l,steps:c}=C.getEinsumComputePath(o,u),p=c.length,d=null,h=i.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:b,expandDims:y}=C.getEinsumPermutation(h,u[g]),v;C.isIdentityPermutation(b)?v=a[g]:(v=_t({inputs:{x:a[g]},backend:n,attrs:{perm:b}}),f.push(v));let x=v.shape.slice();for(let k=0;k<y.length;++k)x.splice(y[k],0,1);w.arraysEqual(v.shape,x)||(v=he({inputs:{x:v},backend:n,attrs:{shape:x}}),f.push(v)),d===null?d=v:(d=_v({inputs:{a:v,b:d},backend:n}),f.push(d))}m<p-1&&(l[m]>=0&&(d=rh({inputs:{x:d},backend:n,attrs:{axis:l[m]-(i.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var fQ={kernelName:rp,backendName:"webgl",kernelFunc:hQ},mQ="return (x >= 0.0) ? x : (exp(x) - 1.0);",gQ=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,bQ=Ke({opSnippet:mQ,packedOpSnippet:gQ}),yQ={kernelName:za,backendName:"webgl",kernelFunc:bQ},vQ="return (b >= 1.0) ? a : a * (b + 1.0);",xQ=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,wQ=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new tc(xQ,s.shape,r.shape):new lo(vQ,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},kQ={kernelName:Ig,backendName:"webgl",kernelFunc:wQ},SQ=`
|
|
return vec4(equal(a, b));
|
|
`,IQ="return float(a == b);",CQ=jt({opSnippet:IQ,packedOpSnippet:SQ,dtype:"bool",cpuKernelImpl:cX}),NQ={kernelName:yo,backendName:"webgl",kernelFunc:CQ},TQ=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${C.ERF_P};
|
|
float a1 = ${C.ERF_A1};
|
|
float a2 = ${C.ERF_A2};
|
|
float a3 = ${C.ERF_A3};
|
|
float a4 = ${C.ERF_A4};
|
|
float a5 = ${C.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,$Q=Ke({opSnippet:TQ}),_Q={kernelName:yl,backendName:"webgl",kernelFunc:$Q},AQ=du+`
|
|
return exp(x);
|
|
`,EQ=`
|
|
vec4 result = exp(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,g2=Ke({opSnippet:AQ,packedOpSnippet:EQ,cpuKernelImpl:dX,dtype:"float32"}),RQ={kernelName:Ma,backendName:"webgl",kernelFunc:g2};function eg(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,i=a.shape.length,o=a.shape.slice(),u=r;return r<0&&(w.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+r+1),o.splice(u,0,1),he({inputs:{x:a},backend:s,attrs:{shape:o}})}var DQ={kernelName:vo,backendName:"webgl",kernelFunc:eg},Nw="return exp(x) - 1.0;",FQ=Ke({opSnippet:Nw,packedOpSnippet:Nw,cpuKernelImpl:pX}),OQ={kernelName:xo,backendName:"webgl",kernelFunc:FQ},Tw=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${s});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function b2(e,t,n){let s=n.texData.get(e.dataId),r=w.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],i=r/a,o=he({inputs:{x:e},backend:n,attrs:{shape:[i,a]}}),u=o.shape,l=new Tw("real",u,t),c=new Tw("imag",u,t),p=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:u},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:u}],d=n.runWebGLProgram(l,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=Fr({inputs:{real:d,imag:h},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h);let m=he({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(f),m}function PQ(e){let{inputs:t,backend:n}=e,{input:s}=t;return b2(s,!1,n)}var zQ={kernelName:Cg,backendName:"webgl",kernelFunc:PQ},MQ=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function sc(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||w.inferDtype(r),a==="string"){let i=w.getArrayFromDType(a,w.sizeFromShape(s));return i.fill(r),t.makeTensorInfo(s,a,i)}else{let i=new MQ(s,r),o=[[r]];return t.runWebGLProgram(i,[],a,o)}}var LQ={kernelName:vl,backendName:"webgl",kernelFunc:sc},BQ=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},VQ={kernelName:wo,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new BQ(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},$w="return floor(x);",WQ=Ke({opSnippet:$w,packedOpSnippet:$w,cpuKernelImpl:hX}),UQ={kernelName:La,backendName:"webgl",kernelFunc:WQ},GQ=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,HQ=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,qQ=jt({opSnippet:GQ,packedOpSnippet:HQ,dtype:"int32"}),jQ={kernelName:Ba,backendName:"webgl",kernelFunc:qQ},KQ=class{constructor(e){this.variableNames=["A"];let t=fn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},XQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=fn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},YQ={kernelName:vd,backendName:"webgl",kernelFunc:QQ},Wi;function QQ(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[u,l]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],c=[l,u],p=[l,u,a];(o||i)&&(Wi==null&&(Wi=document.createElement("canvas").getContext("2d")),Wi.canvas.width=u,Wi.canvas.height=l,Wi.drawImage(r,0,0,u,l),r=Wi.canvas);let d=n.makeTensorInfo(c,"int32");n.texData.get(d.dataId).usage=2,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),r);let h=K().getBool("WEBGL_PACK")?new XQ(p):new KQ(p),f=n.runWebGLProgram(h,[d],"int32");return n.disposeData(d.dataId),f}function ZQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=C.convertConv2DDataFormat(c),g=C.computeConv2DInfo(r.shape,a.shape,u,p,l,d,!1,m),b,y=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))b=d2({x:r,filter:a,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:f});else if(K().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)b=p2({x:r,filter:a,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:f});else{let x=i!=null,k=o!=null,I=h==="leakyrelu",$=h?nh(h,!1):null,R=new c2(g,x,$,k,I),E=[r,a],P=(A,O)=>{if(O==="NCHW"&&A.shape.length===1&&A.shape[0]!==1){let T=he({inputs:{x:A},backend:n,attrs:{shape:[A.shape[0],1,1]}});return y.push(T),T}return A};if(x&&E.push(P(i,c)),k&&E.push(P(o,c)),I){let A=n.makeTensorInfo([],"float32",w.createScalarValue(f,"float32"));E.push(A),y.push(A)}b=n.runWebGLProgram(R,E,"float32")}let v=he({inputs:{x:b},backend:n,attrs:{shape:g.outShape}});return y.push(b),y.forEach(x=>n.disposeIntermediateTensorInfo(x)),v}var JQ={kernelName:ua,backendName:"webgl",kernelFunc:ZQ};function eZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=[],m=c;m==null&&(m=[1,1]),w.assert(C.eitherStridesOrDilationsAreOne(u,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${u} and dilations '${m}'`);let g=C.computeConv2DInfo(r.shape,a.shape,u,m,l,p,!0),b=K().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,y=d?nh(d,b):null,v=[r,a],x=i!=null,k=o!=null,I=d==="leakyrelu";if(x&&v.push(i),k&&v.push(o),I){let P=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));v.push(P),f.push(P)}let $;b?$=new m2(g,x,y,k,I):$=new f2(g,x,y,k,I);let R=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],E=n.runWebGLProgram($,v,"float32",R);return f.forEach(P=>n.disposeIntermediateTensorInfo(P)),E}var tZ={kernelName:la,backendName:"webgl",kernelFunc:eZ},nZ=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=ot(t.length),r=ot(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${s} strides = ${s}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${a};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function sZ(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,i=a[a.length-1],o=w.sizeFromShape(s.shape),[u,l,c,p]=C.prepareAndValidate(s,r),d=he({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),h=he({inputs:{x:s},backend:n,attrs:{shape:[w.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let b=n.readSync(r.dataId),y=n.bufferSync(s),v=fX(b,y,s.dtype,l,i,c,p,s.shape,o);return n.makeTensorInfo(u,s.dtype,v.values)}let f=new nZ(i,p,[l,c]),m=n.runWebGLProgram(f,[h,d],h.dtype),g=he({inputs:{x:m},backend:n,attrs:{shape:u}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var rZ={kernelName:So,backendName:"webgl",kernelFunc:sZ},aZ=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ot(this.rank),s=iZ(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
int index = int(getIndices(resRC.x, resRC.z));
|
|
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
|
|
setOutput(inBounds * getA(${s}));
|
|
}
|
|
`}};function iZ(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("index"):s.push(`${n[r]}`);return s.join()}function y2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:i,batchDims:o}=s,u=w.parseAxisParam(i,r.shape)[0];if(K().get("DEBUG")){let y=n.readSync(a.dataId),v=r.shape[u];for(let x=0;x<y.length;++x){let k=y[x];w.assert(k<=v-1&&k>=0,()=>`GatherV2: the index value ${k} is not in [0, ${v-1}]`)}}let l=C.segment_util.collectGatherOpShapeInfo(r,a,u,o),c=w.sizeFromShape(a.shape),p=[],d=he({inputs:{x:r},backend:n,attrs:{shape:[l.batchSize,l.outerSize,l.dimSize,l.sliceSize]}}),h=he({inputs:{x:a},backend:n,attrs:{shape:[l.batchSize,c/l.batchSize]}});p.push(d),p.push(h);let f=[l.batchSize,l.outerSize,c/l.batchSize,l.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let y=n.bufferSync(h),v=n.bufferSync(d),x=mX(v,y,f);return p.forEach(k=>n.disposeIntermediateTensorInfo(k)),n.makeTensorInfo(l.outputShape,x.dtype,x.values)}let m=new aZ(d.shape,f),g=n.runWebGLProgram(m,[d,h],d.dtype);p.push(g);let b=he({inputs:{x:g},backend:n,attrs:{shape:l.outputShape}});return p.forEach(y=>n.disposeIntermediateTensorInfo(y)),b}var oZ={kernelName:ko,backendName:"webgl",kernelFunc:y2},uZ="return float(a > b);",lZ=`
|
|
return vec4(greaterThan(a, b));
|
|
`,cZ=jt({opSnippet:uZ,packedOpSnippet:lZ,cpuKernelImpl:gX,dtype:"bool"}),dZ={kernelName:Io,backendName:"webgl",kernelFunc:cZ},pZ="return float(a >= b);",hZ=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,fZ=jt({opSnippet:pZ,packedOpSnippet:hZ,dtype:"bool",cpuKernelImpl:bX}),mZ={kernelName:Wa,backendName:"webgl",kernelFunc:fZ};function gZ(e){let{inputs:t,backend:n}=e,{input:s}=t;return b2(s,!0,n)}var bZ={kernelName:Ng,backendName:"webgl",kernelFunc:gZ},yZ="return float(!isnan(x) && !isinf(x));",vZ=Ke({opSnippet:yZ,dtype:"bool"}),xZ={kernelName:xl,backendName:"webgl",kernelFunc:vZ},wZ="return float(isinf(x));",kZ=Ke({opSnippet:wZ,dtype:"bool"}),SZ={kernelName:wl,backendName:"webgl",kernelFunc:kZ},IZ="return float(isnan(x));",CZ=Ke({opSnippet:IZ,dtype:"bool"}),NZ={kernelName:kl,backendName:"webgl",kernelFunc:CZ},TZ="return float(a < b);",$Z=`
|
|
return vec4(lessThan(a, b));
|
|
`,_Z=jt({opSnippet:TZ,packedOpSnippet:$Z,cpuKernelImpl:yX,dtype:"bool"}),AZ={kernelName:Co,backendName:"webgl",kernelFunc:_Z},EZ="return float(a <= b);",RZ=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,DZ=jt({opSnippet:EZ,packedOpSnippet:RZ,cpuKernelImpl:vX,dtype:"bool"}),FZ={kernelName:No,backendName:"webgl",kernelFunc:DZ};function OZ(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,i=xX(s,r,a);return t.makeTensorInfo([i.length],"float32",i)}var PZ={kernelName:Tg,backendName:"webgl",kernelFunc:OZ},zZ=du+`
|
|
return x < 0.0 ? 0./0. : log(x);
|
|
`,MZ=`
|
|
vec4 result = log(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
|
|
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
|
|
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
|
|
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
|
|
return result;
|
|
`,LZ=Ke({opSnippet:zZ,packedOpSnippet:MZ,cpuKernelImpl:wX}),BZ={kernelName:Ha,backendName:"webgl",kernelFunc:LZ},VZ=du+`
|
|
return log(1.0 + x);
|
|
`,WZ=Ke({opSnippet:VZ}),UZ={kernelName:Sl,backendName:"webgl",kernelFunc:WZ},GZ="return float(a >= 1.0 && b >= 1.0);",HZ=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,qZ=jt({opSnippet:GZ,packedOpSnippet:HZ,dtype:"bool"}),jZ={kernelName:To,backendName:"webgl",kernelFunc:qZ},KZ="return float(!(x >= 1.0));",XZ=Ke({opSnippet:KZ}),YZ={kernelName:Il,backendName:"webgl",kernelFunc:XZ},QZ="return float(a >= 1.0 || b >= 1.0);",ZZ=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,JZ=jt({opSnippet:QZ,packedOpSnippet:ZZ,dtype:"bool"}),e7={kernelName:ip,backendName:"webgl",kernelFunc:JZ},t7=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,i=e[3]-1;this.outputShape=e;let o,u=`float(${n}) + float(${s}) * sum`;r===.5?o=`inversesqrt(${u})`:r===1?o=`1.0/(${u})`:o=`exp(log(${u}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},n7=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,i=e[3]-1;this.outputShape=e;let o,u=`float(${n}) + float(${s}) * sum`;r===.5?o=`inversesqrt(${u})`:r===1?o=`1.0/(${u})`:o=`exp(log(${u}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},s7=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:i,alpha:o,beta:u}=s,l=K().getBool("WEBGL_PACK_NORMALIZATION")?new n7(r.shape,a,i,o,u):new t7(r.shape,a,i,o,u);return n.runWebGLProgram(l,[r],r.dtype)},r7={kernelName:op,backendName:"webgl",kernelFunc:s7},a7=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${s}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${s})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},i7=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:i}=t,{depthRadius:o,bias:u,alpha:l,beta:c}=s,p=new a7(r.shape,o,u,l,c);return n.runWebGLProgram(p,[r,a,i],r.dtype)},o7={kernelName:$g,backendName:"webgl",kernelFunc:i7};function u7(e,t,n,s){let r=w.sizeFromShape(t),i=w.sizeFromShape(e.shape)/r,o=he({inputs:{x:e},attrs:{shape:[i,r]},backend:s}),u=Si(o,e.dtype,"max",s),l=he({inputs:{x:u},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(o),s.disposeIntermediateTensorInfo(u),l}function v2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:i}=s,o=r.shape.length,u=w.parseAxisParam(a,r.shape),l=u,c=C.getAxesPermutation(l,o),p=c!=null,d=n.shouldExecuteOnCPU([r]),h=r;if(p){if(d){let v=n.texData.get(h.dataId).values,x=new Array(o);for(let $=0;$<x.length;$++)x[$]=r.shape[c[$]];let k=$v(v,r.shape,r.dtype,c,x);h=n.makeTensorInfo(x,r.dtype);let I=n.texData.get(h.dataId);I.values=k}else h=sh(r,c,n);l=C.getInnerMostAxes(l.length,o)}C.assertAxesAreInnerMostDims("max",l,o);let[f,m]=C.computeOutAndReduceShapes(h.shape,l),g=f;i&&(g=C.expandShapeToKeepDim(f,u));let b;if(d){let v=n.texData.get(h.dataId).values,x=kX(v,w.sizeFromShape(m),g,r.dtype);b=n.makeTensorInfo(g,r.dtype);let k=n.texData.get(b.dataId);k.values=x}else b=u7(h,m,g,n);return p&&n.disposeIntermediateTensorInfo(h),b}var l7={kernelName:qa,backendName:"webgl",kernelFunc:v2},c7=Z1+`
|
|
return max(a, b);
|
|
`,d7=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+th+`
|
|
return result;
|
|
`,p7=jt({opSnippet:c7,packedOpSnippet:d7,cpuKernelImpl:SX}),h7={kernelName:ja,backendName:"webgl",kernelFunc:p7};function f7(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;iu(r,"maxPool");let{filterSize:a,strides:i,pad:o,dimRoundingMode:u}=s,l=1;w.assert(C.eitherStridesOrDilationsAreOne(i,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=C.computePool2DInfo(r.shape,a,i,l,o,u);if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))return Rn({inputs:{x:r},backend:n});let p=new il(c,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var m7={kernelName:Ka,backendName:"webgl",kernelFunc:f7};function g7(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:i,pad:o,dataFormat:u,dimRoundingMode:l}=s,c=[1,1,1],p=C.computePool3DInfo(r.shape,a,i,c,o,l,u),d=new Av(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var b7={kernelName:up,backendName:"webgl",kernelFunc:g7},y7=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=a-1-e.padInfo.left,u=r*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${u} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},v7=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,u=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.front,p=u-1-e.padInfo.top,d=l-1-e.padInfo.left,h=o*u*l-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${p}, ${d});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${u} * ${l} +
|
|
wR * ${l} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function x7(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,i=a,{filterSize:o,strides:u,pad:l,dimRoundingMode:c}=s,p=[1,1,1],d=C.computePool3DInfo(i.shape,o,u,p,l,c),h=new Av(d,"max",!0),f=n.runWebGLProgram(h,[i],i.dtype),m=new v7(d),g=n.runWebGLProgram(m,[r,f],i.dtype);return n.disposeIntermediateTensorInfo(f),g}var w7={kernelName:Ag,backendName:"webgl",kernelFunc:x7};function k7(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:i}=t,o=a;iu([a,i],"maxPoolGrad");let{filterSize:u,strides:l,pad:c,dimRoundingMode:p}=s,d=C.computePool2DInfo(o.shape,u,l,1,c,p),h=!0,f=new il(d,"max",h),m=n.runWebGLProgram(f,[o],o.dtype),g=new y7(d),b=n.runWebGLProgram(g,[r,m],o.dtype);return n.disposeIntermediateTensorInfo(m),b}var S7={kernelName:_g,backendName:"webgl",kernelFunc:k7};function I7(e,t,n,s){let r=new il(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new il(n,"max",!0,!0,t);let i=s.runWebGLProgram(r,[e],"float32");return[a,i]}var C7={kernelName:Eg,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:i,includeBatchInIndex:o}=t,u=n;w.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let l=[1,1];w.assert(C.eitherStridesOrDilationsAreOne(a,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${l}'`);let c=C.computePool2DInfo(s.shape,r,a,l,i),[p,d]=I7(s,o,c,u);return[p,d]}};function N7(e,t,n,s){let r=w.sizeFromShape(t),i=w.sizeFromShape(e.shape)/r,o=he({inputs:{x:e},attrs:{shape:[i,r]},backend:s}),u=Si(o,"float32","mean",s),l=he({inputs:{x:u},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(o),s.disposeIntermediateTensorInfo(u),l}var T7={kernelName:Xa,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,i=n,o=s.shape.length,u=w.parseAxisParam(a,s.shape),l=u,c=C.getAxesPermutation(l,o),p=c!=null,d=i.shouldExecuteOnCPU([s]),h=[],f=s;if(p){if(d){let x=i.texData.get(f.dataId).values,k=new Array(o);for(let R=0;R<k.length;R++)k[R]=s.shape[c[R]];let I=$v(x,s.shape,s.dtype,c,k);f=i.makeTensorInfo(k,s.dtype);let $=i.texData.get(f.dataId);$.values=I}else f=sh(s,c,i);h.push(f),l=C.getInnerMostAxes(l.length,o)}C.assertAxesAreInnerMostDims("sum",l,o);let[m,g]=C.computeOutAndReduceShapes(f.shape,l),b=m;r&&(b=C.expandShapeToKeepDim(m,u));let y=N7(f,g,b,i);for(let v of h)i.disposeIntermediateTensorInfo(v);return y}};function $7(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s,o=r.shape.length,u=w.parseAxisParam(a,r.shape),l=u,c=C.getAxesPermutation(l,o),p=r;c!=null&&(p=_t({inputs:{x:r},backend:n,attrs:{perm:c}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",l,o);let[d,h]=C.computeOutAndReduceShapes(p.shape,l),f=w.sizeFromShape(h),m=he({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=Si(m,m.dtype,"min",n),b;if(i){let y=C.expandShapeToKeepDim(d,u);b=he({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=he({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),b}var _7={kernelName:Ya,backendName:"webgl",kernelFunc:$7},A7=Z1+`
|
|
return min(a, b);
|
|
`,E7=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+th+`
|
|
return result;
|
|
`,R7=jt({opSnippet:A7,packedOpSnippet:E7,cpuKernelImpl:IX}),D7={kernelName:Qa,backendName:"webgl",kernelFunc:R7},F7=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let s=e.length,r=ot(s),a=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),u=n==="reflect"?0:1;if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${u};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${u};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${s}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${u};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${u};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},O7=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=ot(s),a=t.map(h=>h[0]).join(","),i=t.map((h,f)=>h[0]+e[f]).join(","),o=ln("rc",s),u=ln("source",s),l=`${o[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${u.slice(-2).join()})`,p=n==="reflect"?0:1,d="";if(s===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${p};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${p};
|
|
}
|
|
source -= start;
|
|
`;d=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${u.join()}), ${c});
|
|
${o[s-1]} += 1;
|
|
if(${l}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${u.join()}), ${c});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${p}) +
|
|
gte * ((end - 1) * 2 - source + ${p});
|
|
source -= start;
|
|
`;d=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${u.join()}), ${c});
|
|
${o[s-1]} += 1;
|
|
if(${l}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${u.join()}), ${c});
|
|
}
|
|
rc = outputLoc;
|
|
${o[s-2]} += 1;
|
|
if(${o[s-2]} < ${this.outputShape[s-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${u.join()}), ${c});
|
|
${o[s-1]} += 1;
|
|
if(${l}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${u.join()}), ${c});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${d}
|
|
setOutput(result);
|
|
}
|
|
`}},P7=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,i=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new O7(s.shape,r,a):new F7(s.shape,r,a);return t.runWebGLProgram(i,[s],s.dtype)},z7={kernelName:Za,backendName:"webgl",kernelFunc:P7},M7=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,L7=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+th+`
|
|
return result;
|
|
`,B7=jt({opSnippet:M7,packedOpSnippet:L7}),V7={kernelName:Cl,backendName:"webgl",kernelFunc:B7},W7=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},U7=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,G7=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,x2=jt({opSnippet:U7,packedOpSnippet:G7,checkOutOfBounds:!0}),H7={kernelName:Pa,backendName:"webgl",kernelFunc:x2},_w="return a - b;",w2=jt({opSnippet:_w,packedOpSnippet:_w,supportsComplex:!0,cpuKernelImpl:VX}),q7={kernelName:fi,backendName:"webgl",kernelFunc:w2};function k2(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,i=w.parseAxisParam([a],r.shape),o=v2({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),u=C.expandShapeToKeepDim(o.shape,i),l=he({inputs:{x:o},backend:n,attrs:{shape:u}}),c=w2({inputs:{a:r,b:l},backend:n}),p=g2({inputs:{x:c},backend:n}),d=rh({inputs:{x:p},backend:n,attrs:{axis:i,keepDims:!1}}),h=he({inputs:{x:d},backend:n,attrs:{shape:u}}),f=x2({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}var j7={kernelName:pi,backendName:"webgl",kernelFunc:k2};function K7(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:i,normalized:o}=s,u=o?r:k2({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),l=u.shape[0],c=u.shape[1],p=new W7(l,c,a),d=[[i]],h=n.runWebGLProgram(p,[u],"int32",d);return o||n.disposeIntermediateTensorInfo(u),h}var X7={kernelName:Rg,backendName:"webgl",kernelFunc:K7},Y7=ss+`
|
|
return -x;
|
|
`,Q7=`
|
|
vec4 result = -x;
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`;function Z7(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[i,o]=NX(a.values,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,i)}let r;return K().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new ta(s.shape,Q7):r=new Gs(s.shape,Y7),n.runWebGLProgram(r,[s],s.dtype)}var J7={kernelName:$o,backendName:"webgl",kernelFunc:Z7},eJ=ws.nonMaxSuppressionV3Impl;function tJ(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u}=s,l=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=eJ(l,c,i,o,u);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var nJ={kernelName:Ao,backendName:"webgl",kernelFunc:tJ},sJ=ws.nonMaxSuppressionV4Impl;function rJ(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u,padToMaxOutputSize:l}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),{selectedIndices:d,validOutputs:h}=sJ(c,p,i,o,u,l);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var aJ={kernelName:Nl,backendName:"webgl",kernelFunc:rJ},iJ=ws.nonMaxSuppressionV5Impl;function oJ(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u,softNmsSigma:l}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=i,h=o,f=u,m=l,{selectedIndices:g,selectedScores:b}=iJ(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var uJ={kernelName:Eo,backendName:"webgl",kernelFunc:oJ},lJ=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${s}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},cJ=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:i,offValue:o}=s,u=w.sizeFromShape(r.shape),l=new lJ(u,a,i,o),c=he({inputs:{x:r},backend:n,attrs:{shape:[u]}}),p=n.runWebGLProgram(l,[c],r.dtype);n.disposeIntermediateTensorInfo(c);let d=[...r.shape,a],h=he({inputs:{x:p},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(p),h},dJ={kernelName:Do,backendName:"webgl",kernelFunc:cJ};function Hd(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=nc({inputs:{input:s},backend:n}),a=Hd({inputs:{x:r},backend:n}),i=ah({inputs:{input:s},backend:n}),o=Hd({inputs:{x:i},backend:n}),u=Fr({inputs:{real:a,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),u}else return sc({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var pJ={kernelName:Xo,backendName:"webgl",kernelFunc:Hd};function S2(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=nc({inputs:{input:s},backend:n}),a=S2({inputs:{x:r},backend:n}),i=ah({inputs:{input:s},backend:n}),o=Hd({inputs:{x:i},backend:n}),u=Fr({inputs:{real:a,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),u}else return sc({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var hJ={kernelName:Ro,backendName:"webgl",kernelFunc:S2};function fJ(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return eg({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,i=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],u=t.map(c=>{let p=eg({inputs:{input:c},backend:n,attrs:{dim:r}});return o.push(p),p}),l=l2({inputs:u,backend:n,attrs:{axis:r}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),l}var mJ={kernelName:Fo,backendName:"webgl",kernelFunc:fJ},gJ=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((u,l)=>u[0]+e[l]+u[1]);let s=e.length,r=ot(s),a=t.map(u=>u[0]).join(","),i=t.map((u,l)=>u[0]+e[l]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}},bJ=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=ot(s),a=t.map(f=>f[0]).join(","),i=t.map((f,m)=>f[0]+e[m]).join(","),o=ln("rc",s),u=ln("source",s),l=`${o[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${u.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${o[s-1]} += 1;
|
|
if(${l}) {
|
|
`,s===1?"":`}
|
|
rc = outputLoc;
|
|
${o[s-2]} += 1;
|
|
if(${o[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${o[s-1]} += 1;
|
|
if(${l}) {`],d=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f<m;f++)h+=`
|
|
${p[f]}
|
|
if (${d}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${f}] = getChannel(getX(${u.join()}), ${c});
|
|
}
|
|
`;h+=s===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},I2=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:i}=s;if(w.sizeFromShape(r.shape)===0){let l=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return sc({backend:n,attrs:{shape:l,value:i,dtype:r.dtype}})}let o=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new bJ(r.shape,a,i):new gJ(r.shape,a,i),u=[[i]];return n.runWebGLProgram(o,[r],r.dtype,u)},yJ={kernelName:ei,backendName:"webgl",kernelFunc:I2},vJ=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,xJ=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+th+`
|
|
return result;
|
|
`,wJ=jt({opSnippet:vJ,packedOpSnippet:xJ}),kJ={kernelName:ti,backendName:"webgl",kernelFunc:wJ};function SJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s,o=r.shape.length,u=[],l=w.parseAxisParam(a,r.shape),c=l,p=C.getAxesPermutation(c,o),d=r;p!=null&&(d=_t({inputs:{x:r},backend:n,attrs:{perm:p}}),c=C.getInnerMostAxes(c.length,o),u.push(d)),C.assertAxesAreInnerMostDims("prod",c,o);let h;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:g,outDtype:b}=$X(d.shape,d.dtype,f,c);h=n.makeTensorInfo(g,b,m)}else{let[f,m]=C.computeOutAndReduceShapes(d.shape,c),g=w.sizeFromShape(m),b=he({inputs:{x:d},backend:n,attrs:{shape:[-1,g]}}),y=bp(r.dtype),v=Si(b,y,"prod",n);h=he({inputs:{x:v},backend:n,attrs:{shape:f}}),u.push(b),u.push(v)}if(i){u.push(h);let f=C.expandShapeToKeepDim(h.shape,l);h=he({inputs:{x:h},backend:n,attrs:{shape:f}})}return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var IJ={kernelName:si,backendName:"webgl",kernelFunc:SJ},C2=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:i}=n,o=_X(s,r,a,i);return t.makeTensorInfo([o.length],i,o)},CJ={kernelName:Tl,backendName:"webgl",kernelFunc:C2},NJ="return 1.0 / x;",TJ=Ke({opSnippet:NJ}),$J={kernelName:$l,backendName:"webgl",kernelFunc:TJ},_J=ss+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,AJ=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,EJ=Ke({opSnippet:_J,packedOpSnippet:AJ}),RJ={kernelName:ri,backendName:"webgl",kernelFunc:EJ},DJ=ss+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,FJ=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,OJ=Ke({opSnippet:DJ,packedOpSnippet:FJ}),PJ={kernelName:ii,backendName:"webgl",kernelFunc:OJ},zJ=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,i,o,u]=e;this.outputShape=[a,t,n,u];let l=[s&&t>1?i-1:i,s&&n>1?o-1:o],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${l[0]/c[0]},
|
|
${l[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},MJ=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,i,o,u]=e;this.outputShape=[a,t,n,u];let l=[s&&t>1?i-1:i,s&&n>1?o-1:o],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${l[0]/c[0]},
|
|
${l[1]/c[1]},
|
|
${l[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${u-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function LJ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:i,size:o}=s,[u,l]=o,c=K().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new MJ(r.shape,u,l,a,i):new zJ(r.shape,u,l,a,i);return n.runWebGLProgram(c,[r],"float32")}var BJ={kernelName:ai,backendName:"webgl",kernelFunc:LJ},VJ=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,i]=e,o=[n&&a>1?s-1:s,n&&i>1?r-1:r],u=[n&&a>1?a-1:a,n&&i>1?i-1:i],l=o[0]/u[0],c=o[1]/u[1],p=1/l,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${l});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function WJ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:i}=s,o=new VJ(a.shape,r.shape,i);return n.runWebGLProgram(o,[a],a.dtype)}var UJ={kernelName:Fg,backendName:"webgl",kernelFunc:WJ},GJ=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,i,o,u]=e;this.outputShape=[a,t,n,u];let l=[s&&t>1?i-1:i,s&&n>1?o-1:o],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${l[0]/c[0]},
