mirror of https://github.com/vladmandic/human
7851 lines
1.6 MiB
7851 lines
1.6 MiB
/*
|
|
Human
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
"use strict";var Human=(()=>{var Xf=Object.defineProperty;var U_=Object.getOwnPropertyDescriptor;var G_=Object.getOwnPropertyNames;var H_=Object.prototype.hasOwnProperty;var j_=(e,t,n)=>t in e?Xf(e,t,{enumerable:!0,configurable:!0,writable:!0,value:n}):e[t]=n;var ha=(e,t)=>{for(var n in t)Xf(e,n,{get:t[n],enumerable:!0})},q_=(e,t,n,s)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of G_(t))!H_.call(e,r)&&r!==n&&Xf(e,r,{get:()=>t[r],enumerable:!(s=U_(t,r))||s.enumerable});return e};var X_=e=>q_(Xf({},"__esModule",{value:!0}),e);var ge=(e,t,n)=>(j_(e,typeof t!="symbol"?t+"":t,n),n),Nv=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var sp=(e,t,n)=>(Nv(e,t,"read from private field"),n?n.call(e):t.get(e)),rp=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},ap=(e,t,n,s)=>(Nv(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);var P4e={};ha(P4e,{Human:()=>ov,default:()=>ov,defaults:()=>ro,draw:()=>Q4,env:()=>he,match:()=>av,models:()=>y1});function ae(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}function Ev(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${r}`);return r}var le=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function m3(e,t,n="config",s=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")m3(e[r],t[r],r,s);else{let a=e&&typeof e[r]!="undefined";a||s.push({reason:"unknown property",where:`${n}.${r} = ${t[r]}`});let o=e&&typeof e[r]==typeof t[r];a&&!o&&s.push({reason:"property type mismatch",where:`${n}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&n==="config"&&s.length>0&&ae("invalid configuration",s),s}function Xt(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=Xt(a,o):n[r]=o}),n),{})}var ro={backend:"",modelBasePath:"",cacheModels:!0,validateModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!1,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json",keepInvalid:!1},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var Ye={};ha(Ye,{Abs:()=>bl,Acos:()=>xc,Acosh:()=>bc,AdadeltaOptimizer:()=>a2,AdagradOptimizer:()=>o2,AdamOptimizer:()=>i2,AdamaxOptimizer:()=>l2,Add:()=>na,AddN:()=>Ro,All:()=>vc,Any:()=>wc,ArgMax:()=>_o,ArgMin:()=>kc,Asin:()=>Ic,Asinh:()=>Sc,Atan:()=>Cc,Atan2:()=>Nc,Atanh:()=>Tc,AvgPool:()=>Do,AvgPool3D:()=>qp,AvgPool3DGrad:()=>s0,AvgPoolGrad:()=>n0,BackendWasm:()=>mT,BatchMatMul:()=>$o,BatchToSpaceND:()=>vl,Bincount:()=>r0,BroadcastArgs:()=>a0,BroadcastTo:()=>$w,Callback:()=>q8,CallbackList:()=>Yk,Cast:()=>Po,Ceil:()=>Sa,ClipByValue:()=>Ca,Complex:()=>Xp,ComplexAbs:()=>Kp,Concat:()=>wl,Conv2D:()=>Fo,Conv2DBackpropFilter:()=>o0,Conv2DBackpropInput:()=>Oo,Conv3D:()=>Zp,Conv3DBackpropFilterV2:()=>i0,Conv3DBackpropInputV2:()=>l0,Cos:()=>Mo,Cosh:()=>zo,CropAndResize:()=>Il,Cumprod:()=>kl,Cumsum:()=>Lo,CustomCallback:()=>Qk,DataStorage:()=>jp,DenseBincount:()=>u0,DepthToSpace:()=>Sl,DepthwiseConv2dNative:()=>Bo,DepthwiseConv2dNativeBackpropFilter:()=>c0,DepthwiseConv2dNativeBackpropInput:()=>d0,Diag:()=>p0,Dilation2D:()=>Yp,Dilation2DBackpropFilter:()=>Im,Dilation2DBackpropInput:()=>km,ENV:()=>Ly,EarlyStopping:()=>X8,Einsum:()=>Jp,Elu:()=>Vo,EluGrad:()=>h0,Environment:()=>_w,Equal:()=>Uo,Erf:()=>Ec,Exp:()=>Ta,ExpandDims:()=>Cl,Expm1:()=>Go,FFT:()=>f0,Fill:()=>Rc,FlipLeftRight:()=>Tl,Floor:()=>Na,FloorDiv:()=>Ho,FromPixels:()=>Np,FusedBatchNorm:()=>jo,FusedConv2D:()=>Ao,FusedDepthwiseConv2D:()=>xo,GPGPUContext:()=>Qu,GatherNd:()=>El,GatherV2:()=>Nl,GraphModel:()=>Vh,Greater:()=>qo,GreaterEqual:()=>Ea,History:()=>Jk,IFFT:()=>m0,Identity:()=>Xo,Imag:()=>Qp,InputSpec:()=>rn,IsFinite:()=>_c,IsInf:()=>Dc,IsNan:()=>$c,KernelBackend:()=>yc,LRN:()=>eh,LRNGrad:()=>y0,LayerVariable:()=>Gk,LayersModel:()=>xa,LeakyRelu:()=>Ko,Less:()=>Zo,LessEqual:()=>Yo,LinSpace:()=>g0,Log:()=>Ra,Log1p:()=>Pc,LogSoftmax:()=>Fw,LogicalAnd:()=>Rl,LogicalNot:()=>_l,LogicalOr:()=>Fc,LogicalXor:()=>Pw,LowerBound:()=>LD,MathBackendWebGL:()=>fd,Max:()=>Jo,MaxPool:()=>Qo,MaxPool3D:()=>th,MaxPool3DGrad:()=>x0,MaxPoolGrad:()=>A0,MaxPoolWithArgmax:()=>b0,Maximum:()=>_a,Mean:()=>ei,Min:()=>ti,Minimum:()=>Da,MirrorPad:()=>ni,Mod:()=>Oc,MomentumOptimizer:()=>u2,Multinomial:()=>v0,Multiply:()=>$a,Neg:()=>Dl,NonMaxSuppressionV3:()=>$l,NonMaxSuppressionV4:()=>Mc,NonMaxSuppressionV5:()=>Pl,NotEqual:()=>si,OP_SCOPE_SUFFIX:()=>Uy,OneHot:()=>Ol,OnesLike:()=>Fl,Optimizer:()=>Wa,OptimizerConstructors:()=>ao,Pack:()=>Ml,PadV2:()=>ri,Pool:()=>BD,Pow:()=>ai,Prelu:()=>oi,Prod:()=>ii,RMSPropOptimizer:()=>c2,RNN:()=>aa,RaggedTensorToTensor:()=>w0,Range:()=>zc,Rank:()=>D3,Real:()=>nh,RealDiv:()=>Wo,Reciprocal:()=>Lc,Reduction:()=>es,Relu:()=>li,Relu6:()=>di,Reshape:()=>zl,ResizeBilinear:()=>ci,ResizeBilinearGrad:()=>I0,ResizeNearestNeighbor:()=>ui,ResizeNearestNeighborGrad:()=>k0,Reverse:()=>Ll,RotateWithOffset:()=>Ql,Round:()=>Bl,Rsqrt:()=>Pa,SGDOptimizer:()=>Rh,ScatterNd:()=>Wl,SearchSorted:()=>S0,Select:()=>Vl,Selu:()=>Bc,Sequential:()=>cc,Sigmoid:()=>Fa,Sign:()=>Wc,Sin:()=>pi,Sinh:()=>Gl,Slice:()=>Ul,Softmax:()=>fi,Softplus:()=>Vc,SpaceToBatchND:()=>Hl,SparseFillEmptyRows:()=>sh,SparseReshape:()=>Uc,SparseSegmentMean:()=>rh,SparseSegmentSum:()=>ah,SparseToDense:()=>oh,SplitV:()=>jl,Sqrt:()=>Oa,Square:()=>Gc,SquaredDifference:()=>Ma,Step:()=>gi,StridedSlice:()=>ql,StringNGrams:()=>Hc,StringSplit:()=>ih,StringToHashBucketFast:()=>lh,Sub:()=>za,Sum:()=>hi,SymbolicTensor:()=>_r,Tan:()=>Xl,Tanh:()=>mi,Tensor:()=>nt,TensorBuffer:()=>Kt,Tile:()=>La,TopK:()=>Kl,Transform:()=>Zl,Transpose:()=>Zr,Unique:()=>C0,Unpack:()=>Yl,UnsortedSegmentSum:()=>uh,UpperBound:()=>WD,Variable:()=>_p,ZerosLike:()=>Jl,_FusedMatMul:()=>yo,abs:()=>tn,acos:()=>lA,acosh:()=>uA,add:()=>ue,addN:()=>N0,all:()=>E0,any:()=>Pp,argMax:()=>Rs,argMin:()=>cA,asin:()=>dA,asinh:()=>pA,atan:()=>hA,atan2:()=>fA,atanh:()=>mA,avgPool:()=>yh,avgPool3d:()=>yA,backend:()=>Bn,backend_util:()=>C,basicLSTMCell:()=>C6,batchNorm:()=>Xc,batchNorm2d:()=>AA,batchNorm3d:()=>xA,batchNorm4d:()=>bA,batchToSpaceND:()=>Ah,bincount:()=>vA,booleanMaskAsync:()=>lk,broadcastArgs:()=>T6,broadcastTo:()=>sl,broadcast_util:()=>tu,browser:()=>Zs,buffer:()=>De,callbacks:()=>Jj,cast:()=>ye,ceil:()=>wA,clipByValue:()=>gs,clone:()=>Mn,complex:()=>ba,concat:()=>St,concat1d:()=>kA,concat2d:()=>nu,concat3d:()=>IA,concat4d:()=>SA,constraints:()=>qk,conv1d:()=>R0,conv2d:()=>va,conv2dTranspose:()=>_0,conv3d:()=>TA,conv3dTranspose:()=>NA,copyRegisteredKernels:()=>HD,cos:()=>xh,cosh:()=>D0,cosineWindow:()=>e2,cumprod:()=>Fp,cumsum:()=>$0,customGrad:()=>ea,data:()=>AI,denseBincount:()=>E6,deprecationWarn:()=>Yy,depthToSpace:()=>EA,depthwiseConv2d:()=>Kc,deregisterOp:()=>tq,device_util:()=>hh,diag:()=>R6,dilation2d:()=>RA,disableDeprecationWarnings:()=>AP,dispose:()=>J,disposeVariables:()=>xP,div:()=>fe,divNoNan:()=>_A,dot:()=>DA,dropout:()=>r5,einsum:()=>_6,elu:()=>Zc,enableDebugMode:()=>yP,enableProdMode:()=>Zy,enclosingPowerOfTwo:()=>a5,engine:()=>sn,env:()=>H,equal:()=>_s,erf:()=>$A,euclideanNorm:()=>OA,exp:()=>Ds,expandDims:()=>Bt,expm1:()=>MA,eye:()=>P0,fft:()=>Nh,fill:()=>Jc,findBackend:()=>Qy,findBackendFactory:()=>kP,floor:()=>Qc,floorDiv:()=>qc,forceHalfFloat:()=>P9,fused:()=>ic,gather:()=>ed,gatherND:()=>pk,gather_util:()=>tA,getBackend:()=>Ln,getGradient:()=>R3,getKernel:()=>Sm,getKernelsForBackend:()=>Jr,getThreadsCount:()=>$0e,gpgpu_util:()=>p9,grad:()=>jO,grads:()=>qO,greater:()=>xs,greaterEqual:()=>xi,ifft:()=>oc,imag:()=>mh,image:()=>Se,inTopKAsync:()=>hk,initializers:()=>Xk,input:()=>h8,io:()=>Ns,irfft:()=>Z0,isFinite:()=>zA,isInf:()=>LA,isNaN:()=>BA,keep:()=>An,kernel_impls:()=>hr,layers:()=>Kk,leakyRelu:()=>bh,less:()=>F0,lessEqual:()=>bi,linalg:()=>l5,linspace:()=>O6,loadGraphModel:()=>rX,loadGraphModelSync:()=>aX,loadLayersModel:()=>lH,localResponseNormalization:()=>WA,log:()=>$s,log1p:()=>vh,logSigmoid:()=>VA,logSoftmax:()=>M0,logSumExp:()=>z0,logicalAnd:()=>cr,logicalNot:()=>wh,logicalOr:()=>L0,logicalXor:()=>UA,losses:()=>Sk,lowerBound:()=>z6,matMul:()=>Qe,math:()=>a6,max:()=>hn,maxPool:()=>kh,maxPool3d:()=>GA,maxPoolWithArgmax:()=>L6,maximum:()=>ra,mean:()=>Wt,memory:()=>Nm,meshgrid:()=>B6,metrics:()=>G8,min:()=>wa,minimum:()=>td,mirrorPad:()=>HA,mod:()=>ru,model:()=>oH,models:()=>H8,moments:()=>Ih,movingAverage:()=>uk,mul:()=>z,multiRNNCell:()=>W6,multinomial:()=>V6,neg:()=>$t,nextFrame:()=>u5,norm:()=>Yc,notEqual:()=>pl,oneHot:()=>sc,ones:()=>Es,onesLike:()=>Ps,op:()=>B,outerProduct:()=>U6,pad:()=>Ys,pad1d:()=>G6,pad2d:()=>H6,pad3d:()=>j6,pad4d:()=>q6,pool:()=>jA,pow:()=>ka,prelu:()=>Ch,print:()=>qy,prod:()=>qA,profile:()=>bP,raggedTensorToTensor:()=>X6,rand:()=>K6,randomGamma:()=>Z6,randomNormal:()=>W0,randomStandardNormal:()=>Y6,randomUniform:()=>nd,range:()=>ac,ready:()=>jc,real:()=>rc,reciprocal:()=>ZA,registerBackend:()=>eu,registerCallbackConstructor:()=>uH,registerGradient:()=>Ow,registerKernel:()=>pr,registerOp:()=>eq,regularizers:()=>j8,relu:()=>zr,relu6:()=>V0,removeBackend:()=>wP,reshape:()=>V,reverse:()=>Ks,reverse1d:()=>J6,reverse2d:()=>Q6,reverse3d:()=>ek,reverse4d:()=>tk,rfft:()=>Eh,round:()=>U0,rsqrt:()=>G0,scalar:()=>Ce,scatterND:()=>ck,scatter_util:()=>nA,searchSorted:()=>B0,selu:()=>H0,separableConv2d:()=>j0,sequential:()=>iH,serialization:()=>de,setBackend:()=>Jy,setPlatform:()=>IP,setThreadsCount:()=>D0e,setWasmPath:()=>_0e,setWasmPaths:()=>L2,setWebGLContext:()=>D2,setdiff1dAsync:()=>nk,sigmoid:()=>Cn,sign:()=>YA,signal:()=>Ik,sin:()=>q0,sinh:()=>X0,slice:()=>Le,slice1d:()=>Th,slice2d:()=>K0,slice3d:()=>vi,slice4d:()=>vo,slice_util:()=>Pt,softmax:()=>au,softplus:()=>su,spaceToBatchND:()=>Sh,sparse:()=>Ck,sparseToDense:()=>dk,spectral:()=>kk,split:()=>Zt,sqrt:()=>En,square:()=>bt,squaredDifference:()=>Y0,squeeze:()=>st,stack:()=>on,step:()=>ou,stridedSlice:()=>JA,string:()=>Tk,sub:()=>me,sum:()=>ke,sumOutType:()=>ph,tan:()=>QA,tanh:()=>cl,tensor:()=>ct,tensor1d:()=>Ft,tensor2d:()=>ur,tensor3d:()=>eA,tensor4d:()=>sk,tensor5d:()=>rk,tensor6d:()=>ak,tensor_util:()=>Dr,test_util:()=>b6,tidy:()=>Z,tile:()=>Hs,time:()=>vP,topk:()=>e5,train:()=>qi,transpose:()=>et,truncatedNormal:()=>J0,unique:()=>t5,unregisterGradient:()=>GD,unregisterKernel:()=>UD,unsortedSegmentSum:()=>Q0,unstack:()=>Rn,upcastType:()=>Nn,upperBound:()=>ok,util:()=>v,valueAndGrad:()=>XO,valueAndGrads:()=>KO,variable:()=>n5,variableGrads:()=>M6,version:()=>Jh,version_converter:()=>iX,version_core:()=>iA,version_layers:()=>_5,version_wasm:()=>P0e,version_webgl:()=>Cse,webgl:()=>Tse,webgl_util:()=>OS,webgpu:()=>lN,where:()=>zn,whereAsync:()=>s5,zeros:()=>Vt,zerosLike:()=>it});var K_=Object.create,Py=Object.defineProperty,Z_=Object.getOwnPropertyDescriptor,xw=Object.getOwnPropertyNames,Y_=Object.getPrototypeOf,J_=Object.prototype.hasOwnProperty,ln=(e,t)=>function(){return t||(0,e[xw(e)[0]])((t={exports:{}}).exports,t),t.exports},Ve=(e,t)=>{for(var n in t)Py(e,n,{get:t[n],enumerable:!0})},Q_=(e,t,n,s)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of xw(t))!J_.call(e,r)&&r!==n&&Py(e,r,{get:()=>t[r],enumerable:!(s=Z_(t,r))||s.enumerable});return e},No=(e,t,n)=>(n=e!=null?K_(Y_(e)):{},Q_(t||!e||!e.__esModule?Py(n,"default",{value:e,enumerable:!0}):n,e)),eD=ln({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(P){}function s(P,T,M){this.low=P|0,this.high=T|0,this.unsigned=!!M}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(P){return(P&&P.__isLong__)===!0}s.isLong=r;var a={},o={};function i(P,T){var M,W,G;return T?(P>>>=0,(G=0<=P&&P<256)&&(W=o[P],W)?W:(M=u(P,(P|0)<0?-1:0,!0),G&&(o[P]=M),M)):(P|=0,(G=-128<=P&&P<128)&&(W=a[P],W)?W:(M=u(P,P<0?-1:0,!1),G&&(a[P]=M),M))}s.fromInt=i;function l(P,T){if(isNaN(P))return T?b:A;if(T){if(P<0)return b;if(P>=g)return _}else{if(P<=-y)return D;if(P+1>=y)return E}return P<0?l(-P,T).neg():u(P%m|0,P/m|0,T)}s.fromNumber=l;function u(P,T,M){return new s(P,T,M)}s.fromBits=u;var c=Math.pow;function p(P,T,M){if(P.length===0)throw Error("empty string");if(P==="NaN"||P==="Infinity"||P==="+Infinity"||P==="-Infinity")return A;if(typeof T=="number"?(M=T,T=!1):T=!!T,M=M||10,M<2||36<M)throw RangeError("radix");var W;if((W=P.indexOf("-"))>0)throw Error("interior hyphen");if(W===0)return p(P.substring(1),T,M).neg();for(var G=l(c(M,8)),X=A,K=0;K<P.length;K+=8){var Y=Math.min(8,P.length-K),re=parseInt(P.substring(K,K+Y),M);if(Y<8){var ee=l(c(M,Y));X=X.mul(ee).add(l(re))}else X=X.mul(G),X=X.add(l(re))}return X.unsigned=T,X}s.fromString=p;function d(P,T){return typeof P=="number"?l(P,T):typeof P=="string"?p(P,T):u(P.low,P.high,typeof T=="boolean"?T:P.unsigned)}s.fromValue=d;var h=1<<16,f=1<<24,m=h*h,g=m*m,y=g/2,x=i(f),A=i(0);s.ZERO=A;var b=i(0,!0);s.UZERO=b;var w=i(1);s.ONE=w;var I=i(1,!0);s.UONE=I;var k=i(-1);s.NEG_ONE=k;var E=u(-1,2147483647,!1);s.MAX_VALUE=E;var _=u(-1,-1,!0);s.MAX_UNSIGNED_VALUE=_;var D=u(0,-2147483648,!1);s.MIN_VALUE=D;var R=s.prototype;R.toInt=function(){return this.unsigned?this.low>>>0:this.low},R.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},R.toString=function(T){if(T=T||10,T<2||36<T)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(D)){var M=l(T),W=this.div(M),G=W.mul(M).sub(this);return W.toString(T)+G.toInt().toString(T)}else return"-"+this.neg().toString(T);for(var X=l(c(T,6),this.unsigned),K=this,Y="";;){var re=K.div(X),ee=K.sub(re.mul(X)).toInt()>>>0,ie=ee.toString(T);if(K=re,K.isZero())return ie+Y;for(;ie.length<6;)ie="0"+ie;Y=""+ie+Y}},R.getHighBits=function(){return this.high},R.getHighBitsUnsigned=function(){return this.high>>>0},R.getLowBits=function(){return this.low},R.getLowBitsUnsigned=function(){return this.low>>>0},R.getNumBitsAbs=function(){if(this.isNegative())return this.eq(D)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,M=31;M>0&&(T&1<<M)==0;M--);return this.high!=0?M+33:M+1},R.isZero=function(){return this.high===0&&this.low===0},R.eqz=R.isZero,R.isNegative=function(){return!this.unsigned&&this.high<0},R.isPositive=function(){return this.unsigned||this.high>=0},R.isOdd=function(){return(this.low&1)===1},R.isEven=function(){return(this.low&1)===0},R.equals=function(T){return r(T)||(T=d(T)),this.unsigned!==T.unsigned&&this.high>>>31===1&&T.high>>>31===1?!1:this.high===T.high&&this.low===T.low},R.eq=R.equals,R.notEquals=function(T){return!this.eq(T)},R.neq=R.notEquals,R.ne=R.notEquals,R.lessThan=function(T){return this.comp(T)<0},R.lt=R.lessThan,R.lessThanOrEqual=function(T){return this.comp(T)<=0},R.lte=R.lessThanOrEqual,R.le=R.lessThanOrEqual,R.greaterThan=function(T){return this.comp(T)>0},R.gt=R.greaterThan,R.greaterThanOrEqual=function(T){return this.comp(T)>=0},R.gte=R.greaterThanOrEqual,R.ge=R.greaterThanOrEqual,R.compare=function(T){if(r(T)||(T=d(T)),this.eq(T))return 0;var M=this.isNegative(),W=T.isNegative();return M&&!W?-1:!M&&W?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},R.comp=R.compare,R.negate=function(){return!this.unsigned&&this.eq(D)?D:this.not().add(w)},R.neg=R.negate,R.add=function(T){r(T)||(T=d(T));var M=this.high>>>16,W=this.high&65535,G=this.low>>>16,X=this.low&65535,K=T.high>>>16,Y=T.high&65535,re=T.low>>>16,ee=T.low&65535,ie=0,ne=0,pe=0,ce=0;return ce+=X+ee,pe+=ce>>>16,ce&=65535,pe+=G+re,ne+=pe>>>16,pe&=65535,ne+=W+Y,ie+=ne>>>16,ne&=65535,ie+=M+K,ie&=65535,u(pe<<16|ce,ie<<16|ne,this.unsigned)},R.subtract=function(T){return r(T)||(T=d(T)),this.add(T.neg())},R.sub=R.subtract,R.multiply=function(T){if(this.isZero())return A;if(r(T)||(T=d(T)),n){var M=n.mul(this.low,this.high,T.low,T.high);return u(M,n.get_high(),this.unsigned)}if(T.isZero())return A;if(this.eq(D))return T.isOdd()?D:A;if(T.eq(D))return this.isOdd()?D:A;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(x)&&T.lt(x))return l(this.toNumber()*T.toNumber(),this.unsigned);var W=this.high>>>16,G=this.high&65535,X=this.low>>>16,K=this.low&65535,Y=T.high>>>16,re=T.high&65535,ee=T.low>>>16,ie=T.low&65535,ne=0,pe=0,ce=0,Ae=0;return Ae+=K*ie,ce+=Ae>>>16,Ae&=65535,ce+=X*ie,pe+=ce>>>16,ce&=65535,ce+=K*ee,pe+=ce>>>16,ce&=65535,pe+=G*ie,ne+=pe>>>16,pe&=65535,pe+=X*ee,ne+=pe>>>16,pe&=65535,pe+=K*re,ne+=pe>>>16,pe&=65535,ne+=W*ie+G*ee+X*re+K*Y,ne&=65535,u(ce<<16|Ae,ne<<16|pe,this.unsigned)},R.mul=R.multiply,R.divide=function(T){if(r(T)||(T=d(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return u(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:A;var W,G,X;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return b;if(T.gt(this.shru(1)))return I;X=b}else{if(this.eq(D)){if(T.eq(w)||T.eq(k))return D;if(T.eq(D))return w;var K=this.shr(1);return W=K.div(T).shl(1),W.eq(A)?T.isNegative()?w:k:(G=this.sub(T.mul(W)),X=W.add(G.div(T)),X)}else if(T.eq(D))return this.unsigned?b:A;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();X=A}for(G=this;G.gte(T);){W=Math.max(1,Math.floor(G.toNumber()/T.toNumber()));for(var Y=Math.ceil(Math.log(W)/Math.LN2),re=Y<=48?1:c(2,Y-48),ee=l(W),ie=ee.mul(T);ie.isNegative()||ie.gt(G);)W-=re,ee=l(W,this.unsigned),ie=ee.mul(T);ee.isZero()&&(ee=w),X=X.add(ee),G=G.sub(ie)}return X},R.div=R.divide,R.modulo=function(T){if(r(T)||(T=d(T)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return u(M,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},R.mod=R.modulo,R.rem=R.modulo,R.not=function(){return u(~this.low,~this.high,this.unsigned)},R.and=function(T){return r(T)||(T=d(T)),u(this.low&T.low,this.high&T.high,this.unsigned)},R.or=function(T){return r(T)||(T=d(T)),u(this.low|T.low,this.high|T.high,this.unsigned)},R.xor=function(T){return r(T)||(T=d(T)),u(this.low^T.low,this.high^T.high,this.unsigned)},R.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?u(this.low<<T,this.high<<T|this.low>>>32-T,this.unsigned):u(0,this.low<<T-32,this.unsigned)},R.shl=R.shiftLeft,R.shiftRight=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?u(this.low>>>T|this.high<<32-T,this.high>>T,this.unsigned):u(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},R.shr=R.shiftRight,R.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var M=this.high;if(T<32){var W=this.low;return u(W>>>T|M<<32-T,M>>>T,this.unsigned)}else return T===32?u(M,0,this.unsigned):u(M>>>T-32,0,this.unsigned)},R.shru=R.shiftRightUnsigned,R.shr_u=R.shiftRightUnsigned,R.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},R.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},R.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},R.toBytesLE=function(){var T=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},R.toBytesBE=function(){var T=this.high,M=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},s.fromBytes=function(T,M,W){return W?s.fromBytesLE(T,M):s.fromBytesBE(T,M)},s.fromBytesLE=function(T,M){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,M)},s.fromBytesBE=function(T,M){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],M)}}}),tD=ln({"(disabled):node_modules/.pnpm/node-fetch@2.6.7/node_modules/node-fetch/browser.js"(){}}),nD=ln({"(disabled):util"(){}}),sD=ln({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,p=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=p(" "),c.s1=p(" "),c.s2=p(" "),c.s0-=p(u),c.s0<0&&(c.s0+=1),c.s1-=p(u),c.s1<0&&(c.s1+=1),c.s2-=p(u),c.s2<0&&(c.s2+=1),p=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var p=new a(u),d=c&&c.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&o(d,p),h.state=function(){return o(p,{})}),h}function l(){var u=4022871197,c=function(p){p=String(p);for(var d=0;d<p.length;d++){u+=p.charCodeAt(d);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),rD=ln({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var p=0;p<c.length+64;p++)u.x^=c.charCodeAt(p)|0,u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),aD=ln({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var p=0;p<c.length+64;p++)u.x^=c.charCodeAt(p)|0,p==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),oD=ln({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var p=u.x,d=u.i,h,f,m;return h=p[d],h^=h>>>7,f=h^h<<24,h=p[d+1&7],f^=h^h>>>10,h=p[d+3&7],f^=h^h>>>3,h=p[d+4&7],f^=h^h<<7,h=p[d+7&7],h=h^h<<13,f^=h^h<<9,p[d]=f,u.i=d+1&7,f};function c(p,d){var h,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,h=0;h<d.length;++h)m[h&7]=m[h&7]<<15^d.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],p.x=m,p.i=0,h=256;h>0;--h)p.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.x&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),iD=ln({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var p=u.w,d=u.X,h=u.i,f,m;return u.w=p=p+1640531527|0,m=d[h+34&127],f=d[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[h]=m^f,u.i=h,m+(p^p>>>16)|0};function c(p,d){var h,f,m,g,y,x=[],A=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,A=Math.max(A,d.length)),m=0,g=-32;g<A;++g)d&&(f^=d.charCodeAt((g+32)%d.length)),g===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(y=y+1640531527|0,h=x[g&127]^=f+y,m=h==0?m+1:0);for(m>=128&&(x[(d&&d.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=x[m+34&127],h=x[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,x[m]=f^h;p.w=y,p.X=x,p.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.X&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),lD=ln({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var d=u.b,h=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^h,u.c=h=h-f|0,u.d=f<<16^h>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var p=0;p<c.length+20;p++)u.b^=c.charCodeAt(p)|0,u.next()}function o(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),uD=ln({"(disabled):crypto"(){}}),cD=ln({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",u=r.pow(a,o),c=r.pow(2,i),p=c*2,d=a-1,h;function f(w,I,k){var E=[];I=I==!0?{entropy:!0}:I||{};var _=x(y(I.entropy?[w,b(s)]:w==null?A():w,3),E),D=new m(E),R=function(){for(var P=D.g(o),T=u,M=0;P<c;)P=(P+M)*a,T*=a,M=D.g(1);for(;P>=p;)P/=2,T/=2,M>>>=1;return(P+M)/T};return R.int32=function(){return D.g(4)|0},R.quick=function(){return D.g(4)/4294967296},R.double=R,x(b(D.S),s),(I.pass||k||function(P,T,M,W){return W&&(W.S&&g(W,D),P.state=function(){return g(D,{})}),M?(r[l]=P,T):P})(R,_,"global"in I?I.global:this==r,I.state)}function m(w){var I,k=w.length,E=this,_=0,D=E.i=E.j=0,R=E.S=[];for(k||(w=[k++]);_<a;)R[_]=_++;for(_=0;_<a;_++)R[_]=R[D=d&D+w[_%k]+(I=R[_])],R[D]=I;(E.g=function(P){for(var T,M=0,W=E.i,G=E.j,X=E.S;P--;)T=X[W=d&W+1],M=M*a+X[d&(X[W]=X[G=d&G+T])+(X[G]=T)];return E.i=W,E.j=G,M})(a)}function g(w,I){return I.i=w.i,I.j=w.j,I.S=w.S.slice(),I}function y(w,I){var k=[],E=typeof w,_;if(I&&E=="object")for(_ in w)try{k.push(y(w[_],I-1))}catch(D){}return k.length?k:E=="string"?w:w+"\0"}function x(w,I){for(var k=w+"",E,_=0;_<k.length;)I[d&_]=d&(E^=I[d&_]*19)+k.charCodeAt(_++);return b(I)}function A(){try{var w;return h&&(w=h.randomBytes)?w=w(a):(w=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(w)),b(w)}catch(E){var I=n.navigator,k=I&&I.plugins;return[+new Date,n,k,n.screen,b(s)]}}function b(w){return String.fromCharCode.apply(0,w)}if(x(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{h=uD()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),Qm=ln({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(e,t){var n=sD(),s=rD(),r=aD(),a=oD(),o=iD(),i=lD(),l=cD();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),bw=ln({"(disabled):node_modules/.pnpm/string_decoder@1.3.0/node_modules/string_decoder/lib/string_decoder.js"(){}}),Fy=ln({"(disabled):fs"(){}}),bm=ln({"(disabled):path"(){}}),dD=ln({"(disabled):worker_threads"(){}}),pD=ln({"(disabled):perf_hooks"(){}}),hD=ln({"(disabled):os"(){}}),fD=ln({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=(()=>{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return Oe.buffer!=Kn&&wr(Oe.buffer),ff}function o(){return Oe.buffer!=Kn&&wr(Oe.buffer),mf}function i(){return Oe.buffer!=Kn&&wr(Oe.buffer),Hd}function l(){return Oe.buffer!=Kn&&wr(Oe.buffer),gf}function u(){return Oe.buffer!=Kn&&wr(Oe.buffer),yf}function c(){return Oe.buffer!=Kn&&wr(Oe.buffer),Af}function p(){return Oe.buffer!=Kn&&wr(Oe.buffer),xf}var d=typeof r!="undefined"?r:{},h,f;d.ready=new Promise(function(N,F){h=N,f=F});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},d),y=[],x="./this.program",A=(N,F)=>{throw F},b=typeof window=="object",w=typeof importScripts=="function",I=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",k=d.ENVIRONMENT_IS_PTHREAD||!1,E="";function _(N){return d.locateFile?d.locateFile(N,E):E+N}var D,R,P,T;function M(N){if(N instanceof tp)return;ee("exiting due to exception: "+N)}var W,G,X;if(I){w?E=bm().dirname(E)+"/":E=__dirname+"/",X=()=>{G||(W=Fy(),G=bm())},D=function(U,Q){return X(),U=G.normalize(U),W.readFileSync(U,Q?void 0:"utf8")},P=F=>{var U=D(F,!0);return U.buffer||(U=new Uint8Array(U)),U},R=(F,U,Q)=>{X(),F=G.normalize(F),W.readFile(F,function(xe,we){xe?Q(xe):U(we.buffer)})},process.argv.length>1&&(x=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function(F){if(!(F instanceof tp))throw F}),process.on("unhandledRejection",function(F){throw F}),A=(F,U)=>{if(Li())throw process.exitCode=F,U;M(U),process.exit(F)},d.inspect=function(){return"[Emscripten Module object]"};let N;try{N=dD()}catch(F){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),F}global.Worker=N.Worker}else(b||w)&&(w?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof s!="undefined"&&s&&(E=s),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",I||(D=N=>{var F=new XMLHttpRequest;return F.open("GET",N,!1),F.send(null),F.responseText},w&&(P=N=>{var F=new XMLHttpRequest;return F.open("GET",N,!1),F.responseType="arraybuffer",F.send(null),new Uint8Array(F.response)}),R=(N,F,U)=>{var Q=new XMLHttpRequest;Q.open("GET",N,!0),Q.responseType="arraybuffer",Q.onload=()=>{if(Q.status==200||Q.status==0&&Q.response){F(Q.response);return}U()},Q.onerror=U,Q.send(null)}),T=N=>document.title=N);I&&typeof performance=="undefined"&&(global.performance=pD().performance);var K=console.log.bind(console),Y=console.warn.bind(console);I&&(X(),K=N=>W.writeSync(1,N+`
|
|
`),Y=N=>W.writeSync(2,N+`
|
|
`));var re=d.print||K,ee=d.printErr||Y;Object.assign(d,g),g=null,d.arguments&&(y=d.arguments),d.thisProgram&&(x=d.thisProgram),d.quit&&(A=d.quit);var ie=4;function ne(N){ne.shown||(ne.shown={}),ne.shown[N]||(ne.shown[N]=1,ee(N))}function pe(N,F){if(typeof WebAssembly.Function=="function"){for(var U={i:"i32",j:"i64",f:"f32",d:"f64"},Q={parameters:[],results:F[0]=="v"?[]:[U[F[0]]]},xe=1;xe<F.length;++xe)Q.parameters.push(U[F[xe]]);return new WebAssembly.Function(Q,N)}var we=[1,0,1,96],Ne=F.slice(0,1),Be=F.slice(1),Lt={i:127,j:126,f:125,d:124};we.push(Be.length);for(var xe=0;xe<Be.length;++xe)we.push(Lt[Be[xe]]);Ne=="v"?we.push(0):we=we.concat([1,Lt[Ne]]),we[1]=we.length-2;var Cr=new Uint8Array([0,97,115,109,1,0,0,0].concat(we,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),Tr=new WebAssembly.Module(Cr),qf=new WebAssembly.Instance(Tr,{e:{f:N}}),np=qf.exports.f;return np}var ce=[],Ae;function oe(){if(ce.length)return ce.pop();try{Vs.grow(1)}catch(N){throw N instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":N}return Vs.length-1}function Re(N,F){for(var U=N;U<N+F;U++){var Q=$u(U);Q&&Ae.set(Q,U)}}var _e=0,Ue=N=>{_e=N},Me=Atomics.load,ot=Atomics.store,gt=Atomics.compareExchange,pt;d.wasmBinary&&(pt=d.wasmBinary);var yt=d.noExitRuntime||!0;typeof WebAssembly!="object"&&Ru("no native wasm support detected");var Oe,Tt,kt=!1,jn;function Qt(N,F){N||Ru(F)}function vs(N){var F=d["_"+N];return F}function dn(N,F,U,Q,xe){var we={string:function(Is){var Bu=0;if(Is!=null&&Is!==0){var Tv=(Is.length<<2)+1;Bu=Lu(Tv),da(Is,Bu,Tv)}return Bu},array:function(Is){var Bu=Lu(Is.length);return pa(Is,Bu),Bu}};function Ne(Is){return F==="string"?Xn(Is):F==="boolean"?Boolean(Is):Is}var Be=vs(N),Lt=[],Cr=0;if(Q)for(var Tr=0;Tr<Q.length;Tr++){var qf=we[U[Tr]];qf?(Cr===0&&(Cr=h3()),Lt[Tr]=qf(Q[Tr])):Lt[Tr]=Q[Tr]}var np=Be.apply(null,Lt);function V_(Is){return Cr!==0&&Uf(Cr),Ne(Is)}return np=V_(np),np}function qn(N,F,U,Q){U=U||[];var xe=U.every(function(Ne){return Ne==="number"}),we=F!=="string";return we&&xe&&!Q?vs(N):function(){return dn(N,F,U,arguments,Q)}}var ws=1;function ks(N){var F=new TextDecoder(N);this.decode=U=>(U.buffer instanceof SharedArrayBuffer&&(U=new Uint8Array(U)),F.decode.call(F,U))}var Fn=typeof TextDecoder!="undefined"?new ks("utf8"):void 0;function Ws(N,F,U){for(var Q=F+U,xe=F;N[xe]&&!(xe>=Q);)++xe;if(xe-F>16&&N.subarray&&Fn)return Fn.decode(N.subarray(F,xe));for(var we="";F<xe;){var Ne=N[F++];if(!(Ne&128)){we+=String.fromCharCode(Ne);continue}var Be=N[F++]&63;if((Ne&224)==192){we+=String.fromCharCode((Ne&31)<<6|Be);continue}var Lt=N[F++]&63;if((Ne&240)==224?Ne=(Ne&15)<<12|Be<<6|Lt:Ne=(Ne&7)<<18|Be<<12|Lt<<6|N[F++]&63,Ne<65536)we+=String.fromCharCode(Ne);else{var Cr=Ne-65536;we+=String.fromCharCode(55296|Cr>>10,56320|Cr&1023)}}return we}function Xn(N,F){return N?Ws(o(),N,F):""}function ca(N,F,U,Q){if(!(Q>0))return 0;for(var xe=U,we=U+Q-1,Ne=0;Ne<N.length;++Ne){var Be=N.charCodeAt(Ne);if(Be>=55296&&Be<=57343){var Lt=N.charCodeAt(++Ne);Be=65536+((Be&1023)<<10)|Lt&1023}if(Be<=127){if(U>=we)break;F[U++]=Be}else if(Be<=2047){if(U+1>=we)break;F[U++]=192|Be>>6,F[U++]=128|Be&63}else if(Be<=65535){if(U+2>=we)break;F[U++]=224|Be>>12,F[U++]=128|Be>>6&63,F[U++]=128|Be&63}else{if(U+3>=we)break;F[U++]=240|Be>>18,F[U++]=128|Be>>12&63,F[U++]=128|Be>>6&63,F[U++]=128|Be&63}}return F[U]=0,U-xe}function da(N,F,U){return ca(N,o(),F,U)}function Tu(N){for(var F=0,U=0;U<N.length;++U){var Q=N.charCodeAt(U);Q>=55296&&Q<=57343&&(Q=65536+((Q&1023)<<10)|N.charCodeAt(++U)&1023),Q<=127?++F:Q<=2047?F+=2:Q<=65535?F+=3:F+=4}return F}var eo=typeof TextDecoder!="undefined"?new ks("utf-16le"):void 0;function pa(N,F){a().set(N,F)}function Gd(N,F,U){for(var Q=0;Q<N.length;++Q)a()[F++>>0]=N.charCodeAt(Q);U||(a()[F>>0]=0)}function Nu(N,F){return N%F>0&&(N+=F-N%F),N}var Kn,ff,mf,Hd,gf,yf,iv,Af,xf;k&&(Kn=d.buffer);function wr(N){Kn=N,d.HEAP8=ff=new Int8Array(N),d.HEAP16=Hd=new Int16Array(N),d.HEAP32=yf=new Int32Array(N),d.HEAPU8=mf=new Uint8Array(N),d.HEAPU16=gf=new Uint16Array(N),d.HEAPU32=iv=new Uint32Array(N),d.HEAPF32=Af=new Float32Array(N),d.HEAPF64=xf=new Float64Array(N)}var bf=d.INITIAL_MEMORY||16777216;if(k)Oe=d.wasmMemory,Kn=d.buffer;else if(d.wasmMemory)Oe=d.wasmMemory;else if(Oe=new WebAssembly.Memory({initial:bf/65536,maximum:32768,shared:!0}),!(Oe.buffer instanceof SharedArrayBuffer))throw ee("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),I&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Oe&&(Kn=Oe.buffer),bf=Kn.byteLength,wr(Kn);var Vs,Eu=[],to=[],P1=[],vf=[],zi=!1,F1=!1,wf=0;function Li(){return yt||wf>0}function Zn(){if(d.preRun)for(typeof d.preRun=="function"&&(d.preRun=[d.preRun]);d.preRun.length;)lv(d.preRun.shift());Cf(Eu)}function jd(){zi=!0,!k&&Cf(to)}function O1(){k||(We.terminateAllThreads(),F1=!0)}function M1(){if(!k){if(d.postRun)for(typeof d.postRun=="function"&&(d.postRun=[d.postRun]);d.postRun.length;)qd(d.postRun.shift());Cf(vf)}}function lv(N){Eu.unshift(N)}function uv(N){to.unshift(N)}function qd(N){vf.unshift(N)}var no=0,kf=null,kr=null;function Xd(N){no++,d.monitorRunDependencies&&d.monitorRunDependencies(no)}function cv(N){if(no--,d.monitorRunDependencies&&d.monitorRunDependencies(no),no==0&&(kf!==null&&(clearInterval(kf),kf=null),kr)){var F=kr;kr=null,F()}}d.preloadedImages={},d.preloadedAudios={};function Ru(N){k?postMessage({cmd:"onAbort",arg:N}):d.onAbort&&d.onAbort(N),N="Aborted("+N+")",ee(N),kt=!0,jn=1,N+=". Build with -s ASSERTIONS=1 for more info.";var F=new WebAssembly.RuntimeError(N);throw f(F),F}var z1="data:application/octet-stream;base64,";function Kd(N){return N.startsWith(z1)}function If(N){return N.startsWith("file://")}var Yn;Yn="tfjs-backend-wasm-threaded-simd.wasm",Kd(Yn)||(Yn=_(Yn));function Sf(N){try{if(N==Yn&&pt)return new Uint8Array(pt);if(P)return P(N);throw"both async and sync fetching of the wasm failed"}catch(F){Ru(F)}}function _u(){if(!pt&&(b||w)){if(typeof fetch=="function"&&!If(Yn))return fetch(Yn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+Yn+"'";return N.arrayBuffer()}).catch(function(){return Sf(Yn)});if(R)return new Promise(function(N,F){R(Yn,function(U){N(new Uint8Array(U))},F)})}return Promise.resolve().then(function(){return Sf(Yn)})}function L1(){var N={env:zf,wasi_snapshot_preview1:zf};function F(Ne,Be){var Lt=Ne.exports;if(d.asm=Lt,j1(d.asm.emscripten_tls_init),Vs=d.asm.__indirect_function_table,uv(d.asm.__wasm_call_ctors),Tt=Be,!k){var Cr=We.unusedWorkers.length;We.unusedWorkers.forEach(function(Tr){We.loadWasmModuleToWorker(Tr,function(){--Cr||cv("wasm-instantiate")})})}}k||Xd("wasm-instantiate");function U(Ne){F(Ne.instance,Ne.module)}function Q(Ne){return _u().then(function(Be){return WebAssembly.instantiate(Be,N)}).then(function(Be){return Be}).then(Ne,function(Be){ee("failed to asynchronously prepare wasm: "+Be),Ru(Be)})}function xe(){return!pt&&typeof WebAssembly.instantiateStreaming=="function"&&!Kd(Yn)&&!If(Yn)&&typeof fetch=="function"?fetch(Yn,{credentials:"same-origin"}).then(function(Ne){var Be=WebAssembly.instantiateStreaming(Ne,N);return Be.then(U,function(Lt){return ee("wasm streaming compile failed: "+Lt),ee("falling back to ArrayBuffer instantiation"),Q(U)})}):Q(U)}if(d.instantiateWasm)try{var we=d.instantiateWasm(N,F);return we}catch(Ne){return ee("Module.instantiateWasm callback failed with error: "+Ne),!1}return xe().catch(f),{}}var dv,pv,B1={};function Cf(N){for(;N.length>0;){var F=N.shift();if(typeof F=="function"){F(d);continue}var U=F.func;typeof U=="number"?F.arg===void 0?$u(U)():$u(U)(F.arg):U(F.arg===void 0?null:F.arg)}}function Du(N){var F=h3(),U=N();return Uf(F),U}function ZR(N){return N}function hv(N){var F=/\b_Z[\w\d_]+/g;return N.replace(F,function(U){var Q=U;return U===Q?U:Q+" ["+U+"]"})}function W1(N){u()[N>>2]=0;var F=We.pthreads[N];delete We.pthreads[N],F.worker.terminate(),p3(N),We.runningWorkers.splice(We.runningWorkers.indexOf(F.worker),1),F.worker.pthread=void 0}function V1(N){var F=We.pthreads[N];F.worker.postMessage({cmd:"cancel"})}function Tf(N){var F=We.pthreads[N];if(F){u()[N>>2]=0;var U=F.worker;We.returnWorkerToPool(U)}}function Nf(N){L_(N)}function U1(N){if(N instanceof tp||N=="unwind")return jn;A(1,N)}var We={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){k?We.initWorker():We.initMainThread()},initMainThread:function(){for(var N=8,F=0;F<N;++F)We.allocateUnusedWorker()},initWorker:function(){yt=!1},pthreads:{},setExitStatus:function(N){jn=N},terminateAllThreads:function(){for(var N in We.pthreads){var F=We.pthreads[N];F&&F.worker&&We.returnWorkerToPool(F.worker)}for(var U=0;U<We.unusedWorkers.length;++U){var Q=We.unusedWorkers[U];Q.terminate()}We.unusedWorkers=[]},returnWorkerToPool:function(N){We.runWithoutMainThreadQueuedCalls(function(){delete We.pthreads[N.pthread.threadInfoStruct],We.unusedWorkers.push(N),We.runningWorkers.splice(We.runningWorkers.indexOf(N),1),p3(N.pthread.threadInfoStruct),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){u()[Cv>>2]=0;try{N()}finally{u()[Cv>>2]=1}},receiveObjectTransfer:function(N){},threadInit:function(){for(var N in We.tlsInitFunctions)We.tlsInitFunctions[N]()},loadWasmModuleToWorker:function(N,F){N.onmessage=U=>{var Q=U.data,xe=Q.cmd;if(N.pthread&&(We.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),Q.targetThread&&Q.targetThread!=Vf()){var we=We.pthreads[Q.targetThread];we?we.worker.postMessage(Q,Q.transferList):ee('Internal error! Worker sent a message "'+xe+'" to target pthread '+Q.targetThread+", but that thread no longer exists!"),We.currentProxiedOperationCallerThread=void 0;return}xe==="processQueuedMainThreadWork"?vv():xe==="spawnThread"?Rf(Q):xe==="cleanupThread"?Tf(Q.thread):xe==="killThread"?W1(Q.thread):xe==="cancelThread"?V1(Q.thread):xe==="loaded"?