human/src/face/face.ts

148 lines
6.2 KiB
TypeScript

/**
* Face algorithm implementation
* Uses FaceMesh, Emotion and FaceRes models to create a unified pipeline
*/
import { log, now } from '../util/util';
import * as tf from '../../dist/tfjs.esm.js';
import * as facemesh from './facemesh';
import * as emotion from '../gear/emotion';
import * as faceres from './faceres';
import * as antispoof from './antispoof';
import type { FaceResult } from '../result';
import type { Tensor } from '../tfjs/types';
import { calculateFaceAngle } from './angles';
export const detectFace = async (parent /* instance of human */, input: Tensor): Promise<FaceResult[]> => {
// run facemesh, includes blazeface and iris
// eslint-disable-next-line no-async-promise-executor
let timeStamp;
let ageRes;
let gearRes;
let genderRes;
let emotionRes;
let embeddingRes;
let antispoofRes;
let descRes;
const faceRes: Array<FaceResult> = [];
parent.state = 'run:face';
timeStamp = now();
const faces = await facemesh.predict(input, parent.config);
parent.performance.face = Math.trunc(now() - timeStamp);
if (!input.shape || input.shape.length !== 4) return [];
if (!faces) return [];
// for (const face of faces) {
for (let i = 0; i < faces.length; i++) {
parent.analyze('Get Face');
// is something went wrong, skip the face
// @ts-ignore possibly undefied
if (!faces[i].tensor || faces[i].tensor['isDisposedInternal']) {
log('Face object is disposed:', faces[i].tensor);
continue;
}
const rotation = calculateFaceAngle(faces[i], [input.shape[2], input.shape[1]]);
// run emotion, inherits face from blazeface
parent.analyze('Start Emotion:');
if (parent.config.async) {
emotionRes = parent.config.face.emotion.enabled ? emotion.predict(faces[i].tensor || tf.tensor([]), parent.config, i, faces.length) : {};
} else {
parent.state = 'run:emotion';
timeStamp = now();
emotionRes = parent.config.face.emotion.enabled ? await emotion.predict(faces[i].tensor || tf.tensor([]), parent.config, i, faces.length) : {};
parent.performance.emotion = Math.trunc(now() - timeStamp);
}
parent.analyze('End Emotion:');
// run antispoof, inherits face from blazeface
parent.analyze('Start AntiSpoof:');
if (parent.config.async) {
antispoofRes = parent.config.face.antispoof.enabled ? antispoof.predict(faces[i].tensor || tf.tensor([]), parent.config, i, faces.length) : {};
} else {
parent.state = 'run:antispoof';
timeStamp = now();
antispoofRes = parent.config.face.antispoof.enabled ? await antispoof.predict(faces[i].tensor || tf.tensor([]), parent.config, i, faces.length) : {};
parent.performance.antispoof = Math.trunc(now() - timeStamp);
}
parent.analyze('End AntiSpoof:');
// run gear, inherits face from blazeface
/*
parent.analyze('Start GEAR:');
if (parent.config.async) {
gearRes = parent.config.face.agegenderrace.enabled ? agegenderrace.predict(faces[i].tensor || tf.tensor([]), parent.config, i, faces.length) : {};
} else {
parent.state = 'run:gear';
timeStamp = now();
gearRes = parent.config.face.agegenderrace.enabled ? await agegenderrace.predict(faces[i].tensor || tf.tensor([]), parent.config, i, faces.length) : {};
parent.performance.emotion = Math.trunc(now() - timeStamp);
}
parent.analyze('End GEAR:');
*/
// run emotion, inherits face from blazeface
parent.analyze('Start Description:');
if (parent.config.async) {
descRes = parent.config.face.description.enabled ? faceres.predict(faces[i].tensor || tf.tensor([]), parent.config, i, faces.length) : [];
} else {
parent.state = 'run:description';
timeStamp = now();
descRes = parent.config.face.description.enabled ? await faceres.predict(faces[i].tensor || tf.tensor([]), parent.config, i, faces.length) : [];
parent.performance.embedding = Math.trunc(now() - timeStamp);
}
parent.analyze('End Description:');
// if async wait for results
if (parent.config.async) {
[ageRes, genderRes, emotionRes, embeddingRes, descRes, gearRes, antispoofRes] = await Promise.all([ageRes, genderRes, emotionRes, embeddingRes, descRes, gearRes, antispoofRes]);
}
parent.analyze('Finish Face:');
// calculate iris distance
// iris: array[ center, left, top, right, bottom]
if (!parent.config.face.iris.enabled && faces[i]?.annotations?.leftEyeIris && faces[i]?.annotations?.rightEyeIris) {
delete faces[i].annotations.leftEyeIris;
delete faces[i].annotations.rightEyeIris;
}
const irisSize = (faces[i].annotations && faces[i].annotations.leftEyeIris && faces[i].annotations.leftEyeIris[0] && faces[i].annotations.rightEyeIris && faces[i].annotations.rightEyeIris[0]
&& (faces[i].annotations.leftEyeIris.length > 0) && (faces[i].annotations.rightEyeIris.length > 0)
&& (faces[i].annotations.leftEyeIris[0] !== null) && (faces[i].annotations.rightEyeIris[0] !== null))
? Math.max(Math.abs(faces[i].annotations.leftEyeIris[3][0] - faces[i].annotations.leftEyeIris[1][0]), Math.abs(faces[i].annotations.rightEyeIris[4][1] - faces[i].annotations.rightEyeIris[2][1])) / input.shape[2]
: 0; // note: average human iris size is 11.7mm
// optionally return tensor
const tensor = parent.config.face.detector.return ? tf.squeeze(faces[i].tensor) : null;
// dispose original face tensor
tf.dispose(faces[i].tensor);
// delete temp face image
if (faces[i].tensor) delete faces[i].tensor;
// combine results
faceRes.push({
...faces[i],
id: i,
age: descRes.age,
gender: descRes.gender,
genderScore: descRes.genderScore,
embedding: descRes.descriptor,
emotion: emotionRes,
real: antispoofRes,
iris: irisSize !== 0 ? Math.trunc(500 / irisSize / 11.7) / 100 : 0,
rotation,
tensor,
});
parent.analyze('End Face');
}
parent.analyze('End FaceMesh:');
if (parent.config.async) {
if (parent.performance.face) delete parent.performance.face;
if (parent.performance.age) delete parent.performance.age;
if (parent.performance.gender) delete parent.performance.gender;
if (parent.performance.emotion) delete parent.performance.emotion;
}
return faceRes;
};