|
|
${l[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},HJ=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,i,o,u]=e;this.outputShape=[a,t,n,u];let l=[s&&t>1?i-1:i,s&&n>1?o-1:o],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${l[0]/c[0]},
|
|
${l[1]/c[1]},
|
|
${l[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${u-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function qJ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:i,size:o}=s,[u,l]=o,c=K().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new HJ(r.shape,u,l,a,i):new GJ(r.shape,u,l,a,i);return n.runWebGLProgram(c,[r],r.dtype)}var jJ={kernelName:_l,backendName:"webgl",kernelFunc:qJ},KJ=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,i]=e,o=[n&&a>1?s-1:s,n&&i>1?r-1:r],u=[n&&a>1?a-1:a,n&&i>1?i-1:i],l=o[0]/u[0],c=o[1]/u[1],p=1/l,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${l});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${u[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${u[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function XJ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:i}=s,o=new KJ(a.shape,r.shape,i);return n.runWebGLProgram(o,[a],a.dtype)}var YJ={kernelName:Dg,backendName:"webgl",kernelFunc:XJ},QJ=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let s=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>s(o)).join(","),a=ot(n);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},ZJ=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=ln("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,i=ot(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(s.slice())};
|
|
if(${r}){
|
|
result.g = ${u(s.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${l(s.slice())};
|
|
if(${r}) {
|
|
result.a = ${c(s.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(h){return p(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function l(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function c(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let f=e.map((b,y)=>d(y,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function d(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function JJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,i=r.shape.length,o=w.parseAxisParam(a,r.shape);if(i===0)return Rn({inputs:{x:r},backend:n});let u=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new ZJ(r.shape,o):new QJ(r.shape,o);return n.runWebGLProgram(u,[r],r.dtype)}var eee={kernelName:Po,backendName:"webgl",kernelFunc:JJ},tee=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},nee={kernelName:Yo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:i}=t,o=n,u=new tee(s.shape,a),[l,c]=C.getImageCenter(i,s.shape[1],s.shape[2]),p=[[l,c,Math.sin(r),Math.cos(r)]];return o.runWebGLProgram(u,[s],s.dtype,p)}},see=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,ree=Ke({opSnippet:see}),aee={kernelName:zo,backendName:"webgl",kernelFunc:ree},iee="return inversesqrt(x);",oee=Ke({opSnippet:iee,cpuKernelImpl:AX}),uee={kernelName:oi,backendName:"webgl",kernelFunc:oee},N2=class{constructor(e,t,n,s,r,a,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let o=ot(r.length),u=ot(a.length),l="";n===1?l="i":n===2&&(l="i, j");let c=`getIndices(${l})`,p="";s===1?p="i":s===2&&(p="i, coords[1]");let d=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${r});
|
|
|
|
void main() {
|
|
${u} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${c});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${d};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function lee(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:i}=s,{sliceRank:o,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=C.calculateShapes(a,r,i),d=[p/l,l];if(p===0)return n.makeTensorInfo(i,r.dtype);let h=he({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),f=he({inputs:{x:a},backend:n,attrs:{shape:[u,l]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new N2(u,o,h.shape.length,f.shape.length,c,d),b=n.runWebGLProgram(g,[f,h,m],f.dtype),y=he({inputs:{x:b},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(m),y}var cee={kernelName:Mo,backendName:"webgl",kernelFunc:lee},dee=class{constructor(e,t,n,s){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,n];let r="while (left < right) {",a=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,i=K().getNumber("WEBGL_VERSION")===2?r:a,o=s==="left"?"<":"<=";this.userCode=`
|
|
int findBound(int batch, float value) {
|
|
int left = 0;
|
|
int right = numInputs;
|
|
int mid;
|
|
${i}
|
|
mid = (left + right) / 2;
|
|
if (getSortedSequence(batch, mid) ${o} value) {
|
|
left = mid + 1;
|
|
} else {
|
|
right = mid;
|
|
}
|
|
}
|
|
return right;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int valueIndex = coords[1];
|
|
|
|
float value = getValues(batch, valueIndex);
|
|
|
|
setOutput(float(findBound(batch, value)));
|
|
}
|
|
`}};function pee(e){let{inputs:t,backend:n,attrs:s}=e,{sortedSequence:r,values:a}=t,{side:i}=s,o=new dee(r.shape[0],r.shape[1],a.shape[1],i),u=[[r.shape[1]]];return n.runWebGLProgram(o,[r,a],"int32",u)}var hee={kernelName:Og,backendName:"webgl",kernelFunc:pee},fee=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],u=[];for(let l=0;l<t.length;l++)u.push(`${i[l]}`),l<e&&o.push(`${i[l]}`);s=o.join(),r=u.join()}let a=ot(n);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${s});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function mee(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,i=new fee(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[s,r,a],cn(r.dtype,a.dtype))}var gee={kernelName:Lo,backendName:"webgl",kernelFunc:mee},bee=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${C.SELU_SCALEALPHA};
|
|
float scale = ${C.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,yee=Ke({opSnippet:bee}),vee={kernelName:Al,backendName:"webgl",kernelFunc:yee},xee=du+`
|
|
return 1.0 / (1.0 + exp(-1.0 * x));
|
|
`,wee=`
|
|
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,kee=Ke({opSnippet:xee,packedOpSnippet:wee,cpuKernelImpl:RX}),See={kernelName:li,backendName:"webgl",kernelFunc:kee},Iee=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,Cee=Ke({opSnippet:Iee}),Nee={kernelName:El,backendName:"webgl",kernelFunc:Cee},Tee=du+`
|
|
return sin(x);
|
|
`,$ee=Ke({opSnippet:Tee}),_ee={kernelName:ui,backendName:"webgl",kernelFunc:$ee},Aee=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Eee=Ke({opSnippet:Aee}),Ree={kernelName:Vo,backendName:"webgl",kernelFunc:Eee},Dee=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,Fee=Ke({opSnippet:Dee}),Oee={kernelName:Rl,backendName:"webgl",kernelFunc:Fee},Pee=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:i}=s;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=a.reduce((b,y)=>b*y),u=[[0,0]];u.push(...i);for(let b=1+a.length;b<r.shape.length;++b)u.push([0,0]);let l=[],c=I2({inputs:{x:r},backend:n,attrs:{paddings:u,constantValue:0}}),p=C.getReshaped(c.shape,a,o,!1),d=C.getPermuted(p.length,a.length,!1),h=C.getReshapedPermuted(c.shape,a,o,!1),f=he({inputs:{x:c},backend:n,attrs:{shape:p}}),m=_t({inputs:{x:f},backend:n,attrs:{perm:d}}),g=he({inputs:{x:m},backend:n,attrs:{shape:h}});return l.push(c),l.push(f),l.push(m),l.forEach(b=>n.disposeIntermediateTensorInfo(b)),g},zee={kernelName:Wo,backendName:"webgl",kernelFunc:Pee};function Mee(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:i}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.readSync(s.dataId),u=n.readSync(r.dataId),l=n.readSync(a.dataId),c=n.readSync(i.dataId)[0],[p,d,h,f,m]=FX(o,s.shape,s.dtype,u,r.dtype,l,c);return[n.makeTensorInfo(d,s.dtype,p),n.makeTensorInfo([d[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var Lee={kernelName:cp,backendName:"webgl",kernelFunc:Mee};function Bee(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(s.dataId),u=Array.from(n.readSync(a.dataId)),[l,c,p]=OX(o,s.shape,s.dtype,i,u);return[n.makeTensorInfo(c,s.dtype,l),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var Vee={kernelName:Dl,backendName:"webgl",kernelFunc:Bee};function Wee(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let i=n.readSync(s.dataId),o=n.readSync(r.dataId),u=n.readSync(a.dataId),[l,c]=j1(i,s.shape,s.dtype,o,u,!0);return n.makeTensorInfo(c,s.dtype,l)}var Uee={kernelName:dp,backendName:"webgl",kernelFunc:Wee};function Gee(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let i=n.readSync(s.dataId),o=n.readSync(r.dataId),u=n.readSync(a.dataId),[l,c]=j1(i,s.shape,s.dtype,o,u);return n.makeTensorInfo(c,s.dtype,l)}var Hee={kernelName:pp,backendName:"webgl",kernelFunc:Gee};function qee(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:i}=t,{outputShape:o}=s,{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:d}=C.calculateShapes(a,r,o),h=!1;if(a.dtype==="string"){let b=n.bufferSync(r),y=n.bufferSync(a),v=w.decodeString(n.readSync(i.dataId)[0]),x=EX(b,y,o,d,c,l,u,p,v,h);return n.makeTensorInfo(o,x.dtype,x.values)}let f=new N2(l,u,r.shape.length,a.shape.length,p,[d,1],h),m=n.runWebGLProgram(f,[a,r,i],a.dtype),g=he({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),g}var jee={kernelName:hp,backendName:"webgl",kernelFunc:qee};function Kee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:i}=s,o=w.parseAxisParam(i,r.shape)[0],u=C.prepareSplitSize(r,a,o),l=r.shape.length,c=new Array(l).fill(0),p=r.shape.slice();return u.map(d=>{let h=[...p];h[o]=d;let f=pu({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[o]+=d,f})}var Xee={kernelName:Uo,backendName:"webgl",kernelFunc:Kee},Aw="return sqrt(x);",Yee=Ke({opSnippet:Aw,packedOpSnippet:Aw,cpuKernelImpl:PX}),Qee={kernelName:ci,backendName:"webgl",kernelFunc:Yee},Zee="return x * x;",Jee=Ke({opSnippet:Zee}),ete={kernelName:Fl,backendName:"webgl",kernelFunc:Jee},Ew="return (a - b) * (a - b);",tte=jt({opSnippet:Ew,packedOpSnippet:Ew}),nte={kernelName:hi,backendName:"webgl",kernelFunc:tte};function ste({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=ss+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,a=new Gs(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var rte={kernelName:gi,backendName:"webgl",kernelFunc:ste},ate=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=ot(n.length),a=ot(n.length),i="";if(s===1)i="coords * strides + begin";else{let o=0;i=n.map((u,l)=>(o++,n.length===1?`coords * strides[${l}] + begin[${l}]`:`coords[${o-1}] * strides[${l}] + begin[${l}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function ite(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:i,strides:o,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:y,end:v,strides:x}=kt.sliceInfo(r.shape,a,i,o,u,l,c,p,d),k;if(m)k=he({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||b){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let $=kt.computeOutShape(y,v,x),R=pu({inputs:{x:r},backend:n,attrs:{begin:y,size:$}});k=he({inputs:{x:R},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(R)}else if(n.shouldExecuteOnCPU([r])){let R=n.readSync(r.dataId),E=Ae(r.shape,r.dtype,R),P=zX(h,E,x,y);k=n.makeTensorInfo(f,r.dtype,P.values)}else{let R=new ate(y,x,h);k=n.runWebGLProgram(R,[r],r.dtype)}let I=he({inputs:{x:k},backend:n,attrs:{shape:f}});return n.disposeIntermediateTensorInfo(k),I}var ote={kernelName:Go,backendName:"webgl",kernelFunc:ite};function ute(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:i,rightPad:o,padWidth:u,preserveShortSequences:l}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=MX(d,h,r,a,i,o,u,l);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var lte={kernelName:fp,backendName:"webgl",kernelFunc:ute};function cte(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:i}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.readSync(a.dataId),u=n.readSync(i.dataId)[0],[l,c,p]=LX(o,u,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",l),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var dte={kernelName:Pg,backendName:"webgl",kernelFunc:cte};function pte(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.readSync(a.dataId),o=BX(i,r);return n.makeTensorInfo(a.shape,"int32",o)}var hte={kernelName:zg,backendName:"webgl",kernelFunc:pte},fte="return tan(x);",mte=Ke({opSnippet:fte}),gte={kernelName:Ho,backendName:"webgl",kernelFunc:mte},bte=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,yte=Ke({opSnippet:bte}),vte={kernelName:mi,backendName:"webgl",kernelFunc:yte},xte=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=ot(this.rank),r=wte(e);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function wte(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function T2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let u=n.readSync(r.dataId),l=r.dtype==="string"?u.map(d=>w.decodeString(d)):u,c=Ae(r.shape,r.dtype,l),p=WX(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new xte(r.shape,a);return n.runWebGLProgram(i,[r],r.dtype)}var kte={kernelName:Tr,backendName:"webgl",kernelFunc:T2},Ste=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},Ite=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function qr(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function Rw(e){let t=1;for(;t<e;)t*=2;return t}function Cte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:i}=s,o=K().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),u=K().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),l=r.shape,c=l[l.length-1];if(n.shouldExecuteOnCPU([r])||c<o||a>u){let P=n.readSync(r.dataId),[A,O]=UX(P,l,r.dtype,a,i);return[n.makeTensorInfo(A.shape,A.dtype,A.values),n.makeTensorInfo(O.shape,O.dtype,O.values)]}if(a===0)return l[l.length-1]=0,[n.makeTensorInfo(l,r.dtype,[]),n.makeTensorInfo(l,"int32",[])];if(c===1)return[r,sc({attrs:{shape:l,dtype:"int32",value:0},backend:n})];let p=n.texData.get(r.dataId),d=p!==null&&p.isPacked,h=d?n.unpackTensor(r):r,m=w.sizeFromShape(l)/c,g=he({inputs:{x:h},attrs:{shape:[m,c]},backend:n});d&&qr(n,h);let b=Rw(a),y=Rw(c),v=null,x=()=>v===null?[g,g]:[g,v],k=(P,A,O)=>{let T=x(),M=new Ste(O),j=[[c],[v===null?1:0],[Number.NEGATIVE_INFINITY],[P],[A]],X=v;v=n.runWebGLProgram(M,T,"int32",j),qr(n,X)};for(let P=1;P<b;P*=2){let A=P*2;for(let O=P;O>=1;O/=2)k(A,O,[m,y])}for(let P=y;P>b;P/=2){let A=x(),O=new Ite([m,P/2]),M=[[c],[v===null?1:0],[b]],W=v;v=n.runWebGLProgram(O,A,"int32",M),qr(n,W);let j=b/2,X=j*2;for(let Y=j;Y>=1;Y/=2)k(X,Y,v.shape)}let I=v;v=pu({inputs:{x:v},backend:n,attrs:{begin:0,size:[m,a]}}),qr(n,I);let $=y2({inputs:{x:g,indices:v},backend:n,attrs:{axis:1,batchDims:1}});qr(n,g);let R=l.slice(0,-1);R.push(a),I=v,v=he({inputs:{x:v},attrs:{shape:R},backend:n}),qr(n,I);let E=$;return $=he({inputs:{x:$},attrs:{shape:R},backend:n}),qr(n,E),[$,v]}var Nte={kernelName:qo,backendName:"webgl",kernelFunc:Cte},Tte=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let i=n==="nearest"?1:2,o;switch(s){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function $te(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:i,fillMode:o,fillValue:u,outputShape:l}=s,[c,p,d,h]=r.shape,[f,m]=l!=null?l:[p,d],g=[c,f,m,h],b=new Tte(p,d,i,o,u,g);return n.runWebGLProgram(b,[r,a],"float32")}var _te={kernelName:jo,backendName:"webgl",kernelFunc:$te};function Ate(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;iu(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=s.readSync(a.dataId),{outputValues:o,outputShape:u,indices:l}=GX(i,r,a.shape,a.dtype);return[s.makeTensorInfo(u,a.dtype,o),s.makeTensorInfo([l.length],"int32",l)]}var Ete={kernelName:Mg,backendName:"webgl",kernelFunc:Ate};function Rte(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let i=r,o=i.shape.length,u=r.shape[a],l=new Array(o-1),c=0;for(let m=0;m<o;m++)m!==a&&(l[c++]=i.shape[m]);let p=[],d=new Array(o).fill(0),h=i.shape.slice();h[a]=1;let f=new Array(u);for(let m=0;m<f.length;m++){d[a]=m;let g=pu({inputs:{x:i},backend:n,attrs:{begin:d,size:h}}),b=he({inputs:{x:g},backend:n,attrs:{shape:l}});f[m]=b,p.push(g)}return p.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var Dte={kernelName:Ko,backendName:"webgl",kernelFunc:Rte},Fte=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,i=a*Math.ceil(r/n);this.outputShape=[s,i];let o="0.0",u="sumValue",l=Math.floor(n/4)*4,c=n%4,p=`
|
|
sumValue += dot(values, segFilter);
|
|
`,d="";r%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${l}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${l};
|
|
if (${c===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${u});
|
|
}
|
|
`}};function Ote(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:i}=s,o=r.shape.length,u=[],l=0,c=C.getAxesPermutation([l],o),p=r;c!=null&&(p=_t({inputs:{x:r},backend:n,attrs:{perm:c}}),u.push(p),l=C.getInnerMostAxes(1,o)[0]);let d=C.segment_util.computeOutShape(p.shape,l,i),h=w.sizeFromShape([p.shape[l]]),f=he({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});u.push(f);let m=bp(r.dtype),g=(x,k,I,$,R)=>{let E=x.shape[0],P=x.shape[1],A=C.segment_util.segOpComputeOptimalWindowSize(P,R),O={windowSize:A,inSize:P,batchSize:E,numSegments:R},T=new Fte(O,k),M=n.compileAndRun(T,[x,I],$);if(u.push(M),M.shape[1]===R)return M;let W=C2({backend:n,attrs:{start:0,stop:R,step:1,dtype:"float32"}}),j=T2({inputs:{x:W},backend:n,attrs:{reps:[P/A]}});return u.push(W),u.push(j),g(M,k,j,$,R)},b=g(f,"unsortedSegmentSum",a,m,i),y=he({inputs:{x:b},backend:n,attrs:{shape:d}}),v=y;if(c!=null){u.push(y);let x=C.getUndoAxesPermutation(c);v=_t({inputs:{x:v},backend:n,attrs:{perm:x}})}return u.forEach(x=>n.disposeIntermediateTensorInfo(x)),v}var Pte={kernelName:mp,backendName:"webgl",kernelFunc:Ote},zte=[M8,B8,U8,q8,K8,Q8,J8,tY,aY,oY,cY,hY,gY,xY,SY,CY,TY,EY,DY,OY,LY,qY,KY,YY,n9,r9,u9,v8,d9,g9,x9,N9,$9,A9,R9,F9,z9,B9,U9,H9,j9,X9,Z9,eQ,rQ,iQ,lQ,pQ,fQ,yQ,kQ,NQ,_Q,RQ,DQ,OQ,zQ,LQ,VQ,UQ,jQ,YQ,JQ,tZ,rZ,oZ,dZ,mZ,y8,bZ,f9,xZ,SZ,NZ,w8,AZ,FZ,PZ,BZ,UZ,jZ,YZ,e7,r7,o7,l7,h7,m7,b7,w7,S7,C7,T7,_7,D7,z7,V7,X7,N8,J7,nJ,aJ,uJ,ZY,dJ,hJ,mJ,yJ,kJ,S8,IJ,CJ,JY,H7,$J,RJ,PJ,$8,BJ,UJ,jJ,YJ,eee,nee,aee,uee,cee,hee,gee,vee,See,Nee,_ee,Ree,GY,j7,Oee,zee,Lee,Vee,Uee,Hee,jee,Xee,Qee,ete,nte,rte,ote,lte,dte,hte,q7,O8,gte,vte,kte,Nte,_te,P8,Ete,Dte,Pte,pJ];for(let e of zte)Ol(e);var Or=K();Or.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);Or.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);Or.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD",()=>4);Or.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);Or.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);Or.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);Or.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);Or.registerFlag("WEBGPU_USE_IMPORT",()=>!1);var Mte="return a + b;",Lte="return areal * breal - aimag * bimag;",Bte="return areal * bimag + aimag * breal;",Vte="return a / b;",Wte="return a * b;",Ute="return (a - b) * (a - b);",Gte="return a - b;",Hte="return f32(a == b);",qte="return vec4<f32>(a == b);",jte="return f32(a > b);",Kte="return vec4<f32>(a > b);",Xte="return f32(a >= b);",Yte="return vec4<f32>(a >= b);",Qte="return f32(a < b);",Zte="return vec4<f32>(a < b);",Jte="return f32(a <= b);",ene="return vec4<f32>(a <= b);",tne="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",nne=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
|
|
vec4<f32>(b >= vec4<f32>(1.0)));`,sne=`
|
|
if (isnan(a)) { return a; }
|
|
if (isnan(b)) { return b; }
|
|
`,$2=`
|
|
if (isNaN.r) {
|
|
resultTemp.r = uniforms.NAN;
|
|
}
|
|
if (isNaN.g) {
|
|
resultTemp.g = uniforms.NAN;
|
|
}
|
|
if (isNaN.b) {
|
|
resultTemp.b = uniforms.NAN;
|
|
}
|
|
if (isNaN.a) {
|
|
resultTemp.a = uniforms.NAN;
|
|
}
|
|
`,rne=`
|
|
let s = sign(a) * sign(b);
|
|
let ia = i32(round(a));
|
|
let ib = i32(round(b));
|
|
return f32(idiv(ia, ib, s));
|
|
`,ane=`
|
|
let ia = vec4<i32>(round(a));
|
|
let ib = vec4<i32>(round(b));
|
|
let cond = ib != vec4<i32>(0);
|
|
var resultTemp = vec4<i32>(0);
|
|
let s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4<f32>(resultTemp);
|
|
`,ine="return f32(a != b);",one="return vec4<f32>(a != b);",une=`
|
|
if(a < 0.0 && floor(b) < b) {
|
|
return uniforms.NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
if (round(abs(b) % 2.0) != 1.0) {
|
|
return pow(abs(a), b);
|
|
}
|
|
return sign(a) * pow(abs(a), b);
|
|
`,lne=`
|
|
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
|
|
let isModRound1 = vec4<f32>(isModRound1Bool);
|
|
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
|
|
var resultTemp = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
let isExpZero = b == vec4<f32>(0.0);
|
|
if (isExpZero.r) {
|
|
resultTemp.r = 1.0;
|
|
}
|
|
if (isExpZero.g) {
|
|
resultTemp.g = 1.0;
|
|
}
|
|
if (isExpZero.b) {
|
|
resultTemp.b = 1.0;
|
|
}
|
|
if (isExpZero.a) {
|
|
resultTemp.a = 1.0;
|
|
}
|
|
let isNaN = a < vec4<f32>(0.0) & floor(b) < b;
|
|
${$2}
|
|
return resultTemp;
|
|
`,cne="if (a < 0.0) { return b * a; } return a;",dne=`
|
|
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
|
|
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
|
|
`;function Dw(e,t){let n=t?$2:sne;return t?`
|
|
var resultTemp = vec4<f32>(${e}(a, b));
|
|
let isNaN = isnanVec4(a) | isnanVec4(b);
|
|
`+n+`
|
|
return resultTemp;
|
|
`:n+`
|
|
return ${e}(a, b);
|
|
`}function rc(e,t){switch(e){case 0:return Wte;case 1:return Mte;case 2:return Gte;case 3:return Vte;case 4:return t?qte:Hte;case 5:return t?Kte:jte;case 6:return t?Yte:Xte;case 7:return t?Zte:Qte;case 8:return t?ene:Jte;case 9:return t?nne:tne;case 10:return t?one:ine;case 11:return Ute;case 12:return t?ane:rne;case 14:return t?dne:cne;case 15:return Dw("max",t);case 16:return Dw("min",t);case 13:return t?lne:une;case 17:return Lte;case 18:return Bte;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var pne="return abs(a);",hne="return ceil(a);",fne="return cos(a);",mne=`
|
|
let e2x = exp(-a);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,gne="return exp(a) - 1.0;",bne="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",yne=`
|
|
var resFloat = exp(a) - vec4<f32>(1.0);
|
|
if (a.r >= 0.0) {
|
|
resFloat.r = a.r;
|
|
}
|
|
if (a.g >= 0.0) {
|
|
resFloat.g = a.g;
|
|
}
|
|
if (a.b >= 0.0) {
|
|
resFloat.b = a.b;
|
|
}
|
|
if (a.a >= 0.0) {
|
|
resFloat.a = a.a;
|
|
}
|
|
return resFloat;
|
|
`,vne="return exp(a);",xne="return floor(a);",wne="return a;",kne=`if (a < 0.0) { return 1.0/0.0; }
|
|
return log(a);`,Sne="return f32(!(a >= 1.0));",Ine="return -a;",Cne="if (a < 0.0) { return uniforms.alpha * a; } return a;",Nne=`
|
|
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
|
|
return (aLessThanZero * (uniforms.alpha * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
|
|
`,Tne="return select(a, 0.0, a < 0.0);",$ne="return clamp(a, 0.0, 6.0);",_ne="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",Ane=`
|
|
return select(a, vec4<f32>(0.0), a < vec4<f32>(0.0));
|
|
`,Ene="return 1.0/sqrt(a);",Rne="return 1.0 / (1.0 + exp(-1.0 * a));",Dne="return sin(a);",Fne=`
|
|
let e2x = exp(a);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,One="return sqrt(a);",Pne="return a * a;",zne=`
|
|
let e2x = exp(-2.0 * abs(a));
|
|
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,Mne="return f32(i32((a)));";function Kr(e,t){switch(e){case 0:return pne;case 2:return fne;case 3:return mne;case 1:return hne;case 4:return t?yne:bne;case 5:return vne;case 6:return gne;case 7:return xne;case 8:return wne;case 9:return kne;case 10:return Sne;case 11:return Ine;case 14:return t?Nne:Cne;case 12:return t?Ane:Tne;case 13:return t?_ne:$ne;case 15:return Ene;case 18:return Rne;case 16:return Dne;case 17:return Fne;case 19:return One;case 20:return Pne;case 21:return zne;case 22:return Mne;default:throw new Error(`BinaryType ${e} is not implemented!`)}}function Pr(e,t=!1){if(e===null)return null;if(e==="linear")return Kr(8);if(e==="relu")return Kr(12,t);if(e==="elu")return Kr(4,t);if(e==="relu6")return Kr(13,t);if(e==="prelu")return rc(14,t);if(e==="sigmoid")return Kr(18,t);if(e==="leakyrelu")return Kr(14,t);throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`)}function Lne(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function Ut(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";if(e===5)return"vec5";if(e===6)return"vec6";throw Error(`GPU for rank ${e} is not yet supported`)}function hr(e){if(e===0)return"x";if(e===1)return"y";if(e===2)return"z";if(e===3)return"w";if(e===4)return"u";if(e===5)return"v";throw Error(`Index ${e} is not yet supported`)}function fd(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function Ev(){return`
|
|
@stage(compute) @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
|
|
`}function Ii(){return`
|
|
${Ev()}
|
|
fn main(@builtin(local_invocation_id) LocalId : vec3<u32>,
|
|
@builtin(global_invocation_id) GlobalId : vec3<u32>,
|
|
@builtin(num_workgroups) NumWorkgroups: vec3<u32>) {
|
|
localId = LocalId;
|
|
globalId = GlobalId;
|
|
numWorkgroups = NumWorkgroups;
|
|
`}function Ue(){return`
|
|
${Ii()}
|
|
let index = getGlobalIndex();
|
|
`}function Bne(e,t,n,s=!1){let r=[];if(r.push(`
|
|
let workGroupSizeX = ${n.workGroupSize[0]}u;
|
|
let workGroupSizeY = ${n.workGroupSize[1]}u;
|
|
let workGroupSizeZ = ${n.workGroupSize[2]}u;
|
|
|
|
var<private> localId: vec3<u32>;
|
|
var<private> globalId: vec3<u32>;
|
|
var<private> numWorkgroups: vec3<u32>;
|
|
|
|
// Only used when the y/z dimension of workgroup size is 1.
|
|
fn getGlobalIndex() -> i32 {
|
|
if (numWorkgroups.y == 1u && numWorkgroups.z == 1u) {
|
|
return i32(globalId.x);
|
|
}
|
|
|
|
let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +
|
|
localId.y * workGroupSizeX + localId.x;
|
|
let workGroupID = (globalId - localId)/vec3<u32>(
|
|
workGroupSizeX, workGroupSizeY, workGroupSizeZ);
|
|
|
|
return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y +
|
|
workGroupID.y * numWorkgroups.x + workGroupID.x) *
|
|
(workGroupSizeX * workGroupSizeY * workGroupSizeZ) +
|
|
localInvocationIndex);
|
|
}
|
|
`),s===!0)return r.push(`
|
|
struct Uniform {
|
|
size : i32,
|
|
numChannels : i32,
|
|
outShapeStrides : vec2<i32>,
|
|
dispatchSize : vec3<u32>,
|
|
};
|
|
|
|
@group(0) @binding(0) var<storage, write> result: array<${fd(t.dtype,n.isVec4)}>;
|
|
@group(0) @binding(2) var<uniform> uniforms: Uniform;
|
|
`),[Fw,r.join(`
|
|
`),Ow(t.shape),n.getUserCode()].join(`
|
|
`);let a=!1,i=!1,o="struct Uniforms { NAN : f32, ";n.variableNames.forEach((m,g)=>{let b=Ut(e[g].shape.length);(b==="vec5"||b==="vec6")&&(i=!0),(a||i)&&(o+="@align(16) "),a=i,o+=`${m.charAt(0).toLowerCase()+m.slice(1)}Shape : ${b}, `});let u=Ut(t.shape.length);i=u==="vec5"||u==="vec6",(a||i)&&(o+="@align(16) "),a=i,o+=`outShape : ${u}, `;let l=t.shape.length-1,c=Ut(l);i=c==="vec5"||c==="vec6",(a||i)&&(o+="@align(16) "),a=i,o+=`
|
|
outShapeStrides: ${c}, `,n.size&&(a&&(o+="@align(16) "),a=!1,o+="size : i32, "),n.uniforms&&(a&&(o+="@align(16) "),o+=n.uniforms),o+="};",r.push(o),n.atomic?r.push(`
|
|
@group(0) @binding(0) var<storage, read_write> result: array<atomic<i32>>;
|
|
`):r.push(`
|
|
@group(0) @binding(0) var<storage, write> result: array<${fd(t.dtype,n.isVec4)}>;
|
|
`),n.variableNames.forEach((m,g)=>{r.push(`
|
|
@group(0) @binding(${1+g}) var<storage, read> ${m}: array<${n.variableTypes?n.variableTypes[g]:fd(e[g].dtype,n.isVec4)}>;
|
|
`)}),o!==""&&r.push(`
|
|
@group(0) @binding(${1+n.variableNames.length}) var<uniform> uniforms: Uniforms;
|
|
`);let[p,d]=qne(t.shape,n.dispatchLayout),h=[Fw,r.join(`
|
|
`),Ow(t.shape),p,Vne(t.shape.length)];if(n.atomic||h.push(Wne(t.shape,t.dtype,n.isVec4)),d===t.shape.length){let m=e.map((g,b)=>Une(g,t.shape,n.variableTypes?n.variableTypes[b]==="vec4<f32>":n.isVec4,n.dispatchLayout.x.length===t.shape.length)).join(`
|
|
`);h.push(m)}return h.push(n.getUserCode()),h.join(`
|
|
`)}var Fw=`
|
|
struct vec5 {x: i32, y: i32, z: i32, w: i32, u: i32};
|
|
struct vec6 {x: i32, y: i32, z: i32, w: i32, u: i32, v: i32};
|
|
|
|
// Checks whether coordinates lie within the bounds of the shape.
|
|
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
|
|
return all(coord >= vec2<i32>(0)) && all(coord < shape);
|
|
}
|
|
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
|
|
return all(coord >= vec3<i32>(0)) && all(coord < shape);
|
|
}
|
|
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
|
|
return all(coord >= vec4<i32>(0)) && all(coord < shape);
|
|
}
|
|
|
|
fn getIndexFromCoords1D(coord : i32, shape : i32) -> i32 {
|
|
return coord;
|
|
}
|
|
fn getIndexFromCoords2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
|
|
return dot(coords, vec2<i32>(shape.y, 1));
|
|
}
|
|
fn getIndexFromCoords3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
|
|
return dot(coords, vec3<i32>(shape.y * shape.z, shape.z, 1));
|
|
}
|
|
fn getIndexFromCoords4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
|
|
return dot(coords, vec4<i32>(
|
|
shape.y * shape.z * shape.w, shape.z * shape.w, shape.w, 1));
|
|
}
|
|
fn getIndexFromCoords5D(coords : vec5, shape : vec5) -> i32 {
|
|
let shapeStrides: vec5 = vec5(shape.y * shape.z * shape.w * shape.u, shape.z * shape.w * shape.u, shape.w * shape.u, shape.u, 1);
|
|
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u;
|
|
}
|
|
fn getIndexFromCoords6D(coords : vec6, shape : vec6) -> i32 {
|
|
let shapeStrides: vec6 = vec6(shape.y * shape.z * shape.w * shape.u * shape.v, shape.z * shape.w * shape.u * shape.v, shape.w * shape.u * shape.v, shape.u * shape.v, shape.v, 1);
|
|
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u + coords.v*shapeStrides.v;
|
|
}
|
|
|
|
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
|
|
var res: i32 = a / b;
|
|
let mod: i32 = a % b;
|
|
if (sign < 0. && mod != 0) {
|
|
res = res - 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// NaN defination in IEEE 754-1985 is :
|
|
// - sign = either 0 or 1.
|
|
// - biased exponent = all 1 bits.
|
|
// - fraction = anything except all 0 bits (since all 0 bits represents infinity).