(N.loaded=!0,F&&F(N),N.runPthread&&(N.runPthread(),delete N.runPthread)):xe==="print"?re("Thread "+Q.threadId+": "+Q.text):xe==="printErr"?ee("Thread "+Q.threadId+": "+Q.text):xe==="alert"?alert("Thread "+Q.threadId+": "+Q.text):Q.target==="setimmediate"?N.postMessage(Q):xe==="onAbort"?d.onAbort&&d.onAbort(Q.arg):ee("worker sent an unknown command "+xe),We.currentProxiedOperationCallerThread=void 0},N.onerror=U=>{var Q="worker sent an error!";throw ee(Q+" "+U.filename+":"+U.lineno+": "+U.message),U},I&&(N.on("message",function(U){N.onmessage({data:U})}),N.on("error",function(U){N.onerror(U)}),N.on("detachedExit",function(){})),N.postMessage({cmd:"load",urlOrBlob:d.mainScriptUrlOrBlob||s,wasmMemory:Oe,wasmModule:Tt})},allocateUnusedWorker:function(){var N=_("tfjs-backend-wasm-threaded-simd.worker.js");We.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return We.unusedWorkers.length==0&&(We.allocateUnusedWorker(),We.loadWasmModuleToWorker(We.unusedWorkers[0])),We.unusedWorkers.pop()}};function G1(){var N=Vf(),F=u()[N+44>>2],U=u()[N+48>>2],Q=F-U;Sv(F,Q),Uf(F)}d.establishStackSpace=G1;function Ef(N){if(k)return Vi(1,0,N);try{Nf(N)}catch(F){U1(F)}}var Bi=[];function $u(N){var F=Bi[N];return F||(N>=Bi.length&&(Bi.length=N+1),Bi[N]=F=Vs.get(N)),F}function H1(N,F){return $u(N)(F)}d.invokeEntryPoint=H1;function fv(){var N=new Error;if(!N.stack){try{throw new Error}catch(F){N=F}if(!N.stack)return"(no stack trace available)"}return N.stack.toString()}function j1(N,F,U){We.tlsInitFunctions.push(N)}function mv(N,F){Vs.set(N,F),Bi[N]=F}var Wi;I?Wi=()=>{var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:k?Wi=()=>performance.now()-d.__performance_now_clock_drift:Wi=()=>performance.now();var q1=!0;function X1(N){return u()[bv()>>2]=N,N}function K1(N,F){var U;if(N===0)U=Date.now();else if((N===1||N===4)&&q1)U=Wi();else return X1(28),-1;return u()[F>>2]=U/1e3|0,u()[F+4>>2]=U%1e3*1e3*1e3|0,0}function Z1(N,F){return K1(N,F)}function Y1(N){wv(N,!w,1,!b),We.threadInit()}function J1(N){k?postMessage({cmd:"cleanupThread",thread:N}):Tf(N)}function Rf(N){var F=We.getNewWorker();if(!F)return 6;We.runningWorkers.push(F);var U=We.pthreads[N.pthread_ptr]={worker:F,threadInfoStruct:N.pthread_ptr};F.pthread=U;var Q={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr};return F.runPthread=()=>{Q.time=performance.now(),F.postMessage(Q,N.transferList)},F.loaded&&(F.runPthread(),delete F.runPthread),0}function Q1(N,F,U,Q){if(typeof SharedArrayBuffer=="undefined")return ee("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var xe=[],we=0;if(k&&(xe.length===0||we))return kv(687865856,N,F,U,Q);if(we)return we;var Ne={startRoutine:U,pthread_ptr:N,arg:Q,transferList:xe};return k?(Ne.cmd="spawnThread",postMessage(Ne,xe),0):Rf(Ne)}function eg(){return 2097152}function tg(N,F){if(N==F)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var U=We.pthreads[N],Q=U&&U.worker;if(!Q)return;Q.postMessage({cmd:"processThreadQueue"})}return 1}function ng(){Ru("")}function sg(){I||w||ne("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function _f(){return 2147483648}function rg(N,F,U){o().copyWithin(N,F,F+U)}function ag(){return I?hD().cpus().length:navigator.hardwareConcurrency}function Vi(N,F){var U=arguments.length-2,Q=arguments;return Du(function(){for(var xe=U,we=Lu(xe*8),Ne=we>>3,Be=0;Be<U;Be++){var Lt=Q[2+Be];p()[Ne+Be]=Lt}return Iv(N,xe,we,F)})}var Zd=[];function og(N,F,U){Zd.length=F;for(var Q=U>>3,xe=0;xe<F;xe++)Zd[xe]=p()[Q+xe];var we=N<0,Ne=we?B1[-N-1]:Sg[N];return Ne.apply(null,Zd)}function ig(N){try{return Oe.grow(N-Kn.byteLength+65535>>>16),wr(Oe.buffer),1}catch(F){}}function lg(N){var F=o().length;if(N=N>>>0,N<=F)return!1;var U=_f();if(N>U)return!1;for(var Q=1;Q<=4;Q*=2){var xe=F*(1+.2/Q);xe=Math.min(xe,N+100663296);var we=Math.min(U,Nu(Math.max(N,xe),65536)),Ne=ig(we);if(Ne)return!0}return!1}var Je={inEventHandler:0,removeAllEventListeners:function(){for(var N=Je.eventHandlers.length-1;N>=0;--N)Je._removeHandler(N);Je.eventHandlers=[],Je.deferredCalls=[]},registerRemoveEventListeners:function(){Je.removeEventListenersRegistered||(P1.push(Je.removeAllEventListeners),Je.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,F,U){function Q(Ne,Be){if(Ne.length!=Be.length)return!1;for(var Lt in Ne)if(Ne[Lt]!=Be[Lt])return!1;return!0}for(var xe in Je.deferredCalls){var we=Je.deferredCalls[xe];if(we.targetFunction==N&&Q(we.argsList,U))return}Je.deferredCalls.push({targetFunction:N,precedence:F,argsList:U}),Je.deferredCalls.sort(function(Ne,Be){return Ne.precedence<Be.precedence})},removeDeferredCalls:function(N){for(var F=0;F<Je.deferredCalls.length;++F)Je.deferredCalls[F].targetFunction==N&&(Je.deferredCalls.splice(F,1),--F)},canPerformEventHandlerRequests:function(){return Je.inEventHandler&&Je.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Je.canPerformEventHandlerRequests())for(var N=0;N<Je.deferredCalls.length;++N){var F=Je.deferredCalls[N];Je.deferredCalls.splice(N,1),--N,F.targetFunction.apply(null,F.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,F){for(var U=0;U<Je.eventHandlers.length;++U)Je.eventHandlers[U].target==N&&(!F||F==Je.eventHandlers[U].eventTypeString)&&Je._removeHandler(U--)},_removeHandler:function(N){var F=Je.eventHandlers[N];F.target.removeEventListener(F.eventTypeString,F.eventListenerFunc,F.useCapture),Je.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var F=function(xe){++Je.inEventHandler,Je.currentEventHandler=N,Je.runDeferredCalls(),N.handlerFunc(xe),Je.runDeferredCalls(),--Je.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=F,N.target.addEventListener(N.eventTypeString,F,N.useCapture),Je.eventHandlers.push(N),Je.registerRemoveEventListeners();else for(var U=0;U<Je.eventHandlers.length;++U)Je.eventHandlers[U].target==N.target&&Je.eventHandlers[U].eventTypeString==N.eventTypeString&&Je._removeHandler(U--)},queueEventHandlerOnThread_iiii:function(N,F,U,Q,xe){Du(function(){var we=Lu(12);u()[we>>2]=U,u()[we+4>>2]=Q,u()[we+8>>2]=xe,d3(N,637534208,F,Q,we)})},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return We.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function ug(N){var F=Tu(N)+1,U=c3(F);return da(N,U,F),U}function cg(N,F,U,Q){Du(function(){var xe=Lu(12),we=0;F&&(we=ug(F)),u()[xe>>2]=we,u()[xe+4>>2]=U,u()[xe+8>>2]=Q,d3(N,657457152,0,we,xe)})}function dg(N,F,U,Q){F=F?Xn(F):"",cg(N,F,U,Q)}function pg(N){return N>2?Xn(N):N}var hg=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function fg(N){N=pg(N);var F=hg[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return F}function Yd(N){return fg(N)}function Df(N,F,U){var Q=Yd(N);if(!Q)return-4;if(Q.canvasSharedPtr&&(u()[Q.canvasSharedPtr>>2]=F,u()[Q.canvasSharedPtr+4>>2]=U),Q.offscreenCanvas||!Q.controlTransferredOffscreen){Q.offscreenCanvas&&(Q=Q.offscreenCanvas);var xe=!1;if(Q.GLctxObject&&Q.GLctxObject.GLctx){var we=Q.GLctxObject.GLctx.getParameter(2978);xe=we[0]===0&&we[1]===0&&we[2]===Q.width&&we[3]===Q.height}Q.width=F,Q.height=U,xe&&Q.GLctxObject.GLctx.viewport(0,0,F,U)}else if(Q.canvasSharedPtr){var Ne=u()[Q.canvasSharedPtr+8>>2];return dg(Ne,N,F,U),1}else return-4;return 0}function $f(N,F,U){return k?Vi(2,1,N,F,U):Df(N,F,U)}function mg(N,F,U){var Q=Yd(N);return Q?Df(N,F,U):$f(N,F,U)}function gg(){throw"unwind"}function yg(N){var F=N.getExtension("ANGLE_instanced_arrays");if(F)return N.vertexAttribDivisor=function(U,Q){F.vertexAttribDivisorANGLE(U,Q)},N.drawArraysInstanced=function(U,Q,xe,we){F.drawArraysInstancedANGLE(U,Q,xe,we)},N.drawElementsInstanced=function(U,Q,xe,we,Ne){F.drawElementsInstancedANGLE(U,Q,xe,we,Ne)},1}function Ag(N){var F=N.getExtension("OES_vertex_array_object");if(F)return N.createVertexArray=function(){return F.createVertexArrayOES()},N.deleteVertexArray=function(U){F.deleteVertexArrayOES(U)},N.bindVertexArray=function(U){F.bindVertexArrayOES(U)},N.isVertexArray=function(U){return F.isVertexArrayOES(U)},1}function xg(N){var F=N.getExtension("WEBGL_draw_buffers");if(F)return N.drawBuffers=function(U,Q){F.drawBuffersWEBGL(U,Q)},1}function bg(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var zt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(F){zt.lastError||(zt.lastError=F)},getNewId:function(N){for(var F=zt.counter++,U=N.length;U<F;U++)N[U]=null;return F},getSource:function(N,F,U,Q){for(var xe="",we=0;we<F;++we){var Ne=Q?u()[Q+we*4>>2]:-1;xe+=Xn(u()[U+we*4>>2],Ne<0?void 0:Ne)}return xe},createContext:function(N,F){N.getContextSafariWebGL2Fixed||(N.getContextSafariWebGL2Fixed=N.getContext,N.getContext=function(xe,we){var Ne=N.getContextSafariWebGL2Fixed(xe,we);return xe=="webgl"==Ne instanceof WebGLRenderingContext?Ne:null});var U=N.getContext("webgl",F);if(!U)return 0;var Q=zt.registerContext(U,F);return Q},registerContext:function(N,F){var U=c3(8);u()[U+4>>2]=Vf();var Q={handle:U,attributes:F,version:F.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=Q),zt.contexts[U]=Q,(typeof F.enableExtensionsByDefault=="undefined"||F.enableExtensionsByDefault)&&zt.initExtensions(Q),U},makeContextCurrent:function(N){return zt.currentContext=zt.contexts[N],d.ctx=Mf=zt.currentContext&&zt.currentContext.GLctx,!(N&&!Mf)},getContext:function(N){return zt.contexts[N]},deleteContext:function(N){zt.currentContext===zt.contexts[N]&&(zt.currentContext=null),typeof Je=="object"&&Je.removeAllHandlersOnTarget(zt.contexts[N].GLctx.canvas),zt.contexts[N]&&zt.contexts[N].GLctx.canvas&&(zt.contexts[N].GLctx.canvas.GLctxObject=void 0),xv(zt.contexts[N].handle),zt.contexts[N]=null},initExtensions:function(N){if(N||(N=zt.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var F=N.GLctx;yg(F),Ag(F),xg(F),F.disjointTimerQueryExt=F.getExtension("EXT_disjoint_timer_query"),bg(F);var U=F.getSupportedExtensions()||[];U.forEach(function(Q){!Q.includes("lose_context")&&!Q.includes("debug")&&F.getExtension(Q)})}}},vg=["default","low-power","high-performance"];function wg(N,F){var U=F>>2,Q=u()[U+6],xe={alpha:!!u()[U+0],depth:!!u()[U+1],stencil:!!u()[U+2],antialias:!!u()[U+3],premultipliedAlpha:!!u()[U+4],preserveDrawingBuffer:!!u()[U+5],powerPreference:vg[Q],failIfMajorPerformanceCaveat:!!u()[U+7],majorVersion:u()[U+8],minorVersion:u()[U+9],enableExtensionsByDefault:u()[U+10],explicitSwapControl:u()[U+11],proxyContextToMainThread:u()[U+12],renderViaOffscreenBackBuffer:u()[U+13]},we=Yd(N);if(!we||xe.explicitSwapControl)return 0;var Ne=zt.createContext(we,xe);return Ne}function kg(N,F){return wg(N,F)}var Pu={mappings:{},buffers:[null,[],[]],printChar:function(N,F){var U=Pu.buffers[N];F===0||F===10?((N===1?re:ee)(Ws(U,0)),U.length=0):U.push(F)},varargs:void 0,get:function(){Pu.varargs+=4;var N=u()[Pu.varargs-4>>2];return N},getStr:function(N){var F=Xn(N);return F},get64:function(N,F){return N}};function Pf(N){return k?Vi(3,1,N):0}function Ff(N,F,U,Q,xe){if(k)return Vi(4,1,N,F,U,Q,xe)}function Of(N,F,U,Q){if(k)return Vi(5,1,N,F,U,Q);for(var xe=0,we=0;we<U;we++){var Ne=u()[F>>2],Be=u()[F+4>>2];F+=8;for(var Lt=0;Lt<Be;Lt++)Pu.printChar(N,o()[Ne+Lt]);xe+=Be}return u()[Q>>2]=xe,0}function Ig(N){Ue(N)}We.init();var Mf,Sg=[null,Ef,$f,Pf,Ff,Of],gv=!1,zf={__clock_gettime:Z1,__emscripten_init_main_thread_js:Y1,__emscripten_thread_cleanup:J1,__pthread_create_js:Q1,_emscripten_default_pthread_stack_size:eg,_emscripten_notify_thread_queue:tg,abort:ng,emscripten_check_blocking_allowed:sg,emscripten_get_heap_max:_f,emscripten_get_now:Wi,emscripten_memcpy_big:rg,emscripten_num_logical_cores:ag,emscripten_receive_on_main_thread_js:og,emscripten_resize_heap:lg,emscripten_set_canvas_element_size:mg,emscripten_unwind_to_js_event_loop:gg,emscripten_webgl_create_context:kg,exit:Nf,fd_close:Pf,fd_seek:Ff,fd_write:Of,memory:Oe||d.wasmMemory,setTempRet0:Ig},yv=L1(),Cg=d.___wasm_call_ctors=function(){return(Cg=d.___wasm_call_ctors=d.asm.__wasm_call_ctors).apply(null,arguments)},Tg=d._init=function(){return(Tg=d._init=d.asm.init).apply(null,arguments)},Ng=d._init_with_threads_count=function(){return(Ng=d._init_with_threads_count=d.asm.init_with_threads_count).apply(null,arguments)},Eg=d._get_threads_count=function(){return(Eg=d._get_threads_count=d.asm.get_threads_count).apply(null,arguments)},Rg=d._register_tensor=function(){return(Rg=d._register_tensor=d.asm.register_tensor).apply(null,arguments)},_g=d._dispose_data=function(){return(_g=d._dispose_data=d.asm.dispose_data).apply(null,arguments)},Dg=d._dispose=function(){return(Dg=d._dispose=d.asm.dispose).apply(null,arguments)},$g=d._Abs=function(){return($g=d._Abs=d.asm.Abs).apply(null,arguments)},Pg=d._Add=function(){return(Pg=d._Add=d.asm.Add).apply(null,arguments)},Fg=d._AddN=function(){return(Fg=d._AddN=d.asm.AddN).apply(null,arguments)},Og=d._All=function(){return(Og=d._All=d.asm.All).apply(null,arguments)},Mg=d._Any=function(){return(Mg=d._Any=d.asm.Any).apply(null,arguments)},zg=d._ArgMax=function(){return(zg=d._ArgMax=d.asm.ArgMax).apply(null,arguments)},Lg=d._AvgPool=function(){return(Lg=d._AvgPool=d.asm.AvgPool).apply(null,arguments)},Bg=d._BatchMatMul=function(){return(Bg=d._BatchMatMul=d.asm.BatchMatMul).apply(null,arguments)},Wg=d._Ceil=function(){return(Wg=d._Ceil=d.asm.Ceil).apply(null,arguments)},Vg=d._ClipByValue=function(){return(Vg=d._ClipByValue=d.asm.ClipByValue).apply(null,arguments)},Ug=d._Conv2D=function(){return(Ug=d._Conv2D=d.asm.Conv2D).apply(null,arguments)},Gg=d._Conv2DBackpropInput=function(){return(Gg=d._Conv2DBackpropInput=d.asm.Conv2DBackpropInput).apply(null,arguments)},Hg=d._Cos=function(){return(Hg=d._Cos=d.asm.Cos).apply(null,arguments)},jg=d._Cosh=function(){return(jg=d._Cosh=d.asm.Cosh).apply(null,arguments)},qg=d._CropAndResize=function(){return(qg=d._CropAndResize=d.asm.CropAndResize).apply(null,arguments)},Xg=d._Cumprod=function(){return(Xg=d._Cumprod=d.asm.Cumprod).apply(null,arguments)},Kg=d._Cumsum=function(){return(Kg=d._Cumsum=d.asm.Cumsum).apply(null,arguments)},Zg=d._DepthToSpace=function(){return(Zg=d._DepthToSpace=d.asm.DepthToSpace).apply(null,arguments)},Yg=d._DepthwiseConv2dNative=function(){return(Yg=d._DepthwiseConv2dNative=d.asm.DepthwiseConv2dNative).apply(null,arguments)},Jg=d._Elu=function(){return(Jg=d._Elu=d.asm.Elu).apply(null,arguments)},Qg=d._Equal=function(){return(Qg=d._Equal=d.asm.Equal).apply(null,arguments)},e3=d._Exp=function(){return(e3=d._Exp=d.asm.Exp).apply(null,arguments)},t3=d._FlipLeftRight=function(){return(t3=d._FlipLeftRight=d.asm.FlipLeftRight).apply(null,arguments)},n3=d._Floor=function(){return(n3=d._Floor=d.asm.Floor).apply(null,arguments)},s3=d._FloorDiv=function(){return(s3=d._FloorDiv=d.asm.FloorDiv).apply(null,arguments)},r3=d._FusedBatchNorm=function(){return(r3=d._FusedBatchNorm=d.asm.FusedBatchNorm).apply(null,arguments)},a3=d._FusedConv2D=function(){return(a3=d._FusedConv2D=d.asm.FusedConv2D).apply(null,arguments)},Lf=d._FusedDepthwiseConv2D=function(){return(Lf=d._FusedDepthwiseConv2D=d.asm.FusedDepthwiseConv2D).apply(null,arguments)},Bf=d._Gather=function(){return(Bf=d._Gather=d.asm.Gather).apply(null,arguments)},Jd=d._GatherNd=function(){return(Jd=d._GatherNd=d.asm.GatherNd).apply(null,arguments)},o3=d._Greater=function(){return(o3=d._Greater=d.asm.Greater).apply(null,arguments)},i3=d._GreaterEqual=function(){return(i3=d._GreaterEqual=d.asm.GreaterEqual).apply(null,arguments)},Fu=d._LeakyRelu=function(){return(Fu=d._LeakyRelu=d.asm.LeakyRelu).apply(null,arguments)},Qd=d._Less=function(){return(Qd=d._Less=d.asm.Less).apply(null,arguments)},ep=d._LessEqual=function(){return(ep=d._LessEqual=d.asm.LessEqual).apply(null,arguments)},Av=d._Log=function(){return(Av=d._Log=d.asm.Log).apply(null,arguments)},Ou=d._LogicalAnd=function(){return(Ou=d._LogicalAnd=d.asm.LogicalAnd).apply(null,arguments)},Mu=d._LogicalNot=function(){return(Mu=d._LogicalNot=d.asm.LogicalNot).apply(null,arguments)},l3=d._LogicalOr=function(){return(l3=d._LogicalOr=d.asm.LogicalOr).apply(null,arguments)},q=d._LogicalXor=function(){return(q=d._LogicalXor=d.asm.LogicalXor).apply(null,arguments)},te=d._Max=function(){return(te=d._Max=d.asm.Max).apply(null,arguments)},be=d._MaxPool=function(){return(be=d._MaxPool=d.asm.MaxPool).apply(null,arguments)},$e=d._Maximum=function(){return($e=d._Maximum=d.asm.Maximum).apply(null,arguments)},ht=d._Mean=function(){return(ht=d._Mean=d.asm.Mean).apply(null,arguments)},mt=d._Min=function(){return(mt=d._Min=d.asm.Min).apply(null,arguments)},tt=d._Minimum=function(){return(tt=d._Minimum=d.asm.Minimum).apply(null,arguments)},Ke=d._MirrorPad=function(){return(Ke=d._MirrorPad=d.asm.MirrorPad).apply(null,arguments)},en=d._Multiply=function(){return(en=d._Multiply=d.asm.Multiply).apply(null,arguments)},Ir=d._Neg=function(){return(Ir=d._Neg=d.asm.Neg).apply(null,arguments)},Sr=d._NonMaxSuppressionV3=function(){return(Sr=d._NonMaxSuppressionV3=d.asm.NonMaxSuppressionV3).apply(null,arguments)},zu=d._NonMaxSuppressionV4=function(){return(zu=d._NonMaxSuppressionV4=d.asm.NonMaxSuppressionV4).apply(null,arguments)},Ui=d._NonMaxSuppressionV5=function(){return(Ui=d._NonMaxSuppressionV5=d.asm.NonMaxSuppressionV5).apply(null,arguments)},u3=d._NotEqual=function(){return(u3=d._NotEqual=d.asm.NotEqual).apply(null,arguments)},Jn=d._OneHot=function(){return(Jn=d._OneHot=d.asm.OneHot).apply(null,arguments)},so=d._PadV2=function(){return(so=d._PadV2=d.asm.PadV2).apply(null,arguments)},Wf=d._Pow=function(){return(Wf=d._Pow=d.asm.Pow).apply(null,arguments)},YR=d._Prelu=function(){return(YR=d._Prelu=d.asm.Prelu).apply(null,arguments)},JR=d._Prod=function(){return(JR=d._Prod=d.asm.Prod).apply(null,arguments)},QR=d._RealDiv=function(){return(QR=d._RealDiv=d.asm.RealDiv).apply(null,arguments)},e_=d._Relu=function(){return(e_=d._Relu=d.asm.Relu).apply(null,arguments)},t_=d._Relu6=function(){return(t_=d._Relu6=d.asm.Relu6).apply(null,arguments)},n_=d._ResizeBilinear=function(){return(n_=d._ResizeBilinear=d.asm.ResizeBilinear).apply(null,arguments)},s_=d._ResizeNearestNeighbor=function(){return(s_=d._ResizeNearestNeighbor=d.asm.ResizeNearestNeighbor).apply(null,arguments)},r_=d._Reverse=function(){return(r_=d._Reverse=d.asm.Reverse).apply(null,arguments)},a_=d._RotateWithOffset=function(){return(a_=d._RotateWithOffset=d.asm.RotateWithOffset).apply(null,arguments)},o_=d._Round=function(){return(o_=d._Round=d.asm.Round).apply(null,arguments)},i_=d._Rsqrt=function(){return(i_=d._Rsqrt=d.asm.Rsqrt).apply(null,arguments)},l_=d._ScatterNd=function(){return(l_=d._ScatterNd=d.asm.ScatterNd).apply(null,arguments)},u_=d._SelectV2=function(){return(u_=d._SelectV2=d.asm.SelectV2).apply(null,arguments)},c_=d._Sigmoid=function(){return(c_=d._Sigmoid=d.asm.Sigmoid).apply(null,arguments)},d_=d._Sin=function(){return(d_=d._Sin=d.asm.Sin).apply(null,arguments)},p_=d._Softmax=function(){return(p_=d._Softmax=d.asm.Softmax).apply(null,arguments)},h_=d._SparseFillEmptyRows=function(){return(h_=d._SparseFillEmptyRows=d.asm.SparseFillEmptyRows).apply(null,arguments)},f_=d._SparseReshape=function(){return(f_=d._SparseReshape=d.asm.SparseReshape).apply(null,arguments)},m_=d._SparseSegmentReduction=function(){return(m_=d._SparseSegmentReduction=d.asm.SparseSegmentReduction).apply(null,arguments)},g_=d._Sqrt=function(){return(g_=d._Sqrt=d.asm.Sqrt).apply(null,arguments)},y_=d._Square=function(){return(y_=d._Square=d.asm.Square).apply(null,arguments)},A_=d._SquaredDifference=function(){return(A_=d._SquaredDifference=d.asm.SquaredDifference).apply(null,arguments)},x_=d._Step=function(){return(x_=d._Step=d.asm.Step).apply(null,arguments)},b_=d._StridedSlice=function(){return(b_=d._StridedSlice=d.asm.StridedSlice).apply(null,arguments)},v_=d._Sub=function(){return(v_=d._Sub=d.asm.Sub).apply(null,arguments)},w_=d._Sum=function(){return(w_=d._Sum=d.asm.Sum).apply(null,arguments)},k_=d._Tan=function(){return(k_=d._Tan=d.asm.Tan).apply(null,arguments)},I_=d._Tanh=function(){return(I_=d._Tanh=d.asm.Tanh).apply(null,arguments)},S_=d._Tile=function(){return(S_=d._Tile=d.asm.Tile).apply(null,arguments)},C_=d._TopK=function(){return(C_=d._TopK=d.asm.TopK).apply(null,arguments)},T_=d._Transform=function(){return(T_=d._Transform=d.asm.Transform).apply(null,arguments)},N_=d._Transpose=function(){return(N_=d._Transpose=d.asm.Transpose).apply(null,arguments)},E_=d.__FusedMatMul=function(){return(E_=d.__FusedMatMul=d.asm._FusedMatMul).apply(null,arguments)},c3=d._malloc=function(){return(c3=d._malloc=d.asm.malloc).apply(null,arguments)},xv=d._free=function(){return(xv=d._free=d.asm.free).apply(null,arguments)},R_=d._emscripten_tls_init=function(){return(R_=d._emscripten_tls_init=d.asm.emscripten_tls_init).apply(null,arguments)},bv=d.___errno_location=function(){return(bv=d.___errno_location=d.asm.__errno_location).apply(null,arguments)},Vf=d._pthread_self=function(){return(Vf=d._pthread_self=d.asm.pthread_self).apply(null,arguments)},vv=d._emscripten_main_thread_process_queued_calls=function(){return(vv=d._emscripten_main_thread_process_queued_calls=d.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},__=d.__emscripten_thread_crashed=function(){return(__=d.__emscripten_thread_crashed=d.asm._emscripten_thread_crashed).apply(null,arguments)},wv=d.__emscripten_thread_init=function(){return(wv=d.__emscripten_thread_init=d.asm._emscripten_thread_init).apply(null,arguments)},D_=d._emscripten_current_thread_process_queued_calls=function(){return(D_=d._emscripten_current_thread_process_queued_calls=d.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},$_=d._emscripten_main_browser_thread_id=function(){return($_=d._emscripten_main_browser_thread_id=d.asm.emscripten_main_browser_thread_id).apply(null,arguments)},P_=d._emscripten_sync_run_in_main_thread_2=function(){return(P_=d._emscripten_sync_run_in_main_thread_2=d.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},kv=d._emscripten_sync_run_in_main_thread_4=function(){return(kv=d._emscripten_sync_run_in_main_thread_4=d.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},Iv=d._emscripten_run_in_main_runtime_thread_js=function(){return(Iv=d._emscripten_run_in_main_runtime_thread_js=d.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},d3=d._emscripten_dispatch_to_thread_=function(){return(d3=d._emscripten_dispatch_to_thread_=d.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},p3=d.__emscripten_thread_free_data=function(){return(p3=d.__emscripten_thread_free_data=d.asm._emscripten_thread_free_data).apply(null,arguments)},F_=d.__emscripten_thread_exit=function(){return(F_=d.__emscripten_thread_exit=d.asm._emscripten_thread_exit).apply(null,arguments)},O_=d._memalign=function(){return(O_=d._memalign=d.asm.memalign).apply(null,arguments)},Sv=d._emscripten_stack_set_limits=function(){return(Sv=d._emscripten_stack_set_limits=d.asm.emscripten_stack_set_limits).apply(null,arguments)},h3=d.stackSave=function(){return(h3=d.stackSave=d.asm.stackSave).apply(null,arguments)},Uf=d.stackRestore=function(){return(Uf=d.stackRestore=d.asm.stackRestore).apply(null,arguments)},Lu=d.stackAlloc=function(){return(Lu=d.stackAlloc=d.asm.stackAlloc).apply(null,arguments)},M_=d.dynCall_iijjiiii=function(){return(M_=d.dynCall_iijjiiii=d.asm.dynCall_iijjiiii).apply(null,arguments)},z_=d.dynCall_jiji=function(){return(z_=d.dynCall_jiji=d.asm.dynCall_jiji).apply(null,arguments)},Cv=d.__emscripten_allow_main_runtime_queued_calls=21672;d.cwrap=qn,d.keepRuntimeAlive=Li,d.PThread=We,d.PThread=We,d.wasmMemory=Oe,d.ExitStatus=tp;var Gf;function tp(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}kr=function N(){Gf||f3(),Gf||(kr=N)};function f3(N){if(N=N||y,no>0)return;if(k){h(d),jd(),postMessage({cmd:"loaded"});return}if(Zn(),no>0)return;function F(){Gf||(Gf=!0,d.calledRun=!0,!kt&&(jd(),h(d),d.onRuntimeInitialized&&d.onRuntimeInitialized(),M1()))}d.setStatus?(d.setStatus("Running..."),setTimeout(function(){setTimeout(function(){d.setStatus("")},1),F()},1)):F()}d.run=f3;function L_(N,F){if(jn=N,!F&&k)throw Ef(N),"unwind";Li()||O1(),B_(N)}function B_(N){jn=N,Li()||(We.terminateAllThreads(),d.onExit&&d.onExit(N),kt=!0),A(N,new tp(N))}if(d.preInit)for(typeof d.preInit=="function"&&(d.preInit=[d.preInit]);d.preInit.length>0;)d.preInit.pop()();f3();var Hf;m&&(Hf={uncaughtException:process.listeners("uncaughtException").filter(function(N){return!m.uncaughtException.indexOf(N)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(N){return!m.unhandledRejection.indexOf(N)>-1})});var jf;if(typeof WasmBackendModule!="undefined")jf=WasmBackendModule;else if(typeof r!="undefined")jf=r;else throw new Error("Could not find wasm module in post.js");if(Hf){var W_=jf._dispose;jf._dispose=function(){W_(),Hf.uncaughtException.forEach(function(N){process.removeListener("uncaughtException",N)}),Hf.unhandledRejection.forEach(function(N){process.removeListener("unhandledRejection",N)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),mD=ln({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.worker.js"(e,t){t.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
|
|
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`}}),gD=ln({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=(()=>{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(q,te){o=q,i=te});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},a),c=[],p="./this.program",d=(q,te)=>{throw te},h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function y(q){return a.locateFile?a.locateFile(q,g):g+q}var x,A,b,w;function I(q){if(q instanceof Qd)return;R("exiting due to exception: "+q)}var k,E,_;m?(f?g=bm().dirname(g)+"/":g=__dirname+"/",_=()=>{E||(k=Fy(),E=bm())},x=function(te,be){return _(),te=E.normalize(te),k.readFileSync(te,be?void 0:"utf8")},b=q=>{var te=x(q,!0);return te.buffer||(te=new Uint8Array(te)),te},A=(q,te,be)=>{_(),q=E.normalize(q),k.readFile(q,function($e,ht){$e?be($e):te(ht.buffer)})},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(q){if(!(q instanceof Qd))throw q}),process.on("unhandledRejection",function(q){throw q}),d=(q,te)=>{if(Hd())throw process.exitCode=q,te;I(te),process.exit(q)},a.inspect=function(){return"[Emscripten Module object]"}):(h||f)&&(f?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),s&&(g=s),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",x=q=>{var te=new XMLHttpRequest;return te.open("GET",q,!1),te.send(null),te.responseText},f&&(b=q=>{var te=new XMLHttpRequest;return te.open("GET",q,!1),te.responseType="arraybuffer",te.send(null),new Uint8Array(te.response)}),A=(q,te,be)=>{var $e=new XMLHttpRequest;$e.open("GET",q,!0),$e.responseType="arraybuffer",$e.onload=()=>{if($e.status==200||$e.status==0&&$e.response){te($e.response);return}be()},$e.onerror=be,$e.send(null)},w=q=>document.title=q);var D=a.print||console.log.bind(console),R=a.printErr||console.warn.bind(console);Object.assign(a,u),u=null,a.arguments&&(c=a.arguments),a.thisProgram&&(p=a.thisProgram),a.quit&&(d=a.quit);var P=4;function T(q){T.shown||(T.shown={}),T.shown[q]||(T.shown[q]=1,R(q))}function M(q,te){if(typeof WebAssembly.Function=="function"){for(var be={i:"i32",j:"i64",f:"f32",d:"f64"},$e={parameters:[],results:te[0]=="v"?[]:[be[te[0]]]},ht=1;ht<te.length;++ht)$e.parameters.push(be[te[ht]]);return new WebAssembly.Function($e,q)}var mt=[1,0,1,96],tt=te.slice(0,1),Ke=te.slice(1),en={i:127,j:126,f:125,d:124};mt.push(Ke.length);for(var ht=0;ht<Ke.length;++ht)mt.push(en[Ke[ht]]);tt=="v"?mt.push(0):mt=mt.concat([1,en[tt]]),mt[1]=mt.length-2;var Ir=new Uint8Array([0,97,115,109,1,0,0,0].concat(mt,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),Sr=new WebAssembly.Module(Ir),zu=new WebAssembly.Instance(Sr,{e:{f:q}}),Ui=zu.exports.f;return Ui}var W=[],G;function X(){if(W.length)return W.pop();try{eo.grow(1)}catch(q){throw q instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":q}return eo.length-1}function K(q,te){for(var be=q;be<q+te;be++){var $e=Xd(be);$e&&G.set($e,be)}}var Y=0,re=q=>{Y=q},ee;a.wasmBinary&&(ee=a.wasmBinary);var ie=a.noExitRuntime||!0;typeof WebAssembly!="object"&&zi("no native wasm support detected");var ne,pe=!1,ce;function Ae(q,te){q||zi(te)}function oe(q){var te=a["_"+q];return te}function Re(q,te,be,$e,ht){var mt={string:function(Jn){var so=0;if(Jn!=null&&Jn!==0){var Wf=(Jn.length<<2)+1;so=Jd(Wf),yt(Jn,so,Wf)}return so},array:function(Jn){var so=Jd(Jn.length);return kt(Jn,so),so}};function tt(Jn){return te==="string"?gt(Jn):te==="boolean"?Boolean(Jn):Jn}var Ke=oe(q),en=[],Ir=0;if($e)for(var Sr=0;Sr<$e.length;Sr++){var zu=mt[be[Sr]];zu?(Ir===0&&(Ir=Lf()),en[Sr]=zu($e[Sr])):en[Sr]=$e[Sr]}var Ui=Ke.apply(null,en);function u3(Jn){return Ir!==0&&Bf(Ir),tt(Jn)}return Ui=u3(Ui),Ui}function _e(q,te,be,$e){be=be||[];var ht=be.every(function(tt){return tt==="number"}),mt=te!=="string";return mt&&ht&&!$e?oe(q):function(){return Re(q,te,be,arguments,$e)}}var Ue=1,Me=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ot(q,te,be){for(var $e=te+be,ht=te;q[ht]&&!(ht>=$e);)++ht;if(ht-te>16&&q.subarray&&Me)return Me.decode(q.subarray(te,ht));for(var mt="";te<ht;){var tt=q[te++];if(!(tt&128)){mt+=String.fromCharCode(tt);continue}var Ke=q[te++]&63;if((tt&224)==192){mt+=String.fromCharCode((tt&31)<<6|Ke);continue}var en=q[te++]&63;if((tt&240)==224?tt=(tt&15)<<12|Ke<<6|en:tt=(tt&7)<<18|Ke<<12|en<<6|q[te++]&63,tt<65536)mt+=String.fromCharCode(tt);else{var Ir=tt-65536;mt+=String.fromCharCode(55296|Ir>>10,56320|Ir&1023)}}return mt}function gt(q,te){return q?ot(qn,q,te):""}function pt(q,te,be,$e){if(!($e>0))return 0;for(var ht=be,mt=be+$e-1,tt=0;tt<q.length;++tt){var Ke=q.charCodeAt(tt);if(Ke>=55296&&Ke<=57343){var en=q.charCodeAt(++tt);Ke=65536+((Ke&1023)<<10)|en&1023}if(Ke<=127){if(be>=mt)break;te[be++]=Ke}else if(Ke<=2047){if(be+1>=mt)break;te[be++]=192|Ke>>6,te[be++]=128|Ke&63}else if(Ke<=65535){if(be+2>=mt)break;te[be++]=224|Ke>>12,te[be++]=128|Ke>>6&63,te[be++]=128|Ke&63}else{if(be+3>=mt)break;te[be++]=240|Ke>>18,te[be++]=128|Ke>>12&63,te[be++]=128|Ke>>6&63,te[be++]=128|Ke&63}}return te[be]=0,be-ht}function yt(q,te,be){return pt(q,qn,te,be)}function Oe(q){for(var te=0,be=0;be<q.length;++be){var $e=q.charCodeAt(be);$e>=55296&&$e<=57343&&($e=65536+(($e&1023)<<10)|q.charCodeAt(++be)&1023),$e<=127?++te:$e<=2047?te+=2:$e<=65535?te+=3:te+=4}return te}var Tt=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function kt(q,te){dn.set(q,te)}function jn(q,te,be){for(var $e=0;$e<q.length;++$e)dn[te++>>0]=q.charCodeAt($e);be||(dn[te>>0]=0)}function Qt(q,te){return q%te>0&&(q+=te-q%te),q}var vs,dn,qn,ws,ks,Fn,Ws,Xn,ca;function da(q){vs=q,a.HEAP8=dn=new Int8Array(q),a.HEAP16=ws=new Int16Array(q),a.HEAP32=Fn=new Int32Array(q),a.HEAPU8=qn=new Uint8Array(q),a.HEAPU16=ks=new Uint16Array(q),a.HEAPU32=Ws=new Uint32Array(q),a.HEAPF32=Xn=new Float32Array(q),a.HEAPF64=ca=new Float64Array(q)}var Tu=a.INITIAL_MEMORY||16777216,eo,pa=[],Gd=[],Nu=[],Kn=!1,ff=!1,mf=0;function Hd(){return ie||mf>0}function gf(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)xf(a.preRun.shift());qd(pa)}function yf(){Kn=!0,qd(Gd)}function iv(){ff=!0}function Af(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)bf(a.postRun.shift());qd(Nu)}function xf(q){pa.unshift(q)}function wr(q){Gd.unshift(q)}function bf(q){Nu.unshift(q)}var Vs=0,Eu=null,to=null;function P1(q){Vs++,a.monitorRunDependencies&&a.monitorRunDependencies(Vs)}function vf(q){if(Vs--,a.monitorRunDependencies&&a.monitorRunDependencies(Vs),Vs==0&&(Eu!==null&&(clearInterval(Eu),Eu=null),to)){var te=to;to=null,te()}}a.preloadedImages={},a.preloadedAudios={};function zi(q){a.onAbort&&a.onAbort(q),q="Aborted("+q+")",R(q),pe=!0,ce=1,q+=". Build with -s ASSERTIONS=1 for more info.";var te=new WebAssembly.RuntimeError(q);throw i(te),te}var F1="data:application/octet-stream;base64,";function wf(q){return q.startsWith(F1)}function Li(q){return q.startsWith("file://")}var Zn;Zn="tfjs-backend-wasm.wasm",wf(Zn)||(Zn=y(Zn));function jd(q){try{if(q==Zn&&ee)return new Uint8Array(ee);if(b)return b(q);throw"both async and sync fetching of the wasm failed"}catch(te){zi(te)}}function O1(){if(!ee&&(h||f)){if(typeof fetch=="function"&&!Li(Zn))return fetch(Zn,{credentials:"same-origin"}).then(function(q){if(!q.ok)throw"failed to load wasm binary file at '"+Zn+"'";return q.arrayBuffer()}).catch(function(){return jd(Zn)});if(A)return new Promise(function(q,te){A(Zn,function(be){q(new Uint8Array(be))},te)})}return Promise.resolve().then(function(){return jd(Zn)})}function M1(){var q={env:Du,wasi_snapshot_preview1:Du};function te(tt,Ke){var en=tt.exports;a.asm=en,ne=a.asm.memory,da(ne.buffer),eo=a.asm.__indirect_function_table,wr(a.asm.__wasm_call_ctors),vf("wasm-instantiate")}P1("wasm-instantiate");function be(tt){te(tt.instance)}function $e(tt){return O1().then(function(Ke){return WebAssembly.instantiate(Ke,q)}).then(function(Ke){return Ke}).then(tt,function(Ke){R("failed to asynchronously prepare wasm: "+Ke),zi(Ke)})}function ht(){return!ee&&typeof WebAssembly.instantiateStreaming=="function"&&!wf(Zn)&&!Li(Zn)&&typeof fetch=="function"?fetch(Zn,{credentials:"same-origin"}).then(function(tt){var Ke=WebAssembly.instantiateStreaming(tt,q);return Ke.then(be,function(en){return R("wasm streaming compile failed: "+en),R("falling back to ArrayBuffer instantiation"),$e(be)})}):$e(be)}if(a.instantiateWasm)try{var mt=a.instantiateWasm(q,te);return mt}catch(tt){return R("Module.instantiateWasm callback failed with error: "+tt),!1}return ht().catch(i),{}}var lv,uv;function qd(q){for(;q.length>0;){var te=q.shift();if(typeof te=="function"){te(a);continue}var be=te.func;typeof be=="number"?te.arg===void 0?Xd(be)():Xd(be)(te.arg):be(te.arg===void 0?null:te.arg)}}function no(q){return q}function kf(q){var te=/\b_Z[\w\d_]+/g;return q.replace(te,function(be){var $e=be;return be===$e?be:$e+" ["+be+"]"})}var kr=[];function Xd(q){var te=kr[q];return te||(q>=kr.length&&(kr.length=q+1),kr[q]=te=eo.get(q)),te}function cv(){var q=new Error;if(!q.stack){try{throw new Error}catch(te){q=te}if(!q.stack)return"(no stack trace available)"}return q.stack.toString()}function Ru(q,te){eo.set(q,te),kr[q]=te}function z1(){zi("")}function Kd(){return 2147483648}function If(q,te,be){qn.copyWithin(q,te,te+be)}function Yn(q){try{return ne.grow(q-vs.byteLength+65535>>>16),da(ne.buffer),1}catch(te){}}function Sf(q){var te=qn.length;q=q>>>0;var be=Kd();if(q>be)return!1;for(var $e=1;$e<=4;$e*=2){var ht=te*(1+.2/$e);ht=Math.min(ht,q+100663296);var mt=Math.min(be,Qt(Math.max(q,ht),65536)),tt=Yn(mt);if(tt)return!0}return!1}var _u={mappings:{},buffers:[null,[],[]],printChar:function(q,te){var be=_u.buffers[q];te===0||te===10?((q===1?D:R)(ot(be,0)),be.length=0):be.push(te)},varargs:void 0,get:function(){_u.varargs+=4;var q=Fn[_u.varargs-4>>2];return q},getStr:function(q){var te=gt(q);return te},get64:function(q,te){return q}};function L1(q){return 0}function dv(q,te,be,$e,ht){}function pv(q,te,be,$e){for(var ht=0,mt=0;mt<be;mt++){var tt=Fn[te>>2],Ke=Fn[te+4>>2];te+=8;for(var en=0;en<Ke;en++)_u.printChar(q,qn[tt+en]);ht+=Ke}return Fn[$e>>2]=ht,0}function B1(q){re(q)}var Cf=!1,Du={abort:z1,emscripten_get_heap_max:Kd,emscripten_memcpy_big:If,emscripten_resize_heap:Sf,fd_close:L1,fd_seek:dv,fd_write:pv,setTempRet0:B1},ZR=M1(),hv=a.___wasm_call_ctors=function(){return(hv=a.___wasm_call_ctors=a.asm.__wasm_call_ctors).apply(null,arguments)},W1=a._init=function(){return(W1=a._init=a.asm.init).apply(null,arguments)},V1=a._init_with_threads_count=function(){return(V1=a._init_with_threads_count=a.asm.init_with_threads_count).apply(null,arguments)},Tf=a._get_threads_count=function(){return(Tf=a._get_threads_count=a.asm.get_threads_count).apply(null,arguments)},Nf=a._register_tensor=function(){return(Nf=a._register_tensor=a.asm.register_tensor).apply(null,arguments)},U1=a._dispose_data=function(){return(U1=a._dispose_data=a.asm.dispose_data).apply(null,arguments)},We=a._dispose=function(){return(We=a._dispose=a.asm.dispose).apply(null,arguments)},G1=a._Abs=function(){return(G1=a._Abs=a.asm.Abs).apply(null,arguments)},Ef=a._Add=function(){return(Ef=a._Add=a.asm.Add).apply(null,arguments)},Bi=a._AddN=function(){return(Bi=a._AddN=a.asm.AddN).apply(null,arguments)},$u=a._All=function(){return($u=a._All=a.asm.All).apply(null,arguments)},H1=a._Any=function(){return(H1=a._Any=a.asm.Any).apply(null,arguments)},fv=a._ArgMax=function(){return(fv=a._ArgMax=a.asm.ArgMax).apply(null,arguments)},j1=a._AvgPool=function(){return(j1=a._AvgPool=a.asm.AvgPool).apply(null,arguments)},mv=a._BatchMatMul=function(){return(mv=a._BatchMatMul=a.asm.BatchMatMul).apply(null,arguments)},Wi=a._Ceil=function(){return(Wi=a._Ceil=a.asm.Ceil).apply(null,arguments)},q1=a._ClipByValue=function(){return(q1=a._ClipByValue=a.asm.ClipByValue).apply(null,arguments)},X1=a._Conv2D=function(){return(X1=a._Conv2D=a.asm.Conv2D).apply(null,arguments)},K1=a._Conv2DBackpropInput=function(){return(K1=a._Conv2DBackpropInput=a.asm.Conv2DBackpropInput).apply(null,arguments)},Z1=a._Cos=function(){return(Z1=a._Cos=a.asm.Cos).apply(null,arguments)},Y1=a._Cosh=function(){return(Y1=a._Cosh=a.asm.Cosh).apply(null,arguments)},J1=a._CropAndResize=function(){return(J1=a._CropAndResize=a.asm.CropAndResize).apply(null,arguments)},Rf=a._Cumprod=function(){return(Rf=a._Cumprod=a.asm.Cumprod).apply(null,arguments)},Q1=a._Cumsum=function(){return(Q1=a._Cumsum=a.asm.Cumsum).apply(null,arguments)},eg=a._DepthToSpace=function(){return(eg=a._DepthToSpace=a.asm.DepthToSpace).apply(null,arguments)},tg=a._DepthwiseConv2dNative=function(){return(tg=a._DepthwiseConv2dNative=a.asm.DepthwiseConv2dNative).apply(null,arguments)},ng=a._Elu=function(){return(ng=a._Elu=a.asm.Elu).apply(null,arguments)},sg=a._Equal=function(){return(sg=a._Equal=a.asm.Equal).apply(null,arguments)},_f=a._Exp=function(){return(_f=a._Exp=a.asm.Exp).apply(null,arguments)},rg=a._FlipLeftRight=function(){return(rg=a._FlipLeftRight=a.asm.FlipLeftRight).apply(null,arguments)},ag=a._Floor=function(){return(ag=a._Floor=a.asm.Floor).apply(null,arguments)},Vi=a._FloorDiv=function(){return(Vi=a._FloorDiv=a.asm.FloorDiv).apply(null,arguments)},Zd=a._FusedBatchNorm=function(){return(Zd=a._FusedBatchNorm=a.asm.FusedBatchNorm).apply(null,arguments)},og=a._FusedConv2D=function(){return(og=a._FusedConv2D=a.asm.FusedConv2D).apply(null,arguments)},ig=a._FusedDepthwiseConv2D=function(){return(ig=a._FusedDepthwiseConv2D=a.asm.FusedDepthwiseConv2D).apply(null,arguments)},lg=a._Gather=function(){return(lg=a._Gather=a.asm.Gather).apply(null,arguments)},Je=a._GatherNd=function(){return(Je=a._GatherNd=a.asm.GatherNd).apply(null,arguments)},ug=a._Greater=function(){return(ug=a._Greater=a.asm.Greater).apply(null,arguments)},cg=a._GreaterEqual=function(){return(cg=a._GreaterEqual=a.asm.GreaterEqual).apply(null,arguments)},dg=a._LeakyRelu=function(){return(dg=a._LeakyRelu=a.asm.LeakyRelu).apply(null,arguments)},pg=a._Less=function(){return(pg=a._Less=a.asm.Less).apply(null,arguments)},hg=a._LessEqual=function(){return(hg=a._LessEqual=a.asm.LessEqual).apply(null,arguments)},fg=a._Log=function(){return(fg=a._Log=a.asm.Log).apply(null,arguments)},Yd=a._LogicalAnd=function(){return(Yd=a._LogicalAnd=a.asm.LogicalAnd).apply(null,arguments)},Df=a._LogicalNot=function(){return(Df=a._LogicalNot=a.asm.LogicalNot).apply(null,arguments)},$f=a._LogicalOr=function(){return($f=a._LogicalOr=a.asm.LogicalOr).apply(null,arguments)},mg=a._LogicalXor=function(){return(mg=a._LogicalXor=a.asm.LogicalXor).apply(null,arguments)},gg=a._Max=function(){return(gg=a._Max=a.asm.Max).apply(null,arguments)},yg=a._MaxPool=function(){return(yg=a._MaxPool=a.asm.MaxPool).apply(null,arguments)},Ag=a._Maximum=function(){return(Ag=a._Maximum=a.asm.Maximum).apply(null,arguments)},xg=a._Mean=function(){return(xg=a._Mean=a.asm.Mean).apply(null,arguments)},bg=a._Min=function(){return(bg=a._Min=a.asm.Min).apply(null,arguments)},zt=a._Minimum=function(){return(zt=a._Minimum=a.asm.Minimum).apply(null,arguments)},vg=a._MirrorPad=function(){return(vg=a._MirrorPad=a.asm.MirrorPad).apply(null,arguments)},wg=a._Multiply=function(){return(wg=a._Multiply=a.asm.Multiply).apply(null,arguments)},kg=a._Neg=function(){return(kg=a._Neg=a.asm.Neg).apply(null,arguments)},Pu=a._NonMaxSuppressionV3=function(){return(Pu=a._NonMaxSuppressionV3=a.asm.NonMaxSuppressionV3).apply(null,arguments)},Pf=a._NonMaxSuppressionV4=function(){return(Pf=a._NonMaxSuppressionV4=a.asm.NonMaxSuppressionV4).apply(null,arguments)},Ff=a._NonMaxSuppressionV5=function(){return(Ff=a._NonMaxSuppressionV5=a.asm.NonMaxSuppressionV5).apply(null,arguments)},Of=a._NotEqual=function(){return(Of=a._NotEqual=a.asm.NotEqual).apply(null,arguments)},Ig=a._OneHot=function(){return(Ig=a._OneHot=a.asm.OneHot).apply(null,arguments)},Mf=a._PadV2=function(){return(Mf=a._PadV2=a.asm.PadV2).apply(null,arguments)},Sg=a._Pow=function(){return(Sg=a._Pow=a.asm.Pow).apply(null,arguments)},gv=a._Prelu=function(){return(gv=a._Prelu=a.asm.Prelu).apply(null,arguments)},zf=a._Prod=function(){return(zf=a._Prod=a.asm.Prod).apply(null,arguments)},yv=a._RealDiv=function(){return(yv=a._RealDiv=a.asm.RealDiv).apply(null,arguments)},Cg=a._Relu=function(){return(Cg=a._Relu=a.asm.Relu).apply(null,arguments)},Tg=a._Relu6=function(){return(Tg=a._Relu6=a.asm.Relu6).apply(null,arguments)},Ng=a._ResizeBilinear=function(){return(Ng=a._ResizeBilinear=a.asm.ResizeBilinear).apply(null,arguments)},Eg=a._ResizeNearestNeighbor=function(){return(Eg=a._ResizeNearestNeighbor=a.asm.ResizeNearestNeighbor).apply(null,arguments)},Rg=a._Reverse=function(){return(Rg=a._Reverse=a.asm.Reverse).apply(null,arguments)},_g=a._RotateWithOffset=function(){return(_g=a._RotateWithOffset=a.asm.RotateWithOffset).apply(null,arguments)},Dg=a._Round=function(){return(Dg=a._Round=a.asm.Round).apply(null,arguments)},$g=a._Rsqrt=function(){return($g=a._Rsqrt=a.asm.Rsqrt).apply(null,arguments)},Pg=a._ScatterNd=function(){return(Pg=a._ScatterNd=a.asm.ScatterNd).apply(null,arguments)},Fg=a._SelectV2=function(){return(Fg=a._SelectV2=a.asm.SelectV2).apply(null,arguments)},Og=a._Sigmoid=function(){return(Og=a._Sigmoid=a.asm.Sigmoid).apply(null,arguments)},Mg=a._Sin=function(){return(Mg=a._Sin=a.asm.Sin).apply(null,arguments)},zg=a._Softmax=function(){return(zg=a._Softmax=a.asm.Softmax).apply(null,arguments)},Lg=a._SparseFillEmptyRows=function(){return(Lg=a._SparseFillEmptyRows=a.asm.SparseFillEmptyRows).apply(null,arguments)},Bg=a._SparseReshape=function(){return(Bg=a._SparseReshape=a.asm.SparseReshape).apply(null,arguments)},Wg=a._SparseSegmentReduction=function(){return(Wg=a._SparseSegmentReduction=a.asm.SparseSegmentReduction).apply(null,arguments)},Vg=a._Sqrt=function(){return(Vg=a._Sqrt=a.asm.Sqrt).apply(null,arguments)},Ug=a._Square=function(){return(Ug=a._Square=a.asm.Square).apply(null,arguments)},Gg=a._SquaredDifference=function(){return(Gg=a._SquaredDifference=a.asm.SquaredDifference).apply(null,arguments)},Hg=a._Step=function(){return(Hg=a._Step=a.asm.Step).apply(null,arguments)},jg=a._StridedSlice=function(){return(jg=a._StridedSlice=a.asm.StridedSlice).apply(null,arguments)},qg=a._Sub=function(){return(qg=a._Sub=a.asm.Sub).apply(null,arguments)},Xg=a._Sum=function(){return(Xg=a._Sum=a.asm.Sum).apply(null,arguments)},Kg=a._Tan=function(){return(Kg=a._Tan=a.asm.Tan).apply(null,arguments)},Zg=a._Tanh=function(){return(Zg=a._Tanh=a.asm.Tanh).apply(null,arguments)},Yg=a._Tile=function(){return(Yg=a._Tile=a.asm.Tile).apply(null,arguments)},Jg=a._TopK=function(){return(Jg=a._TopK=a.asm.TopK).apply(null,arguments)},Qg=a._Transform=function(){return(Qg=a._Transform=a.asm.Transform).apply(null,arguments)},e3=a._Transpose=function(){return(e3=a._Transpose=a.asm.Transpose).apply(null,arguments)},t3=a.__FusedMatMul=function(){return(t3=a.__FusedMatMul=a.asm._FusedMatMul).apply(null,arguments)},n3=a._malloc=function(){return(n3=a._malloc=a.asm.malloc).apply(null,arguments)},s3=a._free=function(){return(s3=a._free=a.asm.free).apply(null,arguments)},r3=a.___errno_location=function(){return(r3=a.___errno_location=a.asm.__errno_location).apply(null,arguments)},a3=a._emscripten_main_thread_process_queued_calls=function(){return(a3=a._emscripten_main_thread_process_queued_calls=a.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},Lf=a.stackSave=function(){return(Lf=a.stackSave=a.asm.stackSave).apply(null,arguments)},Bf=a.stackRestore=function(){return(Bf=a.stackRestore=a.asm.stackRestore).apply(null,arguments)},Jd=a.stackAlloc=function(){return(Jd=a.stackAlloc=a.asm.stackAlloc).apply(null,arguments)},o3=a.dynCall_iijjiiii=function(){return(o3=a.dynCall_iijjiiii=a.asm.dynCall_iijjiiii).apply(null,arguments)},i3=a.dynCall_jiji=function(){return(i3=a.dynCall_jiji=a.asm.dynCall_jiji).apply(null,arguments)};a.cwrap=_e;var Fu;function Qd(q){this.name="ExitStatus",this.message="Program terminated with exit("+q+")",this.status=q}to=function q(){Fu||ep(),Fu||(to=q)};function ep(q){if(q=q||c,Vs>0||(gf(),Vs>0))return;function te(){Fu||(Fu=!0,a.calledRun=!0,!pe&&(yf(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),Af()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),te()},1)):te()}a.run=ep;function Av(q){ce=q,Hd()||(a.onExit&&a.onExit(q),pe=!0),d(q,new Qd(q))}if(a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();ep();var Ou;l&&(Ou={uncaughtException:process.listeners("uncaughtException").filter(function(q){return!l.uncaughtException.indexOf(q)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(q){return!l.unhandledRejection.indexOf(q)>-1})});var Mu;if(typeof r!="undefined")Mu=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")Mu=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Ou){var l3=Mu._dispose;Mu._dispose=function(){l3(),Ou.uncaughtException.forEach(function(q){process.removeListener("uncaughtException",q)}),Ou.unhandledRejection.forEach(function(q){process.removeListener("unhandledRejection",q)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),yD=1e-7,AD=1e-4,jp=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},yc=class{refCount(e){return Us("refCount")}incRef(e){return Us("incRef")}timerAvailable(){return!0}time(e){return Us("time")}read(e){return Us("read")}readSync(e){return Us("readSync")}readToGPU(e,t){return Us("readToGPU")}numDataIds(){return Us("numDataIds")}disposeData(e,t){return Us("disposeData")}write(e,t,n){return Us("write")}move(e,t,n,s,r){return Us("move")}memory(){return Us("memory")}floatPrecision(){return Us("floatPrecision")}epsilon(){return this.floatPrecision()===32?yD:AD}dispose(){return Us("dispose")}};function Us(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function vw(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,vm(e,t,n)}function xD(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,vm(e,n,s),vm(t,n,s)}function Tp(e,t,n){return Math.max(e,Math.min(t,n))}function bD(e){return e%2===0?e:e+1}function vm(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function vD(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function wD(e,t){let n=Math.random();return t*n+(1-n)*e}function kD(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function O(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function rs(e,t,n=""){O(Eo(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function xl(e){O(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function il(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||On(e)&&!n)for(let s=0;s<e.length;++s)il(e[s],t,n);else t.push(e);return t}function Et(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function ID(e){return e.length===0}function Eo(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function ec(e){return e%1===0}function SD(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function CD(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function TD(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return vw(t),t}function wp(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function ND(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function ED(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function dr(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),O(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),O(e.every(s=>ec(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function ww(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:dr(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function kw(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Iw(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Sw(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function Cw(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function RD(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function On(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function E3(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function Tw(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function lo(e){return typeof e=="string"||e instanceof String}function Nw(e){return typeof e=="boolean"}function Ew(e){return typeof e=="number"}function e0(e){return Array.isArray(e)?e0(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":Ew(e)?"float32":lo(e)?"string":Nw(e)?"bool":"float32"}function go(e){return!!(e&&e.constructor&&e.call&&e.apply)}function wm(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function Ac(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function Rw(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,u)=>l*u)*(s?2:1);for(let l=0;l<a;l++)r[l]=Rw(e+l*i,o,n,s)}return r}function Ku(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return Rw(0,e,t,n)}function Oy(e,t){let n=t0(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function t0(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function _D(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return Ku(e,new Float32Array(n));if(t==="int32")return Ku(e,new Int32Array(n));if(t==="bool")return Ku(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function My(e){e.forEach(t=>{O(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function DD(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function $D(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function zy(e){return e&&e.then&&typeof e.then=="function"}var Rv="tfjsflags",_w=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=PD,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(H().getBool("IS_TEST")||H().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];H().getBool("IS_TEST")||H().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(zy(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);Rv in e&&e[Rv].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=OD(s,r)})}};function PD(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(FD(t,s[0],s[1]),s.join("="))),t}function FD(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function OD(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function H(){return Ly}var Ly=null;function MD(e){Ly=e}var g3;function Dw(){if(g3==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");g3=e}return g3}function zD(){let e=Dw();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function By(e,t){let n=zD();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var bl="Abs",xc="Acos",bc="Acosh",na="Add",Ro="AddN",vc="All",wc="Any",_o="ArgMax",kc="ArgMin",Ic="Asin",Sc="Asinh",Cc="Atan",Tc="Atanh",Nc="Atan2",Do="AvgPool",n0="AvgPoolGrad",qp="AvgPool3D",s0="AvgPool3DGrad",$o="BatchMatMul",vl="BatchToSpaceND",r0="Bincount",$w="BroadcastTo",a0="BroadcastArgs",Po="Cast",Sa="Ceil",Ca="ClipByValue",Xp="Complex",Kp="ComplexAbs",wl="Concat",Fo="Conv2D",o0="Conv2DBackpropFilter",Oo="Conv2DBackpropInput",Zp="Conv3D",i0="Conv3DBackpropFilterV2",l0="Conv3DBackpropInputV2",Mo="Cos",zo="Cosh",kl="Cumprod",Lo="Cumsum",Il="CropAndResize",u0="DenseBincount",Sl="DepthToSpace",Bo="DepthwiseConv2dNative",c0="DepthwiseConv2dNativeBackpropFilter",d0="DepthwiseConv2dNativeBackpropInput",p0="Diag",Yp="Dilation2D",km="Dilation2DBackpropInput",Im="Dilation2DBackpropFilter",Wo="RealDiv",Jp="Einsum",Vo="Elu",h0="EluGrad",Ec="Erf",Uo="Equal",Ta="Exp",Cl="ExpandDims",Go="Expm1",f0="FFT",Rc="Fill",Tl="FlipLeftRight",Na="Floor",Ho="FloorDiv",jo="FusedBatchNorm",Nl="GatherV2",El="GatherNd",qo="Greater",Ea="GreaterEqual",Xo="Identity",m0="IFFT",Qp="Imag",_c="IsFinite",Dc="IsInf",$c="IsNan",Ko="LeakyRelu",Zo="Less",Yo="LessEqual",g0="LinSpace",Ra="Log",Pc="Log1p",Rl="LogicalAnd",_l="LogicalNot",Fc="LogicalOr",Pw="LogicalXor",Fw="LogSoftmax",LD="LowerBound",eh="LRN",y0="LRNGrad",Jo="Max",_a="Maximum",Qo="MaxPool",A0="MaxPoolGrad",th="MaxPool3D",x0="MaxPool3DGrad",b0="MaxPoolWithArgmax",ei="Mean",ti="Min",Da="Minimum",ni="MirrorPad",Oc="Mod",v0="Multinomial",$a="Multiply",Dl="Neg",si="NotEqual",$l="NonMaxSuppressionV3",Mc="NonMaxSuppressionV4",Pl="NonMaxSuppressionV5",Fl="OnesLike",Ol="OneHot",Ml="Pack",ri="PadV2",BD="Pool",ai="Pow",oi="Prelu",ii="Prod",w0="RaggedTensorToTensor",zc="Range",nh="Real",Lc="Reciprocal",li="Relu",zl="Reshape",ui="ResizeNearestNeighbor",k0="ResizeNearestNeighborGrad",ci="ResizeBilinear",I0="ResizeBilinearGrad",di="Relu6",Ll="Reverse",Bl="Round",Pa="Rsqrt",Wl="ScatterNd",S0="SearchSorted",Vl="Select",Bc="Selu",Ul="Slice",pi="Sin",Gl="Sinh",Wc="Sign",Fa="Sigmoid",Vc="Softplus",Oa="Sqrt",hi="Sum",Hl="SpaceToBatchND",jl="SplitV",fi="Softmax",sh="SparseFillEmptyRows",Uc="SparseReshape",rh="SparseSegmentMean",ah="SparseSegmentSum",oh="SparseToDense",Ma="SquaredDifference",Gc="Square",ql="StridedSlice",Hc="StringNGrams",ih="StringSplit",lh="StringToHashBucketFast",za="Sub",Xl="Tan",mi="Tanh",La="Tile",Kl="TopK",Zl="Transform",Zr="Transpose",C0="Unique",Yl="Unpack",uh="UnsortedSegmentSum",WD="UpperBound",Jl="ZerosLike",gi="Step",Np="FromPixels",Ql="RotateWithOffset",yo="_FusedMatMul",Ao="FusedConv2D",xo="FusedDepthwiseConv2D";function io(...e){H().getBool("IS_TEST")||H().getBool("PROD")||console.warn(...e)}function VD(...e){H().getBool("IS_TEST")||H().getBool("PROD")||console.log(...e)}var tc=By("kernelRegistry",()=>new Map),Ep=By("gradRegistry",()=>new Map);function Sm(e,t){let n=Wy(e,t);return tc.get(n)}function R3(e){return Ep.get(e)}function Jr(e){let t=tc.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function pr(e){let{kernelName:t,backendName:n}=e,s=Wy(t,n);tc.has(s)&&io(`The kernel '${t}' for backend '${n}' is already registered`),tc.set(s,e)}function Ow(e){let{kernelName:t}=e;Ep.has(t)&&H().getBool("DEBUG")&&io(`Overriding the gradient for '${t}'`),Ep.set(t,e)}function UD(e,t){let n=Wy(e,t);if(!tc.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);tc.delete(n)}function GD(e){if(!Ep.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Ep.delete(e)}function HD(e,t){Jr(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});pr(r)})}function Wy(e,t){return`${t}_${e}`}var v={};Ve(v,{arraysEqual:()=>Eo,assert:()=>O,assertNonNegativeIntegerDimensions:()=>My,assertNonNull:()=>xl,assertShapesMatch:()=>rs,bytesFromStringArray:()=>Tw,bytesPerElement:()=>E3,checkConversionForErrors:()=>Sw,clamp:()=>Tp,computeStrides:()=>Ac,createScalarValue:()=>YD,createShuffledIndices:()=>TD,decodeString:()=>Cm,distSquared:()=>kD,encodeString:()=>dh,fetch:()=>QD,fingerPrint64:()=>ZD,flatten:()=>il,getArrayFromDType:()=>Iw,getTypedArrayFromDType:()=>kw,hasEncodingLoss:()=>RD,hexToLong:()=>ch,indexToLoc:()=>$D,inferDtype:()=>e0,inferFromImplicitShape:()=>ED,isBoolean:()=>Nw,isFunction:()=>go,isInt:()=>ec,isNumber:()=>Ew,isPromise:()=>zy,isScalarShape:()=>ID,isString:()=>lo,isTypedArray:()=>On,isValidDtype:()=>Cw,locToIndex:()=>DD,makeOnesTypedArray:()=>Oy,makeZerosNestedTypedArray:()=>_D,makeZerosTypedArray:()=>t0,nearestDivisor:()=>wm,nearestLargerEven:()=>bD,now:()=>Rp,parseAxisParam:()=>dr,randUniform:()=>wD,repeatedTry:()=>ND,rightPad:()=>wp,shuffle:()=>vw,shuffleCombo:()=>xD,sizeFromShape:()=>Et,sizeToSquarishShape:()=>CD,squeezeShape:()=>ww,sum:()=>vD,swap:()=>vm,tanh:()=>SD,toNestedArray:()=>Ku,toTypedArray:()=>T0});var _v=No(eD()),Ki=_v.default||_v;function ch(e){return Ki.fromString(e,!0,16)}var Mw=ch("c3a5c85c97cb3127"),ji=ch("b492b66fbe98f273"),Qn=ch("9ae16a3b2f90404f");function _3(e){return e.xor(e.shru(47))}function zw(e,t,n){let s=e.slice(t,t+n);return Ki.fromBytes(Array.from(s),!0,!0)}function Nt(e,t){return zw(e,t,8)}function Dv(e,t){return zw(e,t,4)}function yn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function po(e,t,n=ch("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function jD(e,t,n,s,r,a){r=r.add(e),a=yn(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(yn(r,44)),[r.add(s),a.add(o)]}function Kf(e,t,n,s){return jD(Nt(e,t),Nt(e,t+8),Nt(e,t+16),Nt(e,t+24),n,s)}function qD(e,t=e.length){if(t>=8){let n=Qn.add(t*2),s=Nt(e,0).add(Qn),r=Nt(e,t-8),a=yn(r,37).mul(n).add(s),o=yn(s,25).add(r).mul(n);return po(a,o,n)}if(t>=4){let n=Qn.add(t*2),s=Dv(e,0);return po(s.shl(3).add(t),Dv(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return _3(Qn.mul(a).xor(Mw.mul(o))).mul(Qn)}return Qn}function XD(e,t=e.length){let n=Qn.add(t*2),s=Nt(e,0).mul(ji),r=Nt(e,8),a=Nt(e,t-8).mul(n),o=Nt(e,t-16).mul(Qn);return po(yn(s.add(r),43).add(yn(a,30)).add(o),s.add(yn(r.add(Qn),18)).add(a),n)}function KD(e,t=e.length){let n=Qn.add(t*2),s=Nt(e,0).mul(Qn),r=Nt(e,8),a=Nt(e,t-8).mul(n),o=Nt(e,t-16).mul(Qn),i=yn(s.add(r),43).add(yn(a,30)).add(o),l=po(i,s.add(yn(r.add(Qn),18)).add(a),n),u=Nt(e,16).mul(n),c=Nt(e,24),p=i.add(Nt(e,t-32)).mul(n),d=l.add(Nt(e,t-24)).mul(n);return po(yn(u.add(c),43).add(yn(p,30)).add(d),u.add(yn(c.add(s),18)).add(p),n)}function ZD(e,t=e.length){let n=Ki.fromNumber(81,!0);if(t<=32)return t<=16?qD(e,t):XD(e,t);if(t<=64)return KD(e,t);let s=n,r=n.mul(ji).add(113),a=_3(r.mul(Qn).add(113)).mul(Qn),o=[Ki.UZERO,Ki.UZERO],i=[Ki.UZERO,Ki.UZERO];s=s.mul(Qn).add(Nt(e,0));let l=0,u=(t-1>>6)*64,c=u+(t-1&63)-63;do s=yn(s.add(r).add(o[0]).add(Nt(e,l+8)),37).mul(ji),r=yn(r.add(o[1]).add(Nt(e,l+48)),42).mul(ji),s=s.xor(i[1]),r=r.add(o[0]).add(Nt(e,l+40)),a=yn(a.add(i[0]),33).mul(ji),o=Kf(e,l,o[1].mul(ji),s.add(i[0])),i=Kf(e,l+32,a.add(i[1]),r.add(Nt(e,l+16))),[a,s]=[s,a],l+=64;while(l!==u);let p=ji.add(a.and(255).shl(1));return l=c,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=yn(s.add(r).add(o[0]).add(Nt(e,l+8)),37).mul(p),r=yn(r.add(o[1]).add(Nt(e,l+48)),42).mul(p),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(Nt(e,l+40))),a=yn(a.add(i[0]),33).mul(p),o=Kf(e,l,o[1].mul(p),s.add(i[0])),i=Kf(e,l+32,a.add(i[1]),r.add(Nt(e,l+16))),[a,s]=[s,a],po(po(o[0],i[0],p).add(_3(r).mul(Mw)).add(a),po(o[1],i[1],p).add(s),p)}function YD(e,t){return t==="string"?dh(e):T0([e],t)}function JD(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function T0(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=il(e)),H().getBool("DEBUG")&&Sw(e,t),JD(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Rp(){return H().platform.now()}function QD(e,t){return H().platform.fetch(e,t)}function dh(e,t="utf-8"){return t=t||"utf-8",H().platform.encode(e,t)}function Cm(e,t="utf-8"){return t=t||"utf-8",H().platform.decode(e,t)}var e$=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new n$)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=Rp();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:Rp()-o})}if(H().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let u=s[l];u.data().then(c=>{t$(c,u.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function t$(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var n$=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?wp(`${s}ms`,9):s.error,i=wp(e,25),l=t.rank,u=t.size,c=wp(t.shape.toString(),14),p="";for(let d in r){let h=r[d];if(h!=null){let f=h.shape||t.shape,m=f.length;p+=`${d}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${c} %c${u} %c${p} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function s$(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],c=u.inputs;for(let p in c){let d=c[p],h=!1;for(let f=0;f<t.length;f++)if(s[d.id]){u.outputs.forEach(m=>s[m.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let p=0;p<u.outputs.length;p++)if(a[u.outputs[p].id]){for(let d in c)a[c[d].id]=!0,o[u.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&o[u.id]){let c={};for(let d in u.inputs){let h=u.inputs[d];s[h.id]&&(c[d]=h)}let p=Object.assign({},u);p.inputs=c,p.outputs=u.outputs,i.push(p)}}return i}function r$(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let u=e[l.id];u!=null?o.push(u):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=n(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=a.inputs[l];if(!Eo(u.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let p=e[c.id];e[c.id]=s(p,u),p.dispose()}}}}var $v=20,op=3,y3=7;function a$(e,t,n,s){let r=Ac(t),a=o$(e,t,n,r),o=t.length,i=cm(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function o$(e,t,n,s){let r=Et(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?dp(e):e;if(i>1)for(let u=0;u<r/a;u++){let c=u*a;for(let p=0;p<a;p++)o[p]=Math.max(o[p],cp(l[c+p],0,n).length)}return o}function cp(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(y3))} + ${parseFloat(e[1].toFixed(y3))}j`:lo(e)?s=`'${e}'`:n==="bool"?s=Lw(e):s=parseFloat(e.toFixed(y3)).toString(),wp(s,t)}function Lw(e){return e===0?"false":"true"}function cm(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=dp(e);return[cp(m[0],0,n)]}return n==="bool"?[Lw(e[0])]:[e[0].toString()]}if(l===1){if(i>$v){let g=op*o,y=Array.from(e.slice(0,g)),x=Array.from(e.slice((i-op)*o,i*o));return n==="complex64"&&(y=dp(y),x=dp(x)),["["+y.map((A,b)=>cp(A,r[b],n)).join(", ")+", ..., "+x.map((A,b)=>cp(A,r[i-op+b],n)).join(", ")+"]"]}let m=n==="complex64"?dp(e):Array.from(e);return["["+m.map((g,y)=>cp(g,r[y],n)).join(", ")+"]"]}let u=t.slice(1),c=s.slice(1),p=s[0]*o,d=[];if(i>$v){for(let m=0;m<op;m++){let g=m*p,y=g+p;d.push(...cm(e.slice(g,y),u,n,c,r,!1))}d.push("...");for(let m=i-op;m<i;m++){let g=m*p,y=g+p;d.push(...cm(e.slice(g,y),u,n,c,r,m===i-1))}}else for(let m=0;m<i;m++){let g=m*p,y=g+p;d.push(...cm(e.slice(g,y),u,n,c,r,m===i-1))}let h=l===2?",":"";d[0]="["+d[0]+h;for(let m=1;m<d.length-1;m++)d[m]=" "+d[m]+h;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(a?"":f),d}function dp(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Kt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Et(e),n!=null){let s=n.length;O(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Iw(t,this.size),this.strides=Ac(e)}set(e,...t){t.length===0&&(t=[0]),O(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Nr().makeTensor(this.values,this.shape,this.dtype)}},Nr=null,ju=null,i$=null;function l$(e){Nr=e}function u$(e){ju=e}function c$(e){i$=e}var nt=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Et(e),this.strides=Ac(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return ju.buffer(this.shape,this.dtype,e)}bufferSync(){return ju.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Ku(this.shape,e,this.dtype==="complex64")}arraySync(){return Ku(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Nr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Cm(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),Nr().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=Nr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Cm(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Nr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Nr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return ju.print(this,e)}clone(){return this.throwIfDisposed(),ju.clone(this)}toString(e=!1){let t=this.dataSync();return a$(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),ju.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Nr().makeVariable(this,e,t,n)}};Object.defineProperty(nt,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function se(){return By("Tensor",()=>nt)}se();var _p=class extends nt{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Eo(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Nr().disposeTensor(this),this.dataId=e.dataId,Nr().incRef(this,null)}dispose(){Nr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(_p,Symbol.hasInstance,{value:e=>e instanceof nt&&e.assign!=null&&e.assign instanceof Function});var Dr={};Ve(Dr,{assertTypesMatch:()=>Bw,getTensorsInContainer:()=>Vy,isTensorInList:()=>p$,makeTypesMatch:()=>Gt});var D3;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(D3||(D3={}));var $3;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})($3||($3={}));var P3;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(P3||(P3={}));var F3;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(F3||(F3={}));var O3;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(O3||(O3={}));var d$={float32:F3,int32:$3,bool:P3,complex64:O3};function Nn(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return d$[e][t]}function ph(e){return Nn(e,"int32")}function Gt(e,t){if(e.dtype===t.dtype)return[e,t];let n=Nn(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function Bw(e,t){O(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function p$(e,t){return t.some(n=>n.id===e.id)}function Vy(e){let t=[];return Ww(e,t,new Set),t}function Ww(e,t,n){if(e==null)return;if(e instanceof nt){t.push(e);return}if(!h$(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),Ww(a,t,n))}}function h$(e){return Array.isArray(e)||typeof e=="object"}function A3(e){return e.kernelName!=null}var Pv=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Dp=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Pv}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(io(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new e$(this.backendInstance),!0}setupRegisteredKernels(){Jr(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Jr(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof yc)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,io(`Initialization of backend ${e} failed`),io(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return io(`Initialization of backend ${e} failed`),io(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return Dp.nextTensorId++}nextVariableId(){return Dp.nextVariableId++}clone(e){let t=L.runKernel(Xo,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return L.runKernel(Po,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(Sm(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=A3(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(A3(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=Sm(h,this.backendName);O(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let y=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let x=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,x);let A=x.map(b=>b.rank!=null?b:this.makeTensorFromTensorInfo(b));if(s){let b=this.getTensorsForGradient(h,f,A);n=this.saveTensorsForBackwardMode(b)}return A}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:u,attrs:c}=e,p=A3(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(d=this.profiler.profileKernel(l,u,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),s&&this.addTapeNode(l,u,t,p,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=R3(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(O(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,u)=>a[u]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&lo(e[0])&&(r=e.map(i=>dh(i)));let a=s.write(r,t,n),o=new nt(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=Tw(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r={dataId:e,shape:t,dtype:n};return this.makeTensorFromTensorInfo(r,s)}makeTensorFromTensorInfo(e,t){let{dataId:n,shape:s,dtype:r}=e,a=new nt(s,r,n,this.nextTensorId());return this.trackTensor(a,t),a}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new _p(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*E3(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof _p||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*E3(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=R3(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((u,c)=>{if(u==null){let p=n[c],d=t0(p.size,p.dtype);return this.makeTensor(d,p.shape,p.dtype)}return u}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Vy(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(O(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));O(r instanceof nt,()=>"The result y returned by f() must be a tensor.");let a=s$(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?f$(r.shape):n,r$(o,a,l=>this.tidy(l),m$);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return O(go(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{O(t.every(o=>o instanceof nt),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),O(n.value instanceof nt,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),O(go(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),u=Array.isArray(l)?l:[l];O(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),O(u.every(p=>p instanceof nt),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((p,d)=>{c[d]=()=>p}),c};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=Rp(),n=await this.backend.time(e);return n.wallMs=Rp()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Pv;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Dp.nextTensorId=0;Dp.nextVariableId=0;function f$(e){let t=Oy(Et(e),"float32");return L.makeTensor(t,e,"float32")}function Vw(){let e=Dw();if(e._tfengine==null){let t=new _w(e);e._tfengine=new Dp(t)}return MD(e._tfengine.ENV),l$(()=>e._tfengine),e._tfengine}var L=Vw();function m$(e,t){let n={a:e,b:t};return L.runKernel(na,n)}var hh={};Ve(hh,{isBrowser:()=>Uw,isMobile:()=>A$,mockIsMobile:()=>y$});function g$(){return typeof navigator!="undefined"&&navigator!=null}var M3;function y$(e){M3=e}function A$(e){if(M3!==void 0)return M3;if(e||g$()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function Uw(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Xs=H();Xs.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Xs.registerFlag("IS_BROWSER",()=>Uw());Xs.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Xs.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Xs.registerFlag("PROD",()=>!1);Xs.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Xs.getBool("DEBUG"));Xs.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Xs.registerFlag("IS_TEST",()=>!1);Xs.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Xs.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Xs.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);Xs.registerFlag("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU",()=>!1);function Qr(e,t){let n=e;if(On(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||On(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&H().