|
|
// https://en.wikipedia.org/wiki/IEEE_754-1985#Representation_of_non-numbers
|
|
fn isnan(val: f32) -> bool {
|
|
let floatToUint: u32 = bitcast<u32>(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
fn isnanVec4(val : vec4<f32>) -> vec4<bool> {
|
|
return vec4<bool>(isnan(val[0]), isnan(val[1]), isnan(val[2]), isnan(val[3]));
|
|
}
|
|
`;function Vne(e){let t="";switch(e){case 0:case 1:t+=`
|
|
fn getOutputIndexFromCoords(coords : i32) -> i32 {
|
|
return coords;
|
|
}
|
|
`;break;case 2:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec2<i32>) -> i32 {
|
|
return dot(coords, vec2<i32>(uniforms.outShapeStrides, 1));
|
|
}
|
|
`;break;case 3:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec3<i32>) -> i32 {
|
|
return dot(coords, vec3<i32>(uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, 1));
|
|
}
|
|
`;break;case 4:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec4<i32>) -> i32 {
|
|
return dot(coords, vec4<i32>(
|
|
uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, uniforms.outShapeStrides.z, 1));
|
|
}
|
|
`;break;case 5:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec5) -> i32 {
|
|
return coords.x * uniforms.outShapeStrides.x +
|
|
coords.y * uniforms.outShapeStrides.y +
|
|
coords.z * uniforms.outShapeStrides.z +
|
|
coords.w * uniforms.outShapeStrides.w +
|
|
coords.u;
|
|
}
|
|
`;break;case 6:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec6) -> i32 {
|
|
return coords.x * uniforms.outShapeStrides.x +
|
|
coords.y * uniforms.outShapeStrides.y +
|
|
coords.z * uniforms.outShapeStrides.z +
|
|
coords.w * uniforms.outShapeStrides.w +
|
|
coords.u * uniforms.outShapeStrides.u +
|
|
coords.v;
|
|
}
|
|
`;break;default:w.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function Wne(e,t,n){let s=e.length,r=fd(t,n),a;if(n?a=`fn setOutputAtIndex(flatIndex : i32, value : vec4<f32>) {
|
|
result[flatIndex] = ${r}(value);
|
|
}
|
|
fn setOutputAtIndexI32(flatIndex : i32, value : vec4<i32>) {
|
|
result[flatIndex] = ${r}(value);
|
|
}`:a=`fn setOutputAtIndex(flatIndex : i32, value : f32) {
|
|
result[flatIndex] = ${r}(value);
|
|
}
|
|
fn setOutputAtIndexI32(flatIndex : i32, value : i32) {
|
|
result[flatIndex] = ${r}(value);
|
|
}`,s>=2){let i=["d0","d1","d2","d3","d4","d5"].slice(0,s),o=Ut(s);n?a+=`
|
|
fn setOutputAtCoords(${i.map(u=>`${u} : i32`).join(", ")}, value : vec4<f32>) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndex(flatIndex / 4, value);
|
|
}
|
|
fn setOutputAtCoordsI32(${i.map(u=>`${u} : i32`).join(", ")}, value : vec4<i32>) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndexI32(flatIndex / 4, value);
|
|
}
|
|
`:a+=`
|
|
fn setOutputAtCoords(${i.map(u=>`${u} : i32`).join(", ")}, value : f32) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndex(flatIndex, value);
|
|
}
|
|
fn setOutputAtCoordsI32(${i.map(u=>`${u} : i32`).join(", ")}, value : i32) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndexI32(flatIndex, value);
|
|
}
|
|
`}return a}function Une(e,t,n,s){let r=Gne(e,n);return e.shape.length<=t.length&&(r+=Hne(e,t,n,s)),r}function Gne(e,t){let n=e.name,s=e.shape.length,r=Ut(s),a="get"+n.charAt(0).toUpperCase()+n.slice(1),i=["d0","d1","d2","d3","d4","d5"].slice(0,s),o=i.map(c=>`${c} : i32`).join(", ");if(s<1)return t?`
|
|
fn ${a}() -> vec4<f32> {
|
|
return vec4<f32>(${n}[0]);
|
|
}
|
|
`:`
|
|
fn ${a}() ->f32 {
|
|
return f32(${n}[0]);
|
|
}
|
|
`;let u=`uniforms.${n.charAt(0).toLowerCase()+n.slice(1)}Shape`,l=`${s}D`;return s===0&&(l="1D"),t?`
|
|
fn ${a}(${o}) -> vec4<f32> {
|
|
return vec4<f32>(${n}[getIndexFromCoords${l}(${r}(${i.join(",")}),
|
|
${u}) / 4]);
|
|
}
|
|
`:`
|
|
fn ${a}(${o}) -> f32 {
|
|
return f32(${n}[getIndexFromCoords${l}(${r}(${i.join(",")}),
|
|
${u})]);
|
|
}
|
|
`}function Hne(e,t,n,s){let r=e.name,a=r.charAt(0).toUpperCase()+r.slice(1),i="get"+a+"ByOutput",o=e.shape.length,u=t.length,l=Ut(u);if(w.arraysEqual(e.shape,t)&&s)return n?`
|
|
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
|
|
return vec4<f32>(${r}[globalIndex]);
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${l}) -> vec4<f32> {
|
|
return vec4<f32>(${r}[${u>1?"getOutputIndexFromCoords(coords)":"coords"} / 4]);
|
|
}
|
|
`:`
|
|
fn ${i}Index(globalIndex : i32) -> f32 {
|
|
return f32(${r}[globalIndex]);
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${l}) -> f32 {
|
|
return f32(${r}[${u>1?"getOutputIndexFromCoords(coords)":"coords"}]);
|
|
}
|
|
`;let c=C.getBroadcastDims(e.shape,t),p=u-o,d="";if(o===0)return n?`
|
|
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
|
|
return get${a}();
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${l}) -> vec4<f32> {
|
|
return get${a}();
|
|
}
|
|
`:`
|
|
fn ${i}Index(globalIndex : i32) -> f32{
|
|
return get${a}();
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${l}) -> f32{
|
|
return get${a}();
|
|
}
|
|
`;u<2&&c.length>=1?d="coords = 0;":d=c.map(g=>`coords.${hr(g+p)} = 0;`).join(`
|
|
`);let h="";if(u<2&&o>0)h="coords";else if(u>1){let g=Ut(o),b=e.shape.map((y,v)=>`coords.${hr(v+p)}`).join(", ");h=`${g}(${b})`}else h="coords";let f=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,m=`${o}D`;return n?`
|
|
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
|
|
var coords = getCoordsFromIndex(globalIndex);
|
|
${d}
|
|
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
|
|
}
|
|
|
|
fn ${i}Coords(coordsIn : ${l}) -> vec4<f32> {
|
|
var coords = coordsIn;
|
|
${d}
|
|
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
|
|
}
|
|
`:`
|
|
fn ${i}Index(globalIndex : i32) -> f32 {
|
|
var coords = getCoordsFromIndex(globalIndex);
|
|
${d}
|
|
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
|
|
}
|
|
|
|
fn ${i}Coords(coordsIn : ${l}) -> f32 {
|
|
var coords = coordsIn;
|
|
${d}
|
|
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
|
|
}
|
|
`}function qne(e,t){let{x:n,y:s=[],z:r=[]}=t,a=e.length;if(n.length===a)return[`fn getOutputCoords() -> ${Ut(a)}{
|
|
let globalIndex = getGlobalIndex();
|
|
return getCoordsFromIndex(globalIndex);
|
|
}
|
|
`,a];let i="",o=[n,s,r],u=0;for(let d=0;d<o.length;d++){let h=o[d];if(h.length!==0)if(u+=h.length,h.length===1)i+=`let d${h[0]} = i32(globalId[${d}]);`;else{let f=Lne(h,"uniforms.outShape");i+=`var index${d} = i32(globalId[${d}]);`;for(let m=0;m<f.length;m++)i+=`let d${h[m]} = index${d} / ${f[m]};`,m===f.length-1?i+=`let d${h[m+1]} = index${d} - d${h[m]} * ${f[m]};`:i+=`index${d} = index${d} - d${h[m]} * ${f[m]};`}}let l=[];for(let d=0;d<u;d++)l.push(`d${d}`);let c=Ut(u),p=`fn getOutputCoords() -> ${c} {
|
|
${i}
|
|
`;return l.length===0?p+=`return ${c}(0); }`:p+=`return ${c}(${l.join(",")}); }`,[p,u]}function Ow(e){let t=e.length;if(t<=1)return"fn getCoordsFromIndex(index : i32) -> i32 { return index; }";let n=w.computeStrides(e),s=Ut(t),r=[];for(let i=0;i<t;i++)r.push(`d${i}`);if(n.length===1)return` fn getCoordsFromIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
|
|
return vec2<i32>(d0, d1);
|
|
}`;let a;return a="var index2 = index;"+n.map((i,o)=>{let u=`let ${r[o]} = index2 / uniforms.outShapeStrides.${hr(o)}`,l=o===n.length-1?`let ${r[o+1]} = index2 - ${r[o]} * uniforms.outShapeStrides.${hr(o)}`:`index2 = index2 - ${r[o]} * uniforms.outShapeStrides.${hr(o)}`;return`${u}; ${l};`}).join(""),`
|
|
fn getCoordsFromIndex(index : i32) -> ${s} {
|
|
${a}
|
|
return ${s}(${r.join(",")});
|
|
}
|
|
`}var _2={};Ee(_2,{ArrayBufferToTypedArray:()=>E2,GPUBytesPerElement:()=>md,computeDispatch:()=>_e,computeWorkGroupSizeForConv2d:()=>Rv,computeWorkGroupSizeForMatMul:()=>A2,computeWorkPerThreadForConv2d:()=>Dv,flatDispatchLayout:()=>Be,isWebGPUSupported:()=>Fv,tilesFitEvenlyIntoShape:()=>Ks});var aa=e=>{let t=1;for(let n=0;n<e.length;n++)t*=e[n];return t};function Ks(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((n,s)=>n%e[s]===0)}function _e(e,t,n=[1,1,1],s=[1,1,1]){let[r,a,i]=[Math.ceil(aa(e.x.map(o=>t[o]))/(n[0]*s[0])),e.y?Math.ceil(aa(e.y.map(o=>t[o]))/(n[1]*s[1])):1,e.z?Math.ceil(aa(e.z.map(o=>t[o]))/(n[2]*s[2])):1];return[r,a,i]}function Rv(e,t){let n=aa(e.x.map(r=>t[r])),s=aa(e.y.map(r=>t[r]));return n<=4?[4,16,1]:s<=4?[16,4,1]:[16,16,1]}function A2(e,t,n){return e===1?[32,1,1]:n===1?[1,32,1]:[8,8,1]}function Dv(e,t){let n=aa(e.x.map(r=>t[r])),s=aa(e.y.map(r=>t[r]));return n<=4?[1,2,1]:s<=4?[2,1,1]:[2,2,1]}function Be(e){return{x:e.map((t,n)=>n)}}function md(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function E2(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(e));throw new Error(`Unknown dtype ${t}`)}function Fv(){return(typeof window!="undefined"||typeof WorkerGlobalScope!="undefined")&&!!navigator.gpu}function R2(e,t,n,s,r=4){return w.assert((s%4===0||s%3===0)&&e[0]===4&&(r===3||r===4),()=>`tileInner must be divisible by 4|3. ColPerThread must be 4.
|
|
innerElementSize must be 3|4.`),`
|
|
var<workgroup> mm_Asub : array<array<vec${r}<f32>, ${s/r}>, ${t}>;
|
|
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${n/e[0]}>, ${s}>;
|
|
|
|
let RowPerThread = ${e[1]};
|
|
let ColPerThread = ${e[0]};
|
|
let InnerElementSize = ${r};
|
|
let TileInner = ${s};
|
|
|
|
${Ii()}
|
|
|
|
let tileRow = ${t===1?"0":"i32(localId.y) * RowPerThread"};
|
|
let tileCol = i32(localId.x);
|
|
|
|
let globalRow = ${t===1?"0":"i32(globalId.y) * RowPerThread"};
|
|
let globalCol = i32(globalId.x);
|
|
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
|
|
|
|
var acc: array<vec4<f32>, RowPerThread>;
|
|
var BCached : array<vec4<f32>, 4>;
|
|
|
|
// Loop over shared dimension.
|
|
var globalColA = tileCol;
|
|
let RowPerThreadB = TileInner / i32(workGroupSizeY);
|
|
let tileRowB = i32(localId.y) * RowPerThreadB;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Asub[inputRow][inputCol] = mm_readA(globalRow + innerRow, globalColA, globalId);
|
|
}
|
|
globalColA = globalColA + TileInner / InnerElementSize;
|
|
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(t * TileInner + inputRow, globalCol, globalId);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileInner / InnerElementSize; k = k + 1) {
|
|
BCached[0] = mm_Bsub[k * InnerElementSize][tileCol];
|
|
BCached[1] = mm_Bsub[k * InnerElementSize + 1][tileCol];
|
|
BCached[2] = mm_Bsub[k * InnerElementSize + 2][tileCol];
|
|
${r===3?"":"BCached[3] = mm_Bsub[k * InnerElementSize + 3][tileCol];"}
|
|
|
|
for (var i = 0; i < RowPerThread; i = i + 1) {
|
|
let ACached = mm_Asub[tileRow + i][k];
|
|
acc[i] = BCached[0] * ACached.x + acc[i];
|
|
acc[i] = BCached[1] * ACached.y + acc[i];
|
|
acc[i] = BCached[2] * ACached.z + acc[i];
|
|
${r===3?"":"acc[i] = BCached[3] * ACached.w + acc[i];"}
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol,
|
|
acc[innerRow], globalId);
|
|
}
|
|
}`}var jne=class{constructor(e,t,n,s,r,a=null,i=null,o=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]},t[1]===1?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread);let u=a!=null,l=o!=null;u&&this.variableNames.push("bias"),l&&this.variableNames.push("preluActivationWeights"),this.tileAOuter=t[1]===1?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.tileBOuter,this.aShape=e,this.addBias=u,this.activation=i,this.hasPreluActivationWeights=l,this.batchAEqualOne=s,this.batchBEqualOne=r,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`matMulPackedVec4_${this.activation}_${this.fitA}_${this.fitB}_${this.elementsPerThread}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getShapeFit(){let e=this.aShape[2],t=this.outputShape[2],n=[this.outputShape[0],e,t],s=[this.tileAOuter,this.tileInner],r=[this.tileInner,this.tileBOuter];return[Ks(s,this.aShape.slice(1)),Ks(r,n.slice(1))]}getUserCode(){let e=this.fitA?"return A[batch * batchASize + row * uniforms.dimInner / 4 + col]":`if (coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch * batchASize + row * uniforms.dimInner / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,t=this.fitB?"return B[batch * batchBSize + row * uniforms.dimBOuter / 4 + col]":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,n="",s="";if(this.activation){let i=Pr(this.activation,this.isVec4);this.hasPreluActivationWeights?n=`fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${i}
|
|
}`:n=`
|
|
fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
${i}
|
|
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${n}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
${this.batchAEqualOne?`
|
|
let batchASize = 0;
|
|
let batch = 0;
|
|
`:`
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2] / 4;
|
|
let batch = i32(globalId.z);
|
|
`}
|
|
|
|
${e};
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
${this.batchBEqualOne?`
|
|
let batchBSize = 0;
|
|
let batch = 0;
|
|
`:`
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2] / 4;
|
|
let batch = i32(globalId.z);
|
|
`}
|
|
${t};
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : vec4<f32>, globalId : vec3<u32>) {
|
|
if (row < uniforms.aShape[1] && col * 4 < uniforms.bShape[2])
|
|
{
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col * 4);
|
|
${r}
|
|
${s}
|
|
setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], value);
|
|
}
|
|
}
|
|
${R2(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner)}
|
|
`}};function Ov(e,t){let n=t[1]*e[1],s=t[0]*e[0],r=n>s?n:s;return`
|
|
var<workgroup> mm_Asub : array<array<f32, ${r}>, ${n}>;
|
|
var<workgroup> mm_Bsub : array<array<f32, ${s}>, ${r}>;
|
|
${Ii()}
|
|
let tileRow = i32(localId.y) * ${e[1]};
|
|
let tileCol = i32(localId.x) * ${e[0]};
|
|
|
|
let globalRow = i32(globalId.y) * ${e[1]};
|
|
let globalCol = i32(globalId.x) * ${e[0]};
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / ${r} + 1;
|
|
|
|
var acc : array<array<f32, ${e[0]}>, ${e[1]}>;
|
|
var ACached : f32;
|
|
var BCached : array<f32, ${e[0]}>;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = 0.0;
|
|
}
|
|
}
|
|
|
|
let ColPerThreadA = ${r} / ${t[0]};
|
|
let tileColA = i32(localId.x) * ColPerThreadA;
|
|
let RowPerThreadB = ${r} / ${t[1]};
|
|
let tileRowB = i32(localId.y) * RowPerThreadB;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ColPerThreadA; innerCol = innerCol + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileColA + innerCol;
|
|
|
|
mm_Asub[inputRow][inputCol] = mm_readA(
|
|
globalRow + innerRow,
|
|
t * ${r} + inputCol, globalId);
|
|
}
|
|
}
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol + innerCol;
|
|
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(
|
|
t * ${r} + inputRow,
|
|
globalCol + innerCol, globalId);
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${r}; k = k + 1) {
|
|
for (var inner = 0; inner < ${e[0]}; inner = inner + 1) {
|
|
BCached[inner] = mm_Bsub[k][tileCol + inner];
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
ACached = mm_Asub[tileRow + innerRow][k];
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
|
|
}
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
|
|
if ((globalCol + innerCol) < uniforms.dimBOuter &&
|
|
(globalRow + innerRow) < uniforms.dimAOuter) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol + innerCol,
|
|
acc[innerRow][innerCol], globalId);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`}function Kne(e){return`
|
|
let TileSize = ${e[0]*4};
|
|
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
|
|
|
|
${Ii()}
|
|
let tileCol = i32(localId.x);
|
|
let globalCol = i32(globalId.x);
|
|
let globalRow = i32(globalId.y);
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / TileSize + 1;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
var acc = 0.0;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
let colA = t * TileSize + tileCol * 4;
|
|
mm_Asub[tileCol] = vec4<f32>(mm_readA(globalRow, colA, globalId),
|
|
mm_readA(globalRow, colA + 1, globalId),
|
|
mm_readA(globalRow, colA + 2, globalId),
|
|
mm_readA(globalRow, colA + 3, globalId));
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileSize / 4; k = k + 1) {
|
|
let rowB = t * TileSize + k * 4;
|
|
let BCached = vec4<f32>(mm_readB(rowB, globalCol, globalId),
|
|
mm_readB(rowB + 1, globalCol, globalId),
|
|
mm_readB(rowB + 2, globalCol, globalId),
|
|
mm_readB(rowB + 3, globalCol, globalId));
|
|
|
|
let ACached = mm_Asub[k];
|
|
acc = acc + dot(ACached, BCached);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
|
|
mm_write(globalRow, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var Xne=class{constructor(e,t,n,s,r,a=!1,i=!1,o=null,u=null,l=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[16,16,1],this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let c=a?e[1]:e[2];this.workGroupSize=A2(t[1],c,t[2]),(t[1]===1||t[2]===1)&&(n=1),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]),w.arraysEqual(this.dispatch,[1,1,1])&&(n=1,this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]));let p=o!=null,d=l!=null;p&&this.variableNames.push("bias"),d&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.aShape=e,this.transposeA=a,this.transposeB=i,this.addBias=p,this.activation=u,this.hasPreluActivationWeights=d,this.batchAEqualOne=s,this.batchBEqualOne=r;let h=this.outputShape[2],f=this.transposeB?[this.outputShape[0],h,c]:[this.outputShape[0],c,h];[this.fitA,this.fitB]=this.getShapeFit(f),this.shaderKey=`matMulPacked_${this.workPerThread}_${a}_${i}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getShapeFit(e){let t=this.workGroupSize[1]*this.workPerThread,n=this.workGroupSize[0]*this.workPerThread,s=t>n?t:n;this.outputShape[1]===1&&(s*=4),w.assert(s%this.workGroupSize[0]===0&&s%this.workGroupSize[1]===0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let r=[t,s],a=[s,n];return[Ks(r,this.aShape.slice(1)),Ks(a,e.slice(1))]}getUserCode(){let e;this.transposeA===!1?e=this.fitA?"return A[batch * batchASize + row * uniforms.dimInner + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch * batchASize + row * uniforms.dimInner + col];
|
|
}
|
|
return 0.0;`:e=this.fitA?"return A[batch * batchASize + col * uniforms.dimAOuter + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch* batchASize + col * uniforms.dimAOuter + row];
|
|
}
|
|
return 0.0;`;let t;this.transposeB===!1?t=this.fitB?"return B[batch * batchBSize + row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;`:t=this.fitB?"return B[batch * batchBSize + col * uniforms.dimInner + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + col * uniforms.dimInner + row];
|
|
}
|
|
return 0.0;`;let n="",s="";if(this.activation){let i=Pr(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${i}
|
|
}`:n=`
|
|
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${i}
|
|
}
|
|
`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${this.batchAEqualOne?`
|
|
let batch = 0;
|
|
let batchASize = 0;
|
|
`:`
|
|
let batch = i32(globalId.z);
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
`}
|
|
${e}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${this.batchBEqualOne?`
|
|
let batch = 0;
|
|
let batchBSize = 0;
|
|
`:`
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
`}
|
|
${t}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
${r}
|
|
${s}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
${this.outputShape[1]>1?Ov([this.workPerThread,this.workPerThread,1],this.workGroupSize):Kne(this.workGroupSize)}
|
|
`}};function Yne(){return`
|
|
var<workgroup> sumValues : array<f32, workGroupSizeX>;
|
|
${Ii()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let row = coords[1];
|
|
let col = coords[2];
|
|
var sum = 0.0;
|
|
let Length = uniforms.dimInner;
|
|
for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) {
|
|
let dataA = mm_readA(batch, row, k);
|
|
let dataB = mm_readB(batch, k, col);
|
|
sum = sum + dataA * dataB;
|
|
}
|
|
sumValues[localId.x] = sum;
|
|
workgroupBarrier();
|
|
|
|
for(var currentSize = workGroupSizeX / 2u; currentSize > 1u;
|
|
currentSize = currentSize / 2u) {
|
|
if (localId.x < currentSize)
|
|
{
|
|
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u) {
|
|
sum = sumValues[0] + sumValues[1];
|
|
mm_write(batch, row, col, sum);
|
|
}
|
|
}
|
|
`}var Qne=class{constructor(e,t,n,s=!1,r=!1,a=null,i=null,o=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize);let u=a!=null,l=o!=null;u&&this.variableNames.push("bias"),l&&this.variableNames.push("preluActivationWeights"),this.transposeA=s,this.transposeB=r,this.addBias=u,this.activation=i,this.hasPreluActivationWeights=l,this.batchAEqualOne=t,this.batchBEqualOne=n,this.shaderKey=`matMulReduce_${this.activation}_${s}_${r}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){let e;this.transposeA===!1?e="return f32(A[batch * batchASize + row * uniforms.dimInner + col]);":e="return f32(A[batch * batchASize + col * uniforms.dimAOuter + row]);";let t;this.transposeB===!1?t="return f32(B[batch * batchBSize + row * uniforms.dimBOuter + col]);":t="return f32(B[batch * batchBSize + col * uniforms.dimInner + row]);";let n="",s="";if(this.activation){let i=Pr(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${i}
|
|
}`:n=`
|
|
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${i}
|
|
}
|
|
`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(batchIn: i32, row : i32, col : i32) -> f32 {
|
|
${this.batchAEqualOne?`
|
|
let batchASize = 0;
|
|
let batch = 0;
|
|
`:`
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = batchIn;
|
|
`}
|
|
${e}
|
|
}
|
|
|
|
fn mm_readB(batchIn: i32, row : i32, col : i32) -> f32 {
|
|
${this.batchBEqualOne?`
|
|
let batch = 0;
|
|
let batchBSize = 0;
|
|
`:`
|
|
let batch = batchIn;
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
`}
|
|
${t}
|
|
}
|
|
|
|
fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) {
|
|
var value = valueIn;
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
${r}
|
|
${s}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
${Yne()}
|
|
`}};function Zne(e){let t=e[1]/2,n=e[0],s=t>n?t:n;return`
|
|
var<workgroup> mm_Asub1 : array<array<f32, ${s}>, ${t}>;
|
|
var<workgroup> mm_Bsub1 : array<array<f32, ${n}>, ${s}>;
|
|
var<workgroup> mm_Asub2 : array<array<f32, ${s}>, ${t}>;
|
|
var<workgroup> mm_Bsub2 : array<array<f32, ${n}>, ${s}>;
|
|
|
|
// If the output size is small for matrix multiplication, avoid to use vec4
|
|
// and handle some elements per thread to optimally utilize the ALU.
|
|
// Introduces two shared memory buffers, some logical threads could handle
|
|
// arithmetic operations and others handle IO operations between barrier api,
|
|
// makes ALUs and load/store units work simultaneously, could improves
|
|
// the performance.
|
|
${Ii()}
|
|
let tileRow = i32(localId.y);
|
|
let tileCol = i32(localId.x);
|
|
let globalRow = i32(globalId.y);
|
|
let globalCol = i32(globalId.x);
|
|
|
|
// uniforms.dimInner should be greater than 0.
|
|
let numTiles = (uniforms.dimInner - 1) / ${s} + 1;
|
|
var acc = 0.0;
|
|
|
|
var globalColA = tileCol;
|
|
var globalRowB = tileRow;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
if (t == 0) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
}
|
|
} else {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${s}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub2[subRow][k] * mm_Bsub2[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
if (t != 0) {
|
|
t = t + 1;
|
|
}
|
|
|
|
if (t < numTiles) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub2[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub2[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${s}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub1[subRow][k] * mm_Bsub1[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
let writeCol = (globalRow - tileRow) / 2 + tileRow - ${t};
|
|
if (tileRow >= ${t} && writeCol >= 0) {
|
|
mm_write(writeCol, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var Jne=class{constructor(e,t,n,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,16,1],w.assert(e[1]<=16||t[2]<=16,()=>"This program can be only used when A width or B Height are small"),this.outputShape=n,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(n[2]/this.workGroupSize[0]),Math.ceil(n[1]*2/this.workGroupSize[1]),n[0]];let i=s!=null;i&&this.variableNames.push("bias");let o=a!=null;o&&this.variableNames.push("preluActivationWeights"),this.addBias=i,this.activation=r,this.hasPreluActivationWeights=o,this.batchAEqualOne=e[0]===1,this.batchBEqualOne=t[0]===1,this.shaderKey=`matMulSmallOutputSize_${this.activation}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){let e=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch * batchASize + row * uniforms.dimInner + col];
|
|
}
|
|
return 0.0;`,t=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;`,n="",s="";if(this.activation){let i=Pr(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${i}
|
|
}`:n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${i}
|
|
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${this.batchAEqualOne?`
|
|
let batch = 0;
|
|
let batchASize = 0;
|
|
`:`
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = i32(globalId.z);
|
|
`}
|
|
${e}
|
|
}
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${this.batchBEqualOne?`
|
|
let batch = 0;
|
|
let batchBSize = 0;
|
|
`:`
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
`}
|
|
${t}
|
|
}
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimBOuter))) {
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
var value = valueIn;
|
|
${r}
|
|
${s}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
}
|
|
${Zne(this.workGroupSize)}
|
|
`}};function We(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=w.sizeFromShape(s.shape),i=w.inferFromImplicitShape(r,a),o=w.sizeFromShape(i);return w.assert(a===o,()=>`The new shape (${i}) has ${o} elements and the old shape (${s.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:i,dtype:s.dtype}}var ese={kernelName:Oo,backendName:"webgpu",kernelFunc:We};function Pv({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:u=null}){let l=e.shape.length,c=t.shape.length,p=n?e.shape[l-2]:e.shape[l-1],d=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[l-1]:e.shape[l-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),b=w.sizeFromShape(m),y=w.sizeFromShape(g),x=Qo.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);w.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[b,p,h]:[b,h,p],I=s?[y,f,d]:[y,d,f],$=We({inputs:{x:e},backend:r,attrs:{shape:k}}),R=We({inputs:{x:t},backend:r,attrs:{shape:I}}),E=[$,R],P=Math.max(b,y),A=b===1,O=y===1,T=p%4===0&&f%4===0&&!n&&!s,M;h*f<=32?M=new Qne([P,h,f],A,O,n,s,a,u,i):!n&&!s&&(h<=16&&(f<=512||d>=2*f)||f<=16&&(h<=512||p>=2*h))?M=new Jne(k,I,[P,h,f],a,u,i):T?M=new jne(k,[P,h,f],K().get("WEBGPU_MATMUL_WORK_PER_THREAD"),A,O,a,u,i):M=new Xne(k,[P,h,f],K().get("WEBGPU_MATMUL_WORK_PER_THREAD"),A,O,n,s,a,u,i);let W=[$,R];a&&W.push(a),i&&W.push(i);let j=[{type:"int32",data:[h]},{type:"int32",data:[f]},{type:"int32",data:[p]}];u==="leakyrelu"&&(j.push({type:"float32",data:[o]}),M.uniforms+=" alpha : f32,");let X=r.runWebGPUProgram(M,W,e.dtype,j),Y=We({inputs:{x:X},backend:r,attrs:{shape:x}});E.push(X);for(let Z of E)r.disposeData(Z.dataId);return Y}function tse(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:i,preluActivationWeights:o}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=s;return Pv({a:r,b:a,transposeA:u,transposeB:l,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:p,activation:c})}var nse={kernelName:oa,backendName:"webgpu",kernelFunc:tse},Pw=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return`
|
|
fn binaryOpComplex(
|
|
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
|
|
${rc(this.op,!1)}
|
|
}
|
|
|
|
${Ue()}
|
|
if(index < uniforms.size) {
|
|
let areal = getARealByOutputIndex(index);
|
|
let aimag = getAImagByOutputIndex(index);
|
|
let breal = getBRealByOutputIndex(index);
|
|
let bimag = getBImagByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
}
|
|
`}},sse=class{constructor(e,t,n,s){this.variableNames=["A","B"],this.size=!0;let r=256;this.workGroupSize=[r,1,1],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Be(this.outputShape),this.lastDimensionSize=s?n[0]:t[0],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4,this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.useSharedMemoryWithB=s,this.op=e,this.shaderKey=`binaryShared_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`}getUserCode(){let e=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",t=this.useSharedMemoryWithB?`let a = getAByOutputCoords(coords);
|
|
let b = sharedBuf[${e}];`:`let a = sharedBuf[${e}];
|
|
let b = getBByOutputCoords(coords);`;return`
|
|
fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${rc(this.op,!1)}
|
|
}
|
|
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
|
|
${Ue()}
|
|
|
|
// Fill in the shared memory buffer. Here we need a loop to make sure
|
|
// that all data in A|B are uploaded when |sharedMemorySize| is larger
|
|
// than work group size.