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Gw(e,s,[]),s}function Gw(e,t,n){if(n=n||[],!Array.isArray(e)&&!On(e)){O(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}O(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),O(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)Gw(e[r],s,n.concat(r))}function Fv(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function $(e,t,n,s="numeric"){if(e instanceof nt)return Fv(s,e.dtype,t,n),e;let r=e0(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),Fv(s,r,t,n),e==null||!On(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=Qr(e,r);!On(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?T0(e,r):il(e,[],!0);return L.makeTensor(i,a,r)}function $p(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>$(a,`${t}[${o}]`,n,s))}var Uy="__op";function B(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Uy;let r=(...a)=>{L.startScope(n);try{let o=s(...a);return zy(o)&&console.error("Cannot return a Promise inside of tidy."),L.endScope(o),o}catch(o){throw L.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function x$(e,t){let n=$(e,"real","complex"),s=$(t,"imag","complex");rs(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return L.runKernel(Xp,r)}var ba=B({complex_:x$});function yi(e,t,n,s){if(s==null&&(s=e0(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!On(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){My(t);let r=Et(t),a=Et(n);O(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==Et(t.slice(o)):!0;O(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!On(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?T0(e,s):il(e,[],!0),L.makeTensor(e,t,s)}function ct(e,t,n){let s=Qr(e,n);return yi(e,t,s,n)}var z3={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Tm=4;async function b$(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let u={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async p=>{let d=await l.bytes(),h=d.reduce((g,y)=>g+y.length,0)+Tm*d.length,f=new Uint8Array(h),m=0;for(let g=0;g<d.length;g++){let y=d[g],x=new Uint8Array(new Uint32Array([y.length]).buffer);f.set(x,m),m+=Tm,f.set(y,m),m+=y.length}p(f)});s.push(c)}else s.push(l.data());t!=null&&(u.group=t),n.push(u)}let a=await Promise.all(s);return{data:v$(a),specs:n}}function Hw(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,u=Et(l),c;if("quantization"in a){let p=a.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${a.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=z3[p.dtype],h=e.slice(r,r+u*d),f=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=g*p.scale+p.min}}else if(p.dtype==="float16")s===void 0&&(s=T$()),c=s(f);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(i==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*d}else if(i==="string"){let p=Et(a.shape);c=[];for(let d=0;d<p;d++){let h=new Uint32Array(e.slice(r,r+Tm))[0];r+=Tm;let f=new Uint8Array(e.slice(r,r+h));c.push(f),r+=h}}else{let p=z3[i],d=e.slice(r,r+u*p);if(i==="float32")c=new Float32Array(d);else if(i==="int32")c=new Int32Array(d);else if(i==="bool")c=new Uint8Array(d);else if(i==="complex64"){c=new Float32Array(d);let h=new Float32Array(c.length/2),f=new Float32Array(c.length/2);for(let y=0;y<h.length;y++)h[y]=c[y*2],f[y]=c[y*2+1];let m=ct(h,l,"float32"),g=ct(f,l,"float32");n[o]=ba(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*p}i!=="complex64"&&(n[o]=ct(c,l,i))}return n}function v$(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var Gy=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Ov(e){return Gy?Buffer.byteLength(e):new Blob([e]).size}function w$(e){if(Gy)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function k$(e){if(Gy){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function Hy(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function Mv(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function jw(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function jy(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function fh(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Ov(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Ov(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function I$(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)===0;)r-=8388608,s<<=1;return s&=-8388609,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function S$(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function C$(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function T$(){let e=I$(),t=S$(),n=C$();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var qt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return qt.instance==null&&(qt.instance=new qt),qt.instance}static registerSaveRouter(e){qt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){qt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return qt.getHandlers(e,"save")}static getLoadHandlers(e,t){return qt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?qt.getInstance().loadRouters:qt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},N$=e=>qt.registerSaveRouter(e),E$=e=>qt.registerLoadRouter(e),R$=e=>qt.getSaveHandlers(e),_$=(e,t)=>qt.getLoadHandlers(e,t),L3="tensorflowjs",B3=1,Qi="models_store",uo="model_info_store";function qw(){if(!H().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function W3(e){let t=e.result;t.createObjectStore(Qi,{keyPath:"modelPath"}),t.createObjectStore(uo,{keyPath:"modelPath"})}var ll=class{constructor(e){if(this.indexedDB=qw(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(L3,B3);r.onupgradeneeded=()=>W3(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(Qi,"readonly"),l=o.objectStore(Qi).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=u=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=fh(t),i=a.transaction(uo,"readwrite"),l=i.objectStore(uo),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),c;u.onsuccess=()=>{c=a.transaction(Qi,"readwrite");let d=c.objectStore(Qi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});d.onsuccess=()=>n({modelArtifactsInfo:o}),d.onerror=h=>{l=i.objectStore(uo);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(d.error)),f.onerror=m=>(a.close(),s(d.error))}},u.onerror=p=>(a.close(),s(u.error)),i.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};ll.URL_SCHEME="indexeddb://";var Xw=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ll.URL_SCHEME)?D$(e.slice(ll.URL_SCHEME.length)):null;qt.registerSaveRouter(Xw);qt.registerLoadRouter(Xw);function D$(e){return new ll(e)}function $$(e){return e.startsWith(ll.URL_SCHEME)?e.slice(ll.URL_SCHEME.length):e}var P$=class{constructor(){this.indexedDB=qw()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(L3,B3);n.onupgradeneeded=()=>W3(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(uo,"readonly"),o=r.objectStore(uo).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=$$(e),new Promise((t,n)=>{let s=this.indexedDB.open(L3,B3);s.onupgradeneeded=()=>W3(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(uo,"readwrite"),o=a.objectStore(uo),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=o.delete(e),c=()=>{l=r.transaction(Qi,"readwrite");let d=l.objectStore(Qi).delete(e);d.onsuccess=()=>t(i.result.modelArtifactsInfo),d.onerror=h=>n(i.error)};u.onsuccess=c,u.onerror=p=>(c(),r.close(),n(i.error))}},i.onerror=u=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},ya="/",qu="tensorflowjs_models",Kw="info",F$="model_topology",O$="weight_specs",M$="weight_data",z$="model_metadata";function Zw(e){return{info:[qu,e,Kw].join(ya),topology:[qu,e,F$].join(ya),weightSpecs:[qu,e,O$].join(ya),weightData:[qu,e,M$].join(ya),modelMetadata:[qu,e,z$].join(ya)}}function Yw(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function L$(e){let t=e.split(ya);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(ya)}function B$(e){return e.startsWith(ul.URL_SCHEME)?e.slice(ul.URL_SCHEME.length):e}var ul=class{constructor(e){if(!H().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Zw(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=fh(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,w$(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw Yw(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=k$(a),t}};ul.URL_SCHEME="localstorage://";var Jw=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ul.URL_SCHEME)?W$(e.slice(ul.URL_SCHEME.length)):null;qt.registerSaveRouter(Jw);qt.registerLoadRouter(Jw);function W$(e){return new ul(e)}var V$=class{constructor(){O(H().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),O(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=qu+ya,n=ya+Kw;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=L$(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=B$(e);let t=Zw(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return Yw(t),n}},Zu="://",hs=class{constructor(){this.managers={}}static getInstance(){return hs.instance==null&&(hs.instance=new hs),hs.instance}static registerManager(e,t){O(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Zu)&&(e=e.slice(0,e.indexOf(Zu))),O(e.length>0,()=>"scheme must not be an empty string.");let n=hs.getInstance();O(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=hs.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(hs.getInstance().managers)}};function dm(e){if(e.indexOf(Zu)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${hs.getSchemes().join(",")}`);return{scheme:e.split(Zu)[0],path:e.split(Zu)[1]}}async function Qw(e,t,n=!1){O(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=qt.getLoadHandlers(e);O(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),O(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=qt.getSaveHandlers(t);O(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),O(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=dm(e).scheme,l=dm(e).path,u=i===dm(e).scheme,c=await r.load();n&&u&&await hs.getManager(i).removeModel(l);let p=await o.save(c);return n&&!u&&await hs.getManager(i).removeModel(l),p.modelArtifactsInfo}async function U$(){let e=hs.getSchemes(),t={};for(let n of e){let s=await hs.getManager(n).listModels();for(let r in s){let a=n+Zu+r;t[a]=s[r]}}return t}async function G$(e){let t=dm(e);return hs.getManager(t.scheme).removeModel(t.path)}async function H$(e,t){return Qw(e,t,!1)}async function j$(e,t){return Qw(e,t,!0)}var q$=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(H().get("IS_BROWSER")){H().setPlatform("browser",new q$);try{hs.registerManager(ul.URL_SCHEME,new V$)}catch(e){}try{hs.registerManager(ll.URL_SCHEME,new P$)}catch(e){}}var X$={importFetch:()=>tD()},x3,K$=class{constructor(){this.util=nD(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return H().global.fetch!=null?H().global.fetch(e,t):(x3==null&&(x3=X$.importFetch()),x3(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};H().get("IS_NODE")&&!H().get("IS_BROWSER")&&H().setPlatform("node",new K$);function De(e,t="float32",n){return t=t||"float32",My(e),new Kt(e,t,n)}function Z$(e,t){let n=$(e,"x","cast");if(!Cw(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return L.runKernel(Po,s,r)}var ye=B({cast_:Z$});function Y$(e){let n={x:$(e,"x","clone","string_or_numeric")};return L.runKernel(Xo,n)}var Mn=B({clone_:Y$});function qy(e,t=!1){console.log(e.toString(t))}Vw();var J$={buffer:De,cast:ye,clone:Mn,print:qy};u$(J$);var Ns={};Ve(Ns,{browserFiles:()=>aP,browserHTTPRequest:()=>cP,concatenateArrayBuffers:()=>Hy,copyModel:()=>H$,decodeWeights:()=>Hw,encodeWeights:()=>b$,fromMemory:()=>pP,fromMemorySync:()=>r6,getLoadHandlers:()=>_$,getModelArtifactsForJSON:()=>jy,getModelArtifactsInfoForJSON:()=>fh,getSaveHandlers:()=>R$,http:()=>Ky,isHTTPScheme:()=>V3,listModels:()=>U$,loadWeights:()=>oP,moveModel:()=>j$,registerLoadRouter:()=>E$,registerSaveRouter:()=>N$,removeModel:()=>G$,weightsLoaderFactory:()=>t6,withSaveHandler:()=>hP,withSaveHandlerSync:()=>fP});var Q$="model",eP=".json",tP=".weights.bin";function zv(e){return new Promise(t=>setTimeout(t)).then(e)}var nc=class{constructor(e){if(!H().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(nc.URL_SCHEME)&&(e=e.slice(nc.URL_SCHEME.length)),(e==null||e.length===0)&&(e=Q$),this.modelJsonFileName=e+eP,this.weightDataFileName=e+tP}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=jw(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await zv(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await zv(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:fh(e)}}}};nc.URL_SCHEME="downloads://";var nP=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=jy(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,Hy(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>Mv(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=Mv(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},sP=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(nc.URL_SCHEME)?rP(e.slice(nc.URL_SCHEME.length)):null;qt.registerSaveRouter(sP);function rP(e="model"){return new nc(e)}function aP(e){return new nP(e)}function Lv(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(u=>{let c=n+ ++r/e.length*(s-n);return t(c),u}),l);function o(l){O(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){O(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),O(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),O(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(a))}async function e6(e,t){t==null&&(t={});let n=t.fetchFunc==null?H().platform.fetch:t.fetchFunc,s=e.map(p=>n(p,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await Lv(s,t.onProgress,r,a)).map(p=>p.arrayBuffer()),l=.5,u=1;return t.onProgress==null?await Promise.all(i):await Lv(i,t.onProgress,l,u)}async function oP(e,t="",n,s){return t6(o=>e6(o,{requestInit:s}))(e,t,n)}function t6(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,x=z3[y]*Et(g.shape),A=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:x})};s!=null?s.forEach((b,w)=>{b===g.name&&(A(),o[w]=!0)}):A(),i.push(g.name),m+=x})}),!o.every(h=>h)){let h=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),p={},d=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let b=0;b<f;b++)m+=c[d+b].byteLength;let g=new ArrayBuffer(m),y=new Uint8Array(g),x=0;for(let b=0;b<f;b++){let w=new Uint8Array(c[d+b]);y.set(w,x),x+=w.byteLength}a[h].forEach(b=>{let w=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),I=Hw(w,[b.manifestEntry]);for(let k in I)p[k]=I[k]}),d+=f}),p}}var iP="application/octet-stream",lP="application/json",Xy=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(O(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=H().platform.fetch,O(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&O(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=jw(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:lP}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:iP}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:fh(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return jy(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=uP(t),r=this.weightPathPrefix||n,a=[];for(let u of e)a.push(...u.weights);let o=[],i=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(c)):o.push(r+c+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await e6(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Hy(l)]}};Xy.URL_SCHEME_REGEX=/^https?:\/\//;function uP(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function V3(e){return e.match(Xy.URL_SCHEME_REGEX)!=null}var n6=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>V3(s)):n=V3(e),n)return Ky(e,t)}return null};qt.registerSaveRouter(n6);qt.registerLoadRouter(n6);function Ky(e,t){return new Xy(e,t)}function cP(e,t){return Ky(e,t)}var b3=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},s6=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},dP=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function pP(e,t,n,s){let r=arguments;return new dP(r6(...r))}function r6(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new b3(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new b3({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new b3({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function hP(e){return new s6(e)}function fP(e){return new s6(e)}var a6={};Ve(a6,{confusionMatrix:()=>RP});function mP(e,t,n=!1,s=!1){let r=$(e,"a","matMul"),a=$(t,"b","matMul");[r,a]=Gt(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return L.runKernel($o,o,i)}var Qe=B({matMul_:mP});function gP(e,t,n=1,s=0,r="int32"){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let o={indices:$(e,"indices","oneHot","int32")},i={dtype:r,depth:t,onValue:n,offValue:s};return L.runKernel(Ol,o,i)}var sc=B({oneHot_:gP});function Zy(){H().set("PROD",!0)}function yP(){H().set("DEBUG",!0)}function AP(){H().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Yy(e){H().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}c$(Yy);function xP(){L.disposeVariables()}function sn(){return L}function Nm(){return L.memory()}function bP(e){return L.profile(e)}function Z(e,t){return L.tidy(e,t)}function J(e){Vy(e).forEach(n=>n.dispose())}function An(e){return L.keep(e)}function vP(e){return L.time(e)}function Jy(e){return L.setBackend(e)}function jc(){return L.ready()}function Ln(){return L.backendName}function wP(e){L.removeBackend(e)}function Qy(e){return L.findBackend(e)}function kP(e){return L.findBackendFactory(e)}function eu(e,t,n=1){return L.registerBackend(e,t,n)}function Bn(){return L.backend}function IP(e,t){H().setPlatform(e,t)}function SP(e){let n={input:$(e,"input","imag")};return L.runKernel(Qp,n)}var mh=B({imag_:SP});function CP(e){let n={x:$(e,"x","neg")};return L.runKernel(Dl,n)}var $t=B({neg_:CP});function TP(e){let n={input:$(e,"input","real")};return L.runKernel(nh,n)}var rc=B({real_:TP});function NP(e,t,n){let s=$(e,"x","transpose");if(t==null&&(t=s.shape.map((o,i)=>i).reverse()),O(s.rank===t.length,()=>`Error in transpose: rank of input ${s.rank} must match length of perm ${t}.`),t.forEach(o=>{O(o>=0&&o<s.rank,()=>`All entries in 'perm' must be between 0 and ${s.rank-1} but got ${t}`)}),s.rank<=1)return s.clone();let r={x:s},a={perm:t};return s.dtype==="complex64"?Z(()=>{let o=rc(s),i=mh(s);return o=L.runKernel(Zr,{x:o},a),i=L.runKernel(Zr,{x:i},a),n&&(i=$t(i)),ba(o,i)}):L.runKernel(Zr,r,a)}var et=B({transpose_:NP});function EP(e,t,n){let s=$(e,"labels","confusionMatrix"),r=$(t,"predictions","confusionMatrix");O(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),O(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),O(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),O(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),O(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=sc(ye(s,"int32"),n),o=sc(ye(r,"int32"),n),i=et(a),l=Qe(i,o);return ye(l,"int32")}var RP=B({confusionMatrix_:EP}),tu={};Ve(tu,{assertAndGetBroadcastShape:()=>wt,getBroadcastDims:()=>o6,getReductionAxes:()=>an});function o6(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function an(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function wt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}var Zs={};Ve(Zs,{fromPixels:()=>MP,fromPixelsAsync:()=>FP,toPixels:()=>OP});function eA(e,t,n){if(xl(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=Qr(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return yi(e,t,s,n)}var Gi;function i6(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(Sm(Np,L.backendName)!=null){let f={pixels:e},m={numChannels:t};return L.runKernel(Np,f,m)}let[u,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(o)p=e.getContext("2d").getImageData(0,0,u,c).data;else if(s||n)p=e.data;else if(a||r||i){if(Gi==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Gi=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Gi=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});Gi.canvas.width=u,Gi.canvas.height=c,Gi.drawImage(e,0,0,u,c),p=Gi.getImageData(0,0,u,c).data}let d;if(t===4)d=new Int32Array(p);else{let f=u*c;d=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)d[m*t+g]=p[m*4+g]}return eA(d,[c,u,t],"int32")}function _P(e){return e!=null&&e.data instanceof Uint8Array}function DP(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function $P(e){return e!=null&&e.width!==0&&e.height!==0}function PP(e){return DP()&&!(e instanceof ImageBitmap)&&$P(e)&&!_P(e)}async function FP(e,t=3){let n=null;if(H().getBool("WRAP_TO_IMAGEBITMAP")&&PP(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return i6(n,t)}async function OP(e,t){let n=$(e,"img","toPixels");if(!(e instanceof nt)){let u=n;n=ye(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let u=0;u<s*r;++u){let c=[0,0,0,255];for(let d=0;d<a;d++){let h=o[u*a+d];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(c[0]=h*i,c[1]=h*i,c[2]=h*i):c[d]=h*i}let p=u*4;l[p+0]=Math.round(c[0]),l[p+1]=Math.round(c[1]),l[p+2]=Math.round(c[2]),l[p+3]=Math.round(c[3])}if(t!=null){t.width=r,t.height=s;let u=t.getContext("2d"),c=new ImageData(l,r,s);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var MP=B({fromPixels_:i6}),tA={};Ve(tA,{prepareAndValidate:()=>l6});function l6(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(Et(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let p=0;p<r.length-1;++p)o*=r[p];let i=e.shape,l=r.slice();l.pop();let u=1;for(let p=a;p<n;++p)u*=i[p],l.push(i[p]);let c=[...Ac(e.shape).map(p=>p/u),1].slice(0,a);return[l,o,u,c]}var nA={};Ve(nA,{calculateShapes:()=>u6,validateInput:()=>rA,validateUpdateShape:()=>sA});function sA(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function rA(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}sA(n,t,e)}function u6(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let p=r;p<a;++p)o*=n[p];let i=r<1?1:r,l=Et(t.shape)/i,u=[...Ac(n.slice(0,r)),1],c=Et(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:u,outputSize:c}}var Pt={};Ve(Pt,{assertParamsValid:()=>LP,computeFlatOffset:()=>GP,computeOutShape:()=>WP,getNormalizedAxes:()=>VP,isSliceContinous:()=>UP,maskToAxes:()=>BP,parseSliceParams:()=>A6,sliceInfo:()=>HP,startForAxis:()=>g6,startIndicesWithElidedDims:()=>h6,stopForAxis:()=>y6,stopIndicesWithElidedDims:()=>f6,stridesForAxis:()=>m6,stridesWithElidedDims:()=>c6});var U3=-2,zP=-1;function LP(e,t,n){let s=e.shape.length;O(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),O(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)O(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function BP(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function WP(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function c6(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function d6(e,t,n){return n<=e?n:n-(t-1)}function p6(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function VP(e,t,n,s,r,a,o,i,l){let u=e.length,c=new Array(u),p=new Array(u),d=new Array(u);if(t.length&&n>0){let h=t[0],f=n+1;c=h6(o,h,f,s,e),p=f6(i,h,f,r,e),d=c6(a,h,f,e)}else for(let h=0;h<u;h++)c[h]=g6(o,s,a,e,h,l),p[h]=y6(i,r,a,e,h,l),d[h]=m6(a,h,l);return{begin:c,end:p,strides:d}}function h6(e,t,n,s,r){let a=[...r],o=p6(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=d6(t,n,i),u=s[l];e&1<<l&&(u=0),a[i]=u}return a}function f6(e,t,n,s,r){let a=[...r],o=p6(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=d6(t,n,i),u=s[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),a[i]=u}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=Tp(0,a[i],r[i])}return a}function m6(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function g6(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=Tp(0,o,l-1),o}function y6(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=Tp(0,o,l):o=Tp(-1,o,l-1),o}function UP(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function GP(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function A6(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{O(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(O(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function HP(e,t,n,s,r,a,o,i,l){let u;if(s==null?(u=new Array(t.length),u.fill(1)):u=s,o!=null&&(o&o-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let c=!1,p={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:u.slice(),beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};for(let A=0;A<p.dims;A++)c&&(1<<A&i)!==0&&p.numAddAxisAfterEllipsis++,1<<A&o&&(c=!0);c||(p.ellipsisMask|=1<<p.dims,p.dims++);let d={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};jP(p,d);let h=!0,f=!0,m=!0,g=[],y=[];for(let A=0;A<e.length;++A){if(d.strides[A]===0)throw Error(`strides[${A}] must be non-zero`);let b=!!(d.shrinkAxisMask&1<<A),w=e[A];if(w===-1){g.push(b?1:-1);continue}let I=[d.beginMask&1<<A,d.endMask&1<<A],k=[d.strides[A]>0?0:-1,d.strides[A]>0?w:w-1];if(b&&d.strides[A]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&d.strides[A]===1;let E=!!(d.beginMask&1<<A&&d.endMask&1<<A);if(d.beginValid&&d.endValid){if(b){let P=d.begin[A]<0?w+d.begin[A]:d.begin[A];if(d.begin[A]=P,d.end[A]=d.begin[A]+1,P<0||P>=w)throw Error(`slice index ${d.begin[A]} of dimension ${A} out of bounds.`)}else d.begin[A]=Bv(d.begin[A],0,d.strides[A],w,I,k),d.end[A]=Bv(d.end[A],1,d.strides[A],w,I,k);let R=d.strides[A]===1&&d.begin[A]===0&&d.end[A]===w;h=h&&R,f=f&&(A===0&&d.strides[A]===1||R)}else h=h&&d.strides[A]===1&&E,f=f&&(A===0&&d.strides[A]===1||E);let _,D=!1;if(d.beginValid&&d.endValid?(_=d.end[A]-d.begin[A],D=!0):b?(_=1,D=!0):E&&w>=0&&(d.strides[A]<0?_=-w:_=w,D=!0),D){let R;_===0||_<0!=d.strides[A]<0?R=0:R=Math.trunc(_/d.strides[A])+(_%d.strides[A]!==0?1:0),g.push(R)}else g.push(-1)}for(let A=0;A<d.finalShapeGatherIndices.length;++A){let b=d.finalShapeGatherIndices[A];b>=0?y.push(g[b]):b===U3&&y.push(1)}return{finalShapeSparse:y.filter((A,b)=>d.finalShapeGatherIndices[b]!==U3),finalShape:y,isIdentity:h,sliceDim0:f,isSimpleSlice:m,begin:d.begin,end:d.end,strides:d.strides}}function jP(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let s=0;s<e.dims;s++)if(1<<s&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-s)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=s}else if(1<<s&e.newAxisMask)t.finalShapeGatherIndices.push(U3),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[s]),e.end!=null&&(t.end[n]=e.end[s]),t.strides[n]=e.strides[s],e.beginMask&1<<s&&(t.beginMask|=1<<n),e.endMask&1<<s&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<s?(t.finalShapeGatherIndices.push(zP),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(s)),t.inputShapeGatherIndicesSparse[n]=s,n++}}function Bv(e,t,n,s,r,a){if(r[t])return n>0?a[t]:a[t+1&1];{let o=e<0?s+e:e;return o<a[0]?a[0]:o>a[1]?a[1]:o}}var de={};Ve(de,{Serializable:()=>x6,SerializationMap:()=>Zi,registerClass:()=>Ai});var x6=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Zi=class{constructor(){this.classNameMap={}}static getMap(){return Zi.instance==null&&(Zi.instance=new Zi),Zi.instance}static register(e){Zi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Ai(e){O(e.className!=null,()=>"Class being registered does not have the static className property defined."),O(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),O(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Zi.register(e)}var b6={};Ve(b6,{TEST_EPSILON_FLOAT16:()=>v6,createVideoElement:()=>eF,encodeStrings:()=>w6,expectArrayBuffersEqual:()=>QP,expectArraysClose:()=>XP,expectArraysEqual:()=>ZP,expectNumbersClose:()=>YP,expectPromiseToFail:()=>KP,expectValuesInRange:()=>JP,play:()=>tF,testEpsilon:()=>aA});var qP=.001,v6=.1;function XP(e,t,n){return n==null&&(n=aA()),G3(e,t,(s,r)=>oA(s,r,n))}function aA(){return L.backend.floatPrecision()===32?qP:v6}function G3(e,t,n){let s=!0;if((On(e)||On(t))&&(s=!1),On(e)&&On(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=Qr(e),i=Qr(t);if(!Eo(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=On(e)?e:il(e),a=On(t)?t:il(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`)}typeof expect!="undefined"&&expect().nothing()}function KP(e,t){e().then(()=>t.fail(),()=>t()),typeof expect!="undefined"&&expect().nothing()}function ZP(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return lo(e)||lo(e[0])||lo(t)||lo(t[0])?G3(e,n,(s,r)=>s==r):G3(e,t,(s,r)=>oA(s,r,0))}function YP(e,t,n){if(n==null&&(n=aA()),!oA(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`);typeof expect!="undefined"&&expect().nothing()}function oA(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function JP(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function QP(e,t){let n=new Float32Array(e),s=new Float32Array(t);if(n.length!==s.length)throw new Error(`Expected ArrayBuffer to be of length ${s.length}, but it was ${n.length}`);for(let r=0;r<s.length;r++)if(n[r]!==s[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${s[r]} but got ${n[r]} instead`)}function w6(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?w6(n):e[t]=dh(n)}return e}function eF(e){let t=document.createElement("video");return"playsInline"in t&&(t.playsInline=!0),t.muted=!0,t.loop=!0,t.style.position="fixed",t.style.left="0px",t.style.top="0px",t.preload="auto",t.appendChild(e),new Promise(n=>{t.addEventListener("loadeddata",s=>n(t)),t.load()})}async function tF(e){await e.play(),"requestVideoFrameCallback"in e&&await new Promise(t=>{e.requestVideoFrameCallback(t)})}var iA="3.20.0";function nF(e,t){let n=$(e,"a","add"),s=$(t,"b","add");[n,s]=Gt(n,s);let r={a:n,b:s};return L.runKernel(na,r)}var ue=B({add_:nF});function sF(e,t){let n=$(e,"a","floorDiv"),s=$(t,"b","floorDiv");[n,s]=Gt(n,s);let r={a:n,b:s};return L.runKernel(Ho,r)}var qc=B({floorDiv_:sF});function rF(e,t){let n=$(e,"a","div"),s=$(t,"b","div");if([n,s]=Gt(n,s),n.dtype==="int32"&&s.dtype==="int32")return qc(n,s);let r={a:n,b:s},a={};return L.runKernel(Wo,r,a)}var fe=B({div_:rF});function aF(e,t){let n=$(e,"a","mul"),s=$(t,"b","mul");[n,s]=Gt(n,s);let r={a:n,b:s};return L.runKernel($a,r)}var z=B({mul_:aF});function oF(e){let t=$(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return L.runKernel(Kp,n)}else{let n={x:t};return L.runKernel(bl,n)}}var tn=B({abs_:oF});function iF(e){let n={x:$(e,"x","acos")};return L.runKernel(xc,n)}var lA=B({acos_:iF});function lF(e){let n={x:$(e,"x","acosh")};return L.runKernel(bc,n)}var uA=B({acosh_:lF});function uF(e){O(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),O(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>$(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!Eo(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return L.runKernel(Ro,s)}var N0=B({addN_:uF});function cF(e,t=null,n=!1){let r={x:$(e,"x","all","bool")},a={axis:t,keepDims:n};return L.runKernel(vc,r,a)}var E0=B({all_:cF});function dF(e,t=null,n=!1){let r={x:$(e,"x","any","bool")},a={axis:t,keepDims:n};return L.runKernel(wc,r,a)}var Pp=B({any_:dF});function pF(e,t=0){let s={x:$(e,"x","argMax")},r={axis:t};return L.runKernel(_o,s,r)}var Rs=B({argMax_:pF});function hF(e,t=0){let s={x:$(e,"x","argMin")},r={axis:t};return L.runKernel(kc,s,r)}var cA=B({argMin_:hF});function fF(e){let n={x:$(e,"x","asin")};return L.runKernel(Ic,n)}var dA=B({asin_:fF});function mF(e){let n={x:$(e,"x","asinh")};return L.runKernel(Sc,n)}var pA=B({asinh_:mF});function gF(e){let n={x:$(e,"x","atan")};return L.runKernel(Cc,n)}var hA=B({atan_:gF});function yF(e,t){let n=$(e,"a","atan2"),s=$(t,"b","atan2");[n,s]=Gt(n,s);let r={a:n,b:s};return L.runKernel(Nc,r)}var fA=B({atan2_:yF});function AF(e){let n={x:$(e,"x","atanh")};return L.runKernel(Tc,n)}var mA=B({atanh_:AF});function xF(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=S6(r);return gh(e,i,n,a,s,null,null,l)}function k6(e,t,n,s,r,a,o="channelsLast"){let[i,l]=Em(t),u;if(o==="channelsLast")u=[i,l,e[3],e[3]];else if(o==="channelsFirst")u=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return gh(e,u,n,s,r,a,!1,o)}function bF(e,t,n,s,r,a,o="NDHWC"){let[i,l,u]=H3(t),c,p;if(o==="NDHWC")p="channelsLast",c=[i,l,u,e[4],e[4]];else if(o==="NCDHW")p="channelsFirst",c=[i,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return I6(e,c,n,s,r,!1,p,a)}function gh(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,u,c,p]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,p]=e;else if(i==="channelsFirst")[l,p,u,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[d,h,,f]=t,[m,g]=Em(n),[y,x]=Em(s),A=Yu(d,y),b=Yu(h,x),{padInfo:w,outHeight:I,outWidth:k}=kF(r,u,c,m,g,A,b,a,i),E=o?f*p:f,_;return i==="channelsFirst"?_=[l,E,I,k]:i==="channelsLast"&&(_=[l,I,k,E]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:p,outHeight:I,outWidth:k,outChannels:E,padInfo:w,strideHeight:m,strideWidth:g,filterHeight:d,filterWidth:h,effectiveFilterHeight:A,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:x,inShape:e,outShape:_,filterShape:t}}function I6(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,u,c,p,d]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,p,d]=e;else if(o==="channelsFirst")[l,d,u,c,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[y,x,A]=H3(n),[b,w,I]=H3(s),k=Yu(h,b),E=Yu(f,w),_=Yu(m,I),{padInfo:D,outDepth:R,outHeight:P,outWidth:T}=IF(r,u,c,p,y,x,A,k,E,_,i),M=a?g*d:g,W;return o==="channelsFirst"?W=[l,M,R,P,T]:o==="channelsLast"&&(W=[l,R,P,T,M]),{batchSize:l,dataFormat:o,inDepth:u,inHeight:c,inWidth:p,inChannels:d,outDepth:R,outHeight:P,outWidth:T,outChannels:M,padInfo:D,strideDepth:y,strideHeight:x,strideWidth:A,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:k,effectiveFilterHeight:E,effectiveFilterWidth:_,dilationDepth:b,dilationHeight:w,dilationWidth:I,inShape:e,outShape:W,filterShape:t}}function vF(e,t,n,s,r){s==null&&(s=gA(e,t,n));let a=e[0],o=e[1],i=nl((a-t+2*s)/n+1,r),l=nl((o-t+2*s)/n+1,r);return[i,l]}function wF(e,t,n,s,r,a){r==null&&(r=gA(e,t,s));let o=e[0],i=e[1],l=e[2],u=nl((o-t+2*r)/s+1,a),c=nl((i-t+2*r)/s+1,a),p=nl((l-t+2*r)/s+1,a);return[u,c,p,n]}function gA(e,t,n,s=1){let r=Yu(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function Em(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function H3(e){return typeof e=="number"?[e,e,e]:e}function Yu(e,t){return t<=1?e:e+(e-1)*(t-1)}function kF(e,t,n,s,r,a,o,i,l){let u,c,p;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=vF([t,n],a,s,e,i);c=h[0],p=h[1]}else if(e==="same"){c=Math.ceil(t/s),p=Math.ceil(n/r);let d=Math.max(0,(c-1)*s+a-t),h=Math.max(0,(p-1)*r+o-n),f=Math.floor(d/2),m=d-f,g=Math.floor(h/2),y=h-g;u={top:f,bottom:m,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/s),p=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:h,left:f,right:m,type:d===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=nl((t-a+d+h)/s+1,i),p=nl((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:p}}function IF(e,t,n,s,r,a,o,i,l,u,c){let p,d,h,f;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=wF([t,n,s,1],i,1,r,e,c);d=g[0],h=g[1],f=g[2]}else if(e==="same"){d=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/o);let m=(d-1)*r+i-t,g=(h-1)*a+l-n,y=(f-1)*o+u-s,x=Math.floor(m/2),A=m-x,b=Math.floor(g/2),w=g-b,I=Math.floor(y/2),k=y-I;p={top:b,bottom:w,left:I,right:k,front:x,back:A,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),f=Math.ceil((s-u+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:d,outHeight:h,outWidth:f}}function nl(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function bo(e){let[t,n,s]=Em(e);return t===1&&n===1&&s===1}function sa(e,t){return bo(e)||bo(t)}function S6(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function as(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")O(ec(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(s=>{s.forEach(r=>{O(ec(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function SF(e,t){let s={x:$(e,"x","reshape","string_or_numeric")},r={shape:t};return L.runKernel(zl,s,r)}var V=B({reshape_:SF});function CF(e,t,n,s,r){let a=$(e,"x","avgPool","float32"),o=1;O(sa(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),as("avgPool",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=L.runKernel(Do,u,c);return p=ye(p,a.dtype),l?