|
|
for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {
|
|
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}[localIndex]);
|
|
}
|
|
workgroupBarrier();
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
|
|
${t}
|
|
setOutputAtIndex(flatIndex, binaryOperation(a, b));
|
|
}
|
|
}
|
|
}
|
|
`}},rse=class{constructor(e,t,n){this.variableNames=["A","B"],this.workPerThread=4,this.isVec4=!0,this.size=!0;let s=128;this.workGroupSize=[s,1,1],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.op=e,this.shaderKey=`binaryVec4_${e}`}getUserCode(){return`
|
|
fn binaryOperation(a : vec4<f32>, b : vec4<f32>) -> vec4<f32> {
|
|
${rc(this.op,this.isVec4)}
|
|
}
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
let b = getBByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`}},D2=class{constructor(e,t,n){this.variableNames=["A","B"],this.size=!0;let s=128;this.workGroupSize=[s,1,1],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binary_${e}`,this.op=e}getUserCode(){return`
|
|
fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${rc(this.op,!1)}
|
|
}
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
let b = getBByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`}};function zw(e,t,n){if(w.arraysEqual(t,n)&&w.sizeFromShape(t)%4===0)return new rse(e,t,n);let r=t.length===1&&n.length>1&&t[0]<1024,a=n.length===1&&t.length>1&&n[0]<1024;return r||a?new sse(e,t,n,a):new D2(e,t,n)}function Wn(e){let{inputs:t}=e,{x:n}=t;return e.backend.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var ase={kernelName:Ua,backendName:"webgpu",kernelFunc:Wn};function hu(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),i=n.tensorMap.get(a.dataId),o=Wn({inputs:{x:s},backend:n}),u=Wn({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:u},a}var ise={kernelName:ep,backendName:"webgpu",kernelFunc:hu},ac=class{constructor(e,t){this.variableNames=["A"],this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=e,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
|
|
fn unaryOperation(a : f32) -> f32 {
|
|
${Kr(this.op,!1)}
|
|
}
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
setOutputAtIndex(index, unaryOperation(a));
|
|
}
|
|
}
|
|
`}};function Kt({opType:e,cpuKernelImpl:t,dtype:n}){return({inputs:s,backend:r})=>{let{x:a}=s,i=r,o=n||a.dtype;if(i.shouldExecuteOnCPU([a])&&t!=null){let l=i.tensorMap.get(a.dataId),c=t(l.values,o);return i.makeTensorInfo(a.shape,o,c)}let u=new ac(a.shape,e);return i.runWebGPUProgram(u,[a],o)}}function mn({opSnippet:e,cpuKernelImpl:t,supportsComplex:n=!1,dtype:s}){return({inputs:r,backend:a})=>{let{a:i,b:o}=r,u=a;if(n&&i.dtype==="complex64"){let p=u.tensorMap.get(i.dataId),d=u.tensorMap.get(o.dataId),h,f;if(e!==0)[h,f]=[[p.complexTensorInfos.real,d.complexTensorInfos.real],[p.complexTensorInfos.imag,d.complexTensorInfos.imag]].map(g=>{let[b,y]=g,v={dataId:b.dataId,dtype:b.dtype,shape:i.shape},x={dataId:y.dataId,dtype:y.dtype,shape:o.shape},k=zw(e,i.shape,o.shape);return u.runWebGPUProgram(k,[v,x],cn(b.dtype,y.dtype))});else{let g=new Pw(17,i.shape,o.shape),b=new Pw(18,i.shape,o.shape),y=[{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:i.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:i.shape},{dataId:d.complexTensorInfos.real.dataId,dtype:d.complexTensorInfos.real.dtype,shape:o.shape},{dataId:d.complexTensorInfos.imag.dataId,dtype:d.complexTensorInfos.imag.dtype,shape:o.shape}];h=u.runWebGPUProgram(g,y,"float32"),f=u.runWebGPUProgram(b,y,"float32")}let m=hu({inputs:{real:h,imag:f},backend:u});return u.disposeData(h.dataId),u.disposeData(f.dataId),m}let l=s||cn(i.dtype,o.dtype);if((i.dtype==="string"||o.dtype==="string"||u.shouldExecuteOnCPU([i,o]))&&t!=null){let p=u.tensorMap.get(i.dataId).values,d=u.tensorMap.get(o.dataId).values,h=i.dtype==="string"?C.fromUint8ToStringArray(p):p,f=i.dtype==="string"?C.fromUint8ToStringArray(d):d,[m,g]=t(i.shape,o.shape,h,f,l);return u.makeTensorInfo(g,l,m)}let c=zw(e,i.shape,o.shape);return u.runWebGPUProgram(c,[i,o],l)}}var{addImpl:ose,ceilImpl:use,concatImpl:lse,equalImpl:cse,expImpl:dse,expm1Impl:pse,floorImpl:hse,gatherNdImpl:fse,gatherV2Impl:mse,greaterEqualImpl:gse,greaterImpl:bse,lessEqualImpl:yse,lessImpl:vse,logImpl:xse,maxImpl:wse,maximumImpl:kse,minimumImpl:Sse,multiplyImpl:Ise,negImpl:Cse,notEqualImpl:Nse,prodImpl:Tse,rangeImpl:$se,rsqrtImpl:_se,scatterImpl:Ase,simpleAbsImpl:Ese,sliceImpl:Rse,stridedSliceImpl:Dse,stringNGramsImpl:Fse,subImpl:Ose,tileImpl:Pse,topKImpl:zse,transposeImpl:Mse,uniqueImpl:whe}=iv,Lse=Kt({opType:0,cpuKernelImpl:Ese}),Bse={kernelName:po,backendName:"webgpu",kernelFunc:Lse},Vse=mn({opSnippet:1,cpuKernelImpl:ose,supportsComplex:!0}),Wse={kernelName:Cr,backendName:"webgpu",kernelFunc:Vse},Use=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(s=>{e.push(`let v${s} = get${s}ByOutputCoords(coords);`)});let t=this.variableNames.map(s=>`v${s}`).join(" + ");return`
|
|
${Ue()}
|
|
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
${e.join(`
|
|
`)}
|
|
setOutputAtIndex(flatIndex, ${t});
|
|
}
|
|
}
|
|
}
|
|
`}};function Gse(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Wn({inputs:{x:s[0]},backend:n});let r=s.map(o=>o.dtype).reduce((o,u)=>cn(o,u)),a=s.map(o=>o.shape),i=new Use(a);return n.runWebGPUProgram(i,s,r)}var Hse={kernelName:Ia,backendName:"webgpu",kernelFunc:Gse},F2=class{constructor(e,t,n){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="infinityValue : f32,",this.size=!0;let s=[t];C.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),s,e.length),this.op=n==="min"?"<":">";let[r]=C.computeOutAndReduceShapes(e,s);this.outputShape=r.length===0?[1]:r,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,[1,1,1]),this.inputShape=e,this.shaderKey=`argMinMax${this.op}`}getUserCode(){let e=`
|
|
var<workgroup> xBestIndices : array<i32, ${this.workGroupSize[0]}>;
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`,t=()=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape.${hr(this.inputShape.length-1)}`,n=()=>{let r="";if(this.outputShape.length===1)this.inputShape.length!==1&&(r+="outputCoords,");else for(let a=0;a<this.outputShape.length;a++)r+=`outputCoords.${hr(a)},`;return r};return`
|
|
fn DIV_CEIL(a : u32, b : u32) -> u32 {
|
|
return ((a - 1u) / b + 1u);
|
|
}
|
|
|
|
${e}
|
|
|
|
${Ue()}
|
|
let outputIndex = index / i32(workGroupSizeX);
|
|
let reduceLength = ${t()};
|
|
|
|
var bestIndex = i32(localId.x);
|
|
var bestValue = uniforms.infinityValue;
|
|
let outputCoords = getCoordsFromIndex(outputIndex);
|
|
for (var k = i32(localId.x); k < reduceLength && outputIndex < uniforms.size;
|
|
k = k + i32(workGroupSizeX)) {
|
|
let candidate = getX(${n()} k);
|
|
if (!isnan(candidate) && candidate ${this.op} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = k;
|
|
}
|
|
}
|
|
xBestValues[localId.x] = bestValue;
|
|
xBestIndices[localId.x] = bestIndex;
|
|
workgroupBarrier();
|
|
|
|
var reduceSize = min(u32(reduceLength), workGroupSizeX);
|
|
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
|
|
currentSize = reduceSize / 2u) {
|
|
let interval = DIV_CEIL(reduceSize, 2u);
|
|
if (localId.x < currentSize) {
|
|
let candidate = xBestValues[localId.x + interval];
|
|
if (candidate ${this.op} bestValue) {
|
|
bestValue = candidate;
|
|
xBestValues[localId.x] = bestValue;
|
|
xBestIndices[localId.x] = xBestIndices[localId.x + interval];
|
|
}
|
|
}
|
|
reduceSize = interval;
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u && outputIndex < uniforms.size) {
|
|
setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]);
|
|
}
|
|
}
|
|
`}},qse=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout={x:[0],y:[1]},this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return`
|
|
let TILE_DIM = ${this.workGroupSize[0]};
|
|
var<workgroup> tile : array<array<f32, ${this.workGroupSize[0]+1}>, ${this.workGroupSize[0]}>;
|
|
${Ev()}
|
|
fn main(@builtin(local_invocation_id) localId : vec3<u32>,
|
|
@builtin(workgroup_id) workgroupId : vec3<u32>) {
|
|
var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x);
|
|
var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y);
|
|
let width = uniforms.outShape[0];
|
|
let height = uniforms.outShape[1];
|
|
if (x < width && y < height) {
|
|
tile[localId.y][localId.x] = A[y * width + x];
|
|
}
|
|
workgroupBarrier();
|
|
|
|
x = i32(workgroupId.y) * TILE_DIM + i32(localId.x);
|
|
y = i32(workgroupId.x) * TILE_DIM + i32(localId.y);
|
|
if (x < height && y < width) {
|
|
setOutputAtIndex((y * height + x), tile[localId.x]
|
|
[localId.y]);
|
|
}
|
|
}
|
|
`}},jse=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`}getUserCode(){let e=Ut(this.outputShape.length),t=Kse(this.newDim);return`
|
|
${Ue()}
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(flatIndex);
|
|
setOutputAtIndex(flatIndex, A[getIndexFromCoords${this.outputShape.length}D(
|
|
${e}(${t}), uniforms.aShape)]);
|
|
}
|
|
}
|
|
}
|
|
`}};function Kse(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=new Array(t);for(let s=0;s<e.length;s++)n[e[s]]=`resRC.${hr(s)}`;return n.join()}function Xs(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,i=n,o=r.shape.length,u=new Array(o);for(let c=0;c<u.length;c++)u[c]=r.shape[a[c]];if(n.shouldExecuteOnCPU([r])){let p=i.tensorMap.get(r.dataId).values,d=Mse(p,r.shape,r.dtype,a,u);return n.makeTensorInfo(u,r.dtype,d)}if(r.shape.length===2&&w.arraysEqual(a,[1,0])){let c=new qse(r.shape,a);return i.runWebGPUProgram(c,[r],r.dtype)}let l=new jse(r.shape,a);return i.runWebGPUProgram(l,[r],r.dtype)}var Xse={kernelName:Hs,backendName:"webgpu",kernelFunc:Xs};function Yse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,i=w.parseAxisParam(a,r.shape),o=C.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=Xs({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=C.getInnerMostAxes(i.length,u.shape.length)),C.assertAxesAreInnerMostDims("argMax",[i[0]],u.shape.length);let c=new F2(u.shape,i[0],"max"),p=[{type:"float32",data:[Number.NEGATIVE_INFINITY]}],d=n.runWebGPUProgram(c,[u],"int32",p);return l.forEach(h=>n.disposeData(h.dataId)),d}var Qse={kernelName:Ca,backendName:"webgpu",kernelFunc:Yse};function Zse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,i=w.parseAxisParam(a,r.shape),o=C.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=Xs({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=C.getInnerMostAxes(i.length,u.shape.length)),C.assertAxesAreInnerMostDims("argMin",[i[0]],u.shape.length);let c=new F2(u.shape,i[0],"min"),p=[{type:"float32",data:[Number.POSITIVE_INFINITY]}],d=n.runWebGPUProgram(c,[u],"int32",p);return l.forEach(h=>n.disposeData(h.dataId)),d}var Jse={kernelName:pl,backendName:"webgpu",kernelFunc:Zse},O2=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>, pad : vec2<i32>, dilation : vec2<i32>, convDims : vec2<i32>, filterDims : vec2<i32>,",this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
|
|
var count = 0.0;
|
|
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
|
|
let xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= uniforms.convDims.x) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
|
|
let xC = xCCorner + wC;
|
|
if (xC < 0 || xC >= uniforms.convDims.y) {
|
|
continue;
|
|
}
|
|
|
|
let value = getX(batch, xR, xC, coords[3]);
|
|
${e}
|
|
}
|
|
}
|
|
|
|
setOutputAtIndex(index, ${t});
|
|
}
|
|
}
|
|
`}},P2=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>,",this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let d = coords[3];
|
|
|
|
let xRCCorner = coords.yz * uniforms.stride;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
let value = getX(batch, xRCorner, xCCorner, d);
|
|
setOutputAtIndex(index, value);
|
|
}
|
|
}
|
|
`}};function ere(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:i,pad:o,dimRoundingMode:u}=s,l=1,c=C.computePool2DInfo(r.shape,a,i,l,o,u);if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))return Wn({inputs:{x:r},backend:n});let p,d=[{type:"int32",data:[c.strideHeight,c.strideWidth]}];return c.filterHeight===1&&c.filterWidth===1?p=new P2(c):(p=new O2(c,"avg"),d.push({type:"int32",data:[c.padInfo.top,c.padInfo.left]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[c.inHeight,c.inWidth]},{type:"int32",data:[c.effectiveFilterHeight,c.effectiveFilterWidth]})),n.runWebGPUProgram(p,[r],r.dtype,d)}var tre={kernelName:Na,backendName:"webgpu",kernelFunc:ere};function nre(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:i,transposeB:o}=s;return Pv({a:r,b:a,transposeA:i,transposeB:o,backend:n})}var sre={kernelName:Ta,backendName:"webgpu",kernelFunc:nre},rre=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${Ut(e.length)}, `,this.shaderKey="slice"}getUserCode(){let e=Ut(this.rank),t=are(this.rank),n;return this.start.length===1?n=this.outputShape.map((r,a)=>"sourceLoc = uniforms.start + coords;"):n=this.outputShape.map((r,a)=>`sourceLoc.${tg[a]} = uniforms.start[${a}] + coords.${tg[a]};`),`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
var sourceLoc : ${e};
|
|
let coords = getCoordsFromIndex(index);
|
|
${n.join(`
|
|
`)}
|
|
setOutputAtIndex(index, getSource(${t}));
|
|
}
|
|
}
|
|
`}},tg=["x","y","z","w","u","v"];function are(e){if(e===1)return"sourceLoc";if(e<=6)return tg.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function fu(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:i}=s,[o,u]=kt.parseSliceParams(r,a,i);if(kt.assertParamsValid(r,o,u),n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.tensorMap.get(r.dataId),d=Rse(p.values,o,u,r.shape,r.dtype);return n.makeTensorInfo(u,r.dtype,d)}if(w.sizeFromShape(u)===0)return n.makeTensorInfo(u,r.dtype,[]);let l=new rre(o,u),c=[{type:"int32",data:o}];return n.runWebGPUProgram(l,[r],r.dtype,c)}var ire={kernelName:Bo,backendName:"webgpu",kernelFunc:fu},ore=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:i}=s;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let o=a.reduce((y,v)=>y*v),u=C.getReshaped(r.shape,a,o),l=C.getPermuted(u.length,a.length),c=C.getReshapedPermuted(r.shape,a,o),p=C.getSliceBeginCoords(i,a.length),d=C.getSliceSize(c,i,a.length),h=[],f=We({inputs:{x:r},backend:n,attrs:{shape:u}}),m=Xs({inputs:{x:f},backend:n,attrs:{perm:l}}),g=We({inputs:{x:m},backend:n,attrs:{shape:c}}),b=fu({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(y=>n.disposeData(y.dataId)),b},ure={kernelName:ho,backendName:"webgpu",kernelFunc:ore},z2=mn({opSnippet:10,dtype:"bool",cpuKernelImpl:Nse}),lre={kernelName:_o,backendName:"webgpu",kernelFunc:z2};function ic(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return Wn({inputs:{x:r.complexTensorInfos.real},backend:n})}var cre={kernelName:lp,backendName:"webgpu",kernelFunc:ic};function dre(e,t){let n=new ac(e.shape,22),s=t.runWebGPUProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function ng(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Wn({inputs:{x:r},backend:n});let i=$t(r.shape),o=ng({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),u=hu({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeData(o.dataId),u}if(r.dtype==="complex64"){let i=ic({inputs:{input:r},backend:n}),o=ng({inputs:{x:i},backend:n,attrs:{dtype:a}});return n.disposeData(i.dataId),o}if(!w.hasEncodingLoss(r.dtype,a)){let i=Wn({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:a}}if(a==="int32")return dre(r,n);if(a==="bool"){let i=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),u=z2({inputs:{a:r,b:i},backend:n});return n.disposeData(i.dataId),u}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var pre={kernelName:$a,backendName:"webgpu",kernelFunc:ng},hre=Kt({opType:1,cpuKernelImpl:use}),fre={kernelName:_a,backendName:"webgpu",kernelFunc:hre},mre=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return`
|
|
${Ue()}
|
|
if(index < uniforms.size) {
|
|
let value = getAByOutputIndex(index);
|
|
var clampedValue : vec4<f32>;
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
if (isnan(value[i])) {
|
|
clampedValue[i] = value[i];
|
|
} else {
|
|
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
|
|
}
|
|
}
|
|
|
|
setOutputAtIndex(index, clampedValue);
|
|
}
|
|
}
|
|
`}},gre=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip"}getUserCode(){return`
|
|
${Ue()}
|
|
if(index < uniforms.size) {
|
|
let value = getAByOutputIndex(index);
|
|
if (isnan(value)) {
|
|
setOutputAtIndex(index, value);
|
|
return;
|
|
}
|
|
setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal));
|
|
}
|
|
}
|
|
`}};function bre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:i}=s,o,u=[{type:"float32",data:[a]},{type:"float32",data:[i]}];return w.sizeFromShape(r.shape)%4===0?o=new mre(r.shape):o=new gre(r.shape),n.runWebGPUProgram(o,[r],r.dtype,u)}var yre={kernelName:Nr,backendName:"webgpu",kernelFunc:bre},vre=class{constructor(e){this.uniforms="",this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.offsetLength=e.length-1;for(let t=0;t<this.offsetLength;t++)this.uniforms+=`offset${t} : i32,`;this.shaderKey="concat"}getUserCode(){let e=[];if(this.offsetLength>0){e.push("if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }");for(let r=1;r<this.offsetLength;r++)e.push(`else if (yC < uniforms.offset${[r]}){ setOutputAtCoords(coords.x, coords.y, getT${r}(yR, yC - uniforms.offset${r-1})); }`);let n=this.offsetLength,s=this.offsetLength-1;e.push(`else { setOutputAtCoords(coords.x, coords.y, getT${n}(yR, yC - uniforms.offset${s})); }`)}else e.push("setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));");return`
|
|
${Ue()}
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
let yR = coords.x;
|
|
let yC = coords.y;
|
|
|
|
${e.join(`
|
|
`)}
|
|
}
|
|
}
|
|
}
|
|
`}};function ih(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return Wn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var xre={kernelName:ap,backendName:"webgpu",kernelFunc:ih};function sg(e,t,n){let s=e[0].dtype;if(s==="complex64"){let h=e.map(y=>ic({inputs:{input:y},backend:n})),f=e.map(y=>ih({inputs:{input:y},backend:n})),m=sg(h,t,n),g=sg(f,t,n),b=hu({inputs:{real:m,imag:g},backend:n});return h.forEach(y=>n.disposeData(y.dataId)),f.forEach(y=>n.disposeData(y.dataId)),n.disposeData(m.dataId),n.disposeData(g.dataId),b}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let h=e.map(x=>{let k=w.sizeFromShape(x.shape.slice(t));return We({inputs:{x},backend:n,attrs:{shape:[-1,k]}})}),f=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape})),m=C.computeOutShape(h.map(x=>x.shape),1),g=h[0].shape[0]===1,b=lse(f,m,s,g),y=C.computeOutShape(e.map(x=>x.shape),t),v=n.makeTensorInfo(y,s,b);return h.forEach(x=>n.disposeData(x.dataId)),v}let{tensors2D:a,outShape:i}=wre(e,t,n),o=a.map(h=>h.shape),u=new vre(o),l=[],c=new Array(o.length-1);if(c.length>0){c[0]=o[0][1],l.push({type:"int32",data:[c[0]]});for(let h=1;h<c.length;h++)c[h]=c[h-1]+o[h][1],l.push({type:"int32",data:[c[h]]})}let p=n.runWebGPUProgram(u,a,a[0].dtype,l);a.forEach(h=>n.disposeData(h.dataId));let d=We({inputs:{x:p},backend:n,attrs:{shape:i}});return n.disposeData(p.dataId),d}function wre(e,t,n){let s=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>We({inputs:{x:a},backend:n,attrs:{shape:[w.sizeFromShape(a.shape.slice(0,t)),w.sizeFromShape(a.shape.slice(t))]}})),outShape:s}}function M2(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],i=C.computeOutShape(t.map(l=>l.shape),a);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(l=>w.sizeFromShape(l.shape)>0);if(o.length===1)return Wn({inputs:{x:o[0]},backend:n});let u=o.map(l=>l.shape);return C.assertParamsConsistent(u,a),sg(o,a,n)}var kre={kernelName:fo,backendName:"webgpu",kernelFunc:M2},Sre=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms=`filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>,
|
|
dimAOuter : i32, dimBOuter : i32, dimInner : i32,`,this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=e.outShape,w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.outputShape[1]===1?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,this.innerElementSize=this.convInfo.inChannels%4===0?4:3,this.innerElementSize===3?this.variableTypes=["f32","vec4<f32>"]:this.variableTypes=["vec4<f32>","vec4<f32>"],this.addBias&&(this.variableNames.push("bias"),this.variableTypes.push("vec4<f32>")),this.hasPreluActivationWeights&&(this.variableNames.push("preluActivationWeights"),this.variableTypes.push("vec4<f32>")),this.tileAOuter=this.outputShape[1]===1?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.workGroupSize[0]*this.innerElementSize,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMMVec4_${this.activation}_${this.fitA}_${this.fitB}_${this.elementsPerThread}_${this.innerElementSize}`}getShapeFit(){let e=[this.tileAOuter,this.tileInner],t=[this.tileInner,this.tileBOuter],n=this.outputShape[1]*this.outputShape[2],s=this.outputShape[3],r=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[Ks(e,[n,r]),Ks(t,[r,s])]}getUserCode(){let e=R2(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner,this.innerElementSize),t=`let outRow = r / uniforms.outShape[2];
|
|
let outCol = r % uniforms.outShape[2];
|
|
let WRow = c / (uniforms.filterDims[1] * uniforms.xShape[3]);
|
|
let WCol = c / uniforms.xShape[3] % uniforms.filterDims[1];
|
|
let inChCoord = c % uniforms.xShape[3];
|
|
let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0];
|
|
let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1];
|
|
|
|
var resData = vec${this.innerElementSize}<f32>(0.0);
|
|
// The bounds checking is always needed since we use it to pad zero for
|
|
// the 'same' padding type.
|
|
if (xRow >= 0 && xRow < uniforms.xShape[1] && xCol >= 0 && xCol < uniforms.xShape[2]) {
|
|
var coord = vec4<i32>(
|
|
batch,
|
|
xRow,
|
|
xCol,
|
|
inChCoord);
|
|
let xIndex = getIndexFromCoords4D(coord, uniforms.xShape);
|
|
${this.innerElementSize===3?"resData = vec3<f32>(x[xIndex], x[xIndex + 1], x[xIndex + 2]);":"resData = x[xIndex / 4];"}
|
|
}
|
|
return resData;`,n=this.fitA?`${t}`:`if (r < uniforms.dimAOuter && c < uniforms.dimInner) {
|
|
${t}
|
|
}
|
|
return vec${this.innerElementSize}<f32>(0.0);
|
|
`,s=this.fitB?"return W[row * uniforms.dimBOuter / 4 + col];":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return W[row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0);
|
|
`,r="",a="";if(this.activation){let u=Pr(this.activation,this.isVec4);this.hasPreluActivationWeights?r=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${u}
|
|
}`:r=`
|
|
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
${u}
|
|
}`,a="value = activation(value, outCoord);"}let i=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${r}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec${this.innerElementSize}<f32> {
|
|
let r = row;
|
|
let c = col * ${this.innerElementSize};
|
|
var batch = i32(globalId.z);
|
|
${n}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
${s}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : vec4<f32>, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
if (row < uniforms.dimAOuter && col * 4 < uniforms.dimBOuter)
|
|
{
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col * 4);
|
|
${i}
|
|
${a}
|
|
setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], outCoord[3],
|
|
value);
|
|
}
|
|
}
|
|
${e}
|
|
`}},Ire=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.outShape,this.isChannelsLast=e.dataFormat==="channelsLast",this.dispatchLayout=this.isChannelsLast?{x:[3],y:[1,2],z:[0]}:{x:[1],y:[2,3],z:[0]},this.workGroupSize=Rv(this.dispatchLayout,this.outputShape),this.elementsPerThread=Dv(this.dispatchLayout,this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}_${this.fitA}_${this.fitB}_${this.isChannelsLast}`}getShapeFit(){let e=this.workGroupSize[1]*this.elementsPerThread[1],t=this.workGroupSize[0]*this.elementsPerThread[0],n=e>t?e:t;w.assert(n%this.workGroupSize[0]===0&&n%this.workGroupSize[1]===0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let s=[e,n],r=[n,t],a=this.convInfo.outHeight*this.convInfo.outWidth,i=this.convInfo.outChannels,o=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[Ks(s,[a,o]),Ks(r,[o,i])]}getUserCode(){let e=this.isChannelsLast?`
|
|
let coord = vec4<i32>(batch, xRow, xCol, col % inChannels);
|
|
`:`
|
|
let coord = vec4<i32>(batch, col % inChannels, xRow, xCol);
|
|
`,t=this.isChannelsLast?`
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / outWidth,
|
|
row % outWidth,
|
|
col);
|
|
`:`
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
col,
|
|
row / outWidth,
|
|
row % outWidth);
|
|
`,n=Ov(this.elementsPerThread,this.workGroupSize),s=`
|
|
let inChannels = uniforms.wShape[2];
|
|
let outWidth = ${this.isChannelsLast?"uniforms.outShape[2]":"uniforms.outShape[3]"};
|
|
let outRow = row / outWidth;
|
|
let outCol = row % outWidth;
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * inChannels);
|
|
let WCol = col / inChannels % uniforms.filterDims[1];
|
|
let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0];
|
|
let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1];
|
|
${e}
|
|
// The bounds checking is always needed since we use it to pad zero for the
|
|
// 'same' padding type.
|
|
if(coordsInBounds4D(coord, uniforms.xShape)) {
|
|
return x[getIndexFromCoords4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;`,r=this.fitA?`${s}`:`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
${s}
|
|
}
|
|
return 0.0;
|
|
`,a=this.fitB?"return W[row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return W[row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;
|
|
`,i="",o="";if(this.activation){let c=Pr(this.activation,!1);this.hasPreluActivationWeights?i=`fn activation(a: f32, outCoord : vec4<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${c}
|
|
}`:i=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
${c}
|
|
}
|
|
`,o="value = activation(value, outCoord);"}let u=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${i}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
${r}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${a}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outWidth = ${this.isChannelsLast?"uniforms.outShape[2]":"uniforms.outShape[3]"};
|
|
${t}
|
|
${u}
|
|
${o}
|
|
result[getIndexFromCoords4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
${n}
|
|
`}};function Cre({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:o=null}){let u=n.dataFormat==="channelsLast",l=!u,c=!1,p=u&&n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID",d,h;if(p){let g=n.inHeight*n.inWidth*n.inChannels;d=We({inputs:{x:e},backend:s,attrs:{shape:[1,n.batchSize,g]}}),h=We({inputs:{x:t},backend:s,attrs:{shape:[1,g,n.outChannels]}})}else d=We({inputs:{x:e},backend:s,attrs:{shape:u?[n.batchSize,n.inHeight*n.inWidth,n.inChannels]:[n.batchSize,n.inChannels,n.inHeight*n.inWidth]}}),h=We({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});let f=Pv({a:u?d:h,b:u?h:d,transposeA:l,transposeB:c,backend:s,bias:r,activation:o,preluActivationWeights:a,leakyreluAlpha:i}),m=We({inputs:{x:f},backend:s,attrs:{shape:n.outShape}});return s.disposeData(d.dataId),s.disposeData(h.dataId),s.disposeData(f.dataId),m}function L2({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:o=null}){let u=r!=null,l=a!=null,c=n.dataFormat==="channelsLast",p;if(c&&n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID"||n.filterHeight===1&&n.filterWidth===1&&n.dilationHeight===1&&n.dilationWidth===1&&n.strideHeight===1&&n.strideWidth===1&&(n.padInfo.type==="SAME"||n.padInfo.type==="VALID"))return Cre({x:e,filter:t,convInfo:n,backend:s,bias:r,activation:o,preluActivationWeights:a,leakyreluAlpha:i});let h=(n.inChannels%4===0||n.inChannels%3===0)&&n.outChannels%4===0&&c,f=[n.padInfo.top,n.padInfo.left],m=[{type:"int32",data:[n.filterHeight,n.filterWidth]},{type:"int32",data:[...f]},{type:"int32",data:[n.strideHeight,n.strideWidth]},{type:"int32",data:[n.dilationHeight,n.dilationWidth]}];h?p=new Sre(n,u,o,l):p=new Ire(n,u,o,l);let g=n.outHeight*n.outWidth,b=n.outChannels,y=n.filterHeight*n.filterWidth*n.inChannels;m.push({type:"int32",data:[g]},{type:"int32",data:[b]},{type:"int32",data:[y]});let v=[e,t];return u&&v.push(r),l&&v.push(a),o==="leakyrelu"&&(m.push({type:"float32",data:[i]}),p.uniforms+=" alpha : f32,"),s.runWebGPUProgram(p,v,e.dtype,m)}function Nre(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dataFormat:u,dilations:l,dimRoundingMode:c}=n,p=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(r.shape,a.shape,i,l,o,c,!1,p);return L2({x:r,filter:a,convInfo:d,backend:s})}var Tre={kernelName:Aa,backendName:"webgpu",kernelFunc:Nre},$re=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.inShape,w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=Rv(this.dispatchLayout,this.outputShape),this.elementsPerThread=Dv(this.dispatchLayout,this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.shaderKey=`conv2DDerInputMM_${this.elementsPerThread}`}getUserCode(){return`
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
|
|
let outRow = row / uniforms.outShape[2];
|
|
let outCol = row % uniforms.outShape[2];
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
|
|
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
|
|
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
|
|
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
let coord = vec4<i32>(
|
|
batch,
|
|
i32(xR),
|
|
i32(xC),
|
|
col % uniforms.outBackprop[3]);
|
|
return x[getIndexFromCoords4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let coordX = uniforms.filterDims.x - 1 -
|
|
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let coordY = uniforms.filterDims.y - 1 -
|
|
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
|
|
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
|
|
coordX >= 0 && coordY >= 0) {
|
|
let coord = vec4<i32>(coordX, coordY, col,
|
|
row % uniforms.outBackprop[3]);
|
|
return W[getIndexFromCoords4D(coord, uniforms.wShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col);
|
|
result[getIndexFromCoords4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
|
|
${Ov(this.elementsPerThread,this.workGroupSize)}
|
|
`}},_re=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,n=this.isChannelsLast?3:1;return`
|
|
${Ue()} {
|
|
if(index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let d1 = coords[${n}];
|
|
|
|
let dyCorner = vec2<i32>(coords[${e}]), coords[${t}]) - uniforms.pads;
|
|
let dyRCorner = dyCorner.x;
|
|
let dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
|
|
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
|
|
let wRPerm = uniforms.filterDims.x - 1 - wR;
|
|
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
|
|
wRPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyR = dyR;
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
|
|
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
|
|
let wCPerm = uniforms.filterDims.y - 1 - wC;
|
|
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
|
|
fract(dyC) > 0.0 || wCPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyC = dyC;
|
|
|
|
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
|
|
if (${this.isChannelsLast}) {
|
|
let xValue = getDy(batch, idyR, idyC, d2);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
} else {
|
|
let xValue = getDy(batch, d2, idyR, idyC);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutputAtIndex(index, dotProd);
|
|
}
|
|
}
|
|
`}};function Are(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:i,strides:o,pad:u,dataFormat:l,dimRoundingMode:c}=s,p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(i,a.shape,o,1,u,c,!1,p),h=[{type:"int32",data:[d.filterHeight,d.filterWidth]},{type:"int32",data:[d.filterHeight-1-d.padInfo.top,d.filterWidth-1-d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.batchSize,d.outHeight,d.outWidth,d.outChannels]}],f;if(K().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new _re(d);else{f=new $re(d);let m=d.inShape[1]*d.inShape[2],g=d.inShape[3],b=d.filterHeight*d.filterWidth*d.outChannels;h.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[b]})}return n.runWebGPUProgram(f,[r,a],"float32",h)}var Ere={kernelName:Ea,backendName:"webgpu",kernelFunc:Are},Rre=Kt({opType:2}),Dre={kernelName:Ra,backendName:"webgpu",kernelFunc:Rre},Fre=Kt({opType:3}),Ore={kernelName:Da,backendName:"webgpu",kernelFunc:Fre},Pre=class{constructor(e,t,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32,",this.workGroupSize=[64,1,1],this.size=!0;let[r]=t;this.outputShape=[r,n[0],n[1],e],this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=s==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[n,s,r]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[a,i,o]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let height_ratio = f32(${n});
|
|
let width_ratio = f32(${a});
|
|
let b = coords[0];
|
|
let y = coords[1];
|
|
let x = coords[2];
|
|
let d = coords[3];
|
|
// get box vals
|
|
let y1 = getBoxes(b, 0);
|
|
let x1 = getBoxes(b, 1);
|
|
let y2 = getBoxes(b, 2);
|
|
let x2 = getBoxes(b, 3);
|
|
// get image in batch index
|
|
let bInd = i32(round(getBoxInd(b)));
|
|
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
|
|
return;
|
|
}
|
|
let height_scale = ${s};
|
|
let width_scale = ${i};
|
|
let in_y = ${r};
|
|
if( in_y < 0.0 || in_y > ${e} ) {
|
|
setOutputAtIndex(index, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let in_x = ${o};
|
|
if( in_x < 0.0 || in_x > ${t} ) {
|
|
setOutputAtIndex(index, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
|
|
if(${this.methodId} == 1) {
|
|
// Compute the four integer indices.