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var yh=B({avgPool_:CF});function TF(e,t,n,s,r,a="NDHWC"){let o=$(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),as("avgPool3d",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=L.runKernel(qp,u,c);return p=ye(p,i.dtype),l?V(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var yA=B({avgPool3d_:TF});function NF(e,t=0){O(e.length>=1,()=>"Pass at least one tensor to concat");let n=$p(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${a.dtype}. `)}),n.length===1)return Mn(n[0]);let s=n,r={axis:t};return L.runKernel(wl,s,r)}var St=B({concat_:NF});function EF(e){let n={x:$(e,"x","sigmoid","float32")};return L.runKernel(Fa,n)}var Cn=B({sigmoid_:EF});function RF(e,t,n){let s=$(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return L.runKernel(Ul,r,a)}var Le=B({slice_:RF});function _F(e){let n={x:$(e,"x","tanh","float32")};return L.runKernel(mi,n)}var cl=B({tanh_:_F});function DF(e,t,n,s,r,a){let o=$(e,"forgetBias","basicLSTMCell"),i=$(t,"lstmKernel","basicLSTMCell"),l=$(n,"lstmBias","basicLSTMCell"),u=$(s,"data","basicLSTMCell"),c=$(r,"c","basicLSTMCell"),p=$(a,"h","basicLSTMCell"),d=St([u,p],1),h=Qe(d,i),f=ue(h,l),m=f.shape[0],g=f.shape[1]/4,y=[m,g],x=Le(f,[0,0],y),A=Le(f,[0,g],y),b=Le(f,[0,g*2],y),w=Le(f,[0,g*3],y),I=ue(z(Cn(x),cl(A)),z(c,Cn(ue(o,b)))),k=z(cl(I),Cn(w));return[I,k]}var C6=B({basicLSTMCell_:DF});function $F(e,t,n){let s=$(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);O(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),O(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),O(s.shape[0]%r===0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return L.runKernel(vl,a,o)}var Ah=B({batchToSpaceND_:$F});function PF(e){let t;return e.rank===0||e.rank===1?t=V(e,[1,1,1,e.size]):e.rank===2?t=V(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function FF(e,t,n,s,r,a){a==null&&(a=.001);let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;s!=null&&(c=$(s,"offset","batchNorm")),O(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),O(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),O(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:PF(o),scale:u,offset:c,mean:i,variance:l},h={varianceEpsilon:a},f=L.runKernel(jo,d,h);return V(f,o.shape)}var Xc=B({batchNorm_:FF});function OF(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;return s!=null&&(c=$(s,"offset","batchNorm")),O(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),O(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),O(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&O(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&O(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Xc(o,i,l,c,u,a)}var AA=B({batchNorm2d_:OF});function MF(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;return s!=null&&(c=$(s,"offset","batchNorm")),O(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),O(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),O(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&O(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&O(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Xc(o,i,l,c,u,a)}var xA=B({batchNorm3d_:MF});function zF(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;return s!=null&&(c=$(s,"offset","batchNorm")),O(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),O(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),O(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&O(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&O(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Xc(o,i,l,c,u,a)}var bA=B({batchNorm4d_:zF});function LF(e,t,n){let s=$(e,"x","bincount"),r=$(t,"weights","bincount");O(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return L.runKernel(r0,a,o)}var vA=B({bincount_:LF});function BF(e,t){let n=$(e,"s0","broadcastArgs","int32"),s=$(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return L.runKernel(a0,r)}var T6=B({broadcastArgs_:BF});function WF(e,t){let n=$(e,"broadcastTo","x"),s=n.shape;if(t.some(u=>!(u>0)||u%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let u=n.shape.slice();for(;u.length<t.length;)u.unshift(1);n=V(n,u)}let r=n.shape,a=Array.from(t);for(let u=t.length-1;u>=0;u--)if(r[u]===t[u])a[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Mn(n);let i={x:n},l={reps:a};return L.runKernel(La,i,l)}var sl=B({broadcastTo_:WF});function VF(e){let n={x:$(e,"x","ceil","float32")};return L.runKernel(Sa,n)}var wA=B({ceil_:VF});function UF(e,t,n){let s=$(e,"x","clipByValue");O(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return L.runKernel(Ca,r,a)}var gs=B({clipByValue_:UF});function GF(e){return St(e,0)}var kA=B({concat1d_:GF});function HF(e,t){return St(e,t)}var nu=B({concat2d_:HF});function jF(e,t){return St(e,t)}var IA=B({concat3d_:jF});function qF(e,t){return St(e,t)}var SA=B({concat4d_:qF});function XF(e,t,n,s,r="NHWC",a=[1,1],o){let i=$(e,"x","conv2d","float32"),l=$(t,"filter","conv2d","float32"),u=i,c=!1;i.rank===3&&(c=!0,u=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),O(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),as("conv2d",s,o);let p=r==="NHWC"?u.shape[3]:u.shape[1];O(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),O(sa(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let d={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=L.runKernel(Fo,d,h);return c?V(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var va=B({conv2d_:XF});function KF(e,t,n,s,r="NWC",a=1,o){let i=$(e,"x","conv1d"),l=$(t,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=V(i,[1,i.shape[0],i.shape[1]])),O(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),O(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),as("conv1d",s,o),O(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),O(sa(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),O(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=V(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=V(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=va(d,p,[1,n],s,"NHWC",[1,a],o);return c?V(g,[g.shape[2],g.shape[3]]):V(g,[g.shape[0],g.shape[2],g.shape[3]])}var R0=B({conv1d_:KF});function ZF(e,t,n,s,r,a="NHWC",o){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,u=!1;t.rank===3&&(u=!0,l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),O(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),O(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),O(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?i[3]:i[1],p=a==="NHWC"?l.shape[3]:l.shape[1];O(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),O(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),as("conv2dDerInput",r,o);let d={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=L.runKernel(Oo,d,h);return u?V(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var CA=B({conv2DBackpropInput_:ZF});function YF(e,t,n,s,r,a){let o=$(e,"x","conv2dTranspose"),i=$(t,"filter","conv2dTranspose");return CA(n,o,i,s,r,"NHWC",a)}var _0=B({conv2dTranspose_:YF});function JF(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=$(e,"x","conv3d"),i=$(t,"filter","conv3d"),l=o,u=!1;o.rank===4&&(u=!0,l=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),O(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),O(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),O(sa(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),O(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let c={x:l,filter:i},p={strides:n,pad:s,dataFormat:r,dilations:a},d=L.runKernel(Zp,c,p);return u?V(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var TA=B({conv3d_:JF});function QF(e,t,n,s,r){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=V(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],u=o.shape[4];O(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),O(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),O(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),O(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),O(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:o,filter:n},p={pad:r,strides:s,inputShape:a},d=L.runKernel(l0,c,p);return i?V(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var N6=B({conv3DBackpropInput_:QF});function eO(e,t,n,s,r){let a=$(e,"x","conv3dTranspose"),o=$(t,"filter","conv3dTranspose");return N6(n,a,o,s,r)}var NA=B({conv3dTranspose_:eO});function tO(e){let n={x:$(e,"x","cos","float32")};return L.runKernel(Mo,n)}var xh=B({cos_:tO});function nO(e){let n={x:$(e,"x","cosh","float32")};return L.runKernel(zo,n)}var D0=B({cosh_:nO});function sO(e,t=0,n=!1,s=!1){let a={x:$(e,"x","cumprod")},o={axis:t,exclusive:n,reverse:s};return L.runKernel(kl,a,o)}var Fp=B({cumprod_:sO});function rO(e,t=0,n=!1,s=!1){let a={x:$(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return L.runKernel(Lo,a,o)}var $0=B({cumsum_:rO});function aO(e,t,n,s=!1){let r=$(e,"x","denseBincount"),a=$(t,"weights","denseBincount");O(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),O(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return L.runKernel(u0,o,i)}var E6=B({denseBincount_:aO});function oO(e,t,n="NHWC"){let s=$(e,"x","depthToSpace","float32"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];O(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),O(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),O(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),O(o%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return L.runKernel(Sl,i,l)}var EA=B({depthToSpace_:oO});function iO(e,t,n,s,r="NHWC",a=[1,1],o){let i=$(e,"x","depthwiseConv2d","float32"),l=$(t,"filter","depthwiseConv2d","float32"),u=i,c=!1;i.rank===3&&(c=!0,u=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),O(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`);let p=r==="NHWC"?u.shape[3]:u.shape[1];O(p===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${p}) must match the inChannels dimension in filter ${l.shape[2]}.`),as("depthwiseConv2d",s,o);let d={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=L.runKernel(Bo,d,h);return c?V(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Kc=B({depthwiseConv2d_:iO});function lO(e){let n={x:$(e,"x","diag")};return L.runKernel(p0,n)}var R6=B({diag_:lO});function uO(e,t,n,s,r=[1,1],a="NHWC"){let o=$(e,"x","dilation2d"),i=$(t,"filter","dilation2d");O(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),O(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),O(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,u=!1;o.rank===3&&(l=V(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=!0);let c={x:l,filter:i},p={strides:n,pad:s,dilations:r},d=L.runKernel(Yp,c,p);return u?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var RA=B({dilation2d_:uO});function cO(e,t){let n=$(e,"a","equal","string_or_numeric"),s=$(t,"b","equal","string_or_numeric");[n,s]=Gt(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Uo,r)}var _s=B({equal_:cO});function dO(e,t,n){let s=$(t,"a","where"),r=$(n,"b","where"),a=$(e,"condition","where","bool"),o=wt(wt(a.shape,s.shape),r.shape),i=sl(a,o),l=sl(s,o),u=sl(r,o),c={condition:i,t:l,e:u};return L.runKernel(Vl,c)}var zn=B({where_:dO});function pO(e){let n={x:$(e,"x","zerosLike")};return L.runKernel(Jl,n)}var it=B({zerosLike_:pO});function hO(e,t){let n=$(e,"a","div"),s=$(t,"b","div");[n,s]=Gt(n,s);let r=fe(n,s),a=it(r),o=_s(s,a);return zn(o,a,r)}var _A=B({divNoNan_:hO});function fO(e,t){let n=$(e,"t1","dot"),s=$(t,"t2","dot");O((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(O(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=V(n,[1,-1]),i=V(s,[-1,1]),l=Qe(o,i);return V(l,[])}else if(n.rank===1&&s.rank===2){let o=V(n,[1,-1]),i=V(s,[s.shape[0],s.shape[1]]),l=Qe(o,i);return V(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=V(s,[-1,1]),i=Qe(n,o);return V(i,[i.size])}else{let o=V(s,[s.shape[0],s.shape[1]]);return Qe(n,o)}}var DA=B({dot_:fO});function mO(e,...t){let n=t.map((r,a)=>$(r,`tensors${a}`,"einsum")),s={equation:e};return L.runKernel(Jp,n,s)}var _6=B({einsum_:mO});function gO(e){let n={x:$(e,"x","elu","float32")};return L.runKernel(Vo,n)}var Zc=B({elu_:gO});function yO(e){let t=$(e,"x","erf");O(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ye(t,"float32"));let n={x:t};return L.runKernel(Ec,n)}var $A=B({erf_:yO});function PA(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function D6(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function $6(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function dl(e,t){let n=t.map(s=>1);return D6(e,n,t)}function AO(e,t,n){O(PA(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function P6(e,t){if(PA(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function FA(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function xO(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function bO(e,t=null,n=!1){let r={x:$(e,"x","max")},a={reductionIndices:t,keepDims:n};return L.runKernel(Jo,r,a)}var hn=B({max_:bO});function vO(e,t=null,n=!1){let r={x:$(e,"x","min")},a={axis:t,keepDims:n};return L.runKernel(ti,r,a)}var wa=B({min_:vO});function wO(e,t){let n=$(e,"base","pow"),s=$(t,"exp","pow");[n,s]=Gt(n,s);let r={a:n,b:s};return L.runKernel(ai,r)}var ka=B({pow_:wO});function Ce(e,t){if((On(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&On(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return yi(e,[],[],t)}function kO(e){let n={x:$(e,"x","sqrt","float32")};return L.runKernel(Oa,n)}var En=B({sqrt_:kO});function IO(e){let t=$(e,"x","square"),n={};return L.runKernel("Square",{x:t},n)}var bt=B({square_:IO});function SO(e,t=null,n=!1){let s=$(e,"x","sum");s.dtype==="bool"&&(s=ye(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return L.runKernel(hi,r,a)}var ke=B({sum_:SO});function CO(e,t="euclidean",n=null,s=!1){e=$(e,"x","norm");let r=F6(e,t,n),a=r.shape;if(s){let o=dr(n,e.shape);a=dl(r.shape,o)}return V(r,a)}function F6(e,t,n=null){if(e.rank===0)return tn(e);if(e.rank!==1&&n===null)return F6(V(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return ke(tn(e),n);if(t===1/0)return hn(tn(e),n);if(t===-1/0)return wa(tn(e),n);if(t==="euclidean"||t===2)return En(ke(ka(tn(e),Ce(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return hn(ke(tn(e),n[0]),n[1]-1);if(t===1/0)return hn(ke(tn(e),n[1]),n[0]);if(t===-1/0)return wa(ke(tn(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return En(ke(bt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Yc=B({norm_:CO});function TO(e,t=null,n=!1){return Yc(e,"euclidean",t,n)}var OA=B({euclideanNorm_:TO});function NO(e){let n={x:$(e,"x","exp")};return L.runKernel(Ta,n)}var Ds=B({exp_:NO});function EO(e,t=0){let n=$(e,"x","expandDims","string_or_numeric");O(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return L.runKernel(Cl,s,r)}var Bt=B({expandDims_:EO});function RO(e){let n={x:$(e,"x","expm1")};return L.runKernel(Go,n)}var MA=B({expm1_:RO});function _O(e,t){let n=$(e,"x","tile","string_or_numeric");O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return L.runKernel(La,s,r)}var Hs=B({tile_:_O});function DO(e,t,n,s="float32"){t==null&&(t=e);let r=De([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=V(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return Hs(Bt(o,0),[n[0],1,1]);if(n.length===2)return Hs(Bt(Bt(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return Hs(Bt(Bt(Bt(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var P0=B({eye_:DO});function Jc(e,t,n){let s={shape:e,value:t,dtype:n};return L.runKernel(Rc,{},s)}function $O(e){let n={x:$(e,"x","floor","float32")};return L.runKernel(Na,n)}var Qc=B({floor_:$O});function PO(e,t,n=0,s=0){let r=$(e,"x","gather"),a=$(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return L.runKernel(Nl,o,i)}var ed=B({gather_:PO});function FO(e,t){let n=$(e,"a","greater","string_or_numeric"),s=$(t,"b","greater","string_or_numeric");[n,s]=Gt(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(qo,r)}var xs=B({greater_:FO});function OO(e,t){let n=$(e,"a","greaterEqual","string_or_numeric"),s=$(t,"b","greaterEqual","string_or_numeric");[n,s]=Gt(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Ea,r)}var xi=B({greaterEqual_:OO});function MO(e){let n={x:$(e,"x","isFinite")};return L.runKernel(_c,n)}var zA=B({isFinite_:MO});function zO(e){let n={x:$(e,"x","isInf")};return L.runKernel(Dc,n)}var LA=B({isInf_:zO});function LO(e){let n={x:$(e,"x","isNaN")};return L.runKernel($c,n)}var BA=B({isNaN_:LO});function BO(e,t=.2){let s={x:$(e,"x","leakyRelu")},r={alpha:t};return L.runKernel(Ko,s,r)}var bh=B({leakyRelu_:BO});function WO(e,t){let n=$(e,"a","less","string_or_numeric"),s=$(t,"b","less","string_or_numeric");[n,s]=Gt(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Zo,r)}var F0=B({less_:WO});function VO(e,t){let n=$(e,"a","lessEqual","string_or_numeric"),s=$(t,"b","lessEqual","string_or_numeric");[n,s]=Gt(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Yo,r)}var bi=B({lessEqual_:VO});function O6(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return L.runKernel(g0,{},s)}function UO(e,t=5,n=1,s=1,r=.5){let a=$(e,"x","localResponseNormalization");O(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${a.rank}.`),O(ec(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=V(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},u={depthRadius:t,bias:n,alpha:s,beta:r},c=L.runKernel(eh,l,u);return i?V(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var WA=B({localResponseNormalization_:UO});function GO(e){let n={x:$(e,"x","log","float32")};return L.runKernel(Ra,n)}var $s=B({log_:GO});function HO(e){let n={x:$(e,"x","log1p")};return L.runKernel(Pc,n)}var vh=B({log1p_:HO});function jO(e){return O(go(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=$(t,"x","tf.grad","string_or_numeric"),r=n!=null?$(n,"dy","tf.grad"):null;return L.tidy(()=>{let{value:a,grads:o}=L.gradients(()=>e(s),[s],r);return r!=null&&rs(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),O0(o),o[0]})}}function qO(e){return O(go(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{O(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=$p(t,"args","tf.grads","string_or_numeric"),r=n!=null?$(n,"dy","tf.grads"):null;return L.tidy(()=>{let{value:a,grads:o}=L.gradients(()=>e(...s),s,r);return r!=null&&rs(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),O0(o),o})}}function XO(e){return O(go(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{O(t instanceof nt,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),O(n==null||n instanceof nt,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=L.gradients(()=>e(t),[t],n);return O0(s),{grad:s[0],value:r}}}function KO(e){return O(go(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{O(Array.isArray(t)&&t.every(r=>r instanceof nt),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),O(n==null||n instanceof nt,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=L.gradients(()=>e(...t),t,n);return n!=null&&rs(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),O0(s.grads),s}}function M6(e,t){O(go(e),()=>"The f passed in variableGrads(f) must be a function"),O(t==null||Array.isArray(t)&&t.every(u=>u instanceof _p),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in L.registeredVariables)t.push(L.registeredVariables[u])}let s=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),O(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=L.gradients(e,t,null,a);O(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),O(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),s!=null&&s.forEach(u=>l[u.name]=null),{value:o,grads:l}}function ea(e){return L.customGrad(e)}function O0(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function ZO(e){let n={x:$(e,"x","softplus")};return L.runKernel(Vc,n)}var su=B({softplus_:ZO});function YO(e){let t=$(e,"x","logSigmoid");return ea(s=>({value:$t(su($t(s))),gradFunc:o=>z(o,Cn($t(s)))}))(t)}var VA=B({logSigmoid_:YO});function JO(e,t){let n=$(e,"a","sub"),s=$(t,"b","sub");[n,s]=Gt(n,s);let r={a:n,b:s};return L.runKernel(za,r)}var me=B({sub_:JO});function QO(e,t=-1){let n=$(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return ea((r,a)=>{let i=hn(r,t,!0),l=me(r,i),u=me(ye(l,"float32"),$s(ke(Ds(l),t,!0)));return a([u]),{value:u,gradFunc:(p,d)=>{let[h]=d,f=!0,m=Ds(h);return me(p,z(ke(p,t,f),m))}}})(n)}var M0=B({logSoftmax_:QO});function eM(e,t=null,n=!1){let s=$(e,"x","logSumExp"),r=dr(t,s.shape),a=hn(s,r,!0),o=me(s,a),i=Ds(o),l=ke(i,r),u=$s(l),c=ue(V(a,u.shape),u);if(n){let p=dl(c.shape,r);return V(c,p)}return c}var z0=B({logSumExp_:eM});function tM(e,t){let n=$(e,"a","logicalAnd","bool"),s=$(t,"b","logicalAnd","bool");wt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Rl,r)}var cr=B({logicalAnd_:tM});function nM(e){let n={x:$(e,"x","logicalNot","bool")};return L.runKernel(_l,n)}var wh=B({logicalNot_:nM});function sM(e,t){let n=$(e,"a","logicalOr","bool"),s=$(t,"b","logicalOr","bool");wt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Fc,r)}var L0=B({logicalOr_:sM});function rM(e,t){let n=$(e,"a","logicalXor","bool"),s=$(t,"b","logicalXor","bool");return wt(n.shape,s.shape),cr(L0(e,t),wh(cr(e,t)))}var UA=B({logicalXor_:rM}),Zf=2147483648;function aM(e,t,n="left"){let s=$(e,"sortedSequence","searchSorted"),r=$(t,"values","searchSorted"),a=s.shape[s.shape.length-1],o=r.shape[r.shape.length-1],i=V(s,[-1,a]),l=V(r,[-1,o]);if(i.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(i.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(Et(l.shape)>=Zf)throw new Error(`values tensor size must less than ${Zf}`);if(i.shape[1]>=Zf)throw new Error(`trailing dim_size must less than ${Zf} for int32 output type, was ${i.shape[1]}`);let u={sortedSequence:i,values:l},c={side:n};return L.runKernel(S0,u,c)}var B0=B({searchSorted_:aM});function z6(e,t){return B0(e,t,"left")}function oM(e,t,n,s,r){let a=$(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),O(sa(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),as("maxPool",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=L.runKernel(Qo,u,c);return l?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var kh=B({maxPool_:oM});function iM(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=$(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),as("maxPool3d",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=L.runKernel(th,u,c);return l?V(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var GA=B({maxPool3d_:iM});function lM(e,t,n,s,r=!1){let o={x:$(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=L.runKernel(b0,o,i);return{result:l[0],indexes:l[1]}}var L6=B({maxPoolWithArgmax_:lM});function uM(e,t){let n=$(e,"a","maximum"),s=$(t,"b","maximum");[n,s]=Gt(n,s),n.dtype==="bool"&&(n=ye(n,"int32"),s=ye(s,"int32")),wt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(_a,r)}var ra=B({maximum_:uM});function cM(e,t=null,n=!1){let r={x:$(e,"x","mean")},a={axis:t,keepDims:n};return L.runKernel(ei,r,a)}var Wt=B({mean_:cM});function Vt(e,t="float32"){if(t==="complex64"){let s=Vt(e,"float32"),r=Vt(e,"float32");return ba(s,r)}let n=t0(Et(e),t);return L.makeTensor(n,e,t)}function Es(e,t="float32"){if(t==="complex64"){let s=Es(e,"float32"),r=Vt(e,"float32");return ba(s,r)}let n=Oy(Et(e),t);return L.makeTensor(n,e,t)}function B6(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=$(e,"x","meshgrid",e instanceof nt?e.dtype:"float32");if(t===void 0)return[s];let r=$(t,"y","meshgrid",t instanceof nt?t.dtype:"float32"),a=Et(s.shape),o=Et(r.shape);return n==="xy"?(s=V(s,[1,-1]),r=V(r,[-1,1]),[Qe(Es([o,1],s.dtype),s),Qe(r,Es([1,a],r.dtype))]):(s=V(s,[-1,1]),r=V(r,[1,-1]),[Qe(s,Es([1,o],s.dtype)),Qe(Es([a,1],r.dtype),r)])}function dM(e,t){let n=$(e,"a","minimum"),s=$(t,"b","minimum");[n,s]=Gt(n,s),n.dtype==="bool"&&(n=ye(n,"int32"),s=ye(s,"int32")),wt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Da,r)}var td=B({minimum_:dM});function pM(e,t,n){O(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=$(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");O(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)O(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),O(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return L.runKernel(ni,o,a)}var HA=B({mirrorPad_:pM});function hM(e,t){let n=$(e,"a","mod"),s=$(t,"b","mod");[n,s]=Gt(n,s);let r={a:n,b:s};return L.runKernel(Oc,r)}var ru=B({mod_:hM});function fM(e,t=null,n=!1){e=$(e,"x","moments");let s=dr(t,e.shape),r=Wt(e,s,n),a=r.shape;n||(a=dl(r.shape,s));let o=bt(me(ye(e,"float32"),V(r,a))),i=Wt(o,s,n);return{mean:r,variance:i}}var Ih=B({moments_:fM});function mM(e,t,n,s){let r=$(t,"data","multiRNNCell"),a=$p(n,"c","multiRNNCell"),o=$p(s,"h","multiRNNCell"),i=r,l=[];for(let p=0;p<e.length;p++){let d=e[p](i,a[p],o[p]);l.push(d[0]),l.push(d[1]),i=d[1]}let u=[],c=[];for(let p=0;p<l.length;p+=2)u.push(l[p]),c.push(l[p+1]);return[u,c]}var W6=B({multiRNNCell_:mM});function gM(e,t,n,s=!1){let r=$(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?V(r,[1,-1]):r},u={numSamples:t,seed:n,normalized:s},c=L.runKernel(v0,l,u);return o===1?V(c,[c.size]):c}var V6=B({multinomial_:gM});function yM(e,t){let n=$(e,"a","notEqual","string_or_numeric"),s=$(t,"b","notEqual","string_or_numeric");[n,s]=Gt(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(si,r)}var pl=B({notEqual_:yM});function AM(e){let n={x:$(e,"x","onesLike")};return L.runKernel(Fl,n)}var Ps=B({onesLike_:AM});function xM(e,t){let n=$(e,"v1","outerProduct"),s=$(t,"v2","outerProduct");O(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=V(n,[-1,1]),a=V(s,[1,-1]);return Qe(r,a)}var U6=B({outerProduct_:xM});function bM(e,t,n=0){let s=$(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return L.runKernel(ri,a,r)}var Ys=B({pad_:bM});function vM(e,t,n=0){return O(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Ys(e,[t],n)}var G6=B({pad1d_:vM});function wM(e,t,n=0){return O(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Ys(e,t,n)}var H6=B({pad2d_:wM});function kM(e,t,n=0){return O(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Ys(e,t,n)}var j6=B({pad3d_:kM});function IM(e,t,n=0){return O(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Ys(e,t,n)}var q6=B({pad4d_:IM});function SM(e,t,n){let s=$(e,"x","spaceToBatchND");O(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),O(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),O(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]===0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return L.runKernel(Hl,r,a)}var Sh=B({spaceToBatchND_:SM});function CM(e,t,n,s,r,a,o){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let i=$(e,"x","maxPool"),l=i,u=!1;i.rank===3&&(u=!0,l=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(sa(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=k6(l.shape,t,a,r,s),p=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=NM([c.filterHeight,c.filterWidth],p):d=[[0,0],[0,0]];let h=p[0]===1&&p[1]===1,[f,m]=TM([c.inHeight,c.inWidth],p,d),g=h?s:"valid",y=h?l:Sh(l,p,f),A=(n==="avg"?()=>yh(y,t,a,g,o):()=>kh(y,t,a,g,o))(),b=h?A:Ah(A,p,m);return u?V(b,[b.shape[1],b.shape[2],b.shape[3]]):b}function TM(e,t,n){let s=n.map(c=>c[0]),r=n.map(c=>c[1]),a=e.concat(s,r),o=t.map((c,p)=>(c-a[p]%c)%c),i=r.map((c,p)=>c+o[p]),l=t.map((c,p)=>[s[p],i[p]]),u=t.map((c,p)=>[0,o[p]]);return[l,u]}function NM(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var jA=B({pool_:CM});function EM(e,t){let n=$(e,"x","prelu"),s=$(t,"alpha","prelu"),r={x:n,alpha:s};return L.runKernel(oi,r)}var Ch=B({prelu_:EM});function RM(e,t=null,n=!1){let s=$(e,"x","prod");s.dtype==="bool"&&(s=ye(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return L.runKernel(ii,r,a)}var qA=B({prod_:RM});function _M(e,t,n,s,r){let a=$(e,"shape","raggedTensorToTensor","int32"),o=$(t,"values","raggedTensorToTensor"),i=$(n,"defaultValue","raggedTensorToTensor",o.dtype),l=s.map((p,d)=>$(p,`tensors${d}`,"raggedTensorToTensor","int32")),u={shape:a,values:o,defaultValue:i,rowPartitionTensors:l},c={rowPartitionTypes:r};return L.runKernel(w0,u,c)}var X6=B({raggedTensorToTensor_:_M});function DM(e,t,n){let s=Et(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return L.makeTensor(r,e,n)}var K6=B({rand_:DM}),XA=No(Qm()),KA=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=XA.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},$M=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=XA.alea(r.toString()),this.randn=new KA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},PM=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=XA.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function FM(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new $M(t,n,s,r),o=De(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var Z6=B({randomGamma_:FM});function OM(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new KA(t,n,s,!1,r),o=De(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var W0=B({randomNormal_:OM});function MM(e,t,n){if(t!=null&&t==="bool")throw new Error(`Unsupported data type ${t}`);return W0(e,0,1,t,n)}var Y6=B({randomStandardNormal_:MM});function zM(e,t=0,n=1,s="float32",r){let a=De(e,s),o=new PM(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var nd=B({randomUniform_:zM});function ac(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return L.runKernel(zc,{},r)}function LM(e){let n={x:$(e,"x","reciprocal")};return L.runKernel(Lc,n)}var ZA=B({reciprocal_:LM});function BM(e){let n={x:$(e,"x","relu")};return L.runKernel(li,n)}var zr=B({relu_:BM});function WM(e){let n={x:$(e,"x","relu6")};return L.runKernel(di,n)}var V0=B({relu6_:WM});function VM(e,t){let s={x:$(e,"x","reverse")},r={dims:t};return L.runKernel(Ll,s,r)}var Ks=B({reverse_:VM});function UM(e){let t=$(e,"x","reverse");return O(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Ks(t,0)}var J6=B({reverse1d_:UM});function GM(e,t){let n=$(e,"x","reverse");return O(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Ks(n,t)}var Q6=B({reverse2d_:GM});function HM(e,t){let n=$(e,"x","reverse");return O(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Ks(n,t)}var ek=B({reverse3d_:HM});function jM(e,t){let n=$(e,"x","reverse");return O(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Ks(n,t)}var tk=B({reverse4d_:jM});function qM(e){let n={x:$(e,"x","round")};return L.runKernel(Bl,n)}var U0=B({round_:qM});function XM(e){let n={x:$(e,"x","rsqrt","float32")};return L.runKernel(Pa,n)}var G0=B({rsqrt_:XM});function KM(e){let n={x:$(e,"x","selu")};return L.runKernel(Bc,n)}var H0=B({selu_:KM});function ZM(e,t,n,s,r,a=[1,1],o="NHWC"){let i=$(e,"x","separableConv2d"),l=$(t,"depthwiseFilter","separableConv2d"),u=$(n,"pointwiseFilter","separableConv2d"),c=i,p=!1;if(i.rank===3&&(p=!0,c=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");O(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),O(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),O(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),O(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),O(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],h=l.shape[3];O(u.shape[2]===d*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*h}, but got ${u.shape[2]}.`);let f=Kc(c,l,s,r,o,a),g=va(f,u,1,"valid",o);return p?V(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var j0=B({separableConv2d_:ZM});async function YM(e,t){let n=$(e,"x","setdiff1d"),s=$(t,"y","setdiff1d");O(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),O(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),O(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let c=0;c<r.length;c++)o.has(r[c])||i++;let l=new Kt([i],n.dtype),u=new Kt([i],"int32");for(let c=0,p=0;c<r.length;c++)o.has(r[c])||(l.values[p]=r[c],u.values[p]=c,p++);return[l.toTensor(),u.toTensor()]}var nk=YM;function JM(e){let n={x:$(e,"x","sign")};return L.runKernel(Wc,n)}var YA=B({sign_:JM});function QM(e){let n={x:$(e,"x","sin","float32")};return L.runKernel(pi,n)}var q0=B({sin_:QM});function ez(e){let n={x:$(e,"x","sinh")};return L.runKernel(Gl,n)}var X0=B({sinh_:ez});function tz(e,t,n){let s=$(e,"x","slice1d");return O(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),Le(s,[t],[n])}var Th=B({slice1d_:tz});function nz(e,t,n){let s=$(e,"x","slice2d");return O(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),Le(s,t,n)}var K0=B({slice2d_:nz});function sz(e,t,n){let s=$(e,"x","slice3d");return O(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),Le(s,t,n)}var vi=B({slice3d_:sz});function rz(e,t,n){let s=$(e,"x","slice4d");return O(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),Le(s,t,n)}var vo=B({slice4d_:rz});function az(e,t=-1){let n=$(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return L.runKernel(fi,s,r)}var au=B({softmax_:az});function oz(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(f0,t)}var Nh=B({fft_:oz});function iz(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(m0,t)}var oc=B({ifft_:iz});function lz(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=V(e,[n,t]);s=oc(r)}else{let r=[n,2*(t-1)],a=V(rc(e),[n,t]),o=V(mh(e),[n,t]),i=Ks(Le(a,[0,1],[n,t-2]),1),l=z(Ks(Le(o,[0,1],[n,t-2]),1),Ce(-1)),u=St([a,i],1),c=St([o,l],1),p=V(ba(u,c),[r[0],r[1]]);s=oc(p)}if(s=rc(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=V(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var Z0=B({irfft_:lz});function uz(e,t,n=0){let r={x:$(e,"x","split")},a={numOrSizeSplits:t,axis:n};return L.runKernel(jl,r,a)}var Zt=B({split_:uz});function cz(e,t){O(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=Le(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=St([e,Vt(f)],e.shape.length-1),n=t}else r=e;let a=it(r),o=V(ba(r,a),[s,n]),i=Nh(o),l=Math.floor(n/2)+1,u=rc(i),c=mh(i),p=Zt(u,[l,n-l],u.shape.length-1),d=Zt(c,[l,n-l],c.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,V(ba(p[0],d[0]),h)}var Eh=B({rfft_:cz});function dz(e,t){let n=$(e,"a","squaredDifference"),s=$(t,"b","squaredDifference");[n,s]=Gt(n,s),wt(n.shape,s.shape);let r={a:n,b:s},a={};return L.runKernel(Ma,r,a)}var Y0=B({squaredDifference_:dz});function pz(e,t){let n=$(e,"x","squeeze","string_or_numeric");return V(n,ww(n.shape,t).newShape)}var st=B({squeeze_:pz});function hz(e,t=0){let n=$p(e,"tensors","stack","string_or_numeric");O(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&O(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return L.runKernel(Ml,s,r)}var on=B({stack_:hz});function fz(e,t=0){let s={x:$(e,"x","step")},r={alpha:t};return L.runKernel(gi,s,r)}var ou=B({step_:fz});function mz(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let c={x:$(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return L.runKernel(ql,c,p)}var JA=B({stridedSlice_:mz});function gz(e){let n={x:$(e,"x","tan","float32")};return L.runKernel(Xl,n)}var QA=B({tan_:gz});function Ft(e,t){xl(e);let n=Qr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return yi(e,null,n,t)}function ur(e,t,n){if(xl(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=Qr(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return yi(e,t,s,n)}function sk(e,t,n){if(xl(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=Qr(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return yi(e,t,s,n)}function rk(e,t,n){if(xl(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=Qr(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return yi(e,t,s,n)}function ak(e,t,n){if(xl(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=Qr(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,yi(e,t,s,n)}function yz(e,t=1,n=!0){let s=$(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=L.runKernel(Kl,a,o);return{values:i,indices:l}}var e5=B({topk_:yz});function Az(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new KA(t,n,s,!0,r),o=De(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var J0=B({truncatedNormal_:Az});function xz(e,t=0){let n=$(e,"x","unique","string_or_numeric");O(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=L.runKernel(C0,s,r);return{values:a,indices:o}}var t5=B({unique_:xz});function bz(e,t,n){let s=$(e,"x","unsortedSegmentSum"),r=$(t,"segmentIds","unsortedSegmentSum","int32");O(ec(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return L.runKernel(uh,a,o)}var Q0=B({unsortedSegmentSum_:bz});function vz(e,t=0){let n=$(e,"x","unstack","string_or_numeric");O(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return L.runKernel(Yl,s,r)}var Rn=B({unstack_:vz});function ok(e,t){return B0(e,t,"right")}function n5(e,t=!0,n,s){return L.makeVariable(e,t,n,s)}function ik(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=De(e,"int32"),r=De([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function wz(e){let t=$(e,"condition","whereAsync","bool"),n=await t.data(),s=ik(t.shape,n);return e!