|
|
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
|
|
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
|
|
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
|
|
let top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
let newValue = top + (bottom - top) * fracCR.y;
|
|
setOutputAtIndex(index, newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let sourceNearestCR = vec2<i32>(floor(
|
|
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
|
|
let newValue = getImage(
|
|
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
}
|
|
`}},zre=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:i}=t,{cropSize:o,method:u,extrapolationValue:l}=s,c=new Pre(r.shape[3],a.shape,o,u),p=[{type:"float32",data:[l]}];return n.runWebGPUProgram(c,[r,a,i],"float32",p)},Mre={kernelName:go,backendName:"webgpu",kernelFunc:zre},Mw=class{constructor(e,t,n,s){this.variableNames=["x"],this.uniforms="index : f32,",this.size=!0;let r=128;this.workGroupSize=[r,1,1],this.outputShape=t,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.exclusive=n,this.reverse=s,this.op=e,this.shaderKey=`cum_${this.op}_${this.exclusive}_${this.reverse}`}getUserCode(){let e=this.outputShape.length,t=this.op==="*"?"1.0":"0.0",n=this.exclusive?t:`getX(${Lw(e,"coords",this.op)})`,s=this.outputShape[this.outputShape.length-1],r="",a="";return this.exclusive?(r=this.reverse?`end != ${s-1}`:"end != 0",a=this.reverse?"end + 1":"end - 1"):(r=this.reverse?`end + pow2 < ${s}`:"end >= pow2",a=this.reverse?"end + pow2":"end - pow2"),`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
var coords = getCoordsFromIndex(index);
|
|
|
|
let end = ${Bw(e,"coords",this.op)};
|
|
var val = ${n};
|
|
let pow2 = i32(pow(2.0, uniforms.index));
|
|
if (${r}) {
|
|
let idx = ${a};
|
|
${Bw(e,"coords",this.op)} = idx;
|
|
val ${this.op}= getX(${Lw(e,"coords",this.op)});
|
|
}
|
|
setOutputAtIndex(index, val);
|
|
}
|
|
}
|
|
`}};function Lw(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function Bw(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function B2(e,t,n,s,r,a){let i=t.shape.length,o=C.getAxesPermutation([s],i),u=t;o!=null&&(u=Xs({inputs:{x:t},backend:n,attrs:{perm:o}}));let l=C.getInnerMostAxes(1,i)[0];if(l!==i-1)throw new Error(`WebGPU cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${s}`);let c=u.shape[l],p=Wn({inputs:{x:u},backend:n});for(let d=0;d<=Math.ceil(Math.log2(c))-1;d++){let h=new Mw(e,u.shape,!1,a),f=p,m=[{type:"float32",data:[d]}];p=n.runWebGPUProgram(h,[p],p.dtype,m),n.disposeData(f.dataId)}if(r){let d=new Mw(e,u.shape,r,a),h=p,f=[{type:"float32",data:[0]}];p=n.runWebGPUProgram(d,[p],p.dtype,f),n.disposeData(h.dataId)}if(o!=null){let d=C.getUndoAxesPermutation(o),h=Xs({inputs:{x:p},backend:n,attrs:{perm:d}});return n.disposeData(p.dataId),n.disposeData(u.dataId),h}return p}function Lre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s;return B2("*",r,n,a,i,o)}var Bre={kernelName:mo,backendName:"webgpu",kernelFunc:Lre};function Vre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s;return B2("+",r,n,a,i,o)}var Wre={kernelName:Fa,backendName:"webgpu",kernelFunc:Vre},Ure=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32,",this.outputShape=e,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let h = ${this.getHeightCoordString()};
|
|
let w = ${this.getWidthCoordString()};
|
|
let d = ${this.getDepthCoordString()};
|
|
|
|
let in_h = h / uniforms.blockSize;
|
|
let offset_h = h % uniforms.blockSize;
|
|
let in_w = w / uniforms.blockSize;
|
|
let offset_w = w % uniforms.blockSize;
|
|
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
let in_d = d + offset_d;
|
|
|
|
let rlt = ${this.getInputSamplingString()};
|
|
setOutputAtIndex(index, rlt);
|
|
}
|
|
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Gre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:i}=s,o=r.shape[0],u=i==="NHWC"?r.shape[1]:r.shape[2],l=i==="NHWC"?r.shape[2]:r.shape[3],c=i==="NHWC"?r.shape[3]:r.shape[1],p=u*a,d=l*a,h=c/(a*a),f=i==="NHWC"?[o,p,d,h]:[o,h,p,d],m=[{type:"int32",data:[a]}],g=new Ure(f,i);return n.runWebGPUProgram(g,[r],r.dtype,m)}var Hre={kernelName:bo,backendName:"webgpu",kernelFunc:Gre},V2=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, inDims : vec2<i32>,",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[0,1],y:[2],z:[3]},this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,4,4]),w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise3x3_${n}`}getUserCode(){let e="",t="";if(this.activation){let r=Pr(this.activation,this.isVec4);this.hasPreluActivation?e=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${r}
|
|
}`:e=`
|
|
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
${r}
|
|
}
|
|
`,t="dotProd[i] = activation(dotProd[i], coords);"}let n=this.addBias?"dotProd[i] = dotProd[i] + getBiasByOutputCoords(coords);":"";return`
|
|
${e}
|
|
|
|
${Ev()}
|
|
fn main(@builtin(global_invocation_id) globalId: vec3<u32>) {
|
|
let batch = 0;
|
|
let r = i32(globalId.x);
|
|
let c = i32(globalId.y) * 4;
|
|
let d2 = i32(globalId.z) * 4;
|
|
let xRCCorner = vec2<i32>(r, c) * uniforms.stride - uniforms.pad;
|
|
let d1 = d2;
|
|
let q = 0;
|
|
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var wVals : array<vec4<f32>, 9>;
|
|
wVals[0] = getW(0, 0, d1, q);
|
|
wVals[1] = getW(0, 1, d1, q);
|
|
wVals[2] = getW(0, 2, d1, q);
|
|
wVals[3] = getW(1, 0, d1, q);
|
|
wVals[4] = getW(1, 1, d1, q);
|
|
wVals[5] = getW(1, 2, d1, q);
|
|
wVals[6] = getW(2, 0, d1, q);
|
|
wVals[7] = getW(2, 1, d1, q);
|
|
wVals[8] = getW(2, 2, d1, q);
|
|
|
|
var xVals : array<array<vec4<f32>, 6>, 3>;
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
let xR = xRCorner + wR * uniforms.dilation[0];
|
|
for (var wC = 0; wC < 6; wC = wC + 1) {
|
|
let xC = xCCorner + wC * uniforms.dilation[1];
|
|
if (xR < 0 || xR >= uniforms.inDims[0] || xC < 0 || xC >= uniforms.inDims[1]) {
|
|
xVals[wR][wC] = vec4<f32>(0.0);
|
|
} else {
|
|
xVals[wR][wC] = getX(batch, xR, xC, d1);
|
|
}
|
|
}
|
|
}
|
|
|
|
var dotProd : array<vec4<f32>, 4>;
|
|
dotProd[0] = vec4<f32>(0.0);
|
|
dotProd[1] = vec4<f32>(0.0);
|
|
dotProd[2] = vec4<f32>(0.0);
|
|
dotProd[3] = vec4<f32>(0.0);
|
|
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
for (var wC = 0; wC < 3; wC = wC + 1) {
|
|
let indexW = wR * 3 + wC;
|
|
dotProd[0] = dotProd[0] + xVals[wR][0 + wC] * wVals[indexW];
|
|
dotProd[1] = dotProd[1] + xVals[wR][1 + wC] * wVals[indexW];
|
|
dotProd[2] = dotProd[2] + xVals[wR][2 + wC] * wVals[indexW];
|
|
dotProd[3] = dotProd[3] + xVals[wR][3 + wC] * wVals[indexW];
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
let coords = vec4<i32>(batch, r, c + i, d2);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
${n}
|
|
${t}
|
|
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], dotProd[i]);
|
|
}
|
|
}
|
|
}
|
|
`}},W2=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms=`pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>,
|
|
inDims : vec2<i32>, filterHeight : i32, filterWidth : i32,
|
|
channelMul : i32,`,this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let r=Pr(this.activation,!1);this.hasPreluActivation?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${r}
|
|
}`:e=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
${r}
|
|
}
|
|
`,t="dotProd = activation(dotProd, coords);"}let n=this.addBias?"dotProd = dotProd + getBiasByOutputCoords(coords);":"";return`
|
|
${e}
|
|
|
|
fn writeResult(batch : i32, row : i32, col : i32, chan : i32,
|
|
value : f32) {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if (coordsInBounds4D(coord, uniforms.outShape)) {
|
|
setOutputAtCoords(batch, row, col, chan, value);
|
|
}
|
|
}
|
|
|
|
${Ii()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let d2 = coords[3];
|
|
let d1 = d2 / uniforms.channelMul;
|
|
let q = d2 - d1 * uniforms.channelMul;
|
|
|
|
let inputRowStart = xRCCorner.x;
|
|
let inputColStart = xRCCorner.y;
|
|
let inputRowEnd = inputRowStart + uniforms.filterHeight *
|
|
uniforms.dilation[0];
|
|
let inputColEnd = inputColStart + uniforms.filterWidth *
|
|
uniforms.dilation[1];
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
|
|
// Extract if checking out of for loop for performance.
|
|
if (inputRowStart >= 0 && inputColStart >= 0 &&
|
|
inputRowEnd < uniforms.inDims[0] &&
|
|
inputColEnd < uniforms.inDims[1]) {
|
|
// Here using a constant value |this.convInfo.filterHeight| instead
|
|
// of uniform value is in order to loop unrolling.
|
|
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
} else {
|
|
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
if (xR < 0 || xR >= uniforms.inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
if (xC < 0 || xC >= uniforms.inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
}
|
|
|
|
${n}
|
|
${t}
|
|
writeResult(batch, coords[1], coords[2], d2, dotProd);
|
|
}
|
|
`}};function qre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dilations:u,dimRoundingMode:l}=s,c=u;c==null&&(c=[1,1]);let p=C.computeConv2DInfo(r.shape,a.shape,i,c,o,l,!0),d=[{type:"int32",data:[p.padInfo.top,p.padInfo.left]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.dilationHeight,p.dilationWidth]},{type:"int32",data:[p.inHeight,p.inWidth]}],h;return p.batchSize===1&&p.inHeight===p.outHeight&&p.inWidth===p.outWidth&&p.strideHeight===1&&p.strideWidth===1&&p.filterHeight===p.filterWidth&&p.inChannels===p.outChannels&&p.dilationHeight===1&&p.dilationWidth===1&&p.filterHeight===3&&p.inChannels%4===0?h=new V2(p):(h=new W2(p),d.push({type:"int32",data:[p.filterHeight]},{type:"int32",data:[p.filterWidth]},{type:"int32",data:[p.outChannels/p.inChannels]})),n.runWebGPUProgram(h,[r,a],r.dtype,d)}var jre={kernelName:Oa,backendName:"webgpu",kernelFunc:qre},U2=mn({opSnippet:0,cpuKernelImpl:Ise,supportsComplex:!0}),Kre={kernelName:Ja,backendName:"webgpu",kernelFunc:U2},Xre=class{constructor(e,t){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="reduceSize : i32,",this.size=!0,this.inputShape=[e.batchSize,e.inSize];let[n]=C.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=n.length===0?[1]:n,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,[1,1,1]),this.reduceType=t,this.shaderKey=`reduce_${t}`}getUserCode(){let e="",t="0.0";this.reduceType==="min"||this.reduceType==="max"?(e=`
|
|
if (isnan(candidate)) {
|
|
bestValue = uniforms.NAN;
|
|
} else if (!isnan(bestValue) && candidate ${this.reduceType==="min"?"<":">"} bestValue)
|
|
{ bestValue = candidate; }`,t="f32(x[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?e=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(e=" bestValue = bestValue * candidate; ",t="1.0");let n=this.reduceType==="mean"?"setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputAtIndex(outputIndex, bestValue);";return`
|
|
fn DIV_CEIL(a : u32, b : u32) -> u32 {
|
|
return ((a - 1u) / b + 1u);
|
|
}
|
|
|
|
${`
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`}
|
|
fn getOffset(outputIndex : i32) -> i32 {
|
|
let outputCoords = getCoordsFromIndex(outputIndex);
|
|
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
|
|
return offset;
|
|
}
|
|
${Ue()}
|
|
let outputIndex = index / i32(workGroupSizeX);
|
|
let offset = getOffset(outputIndex);
|
|
var bestValue = ${t};
|
|
let Length = uniforms.reduceSize;
|
|
let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX);
|
|
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
|
|
k = k + i32(workGroupSizeX)) {
|
|
let candidate = f32(x[offset + k]);
|
|
${e}
|
|
}
|
|
xBestValues[localId.x] = bestValue;
|
|
workgroupBarrier();
|
|
|
|
var reduceSize = min(u32(Length), workGroupSizeX);
|
|
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
|
|
currentSize = reduceSize / 2u) {
|
|
let interval = DIV_CEIL(reduceSize, 2u);
|
|
if (localId.x < currentSize) {
|
|
let candidate = xBestValues[localId.x + interval];
|
|
${e}
|
|
xBestValues[localId.x] = bestValue;
|
|
}
|
|
reduceSize = interval;
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u && outputIndex < uniforms.size) {
|
|
${n}
|
|
}
|
|
}
|
|
`}};function oc(e,t,n,s,r){let a=e.shape.length,i=[],o=w.parseAxisParam(t,e.shape),u=o,l=C.getAxesPermutation(u,a),c=e;l!=null&&(c=Xs({inputs:{x:e},attrs:{perm:l},backend:r}),u=C.getInnerMostAxes(u.length,a),i.push(c)),C.assertAxesAreInnerMostDims(s,u,a);let[p,d]=C.computeOutAndReduceShapes(c.shape,u),h=p;n&&(h=C.expandShapeToKeepDim(p,o));let f;if((s==="max"||s==="prod")&&r.shouldExecuteOnCPU([c])){let m=r.tensorMap.get(c.dataId).values;switch(s){case"max":let g=wse(m,w.sizeFromShape(d),h,e.dtype);f=r.makeTensorInfo(h,e.dtype,g);break;case"prod":let{outVals:b,outShape:y,outDtype:v}=Tse(c.shape,c.dtype,m,u);f=r.makeTensorInfo(y,v,b);break;default:throw new Error(`${s} CPU implementation is not yet supported.`)}}else{let m=w.sizeFromShape(d),b=w.sizeFromShape(c.shape)/m,y={windowSize:m,inSize:m,batchSize:b,outSize:1},v=s==="mean"?"float32":bp(e.dtype),x=[{type:"int32",data:[m]}],k=new Xre(y,s),I=r.runWebGPUProgram(k,[c],v,x);i.push(I),f=We({inputs:{x:I},attrs:{shape:h},backend:r})}return i.forEach(m=>r.disposeData(m.dataId)),f}function zv(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;return oc(r,a,i,"sum",n)}var Yre={kernelName:di,backendName:"webgpu",kernelFunc:zv};function Qre(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:i,summedDims:o,idDims:u}=C.decodeEinsumEquation(r,a.length);C.checkEinsumDimSizes(i.length,u,a);let{path:l,steps:c}=C.getEinsumComputePath(o,u),p=c.length,d=null,h=i.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:b,expandDims:y}=C.getEinsumPermutation(h,u[g]),v;C.isIdentityPermutation(b)?v=a[g]:(v=Xs({inputs:{x:a[g]},backend:n,attrs:{perm:b}}),f.push(v));let x=v.shape.slice();for(let k=0;k<y.length;++k)x.splice(y[k],0,1);w.arraysEqual(v.shape,x)||(v=We({inputs:{x:v},backend:n,attrs:{shape:x}}),f.push(v)),d===null?d=v:(d=U2({inputs:{a:v,b:d},backend:n}),f.push(d))}m<p-1&&(l[m]>=0&&(d=zv({inputs:{x:d},backend:n,attrs:{axis:l[m]-(i.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeData(m.dataId);return d}var Zre={kernelName:rp,backendName:"webgpu",kernelFunc:Qre},Jre=Kt({opType:4}),eae={kernelName:za,backendName:"webgpu",kernelFunc:Jre},tae=mn({opSnippet:4,dtype:"bool",cpuKernelImpl:cse}),nae={kernelName:yo,backendName:"webgpu",kernelFunc:tae},G2=Kt({opType:5,cpuKernelImpl:dse,dtype:"float32"}),sae={kernelName:Ma,backendName:"webgpu",kernelFunc:G2};function rg(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,i=a.shape.length,o=a.shape.slice(),u=r;return r<0&&(w.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+r+1),o.splice(u,0,1),We({inputs:{x:a},backend:s,attrs:{shape:o}})}var rae={kernelName:vo,backendName:"webgpu",kernelFunc:rg},aae=Kt({opType:6,cpuKernelImpl:pse}),iae={kernelName:xo,backendName:"webgpu",kernelFunc:aae},oae=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill"}getUserCode(){return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
setOutputAtIndex(index, uniforms.value);
|
|
}
|
|
}
|
|
`}};function mu(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||w.inferDtype(r),a==="string"){let i=w.getArrayFromDType(a,w.sizeFromShape(s));return i.fill(r),t.makeTensorInfo(s,a,i)}else{let i=new oae(s),o=[{type:"float32",data:[r]}];return t.runWebGPUProgram(i,[],a,o)}}var uae={kernelName:vl,backendName:"webgpu",kernelFunc:mu},lae=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let coordX = uniforms.xShape[2] - coords[2] - 1;
|
|
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}},cae={kernelName:wo,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new lae(n.shape);return s.runWebGPUProgram(r,[n],n.dtype)}},dae=Kt({opType:7,cpuKernelImpl:hse}),pae={kernelName:La,backendName:"webgpu",kernelFunc:dae},hae=mn({opSnippet:12,dtype:"int32"}),fae={kernelName:Ba,backendName:"webgpu",kernelFunc:hae},mae=class{constructor(e,t=!1){this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.useImport=t,this.shaderKey=`fromPixels_${this.useImport}`}getUserCode(){let e=this.useImport?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
|
|
@binding(1) @group(0) var src: ${this.useImport?"texture_external":"texture_2d<f32>"};
|
|
|
|
${Ue()}
|
|
let flatIndexBase = index * uniforms.numChannels;
|
|
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
|
|
let flatIndex = flatIndexBase + i;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndexBase);
|
|
let values = ${e};
|
|
result[flatIndex] = i32(floor(255.0 * values[i]));
|
|
}
|
|
}
|
|
}
|
|
`}},gae={kernelName:vd,backendName:"webgpu",kernelFunc:bae},Ui;function bae(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s;if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,u=typeof HTMLCanvasElement!="undefined"&&r instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&r instanceof OffscreenCanvas,l=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[c,p]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],d=[p,c,a];if(K().getBool("WEBGPU_USE_IMPORT")&&i)return Vw({externalImage:r,backend:n,attrs:s,outShape:d,useImport:!0});if((i||o)&&(Ui==null&&(Ui=document.createElement("canvas").getContext("2d")),Ui.canvas.width=c,Ui.canvas.height=p,Ui.drawImage(r,0,0,c,p),r=Ui.canvas),l||u||i||o)return Vw({externalImage:r,backend:n,attrs:s,outShape:d,useImport:!1});let h=r.data,f=h;if(a!=null&&a!==4){f=new Uint8Array(r.width*r.height*a);let b=h.length,y=0;for(let v=0;v<b;v++)v%4<a&&(f[y++]=h[v])}let m=n.makeTensorInfo(d,"int32"),g=n.tensorMap.get(m.dataId);return g.values=new Int32Array(f),n.maybeReleaseBuffer(m.dataId),n.uploadToGPU(m.dataId),m}function Vw(e){let{externalImage:t,backend:n,attrs:s,outShape:r,useImport:a}=e,{numChannels:i}=s,o=w.sizeFromShape(r),u=w.computeStrides(r),l=new mae(r,a),c=[{type:"uint32",data:[o]},{type:"uint32",data:[i]},{type:"uint32",data:[...u]},{type:"uint32",data:[...l.dispatch]}];return n.runFromPixelsProgram(l,r,c,a,t)}var yae=class{constructor(e,t,n,s,r){this.uniforms="varianceEpsilon : f32,",this.workGroupSize=[128,1,1],this.size=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n),this.outputShape=e,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),s!=null&&(C.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset")),r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale")),this.offsetShape=s,this.scaleShape=r,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetByOutputIndex(index)");let t="1.0";return this.scaleShape!=null&&(t="getScaleByOutputIndex(index)"),`
|
|
${Ue()}
|
|
if (index < uniforms.size)
|
|
{
|
|
let xValue = getXByOutputIndex(index);
|
|
let meanValue = getMeanByOutputIndex(index);
|
|
let varianValue = getVarianceByOutputIndex(index);
|
|
let offsetValue = ${e};
|
|
let scaleValue = ${t};
|
|
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
|
|
setOutputAtIndex(index,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
|
|
}
|
|
}
|
|
`}},vae={kernelName:Va,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s,scale:r,offset:a,mean:i,variance:o}=e,{varianceEpsilon:u}=t,l=n,c=[s,i,o],p=null;a!=null&&(p=a.shape,c.push(a));let d=null;r!=null&&(d=r.shape,c.push(r));let h=new yae(s.shape,i.shape,o.shape,p,d),f=[{type:"float32",data:[u]}];return l.runWebGPUProgram(h,c,s.dtype,f)}};function xae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s;if(c!=="NHWC")throw new Error(`WebGPU backend FusedConv2D does not support dataFormat:'${c}'. Please use 'NHWC'.`);let m=C.convertConv2DDataFormat(c),g=C.computeConv2DInfo(r.shape,a.shape,u,p,l,d,!1,m);return L2({x:r,filter:a,convInfo:g,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:f,activation:h})}var wae={kernelName:ua,backendName:"webgpu",kernelFunc:xae};function kae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=c;f==null&&(f=[1,1]),w.assert(C.eitherStridesOrDilationsAreOne(u,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${u} and dilations '${f}'`);let m=C.computeConv2DInfo(r.shape,a.shape,u,f,l,p,!0),g=[r,a],b=i!=null,y=o!=null;b&&g.push(i),y&&g.push(o);let v=[{type:"int32",data:[m.padInfo.top,m.padInfo.left]},{type:"int32",data:[m.strideHeight,m.strideWidth]},{type:"int32",data:[m.dilationHeight,m.dilationWidth]},{type:"int32",data:[m.inHeight,m.inWidth]}],x;return m.batchSize===1&&m.inHeight===m.outHeight&&m.inWidth===m.outWidth&&m.strideHeight===1&&m.strideWidth===1&&m.filterHeight===m.filterWidth&&m.inChannels===m.outChannels&&m.dilationHeight===1&&m.dilationWidth===1&&m.filterHeight===3&&m.inChannels%4===0?x=new V2(m,b,d,y):(x=new W2(m,b,d,y),v.push({type:"int32",data:[m.filterHeight]},{type:"int32",data:[m.filterWidth]},{type:"int32",data:[m.outChannels/m.inChannels]})),d==="leakyrelu"&&(v.push({type:"float32",data:[h]}),x.uniforms+=" alpha : f32,"),n.runWebGPUProgram(x,g,"float32",v)}var Sae={kernelName:la,backendName:"webgpu",kernelFunc:kae},Iae=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32, strides : ${Ut(e)},`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var flattenIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexTemp = i32(round(getIndices(coords[0], j)));
|
|
let strideNum = ${e};
|
|
flattenIndex = flattenIndex + indexTemp * strideNum;
|
|
}
|
|
|
|
setOutputAtIndex(index, getA(flattenIndex, coords[1]));
|
|
}
|
|
}
|
|
`}};function Cae(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,i=a[a.length-1],o=w.sizeFromShape(s.shape),[u,l,c,p]=C.prepareAndValidate(s,r),d=We({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),h=We({inputs:{x:s},backend:n,attrs:{shape:[w.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let y=n.readSync(r.dataId),v=n.bufferSync(s),x=fse(y,v,s.dtype,l,i,c,p,s.shape,o);return n.makeTensorInfo(u,s.dtype,x.values)}let f=new Iae(i,[l,c]),m=[{type:"int32",data:[i]},{type:"int32",data:p}],g=n.runWebGPUProgram(f,[h,d],h.dtype,m),b=We({inputs:{x:g},backend:n,attrs:{shape:u}});return n.disposeData(d.dataId),n.disposeData(h.dataId),n.disposeData(g.dataId),b}var Nae={kernelName:So,backendName:"webgpu",kernelFunc:Cae},Tae=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather"}getUserCode(){let e=$ae(this.aShape);return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
let indexZ = i32(getIndices(resRC.x, resRC.z));
|
|
let inBounds = select(0.0, 1.0, indexZ >= 0 && indexZ < uniforms.aShape[2]);
|
|
setOutputAtIndex(index, inBounds * getA(${e}));
|
|
}
|
|
}
|
|
`}};function $ae(e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let s=0;s<e.length;s++)s===2?n.push("indexZ"):n.push(`${t[s]}`);return n.join()}function H2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:i,batchDims:o}=s,u=w.parseAxisParam(i,r.shape)[0],l=C.segment_util.collectGatherOpShapeInfo(r,a,u,o),c=w.sizeFromShape(a.shape),p=[],d=We({inputs:{x:r},backend:n,attrs:{shape:[l.batchSize,l.outerSize,l.dimSize,l.sliceSize]}}),h=We({inputs:{x:a},backend:n,attrs:{shape:[l.batchSize,c/l.batchSize]}});p.push(d),p.push(h);let f=[l.batchSize,l.outerSize,c/l.batchSize,l.sliceSize];if(n.shouldExecuteOnCPU([r,a])){let v=n.tensorMap.get(h.dataId).values,x=Ae(h.shape,h.dtype,v),I=n.tensorMap.get(d.dataId).values,$=Ae(d.shape,d.dtype,I),R=mse($,x,f);return p.forEach(E=>n.disposeData(E.dataId)),n.makeTensorInfo(l.outputShape,R.dtype,R.values)}let m=new Tae(d.shape,f),g=n.runWebGPUProgram(m,[d,h],d.dtype);p.push(g);let b=We({inputs:{x:g},backend:n,attrs:{shape:l.outputShape}});return p.forEach(y=>n.disposeData(y.dataId)),b}var _ae={kernelName:ko,backendName:"webgpu",kernelFunc:H2},Aae=mn({opSnippet:5,cpuKernelImpl:bse,dtype:"bool"}),Eae={kernelName:Io,backendName:"webgpu",kernelFunc:Aae},Rae=mn({opSnippet:6,dtype:"bool",cpuKernelImpl:gse}),Dae={kernelName:Wa,backendName:"webgpu",kernelFunc:Rae};function Fae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,i=[{type:"float32",data:[a]}],o=new ac(r.shape,14);return o.uniforms="alpha : f32,",n.runWebGPUProgram(o,[r],"float32",i)}var Oae={kernelName:Ga,backendName:"webgpu",kernelFunc:Fae},Pae=mn({opSnippet:7,dtype:"bool",cpuKernelImpl:vse}),zae={kernelName:Co,backendName:"webgpu",kernelFunc:Pae},Mae=mn({opSnippet:8,dtype:"bool",cpuKernelImpl:yse}),Lae={kernelName:No,backendName:"webgpu",kernelFunc:Mae},Bae=Kt({opType:9,cpuKernelImpl:xse}),Vae={kernelName:Ha,backendName:"webgpu",kernelFunc:Bae},Wae=mn({opSnippet:9,dtype:"bool"}),Uae={kernelName:To,backendName:"webgpu",kernelFunc:Wae},Gae=Kt({opType:10}),Hae={kernelName:Il,backendName:"webgpu",kernelFunc:Gae};function q2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:i}=s;return oc(r,a,i,"max",n)}var qae={kernelName:qa,backendName:"webgpu",kernelFunc:q2},jae=mn({opSnippet:15,cpuKernelImpl:kse}),Kae={kernelName:ja,backendName:"webgpu",kernelFunc:jae};function Xae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:i,pad:o,dimRoundingMode:u}=s,l=1,c=C.computePool2DInfo(r.shape,a,i,l,o,u),p,d=[];if(c.filterHeight===1&&c.filterWidth===1){if(w.arraysEqual(c.inShape,c.outShape))return Wn({inputs:{x:r},backend:n});p=new P2(c),d.push({type:"int32",data:[c.strideHeight,c.strideWidth]})}else p=new O2(c,"max"),d.push({type:"int32",data:[c.strideHeight,c.strideWidth]},{type:"int32",data:[c.padInfo.top,c.padInfo.left]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[c.inHeight,c.inWidth]},{type:"int32",data:[c.effectiveFilterHeight,c.effectiveFilterWidth]});return n.runWebGPUProgram(p,[r],r.dtype,d)}var Yae={kernelName:Ka,backendName:"webgpu",kernelFunc:Xae};function Qae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{keepDims:a,axis:i}=s;return oc(r,i,a,"mean",n)}var Zae={kernelName:Xa,backendName:"webgpu",kernelFunc:Qae};function Jae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;return oc(r,a,i,"min",n)}var eie={kernelName:Ya,backendName:"webgpu",kernelFunc:Jae},tie=mn({opSnippet:16,cpuKernelImpl:Sse}),nie={kernelName:Qa,backendName:"webgpu",kernelFunc:tie},sie=class{constructor(e,t,n){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((s,r)=>s[0]+e[r]+s[1]),this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((s,r)=>{this.uniforms+=` pad${r} : vec2<i32>,`}),this.offset=n==="reflect"?0:1,this.shaderKey=`mirrorPad_${n}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((u,l)=>`uniforms.pad${l}[0]`).join(","),n=this.xShape.map((u,l)=>`uniforms.pad${l}[0] + uniforms.xShape${e>1?`[${l}]`:""}`).join(","),s=e===1?"start":"start[i]",r=e===1?"end":"end[i]",a=e===1?"outC":"outC[i]",i=Ut(e),o=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let start = ${i}(${t});
|
|
let end = ${i}(${n});
|
|
var outC = getCoordsFromIndex(index);
|
|
for (var i = 0; i < ${e}; i = i + 1) {
|
|
if (${a} < ${s}) {
|
|
${a} = ${s} * 2 - ${a} - ${this.offset};
|
|
} else if(${a} >= ${r}) {
|
|
${a} = (${r} - 1) * 2 - ${a} + ${this.offset};
|
|
}
|
|
}
|
|
let coords = outC - start;
|
|
setOutputAtIndex(index, getX(${o}));
|
|
}
|
|
}
|
|
`}},rie={kernelName:Za,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{paddings:r,mode:a}=t,i=n,o=r.map(c=>({type:"int32",data:[c[0],c[1]]})),u=new sie(s.shape,r,a);return i.runWebGPUProgram(u,[s],s.dtype,o)}};function aie(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.tensorMap.get(s.dataId),[i,o]=Cse(a.values,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,i)}let r=new ac(s.shape,11);return n.runWebGPUProgram(r,[s],s.dtype)}var iie={kernelName:$o,backendName:"webgpu",kernelFunc:aie};function oie(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u}=s,l=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=ws.nonMaxSuppressionV3Impl(l,c,i,o,u);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var uie={kernelName:Ao,backendName:"webgpu",kernelFunc:oie};function lie(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u,softNmsSigma:l}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=i,h=o,f=u,m=l,{selectedIndices:g,selectedScores:b}=ws.nonMaxSuppressionV5Impl(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var cie={kernelName:Eo,backendName:"webgpu",kernelFunc:lie};function qd(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=ic({inputs:{input:s},backend:n}),a=qd({inputs:{x:r},backend:n}),i=ih({inputs:{input:s},backend:n}),o=qd({inputs:{x:i},backend:n}),u=hu({inputs:{real:a,imag:o},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(i.dataId),n.disposeData(o.dataId),u}else return mu({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var die={kernelName:Xo,backendName:"webgpu",kernelFunc:qd};function j2(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=ic({inputs:{input:s},backend:n}),a=j2({inputs:{x:r},backend:n}),i=ih({inputs:{input:s},backend:n}),o=qd({inputs:{x:i},backend:n}),u=hu({inputs:{real:a,imag:o},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(i.dataId),n.disposeData(o.dataId),u}else return mu({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var pie={kernelName:Ro,backendName:"webgpu",kernelFunc:j2};function hie(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return rg({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,i=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],u=t.map(c=>{let p=rg({inputs:{input:c},backend:n,attrs:{dim:r}});return o.push(p),p}),l=M2({inputs:u,backend:n,attrs:{axis:r}});return o.forEach(c=>n.disposeData(c.dataId)),l}var fie={kernelName:Fo,backendName:"webgpu",kernelFunc:hie},mie=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,s)=>n[0]+e[s]+n[1]),this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((n,s)=>{this.uniforms+=` pad${s} : vec2<i32>,`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=Ut(e),n=this.xShape.map((c,p)=>`uniforms.pad${p}[0]`).join(","),s=this.xShape.map((c,p)=>`uniforms.pad${p}[0] + uniforms.xShape${e>1?`[${p}]`:""}`).join(","),r=e>1?`${t}(${n})`:`${n}`,a=e>1?`${t}(${s})`:`${s}`,i=e>1?"any(outC < start)":"outC < start",o=e>1?"any(outC >= end)":"outC >= end",u=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let start = ${r};
|
|
let end = ${a};
|
|
let outC = getCoordsFromIndex(index);
|
|
|
|
if (${i} || ${o}) {
|
|
setOutputAtIndex(index, uniforms.constantValue);
|
|
} else {
|
|
let coords = outC - start;
|
|
setOutputAtIndex(index, getX(${u}));
|
|
}
|
|
}
|
|
}
|
|
`}},K2=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:i}=s;if(a.every(l=>w.arraysEqual(l,[0,0])))return Wn({inputs:{x:r},backend:n});if(w.sizeFromShape(r.shape)===0){let l=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return mu({backend:n,attrs:{shape:l,value:i,dtype:r.dtype}})}let o=[{type:"float32",data:[i]}];a.map(l=>o.push({type:"int32",data:[l[0],l[1]]}));let u=new mie(r.shape,a);return n.runWebGPUProgram(u,[r],r.dtype,o)},gie={kernelName:ei,backendName:"webgpu",kernelFunc:K2},bie=mn({opSnippet:13}),yie={kernelName:ti,backendName:"webgpu",kernelFunc:bie};function vie(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=new D2(14,s.shape,r.shape);return n.runWebGPUProgram(a,[s,r],"float32")}var xie={kernelName:ni,backendName:"webgpu",kernelFunc:vie};function wie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;return oc(r,a,i,"prod",n)}var kie={kernelName:si,backendName:"webgpu",kernelFunc:wie},Sie=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:i}=n,o=$se(s,r,a,i);return t.makeTensorInfo([o.length],i,o)},Iie={kernelName:Tl,backendName:"webgpu",kernelFunc:Sie},X2=mn({opSnippet:3}),Cie={kernelName:Pa,backendName:"webgpu",kernelFunc:X2},Nie=Kt({opType:12}),Tie={kernelName:ri,backendName:"webgpu",kernelFunc:Nie},$ie=Kt({opType:13}),_ie={kernelName:ii,backendName:"webgpu",kernelFunc:$ie},Aie=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, halfPixelCenters : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="resizeBilinear"}getUserCode(){return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC =
|
|
(vec2<f32>(rc) + vec2<f32>(uniforms.halfPixelCenters)) *
|
|
effectiveInputOverOutputRatioRC - vec2<f32>(uniforms.halfPixelCenters);
|
|
|
|
// Compute the four integer indices.
|
|
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
|
|
let sourceCeilRC = vec2<i32>(
|
|
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
|
|
|
|
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
|
|
|
|
let top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
let newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
`}};function Eie(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,size:i,halfPixelCenters:o}=s,[u,l]=i,c=a&&u>1?1:0,p=a&&l>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[o?.5:0]}],f=new Aie(r.shape,u,l);return n.runWebGPUProgram(f,[r],"float32",h)}var Rie={kernelName:ai,backendName:"webgpu",kernelFunc:Eie},Die=class{constructor(e,t,n,s){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, roundBase : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.halfPixelCenters=s,this.shaderKey=`resizeNearest_${s}`}getUserCode(){let e;return this.halfPixelCenters?e="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":e="vec2<f32>(rc) * effectiveInputOverOutputRatioRC",`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC = ${e};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
|
|
let sourceNearestRC = vec2<i32>(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase)));
|
|
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
`}};function Fie(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:i,size:o}=s,[u,l]=o,c=a&&u>1?1:0,p=a&&l>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[a?.5:0]}],f=new Die(r.shape,u,l,i);return n.runWebGPUProgram(f,[r],r.dtype,h)}var Oie={kernelName:_l,backendName:"webgpu",kernelFunc:Fie},Pie=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32, centerY : f32, sinRadians : f32,
|
|
cosRadians : f32,`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32,",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>,",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
|
|
${Ue()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.sinRadians;
|
|
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.cosRadians;
|
|
let coordX = i32(round(coordXFloat + uniforms.centerX));
|
|
let coordY = i32(round(coordYFloat + uniforms.centerY));
|
|
${this.fillSnippet}
|
|
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
|
|
coordY < uniforms.xShape[1]) {
|
|
outputValue = getX(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}},zie={kernelName:Yo,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:i}=t,o=n,u=new Pie(s.shape,a),[l,c]=C.getImageCenter(i,s.shape[1],s.shape[2]),p=[{type:"float32",data:[l]},{type:"float32",data:[c]},{type:"float32",data:[Math.sin(r)]},{type:"float32",data:[Math.cos(r)]}];return typeof a=="number"?p.push({type:"float32",data:[Number.parseFloat(a.toFixed(2))]}):p.push({type:"float32",data:a}),o.runWebGPUProgram(u,[s],s.dtype,p)}},Mie=Kt({opType:15,cpuKernelImpl:_se}),Lie={kernelName:oi,backendName:"webgpu",kernelFunc:Mie},Bie=class{constructor(e,t,n,s,r,a,i){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=a,this.type=i,this.dispatchLayout=Be(e),this.dispatch=_e(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${n}_${s}_${this.sliceDimGreaterThanOne}_${i}`;let o=Ut(r.length);this.uniforms=`sliceDim : i32, strides: ${o}, size: i32,`,this.updatesRank=s,this.indicesRank=n}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,n=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",s="",r="",a="";this.updatesRank===1?(s="coords[0]",r="flattenedIndex",a=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
|
|
return index;
|
|
}
|
|
`):this.updatesRank===2&&(s="coords[0], coords[1]",r="vec2<i32>(flattenedIndex, coords[1])",a=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.updatesShape[1];
|
|
let d1 = index - d0 * uniforms.updatesShape[1];
|
|
return vec2<i32>(d0, d1);
|
|
}
|
|
`);let i=`getUpdates(${s})`,o=this.type==="int32"?"atomicAdd(&(result[flatIndex]), i32(updateValue));":`
|
|
var assumed = atomicLoad(&(result[flatIndex]));
|
|
var success = 0;
|
|
for (; success == 0;) {
|
|
let new = bitcast<f32>(assumed) + updateValue;
|
|
let newI32 = bitcast<i32>(new);
|
|
let resValue = atomicCompareExchangeWeak(&(result[flatIndex]), assumed, newI32);
|
|
assumed = resValue[0];
|
|
success = resValue[1];
|
|
}
|
|
`;return`
|
|
${a}
|
|
|
|
${Ue()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getUpdatesCoordsFromFlatIndex(index);
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${t}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${n};
|
|
}
|
|
let updateValue = ${i};
|
|
let flatIndex = getOutputIndexFromCoords(${r});
|
|
|
|
${o}
|
|
}
|
|
}`}};function Vie(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:i}=s,{sliceRank:o,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=C.calculateShapes(a,r,i),d=[p/l,l];if(p===0)return n.makeTensorInfo(i,r.dtype);let h=We({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),f=We({inputs:{x:a},backend:n,attrs:{shape:[u,l]}}),m=f.dtype,g=mu({backend:n,attrs:{shape:d,value:0,dtype:m}}),b=w.sizeFromShape(f.shape),y=[{type:"int32",data:[o]},{type:"int32",data:c},{type:"int32",data:[b]}],v=new Bie(f.shape,o,h.shape.length,f.shape.length,c,d,m),x=n.runWebGPUProgram(v,[f,h],m,y,g),k=We({inputs:{x},backend:n,attrs:{shape:i}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(x.dataId),k}var Wie={kernelName:Mo,backendName:"webgpu",kernelFunc:Vie},Uie=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=n,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let s=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[],a=[];for(let i=0;i<this.outputShape.length;i++)a.push(`${s[i]}`),i<this.cRank&&r.push(`${s[i]}`);e=r.join(),t=a.join()}return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
let cVal = getC(${e});
|
|
if (cVal >= 1.0) {
|
|
setOutputAtIndex(index, getA(${t}));
|
|
} else {
|
|
setOutputAtIndex(index, getB(${t}));
|
|
}
|
|
}
|
|
}
|
|
`}};function Gie(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,i=new Uie(s.shape.length,r.shape,r.shape.length);return n.runWebGPUProgram(i,[s,r,a],cn(r.dtype,a.dtype))}var Hie={kernelName:Lo,backendName:"webgpu",kernelFunc:Gie},qie=Kt({opType:18}),jie={kernelName:li,backendName:"webgpu",kernelFunc:qie},Kie=Kt({opType:16}),Xie={kernelName:ui,backendName:"webgpu",kernelFunc:Kie},Yie=Kt({opType:17}),Qie={kernelName:Vo,backendName:"webgpu",kernelFunc:Yie},Y2=mn({opSnippet:2,cpuKernelImpl:Ose,supportsComplex:!0}),Zie={kernelName:fi,backendName:"webgpu",kernelFunc:Y2};function Jie(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,i=w.parseAxisParam([a],r.shape),o=q2({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),u=C.expandShapeToKeepDim(o.shape,i),l=We({inputs:{x:o},backend:n,attrs:{shape:u}}),c=Y2({inputs:{a:r,b:l},backend:n}),p=G2({inputs:{x:c},backend:n}),d=zv({inputs:{x:p},backend:n,attrs:{axis:i,keepDims:!1}}),h=We({inputs:{x:d},backend:n,attrs:{shape:u}}),f=X2({inputs:{a:p,b:h},backend:n});return n.disposeData(o.dataId),n.disposeData(l.dataId),n.disposeData(c.dataId),n.disposeData(p.dataId),n.disposeData(d.dataId),n.disposeData(h.dataId),f}var eoe={kernelName:pi,backendName:"webgpu",kernelFunc:Jie},toe=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:i}=s;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let o=a.reduce((b,y)=>b*y),u=[[0,0]];u.push(...i);for(let b=1+a.length;b<r.shape.length;++b)u.push([0,0]);let l=[],c=K2({inputs:{x:r},backend:n,attrs:{paddings:u,constantValue:0}}),p=C.getReshaped(c.shape,a,o,!1),d=C.getPermuted(p.length,a.length,!1),h=C.getReshapedPermuted(c.shape,a,o,!1),f=We({inputs:{x:c},backend:n,attrs:{shape:p}}),m=Xs({inputs:{x:f},backend:n,attrs:{perm:d}}),g=We({inputs:{x:m},backend:n,attrs:{shape:h}});return l.push(c),l.push(f),l.push(m),l.forEach(b=>n.disposeData(b.dataId)),g},noe={kernelName:Wo,backendName:"webgpu",kernelFunc:toe},soe=class{constructor(e,t,n,s,r,a,i=!0){this.variableNames=["updates","indices","defaultValue"],this.workGroupSize=[64,1,1],this.workPerThread=4,this.size=!0,this.outputShape=a,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let o=t>1;this.shaderKey=`scatter_${n}_${s}_${o}`;let u=Ut(r.length);this.uniforms=`updateSize : i32, sliceDim : i32, strides: ${u},`;let l="";n===1?l="i":n===2&&(l="i, j"),this.indicesSnippet=`getIndices(${l})`;let c="";s===1?c="i":s===2&&(c="i, coords[1]"),this.updatesSnippet=`getUpdates(${c})`,this.strideString=o?"uniforms.strides[j]":"uniforms.strides"}getUserCode(){return`
|
|
${Ue()}
|
|
|
|
let globalIndex = index * ${this.workPerThread};
|
|
if (globalIndex < uniforms.size) {
|
|
var sum = vec4<f32>(0.0);
|
|
var found = vec4<bool>(false);
|
|
for (var i = 0; i < uniforms.updateSize; i = i + 1) {
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${this.indicesSnippet}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${this.strideString};
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
let coords = getCoordsFromIndex(curIndex);
|
|
if (flattenedIndex == coords[0]) {
|
|
sum[innerIndex] = sum[innerIndex] + ${this.updatesSnippet};
|
|
found[innerIndex] = true;
|
|
}
|
|
}
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
if (curIndex < uniforms.size)
|
|
{
|
|
setOutputAtIndex(curIndex, mix(getDefaultValue(), sum[innerIndex], f32(found[innerIndex])));
|
|
}
|
|
}
|
|
}
|
|
}`}};function roe(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:i}=t,{outputShape:o}=s,{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:d}=C.calculateShapes(a,r,o),h=!1;if(a.dtype==="string"){let y=n.bufferSync(r),v=n.bufferSync(a),x=w.decodeString(n.readSync(i.dataId)[0]),k=Ase(y,v,o,d,c,l,u,p,x,h);return n.makeTensorInfo(o,k.dtype,k.values)}let f=[{type:"int32",data:[l]},{type:"int32",data:[u]},{type:"int32",data:p}],m=new soe(l,u,r.shape.length,a.shape.length,p,[d,1],h),g=n.runWebGPUProgram(m,[a,r,i],a.dtype,f),b=We({inputs:{x:g},backend:n,attrs:{shape:o}});return n.disposeData(g.dataId),b}var aoe={kernelName:hp,backendName:"webgpu",kernelFunc:roe};function ioe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:i}=s,o=w.parseAxisParam(i,r.shape)[0],u=C.prepareSplitSize(r,a,o),l=r.shape.length,c=new Array(l).fill(0),p=r.shape.slice();return u.map(d=>{let h=[...p];h[o]=d;let f=fu({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[o]+=d,f})}var ooe={kernelName:Uo,backendName:"webgpu",kernelFunc:ioe},uoe=Kt({opType:19}),loe={kernelName:ci,backendName:"webgpu",kernelFunc:uoe},coe={kernelName:Fl,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t,r=new ac(n.shape,20);return s.runWebGPUProgram(r,[n],n.dtype)}},doe=mn({opSnippet:11}),poe={kernelName:hi,backendName:"webgpu",kernelFunc:doe},hoe=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=Ut(this.outputShape.length);this.uniforms=`begin : ${t}, strides : ${t}, `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let s=0;t=this.outputShape.map((r,a)=>(s++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${s-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, getX(${t}));
|
|
}
|
|
}
|
|
`}};function foe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:i,strides:o,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:y,end:v,strides:x}=kt.sliceInfo(r.shape,a,i,o,u,l,c,p,d),k;if(m)k=We({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||b){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let I=kt.computeOutShape(y,v,x),$=fu({inputs:{x:r},backend:n,attrs:{begin:y,size:I}});k=We({inputs:{x:$},backend:n,attrs:{shape:f}}),n.disposeData($.dataId)}else if(n.shouldExecuteOnCPU([r])){let $=n.readSync(r.dataId),R=Ae(r.shape,r.dtype,$),E=Dse(h,R,x,y);k=n.makeTensorInfo(f,r.dtype,E.values)}else{let $=new hoe(h),R=[{type:"int32",data:y},{type:"int32",data:x}],E=n.runWebGPUProgram($,[r],r.dtype,R);k=We({inputs:{x:E},backend:n,attrs:{shape:f}}),n.disposeData(E.dataId)}return k}var moe={kernelName:Go,backendName:"webgpu",kernelFunc:foe};function goe(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:i,rightPad:o,padWidth:u,preserveShortSequences:l}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=Fse(d,h,r,a,i,o,u,l);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var boe={kernelName:fp,backendName:"webgpu",kernelFunc:goe},yoe=Kt({opType:21}),voe={kernelName:mi,backendName:"webgpu",kernelFunc:yoe},xoe=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.rank=this.outputShape.length,this.shaderKey="tile"}getUserCode(){let e=woe(this.rank,"uniforms.");return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, getA(${e}));
|
|
}
|
|
}
|
|
`}};function woe(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e;r++)s.push(`(${n[r]} % ${t}aShape[${r}])`);return s.join()}function koe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(n.shouldExecuteOnCPU([r])||r.dtype==="string"||r.shape.length>=5){let u=n.readSync(r.dataId),l=r.dtype==="string"?u.map(d=>w.decodeString(d)):u,c=Ae(r.shape,r.dtype,l),p=Pse(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new xoe(r.shape,a);return n.runWebGPUProgram(i,[r],r.dtype)}var Soe={kernelName:Tr,backendName:"webgpu",kernelFunc:koe},Ioe=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32, firstPass : i32, negativeInf : f32,
|
|
dir : i32, inc : i32,`,this.shaderKey="swap"}getUserCode(){return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let outC = getCoordsFromIndex(index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced
|
|
// above, Figure5(a) shows that element[1] is in the second half of
|
|
// the group when group size is 2, but it is in the first half of
|
|
// the group when group size is 4.
|
|
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
|
|
var i = 0;
|
|
if (isFirstInPair) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx - uniforms.inc;
|
|
}
|
|
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.inc;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.inc));
|
|
}
|
|
|
|
var x0 = f32(0.0);
|
|
var x1 = f32(0.0);
|
|
if (i0 < uniforms.inputSize) {
|
|
x0 = getX(batch, i0);
|
|
} else {
|
|
x0 = uniforms.negativeInf;
|
|
}
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = uniforms.negativeInf;
|
|
}
|
|
|
|
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
|
|
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) {
|
|
// Elements in opposite order of direction
|
|
let iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutputAtIndex(index, f32(i0));
|
|
} else {
|
|
setOutputAtIndex(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}},Coe=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32, firstPass : i32, k : i32,",this.shaderKey="merge"}getUserCode(){return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let outC = getCoordsFromIndex(index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
|
|
// (k=4), we only need to output the indices at positions |, the
|
|
// indices at positions _ can be thrown away, see Figure5(b) After
|
|
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
|
|
// above.
|
|
// For example, the paper shows we only need to output the orange
|
|
// bars. The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back to
|
|
// the previous sequence to find the corresponding value, we need
|
|
// to double the index. When we double the index, we basically
|
|
// interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
|
|
// position of each 2k positions by - elemIdx % k. E.g. for output
|
|
// at index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
var i = 0;
|
|
if (elemIdx < uniforms.k) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx * 2 - elemIdx % uniforms.k;
|
|
}
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.k;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.k));
|
|
}
|
|
|
|
let x0 = getX(batch, i0);
|
|
var x1 = f32(0.0);
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = x0;
|
|
}
|
|
|
|
if (x0 >= x1) {
|
|
setOutputAtIndex(index, f32(i0));
|
|
} else {
|
|
setOutputAtIndex(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}};function Gi(e,t){t!==null&&e.disposeData(t.dataId)}function Ww(e){let t=1;for(;t<e;)t*=2;return t}function Noe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:i}=s,o=r.shape,u=o[o.length-1];if(n.shouldExecuteOnCPU([r])){let k=n.readSync(r.dataId),[I,$]=zse(k,o,r.dtype,a,i);return[n.makeTensorInfo(I.shape,I.dtype,I.values),n.makeTensorInfo($.shape,$.dtype,$.values)]}if(a===0)return o[o.length-1]=0,[n.makeTensorInfo(o,r.dtype,[]),n.makeTensorInfo(o,"int32",[])];if(u===1)return[r,mu({attrs:{shape:o,dtype:"int32",value:0},backend:n})];let c=w.sizeFromShape(o)/u,p=We({inputs:{x:r},attrs:{shape:[c,u]},backend:n}),d=Ww(a),h=Ww(u),f=null,m=()=>f===null?[p,p]:[p,f],g=(k,I,$)=>{let R=m(),E=new Ioe($),A=[{type:"int32",data:[u]},{type:"int32",data:[f===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[k]},{type:"int32",data:[I]}],O=f;f=n.runWebGPUProgram(E,R,"int32",A),Gi(n,O)};for(let k=1;k<d;k*=2){let I=k*2;for(let $=k;$>=1;$/=2)g(I,$,[c,h])}for(let k=h;k>d;k/=2){let I=m(),$=new Coe([c,k/2]),E=[{type:"int32",data:[u]},{type:"int32",data:[f===null?1:0]},{type:"int32",data:[d]}],P=f;f=n.runWebGPUProgram($,I,"int32",E),Gi(n,P);let A=d/2,O=A*2;for(let T=A;T>=1;T/=2)g(O,T,f.shape)}let b=f;f=fu({inputs:{x:f},backend:n,attrs:{begin:0,size:[c,a]}}),Gi(n,b);let y=H2({inputs:{x:p,indices:f},backend:n,attrs:{axis:1,batchDims:1}});Gi(n,p);let v=o.slice(0,-1);v.push(a),b=f,f=We({inputs:{x:f},attrs:{shape:v},backend:n}),Gi(n,b);let x=y;return y=We({inputs:{x:y},attrs:{shape:v},backend:n}),Gi(n,x),[y,f]}var Toe={kernelName:qo,backendName:"webgpu",kernelFunc:Noe},$oe=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32, fillModeId : i32, fillValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Be(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return`
|
|
fn mapCoord(outCoord : f32, len : f32) -> f32{
|
|
var inCoord = outCoord;
|
|
if(uniforms.fillModeId == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
if (inCoord < -len) {
|
|
inCoord = inCoord + sz2;
|
|
} else {
|
|
inCoord = -inCoord - 1.0;
|
|
}
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (uniforms.fillModeId == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (uniforms.fillModeId == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
}
|
|
return outCoord;
|
|
}
|
|
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
|
|
channel : i32) -> f32 {
|
|
var outputValue : f32;
|
|
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = uniforms.fillValue;
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var outputValue : f32;
|
|
let batch = coords[0];
|
|
let x = coords[2];
|
|
let y = coords[1];
|
|
let channel = coords[3];
|
|
let xf = f32(x);
|
|
let yf = f32(y);
|
|
let a1 = getTransforms(batch, 0);
|
|
let a2 = getTransforms(batch, 1);
|
|
let a3 = getTransforms(batch, 2);
|
|
let b1 = getTransforms(batch, 3);
|
|
let b2 = getTransforms(batch, 4);
|
|
let b3 = getTransforms(batch, 5);
|
|
let c1 = getTransforms(batch, 6);
|
|
let c2 = getTransforms(batch, 7);
|
|
let projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = uniforms.fillValue;
|
|
} else {
|
|
let inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
let inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
|
|
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
|
|
|
|
if (uniforms.interpolationModeId == 1) {
|
|
let coordY = i32(round(mapY));
|
|
let coordX = i32(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
let yFloor = floor(mapY);
|
|
let xFloor = floor(mapX);
|
|
let yCeil = yFloor + 1.0;
|
|
let xCeil = xFloor + 1.0;
|
|
let valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
|
|
let valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}};function _oe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:i,fillMode:o,fillValue:u,outputShape:l}=s,[c,p,d,h]=r.shape,[f,m]=l!=null?l:[p,d],g=[c,f,m,h],b=new $oe(g),y=i==="nearest"?1:2,v;switch(o){case"constant":v=1;break;case"reflect":v=2;break;case"wrap":v=3;break;case"nearest":v=4;break;default:v=1;break}let x=[{type:"int32",data:[y]},{type:"int32",data:[v]},{type:"float32",data:[u]}];return n.runWebGPUProgram(b,[r,a],"float32",x)}var Aoe={kernelName:jo,backendName:"webgpu",kernelFunc:_oe};function Eoe(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let i=r,o=i.shape.length,u=r.shape[a],l=new Array(o-1),c=0;for(let m=0;m<o;m++)m!==a&&(l[c++]=i.shape[m]);let p=[],d=new Array(o).fill(0),h=i.shape.slice();h[a]=1;let f=new Array(u);for(let m=0;m<f.length;m++){d[a]=m;let g=fu({inputs:{x:i},backend:n,attrs:{begin:d,size:h}}),b=We({inputs:{x:g},backend:n,attrs:{shape:l}});f[m]=b,p.push(g)}return p.forEach(m=>n.disposeData(m.dataId)),f}var Roe={kernelName:Ko,backendName:"webgpu",kernelFunc:Eoe},Doe=[nse,Bse,Wse,Hse,Qse,Jse,tre,sre,ure,pre,fre,yre,ise,kre,Tre,Ere,Dre,Ore,Mre,Bre,Wre,Hre,jre,Zre,eae,nae,sae,rae,iae,uae,cae,gae,pae,fae,vae,wae,Sae,Nae,_ae,Eae,Dae,ase,xre,Oae,zae,Lae,Vae,Uae,Hae,qae,Kae,Yae,Zae,eie,nie,rie,Kre,iie,uie,cie,lre,pie,fie,gie,yie,xie,kie,Iie,cre,Cie,Tie,_ie,ese,Rie,Oie,zie,Lie,Wie,Hie,jie,Xie,Qie,ire,moe,boe,eoe,noe,aoe,ooe,loe,coe,poe,Zie,Yre,voe,Soe,Toe,Aoe,Xse,Roe,die];for(let e of Doe)Ol(e);var Foe=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireUploadBuffer(e,t){return this.acquireBuffer(e,t,!0)}acquireBuffer(e,t,n=!1){let s=Uw(e,t);if(this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.usedBuffers.has(s)||this.usedBuffers.set(s,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(s).length>0){this.numFreeBuffers--;let a=this.freeBuffers.get(s).shift();return this.usedBuffers.get(s).push(a),a}this.numBytesAllocated+=e;let r=this.device.createBuffer({mappedAtCreation:n,size:e,usage:t});return this.usedBuffers.get(s).push(r),r}releaseBuffer(e,t,n){if(this.freeBuffers.size===0)return;let s=Uw(t,n);this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.freeBuffers.get(s).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let r=this.usedBuffers.get(s),a=r.indexOf(e);if(a<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");r.splice(a,1),this.numBytesUsed-=t}releaseUploadBuffer(e,t,n){e.mapAsync(GPUMapMode.WRITE).then(()=>{this.releaseBuffer(e,t,n)},s=>{})}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}dispose(){this.freeBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function Uw(e,t){return`${e}_${t}`}var Ooe=class{constructor(e){this.device=e,this.numUsedTextures=0,this.numFreeTextures=0,this.freeTextures=new Map,this.usedTextures=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireTexture(e,t,n,s){let r=Hw(n),a=e*t*r,i=Gw(e,t,n,s);if(this.freeTextures.has(i)||this.freeTextures.set(i,[]),this.usedTextures.has(i)||this.usedTextures.set(i,[]),this.numBytesUsed+=a,this.numUsedTextures++,this.freeTextures.get(i).length>0){this.numFreeTextures--;let u=this.freeTextures.get(i).shift();return this.usedTextures.get(i).push(u),u}this.numBytesAllocated+=a;let o=this.device.createTexture({size:[e,t],format:n,usage:s});return this.usedTextures.get(i).push(o),o}releaseTexture(e,t,n,s,r){if(this.freeTextures.size===0)return;let a=Gw(t,n,s,r);this.freeTextures.has(a)||this.freeTextures.set(a,[]),this.freeTextures.get(a).push(e),this.numFreeTextures++,this.numUsedTextures--;let i=this.usedTextures.get(a),o=i.indexOf(e);if(o<0)throw new Error("Cannot release a texture that was never provided by this texture manager");i.splice(o,1);let u=Hw(s),l=t*n*u;this.numBytesUsed-=l}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){this.freeTextures.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedTextures.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeTextures=new Map,this.usedTextures=new Map,this.numUsedTextures=0,this.numFreeTextures=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function Gw(e,t,n,s){return`${e}_${t}_${n}_${s}`}function Hw(e){if(e==="rgba8unorm")return 16;throw new Error(`${e} is not supported!`)}var Poe=(e,t,n,s,r)=>{let a=[s,...n];return r&&a.push(r),e.createBindGroup({layout:t,entries:a.map((i,o)=>({binding:o,resource:i}))})},qw=(e,t,n,s,r,a=!1)=>{let i={dtype:r.dtype,shape:r.shape},o=Bne(s,i,t,a),u=e.createShaderModule({code:o,label:t.constructor.name});return e.createComputePipeline({layout:n,compute:{module:u,entryPoint:"main"},label:t.constructor.name})};function jw(e,t,n=[],s="",r=""){return e.shaderKey+"_"+(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(i=>i.length).join(",")+n.join(",")+e.variableNames.join(",")+s+r}var zoe=K().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),Kw=(e,t)=>{let n=e.limits.maxComputeWorkgroupsPerDimension,s=t.dispatchLayout,r=t.dispatch;if(r.every(i=>i<=n))return r;w.assert(r[0]>n&&s.y===void 0&&s.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let a=Math.ceil(Math.sqrt(r[0]));return a>n?(a=Math.ceil(Math.cbrt(r[0])),w.assert(a<=n,()=>"Total dispatch size exceeds WebGPU maximum."),[a,a,a]):[a,a,1]},Q2=class extends ol{constructor(e,t=!1){if(super(),this.commandQueueOwnedIds=new WeakSet,this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.stagingDisposalQueue=[],this.textureDisposalQueue=[],this.disposed=!1,this.uploadWaitMs=0,this.downloadWaitMs=0,this.dispatchNumberInEncoder=0,this.fromPixelTextureLayout=null,this.fromPixelImportTextureLayout=null,!Fv())throw new Error("WebGPU is not supported on this device");this.layoutCache={},this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=t,this.bufferManager=new Foe(this.device),this.textureManager=new Ooe(this.device),this.tensorMap=new Yd(this,ds()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),K().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return Q2.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}flushDisposalQueue(){this.tensorDisposalQueue.forEach(e=>{this.maybeReleaseBuffer(e),this.tensorMap.delete(e)}),this.uniformDisposalQueue.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.byteSize,e.usage)),this.stagingDisposalQueue.forEach(e=>this.bufferManager.releaseUploadBuffer(e.buffer,e.byteSize,e.usage)),this.textureDisposalQueue.forEach(e=>this.textureManager.releaseTexture(e.texture,e.width,e.height,e.format,e.usage)),this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.stagingDisposalQueue=[],this.textureDisposalQueue=[]}disposeData(e,t=!1){if(this.tensorMap.has(e)){let n=this.tensorMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDisposalQueue.push(e),!1;this.maybeReleaseBuffer(e);let{complexTensorInfos:s}=this.tensorMap.get(e);s!=null&&(this.disposeData(s.real.dataId,!0),this.disposeData(s.imag.dataId,!0)),this.tensorMap.delete(e)}return!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}getBufferManager(){return this.bufferManager}getTextureManager(){return this.textureManager}acquireBuffer(e,t=this.defaultGpuBufferUsage()){return this.bufferManager.acquireBuffer(e,t)}maybeReleaseBuffer(e){let t=this.tensorMap.get(e);t!=null&&t.bufferInfo.buffer!=null&&(this.bufferManager.releaseBuffer(t.bufferInfo.buffer,t.bufferInfo.byteSize,t.bufferInfo.usage),t.bufferInfo.buffer=null)}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,n){if(n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()},r=w.sizeFromShape(t)*md(n);return this.tensorMap.set(s,{dtype:n,shape:t,values:e,bufferInfo:{byteSize:r,usage:this.defaultGpuBufferUsage()},refCount:1}),s}move(e,t,n,s,r){if(s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a=w.sizeFromShape(n)*md(s);this.tensorMap.set(e,{dtype:s,shape:n,values:t,bufferInfo:{byteSize:a,usage:this.defaultGpuBufferUsage()},refCount:r})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.flushDisposalQueue()}getBuffer(e){return this.uploadToGPU(e),this.tensorMap.get(e).bufferInfo.buffer}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.end(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e,t){let n=this.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e,0,n,0,t),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=n.getMappedRange().slice(0);return n.unmap(),n!=null&&this.bufferManager.releaseBuffer(n,t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),K().getBool("WEBGPU_USE_PROFILE_TOOL")&&(w.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),s}convertAndCacheOnCPU(e,t){let n=this.tensorMap.get(e);return this.maybeReleaseBuffer(e),n.values=t,n.values}readSync(e){let t=this.tensorMap.get(e),{values:n}=t;if(n==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return n}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:n}=t;if(n!=null)return this.convertAndCacheOnCPU(e,n);let s;if(t.dtype==="complex64"){let r=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),a=r[0],i=r[1];s=C.mergeRealAndImagArrays(a,i)}else{let r=t.values!=null?t.values:await this.getBufferData(t.bufferInfo.buffer,t.bufferInfo.byteSize);s=E2(r,t.dtype)}return this.convertAndCacheOnCPU(e,s),s}readToGPU(e){let t=this.tensorMap.get(e),{values:n,dtype:s,shape:r,bufferInfo:a}=t;if(s==="complex64")throw new Error("Does not support reading buffer for complex64 dtype.");if(a.buffer==null)throw n!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let i=w.sizeFromShape(r)*md(s),o=this.acquireBuffer(i);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(a.buffer,0,o,0,i),this.submitQueue();let u=this.makeTensorInfo(r,s),l=ds().makeTensorFromTensorInfo(u),c=this.tensorMap.get(u.dataId);return c.bufferInfo.buffer=o,{tensorRef:l,buffer:o,bufSize:i}}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>w.decodeString(s));return Ae(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ae(e.shape,e.dtype,t)}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(u=>u.query)).filter(u=>u!=null),a=w.flatten(this.activeTimers.map(u=>u.name)).filter(u=>u!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},o=await Promise.all(r);return i.kernelMs=w.sum(o),i.getExtraProfileInfo=()=>o.map((u,l)=>({name:a[l],ms:u})).map(u=>`${u.name}: ${u.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,i}getAndSavePipeline(e,t){return e in this.pipelineCache||(this.pipelineCache[e]=t()),this.pipelineCache[e]}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);return{offset:0,size:t.bufferInfo.byteSize,buffer:t.bufferInfo.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);if(t.bufferInfo.buffer==null&&(t.bufferInfo.buffer=this.acquireBuffer(t.bufferInfo.byteSize),t.values)){let n=this.bufferManager.acquireUploadBuffer(t.bufferInfo.byteSize,GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC),s=n.getMappedRange();t.dtype==="int32"||t.dtype==="bool"?new Int32Array(s).set(t.values):new Float32Array(s).set(t.values),n.unmap(),this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(n,0,t.bufferInfo.buffer,0,t.bufferInfo.byteSize);let r={byteSize:t.bufferInfo.byteSize,usage:GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC,buffer:n};this.stagingDisposalQueue.push(r)}}makeUniforms(e){let t=0,n=0,s=[];e.forEach(o=>{o.data.length===0&&(o.data=[1]);let u;switch(o.data.length){case 1:u=4;break;case 2:u=8;break;case 3:u=16;break;case 4:u=16;break;case 5:u=16;break;case 6:u=16;break;default:w.assert(!1,()=>`Unsupported ${o.data.length}D shape`)}(n===5||n===6)&&(u=16),t=Math.ceil(t/u)*u,n=o.data.length,s.push(t),t+=o.data.length*4});let r=new ArrayBuffer(t);e.forEach((o,u)=>{let l=s[u];o.type==="int32"?new Int32Array(r,l,o.data.length).set(o.data):o.type==="uint32"?new Uint32Array(r,l,o.data.length).set(o.data):new Float32Array(r,l,o.data.length).set(o.data)});let a=this.