==t&&t.dispose(),s}var s5=wz;async function kz(e,t,n){let s=$(e,"tensor","boolMask"),r=$(t,"mask","boolMask","bool"),a=n==null?0:n,o=r.rank,i=s.shape;O(o>0,()=>"mask cannot be scalar"),rs(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m<a+o;m++)l*=i[m];let u=i.slice(0,a).concat([l],i.slice(a+o)),c=V(s,u),p=V(r,[-1]),d=await s5(p),h=st(d,[1]),f=ed(c,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),c.dispose(),p.dispose(),d.dispose(),f}var lk=kz;function Iz(e,t,n,s,r=!0){let a=$(e,"v","movingAverage"),o=$(t,"x","movingAverage"),i=$(n,"decay","movingAverage");Bw(a,o),O(Eo(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Ce(1),u=me(l,i),c=z(me(o,a),u);if(r){O(s!=null,()=>"When using zeroDebias: true, step is required.");let p=$(s,"step","movingAverage");c=fe(c,me(l,ka(i,p)))}return ue(a,c)}var uk=B({movingAverage_:Iz});function Sz(e,t,n){let s=$(e,"indices","scatterND","int32"),r=$(t,"updates","scatterND");rA(r,s,n);let a={indices:s,updates:r},o={shape:n};return L.runKernel(Wl,a,o)}var ck=B({scatterND_:Sz});function Cz(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function Tz(e,t,n,s=0){let r=$(e,"sparseIndices","sparseToDense","int32"),a=$(t,"sparseValues","sparseToDense","string_or_numeric"),o=$(s,"defaultValue","sparseToDense",a.dtype);Cz(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return L.runKernel(oh,i,l)}var dk=B({sparseToDense_:Tz});function Nz(e,t){let n=$(t,"indices","gatherND","int32"),r={params:$(e,"x","gatherND","string_or_numeric"),indices:n};return L.runKernel(El,r)}var pk=B({gatherND_:Nz});function Ez(e,t){if(t==null)return e.shape.slice();if(Eo(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function Rz(e,t,n,s){let r=$(e,"x","dropout");if(O(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),O(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof nt?r.clone():r;let a=Ez(r,n),o=1-t,i=fe(Qc(ue(nd(a,0,1,"float32",s),o)),o);return z(r,i)}var r5=B({dropout_:Rz});function a5(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function e2(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return Ft(r,"float32")}async function _z(e,t,n=1){let s=$(e,"predictions","inTopK"),r=$(t,"targets","inTopK");O(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),O(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),rs(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];O(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,u]=[o.length/a,a],c=kw("bool",l);for(let p=0;p<l;p++){let d=p*u,h=o.subarray(d,d+u),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),c[p]=0;for(let m=0;m<n;m++)if(f[m].index===i[p]){c[p]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),ct(c,r.shape,"bool")}var hk=_z,ic={};Ve(ic,{conv2d:()=>Pz,depthwiseConv2d:()=>zz,matMul:()=>Bz});function Dz(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]])),O(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),O(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),O(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=a==="NHWC"?i.shape[3]:i.shape[1],c=a==="NHWC"?l.shape[3]:l.shape[1];O(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),O(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),as("conv2dDerFilter",r,o);let p={x:i,dy:l},d={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return L.runKernel(o0,p,d)}var o5=B({conv2DBackpropFilter_:Dz});function t2(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,ou(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function n2(e,t){let n=t,s=an(e.shape,t.shape);return s.length>0&&(n=ke(n,s)),V(n,e.shape)}function s2(e,t,n,s){if(t==="linear")return e;if(t==="relu")return zr(e);if(t==="elu")return Zc(e);if(t==="relu6")return V0(e);if(t==="prelu")return Ch(e,n);if(t==="leakyrelu")return bh(e,s);if(t==="sigmoid")return Cn(e);throw new Error(`Unknown fused activation ${t}.`)}var r2=(e,t)=>!(e>0)||t==="linear";function $z({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",r2(L.state.gradientDepth,l)===!1){O(r==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${r} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let I=va(e,t,n,s,r,a,o);return i!=null&&(I=ue(I,i)),s2(I,l,u,c)}let p=$(e,"x","conv2d","float32"),d=$(t,"filter","conv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=V(p,[1,p.shape[0],p.shape[1],p.shape[2]])),O(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),O(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),as("fused conv2d",s,o);let m=r==="NHWC"?h.shape[3]:h.shape[1];O(d.shape[2]===m,()=>`Error in conv2d: depth of input (${m}) must match input depth for filter ${d.shape[2]}.`),O(sa(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let g=gh(h.shape,d.shape,n,a,s,o),y;i!=null&&(y=$(i,"bias","fused conv2d"),[y]=Gt(y,p),r==="NHWC"?wt(g.outShape,y.shape):(O(y.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${y.shape.length}.`),O(y.shape.length===0||y.shape[0]===g.outChannels||y.shape[0]===1,()=>`Error in fused conv2d: bias shape (${y.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let x;if(u!=null){let I=u.shape;if(O(I.length<=1||I.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${I.length}.`),I.length===1)O(I[0]===1||I[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${I}) is not compatible with the number of output channels (${g.outChannels}).`);else if(I.length===3)try{wt(I,g.outShape)}catch(k){let E=`Error in fused conv2d: PReLU activation weights (${I}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(E)}x=$(u,"prelu weights","fused conv2d")}let A=(I,k)=>{O(r==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${r} but only NHWC is currently supported.`);let[E,_,D,R]=k,P=t2(I,D,l);O(bo(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let T=CA(_.shape,P,E,n,s),M=o5(_,P,E.shape,n,s),W=[T,M];if(R!=null){let G=n2(R,P);W.push(G)}return W},b={x:h,filter:d,bias:y,preluActivationWeights:x},w={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?ea((k,E,_)=>{let D=L.runKernel(Ao,b,w);return _([E,k,D]),f&&(D=V(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:A}})(h,d):ea((k,E,_,D)=>{let R=L.runKernel(Ao,b,w);return D([E,k,R,_]),f&&(R=V(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:A}})(h,d,y)}var Pz=B({fusedConv2d_:$z});function Fz(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:i,dy:l},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return L.runKernel(c0,u,c)}var fk=B({depthwiseConv2dNativeBackpropFilter_:Fz});function Oz(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:i,filter:n},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},p=L.runKernel(d0,u,c);return l?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var mk=B({depthwiseConv2dNativeBackpropInput_:Oz});function Mz({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(r2(L.state.gradientDepth,l)===!1){let w=Kc(e,t,n,s,r,a,o);return i!=null&&(w=ue(w,i)),s2(w,l,u,c)}let p=$(e,"x","depthwiseConv2d","float32"),d=$(t,"filter","depthwiseConv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=V(p,[1,p.shape[0],p.shape[1],p.shape[2]])),O(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),O(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),O(h.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),a==null&&(a=[1,1]),O(sa(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),as("fused depthwiseConv2d",s,o);let m=gh(h.shape,d.shape,n,a,s,o,!0),g;i!=null&&(g=$(i,"bias","fused conv2d"),[g]=Gt(g,p),wt(m.outShape,g.shape));let y;u!=null&&(y=$(u,"prelu weights","fused depthwiseConv2d"));let x=(w,I)=>{O(bo(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[k,E,_,D]=I,R=t2(w,_,l),P=mk(E.shape,R,k,n,s,a,o),T=fk(E,R,k.shape,n,s,a,o);if(D!=null){let M=n2(g,R);return[P,T,M]}return[P,T]},A={x:h,filter:d,bias:g,preluActivationWeights:y},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?ea((I,k,E)=>{let _=L.runKernel(xo,A,b);return E([k,I,_]),f&&(_=V(_,[_.shape[1],_.shape[2],_.shape[3]])),{value:_,gradFunc:x}})(h,d):ea((I,k,E,_)=>{let D=L.runKernel(xo,A,b);return _([k,I,D,E]),f&&(D=V(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:x}})(h,d,g)}var zz=B({fusedDepthwiseConv2d_:Mz});function Lz({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i=.2}){if(r2(L.state.gradientDepth,a)===!1){let R=Qe(e,t,n,s);return r!=null&&(R=ue(R,r)),s2(R,a,o,i)}let l=$(e,"a","fused matMul"),u=$(t,"b","fused matMul");[l,u]=Gt(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=s?u.shape[u.rank-1]:u.shape[u.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),g=Et(f),y=Et(m);O(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${s} must match.`);let A=wt(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([d,h]),b=n?V(l,[g,c,d]):V(l,[g,d,c]),w=s?V(u,[y,h,p]):V(u,[y,p,h]),I;r!=null&&(I=$(r,"bias","fused matMul"),[I]=Gt(I,l),wt(A,I.shape));let k;o!=null&&(k=$(o,"prelu weights","fused matMul"));let E=(R,P)=>{let[T,M,W,G]=P,X=t2(V(R,W.shape),W,a),K,Y;if(!n&&!s?(K=Qe(X,M,!1,!0),Y=Qe(T,X,!0,!1)):!n&&s?(K=Qe(X,M,!1,!1),Y=Qe(X,T,!0,!1)):n&&!s?(K=Qe(M,X,!1,!0),Y=Qe(T,X,!1,!1)):(K=Qe(M,X,!0,!0),Y=Qe(X,T,!0,!0)),r!=null){let re=n2(G,X);return[K,Y,re]}else return[K,Y]},_={a:b,b:w,bias:I,preluActivationWeights:k},D={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?ea((P,T,M)=>{let W=L.runKernel(yo,_,D);return M([P,T,W]),{value:V(W,A),gradFunc:E}})(b,w):ea((P,T,M,W)=>{let G=L.runKernel(yo,_,D);return W([P,T,G,M]),{value:V(G,A),gradFunc:E}})(b,w,I)}var Bz=B({fusedMatMul_:Lz});function Wz(e){return e2(e,.54,.46)}var Vz=B({hammingWindow_:Wz});function Uz(e){return e2(e,.5,.5)}var gk=B({hannWindow_:Uz});function Gz(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(Le(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=St([Le(e,a,t-i),Jc([i],r)]);o.push(l),a+=n}return o.length===0?ur([],[0,t]):V(St(o),[o.length,t])}var yk=B({frame_:Gz});function Hz(e,t,n,s,r=gk){s==null&&(s=a5(t));let a=yk(e,t,n),o=z(a,r(t));return Eh(o,s)}var jz=B({stft_:Hz});function qz(e,t,n,s,r="bilinear",a=0){let o=$(e,"image","cropAndResize"),i=$(t,"boxes","cropAndResize","float32"),l=$(n,"boxInd","cropAndResize","int32"),u=i.shape[0];O(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),O(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),O(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),O(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),O(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let c={image:o,boxes:i,boxInd:l},p={method:r,extrapolationValue:a,cropSize:s};return L.runKernel(Il,c,p)}var Xz=B({cropAndResize_:qz});function Kz(e){let t=$(e,"image","flipLeftRight","float32");O(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return L.runKernel(Tl,n,{})}var Zz=B({flipLeftRight_:Kz});function Yz(e){let t=$(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];O(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),O(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Hs(t,r)}var Jz=B({grayscaleToRGB_:Yz});function Qz(e,t,n=0,s=.5){let r=$(e,"image","rotateWithOffset","float32");O(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return L.runKernel(Ql,a,o)}var eL=B({rotateWithOffset_:Qz});function sd(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),O(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),O(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),O(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),O(t.rank===1,()=>"scores must be a 1D tensor"),O(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),O(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function tL(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppression","float32"),o=$(t,"scores","nonMaxSuppression","float32"),i=sd(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return L.runKernel($l,{boxes:a,scores:o},l)}var nL=B({nonMaxSuppression_:tL});function sL(e,t,n){let s=rL(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function rL(e,t,n){return oL(e,t,n||aL)}function aL(e,t){return e>t?1:e<t?-1:0}function oL(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function Ak(e,t,n,s,r){return i5(e,t,n,s,r,0)}function xk(e,t,n,s,r,a){return i5(e,t,n,s,r,0,!1,a,!0)}function bk(e,t,n,s,r,a){return i5(e,t,n,s,r,a,!0)}function i5(e,t,n,s,r,a,o=!1,i=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(Wv);let c=a>0?-.5/a:0,p=[],d=[];for(;p.length<n&&u.length>0;){let g=u.pop(),{score:y,boxIndex:x,suppressBeginIndex:A}=g;if(y<r)break;let b=!1;for(let w=p.length-1;w>=A;--w){let I=iL(e,x,p[w]);if(I>=s){b=!0;break}if(g.score=g.score*lL(s,c,I),g.score<=r)break}g.suppressBeginIndex=p.length,b||(g.score===y?(p.push(x),d.push(g.score)):g.score>r&&sL(u,g,Wv))}let h=p.length,f=n-h;i&&f>0&&(p.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:p};return o&&(m.selectedScores=d),l&&(m.validOutputs=h),m}function iL(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),u=Math.min(r[0],r[2]),c=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),d=Math.max(r[1],r[3]),h=(i-a)*(l-o),f=(p-u)*(d-c);if(h<=0||f<=0)return 0;let m=Math.max(a,u),g=Math.max(o,c),y=Math.min(i,p),x=Math.min(l,d),A=Math.max(y-m,0)*Math.max(x-g,0);return A/(h+f-A)}function lL(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function Wv(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function uL(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppressionAsync"),o=$(t,"scores","nonMaxSuppressionAsync"),i=sd(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),u=l[0],c=l[1],{selectedIndices:p}=Ak(u,c,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),Ft(p,"int32")}var cL=uL;function dL(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),l=sd(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u={boxes:o,scores:i},c={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},p=L.runKernel(Pl,u,c);return{selectedIndices:p[0],selectedScores:p[1]}}var pL=B({nonMaxSuppressionWithScore_:dL});async function hL(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),l=sd(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u=await Promise.all([o.data(),i.data()]),c=u[0],p=u[1],{selectedIndices:d,selectedScores:h}=bk(c,p,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Ft(d,"int32"),selectedScores:Ft(h)}}var fL=hL;function mL(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),l=sd(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,d={boxes:o,scores:i},h={maxOutputSize:u,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:a},f=L.runKernel(Mc,d,h);return{selectedIndices:f[0],validOutputs:f[1]}}var gL=B({nonMaxSuppressionPadded_:mL});async function yL(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),l=sd(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,[d,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=xk(d,h,u,c,p,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Ft(f,"int32"),validOutputs:Ce(m,"int32")}}var AL=yL;function xL(e,t,n=!1,s=!1){let r=$(e,"images","resizeBilinear");O(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),O(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=V(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=L.runKernel(ci,i,l);return o?V(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var vk=B({resizeBilinear_:xL});function bL(e,t,n=!1,s=!1){let r=$(e,"images","resizeNearestNeighbor");O(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),O(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),O(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=V(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=L.runKernel(ui,i,l);return o?V(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var wk=B({resizeNearestNeighbor_:bL});function vL(e,t="binary",n=!1,s=.5){let r=$(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],u=z(Ft([s]),255),c,p,d,h;if(O(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),O(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),O(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),O(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[c,p,d]=Zt(r,[1,1,1],-1);let g=z(c,a),y=z(p,o),x=z(d,i);h=ue(ue(g,y),x)}else h=e;if(t==="otsu"){let g=vA(ye(U0(h),"int32"),ct([]),256);u=wL(g,l)}let f=n?bi(h,u):xs(h,u);return ye(z(f,255),"int32")}function wL(e,t){let n=Ft([-1]),s=Ft([0]),r=Ft([0]),a,o,i,l,u,c;for(let p=0;p<e.size-1;p++){a=Le(e,0,p+1),o=Le(e,p+1),u=fe(ke(a),t),c=fe(ke(o),t);let d=ke(z(a,ac(0,a.size)));i=fe(d,ke(a));let h=Jc(o.shape,a.size),f=ue(ac(0,o.size),h),m=z(o,f);l=fe(ke(m),ke(o));let g=me(i,l),y=me(i,l),x=z(u,c);r=z(z(x,g),y);let A=xs(r,s);s=zn(A,r,s),n=zn(A,Ft([p]),n)}return n}var kL=B({threshold_:vL});function IL(e,t,n="nearest",s="constant",r=0,a){let o=$(e,"image","transform","float32"),i=$(t,"transforms","transform","float32");O(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),O(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},u={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return L.runKernel(Zl,l,u)}var SL=B({transform_:IL});function CL(e,t,n){O(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),O(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=$(e,"a","bandPart");O(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=V(ac(0,a,1,"int32"),[-1,1]),l=ac(0,o,1,"int32"),u=me(i,l),c=cr(bi(u,Ce(+t,"int32")),xi(u,Ce(-n,"int32"))),p=Vt([a,o],s.dtype);return V(on(Rn(V(s,[-1,a,o])).map(d=>zn(c,d,p))),r)}var TL=B({bandPart_:CL});function NL(e){let t;if(Array.isArray(e)){t=!1,O(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)O(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=Zt(e,e.shape[0],0).map(r=>st(r,[0]));O(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(L.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=z(ke(z(n[o],a)),n[o]);a=me(a,i)}return fe(a,Yc(a,"euclidean"))}));return t?on(n,0):n}var EL=B({gramSchmidt_:NL});function RL(e,t=!1){if(O(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Vv(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),s=Rn(V(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[u,c]=Vv(l,t);r.push(u),a.push(c)});let o=V(on(r,0),e.shape),i=V(on(a,0),e.shape);return[o,i]}}function Vv(e,t=!1){return L.tidy(()=>{O(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=P0(n),a=Mn(e),o=ur([[1]],[1,1]),i=Mn(o),l=n>=s?s:n;for(let u=0;u<l;++u){let c=a,p=i,d=r;[i,a,r]=L.tidy(()=>{let h=Le(a,[u,u],[n-u,1]),f=Yc(h),m=Le(a,[u,u],[1,1]),g=zn(xs(m,0),ur([[-1]]),ur([[1]])),y=me(m,z(g,f)),x=fe(h,y);x.shape[0]===1?i=Mn(o):i=St([o,Le(x,[1,0],[x.shape[0]-1,x.shape[1]])],0);let A=$t(fe(Qe(g,y),f)),b=Le(a,[u,0],[n-u,s]),w=z(A,i),I=et(i);if(u===0)a=me(b,Qe(w,Qe(I,b)));else{let _=me(b,Qe(w,Qe(I,b)));a=St([Le(a,[0,0],[u,s]),_],0)}let k=et(w),E=Le(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=me(E,Qe(Qe(E,i),k));else{let _=me(E,Qe(Qe(E,i),k));r=St([Le(r,[0,0],[n,u]),_],1)}return[i,a,r]}),J([c,p,d])}return!t&&n>s&&(r=Le(r,[0,0],[n,s]),a=Le(a,[0,0],[s,s])),[r,a]})}var _L=B({qr_:RL}),es;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(es||(es={}));function DL(e,t,n=es.SUM_BY_NONZERO_WEIGHTS){let s=$(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=$(t,"weights","computeWeightedLoss"));let a=r==null?s:z(s,r);if(n===es.NONE)return a;if(n===es.SUM)return ke(a);if(n===es.MEAN){if(r==null)return Wt(a);{let o=s.size/r.size,i=fe(ke(a),ke(r));return o>1?fe(i,Ce(o)):i}}if(n===es.SUM_BY_NONZERO_WEIGHTS){if(r==null)return fe(ke(a),Ce(s.size));{let o=z(r,Es(s.shape)),i=ye(ke(pl(o,Ce(0))),"float32");return fe(ke(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Ba=B({computeWeightedLoss_:DL});function $L(e,t,n,s=es.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","absoluteDifference"),a=$(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=$(n,"weights","absoluteDifference")),rs(r.shape,a.shape,"Error in absoluteDifference: ");let i=tn(me(r,a));return Ba(i,o,s)}var PL=B({absoluteDifference_:$L});function FL(e,t,n,s,r=es.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","cosineDistance"),o=$(t,"predictions","cosineDistance"),i=null;s!=null&&(i=$(s,"weights","cosineDistance")),rs(a.shape,o.shape,"Error in cosineDistance: ");let l=Ce(1),u=me(l,ke(z(a,o),n,!0));return Ba(u,i,r)}var OL=B({cosineDistance_:FL});function ML(e,t,n,s=es.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","hingeLoss"),a=$(t,"predictions","hingeLoss"),o=null;n!=null&&(o=$(n,"weights","hingeLoss")),rs(r.shape,a.shape,"Error in hingeLoss: ");let i=Ce(1);r=me(z(Ce(2),r),i);let l=zr(me(i,z(r,a)));return Ba(l,o,s)}var zL=B({hingeLoss_:ML});function LL(e,t,n,s=1,r=es.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","huberLoss"),o=$(t,"predictions","huberLoss"),i=null;n!=null&&(i=$(n,"weights","huberLoss")),rs(a.shape,o.shape,"Error in huberLoss: ");let l=Ce(s),u=tn(me(o,a)),c=td(u,l),p=me(u,c),d=ue(z(Ce(.5),bt(c)),z(l,p));return Ba(d,i,r)}var BL=B({huberLoss_:LL});function WL(e,t,n,s=1e-7,r=es.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","logLoss"),o=$(t,"predictions","logLoss"),i=null;n!=null&&(i=$(n,"weights","logLoss")),rs(a.shape,o.shape,"Error in logLoss: ");let l=Ce(1),u=Ce(s),c=$t(z(a,$s(ue(o,u)))),p=z(me(l,a),$s(ue(me(l,o),u))),d=me(c,p);return Ba(d,i,r)}var VL=B({logLoss_:WL});function UL(e,t,n,s=es.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","meanSquaredError"),a=$(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=$(n,"weights","meanSquaredError")),rs(r.shape,a.shape,"Error in meanSquaredError: ");let i=Y0(r,a);return Ba(i,o,s)}var GL=B({meanSquaredError_:UL});function HL(e,t){let n=$(e,"labels","sigmoidCrossEntropyWithLogits"),s=$(t,"logits","sigmoidCrossEntropyWithLogits");rs(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=zr(s),a=z(s,n),o=vh(Ds($t(tn(s))));return ue(me(r,a),o)}function jL(e,t,n,s=0,r=es.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"multiClassLabels","sigmoidCrossEntropy"),o=$(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","sigmoidCrossEntropy")),rs(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let u=Ce(s),c=Ce(1),p=Ce(.5);a=ue(z(a,me(c,u)),z(p,u))}let l=HL(a,o);return Ba(l,i,r)}var qL=B({sigmoidCrossEntropy_:jL});function XL(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return ea((r,a,o)=>{let l=z0(a,[n],!0),u=me(ye(a,"float32"),l);o([r,u]);let c=$t(z(u,r));return{value:ke(c,[n]),gradFunc:(h,f)=>{let[m,g]=f,y=dl(h.shape,[n]);return[z(V(h,y),me(ye(m,"float32"),Ds(g))),z(V(h,y),me(Ds(g),ye(m,"float32")))]}}})(e,t)}function KL(e,t,n,s=0,r=es.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"onehotLabels","softmaxCrossEntropy"),o=$(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","softmaxCrossEntropy")),rs(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let u=Ce(s),c=Ce(1),p=Ce(a.shape[1]);a=ue(z(a,me(c,u)),fe(u,p))}let l=XL(a,o);return Ba(l,i,r)}var ZL=B({softmaxCrossEntropy_:KL});function YL(e,t,n,s){let r=$(e,"indices","sparseFillEmptyRows","int32"),a=$(t,"values","sparseFillEmptyRows"),o=$(n,"denseShape","sparseFillEmptyRows","int32"),i=$(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},u=L.runKernel(sh,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var JL=B({sparseFillEmptyRows_:YL});function QL(e,t,n){let s=$(e,"inputIndices","sparseReshape","int32"),r=$(t,"inputShape","sparseReshape","int32"),a=$(n,"newShape","sparseReshape","int32");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=L.runKernel(Uc,o);return{outputIndices:i[0],outputShape:i[1]}}var eB=B({sparseReshape_:QL});function tB(e,t,n){let s=$(e,"data","sparseSegmentMean"),r=$(t,"indices","sparseSegmentMean","int32"),a=$(n,"segmentIds","sparseSegmentMean","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return L.runKernel(rh,o)}var nB=B({sparseSegmentMean_:tB});function sB(e,t,n){let s=$(e,"data","sparseSegmentSum"),r=$(t,"indices","sparseSegmentSum","int32"),a=$(n,"segmentIds","sparseSegmentSum","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return L.runKernel(ah,o)}var rB=B({sparseSegmentSum_:sB});function aB(e,t,n,s,r,a,o,i){let l=$(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=$(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},p={data:l,dataSplits:u},d=L.runKernel(Hc,p,c);return{nGrams:d[0],nGramsSplits:d[1]}}var oB=B({stringNGrams_:aB});function iB(e,t,n=!0){let s=$(e,"input","stringSplit","string"),r=$(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=L.runKernel(ih,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var lB=B({stringSplit_:iB});function uB(e,t){let n=$(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return L.runKernel(lh,r,s)}var cB=B({stringToHashBucketFast_:uB}),kk={fft:Nh,ifft:oc,rfft:Eh,irfft:Z0},Ik={hammingWindow:Vz,hannWindow:gk,frame:yk,stft:jz},Se={flipLeftRight:Zz,grayscaleToRGB:Jz,resizeNearestNeighbor:wk,resizeBilinear:vk,rotateWithOffset:eL,cropAndResize:Xz,nonMaxSuppression:nL,nonMaxSuppressionAsync:cL,nonMaxSuppressionWithScore:pL,nonMaxSuppressionWithScoreAsync:fL,nonMaxSuppressionPadded:gL,nonMaxSuppressionPaddedAsync:AL,threshold:kL,transform:SL},l5={bandPart:TL,gramSchmidt:EL,qr:_L},Sk={absoluteDifference:PL,computeWeightedLoss:Ba,cosineDistance:OL,hingeLoss:zL,huberLoss:BL,logLoss:VL,meanSquaredError:GL,sigmoidCrossEntropy:qL,softmaxCrossEntropy:ZL},Ck={sparseFillEmptyRows:JL,sparseReshape:eB,sparseSegmentMean:nB,sparseSegmentSum:rB},Tk={stringNGrams:oB,stringSplit:lB,stringToHashBucketFast:cB},Wa=class extends x6{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return J(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return M6(e,t)}dispose(){this.iterations_!=null&&J(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ce(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Wa,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var a2=class extends Wa{constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:Z(()=>it(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:Z(()=>it(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;Z(()=>{let u=ue(z(i,this.rho),z(bt(o),1-this.rho)),c=z(fe(En(ue(l,this.epsilon)),En(ue(i,this.epsilon))),o),p=ue(z(l,this.rho),z(bt(c),1-this.rho));i.assign(u),l.assign(p);let d=ue(z(c,-this.learningRate),r);r.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(J(this.accumulatedGrads.map(e=>e.variable)),J(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};a2.className="Adadelta";Ai(a2);var o2=class extends Wa{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n];this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:Z(()=>Jc(r.shape,this.initialAccumulatorValue).variable(!1))});let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;Z(()=>{let i=ue(o,bt(a));o.assign(i);let l=ue(z(fe(a,En(ue(i,L.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&J(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};o2.className="Adagrad";Ai(o2);var i2=class extends Wa{constructor(e,t,n,s=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],Z(()=>{this.accBeta1=Ce(t).variable(),this.accBeta2=Ce(n).variable()}),s==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Z(()=>{let n=me(1,this.accBeta1),s=me(1,this.accBeta2);t.forEach((r,a)=>{let o=L.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:Z(()=>it(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:Z(()=>it(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,p=ue(z(u,this.beta1),z(l,1-this.beta1)),d=ue(z(c,this.beta2),z(bt(l),1-this.beta2)),h=fe(p,n),f=fe(d,s);u.assign(p),c.assign(d);let m=ue(z(fe(h,ue(En(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&J(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&J(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),Z(()=>{this.accBeta1.assign(ka(this.beta1,this.iterations_+1)),this.accBeta2.assign(ka(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};i2.className="Adam";Ai(i2);var l2=class extends Wa{constructor(e,t,n,s=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],Z(()=>{this.iteration=Ce(0).variable(),this.accBeta1=Ce(t).variable()}),s==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Z(()=>{let n=me(1,this.accBeta1),s=fe(-this.learningRate,ue(z(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=L.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:it(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:it(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,p=ue(z(u,this.beta1),z(l,1-this.beta1)),d=z(c,this.beta2),h=tn(l),f=ra(d,h);u.assign(p),c.assign(f);let m=ue(z(fe(s,n),fe(p,ue(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(ue(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&J(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&J(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};l2.className="Adamax";Ai(l2);var Rh=class extends Wa{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=L.registeredVariables[n];Z(()=>{let o=ue(z(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=An(Ce(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Rh.className="SGD";Ai(Rh);var u2=class extends Rh{constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ce(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n];this.accumulations[s]==null&&(this.accumulations[s]={originalName:`${n}/momentum`,variable:Z(()=>it(r).variable(!1))});let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&Z(()=>{let i,l=ue(z(this.m,a),o);this.useNesterov?i=ue(z(this.c,ue(o,z(l,this.m))),r):i=ue(z(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&J(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};u2.className="Momentum";Ai(u2);var c2=class extends Wa{constructor(e,t=.9,n=0,s=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=L.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:Z(()=>it(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:Z(()=>it(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:Z(()=>it(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;Z(()=>{let u=ue(z(i,this.decay),z(bt(o),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[s].variable,p=ue(z(c,this.decay),z(o,1-this.decay)),d=fe(z(o,this.learningRate),En(me(u,ue(bt(p),this.epsilon)))),h=ue(z(l,this.momentum),d);i.assign(u),c.assign(p),l.assign(h);let f=me(r,h);r.assign(f)}else{let c=ue(z(i,this.decay),z(bt(o),1-this.decay)),p=ue(z(l,this.momentum),fe(z(o,this.learningRate),En(ue(c,this.epsilon))));i.assign(c),l.assign(p);let d=me(r,p);r.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&J(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&J(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&J(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};c2.className="RMSProp";Ai(c2);var ao=class{static sgd(e){return new Rh(e)}static momentum(e,t,n=!1){return new u2(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new c2(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new i2(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new a2(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new l2(e,t,n,s,r)}static adagrad(e,t=.1){return new o2(e,t)}},qi={sgd:ao.sgd,momentum:ao.momentum,adadelta:ao.adadelta,adagrad:ao.adagrad,rmsprop:ao.rmsprop,adamax:ao.adamax,adam:ao.adam},dB=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function u5(){return new Promise(e=>dB(()=>e()))}var C={};Ve(C,{ERF_A1:()=>CB,ERF_A2:()=>TB,ERF_A3:()=>NB,ERF_A4:()=>EB,ERF_A5:()=>RB,ERF_P:()=>SB,PARALLELIZE_THRESHOLD:()=>c5,RowPartitionType:()=>jr,SELU_SCALE:()=>Ek,SELU_SCALEALPHA:()=>Nk,applyActivation:()=>s2,assertAndGetBroadcastShape:()=>wt,assertAxesAreInnerMostDims:()=>AO,assertParamsConsistent:()=>pB,assignToTypedArray:()=>OB,axesAreInnerMostDims:()=>PA,calculateShapes:()=>u6,checkEinsumDimSizes:()=>VB,checkPadOnDimRoundingMode:()=>as,combineLocations:()=>D6,combineRaggedTensorToTensorShapes:()=>fB,complexWithEvenIndex:()=>$B,complexWithOddIndex:()=>PB,computeConv2DInfo:()=>gh,computeConv3DInfo:()=>I6,computeDefaultPad:()=>gA,computeDilation2DInfo:()=>xF,computeOptimalWindowSize:()=>AB,computeOutAndReduceShapes:()=>$6,computeOutShape:()=>hB,computePool2DInfo:()=>k6,computePool3DInfo:()=>bF,convertConv2DDataFormat:()=>S6,decodeEinsumEquation:()=>BB,eitherStridesOrDilationsAreOne:()=>sa,expandShapeToKeepDim:()=>dl,exponent:()=>zB,exponents:()=>MB,fromStringArrayToUint8:()=>uW,fromUint8ToStringArray:()=>lW,getAxesPermutation:()=>P6,getBroadcastDims:()=>o6,getComplexWithIndex:()=>FB,getEinsumComputePath:()=>UB,getEinsumPermutation:()=>WB,getFusedBiasGradient:()=>n2,getFusedDyActivation:()=>t2,getImageCenter:()=>xB,getInnerMostAxes:()=>xO,getPermuted:()=>vB,getRaggedRank:()=>gB,getReductionAxes:()=>an,getReshaped:()=>bB,getReshapedPermuted:()=>wB,getRowPartitionTypesHelper:()=>mB,getSliceBeginCoords:()=>kB,getSliceSize:()=>IB,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>qB,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>XB,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>KB,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>JB,getSparseReshapeInputOutputMismatchErrorMessage:()=>eW,getSparseReshapeInputOutputMultipleErrorMessage:()=>QB,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>ZB,getSparseReshapeNegativeOutputDimErrorMessage:()=>YB,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>rW,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>tW,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>nW,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>sW,getUndoAxesPermutation:()=>FA,isIdentityPermutation:()=>GB,log:()=>VD,mergeRealAndImagArrays:()=>_B,prepareAndValidate:()=>l6,prepareSplitSize:()=>jB,segment_util:()=>Rk,shouldFuse:()=>r2,slice_util:()=>Pt,splitRealAndImagArrays:()=>DB,tupleValuesAreOne:()=>bo,upcastType:()=>Nn,validateDefaultValueShape:()=>yB,validateInput:()=>rA,validateUpdateShape:()=>sA,warn:()=>io});function pB(e,t){let n=e[0].length;e.forEach((r,a)=>{O(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),O(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)O(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function hB(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var jr;(function(e){e[e.FIRST_DIM_SIZE=0]="FIRST_DIM_SIZE",e[e.VALUE_ROWIDS=1]="VALUE_ROWIDS",e[e.ROW_LENGTHS=2]="ROW_LENGTHS",e[e.ROW_SPLITS=3]="ROW_SPLITS",e[e.ROW_LIMITS=4]="ROW_LIMITS",e[e.ROW_STARTS=5]="ROW_STARTS"})(jr||(jr={}));function fB(e,t,n){let s=new Array;if(n==null&&t==null)return s;if(t==null)for(;s.length<e+n.length;)s.push(-1);else s=t.slice();if(n==null)return s;if(e+n.length!==s.length)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.rank = ${e+n.length}, but shape.rank = ${s.length}`);for(let r=1;r<n.length;++r){let a=n[r],o=s[s.length-n.length+r],i=s[o];if(a>=0)if(i>=0){if(i!==a)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.shape[${r+e}] = ${a} but shape[${r+e}] = ${i}`)}else s[o]=a}return s}function mB(e){let t={FIRST_DIM_SIZE:jr.FIRST_DIM_SIZE,VALUE_ROWIDS:jr.VALUE_ROWIDS,ROW_LENGTHS:jr.ROW_LENGTHS,ROW_SPLITS:jr.ROW_SPLITS,ROW_LIMITS:jr.ROW_LIMITS,ROW_STARTS:jr.ROW_STARTS},n=[];for(let s of e)if(s in t)n.push(t[s]);else break;return n}function gB(e){return e.length===0?0:e[0]===jr.FIRST_DIM_SIZE?e.length-1:e.length}function yB(e,t){if(e==null||t==null)return;let n=e.length,s=t.length;if(n>=s)throw new Error(`defaultValue.shape=${e} and ragged tensor flatValues.shape=${t}, are incompatible: defaultValue.rank = ${n} must be less than ragged tensor input flatValues.rank = ${s})`);for(let r=0;r<Math.min(n,s-1);++r){let a=e[r],o=t[r+1];if(a>=0&&o>=0&&a!==1&&a!==o)throw new Error(`defaultValue.shape=${e}, and ragged tensor input flatValues.shape=${t} are incompatible: defaultValue.shape[${r-e.length}] = ${a} but ragged tensor input.flatValues.shape[${r-e.length}] = ${o}`)}}var c5=30;function AB(e){return e<=c5?e:wm(e,Math.floor(Math.sqrt(e)))}function xB(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function bB(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function vB(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2===1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function wB(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function kB(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function IB(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var Nk=1.7580993408473768,Ek=1.0507009873554805,SB=.3275911,CB=.254829592,TB=-.284496736,NB=1.421413741,EB=-1.453152027,RB=1.061405429;function _B(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function DB(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function $B(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function PB(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function FB(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function OB(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function MB(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function zB(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var v3="->",LB=/->/g,Uv=",",Gv="...";function BB(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(LB,"").length)/v3.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${v3}").`);let[s,r]=e.split(v3);O(s.indexOf(Gv)===-1,()=>`The ellipsis notation ("${Gv}") is not supported yet.`);let a=s.split(Uv),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let d=0;d<r.length;++d){let h=r[d];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let d=0;d<s.length;++d){let h=s[d];i.indexOf(h)===-1&&h!==Uv&&i.push(h)}let l=new Array(a.length);for(let d=0;d<o;++d){if(new Set(a[d].split("")).size!==a[d].length)throw new Error(`Found duplicate axes in input component ${a[d]}. Support for duplicate axes in input is not implemented yet.`);l[d]=[];for(let h=0;h<a[d].length;++h)l[d].push(i.indexOf(a[d][h]))}let u=i.length,c=r.length,p=[];for(let d=c;d<u;++d)p.push(d);return{allDims:i,summedDims:p,idDims:l}}function WB(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function VB(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:O(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function UB(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=HB(t,i);for(let u of l)a.indexOf(u)===-1&&(s[o].push(u),a.push(u))}return{path:n,steps:s}}function GB(e){return e.every((t,n)=>t===n)}function HB(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function jB(e,t,n=0){let s=[];if(typeof t=="number")O(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);O(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}O(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}function qB(e){return`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${e}`}function XB(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function KB(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function ZB(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function YB(e,t){return`size ${e} must be non-negative, not ${t}`}function JB(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function QB(e,t){let n=Et(e),s=Et(t);return`Input to reshape is a SparseTensor with ${n}