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);this.queue.writeBuffer(a,0,r,0,t);let i={byteSize:t,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:a};return this.uniformDisposalQueue.push(i),{offset:0,size:t,buffer:a}}createLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}});for(let r=0;r<e;r++)t.push({binding:r+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"read-only-storage"}});t.push({binding:e+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"uniform"}});let n=this.device.createBindGroupLayout({entries:t}),s=this.device.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}getCachedOrCreateLayout(e){return e in this.layoutCache||(this.layoutCache[e]=this.createLayout(e)),this.layoutCache[e]}runWebGPUProgram(e,t,n,s,r){if(!r){if(r=this.makeTensorInfo(e.outputShape,n),w.sizeFromShape(r.shape)===0){let I=this.tensorMap.get(r.dataId);return I.values=w.getTypedArrayFromDType(r.dtype,0),r}this.uploadToGPU(r.dataId)}e.dispatch=Kw(this.device,e);let a=[{type:"float32",data:[NaN]}],i=t.concat(r).map(I=>I.shape),o="int32";i.map(I=>{a.push({type:o,data:I})});let u=w.computeStrides(r.shape);if(a.push({type:o,data:u}),e.size){let I=w.sizeFromShape(e.outputShape);a.push({type:o,data:[e.isVec4?I/4:I]})}s&&(a=[...a,...s]);let l=this.makeUniforms(a),c=t.map((I,$)=>{if(I.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(I.dataId),{dtype:this.tensorMap.get(I.dataId).dtype,shape:I.shape,name:e.variableNames[$]}}),p=c.map(I=>I.dtype).concat(r.dtype),d=c.map(I=>C.getBroadcastDims(I.shape,r.shape)),h=c.map(I=>w.arraysEqual(I.shape,r.shape)).join("_"),f=d.map(I=>I.join("_")).join(";"),m=jw(e,i,p,f,h),{bindGroupLayout:g,pipelineLayout:b}=this.getCachedOrCreateLayout(e.variableNames.length),y=this.getAndSavePipeline(m,()=>qw(this.device,e,b,c,r)),v=this.activeTimers!=null,x=Poe(this.device,g,t.map(I=>this.tensorToBinding(I)),this.tensorToBinding(r),l);this.ensureCommandEncoderReady();let k=this.getComputePass();return v&&this.supportTimeQuery&&k.writeTimestamp(this.querySet,0),k.setPipeline(y),k.setBindGroup(0,x),k.dispatchWorkgroups(e.dispatch[0],e.dispatch[1],e.dispatch[2]),v&&this.supportTimeQuery&&k.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(I=>{this.commandQueueOwnedIds.add(I.dataId)}),this.commandQueueOwnedIds.add(r.dataId),K().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),v&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),r}getFromPixelTextureLayout(e){return e?(this.fromPixelImportTextureLayout===null&&(this.fromPixelImportTextureLayout=this.createFromPixelTextureLayout(!0)),this.fromPixelImportTextureLayout):(this.fromPixelTextureLayout===null&&(this.fromPixelTextureLayout=this.createFromPixelTextureLayout(!1)),this.fromPixelTextureLayout)}createFromPixelTextureLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),e?t.push({binding:1,visibility:GPUShaderStage.COMPUTE,externalTexture:{}}):t.push({binding:1,visibility:GPUShaderStage.COMPUTE,texture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=this.device.createBindGroupLayout({entries:t}),s=this.device.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}copyExternalImageToTexture(e,t){let n=GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING,s="rgba8unorm",r=this.textureManager.acquireTexture(t[1],t[0],s,n),a=r.createView();this.queue.copyExternalImageToTexture({source:e},{texture:r},[t[1],t[0]]);let i={width:t[1],height:t[0],format:s,usage:n,texture:r};return this.textureDisposalQueue.push(i),a}runFromPixelsProgram(e,t,n,s,r){e.dispatch=Kw(this.device,e);let a=this.makeTensorInfo(t,"int32");if(w.sizeFromShape(a.shape)===0){let m=this.tensorMap.get(a.dataId);return m.values=w.getTypedArrayFromDType(a.dtype,0),a}this.uploadToGPU(a.dataId);let i=jw(e,[a.shape]),o=this.getFromPixelTextureLayout(s),u=this.getAndSavePipeline(i,()=>qw(this.device,e,o.pipelineLayout,[],a,!0)),l;if(s){let m={source:r};l=this.device.importExternalTexture(m)}else l=this.copyExternalImageToTexture(r,a.shape);let c=this.tensorToBinding(a),p=this.makeUniforms(n),d=this.device.createBindGroup({layout:o.bindGroupLayout,entries:[{binding:0,resource:{buffer:c.buffer}},{binding:1,resource:l},{binding:2,resource:{buffer:p.buffer}}]});this.ensureCommandEncoderReady();let h=this.getComputePass(),f=this.activeTimers!=null;return f&&this.supportTimeQuery&&h.writeTimestamp(this.querySet,0),h.setPipeline(u),h.setBindGroup(0,d),h.dispatchWorkgroups(e.dispatch[0],e.dispatch[1],e.dispatch[2]),f&&this.supportTimeQuery&&h.writeTimestamp(this.querySet,1),this.commandQueueOwnedIds.add(a.dataId),this.dispatchNumberInEncoder++,K().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),f&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),a}async getTimeFromQuerySet(e){let t=this.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),n=this.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,n,0,16),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=new BigUint64Array(n.getMappedRange()),r=Number(s[1]-s[0]);return n.unmap(),this.bufferManager.releaseBuffer(n,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r/1e6}shouldExecuteOnCPU(e,t=zoe){return K().getBool("WEBGPU_CPU_FORWARD")&&e.every(n=>this.tensorMap.get(n.dataId).bufferInfo.buffer==null&&w.sizeFromShape(n.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDisposalQueue.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.textureManager.dispose(),this.disposed=!0)}},Mv=Q2;Mv.nextDataId=0;var Moe={};Ee(Moe,{WebGPUBackend:()=>Mv,webgpu_util:()=>_2});Fv()&&vp("webgpu",async()=>{K().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:K().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),n=t.limits,s={},r=t.features.has("timestamp-query");s.requiredLimits={maxComputeWorkgroupStorageSize:n.maxComputeWorkgroupStorageSize,maxComputeWorkgroupsPerDimension:n.maxComputeWorkgroupsPerDimension},r?s.requiredFeatures=["timestamp-query"]:console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.");let a=await t.requestDevice(s);return new Mv(a,r)},3);var St=(e=>(e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64",e))(St||{}),oh=(e=>(e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu",e))(oh||{}),Z2;function Loe(e){Z2=e.wasm.cwrap(oa,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Boe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=s,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(i!=null){let R=n.dataIdMap.get(i.dataId);if(R.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${R.shape.length}.`);f=R.id}let m=o==null?0:n.dataIdMap.get(o.dataId).id,g=oh[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let b=u?r.shape[2]:r.shape[1],y=l?a.shape[1]:a.shape[2],v=Qo.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)),x=n.makeOutput([...v,b,y],r.dtype),k=n.dataIdMap.get(x.dataId).id,I=new Uint8Array(new Int32Array(r.shape).buffer),$=new Uint8Array(new Int32Array(a.shape).buffer);return Z2(d,I,r.shape.length,h,$,a.shape.length,u,l,g,f,m,p||0,k),x}var Voe={kernelName:oa,backendName:"wasm",setupFunc:Loe,kernelFunc:Boe};function Xt(e,t){let n;function s(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function r(a){let{backend:i,inputs:{x:o}}=a,u=i.dataIdMap.get(o.dataId).id,l=i.makeOutput(o.shape,t||o.dtype),c=i.dataIdMap.get(l.dataId).id;return w.sizeFromShape(l.shape)===0||n(u,St[o.dtype],c),l}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:r}}var Woe=Xt(po);function gn(e,t,n){let s;function r(i){s=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(i){let{backend:o,inputs:u}=i,{a:l,b:c}=u,p=o.dataIdMap.get(l.dataId).id,d=o.dataIdMap.get(c.dataId).id,h=n!=null?n:l.dtype,f=C.assertAndGetBroadcastShape(l.shape,c.shape),m=o.makeOutput(f,h);if(w.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(l.shape).buffer),b=new Uint8Array(new Int32Array(c.shape).buffer),y=o.dataIdMap.get(m.dataId).id;return(()=>s(p,g,l.shape.length,d,b,c.shape.length,St[l.dtype],y))(),m}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var Uoe=!0,Goe=gn(Cr,Uoe),J2;function Hoe(e){J2=e.wasm.cwrap(Ia,null,["array","number","number","number"])}function qoe(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(s.shape)===0)return s;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(s.dataId).id;return J2(a,r.length,St[s.dtype],i),s}var joe={kernelName:Ia,backendName:"wasm",setupFunc:Hoe,kernelFunc:qoe};function uh(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var Koe={kernelName:Ua,backendName:"wasm",kernelFunc:uh},eN;function Xoe(e){eN=e.wasm.cwrap(Hs,null,["number","array","number","number","number","array","number"])}function Sr(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=Qoe(t.x.shape,s.perm),i=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(i=!1);let o=Yoe(t.x.shape,s.perm),u={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let f=uh({inputs:t,backend:n});return f.shape=o,f}let l=n.makeOutput(o,u.dtype),c=n.dataIdMap.get(u.dataId).id,p=n.dataIdMap.get(l.dataId).id,d=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(u.shape).buffer);return eN(c,h,u.shape.length,St[u.dtype],p,d,a.length),l}function Yoe(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function Qoe(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let i=0;i<s.length;++i)s[i]>=r&&(a===-1||s[a]>s[i])&&(a=i);s[a]=r}return[n,s]}var Zoe={kernelName:Hs,backendName:"wasm",kernelFunc:Sr,setupFunc:Xoe};function zr(e,t,n){let s=e.shape,r=e.shape.length,a=w.parseAxisParam(t,s),i=a,o=C.getAxesPermutation(i,r),u=null,l=!1;if(o!=null){let c=new Array(r);for(let h=0;h<c.length;h++)c[h]=s[o[h]];i=C.getInnerMostAxes(i.length,r),u=Sr({inputs:{x:e},attrs:{perm:o},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(u.dataId).id!==p&&(l=!0)}return{transposed:u,originalAxes:a,axes:i,inputWasTransposed:l}}var tN;function Joe(e){tN=e.wasm.cwrap(cl,null,["number, number, number"])}function eue(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:i}=n,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=zr(i,r,t);if(h){let v=t.dataIdMap.get(c.dataId).id;l=c,u=v}let f=l.shape.length;C.assertAxesAreInnerMostDims("all",p,f);let[m,g]=C.computeOutAndReduceShapes(l.shape,p),b=w.sizeFromShape(g),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;tN(u,b,v)}if(h&&t.disposeData(c.dataId),a){let v=C.expandShapeToKeepDim(y.shape,d);y.shape=v}return y}var tue={kernelName:cl,backendName:"wasm",setupFunc:Joe,kernelFunc:eue},nN;function nue(e){nN=e.wasm.cwrap(dl,null,["number, number, number"])}function sue(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:i}=n,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=zr(i,r,t);if(h){let v=t.dataIdMap.get(c.dataId).id;l=c,u=v}let f=l.shape.length;C.assertAxesAreInnerMostDims("any",p,f);let[m,g]=C.computeOutAndReduceShapes(l.shape,p),b=w.sizeFromShape(g),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;nN(u,b,v)}if(h&&t.disposeData(c.dataId),a){let v=C.expandShapeToKeepDim(y.shape,d);y.shape=v}return y}var rue={kernelName:dl,backendName:"wasm",setupFunc:nue,kernelFunc:sue},sN;function aue(e){sN=e.wasm.cwrap(Ca,null,["number","number","number","number","number"])}function iue(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,i=t.dataIdMap.get(a.dataId).id,o=i,u=a,{transposed:l,axes:c,inputWasTransposed:p}=zr(a,r,t);if(p){let b=t.dataIdMap.get(l.dataId).id;b!==i&&(u=l,o=b)}let d=u.shape.slice(0,-1),h=t.makeOutput(d,"int32"),f=t.dataIdMap.get(h.dataId).id,m=w.sizeFromShape(h.shape),g=u.shape[c[0]];return sN(o,St[u.dtype],m,g,f),p&&t.disposeData(l.dataId),h}var oue={kernelName:Ca,backendName:"wasm",kernelFunc:iue,setupFunc:aue},rN;function uue(e){rN=e.wasm.cwrap(Na,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function lue(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:u,dimRoundingMode:l}=n,c=C.computePool2DInfo(r.shape,i,o,1,u,l),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,b=c.strideHeight,y=c.strideWidth,v=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let x=s.makeOutput(c.outShape,"float32"),k=s.dataIdMap.get(x.dataId).id;return rN(a,r.shape[0],r.shape[1],r.shape[2],p,d,h,f,m,g,b,y,v,k),x}var cue={kernelName:Na,backendName:"wasm",setupFunc:uue,kernelFunc:lue};function yn(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=w.sizeFromShape(s.shape),i=w.inferFromImplicitShape(r,a);return w.assert(a===w.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:i,dtype:s.dtype}}var due={kernelName:Oo,backendName:"wasm",kernelFunc:yn},aN;function pue(e){aN=e.wasm.cwrap(Ta,null,["number","array","number","number","array","number","number","number","number"])}function hue(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:i,transposeB:o}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let u=r.shape.length,l=a.shape.length,c=i?r.shape[u-2]:r.shape[u-1],p=o?a.shape[l-1]:a.shape[l-2],d=i?r.shape[u-1]:r.shape[u-2],h=o?a.shape[l-2]:a.shape[l-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),b=w.sizeFromShape(m),v=Qo.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);w.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,c,d]:[g,d,c],k=o?[b,h,p]:[b,p,h],I=yn({inputs:{x:r},backend:n,attrs:{shape:x}}),$=yn({inputs:{x:a},backend:n,attrs:{shape:k}}),R=n.dataIdMap.get(I.dataId).id,E=n.dataIdMap.get($.dataId).id,P=i?I.shape[2]:I.shape[1],A=o?$.shape[1]:$.shape[2],O=Math.max(g,b),T=n.makeOutput([O,P,A],I.dtype),M=n.dataIdMap.get(T.dataId).id,W=new Uint8Array(new Int32Array(I.shape).buffer),j=new Uint8Array(new Int32Array($.shape).buffer);return aN(R,W,I.shape.length,E,j,$.shape.length,i,o,M),n.disposeData(I.dataId),n.disposeData($.dataId),T.shape=v,T}var fue={kernelName:Ta,backendName:"wasm",setupFunc:pue,kernelFunc:hue};function wa(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,i]=kt.parseSliceParams(t,n,s),o=kt.isSliceContinous(t.shape,a,i),u=r.readSync(t.dataId),l=r.makeOutput(i,t.dtype),c=w.computeStrides(t.shape),p=r.dataIdMap.get(l.dataId);if(o){let f=kt.computeFlatOffset(a,c);return t.dtype==="string"?p.stringBytes=u.slice(f,f+w.sizeFromShape(i)):r.typedArrayFromHeap(l).set(u.subarray(f,f+w.sizeFromShape(i))),l}if(t.dtype==="string"){let f=Bd(u,a,i,t.shape,t.dtype);return p.stringBytes=f,l}let d=r.typedArrayFromHeap(l),h=t.shape.length;if(h===2)mue(u,c[0],d,a,i);else if(h===3)gue(u,c[0],c[1],d,a,i);else if(h===4)bue(u,c[0],c[1],c[2],d,a,i);else{let f=Bd(u,a,i,t.shape,t.dtype);d.set(f)}return l}function mue(e,t,n,s,r){let a=0,i=s[0],o=s[1],u=i+r[0];for(let l=i;l<u;l++){let c=l*t+o;n.set(e.subarray(c,c+r[1]),a),a+=r[1]}}function gue(e,t,n,s,r,a){let i=0,o=r[0],u=r[1],l=r[2],c=o+a[0],p=u+a[1];for(let d=o;d<c;d++)for(let h=u;h<p;h++){let f=d*t+h*n+l;s.set(e.subarray(f,f+a[2]),i),i+=a[2]}}function bue(e,t,n,s,r,a,i){let o=0,u=a[0],l=a[1],c=a[2],p=u+i[0],d=l+i[1],h=c+i[2],f=a[3];for(let m=u;m<p;m++)for(let g=l;g<d;g++)for(let b=c;b<h;b++){let y=m*t+g*n+b*s+f;r.set(e.subarray(y,y+i[3]),o),o+=i[3]}}var yue={kernelName:Bo,backendName:"wasm",kernelFunc:wa};function vue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:i}=s,o=a.reduce((b,y)=>b*y),u=C.getReshaped(r.shape,a,o),l=C.getPermuted(u.length,a.length),c=C.getReshapedPermuted(r.shape,a,o),p=C.getSliceBeginCoords(i,a.length),d=C.getSliceSize(c,i,a.length),h=yn({inputs:{x:r},backend:n,attrs:{shape:u}}),f=Sr({inputs:{x:h},backend:n,attrs:{perm:l}}),m=yn({inputs:{x:f},backend:n,attrs:{shape:c}}),g=wa({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var xue={kernelName:ho,backendName:"wasm",kernelFunc:vue};function uc(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var wue={kernelName:$a,backendName:"wasm",kernelFunc:uc},kue=Xt(_a),iN;function Sue(e){iN=e.wasm.cwrap(Nr,null,["number","number","number","number"])}function Iue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:i}=s,o=n.dataIdMap.get(r.dataId).id,u=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(u.dataId).id;return iN(o,a,i,l),u}var Cue={kernelName:Nr,backendName:"wasm",setupFunc:Sue,kernelFunc:Iue};function oN(e){let{inputs:t,backend:n}=e,s=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=C.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>w.sizeFromShape(h.shape)>0);if(a.length===1)return uh({inputs:{x:a[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(w.sizeFromShape(r)===0)return i;let o=a.map(h=>h.shape);if(C.assertParamsConsistent(o,s),a[0].dtype==="string"){let h=a.map(v=>{let x=w.sizeFromShape(v.shape.slice(s));return yn({inputs:{x:v},backend:n,attrs:{shape:[-1,x]}})}),f=h.map(v=>({vals:n.readSync(v.dataId),shape:v.shape}));r=C.computeOutShape(h.map(v=>v.shape),1);let m=h[0].shape[0]===1,g=lv(f,r,t[0].dtype,m),b=C.computeOutShape(a.map(v=>v.shape),s);i.shape=b;let y=n.dataIdMap.get(i.dataId);return y.stringBytes=C.fromStringArrayToUint8(g),h.forEach(v=>n.disposeData(v.dataId)),i}let u=w.sizeFromShape(a[0].shape.slice(0,s)),l=0,c=a.map(h=>{let f=w.sizeFromShape(h.shape.slice(s));return l+=f,f}),p=a.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(i);for(let h=0;h<u;h++){let f=h*l;for(let m=0;m<p.length;m++){let g=c[m],b=h*g,y=p[m].subarray(b,b+g);d.set(y,f),f+=g}}return i}var Nue={kernelName:fo,backendName:"wasm",kernelFunc:oN},uN;function Tue(e){uN=e.wasm.cwrap(Aa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function $ue(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,i=s.dataIdMap.get(r.dataId).id,o=s.dataIdMap.get(a.dataId).id,{strides:u,dilations:l,pad:c,dimRoundingMode:p,dataFormat:d}=n,h=C.convertConv2DDataFormat(d),f=C.computeConv2DInfo(r.shape,a.shape,u,l,c,p,!1,h),m=f.filterHeight,g=f.filterWidth,b=f.padInfo.top,y=f.padInfo.right,v=f.padInfo.bottom,x=f.padInfo.left,k=f.dilationHeight,I=f.dilationWidth,$=f.strideHeight,R=f.strideWidth,E=f.inChannels,P=f.outChannels,A=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let O=s.makeOutput(f.outShape,"float32"),T=s.dataIdMap.get(O.dataId).id;return uN(i,r.shape[0],r.shape[1],r.shape[2],o,m,g,b,y,v,x,A,k,I,$,R,E,P,T),O}var _ue={kernelName:Aa,backendName:"wasm",setupFunc:Tue,kernelFunc:$ue},lN;function Aue(e){lN=e.wasm.cwrap(Ea,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Eue(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:i,pad:o,dataFormat:u,dimRoundingMode:l,inputShape:c}=s,p=1,d=C.convertConv2DDataFormat(u),h=C.computeConv2DInfo(c,a.shape,i,p,o,l,!1,d),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:b,inHeight:y,inWidth:v,outChannels:x,outHeight:k,outWidth:I,strideHeight:$,strideWidth:R}=h,E=m-1-h.padInfo.top,P=g-1-h.padInfo.left,A=h.dataFormat==="channelsLast",O=w.computeStrides(h.inShape),T=w.computeStrides(r.shape),[M,W,j]=w.computeStrides(a.shape),X=O[0],Y=A?O[1]:O[2],Z=A?O[2]:1,te=A?1:O[1],J=T[0],se=A?T[1]:T[2],ne=A?T[2]:1,oe=A?1:T[1],ae=t.makeOutput(h.inShape,"float32"),de=t.dataIdMap.get(ae.dataId).id,me=t.dataIdMap.get(r.dataId).id,ke=t.dataIdMap.get(a.dataId).id;return lN(me,ke,f,m,g,y,v,b,k,I,x,$,R,E,P,M,W,j,X,Y,Z,te,J,se,ne,oe,de),ae}var Rue={kernelName:Ea,backendName:"wasm",setupFunc:Aue,kernelFunc:Eue},Due=Xt(Ra),Fue=Xt(Da),cN=(e=>(e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest",e))(cN||{}),dN;function Oue(e){dN=e.wasm.cwrap(go,null,["number","number","number","number","array","number","number","number","number","number"])}function Pue(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:i}=s,{image:o,boxes:u,boxInd:l}=n,c=u.shape[0],[p,d]=i,h=[c,p,d,o.shape[3]],f=t.dataIdMap.get(o.dataId),m;o.dtype!=="float32"&&(m=uc({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,b=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(l.dataId).id,v=t.makeOutput(h,"float32"),x=t.dataIdMap.get(v.dataId).id,k=new Uint8Array(new Int32Array(o.shape).buffer);return dN(g,b,y,c,k,p,d,cN[r],a,x),m!=null&&t.disposeData(m.dataId),v}var zue={kernelName:go,backendName:"wasm",setupFunc:Oue,kernelFunc:Pue},pN;function Mue(e){pN=e.wasm.cwrap(mo,null,["number","number","number","number","number","number"])}function Lue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s,u=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let l=C.getAxesPermutation([a],u),c=r;l!==null&&(c=Sr({inputs:{x:r},attrs:{perm:l},backend:n}));let p=C.getInnerMostAxes(1,u)[0];C.assertAxesAreInnerMostDims("cumprod",[p],u);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;pN(f,i?1:0,o?1:0,h,m,St[r.dtype]);let g=d;if(l!==null){let b=C.getUndoAxesPermutation(l);g=Sr({inputs:{x:d},attrs:{perm:b},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var Bue={kernelName:mo,backendName:"wasm",setupFunc:Mue,kernelFunc:Lue},hN;function Vue(e){hN=e.wasm.cwrap(Fa,null,["number","number","number","number","number","number"])}function Wue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s,u=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let l=C.getAxesPermutation([a],u),c=r;l!==null&&(c=Sr({inputs:{x:r},attrs:{perm:l},backend:n}));let p=C.getInnerMostAxes(1,u)[0];C.assertAxesAreInnerMostDims("cumsum",[p],u);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;hN(f,i?1:0,o?1:0,h,m,St[r.dtype]);let g=d;if(l!==null){let b=C.getUndoAxesPermutation(l);g=Sr({inputs:{x:d},attrs:{perm:b},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var Uue={kernelName:Fa,backendName:"wasm",setupFunc:Vue,kernelFunc:Wue},fN;function Gue(e){fN=e.wasm.cwrap(bo,null,["number","number","number","array","number","array","array","number","number"])}function Hue(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:i}=s,o=r.shape[0],u=i==="NHWC"?r.shape[1]:r.shape[2],l=i==="NHWC"?r.shape[2]:r.shape[3],c=i==="NHWC"?r.shape[3]:r.shape[1],p=u*a,d=l*a,h=c/(a*a),f=i==="NHWC"?[o,p,d,h]:[o,h,p,d],m=t.makeOutput(f,"float32"),b=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),v=new Uint8Array(new Int32Array(f).buffer),x=new Uint8Array(new Int32Array(w.computeStrides(f)).buffer),k=t.dataIdMap.get(m.dataId).id;return fN(b,a,i==="NHWC"?1:0,y,r.shape.length-1,v,x,f.length,k),m}var que={kernelName:bo,backendName:"wasm",setupFunc:Gue,kernelFunc:Hue},mN;function jue(e){mN=e.wasm.cwrap(Oa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Kue(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,i=s.dataIdMap.get(r.dataId).id,o=s.dataIdMap.get(a.dataId).id,{strides:u,dilations:l,pad:c,dimRoundingMode:p}=n,d=l==null?[1,1]:l,h=C.computeConv2DInfo(r.shape,a.shape,u,d,c,p,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,b=h.padInfo.right,y=h.padInfo.bottom,v=h.padInfo.left,x=h.dilationHeight,k=h.dilationWidth,I=h.strideHeight,$=h.strideWidth,R=h.inChannels,E=h.outChannels,P=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let A=s.makeOutput(h.outShape,"float32"),O=s.dataIdMap.get(A.dataId).id;return mN(i,r.shape[0],r.shape[1],r.shape[2],o,f,m,g,b,y,v,P,x,k,I,$,R,E,O),A}var Xue={kernelName:Oa,backendName:"wasm",setupFunc:jue,kernelFunc:Kue},Yue=Xt(za),Que=!1,Zue=gn(yo,Que,"bool"),Jue=Xt(Ma,"float32");function ag(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,i=r.shape.length,o=r.shape.slice(),u=a;return a<0&&(w.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+a+1),o.splice(u,0,1),yn({inputs:{x:r},backend:s,attrs:{shape:o}})}var ele={kernelName:vo,backendName:"wasm",kernelFunc:ag};function gN(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var tle={kernelName:vl,backendName:"wasm",kernelFunc:gN},bN;function nle(e){bN=e.wasm.cwrap(wo,null,["number","number","number","number","number","number"])}function sle(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,u,l,c]=s.shape;return bN(a,o,u,l,c,i),r}var rle={kernelName:wo,backendName:"wasm",kernelFunc:sle,setupFunc:nle},ale=Xt(La),ile=!1,ole=gn(Ba,ile),yN;function ule(e){yN=e.wasm.cwrap(Va,null,["number","number","number","number","number","number","number"])}function lle(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:i,variance:o,offset:u,scale:l}=n,c=t.dataIdMap.get(a.dataId).id,p=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=u!=null?t.dataIdMap.get(u.dataId).id:0,f=l!=null?t.dataIdMap.get(l.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(w.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return yN(c,p,d,h,f,r,g),m}var cle={kernelName:Va,backendName:"wasm",setupFunc:ule,kernelFunc:lle},vN;function dle(e){vN=e.wasm.cwrap(ua,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ple(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=C.computeConv2DInfo(r.shape,a.shape,u,c,l,d),g=oh[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let b=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,v=m.outChannels,x=0;if(i!=null){let ne=s.dataIdMap.get(i.dataId);if(ne.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==v)throw new Error(`FusedConv2D bias shape (${ne.shape}) does not match the number of output channels (${v})`);x=ne.id}let k=m.filterHeight,I=m.filterWidth,$=m.padInfo.top,R=m.padInfo.right,E=m.padInfo.bottom,P=m.padInfo.left,A=m.dilationHeight,O=m.dilationWidth,T=m.strideHeight,M=m.strideWidth,W=m.inChannels,j=m.padInfo.type==="SAME"?1:0,X=m.batchSize,Y=m.inHeight,Z=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let te=s.makeOutput(m.outShape,"float32"),J=s.dataIdMap.get(te.dataId).id,se=o==null?0:s.dataIdMap.get(o.dataId).id;return vN(b,X,Y,Z,y,k,I,x,$,R,E,P,j,A,O,T,M,W,v,g,se,f||0,J),te}var hle={kernelName:ua,backendName:"wasm",setupFunc:dle,kernelFunc:ple},xN;function fle(e){xN=e.wasm.cwrap(la,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function mle(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=C.computeConv2DInfo(r.shape,a.shape,u,c,l,d,!0),g=oh[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let b=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,v=m.outChannels,x=0;if(i!=null){let ne=s.dataIdMap.get(i.dataId);if(ne.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==v)throw new Error(`FusedDepthwiseConv2D bias shape (${ne.shape}) does not match the number of output channels (${v})`);x=ne.id}let k=m.filterHeight,I=m.filterWidth,$=m.padInfo.top,R=m.padInfo.right,E=m.padInfo.bottom,P=m.padInfo.left,A=m.dilationHeight,O=m.dilationWidth,T=m.strideHeight,M=m.strideWidth,W=m.inChannels,j=m.padInfo.type==="SAME"?1:0,X=m.batchSize,Y=m.inHeight,Z=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let te=s.makeOutput(m.outShape,"float32"),J=s.dataIdMap.get(te.dataId).id,se=o==null?0:s.dataIdMap.get(o.dataId).id;return xN(b,X,Y,Z,y,k,I,x,$,R,E,P,j,A,O,T,M,W,v,g,se,f||0,J),te}var gle={kernelName:la,backendName:"wasm",setupFunc:fle,kernelFunc:mle},wN;function ble(e){wN=e.wasm.cwrap(So,null,["number","number","number","number","number","number","array","number"])}function yle(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,i,o,u]=Vk.prepareAndValidate(s,r),l=t.makeOutput(a,s.dtype);if(i===0)return l;let c=r.shape,p=c[c.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(u).buffer),b=t.dataIdMap.get(l.dataId).id;return wN(h,St[s.dtype],m,i,p,o,g,b),l}var vle={kernelName:So,backendName:"wasm",setupFunc:ble,kernelFunc:yle},kN;function xle(e){kN=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function wle(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:i,batchDims:o}=s,u=w.parseAxisParam(i,r.shape)[0],l=t.readSync(a.dataId),c=r.shape[u];for(let E=0;E<l.length;++E){let P=l[E];w.assert(P<=c-1&&P>=0,()=>`GatherV2: the index value ${P} is not in [0, ${c-1}]`)}let p=C.segment_util.collectGatherOpShapeInfo(r,a,u,o),d=yn({inputs:{x:r},attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]},backend:t}),h=w.sizeFromShape(a.shape),f=yn({inputs:{x:a},attrs:{shape:[p.batchSize,h/p.batchSize]},backend:t}),m=[p.batchSize,p.outerSize,h/p.batchSize,p.sliceSize],g=t.makeOutput(m,r.dtype);if(w.sizeFromShape(r.shape)===0)return g;let b=d.shape.length-1,v=t.dataIdMap.get(d.dataId).id,k=t.dataIdMap.get(f.dataId).id,I=t.dataIdMap.get(g.dataId).id,$=new Uint8Array(new Int32Array(w.computeStrides(d.shape)).buffer),R=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer);return kN(v,St[r.dtype],$,b,k,p.batchSize,R,I),t.disposeData(d.dataId),t.disposeData(f.dataId),g.shape=p.outputShape,g}var kle={kernelName:ko,backendName:"wasm",setupFunc:xle,kernelFunc:wle},Sle=!1,Ile=gn(Io,Sle,"bool"),Cle=!1,Nle=gn(Wa,Cle,"bool"),SN;function Tle(e){SN=e.wasm.cwrap(Ga,null,["number","number","number","number"])}function $le(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,"float32");if(w.sizeFromShape(t.shape)!==0){let i=s.dataIdMap.get(a.dataId).id;SN(r,St[t.dtype],n,i)}return a}var _le={kernelName:Ga,backendName:"wasm",setupFunc:Tle,kernelFunc:$le},Ale=!1,Ele=gn(Co,Ale,"bool"),Rle=!1,Dle=gn(No,Rle,"bool"),Fle=Xt(Ha),Ole=!1,Ple=gn(To,Ole,"bool"),IN;function zle(e){IN=e.wasm.cwrap(qa,null,["number","number","number","number"])}function Mle(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:i}=n,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=zr(i,r,t);if(h){let v=t.dataIdMap.get(c.dataId).id;l=c,u=v}let f=l.shape.length;C.assertAxesAreInnerMostDims("max",p,f);let[m,g]=C.computeOutAndReduceShapes(l.shape,p),b=w.sizeFromShape(g),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;IN(u,St[i.dtype],b,v)}if(h&&t.disposeData(c.dataId),a){let v=C.expandShapeToKeepDim(y.shape,d);y.shape=v}return y}var Lle={kernelName:qa,backendName:"wasm",setupFunc:zle,kernelFunc:Mle},Ble=!1,Vle=gn(ja,Ble),CN;function Wle(e){CN=e.wasm.cwrap(Ka,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ule(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id;w.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:i,strides:o,pad:u,dimRoundingMode:l}=n,c=C.computePool2DInfo(r.shape,i,o,1,u,l),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,b=c.dilationHeight,y=c.dilationWidth,v=c.strideHeight,x=c.strideWidth,k=c.inChannels,I=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let $=s.makeOutput(c.outShape,"float32"),R=s.dataIdMap.get($.dataId).id;return CN(a,r.shape[0],r.shape[1],r.shape[2],p,d,h,f,m,g,b,y,v,x,k,I,R),$}var Gle={kernelName:Ka,backendName:"wasm",setupFunc:Wle,kernelFunc:Ule},NN;function Hle(e){NN=e.wasm.cwrap(Xa,null,["number, number, number"])}function qle(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,u=o,l=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=zr(i,r,t),f=p;if(h){let x=t.dataIdMap.get(c.dataId).id;x!==o&&(l=c,u=x,f=C.getInnerMostAxes(f.length,l.shape.length))}C.assertAxesAreInnerMostDims("mean",f,l.shape.length);let[m,g]=C.computeOutAndReduceShapes(l.shape,f),b=w.sizeFromShape(g),y=l;l.dtype!=="float32"&&(y=uc({backend:t,inputs:{x:l},attrs:{dtype:"float32"}}),u=t.dataIdMap.get(y.dataId).id);let v=t.makeOutput(m,"float32");if(w.sizeFromShape(l.shape)!==0){let x=t.dataIdMap.get(v.dataId).id;NN(u,b,x)}if(h&&t.disposeData(c.dataId),a){let x=C.expandShapeToKeepDim(v.shape,d);v.shape=x}return l.dtype!=="float32"&&t.disposeData(y.dataId),v}var jle={kernelName:Xa,backendName:"wasm",setupFunc:Hle,kernelFunc:qle},TN;function Kle(e){TN=e.wasm.cwrap(Ya,null,["number","number","number","number"])}function Xle(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,u=o,l=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=zr(i,r,t);if(h){let v=t.dataIdMap.get(c.dataId).id;v!==o&&(l=c,u=v)}let f=l.shape.length;C.assertAxesAreInnerMostDims("min",p,f);let[m,g]=C.computeOutAndReduceShapes(l.shape,p),b=w.sizeFromShape(g),y=t.makeOutput(m,l.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;TN(u,St[i.dtype],b,v)}if(h&&t.disposeData(c.dataId),a){let v=C.expandShapeToKeepDim(y.shape,d);y.shape=v}return y}var Yle={kernelName:Ya,backendName:"wasm",setupFunc:Kle,kernelFunc:Xle},Qle=!1,Zle=gn(Qa,Qle),$N=(e=>(e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric",e))($N||{}),_N;function Jle(e){_N=e.wasm.cwrap(Za,null,["number","array","number","number","array","array","number","number"])}function ece(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(a,t.dtype),u=n.dataIdMap.get(o.dataId).id,l=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(f=>f[0]),p=s.map(f=>f[1]),d=new Uint8Array(new Int32Array(c).buffer),h=new Uint8Array(new Int32Array(p).buffer);return _N(i,l,t.shape.length,St[t.dtype],d,h,$N[r],u),o}var tce={kernelName:Za,backendName:"wasm",kernelFunc:ece,setupFunc:Jle},nce=!0,sce=gn(Ja,nce),rce=Xt($o);function Lv(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:i}}var AN;function ace(e){AN=e.wasm.cwrap(Ao,"number",["number","number","number","number","number"])}function ice(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:i}=s,{boxes:o,scores:u}=n,l=t.dataIdMap.get(o.dataId).id,c=t.dataIdMap.get(u.dataId).id,p=AN(l,c,a,r,i),{pSelectedIndices:d,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=Lv(t,p);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",d)}var oce={kernelName:Ao,backendName:"wasm",setupFunc:ace,kernelFunc:ice},EN;function uce(e){EN=e.wasm.cwrap(Nl,"number",["number","number","number","number","number","bool"])}function lce(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:i,padToMaxOutputSize:o}=s,{boxes:u,scores:l}=n,c=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,d=EN(c,p,a,r,i,o),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Lv(t,d);t.wasm._free(m);let b=t.makeOutput([f],"int32",h),y=t.makeOutput([],"int32",g);return[b,y]}var cce={kernelName:Nl,backendName:"wasm",setupFunc:uce,kernelFunc:lce},RN;function dce(e){RN=e.wasm.cwrap(Eo,"number",["number","number","number","number","number","number"])}function pce(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:i,softNmsSigma:o}=s,{boxes:u,scores:l}=n,c=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,d=RN(c,p,a,r,i,o),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Lv(t,d);t.wasm._free(g);let b=t.makeOutput([f],"int32",h),y=t.makeOutput([f],"float32",m);return[b,y]}var hce={kernelName:Eo,backendName:"wasm",setupFunc:dce,kernelFunc:pce},fce=!1,mce=gn(_o,fce,"bool"),DN;function gce(e){DN=e.wasm.cwrap(Do,null,["number","number","number","number","number"])}function bce(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:i,offValue:o}=s,u=n.makeOutput([...r.shape,a],"int32"),l=n.dataIdMap.get(u.dataId).id,p=n.dataIdMap.get(r.dataId).id;return DN(p,a,i,o,l),u}var yce={kernelName:Do,backendName:"wasm",setupFunc:gce,kernelFunc:bce};function vce(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var xce={kernelName:Ro,backendName:"wasm",kernelFunc:vce};function wce(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return ag({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,i=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],u=t.map(c=>{let p=ag({inputs:{input:c},backend:n,attrs:{dim:r}});return o.push(p),p}),l=oN({inputs:u,backend:n,attrs:{axis:r}});return o.forEach(c=>n.disposeData(c.dataId)),l}var kce={kernelName:Fo,backendName:"wasm",kernelFunc:wce},FN;function Sce(e){FN=e.wasm.cwrap(ei,null,["number","array","number","number","array","array","number","number"])}function Ice(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(w.sizeFromShape(t.shape)===0)return gN({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),p=s.map(m=>m[0]),d=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(p).buffer),f=new Uint8Array(new Int32Array(d).buffer);return FN(i,c,t.shape.length,St[t.dtype],h,f,r,l),o}var ON={kernelName:ei,backendName:"wasm",kernelFunc:Ice,setupFunc:Sce},Cce=!1,Nce=gn(ti,Cce),PN;function Tce(e){PN=e.wasm.cwrap(ni,null,["number","number","number"])}function $ce(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=a,u=s,l=u;u.dtype!=="float32"&&(l=uc({backend:n,inputs:{x:s},attrs:{dtype:"float32"}}),o=n.dataIdMap.get(l.dataId).id);let c=n.makeOutput(s.shape,"float32"),p=n.dataIdMap.get(c.dataId).id;return PN(o,i,p),u.dtype!=="float32"&&n.disposeData(l.dataId),c}var _ce={kernelName:ni,backendName:"wasm",setupFunc:Tce,kernelFunc:$ce},zN;function Ace(e){zN=e.wasm.cwrap(si,null,["number","number","number","number"])}function Ece(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,u=o,l=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=zr(i,r,t),f=p;if(h){let v=t.dataIdMap.get(c.dataId).id;v!==o&&(l=c,u=v,f=C.getInnerMostAxes(f.length,l.shape.length))}C.assertAxesAreInnerMostDims("prod",f,l.shape.length);let[m,g]=C.computeOutAndReduceShapes(l.shape,f),b=w.sizeFromShape(g),y=t.makeOutput(m,l.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;zN(u,b,St[y.dtype],v)}if(h&&t.disposeData(c.dataId),a){let v=C.expandShapeToKeepDim(y.shape,d);y.shape=v}return y}var Rce={kernelName:si,backendName:"wasm",setupFunc:Ace,kernelFunc:Ece},Dce=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:i}=n,o=pv(s,r,a,i),u=t.makeOutput([o.length],i);return t.typedArrayFromHeap(u).set(o),u},Fce={kernelName:Tl,backendName:"wasm",kernelFunc:Dce},Oce=!0,Pce=gn(Pa,Oce),zce=Xt(ri),Mce=Xt(ii),MN;function Lce(e){MN=e.wasm.cwrap(ai,null,["number","number","number","number","number","number","number","number","number","number"])}function Bce(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:i,size:o}=s,[u,l]=o,[c,p,d,h]=r.shape,f=[c,u,l,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=uc({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let b=m.id,y=t.makeOutput(f,"float32");if(w.sizeFromShape(r.shape)===0)return y;let v=t.dataIdMap.get(y.dataId).id;return MN(b,c,p,d,h,u,l,a?1:0,i?1:0,v),g!=null&&t.disposeData(g.dataId),y}var Vce={kernelName:ai,backendName:"wasm",setupFunc:Lce,kernelFunc:Bce},LN;function Wce(e){LN=e.wasm.cwrap(Po,null,["number","array","number","array","number","number"])}function Uce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,i=w.parseAxisParam(a,r.shape);if(r.shape.length===0)return uh({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);LN(u,c,i.length,p,r.shape.length,l);let d=yn({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),d}var Gce={kernelName:Po,backendName:"wasm",kernelFunc:Uce,setupFunc:Wce},BN;function Hce(e){BN=e.wasm.cwrap(Yo,null,["number","number","number","number","number","number","number","number","array","number","number"])}function qce(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:i,center:o}=s,u=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(u.dataId).id,[p,d,h,f]=r.shape,[m,g]=C.getImageCenter(o,d,h),b=i===0,y=255,v=typeof i=="number"?[i,i,i,b?0:y]:[...i,y],x=new Uint8Array(new Int32Array(v).buffer);return BN(l,p,d,h,f,a,m,g,x,v.length,c),u}var jce={kernelName:Yo,backendName:"wasm",kernelFunc:qce,setupFunc:Hce},Kce=Xt(zo),Xce=Xt(oi),VN;function Yce(e){VN=e.wasm.cwrap(Mo,null,["number","number","number","number","number","number","array","number","number"])}function Qce(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:i}=s,o=t.makeOutput(i,a.dtype);if(w.sizeFromShape(i)===0)return o;let{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:d}=Uk.calculateShapes(a,r,i),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,b=new Uint8Array(new Int32Array(p).buffer),y=t.dataIdMap.get(o.dataId).id;return VN(f,g,St[a.dtype],u,l,c,b,d,y),o}var Zce={kernelName:Mo,backendName:"wasm",setupFunc:Yce,kernelFunc:Qce},WN;function Jce(e){WN=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function ede(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,i=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id,p=s.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:w.sizeFromShape(r.shape.slice(1));return WN(i,o,u,h,c),l}var tde={kernelName:Lo,backendName:"wasm",kernelFunc:ede,setupFunc:Jce},UN;function nde(e){UN=e.wasm.cwrap(li,null,["number","number"])}function sde(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||UN(s,a),r}var rde={kernelName:"Sigmoid",backendName:"wasm",setupFunc:nde,kernelFunc:sde},ade=Xt(ui),GN;function ide(e){GN=e.wasm.cwrap(pi,null,["number","number","number","number"])}function ode(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(a.dataId).id,o=n.shape[s],u=w.sizeFromShape(n.shape)/o;return w.sizeFromShape(a.shape)===0||GN(r,i,o,u),a}var ude={kernelName:pi,backendName:"wasm",setupFunc:ide,kernelFunc:ode};function lde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:i}=s,o=w.sizeFromShape(a),u=[[0,0]];u.push(...i);for(let I=1+a.length;I<r.shape.length;++I)u.push([0,0]);let l=ON.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:u,constantValue:0}}),c=C.getReshaped(l.shape,a,o,!1),p=C.getPermuted(c.length,a.length,!1),d=C.getReshapedPermuted(l.shape,a,o,!1),m=yn({inputs:{x:l},backend:n,attrs:{shape:c}}),y=Sr({inputs:{x:m},backend:n,attrs:{perm:p}}),k=yn({inputs:{x:y},backend:n,attrs:{shape:d}});return n.disposeData(l.dataId),n.disposeData(m.dataId),n.disposeData(y.dataId),k}var cde={kernelName:Wo,backendName:"wasm",kernelFunc:lde},HN;function dde(e){HN=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function pde(e){let{backend:t,inputs:n}=e,{indices:s,values:r,denseShape:a,defaultValue:i}=n,o=s.shape[0],u=s.shape[1],l=t.readSync(a.dataId)[0],c=[o+l,u],p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(i.dataId).id,f=t.makeOutput(c,s.dtype),m=t.dataIdMap.get(f.dataId).id,g=t.makeOutput(c.slice(0,1),r.dtype),b=t.dataIdMap.get(g.dataId).id,y=t.makeOutput([l],"bool"),v=t.dataIdMap.get(y.dataId).id,x=t.makeOutput([o],s.dtype),k=t.dataIdMap.get(x.dataId).id,I=t.makeOutput([4],"int32"),$=t.dataIdMap.get(I.dataId).id,R=HN(p,d,St[r.dtype],o,l,u,h,m,b,v,k,$),E=t.readSync(I.dataId),P;switch(E[0]){case 1:{P=C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(E[1]);break}case 2:{P=C.getSparseFillEmptyRowsNegativeIndexErrorMessage(E[1],E[2]);break}case 3:P=C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(E[1],E[2],E[3]);break;default:P=""}if(t.disposeData(I.dataId),P)throw t.disposeData(f.dataId),t.disposeData(g.dataId),t.disposeData(y.dataId),t.disposeData(x.dataId),new Error(P);let A=f,O=g;return R!==c[0]&&(A=wa({inputs:{x:f},attrs:{begin:0,size:[R,u]},backend:t}),O=wa({inputs:{x:g},attrs:{begin:0,size:R},backend:t}),t.disposeData(f.dataId),t.disposeData(g.dataId)),[A,O,y,x]}var hde={kernelName:cp,backendName:"wasm",setupFunc:dde,kernelFunc:pde},qN;function fde(e){qN=e.wasm.cwrap(Dl,null,["number","number","number","number","number","number","number"])}function mde(e){let{backend:t,inputs:n}=e,{inputIndices:s,inputShape:r,newShape:a}=n;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let i=t.dataIdMap.get(s.dataId).id,o=t.dataIdMap.get(r.dataId).id,u=t.dataIdMap.get(a.dataId).id,l=s.shape[0],c=w.sizeFromShape(a.shape),p=t.makeOutput([l,c],s.dtype),d=t.dataIdMap.get(p.dataId).id,h=t.makeOutput([c],a.dtype),f=t.dataIdMap.get(h.dataId).id,m=t.makeOutput([3],"int32"),g=t.dataIdMap.get(m.dataId).id;qN(i,o,u,l,d,f,g);let b=t.readSync(m.dataId),y;switch(b[0]){case 0:{y=C.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(b[1],b[2]);break}case 1:{y=C.getSparseReshapeNegativeOutputDimErrorMessage(b[1],b[2]);break}case 2:y=C.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let v=Array.from(t.readSync(r.dataId)),x=Array.from(t.readSync(h.dataId));y=C.getSparseReshapeInputOutputMultipleErrorMessage(v,x);break}case 4:{let v=Array.from(t.readSync(r.dataId)),x=Array.from(t.readSync(h.dataId));y=C.getSparseReshapeInputOutputMismatchErrorMessage(v,x);break}default:y=""}if(t.disposeData(m.dataId),y)throw t.disposeData(p.dataId),t.disposeData(h.dataId),new Error(y);return[p,h]}var gde={kernelName:Dl,backendName:"wasm",setupFunc:fde,kernelFunc:mde},jN;function KN(e){jN=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function XN(e,t){let{backend:n,inputs:s}=e,{data:r,indices:a,segmentIds:i}=s,o=a.shape[0],u=n.readSync(i.dataId,o-1,o)[0],c=o>0?u+1:0;if(c<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=c;let d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=n.dataIdMap.get(i.dataId).id,m=n.makeOutput(p,r.dtype),g=n.dataIdMap.get(m.dataId).id,b=n.makeOutput([4],"int32"),y=n.dataIdMap.get(b.dataId).id;jN(d,St[r.dtype],r.shape[0],h,f,g,y,t,0);let v=n.readSync(b.dataId),x;switch(v[0]){case 0:{x=C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(v[1],v[2]);break;case 3:x=C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(v[1],v[2],v[3]);break;default:x=""}if(n.disposeData(b.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function bde(e){return XN(e,!0)}var yde={kernelName:dp,backendName:"wasm",setupFunc:KN,kernelFunc:bde};function vde(e){return XN(e,!1)}var xde={kernelName:pp,backendName:"wasm",setupFunc:KN,kernelFunc:vde};function wde(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:i}=n,o=w.parseAxisParam(i,r.shape)[0],u=C.prepareSplitSize(r,a,o),l=new Array(r.shape.length).fill(0),c=r.shape.slice();return u.map(p=>{let d=[...c];d[o]=p;let h=wa({inputs:{x:r},attrs:{begin:l,size:d},backend:s});return l[o]+=p,h})}var kde={kernelName:Uo,backendName:"wasm",kernelFunc:wde},Sde=Xt(ci),Ide=Xt(Fl),Cde=!0,Nde=gn(hi,Cde),YN;function Tde(e){YN=e.wasm.cwrap(gi,null,["number","number","number","number"])}function $de(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,i=t.dataIdMap.get(a.dataId).id,o=t.makeOutput(a.shape,a.dtype),u=t.dataIdMap.get(o.dataId).id;return YN(i,r,St[a.dtype],u),o}var _de={kernelName:gi,backendName:"wasm",setupFunc:Tde,kernelFunc:$de},QN;function Ade(e){QN=e.wasm.cwrap(Go,null,["number","array","number","array","array","array","array","array","number","number"])}function Ede(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:i,strides:o,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:y,end:v,strides:x}=kt.sliceInfo(r.shape,a,i,o,u,l,c,p,d),k;if(m)k=yn({inputs:{x:r},backend:t,attrs:{shape:f}});else if(g||b){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let I=kt.computeOutShape(y,v,x),$=wa({inputs:{x:r},backend:t,attrs:{begin:y,size:I}});k=yn({inputs:{x:$},backend:t,attrs:{shape:f}}),t.disposeData($.dataId)}else{let I=t.makeOutput(h,"float32"),$=t.dataIdMap.get(r.dataId).id,R=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),E=new Uint8Array(new Int32Array(y).buffer),P=new Uint8Array(new Int32Array(v).buffer),A=new Uint8Array(new Int32Array(x).buffer),O=new Uint8Array(new Int32Array(h).buffer),T=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer),M=t.dataIdMap.get(I.dataId).id;QN($,R,r.shape.length,E,P,A,O,T,h.length,M),k=yn({inputs:{x:I},backend:t,attrs:{shape:f}}),t.disposeData(I.dataId)}return k}var Rde={kernelName:Go,backendName:"wasm",setupFunc:Ade,kernelFunc:Ede},Dde=!0,Fde=gn(fi,Dde),ZN;function Ode(e){ZN=e.wasm.cwrap(di,null,["number","number","number","number"])}function Pde(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,u=o,l=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=zr(i,r,t),f=p;if(h){let v=t.dataIdMap.get(c.dataId).id;v!==o&&(l=c,u=v,f=C.getInnerMostAxes(f.length,l.shape.length))}C.assertAxesAreInnerMostDims("sum",f,l.shape.length);let[m,g]=C.computeOutAndReduceShapes(l.shape,f),b=w.sizeFromShape(g),y=t.makeOutput(m,l.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;ZN(u,b,St[y.dtype],v)}if(h&&t.disposeData(c.dataId),a){let v=C.expandShapeToKeepDim(y.shape,d);y.shape=v}return y}var zde={kernelName:di,backendName:"wasm",setupFunc:Ode,kernelFunc:Pde},Mde=Xt(Ho),Lde=Xt(mi),JN;function Bde(e){JN=e.wasm.cwrap(Tr,null,["number","array","number","array","number","number"])}function Vde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:i}=s,o=new Array(r.shape.length);for(let d=0;d<o.length;d++)o[d]=r.shape[d]*i[d];let u=new Uint8Array(new Int32Array(r.shape).buffer),l=new Uint8Array(new Int32Array(o).buffer),c=n.makeOutput(o,r.dtype),p=n.dataIdMap.get(c.dataId).id;return JN(a,u,r.shape.length,l,o.length,St[c.dtype],p),c}var Wde={kernelName:Tr,backendName:"wasm",setupFunc:Bde,kernelFunc:Vde},eT;function Ude(e){eT=e.wasm.cwrap(qo,null,["number","array","number","number","number","bool","number","number"])}var Gde=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,i=t.dataIdMap.get(s.dataId).id,o=new Uint8Array(new Int32Array(s.shape).buffer),u=s.shape.slice();u[u.length-1]=r;let l=t.makeOutput(u,s.dtype),c=t.dataIdMap.get(l.dataId).id,p=t.makeOutput(u,"int32"),d=t.dataIdMap.get(p.dataId).id;return eT(i,o,s.shape.length,St[s.dtype],r,a,c,d),[l,p]},Hde={kernelName:qo,backendName:"wasm",setupFunc:Ude,kernelFunc:Gde},tT;function qde(e){tT=e.wasm.cwrap(jo,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function jde(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:i,fillMode:o,fillValue:u,outputShape:l}=s,[c,p,d,h]=r.shape,[f,m]=l!=null?l:[p,d],g=[c,f,m,h],b=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),y=t.makeOutput(g,r.dtype),v=t.dataIdMap.get(y.dataId).id,k=t.dataIdMap.get(r.dataId).id,$=t.dataIdMap.get(a.dataId).id,R=i==="nearest"?1:2,E;switch(o){case"constant":E=1;break;case"reflect":E=2;break;case"wrap":E=3;break;case"nearest":E=4;break;default:E=1;break}return tT(k,$,a.shape[0]>1,c,f,m,h,d,p,b,r.shape.length-1,R,E,u,v),y}var Kde={kernelName:jo,backendName:"wasm",setupFunc:qde,kernelFunc:jde};function Xde(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let i=r.shape[a],o=r.shape.length,u=new Array(o-1),l=0;for(let h=0;h<o;h++)h!==a&&(u[l++]=r.shape[h]);let c=new Array(i),p=new Array(o).fill(0),d=r.shape.slice();d[a]=1;for(let h=0;h<c.length;h++)p[a]=h,c[h]=wa({inputs:{x:r},attrs:{begin:p,size:d},backend:n});return c.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:u}))}var Yde={kernelName:Ko,backendName:"wasm",kernelFunc:Xde};function Qde(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var Zde={kernelName:Xo,backendName:"wasm",kernelFunc:Qde},Jde=[Voe,Woe,Goe,joe,tue,rue,oue,cue,fue,xue,wue,kue,Cue,Nue,_ue,Rue,Due,Fue,zue,Bue,Uue,que,Xue,Yue,Zue,Jue,ele,tle,rle,ale,ole,cle,hle,gle,vle,kle,Ile,Nle,Koe,_le,Ele,Dle,Fle,Ple,Lle,Vle,Gle,jle,Yle,Zle,tce,sce,rce,oce,cce,hce,mce,yce,xce,kce,ON,Nce,_ce,Rce,Fce,Pce,zce,Mce,due,Vce,Gce,jce,Kce,Xce,Zce,tde,rde,ade,yue,ude,cde,hde,gde,yde,xde,kde,Sde,Ide,Nde,_de,Rde,Fde,zde,Mde,Lde,Wde,Hde,Kde,Zoe,Yde,Zde];for(let e of Jde)Ol(e);var ig=K();ig.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));ig.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(ig.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var Xw=ka(g$()),epe=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
|
|
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`,tpe=ka(b$()),npe=class extends ol{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(nT),og=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Yd(this,ds())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let l=t;this.dataIdMap.set(e,{id:a,stringBytes:l,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let i=w.sizeFromShape(n),o=i*w.bytesPerElement(s),u=this.wasm._malloc(o);this.dataIdMap.set(e,{id:a,memoryOffset:u,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,i,u),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),u)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:s,dtype:r,shape:a,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=i.length)?i:i.slice(t,n);t=t||0,n=n||w.sizeFromShape(a);let o=w.bytesPerElement(r),u=this.wasm.HEAPU8.slice(s+t*o,s+n*o);return ape(u.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function spe(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function Yw(e,t,n){if(jd!=null)return jd;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),Uu!=null&&Uu[s]!=null?Uu[s]:n+s}async function rpe(){let[e,t]=await Promise.all([K().getAsync("WASM_HAS_SIMD_SUPPORT"),K().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(o,u)=>{if(o.endsWith(".worker.js")){let l=epe.replace(/\n/g,"\\n"),c=new Blob([l],{type:"application/javascript"});return URL.createObjectURL(c)}return o.endsWith(".wasm")?Yw(e,t,Bu!=null?Bu:u):u+o},Bv&&(r.instantiateWasm=spe(Yw(e,t,Bu!=null?Bu:"")));let a=!1;r.onAbort=()=>{if(a||Gu)return;Gu=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let i;t&&e&&jd==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Xw.default.toString()],{type:"text/javascript"}),i=(0,Xw.default)(r)):i=(0,tpe.default)(r),i.then(o=>{a=!0,Gu=!1;let u=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",u,["number"]),dispose:o.cwrap("dispose",u,[])},n({wasm:o})})})}function ape(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var ipe=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],jd=null,Bu=null,Uu={},Gu=!1,Bv=!1;function khe(e,t=!1){if(zk("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Gu)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");jd=e,Bv=t}function She(e,t=!1){if(Gu)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Bu=e;else{Uu=e;let n=ipe.filter(s=>Uu[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Bv=t}var nT=-1,og=-1;function Ihe(e){nT=e}function Che(){if(og===-1)throw new Error("WASM backend not initialized.");return og}var Nhe="0.0.0",ope=2;vp("wasm",async()=>{let{wasm:e}=await rpe();return new npe(e)},ope);var sr="3.18.0-20220522",The={tfjs:sr,"tfjs-core":sr,"tfjs-data":sr,"tfjs-layers":sr,"tfjs-converter":sr,"tfjs-backend-cpu":sr,"tfjs-backend-webgl":sr,"tfjs-backend-wasm":sr};export{po as Abs,ul as Acos,ll as Acosh,kb as AdadeltaOptimizer,Sb as AdagradOptimizer,Ib as AdamOptimizer,Cb as AdamaxOptimizer,Cr as Add,Ia as AddN,cl as All,dl as Any,Ca as ArgMax,pl as ArgMin,hl as Asin,fl as Asinh,ml as Atan,bl as Atan2,gl as Atanh,Na as AvgPool,Jd as AvgPool3D,fg as AvgPool3DGrad,hg as AvgPoolGrad,npe as BackendWasm,Ta as BatchMatMul,ho as BatchToSpaceND,mg as Bincount,gg as BroadcastArgs,V$ as BroadcastTo,qW as Callback,uB as CallbackList,$a as Cast,_a as Ceil,Nr as ClipByValue,ep as Complex,tp as ComplexAbs,fo as Concat,Aa as Conv2D,bg as Conv2DBackpropFilter,Ea as Conv2DBackpropInput,np as Conv3D,yg as Conv3DBackpropFilterV2,vg as Conv3DBackpropInputV2,Ra as Cos,Da as Cosh,go as CropAndResize,mo as Cumprod,Fa as Cumsum,dB as CustomCallback,Yd as DataStorage,xg as DenseBincount,bo as DepthToSpace,Oa as DepthwiseConv2dNative,wg as DepthwiseConv2dNativeBackpropFilter,kg as DepthwiseConv2dNativeBackpropInput,Sg as Diag,sp as Dilation2D,rm as Dilation2DBackpropFilter,sm as Dilation2DBackpropInput,lk as ENV,jW as EarlyStopping,rp as Einsum,za as Elu,Ig as EluGrad,O$ as Environment,yo as Equal,yl as Erf,Ma as Exp,vo as ExpandDims,xo as Expm1,Cg as FFT,vl as Fill,wo as FlipLeftRight,La as Floor,Ba as FloorDiv,vd as FromPixels,Va as FusedBatchNorm,ua as FusedConv2D,la as FusedDepthwiseConv2D,tm as GPGPUContext,So as GatherNd,ko as GatherV2,E0 as GraphModel,Io as Greater,Wa as GreaterEqual,cB as History,Ng as IFFT,Ua as Identity,ap as Imag,Ft as InputSpec,xl as IsFinite,wl as IsInf,kl as IsNan,ol as KernelBackend,op as LRN,$g as LRNGrad,Sz as LayerVariable,pr as LayersModel,Ga as LeakyRelu,Co as Less,No as LessEqual,Tg as LinSpace,Ha as Log,Sl as Log1p,W$ as LogSoftmax,To as LogicalAnd,Il as LogicalNot,ip as LogicalOr,upe as LowerBound,J0 as MathBackendCPU,Q1 as MathBackendWebGL,qa as Max,Ka as MaxPool,up as MaxPool3D,Ag as MaxPool3DGrad,_g as MaxPoolGrad,Eg as MaxPoolWithArgmax,ja as Maximum,Xa as Mean,Ya as Min,Qa as Minimum,Za as MirrorPad,Cl as Mod,Nb as MomentumOptimizer,Rg as Multinomial,Ja as Multiply,$o as Neg,Ao as NonMaxSuppressionV3,Nl as NonMaxSuppressionV4,Eo as NonMaxSuppressionV5,_o as NotEqual,x_ as OP_SCOPE_SUFFIX,Do as OneHot,Ro as OnesLike,Er as Optimizer,Hr as OptimizerConstructors,Fo as Pack,ei as PadV2,lpe as Pool,ti as Pow,ni as Prelu,si as Prod,Tb as RMSPropOptimizer,Rr as RNN,Tl as Range,d_ as Rank,lp as Real,Pa as RealDiv,$l as Reciprocal,SO as Reduction,ri as Relu,ii as Relu6,Oo as Reshape,ai as ResizeBilinear,Fg as ResizeBilinearGrad,_l as ResizeNearestNeighbor,Dg as ResizeNearestNeighborGrad,Po as Reverse,Yo as RotateWithOffset,zo as Round,oi as Rsqrt,Ep as SGDOptimizer,Mo as ScatterNd,Og as SearchSorted,Lo as Select,Al as Selu,Qb as Sequential,li as Sigmoid,El as Sign,ui as Sin,Vo as Sinh,Bo as Slice,pi as Softmax,Rl as Softplus,Wo as SpaceToBatchND,cp as SparseFillEmptyRows,Dl as SparseReshape,dp as SparseSegmentMean,pp as SparseSegmentSum,hp as SparseToDense,Uo as SplitV,ci as Sqrt,Fl as Square,hi as SquaredDifference,gi as Step,Go as StridedSlice,fp as StringNGrams,Pg as StringSplit,zg as StringToHashBucketFast,fi as Sub,di as Sum,$s as SymbolicTensor,Ho as Tan,mi as Tanh,et as Tensor,Wt as TensorBuffer,Tr as Tile,qo as TopK,jo as Transform,Hs as Transpose,Mg as Unique,Ko as Unpack,mp as UnsortedSegmentSum,cpe as UpperBound,wd as Variable,Xo as ZerosLike,oa as _FusedMatMul,Lt as abs,aE as acos,oE as acosh,ie as add,lE as addN,rS as all,vm as any,Yu as argMax,fE as argMin,gE as asin,yE as asinh,xE as atan,kE as atan2,IE as atanh,Zg as avgPool,uS as avgPool3d,wA as backend,C as backend_util,$pe as basicLSTMCell,Zu as batchNorm,UE as batchNorm2d,HE as batchNorm3d,jE as batchNorm4d,Jg as batchToSpaceND,lS as bincount,nhe as booleanMaskAsync,YE as broadcastArgs,id as broadcastTo,Qo as broadcast_util,Lk as browser,Ae as buffer,phe as callbacks,le as cast,JE as ceil,Vn as clipByValue,lr as clone,mr as complex,Ot as concat,nR as concat1d,rR as concat2d,iR as concat3d,uR as concat4d,LL as constraints,cS as conv1d,pa as conv2d,dS as conv2dTranspose,pS as conv3d,gR as conv3dTranspose,hpe as copyRegisteredKernels,tb as cos,fS as cosh,LS as cosineWindow,wm as cumprod,mS as cumsum,js as customGrad,J4 as data,kR as denseBincount,zk as deprecationWarn,IR as depthToSpace,wp as depthwiseConv2d,fhe as deregisterOp,yp as device_util,_pe as diag,$R as dilation2d,gpe as disableDeprecationWarnings,De as dispose,bpe as disposeVariables,xe as div,DR as divNoNan,Ape as dot,yF as dropout,PR as einsum,kp as elu,mpe as enableDebugMode,fpe as enableProdMode,vF as enclosingPowerOfTwo,ds as engine,K as env,Xn as equal,LR as erf,YR as euclideanNorm,Yn as exp,Pn as expandDims,eD as expm1,xS as eye,bb as fft,Bl as fill,Ipe as findBackend,Cpe as findBackendFactory,Sp as floor,sS as floorDiv,b8 as forceHalfFloat,ma as fused,Ju as gather,mF as gatherND,Vk as gather_util,kpe as getBackend,lx as getGradient,am as getKernel,im as getKernelsForBackend,Che as getThreadsCount,rX as gpgpu_util,Dpe as grad,Fpe as grads,Un as greater,Zo as greaterEqual,Td as ifft,xp as imag,jn as image,rhe as inTopKAsync,GL as initializers,nV as input,An as io,FS as irfft,Epe as isFinite,Rpe as isInf,cD as isNaN,qt as keep,ws as kernel_impls,iB as layers,ab as leakyRelu,wS as less,Jo as lessEqual,sP as linalg,fD as linspace,mhe as loadGraphModel,ghe as loadGraphModelSync,che as loadLayersModel,gD as localResponseNormalization,Qn as log,ib as log1p,zpe as logSigmoid,kS as logSoftmax,CD as logSumExp,Ds as logicalAnd,ob as logicalNot,SS as logicalOr,Mpe as logicalXor,ohe as losses,ED as lowerBound,Ve as matMul,yA as math,As as max,ub as maxPool,CS as maxPool3d,OD as maxPoolWithArgmax,Ar as maximum,It as mean,gm as memory,Lpe as meshgrid,CW as metrics,km as min,Cp as minimum,BD as mirrorPad,WD as mod,uhe as model,VW as models,lb as moments,she as movingAverage,V as mul,Bpe as multiRNNCell,qD as multinomial,vt as neg,jS as nextFrame,rb as norm,el as notEqual,Id as oneHot,Mn as ones,Zn as onesLike,L as op,Vpe as outerProduct,bi as pad,Wpe as pad1d,Upe as pad2d,Gpe as pad3d,Hpe as pad4d,qpe as pool,fa as pow,db as prelu,eA as print,NS as prod,ype as profile,jpe as rand,Kpe as randomGamma,p3 as randomNormal,Wl as randomUniform,tl as range,wpe as ready,Xu as real,m3 as reciprocal,vp as registerBackend,dhe as registerCallbackConstructor,G$ as registerGradient,Ol as registerKernel,hhe as registerOp,WW as regularizers,Ys as relu,TS as relu6,Spe as removeBackend,U as reshape,Jn as reverse,Xpe as reverse1d,Ype as reverse2d,Qpe as reverse3d,Zpe as reverse4d,yb as rfft,$S as round,_S as rsqrt,we as scalar,dF as scatterND,Uk as scatter_util,IS as searchSorted,AS as selu,T3 as separableConv2d,lhe as sequential,re as serialization,xpe as setBackend,Npe as setPlatform,Ihe as setThreadsCount,khe as setWasmPath,She as setWasmPaths,Y5 as setWebGLContext,_3 as setdiff1dAsync,iv as shared,qs as sigmoid,E3 as sign,ihe as signal,ES as sin,RS as sinh,qe as slice,fb as slice1d,DS as slice2d,mb as slice3d,Nd as slice4d,kt as slice_util,gb as softmax,Vl as softplus,cb as spaceToBatchND,qc as sparse,MS as sparseToDense,ahe as spectral,Bn as split,dn as sqrt,ct as square,OS as squaredDifference,br as squeeze,es as stack,Np as step,X3 as stridedSlice,qf as string,ge as sub,ve as sum,bp as sumOutType,Q3 as tan,Qu as tanh,ms as tensor,Zt as tensor1d,Zi as tensor2d,$A as tensor3d,Jpe as tensor4d,ehe as tensor5d,the as tensor6d,_s as tensor_util,HA as test_util,q as tidy,hs as tile,vpe as time,J3 as topk,Li as train,Ge as transpose,vb as truncatedNormal,xx as unique,ppe as unregisterGradient,dpe as unregisterKernel,sF as unsortedSegmentSum,Fs as unstack,cn as upcastType,aF as upperBound,w as util,Ope as valueAndGrad,Ppe as valueAndGrads,iF as variable,vD as variableGrads,The as version,bhe as version_converter,Tpe as version_core,yhe as version_cpu,wI as version_layers,Nhe as version_wasm,vhe as version_webgl,xhe as webgl,X5 as webgl_util,Moe as webgpu,vn as where,zS as whereAsync,$t as zeros,je as zerosLike};
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use backend file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the 'License');
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an 'AS IS' BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|