|
|
dense values, but the requested shape requires a multiple of ${s}. inputShape=${e} outputShape= ${t}`}function eW(e,t){let n=Et(e),s=Et(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${s}. inputShape=${e} outputShape=${t}`}function tW(){return"segment ids must be >= 0"}function nW(){return"segment ids are not increasing"}function sW(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function rW(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var Rk={};Ve(Rk,{collectGatherOpShapeInfo:()=>iW,computeOutShape:()=>oW,segOpComputeOptimalWindowSize:()=>aW});function aW(e,t){let n=!1,s;for(e<=c5?(s=e,n=!0):s=wm(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=wm(e,s+1);return s}function oW(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function iW(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
|
|
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let p=0;p<s;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let o=e.shape[n],i=[],l=1,u=1,c=1;for(let p=0;p<s;++p)i.push(e.shape[p]),l*=e.shape[p];for(let p=s;p<n;p++)i.push(e.shape[p]),u*=e.shape[p];for(let p=s;p<r;p++)i.push(t.shape[p]);for(let p=n+1;p<a;p++)i.push(e.shape[p]),c*=e.shape[p];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:o,outputShape:i}}function lW(e){try{return e.map(t=>Cm(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function uW(e){return e.map(t=>dh(t))}var hr={};Ve(hr,{nonMaxSuppressionV3Impl:()=>Ak,nonMaxSuppressionV4Impl:()=>xk,nonMaxSuppressionV5Impl:()=>bk,whereImpl:()=>ik});var _k={kernelName:bl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ou(ye(n,"float32"),-1))}}},cW={kernelName:xc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=bt(ye(n,"float32")),r=En(me(Ce(1),s));return $t(fe(e,r))}}}},dW={kernelName:bc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=En(me(bt(ye(n,"float32")),1));return fe(e,s)}}}},pW={kernelName:na,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=e,l=an(n.shape,r);return l.length>0&&(i=ke(i,l)),V(i,n.shape)},b:()=>{let i=e,l=an(s.shape,r);return l.length>0&&(i=ke(i,l)),V(i,s.shape)}}}},hW={kernelName:Ro,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},fW={kernelName:_o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>it(n)}}},mW={kernelName:kc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>it(n)}}},gW={kernelName:Ic,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,En(me(Ce(1),bt(ye(n,"float32")))))}}},yW={kernelName:Sc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=En(ue(Ce(1),bt(ye(n,"float32"))));return fe(e,s)}}}},AW={kernelName:Nc,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=ue(bt(n),bt(s)),l=z(e,fe(s,i)),u=an(n.shape,r);return u.length>0&&(l=ke(l,u)),V(l,n.shape)},b:()=>{let i=ue(bt(n),bt(s)),l=$t(z(e,fe(n,i))),u=an(s.shape,r);return u.length>0&&(l=ke(l,u)),V(l,s.shape)}}}},xW={kernelName:Cc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ue(bt(ye(n,"float32")),1))}}},bW={kernelName:Tc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,me(Ce(1),bt(ye(n,"float32"))))}}};function vW(e,t,n,s,r,a){let o=$(e,"dy","avgPool3dGrad"),i=$(t,"input","avgPool3dGrad"),l=o,u=i,c=!1;i.rank===4&&(c=!0,l=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),u=V(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),O(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),O(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),as("avgPool3dGrad",r,a);let p={dy:l,input:u},d={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=L.runKernel(s0,p,d);return c?V(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var wW=B({avgPool3dGrad_:vW}),kW={kernelName:qp,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>wW(e,s,r,a,o,i)}}};function IW(e,t,n,s,r){let a=$(e,"dy","avgPoolGrad"),o=$(t,"input","avgPoolGrad");O(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,u=!1;o.rank===3&&(u=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),O(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},p={filterSize:n,strides:s,pad:r},d=L.runKernel(n0,c,p);return u?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var SW=B({avgPoolGrad_:IW}),CW={kernelName:Do,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>SW(e,s,r,a,o)}}},TW={kernelName:$o,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>Qe(e,r,!1,!0),b:()=>Qe(s,e,!0,!1)}:!a&&o?{a:()=>Qe(e,r,!1,!1),b:()=>Qe(e,s,!0,!1)}:a&&!o?{a:()=>Qe(r,e,!1,!0),b:()=>Qe(s,e,!1,!1)}:{a:()=>Qe(r,e,!0,!0),b:()=>Qe(e,s,!0,!0)}}},NW={kernelName:vl,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>Sh(e,s,r)}}},EW={kernelName:$w,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>ke(e,i,!0)}}},RW={kernelName:Po,gradFunc:e=>({x:()=>e.clone()})},_W={kernelName:Sa,gradFunc:e=>({x:()=>it(e)})},DW={kernelName:Ca,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>zn(cr(xi(s,r),bi(s,a)),e,it(e))}}},$W={kernelName:Kp,inputsToSave:["x"],gradFunc:_k.gradFunc},PW={kernelName:wl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=dr(r,t[0].shape)[0],o=s.map(l=>l[a]);return Zt(e,o,a).map(l=>()=>l)}},FW={kernelName:Fo,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return O(bo(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>CA(s.shape,e,r,o,i,l),filter:()=>o5(s,e,r.shape,o,i,l)}}},OW={kernelName:Oo,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>va(e,r,a,o,i,1,l),filter:()=>o5(e,s,r.shape,a,o,i,l)}}};function MW(e,t,n,s,r){let a=e;e.rank===4&&(a=V(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=V(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),O(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),O(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),O(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),O(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),O(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return L.runKernel(i0,i,l)}var zW=B({conv3DBackpropFilter_:MW}),LW={kernelName:Zp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;O(bo(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>N6(o.shape,e,i,r,a),filter:()=>zW(o,e,i.shape,r,a)}}},BW={kernelName:Mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z($t(q0(ye(n,"float32"))),e)}}},WW={kernelName:zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(X0(ye(n,"float32")),e)}}},VW={kernelName:Lo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=P6([r],s.rank),l=$0(e,r,a,!o);return i!=null&&(l=et(l,i)),l}}}},UW={kernelName:Bo,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;O(bo(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=t;return O(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),O(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),O(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),O(sa(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),as("depthwiseConv2d",a,o),{x:()=>mk(l.shape,e,u,r,a,i,o),filter:()=>fk(l,e,u.shape,r,a,i,o)}}},GW={kernelName:Yp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>L.runKernel(km,a,n),filter:()=>L.runKernel(Im,o,n)}}},HW={kernelName:Vo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>L.runKernel(h0,s)}}},jW={kernelName:Ec,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z(Ds($t(bt(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,s)}}},qW={kernelName:Ta,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},XW={kernelName:Cl,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>V(e,n.shape)}}},KW={kernelName:Go,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Ds(n))}}},ZW={kernelName:Na,gradFunc:e=>({x:()=>it(e)})},YW={kernelName:Ho,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=fe(e,ye(s,"float32")),l=an(n.shape,r);return l.length>0?V(ke(i,l),n.shape):i},b:()=>{let i=z(e,ye(n,"float32")),l=an(s.shape,r);l.length>0&&(i=V(ke(i,l),s.shape));let u=bt(s);return $t(fe(i,ye(u,"float32")))}}}},JW={kernelName:jo,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Ce(1):i,u=an(a.shape,r.shape),c=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)c.push(r.shape[b]);c.push(1)}let p=me(r,a),d=z(e,l),h=G0(ue(o,Ce(s))),f=z(z(z(h,h),h),Ce(-.5));return{x:()=>a.rank===1?V(z(z(e,Hs(V(h,[1,1,1,a.shape[0]]),c)),l),r.shape):V(z(z(e,h),l),r.shape),mean:()=>{let b=z(z(h,Ce(-1)),d);return a.rank===1&&(b=ke(b,u)),V(b,a.shape)},variance:()=>{let b=z(z(f,p),d);return a.rank===1&&(b=ke(b,u)),V(b,a.shape)},scale:()=>{let b=z(p,h),w=z(e,b);return a.rank===1&&(w=ke(w,u)),V(w,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=ke(b,u)),V(b,a.shape)}}}},QW={kernelName:Nl,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=dr(a,s.shape)[0];return{x:()=>{let l=s.shape,u=r.size,c=l.slice(0,o),p=c.length,d=l.slice(a,l.length).slice(1),h=d.length,f=Hv(0,p),m=Hv(p+1,p+1+h),g=jv([c,[u],d]),y=V(e,g),x=V(r,[u]),A=jv([[p],f,m]),b=et(y,A),w=Q0(b,x,s.shape[o]),I=FA(A);return w=et(w,I),w},indices:()=>r}}};function Hv(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function jv(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var eV={kernelName:Ea,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>it(n),b:()=>it(s)}}},tV={kernelName:Xo,gradFunc:e=>({x:()=>ye(e,"float32")})},nV={kernelName:_c,gradFunc:e=>({x:()=>it(e)})},sV={kernelName:Dc,gradFunc:e=>({x:()=>it(e)})},rV={kernelName:$c,gradFunc:e=>({x:()=>it(e)})},aV={kernelName:Ko,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=xs(s,0);return{x:()=>zn(a,e,z(e,r))}}},oV={kernelName:Pc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ue(n,1))}}},iV={kernelName:Ra,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ye(n,"float32"))}}},lV={kernelName:Fw,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let o=Ds(s);return me(e,z(ke(e,r,!0),o))}}}};function uV(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return L.runKernel(y0,i,l)}var cV=B({localResponseNormalizationBackprop_:uV}),dV={kernelName:eh,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>cV(s,r,e,a,o,i,l)}}};function Dk(e,t,n,s){return t.rank<n.rank&&(t=V(t,dl(t.shape,s))),e.rank<n.rank&&(e=V(e,dl(e.shape,s))),{x:()=>z(e,ye(_s(n,t),e.dtype))}}var qv={kernelName:Jo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=dr(r,a.shape),l=Dk(e,o,a,i);return{x:()=>l.x()}}},pV={kernelName:_a,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,ye(xi(n,s),"float32")),b:()=>z(e,ye(F0(n,s),"float32"))}}};function hV(e,t,n,s,r,a,o){let i=$(e,"dy","maxPool3dGrad"),l=$(t,"input","maxPool3dGrad"),u=$(n,"output","maxPool3dGrad"),c=i,p=l,d=u,h=!1;l.rank===4&&(h=!0,c=V(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),p=V(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=V(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),O(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),O(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),O(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),as("maxPool3dGrad",a,o);let f={dy:c,input:p,output:d},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=L.runKernel(x0,f,m);return h?V(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var fV=B({maxPool3dGrad_:hV}),mV={kernelName:th,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>fV(e,s,r,a,o,i,l)}}};function gV(e,t,n,s,r,a,o){let i=$(e,"dy","maxPoolGrad"),l=$(t,"input","maxPoolGrad"),u=$(n,"output","maxPoolGrad");O(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),O(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),O(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),as("maxPoolGrad",a,o);let c={dy:i,input:l,output:u},p={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return L.runKernel(A0,c,p)}var yV=B({maxPoolGrad_:gV}),AV={kernelName:Qo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>yV(e,s,r,a,o,i)}}},xV={kernelName:ei,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=dr(r,s.shape),i=$6(s.shape,a)[1],l=Et(i);return{x:()=>{let c=s.shape.slice();a.forEach(h=>{c[h]=1});let p=V(e,c);return fe(z(p,Es(s.shape,"float32")),l)}}}},bV={kernelName:ti,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=dr(r,a.shape),l=Dk(e,o,a,i);return{x:()=>l.x()}}},vV={kernelName:Da,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,ye(bi(n,s),"float32")),b:()=>z(e,ye(xs(n,s),"float32"))}}},wV={kernelName:ni,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Le(e,a,s.shape)}}},kV={kernelName:Oc,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=an(n.shape,r);return i.length>0?V(ke(e,i),n.shape):e},b:()=>{let i=z(e,$t(Qc(fe(n,s)))),l=an(s.shape,r);return l.length>0?V(ke(i,l),s.shape):i}}}},IV={kernelName:$a,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=z(e,ye(s,"float32")),l=an(n.shape,r);return l.length>0?V(ke(i,l),n.shape):i},b:()=>{let i=z(e,ye(n,"float32")),l=an(s.shape,r);return l.length>0?V(ke(i,l),s.shape):i}}}},SV={kernelName:Dl,gradFunc:e=>({x:()=>$t(e)})},CV={kernelName:Ol,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Vt(n.shape,"float32")}}},TV={kernelName:Fl,gradFunc:e=>({x:()=>it(e)})},NV={kernelName:Ml,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return Rn(e,s).map(a=>()=>a)}},Xv={kernelName:ri,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Le(e,a,s.shape)}}},EV={kernelName:ai,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=wt(a.shape,o.shape);return{a:()=>{let c=ye(o,"float32"),p=z(e,z(c,ka(a,me(c,Ce(1))))),d=an(a.shape,i);return d.length>0&&(p=ke(p,d)),V(p,a.shape)},b:()=>{let c=xs(a,0),p=zn(c,$s(a),it(a)),d=z(e,z(r,p)),h=an(o.shape,i);return h.length>0&&(d=ke(d,h)),V(d,o.shape)}}}},RV={kernelName:oi,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=xs(n,0);return{x:()=>zn(r,e,z(e,s)),alpha:()=>{let a=zn(r,it(e),z(e,n)),o=an(s.shape,e.shape);return o.length>0&&(a=ke(a,o)),V(a,s.shape)}}}};function _V(e,t,n){let s=e.shape.slice();s[n]=1;let r=V(t,s),a=Fp(e,n,!0,!1),o=Fp(e,n,!0,!0),i=z(a,o);return z(r,i)}function DV(e,t,n){let s=e.shape.length,r=s-n.length,a=C.getAxesPermutation(n,s),o=e;a!=null&&(o=et(e,a));let i=o.shape.slice(),u=i.splice(s-n.length,n.length).reduce((d,h)=>d*h,1);i.push(u);let c=o.reshape(i),p=_V(c,t,r);if(p=p.reshape(o.shape),a!=null){let d=C.getUndoAxesPermutation(a);p=et(p,d)}return p}var $V={kernelName:ii,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=[];return r==null?a=s.shape.map((o,i)=>i):typeof r=="number"?a=[r]:a=r,{x:()=>DV(s,e,a)}}},PV={kernelName:Wo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=fe(e,ye(s,"float32")),l=an(n.shape,r);return l.length>0?V(ke(i,l),n.shape):i},b:()=>{let i=z(e,ye(n,"float32")),l=an(s.shape,r);l.length>0&&(i=V(ke(i,l),s.shape));let u=bt(s);return $t(fe(i,ye(u,"float32")))}}}},FV={kernelName:Lc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,$t(bt(n)))}}},OV={kernelName:di,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z(bi(n,6),ou(n));return{x:()=>z(e,ye(s,"float32"))}}},MV={kernelName:li,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ye(ou(n),"float32"))}}},zV={kernelName:zl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,n.shape)}}},LV={kernelName:ci,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>L.runKernel(I0,r,n)}}},BV={kernelName:ui,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>L.runKernel(k0,r,n)}}},WV={kernelName:Ll,gradFunc:(e,t,n)=>{let{dims:s}=n,r=dr(s,e.shape);return{x:()=>Ks(e,r)}}},VV={kernelName:Bl,gradFunc:e=>({x:()=>it(e)})},UV={kernelName:Pa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>$t(fe(e,z(ka(n,1.5),2)))}}},GV={kernelName:Vl,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ye(it(n),"float32"),t:()=>z(e,ye(n,e.dtype)),e:()=>z(e,ye(wh(n),e.dtype))}}},HV={kernelName:Bc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=xs(n,Ce(0)),r=Ce(Nk),a=Ce(Ek),o=z(e,a),i=z(z(e,r),Ds(ye(n,"float32")));return zn(s,o,i)}}}},jV={kernelName:Fa,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,me(Ce(1),n)))}}},qV={kernelName:Wc,gradFunc:e=>({x:()=>it(e)})},XV={kernelName:pi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(xh(ye(n,"float32")),e)}}},KV={kernelName:Gl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(D0(ye(n,"float32")),e)}}},ZV={kernelName:Ul,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=A6(s,r,a),u=[];for(let c=0;c<e.rank;c++)u.push([i[c],o[c]-i[c]-l[c]]);return{x:()=>Ys(e,u)}}},YV={kernelName:fi,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=z(e,s);return{logits:()=>me(o,z(ke(o,[r],a),s))}}},JV={kernelName:Vc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Cn(n))}}},Kv={kernelName:Hl,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>Ah(e,s,r)}}},Zv={kernelName:jl,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>St(e,s)}}},QV={kernelName:Oa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,z(En(ye(n,"float32")),2))}}},eU={kernelName:Gc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(ye(n,"float32"),2))}}},tU={kernelName:Ma,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Ce(2);return{a:()=>z(e,z(r,me(n,s))),b:()=>z(e,z(r,me(s,n)))}}},nU={kernelName:gi,gradFunc:e=>({x:()=>it(e)})},sU={kernelName:za,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=e,l=an(n.shape,r);return l.length>0&&(i=ke(i,l)),V(i,n.shape)},b:()=>{let i=e,l=an(s.shape,r);return l.length>0&&(i=ke(i,l)),V($t(i),s.shape)}}}},rU={kernelName:hi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;dr(a,s.shape).forEach(u=>{r[u]=1});let i=V(e,r),l=z(i,Es(s.shape,"float32"));return{x:()=>l}}},aU={kernelName:Xl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,bt(xh(n)))}}},oU={kernelName:mi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(me(Ce(1),bt(n)),e)}}},iU={kernelName:La,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=it(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=ue(o,Le(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=ue(o,Le(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)o=ue(o,Le(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)for(let c=0;c<r[3];++c)o=ue(o,Le(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2],c*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},lU={kernelName:Zr,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=FA(r);return{x:()=>et(e,a)}}},uU={kernelName:Yl,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>on(e,r)}}},cU={kernelName:uh,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>dU(e,n)}}};function dU(e,t){let n=ra(t,it(t)),s=ed(e,n),r=xi(t,Ce(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=Bt(r,i+1);r=cr(r,Es(s.shape,"bool"));let o=it(s);return zn(r,s,o)}var pU={kernelName:Jl,gradFunc:e=>({x:()=>it(e)})},hU=[_k,cW,dW,pW,hW,fW,mW,gW,yW,AW,xW,bW,kW,CW,TW,NW,EW,RW,_W,DW,$W,PW,OW,FW,LW,BW,WW,VW,UW,GW,PV,HW,jW,qW,XW,KW,YW,ZW,JW,QW,eV,tV,nV,sV,rV,aV,oV,iV,lV,dV,qv,qv,pV,mV,AV,xV,bV,vV,wV,kV,IV,SV,CV,TV,NV,Xv,Xv,EV,RV,$V,FV,OV,MV,zV,LV,BV,WV,VV,UV,GV,HV,jV,qV,XV,KV,ZV,YV,JV,Kv,Kv,Zv,Zv,QV,tU,eU,nU,sU,rU,aU,oU,iU,lU,uU,cU,pU];for(let e of hU)Ow(e);se().prototype.abs=function(){return this.throwIfDisposed(),tn(this)};se().prototype.acos=function(){return this.throwIfDisposed(),lA(this)};se().prototype.acosh=function(){return this.throwIfDisposed(),uA(this)};se().prototype.add=function(e){return this.throwIfDisposed(),ue(this,e)};se().prototype.all=function(e,t){return this.throwIfDisposed(),E0(this,e,t)};se().prototype.any=function(e,t){return this.throwIfDisposed(),Pp(this,e,t)};se().prototype.argMax=function(e){return this.throwIfDisposed(),Rs(this,e)};se().prototype.argMin=function(e){return this.throwIfDisposed(),cA(this,e)};se().prototype.asScalar=function(){return this.throwIfDisposed(),O(this.size===1,()=>"The array must have only 1 element."),V(this,[])};se().prototype.asType=function(e){return this.throwIfDisposed(),ye(this,e)};se().prototype.as1D=function(){return this.throwIfDisposed(),V(this,[this.size])};se().prototype.as2D=function(e,t){return this.throwIfDisposed(),V(this,[e,t])};se().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),V(this,[e,t,n])};se().prototype.as4D=function(e,t,n,s){return this.throwIfDisposed(),V(this,[e,t,n,s])};se().prototype.as5D=function(e,t,n,s,r){return this.throwIfDisposed(),V(this,[e,t,n,s,r])};se().prototype.asin=function(){return this.throwIfDisposed(),dA(this)};se().prototype.asinh=function(){return this.throwIfDisposed(),pA(this)};se().prototype.atan=function(){return this.throwIfDisposed(),hA(this)};se().prototype.atan2=function(e){return this.throwIfDisposed(),fA(this,e)};se().prototype.atanh=function(){return this.throwIfDisposed(),mA(this)};se().prototype.avgPool=function(e,t,n,s){return this.throwIfDisposed(),yh(this,e,t,n,s)};se().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Ah(this,e,t)};se().prototype.batchNorm=function(e,t,n,s,r){return this.throwIfDisposed(),Xc(this,e,t,n,s,r)};se().prototype.broadcastTo=function(e){return this.throwIfDisposed(),sl(this,e)};se().prototype.cast=function(e){return this.throwIfDisposed(),ye(this,e)};se().prototype.ceil=function(){return this.throwIfDisposed(),wA(this)};se().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),gs(this,e,t)};se().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof nt&&(e=[e]),St([this,...e],t)};se().prototype.conv1d=function(e,t,n,s,r,a){return this.throwIfDisposed(),R0(this,e,t,n,s,r,a)};se().prototype.conv2dTranspose=function(e,t,n,s,r){return this.throwIfDisposed(),_0(this,e,t,n,s,r)};se().prototype.conv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),va(this,e,t,n,s,r,a)};se().prototype.cos=function(){return this.throwIfDisposed(),xh(this)};se().prototype.cosh=function(){return this.throwIfDisposed(),D0(this)};se().prototype.cumprod=function(e,t,n){return this.throwIfDisposed(),Fp(this,e,t,n)};se().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),$0(this,e,t,n)};se().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),EA(this,e,t)};se().prototype.depthwiseConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Kc(this,e,t,n,s,r,a)};se().prototype.dilation2d=function(e,t,n,s,r){return this.throwIfDisposed(),RA(this,e,t,n,s,r)};se().prototype.divNoNan=function(e){return this.throwIfDisposed(),_A(this,e)};se().prototype.div=function(e){return this.throwIfDisposed(),fe(this,e)};se().prototype.dot=function(e){return this.throwIfDisposed(),DA(this,e)};se().prototype.elu=function(){return this.throwIfDisposed(),Zc(this)};se().prototype.equal=function(e){return this.throwIfDisposed(),_s(this,e)};se().prototype.erf=function(){return this.throwIfDisposed(),$A(this)};se().prototype.euclideanNorm=function(e,t){return this.throwIfDisposed(),OA(this,e,t)};se().prototype.exp=function(){return this.throwIfDisposed(),Ds(this)};se().prototype.expandDims=function(e){return this.throwIfDisposed(),Bt(this,e)};se().prototype.expm1=function(){return this.throwIfDisposed(),MA(this)};se().prototype.fft=function(){return this.throwIfDisposed(),Nh(this)};se().prototype.flatten=function(){return this.throwIfDisposed(),V(this,[this.size])};se().prototype.floor=function(){return this.throwIfDisposed(),Qc(this)};se().prototype.floorDiv=function(e){return this.throwIfDisposed(),qc(this,e)};se().prototype.gather=function(e,t){return this.throwIfDisposed(),ed(this,e,t)};se().prototype.greaterEqual=function(e){return this.throwIfDisposed(),xi(this,e)};se().prototype.greater=function(e){return this.throwIfDisposed(),xs(this,e)};se().prototype.ifft=function(){return this.throwIfDisposed(),oc(this)};se().prototype.irfft=function(){return this.throwIfDisposed(),Z0(this)};se().prototype.isFinite=function(){return this.throwIfDisposed(),zA(this)};se().prototype.isInf=function(){return this.throwIfDisposed(),LA(this)};se().prototype.isNaN=function(){return this.throwIfDisposed(),BA(this)};se().prototype.leakyRelu=function(e){return this.throwIfDisposed(),bh(this,e)};se().prototype.lessEqual=function(e){return this.throwIfDisposed(),bi(this,e)};se().prototype.less=function(e){return this.throwIfDisposed(),F0(this,e)};se().prototype.localResponseNormalization=function(e,t,n,s){return this.throwIfDisposed(),WA(this,e,t,n,s)};se().prototype.logSigmoid=function(){return this.throwIfDisposed(),VA(this)};se().prototype.logSoftmax=function(e){return this.throwIfDisposed(),M0(this,e)};se().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),z0(this,e,t)};se().prototype.log=function(){return this.throwIfDisposed(),$s(this)};se().prototype.log1p=function(){return this.throwIfDisposed(),vh(this)};se().prototype.logicalAnd=function(e){return this.throwIfDisposed(),cr(this,e)};se().prototype.logicalNot=function(){return this.throwIfDisposed(),wh(this)};se().prototype.logicalOr=function(e){return this.throwIfDisposed(),L0(this,e)};se().prototype.logicalXor=function(e){return this.throwIfDisposed(),UA(this,e)};se().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Qe(this,e,t,n)};se().prototype.maxPool=function(e,t,n,s){return this.throwIfDisposed(),kh(this,e,t,n,s)};se().prototype.max=function(e,t){return this.throwIfDisposed(),hn(this,e,t)};se().prototype.maximum=function(e){return this.throwIfDisposed(),ra(this,e)};se().prototype.mean=function(e,t){return this.throwIfDisposed(),Wt(this,e,t)};se().prototype.min=function(e,t){return this.throwIfDisposed(),wa(this,e,t)};se().prototype.minimum=function(e){return this.throwIfDisposed(),td(this,e)};se().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),HA(this,e,t)};se().prototype.mod=function(e){return this.throwIfDisposed(),ru(this,e)};se().prototype.mul=function(e){return this.throwIfDisposed(),z(this,e)};se().prototype.neg=function(){return this.throwIfDisposed(),$t(this)};se().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Yc(this,e,t,n)};se().prototype.notEqual=function(e){return this.throwIfDisposed(),pl(this,e)};se().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),sc(this,e,t,n)};se().prototype.onesLike=function(){return this.throwIfDisposed(),Ps(this)};se().prototype.pad=function(e,t){return this.throwIfDisposed(),Ys(this,e,t)};se().prototype.pool=function(e,t,n,s,r,a){return this.throwIfDisposed(),jA(this,e,t,n,s,r,a)};se().prototype.pow=function(e){return this.throwIfDisposed(),ka(this,e)};se().prototype.prelu=function(e){return this.throwIfDisposed(),Ch(this,e)};se().prototype.prod=function(e,t){return this.throwIfDisposed(),qA(this,e,t)};se().prototype.reciprocal=function(){return this.throwIfDisposed(),ZA(this)};se().prototype.relu=function(){return this.throwIfDisposed(),zr(this)};se().prototype.relu6=function(){return this.throwIfDisposed(),V0(this)};se().prototype.reshapeAs=function(e){return this.throwIfDisposed(),V(this,e.shape)};se().prototype.reshape=function(e){return this.throwIfDisposed(),V(this,e)};se().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),vk(this,e,t,n)};se().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),wk(this,e,t,n)};se().prototype.reverse=function(e){return this.throwIfDisposed(),Ks(this,e)};se().prototype.rfft=function(){return this.throwIfDisposed(),Eh(this)};se().prototype.round=function(){return this.throwIfDisposed(),U0(this)};se().prototype.rsqrt=function(){return this.throwIfDisposed(),G0(this)};se().prototype.selu=function(){return this.throwIfDisposed(),H0(this)};se().prototype.separableConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),j0(this,e,t,n,s,r,a)};se().prototype.sigmoid=function(){return this.throwIfDisposed(),Cn(this)};se().prototype.sign=function(){return this.throwIfDisposed(),YA(this)};se().prototype.sin=function(){return this.throwIfDisposed(),q0(this)};se().prototype.sinh=function(){return this.throwIfDisposed(),X0(this)};se().prototype.slice=function(e,t){return this.throwIfDisposed(),Le(this,e,t)};se().prototype.softmax=function(e){return this.throwIfDisposed(),au(this,e)};se().prototype.softplus=function(){return this.throwIfDisposed(),su(this)};se().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Sh(this,e,t)};se().prototype.split=function(e,t){return this.throwIfDisposed(),Zt(this,e,t)};se().prototype.sqrt=function(){return this.throwIfDisposed(),En(this)};se().prototype.square=function(){return this.throwIfDisposed(),bt(this)};se().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Y0(this,e)};se().prototype.squeeze=function(e){return this.throwIfDisposed(),st(this,e)};se().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof nt?[this,e]:[this,...e];return on(n,t)};se().prototype.step=function(e){return this.throwIfDisposed(),ou(this,e)};se().prototype.stridedSlice=function(e,t,n,s,r,a,o,i){return this.throwIfDisposed(),JA(this,e,t,n,s,r,a,o,i)};se().prototype.sub=function(e){return this.throwIfDisposed(),me(this,e)};se().prototype.sum=function(e,t){return this.throwIfDisposed(),ke(this,e,t)};se().prototype.tan=function(){return this.throwIfDisposed(),QA(this)};se().prototype.tanh=function(){return this.throwIfDisposed(),cl(this)};se().prototype.tile=function(e){return this.throwIfDisposed(),Hs(this,e)};se().prototype.toBool=function(){return this.throwIfDisposed(),ye(this,"bool")};se().prototype.toFloat=function(){return this.throwIfDisposed(),ye(this,"float32")};se().prototype.toInt=function(){return this.throwIfDisposed(),ye(this,"int32")};se().prototype.topk=function(e,t){return this.throwIfDisposed(),e5(this,e,t)};se().prototype.transpose=function(e){return this.throwIfDisposed(),et(this,e)};se().prototype.unique=function(e){return this.throwIfDisposed(),t5(this,e)};se().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Q0(this,e,t)};se().prototype.unstack=function(e){return this.throwIfDisposed(),Rn(this,e)};se().prototype.where=function(e,t){return this.throwIfDisposed(),zn(e,this,t)};se().prototype.zerosLike=function(){return this.throwIfDisposed(),it(this)};var fa=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,fa.prototype)}},Rr=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Rr.prototype)}},j=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,j.prototype)}},qe=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,qe.prototype)}},$k=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,$k.prototype)}},Pk=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;t<this.maxEntries-e;t++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=e}};function hl(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function qr(e,t){if(!e)throw new $k(t)}function Yv(e,t){let n=0;for(let s of e)s===t&&n++;return n}function fs(e){return e.length===1?e[0]:e}function Dt(e){return Array.isArray(e)?e:[e]}function ma(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function Yi(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var rr={};function d5(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function j3(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>j3(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:j3(s))}}}function _h(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in rr)o=rr[a];else if(o=t[a],o==null)throw new j(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new j(`${s}: Improper config format: ${JSON.stringify(a)}.
|
|
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in rr?[i,l]=rr.className:o in t&&([i,l]=t[o]),i==null)throw new j(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(rr))u[h]=rr[h];for(let h of Object.keys(n))u[h]=n[h];let c=a.config;c.customObjects=u;let p=Object.assign({},rr);for(let h of Object.keys(n))rr[h]=n[h];j3(a.config);let d=l(i,a.config,n,r);return rr=Object.assign({},p),d}else{let u=Object.assign({},rr);for(let p of Object.keys(n))rr[p]=n[p];let c=new i(a.config);return rr=Object.assign({},u),c}}}function fU(e,t){return e<t?-1:e>t?1:0}function Yf(e,t){return-1*fU(e,t)}function ho(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function mU(e){if(e==null)throw new j(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function iu(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new j(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function p5(e,t,n=0,s=1/0){return qr(n>=0),qr(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function xn(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>xn(n,`element ${s+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Fk(e)}.`)}function Fk(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Fk(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function gU(e,t,n){let s=n!=null?n():v.now(),r;return(...o)=>{let i=n!=null?n():v.now();return i-s<t||(s=i,r=e(...o)),r}}function Ok(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}var yU=0;function Mk(){return yU++}var Jf={};function d2(e=""){return e in Jf||(Jf[e]=0),Jf[e]+=1,e+Jf[e].toString()}var AU=["channelsFirst","channelsLast"],xU=["nearest","bilinear"],bU=["valid","same","causal"],vU=["max","avg"],wU=["sum","mul","concat","ave"],Wu=new Map;function Yt(e){iu(AU,"DataFormat",e)}function kU(e){iu(xU,"InterpolationFormat",e)}function Js(e){iu(bU,"PaddingMode",e)}function zk(e){iu(vU,"PoolMode",e)}var kp=[],Jv="/";function rl(e,t){kp.push(e);try{let n=t();return kp.pop(),n}catch(n){throw kp.pop(),n}}function IU(){return kp.length===0?"":kp.join(Jv)+Jv}function Lk(e){if(!Wk(e))throw new Error("Not a valid tensor name: '"+e+"'");return IU()+e}function Bk(e){if(!Wk(e))throw new Error("Not a valid tensor name: '"+e+"'");Wu.has(e)||Wu.set(e,0);let t=Wu.get(e);if(Wu.set(e,Wu.get(e)+1),t>0){let n=`${e}_${t}`;return Wu.set(n,1),n}else return e}var SU=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function Wk(e){return!!e.match(SU)}function CU(e){return e===parseInt(e.toString(),10)}function fo(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function lc(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function wo(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function Fr(e,t){if(t<e)throw new j(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}var w3;function pn(){return w3==null&&(w3=Bn().epsilon()),w3}function Or(){return"channelsLast"}function p2(e,t){return ye(e,t)}function Dh(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),V(e,n)}function TU(e,t){return Z(()=>{if(e.shape.length!==2)throw new j(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Dh(e,1);return q3(n,[1,t,1])})}function NU(e){let t=[fo(e.shape)];return V(e,t)}function EU(e){if(e.rank<=1)throw new j(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],fo(e.shape,1)];return V(e,t)}function al(e,t,n){return Z(()=>{switch(e.rank){case 1:return Th(e,t,n);case 2:return K0(e,[t,0],[n,e.shape[1]]);case 3:return vi(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return vo(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Le(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Le(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new j(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function k3(e,t,n){return Z(()=>{switch(e.rank){case 1:return Th(e,t,n);case 2:return K0(e,[0,t],[e.shape[0],n]);case 3:return vi(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return vo(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new j(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Qf(e,t,n,s){return Z(()=>{switch(e.rank){case 1:return Th(e,t,n);case 2:switch(s){case 1:return al(e,t,n);case 2:return k3(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return al(e,t,n);case 2:return vi(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return k3(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return al(e,t,n);case 2:return vo(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return vo(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return k3(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}default:throw new j(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function h5(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),St(e,t)}function Qv(e,t){switch(e.rank){case 1:return kA([e,t]);case 2:return nu([e,t],0);case 3:return IA([e,t],0);case 4:return SA([e,t],0);default:throw new j(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function q3(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new j(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Hs(e,t)}function h2(e,t=0,n=1,s,r){return W0(e,t,n,s,r)}function Yr(e,t,n,s){if(e.rank<2||t.rank<2)throw new qe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new qe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return ic.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:s?X3(e.rank,s,Or()):null,activation:n});{let r=e.shape.slice(),a=r.pop();e=V(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),u=[...o,i],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=V(et(t,c),[l,-1]);let p=[...r,...u],d=!1,h=!1;return V(ic.matMul({a:e,b:t,transposeA:d,transposeB:h,bias:s?X3(e.rank,s,Or()):null,activation:n}),p)}}function Vk(e,t,n){return Z(()=>(Array.isArray(t)?t=Ft(t,"int32"):t=ye(t,"int32"),ed(e,t,n)))}function $h(e){return z(e,e)}function X3(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new j(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1,1,1]):V(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,1,1,s[0]]):V(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1,1]):V(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,1,s[0]]):V(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1]):V(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,s[0]]):V(t,[1].concat(s))}else if(e<3)return t;throw new j(`Unsupported input rank by biasAdd: ${t.rank}`)}function Lr(e,t,n){return Z(()=>(n==null&&(n=Or()),Yt(n),ue(e,X3(e.rank,t,n))))}function RU(e,t=1){if(t!==1)throw new qe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Zc(e)}function _U(e){return Z(()=>fe(e,ue(tn(e),1)))}function Uk(e,t,n,s){return Z(()=>r5(e,t,n,s))}function DU(e){return Z(()=>{let t=ue(.5,z(.2,e));return gs(t,0,1)})}function Ph(e,t,n=!1){return n?e():t()}var $U=["fanIn","fanOut","fanAvg"],PU=["normal","uniform","truncatedNormal"];function FU(e){iu($U,"FanMode",e)}function OU(e){iu(PU,"Distribution",e)}var fr=class extends de.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},f5=class extends fr{apply(e,t){return Vt(e,t)}};f5.className="Zeros";de.registerClass(f5);var f2=class extends fr{apply(e,t){return Es(e,t)}};f2.className="Ones";de.registerClass(f2);var m5=class extends fr{constructor(e){if(super(),typeof e!="object")throw new j(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new j(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return Z(()=>z(Ce(this.value),Es(e,t)))}getConfig(){return{value:this.value}}};m5.className="Constant";de.registerClass(m5);var g5=class extends fr{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return nd(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};g5.className="RandomUniform";de.registerClass(g5);var y5=class extends fr{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new qe(`randomNormal does not support dType ${t}.`);return h2(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};y5.className="RandomNormal";de.registerClass(y5);var A5=class extends fr{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new qe(`truncatedNormal does not support dType ${t}.`);return J0(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};A5.className="TruncatedNormal";de.registerClass(A5);var x5=class extends fr{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return Z(()=>{if(e.length!==2||e[0]!==e[1])throw new j("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,P0(e[0]))})}getConfig(){return{gain:this.gain}}};x5.className="Identity";de.registerClass(x5);function MU(e,t="channelsLast"){let n,s;if(Yt(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=fo(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=fo(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=fo(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var ys=class extends fr{constructor(e){if(super(),e.scale<0)throw new j(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,FU(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,OU(this.distribution),this.seed=e.seed}apply(e,t){let n=MU(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new qe(`${this.getClassName()} does not support dType ${t}.`);return J0(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return nd(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};ys.className="VarianceScaling";de.registerClass(ys);var m2=class extends ys{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ys.className}};m2.className="GlorotUniform";de.registerClass(m2);var g2=class extends ys{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ys.className}};g2.className="GlorotNormal";de.registerClass(g2);var y2=class extends ys{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ys.className}};y2.className="HeNormal";de.registerClass(y2);var A2=class extends ys{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ys.className}};A2.className="HeUniform";de.registerClass(A2);var x2=class extends ys{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ys.className}};x2.className="LeCunNormal";de.registerClass(x2);var b2=class extends ys{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ys.className}};b2.className="LeCunNormal";de.registerClass(b2);var b5=class extends fr{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new qe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return Z(()=>{if(e.length<2)throw new qe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=h2(n,0,1,"float32"),r=l5.gramSchmidt(s);return e[0]>e[1]&&(r=et(r)),z(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};b5.className="Orthogonal";de.registerClass(b5);var e7={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function t7(e,t={}){return _h(e,de.SerializationMap.getMap().classNameMap,t,"initializer")}function Ut(e){return d5(e)}function Ot(e){if(typeof e=="string"){let t=e in e7?e7[e]:e;if(t==="GlorotNormal")return new g2;if(t==="GlorotUniform")return new m2;if(t==="HeNormal")return new y2;if(t==="HeUniform")return new A2;if(t==="LeCunNormal")return new x2;if(t==="LeCunUniform")return new b2;{let n={};return n.className=t,n.config={},t7(n)}}else return e instanceof fr?e:t7(e)}function K3(e){return Array.isArray(e)&&Array.isArray(e[0])}function Rm(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Xe(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new j(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function At(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new j(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function _m(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var n7="Variable",Gk=class{constructor(e,t="float32",n=n7,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Mk(),n=n==null?n7:n,this.originalName=Lk(n),this.name=Bk(this.originalName),this.trainable_=s,this.constraint=r,this.val=n5(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),zU(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function zU(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Z3(e){return e.map(t=>t.read())}function v5(e){e.forEach(t=>{t[0].write(t[1])})}var rn=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},_r=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=Mk(),a!=null&&(this.originalName=Lk(a),this.name=Bk(this.originalName)),this.rank=t.length}},LU=0,v2=class{constructor(e,t){this.callArgs=t,this.id=LU++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},BU=0,ut=class extends de.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=BU++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ma(n)+"_"+d2(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Rr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new j(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return fs(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return fs(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new fa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new fa(`Layer ${this.name} is not connected, no input to return.`);return fs(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new fa(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new fa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return fs(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=Dt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=Dt(this.inputSpec);if(e.length!==t.length)throw new j(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new j(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),u=r.axes[i],c=l>=0?o[l]:o[o.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=Dt(e),s=!0;for(let a of n)if(!(a instanceof _r)){s=!1;break}let r=!0;for(let a of n)if(a instanceof _r){r=!1;break}if(s===r)throw new j("Arguments to apply() must be all SymbolicTensors or all Tensors");return rl(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of Dt(e))a.push(o.shape);this.build(fs(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=Dt(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=fs(i),this.activityRegularizer!=null)throw new qe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=WU(e),o=this.computeOutputShape(a),i,l=VU(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((u,c)=>new _r(l,u,this,Dt(e),t,this.name,c)):i=new _r(l,o,this,Dt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new qe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new fa(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new fa(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Rr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return _m(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Z3(e?this.trainableWeights:this.weights)}setWeights(e){Z(()=>{let t=this.weights;if(t.length!==e.length)throw new j(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=Z3(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!v.arraysEqual(a.shape,i.shape))throw new j(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}v5(n)})}addWeight(e,t,n,s,r,a,o,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new j(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=i!=null?i():Ot("zeros"));let l=s.apply(t,n),u=new Gk(l,n,e,a,o);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(u.read())),a==null&&(a=!0),a?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=Dt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=Dt(e);t=Dt(t),n=Dt(n),s=Dt(s),r=Rm(r),a=Rm(a);let l=[],u=[],c=[];for(let p of i)l.push(p.sourceLayer),u.push(p.nodeIndex),c.push(p.tensorIndex);new v2({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function WU(e){e=Dt(e);let t=[];for(let n of e)t.push(n.shape);return fs(t)}function VU(e){return"float32"}function Hk(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],u=Hk(o,i,l);for(let c of u)r.indexOf(c)===-1&&r.push(c)}return r}}}var rd=class extends ut{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:d2("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new j("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new j("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new j("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new _r(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new v2({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new j(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};rd.className="InputLayer";de.registerClass(rd);function jk(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new j("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new rd({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}function UU(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ye(t,e.dtype)}catch(n){throw new j(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var el=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof el)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=UU(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new j(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof _r){if(this.id2Value[e.id]==null)throw new j(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new j(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof _r){if(this.id2Value[e.id]==null)throw new j(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new j(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&J(this.id2Mask)}},Dm=new Pk,$m=new Pk;function GU(e){Dm!=null&&Dm.setMaxEntries(e),$m!=null&&$m.setMaxEntries(e)}function pp(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),l=[],u=t.names();for(let f of i)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let c=i.join(",")+"|"+t.names().sort().join(","),p=Dm.get(c),d;if(p==null){let f=HU(o,t);p=f.sorted,d=f.recipientCounts,Dm.put(c,p),$m.put(c,d)}d={},r||Object.assign(d,$m.get(c));let h=new el(t);for(let f=0;f<p.length;++f){if(s!=null){let _=Nm().numTensors;_>s.maxNumTensors&&(s.maxNumTensors=_),_<s.minNumTensors&&(s.minNumTensors=_)}let m=p[f],g=m.sourceLayer;if(g instanceof rd)continue;let y=[],x=[],A=[],b=!1;for(let _ of m.inputs){let D=h.getValue(_),R=h.getMask(_);y.push(D),x.push(R),R!=null&&(b=!0),r||(d[_.name]--,d[_.name]===0&&!t.hasKey(_)&&i.indexOf(_.name)===-1&&!D.isDisposed&&_.sourceLayer.stateful!==!0&&A.push(D))}b&&(n=n||{},n.mask=x[0]);let w=Dt(g.apply(y,n)),I=null;g.supportsMasking&&(I=g.computeMask(y,x));let k=qU(m),E=Array.isArray(k)?k:[k];for(let _=0;_<E.length;++_){h.hasKey(E[_])||h.add(E[_],w[_],Array.isArray(I)?I[0]:I);let D=i.indexOf(E[_].name);D!==-1&&(l[D]=w[_])}r||J(A)}return h.disposeMasks(),a?l:l[0]}function HU(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=s7(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=s7(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(u=>s[l].add(u))}}return{sorted:n,recipientCounts:jU(s)}}function jU(e){let t={};for(let n in e)t[n]=e[n].size;return t}function s7(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let u of i.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(i.name),!n.has(u.name)&&a.push(u)}}return{sorted:s,recipientMap:r}}function qU(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var XU=H();XU.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,GU);var qk={};Ve(qk,{maxNorm:()=>KU,minMaxNorm:()=>JU,nonNeg:()=>YU,unitNorm:()=>ZU});function w5(e,t){return Z(()=>En(ke(z(e,e),t,!0)))}var Fh=class extends de.Serializable{getConfig(){return{}}},k5=class extends Fh{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Z(()=>{let t=w5(e,this.axis),n=gs(t,0,this.maxValue);return z(e,fe(n,ue(pn(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};k5.className="MaxNorm";de.registerClass(k5);var I5=class extends Fh{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Z(()=>fe(e,ue(pn(),w5(e,this.axis))))}getConfig(){return{axis:this.axis}}};I5.className="UnitNorm";de.registerClass(I5);var S5=class extends Fh{apply(e){return zr(e)}};S5.className="NonNeg";de.registerClass(S5);var C5=class extends Fh{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Z(()=>{let t=w5(e,this.axis),n=ue(z(this.rate,gs(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,fe(n,ue(pn(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};C5.className="MinMaxNorm";de.registerClass(C5);var r7={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function fn(e){return d5(e)}function a7(e,t={}){return _h(e,de.SerializationMap.getMap().classNameMap,t,"constraint")}function mn(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in r7?r7[e]:e,config:{}};return a7(n)}else return e instanceof Fh?e:a7(e)}function KU(e){return new k5(e)}function ZU(e){return new I5(e)}function YU(){return new S5}function JU(e){return new C5(e)}var Xk={};Ve(Xk,{constant:()=>tG,glorotNormal:()=>lG,glorotUniform:()=>iG,heNormal:()=>uG,heUniform:()=>cG,identity:()=>aG,leCunNormal:()=>dG,leCunUniform:()=>pG,ones:()=>eG,orthogonal:()=>hG,randomNormal:()=>sG,randomUniform:()=>nG,truncatedNormal:()=>rG,varianceScaling:()=>oG,zeros:()=>QU});function QU(){return new f5}function eG(){return new f2}function tG(e){return new m5(e)}function nG(e){return new g5(e)}function sG(e){return new y5(e)}function rG(e){return new A5(e)}function aG(e){return new x5(e)}function oG(e){return new ys(e)}function iG(e){return new m2(e)}function lG(e){return new g2(e)}function uG(e){return new y2(e)}function cG(e){return new A2(e)}function dG(e){return new x2(e)}function pG(e){return new b2(e)}function hG(e){return new b5(e)}var Kk={};Ve(Kk,{Layer:()=>ut,RNN:()=>aa,RNNCell:()=>Bh,activation:()=>LH,add:()=>XH,alphaDropout:()=>_j,average:()=>KH,averagePooling1d:()=>$x,averagePooling2d:()=>Px,averagePooling3d:()=>Fx,avgPool1d:()=>rj,avgPool2d:()=>oj,avgPool3d:()=>lj,avgPooling1d:()=>aj,avgPooling2d:()=>ij,avgPooling3d:()=>uj,batchNormalization:()=>tj,bidirectional:()=>kj,concatenate:()=>ZH,conv1d:()=>RH,conv2d:()=>_H,conv2dTranspose:()=>DH,conv3d:()=>$H,conv3dTranspose:()=>PH,convLstm2d:()=>xj,convLstm2dCell:()=>bj,cropping2D:()=>OH,dense:()=>BH,depthwiseConv2d:()=>zH,dot:()=>ej,dropout:()=>WH,elu:()=>IH,embedding:()=>qH,flatten:()=>UH,gaussianDropout:()=>Rj,gaussianNoise:()=>Ej,globalAveragePooling1d:()=>cj,globalAveragePooling2d:()=>dj,globalMaxPool1d:()=>Sj,globalMaxPool2d:()=>Cj,globalMaxPooling1d:()=>B8,globalMaxPooling2d:()=>W8,gru:()=>hj,gruCell:()=>fj,input:()=>h8,inputLayer:()=>kH,layerNormalization:()=>nj,leakyReLU:()=>CH,lstm:()=>mj,lstmCell:()=>gj,masking:()=>Dj,maxPool1d:()=>Tj,maxPool2d:()=>Nj,maxPooling1d:()=>V8,maxPooling2d:()=>U8,maxPooling3d:()=>pj,maximum:()=>YH,minimum:()=>JH,multiply:()=>QH,permute:()=>jH,prelu:()=>TH,reLU:()=>SH,repeatVector:()=>GH,reshape:()=>HH,rnn:()=>vj,separableConv2d:()=>FH,simpleRNN:()=>yj,simpleRNNCell:()=>Aj,softmax:()=>NH,spatialDropout1d:()=>VH,stackedRNNCells:()=>wj,thresholdedReLU:()=>EH,timeDistributed:()=>Ij,upSampling2d:()=>MH,zeroPadding2d:()=>sj});async function oo(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];J(s)}}function Zk(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var o7;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(o7||(o7={}));var fG=125,uc=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},Yk=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},mG=class extends uc{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=Z(()=>ue(this.totals[s],z(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:Z(()=>{let s=z(fe(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),An(t[n])}))}},Jk=class extends uc{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},Qk=class extends uc{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||u5,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=fG),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=gU(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await oo(n),s.push(this.yield(e,t,n))),s.push(this.nextFrameFunc()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await oo(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await oo(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await oo(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await oo(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await oo(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await oo(e),await this.trainEnd(e))}};function e8(e,t){return e==null&&(e={}),e instanceof uc?[e]:Array.isArray(e)&&e[0]instanceof uc?e:Dt(e).map(s=>new Qk(s,t))}var ir=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),ir.checkForDuplicate(t),ir.constructors[e]==null&&(ir.constructors[e]=[]),ir.constructors[e].push(t)}static checkForDuplicate(e){for(let t in ir.constructors)ir.constructors[+t].forEach(s=>{if(s===e)throw new j("Duplicate callback constructor.")})}static clear(){ir.constructors={}}static createCallbacks(e){let t=[];for(let n in ir.constructors){let s=+n;e>=s&&t.push(...ir.constructors[s])}return t.map(n=>new n)}};ir.constructors={};function t8(e,t,n,s,r,a,o,i,l){let u=new Jk,c=[new mG,...ir.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let p=new Yk(c);return p.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:p,history:u}}function $r(e,t={},n=!1){return _h(e,de.SerializationMap.getMap().classNameMap,t,"layer",n)}function Pm(e,t){return Z(()=>{e.dtype!=="float32"&&(e=ye(e,"float32"));let n=ke($h(e),t,!0),s=Jc(n.shape,pn()),r=En(ra(n,s));return fe(e,r)})}function lu(e,t){return Z(()=>Wt($h(me(t,e)),-1))}function w2(e,t){return Z(()=>Wt(tn(me(t,e)),-1))}function ad(e,t){return Z(()=>{let n=me(e,t),s=gs(tn(e),pn(),Number.MAX_VALUE),r=tn(fe(n,s));return z(100,Wt(r,-1))})}function gG(e,t){return Z(()=>{let n=gs(t,pn(),Number.MAX_VALUE),s=$s(ue(1,n)),r=gs(e,pn(),Number.MAX_VALUE),a=$s(ue(1,r));return Wt($h(me(s,a)),-1)})}function yG(e,t){return Z(()=>{let n=ra(0,me(1,z(e,t)));return Wt($h(n),-1)})}function AG(e,t){return Z(()=>{let n=ra(0,me(1,z(e,t)));return Wt(n,-1)})}function xG(e,t){return Z(()=>{let n=ke(z(e,t),-1),s=hn(z(me(1,e),t),-1);return ra(0,ue(1,me(s,n)))})}function bG(e,t){return Z(()=>{let n=Math.log(2),s=me(t,e),r=me(ue(s,su(z(-2,s))),n);return Wt(r,-1)})}function Op(e,t,n=!1){return Z(()=>{if(n)t=au(t);else{let s=ke(t,t.shape.length-1,!0);t=fe(t,s)}return t=gs(t,pn(),1-pn()),$t(ke(z(ye(e,"float32"),$s(t)),t.shape.length-1))})}function Fm(e,t,n=!1){return Z(()=>{let s=ye(Qc(NU(e)),"int32");t=gs(t,pn(),1-pn());let r=t.shape,a=V(sc(s,r[r.length-1]),r);return Op(a,t,n)})}function vG(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new j(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return Z(()=>{let n=zr(t),s=$t(tn(t));return ue(me(n,z(t,e)),vh(Ds(s)))})}function k2(e,t){return Z(()=>{let n;return n=gs(t,pn(),1-pn()),n=$s(fe(n,me(1,n))),Wt(vG(e,n),-1)})}function wG(e,t){return Z(()=>{let n=gs(e,pn(),1),s=gs(t,pn(),1);return ke(z(e,$s(fe(n,s))),-1)})}function kG(e,t){return Z(()=>{let n=$s(ue(pn(),t));return Wt(me(t,z(e,n)),-1)})}function T5(e,t){return Z(()=>{let n=Pm(e,-1),s=Pm(t,-1),r=z(n,s);return $t(ke(r,-1))})}var Om={meanSquaredError:lu,meanAbsoluteError:w2,meanAbsolutePercentageError:ad,meanSquaredLogarithmicError:gG,squaredHinge:yG,hinge:AG,categoricalHinge:xG,logcosh:bG,categoricalCrossentropy:Op,sparseCategoricalCrossentropy:Fm,binaryCrossentropy:k2,kullbackLeiblerDivergence:wG,poisson:kG,cosineProximity:T5};function I3(e){if(typeof e=="string"){if(e in Om)return Om[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new j(t)}else return e}function N5(e,t){return Z(()=>{let n=z(.5,Ps(t)),s=p2(xs(t,n),e.dtype);return Wt(_s(e,s),-1)})}function E5(e,t){return Z(()=>p2(_s(Rs(e,-1),Rs(t,-1)),"float32"))}function n8(e,t){return Z(()=>ye(ke(cr(_s(e,1),_s(t,1))),"float32"))}function IG(e,t){return Z(()=>ye(ke(cr(_s(e,1),_s(t,0))),"float32"))}function SG(e,t){return Z(()=>ye(ke(cr(_s(e,0),_s(t,1))),"float32"))}function s8(e,t){return Z(()=>{let n=n8(e,t),s=SG(e,t),r=ue(n,s);return ye(zn(xs(r,0),fe(n,r),0),"float32")})}function CG(e,t){return Z(()=>{let n=n8(e,t),s=IG(e,t),r=ue(n,s);return ye(zn(xs(r,0),fe(n,r),0),"float32")})}function r8(e,t){return k2(e,t)}function a8(e,t){return e.rank===t.rank&&(e=st(e,[e.rank-1])),t=Rs(t,-1),t.dtype!==e.dtype&&(t=ye(t,e.dtype)),ye(_s(e,t),"float32")}var TG=lu,NG=lu,EG=w2,RG=w2,_G=ad,DG=ad,R5=Op,$G=T5,o8=Fm,Mm={binaryAccuracy:N5,categoricalAccuracy:E5,precision:s8,categoricalCrossentropy:R5,sparseCategoricalCrossentropy:o8,mse:TG,MSE:NG,mae:EG,MAE:RG,mape:_G,MAPE:DG,cosine:$G};function PG(e){if(typeof e=="string"&&e in Mm)return Mm[e];if(typeof e!="string"&&e!=null)return e;throw new j(`Unknown metric ${e}`)}function em(e){if(qr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Om))if(Om[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Mm))if(Mm[n]===e){t=n;break}return t!==void 0?t:e.name}}function FG(e){let t={Adagrad:()=>qi.adagrad(.01),Adadelta:()=>qi.adadelta(1,.95,pn()),Adam:()=>qi.adam(.001,.9,.999,pn()),Adamax:()=>qi.adamax(.002,.9,.999,pn(),0),RMSProp:()=>qi.rmsprop(.001,.9,0,pn()),SGD:()=>qi.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new j(`Unknown Optimizer ${e}`)}var i7=1*1024*1024;function l7(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Y3(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>i7&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${i7}.`)}}function Y3(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!Y3(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!Y3(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function OG(e,t,n,s=console.log){let r=zG(e),a=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let o;if(!r){a.push("Receives inputs"),o=[];for(let c in e.nodesByDepth)o.push(...e.nodesByDepth[c])}s("_".repeat(t)),zm(a,n,s),s("=".repeat(t));let i=e.layers;for(let c=0;c<i.length;++c)r?LG(i[c],n,s):BG(i[c],n,o,s),s((c===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=MG(e),u=_m(e.nonTrainableWeights);s(`Total params: ${l+u}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${u}`),s("_".repeat(t))}function MG(e){let t;return e.collectedTrainableWeights!=null?t=_m(e.collectedTrainableWeights):t=_m(e.trainableWeights),t}function zG(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function zm(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function LG(e,t,n){let s,r;try{r=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){r="multiple"}try{s=JSON.stringify(e.outputShape)}catch(l){s="multiple"}let a=e.name,o=e.getClassName(),i=[`${a} (${o})`,r,s,e.countParams().toString()];zm(i,t,n)}function BG(e,t,n,s){let r,a;try{a=e.inboundNodes.map(p=>JSON.stringify(p.inputShapes)).join(",")}catch(p){a="multiple"}try{r=JSON.stringify(e.outputShape)}catch(p){r="multiple"}let o=[];for(let p of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(p)===-1))for(let d=0;d<p.inboundLayers.length;++d){let h=p.inboundLayers[d].name,f=p.nodeIndices[d],m=p.tensorIndices[d];o.push(`${h}[${f}][${m}]`)}let i=e.name,l=e.getClassName(),u=o.length===0?"":o[0],c=[`${i} (${l})`,a,r,e.countParams().toString(),u];zm(c,t,s);for(let p=1;p<o.length;++p)zm(["","","","",o[p]],t,s)}function i8(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Mp(e,t){if(e===null)return null;if(typeof e=="string")return Yi(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];i8(t,r,a)?n.push(a):n.push(Mp(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=Yi(s);n[a]=Mp(r,a)}}return n}}function J3(e,t){if(e==null)return null;if(typeof e=="string")return ma(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];i8(t,r,a)?n.push(a):n.push(J3(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=ma(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=J3(r,s)}return n}}var _5="3.20.0",Hr=class extends ut{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=d2(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],ho(this.inputs).length!==this.inputs.length)throw new j(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);ho(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let x=y.sourceLayer,A=y.nodeIndex,b=y.tensorIndex;this.outputLayers.push(x),this.outputLayersNodeIndices.push(A),this.outputLayersTensorIndices.push(b)}for(let y of this.inputs){let x=y.sourceLayer,A=y.nodeIndex,b=y.tensorIndex;qr(A===0,"input layer has >1 nodes"),qr(b===0,"input layer has >1 tensors"),this.inputLayers.push(x),this.inputLayersNodeIndices.push(A),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let x=this.inputLayers[y];if(!(x instanceof rd))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${x.getClassName()}.`);this.inputNames.push(x.name),this.feedInputShapes.push(x.batchInputShape),this.feedInputNames.push(x.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},s={},r={},a={},o=[],i=(y,x,A,b,w,I)=>{(b==null||w==null||I==null)&&(b=y.sourceLayer,w=y.nodeIndex,I=y.tensorIndex);let k=b.inboundNodes[w];if(A.indexOf(k)!==-1)throw new Rr(`The tensor ${y.name} at layer "${b.name}" is part of a cycle.`);if(x.indexOf(k)!==-1)return;this.containerNodes.add(Hr.nodeKey(b,w)),b.id in a||(a[b.id]=Object.keys(a).length),A.indexOf(k)===-1&&A.push(k);let E=k.inboundLayers.length;for(let _=0;_<E;_++){let D=k.inputTensors[_],R=k.inboundLayers[_],P=k.nodeIndices[_],T=k.tensorIndices[_];i(D,x,A,R,P,T)}for(x.push(k);A.indexOf(k)>=0;)A.splice(A.indexOf(k),1);o.push(k)},l=[],u=[];for(let y of this.outputs)i(y,l,u);let c=o.slice().reverse();for(let y of c){n[y.id]=y,y.id in t||(t[y.id]=0);let x=t[y.id],A=s[y.outboundLayer.id]==null?0:s[y.outboundLayer.id];x=Math.max(x,A),s[y.outboundLayer.id]=x,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=x;for(let b=0;b<y.inboundLayers.length;b++){let w=y.inboundLayers[b],I=y.nodeIndices[b],k=w.inboundNodes[I],E=t[k.id]==null?0:t[k.id];t[k.id]=Math.max(x+1,E),n[k.id]=k}}let p={};for(let y in t){let x=t[y];x in p||(p[x]=[]),p[x].push(n[y])}let d={};for(let y in s){let x=s[y];x in d||(d[x]=[]),d[x].push(r[y])}let h=Object.keys(d).map(y=>parseInt(y,10)).sort(Yf);this.layers=[];for(let y of h){let x=d[y];x.sort((A,b)=>{let w=a[A.id],I=a[b.id];return w<I?-1:w>I?1:0});for(let A of x)A instanceof Hr&&this.internalContainerRefs.push(A),this.layers.push(A)}this.layersByDepth=d,h=Object.keys(p).map(y=>parseInt(y,10)).sort(Yf);let f=this.inputs.slice(),m=[];for(let y of h)for(let x of p[y]){let A=x.outboundLayer;if(A!=null){for(let b of x.inputTensors)if(f.indexOf(b)===-1)throw new Rr(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${A.name}". The following previous layers were accessed without issue: ${m}`);for(let b of x.outputTensors)f.push(b);m.push(A.name)}}this.nodesByDepth=p;let g=this.layers.map(y=>y.name);for(let y of g){let x=g.filter(A=>A===y).length;if(x!==1)throw new Rr(`The name "${y}" is used ${x} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new v2({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new j("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new j(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new j(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new j(`${a.length} of ${s} weights are not set: ${a}`)}v5(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${_5}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=J3(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return Z(()=>{e=Dt(e);let n=new el;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return pp(this.outputs,n,t)})}computeMask(e,t){return Z(()=>{e=Dt(e);let n;return t==null?n=hl(null,e.length):n=Dt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Rm(e);if(t.length!==this.inputLayers.length)throw new j(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],u=i.name+"_0_0";n[u]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Yf);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let c=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],y=l.tensorIndices[f],x=`${m.name}_${g}_${y}`,A=n[x];c.push(A)}let p=u.computeOutputShape(fs(c)),d=Rm(p),h=u.inboundNodes.indexOf(l);for(let f=0;f<d.length;f++){let m=`${u.name}_${h}_${f}`;n[m]=d[f]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],u=this.outputLayersTensorIndices[o],c=`${i.name}_${l}_${u}`;a.push(c)}for(let o=0;o<a.length;o++){let i=a[o];qr(i in n),r.push(n[i])}return fs(r)}runInternalGraph(e,t){t==null&&(t=hl(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],u=e[i],c=t[i];n[l.id]=[u,c]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Yf);for(let i of s){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer,p=u.inputTensors,d=u.outputTensors,h=new Array;for(let f of p)f.id in n&&h.push(n[f.id]);if(h.length===p.length){let f={},m,g,y,x;if(u.callArgs!=null&&(f=u.callArgs),h.length===1){let[A,b]=h[0];f.mask==null&&(f.mask=b),y=Dt(c.call(A,f)),x=Dt(c.computeMask(A,b)),m=[A],g=[b]}else m=h.map(A=>A[0]),g=h.map(A=>A[1]),f.mask==null&&(f.mask=g),y=Dt(c.call(m,f)),x=Dt(c.computeMask(m,g));if(c.activityRegularizer)throw new qe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let A=0;A<d.length;++A){let b=d[A],w=y[A],I=x[A];n[b.id]=[w,I]}}}}let r=[],a=[],o=[];for(let i of this.outputs){qr(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,u]=n[i.id];o.push(l.shape),r.push(l),a.push(u)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof Hr?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=Hr.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new j(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new j("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new j(`No such layer: ${e}`)}calculateLosses(){return Z(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=Hr.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let c=0;c<a.inboundNodes.length;c++){let p=a.inboundNodes[c],d=Hr.nodeKey(a,c),h={};if(this.containerNodes.has(d)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let f=[];for(let m=0;m<p.inboundLayers.length;m++){let g=p.inboundLayers[m],y=p.nodeIndices[m],x=p.tensorIndices[m],A=Hr.nodeKey(g,y),b=t[A];b==null&&(b=0),f.push([g.name,b,x,h])}l.push(f)}}}let u={};u.name=a.name,u.className=o,u.config=i,u.inboundNodes=l,n.push(u)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=Hr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.inputLayersTensorIndices[a];s.push([o.name,u,c])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=Hr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.outputLayersTensorIndices[a];r.push([o.name,u,c])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let y=[],x;for(let A of g){let b=A[0],w=A[1],I=A[2];if(x=A[3]==null?{}:A[3],!(b in r)){o(m,g);return}let k=r[b];if(k.inboundNodes.length<=w){o(m,g);return}let E=k.inboundNodes[w];y.push(E.outputTensors[I])}y.length>0&&m.apply(fs(y),x)}function l(m){let g=m.name,y=$r(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(s),r[g]=y,m.inboundNodes.forEach(A=>{if(!(A instanceof Array))throw new j(`Corrupted configuration, expected array for nodeData: ${A}`);o(y,A)})}let u=t.name,c=t.layers;for(let m of c)l(m);for(;!mU(a);)for(let m of c){let g=r[m.name];if(g.name in a){let y=a[g.name];delete a[g.name];for(let x of y)i(g,x)}}let p=[],d=[],h=t.inputLayers;for(let m of h){let g=m[0],y=m[1],x=m[2];qr(g in r);let b=r[g].inboundNodes[y].outputTensors;p.push(b[x])}let f=t.outputLayers;for(let m of f){let g=m[0],y=m[1],x=m[2];qr(g in r);let b=r[g].inboundNodes[y].outputTensors;d.push(b[x])}return new e({inputs:p,outputs:d,name:u})}get stateful(){if(this._stateful)throw new j("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){Z(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function WG(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function l8(e,t){return WG(e,t,"classWeight")}async function u8(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=Z(()=>{if(e.shape.length===1)return Mn(e);if(e.shape.length===2){if(e.shape[1]>1)return Rs(e,1);if(e.shape[1]===1)return V(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());J(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Ft(o,"float32")}else return null}function VG(e,t){return z(e,t)}var UG=32;function c8(e,t){let n,s,r=t;n=r.xs,s=r.ys,v.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=u7("input",e.inputNames,n),o=u7("output",e.outputNames,s),i=a[0].shape[0];v.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)v.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)v.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function u7(e,t,n){if(n instanceof nt)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new j(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function GG(e){if(e.length===3)throw new qe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function HG(e,t,n){let s=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(c7(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=GG(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=e8(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:d,history:h}=t8(c,p,n.epochs,null,null,jG(t,n),null,r,u);d.setModel(e),e.history=h,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await d.onEpochBegin(f);let y=0,x=0;for(s||(m=await t.iterator());!s||y<n.batchesPerEpoch;){let A=await m.next();if(s&&A.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(A.value!=null){let{xs:b,ys:w}=c8(e,A.value),I={};I.batch=x,I.size=b[0].shape[0],await d.onBatchBegin(x,I);let k=[];if(n.classWeight!=null){let D=l8(n.classWeight,e.outputNames);for(let R=0;R<D.length;++R)k.push(await u8(w[R],null,D[R]))}let E=b.concat(w).concat(k),_=i(E);J(E);for(let D=0;D<l.length;++D){let R=l[D],P=_[D];I[R]=P,An(P)}await d.onBatchEnd(x,I),Zk(I),x++,y++}if(s?y>=n.batchesPerEpoch:A.done){if(r){let b;c7(n.validationData)?b=Dt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=Dt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?UG:n.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)g[`val_${e.metricsNames[w]}`]=b[w]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(f,g),f++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function jG(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function c7(e){return typeof e.iterator=="function"}function qG(e){return typeof e.next=="function"}async function XG(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new qe("Verbose mode is not implemented yet.");v.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=qG(t)?t:await t.iterator(),i=0,l=0;for(;!s||l<n.batches;){let u=await o.next();if(a=Z(()=>{if(u.value){let{xs:c,ys:p}=c8(e,u.value),d=c.concat(p),h=Z(()=>r(d));if(J(d),l===0)for(let m=0;m<h.length;++m)a.push(Ce(0));let f=d[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],y=a[m];a[m]=Z(()=>ue(a[m],z(f,g))),l>0&&J(y)}J(h),i+=f,++l}return a}),u.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<a.length;++u){let c=a[u];a[u]=fe(a[u],i),J(c)}return fs(a)}function Q3(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function hp(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>al(s,t,n-t)):al(e,t,n-t)}function D5(e,t){return Z(()=>e==null?null:Array.isArray(e)?e.map(n=>D5(n,t)):Vk(e,t.dtype==="int32"?t:ye(t,"int32")))}function ey(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function KG(e,t,n,s,r,a,o,i,l,u,c,p,d,h,f){r==null&&(r=32),a==null&&(a=1),c==null&&(c=!0),d==null&&(d=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new j("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=Fr(0,g)),o==null&&(o=1);let{callbackList:x,history:A}=t8(i,o,a,d,g,h,r,m,p);x.setModel(e),e.history=A,await x.onTrainBegin(),e.stopTraining_=!1;for(let b=d;b<a;++b){await x.onEpochBegin(b);let w={};if(h!=null)throw new qe("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new qe("batch shuffling is not implemneted yet");c&&v.shuffle(y);let I=Ft(y),k=ey(g,r);for(let E=0;E<k.length;++E){let _={};if(await x.onBatchBegin(E,_),Z(()=>{let D=k[E][0],R=k[E][1],P=al(I,D,R-D);_.batch=E,_.size=R-D;let T=D5(n,P),M=t(T);for(let W=0;W<s.length;++W){let G=s[W],X=M[W];_[G]=X,An(X)}if(E===k.length-1&&m){let W=e.testLoop(l,u,r);for(let G=0;G<s.length;++G){let X=s[G],K=W[G];An(K),w["val_"+X]=K}}}),await x.onBatchEnd(E,_),Zk(_),e.stopTraining_)break}I.dispose()}if(await x.onEpochEnd(b,w),e.stopTraining_)break}return await x.onTrainEnd(),await e.history.syncData(),e.history}async function ZG(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,u,c,p,d;try{let h=s.batchSize==null?32:s.batchSize;Q3(h);let f=!1,m=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,f,h);r=m[0],a=m[1],d=m[2];let g=!1,y;if(s.validationData!=null&&s.validationData.length>0){if(g=!0,s.validationData.length===2)l=s.validationData[0],u=s.validationData[1];else throw s.validationData.length===3?new qe("validationData including sample weights is not supported yet."):new j(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let _=!0,D=await e.standardizeUserData(l,u,null,null,_,h);c=D[0],p=D[1],y=c.concat(p)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){g=!0;let _=Math.floor(r[0].shape[0]*(1-s.validationSplit)),D=r[0].shape[0];c=hp(r,_,D),o=r,r=hp(r,0,_),p=hp(a,_,D),i=a,a=hp(a,0,_),y=c.concat(p)}else s.validationSteps!=null&&(g=!0);let x=r.concat(a).concat(d);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),b=e.getDedupedMetricsNames(),w,I;g?(e.makeTestFunction(),w=e.testFunction,I=b.slice().concat(b.map(_=>"val_"+_))):(w=null,y=[],I=b.slice());let k=e8(s.callbacks,s.yieldEvery);return await KG(e,A,x,b,h,s.epochs,s.verbose,k,w,y,s.shuffle,I,s.initialEpoch,null,null)}finally{e.isTraining=!1,Er(r,t),Er(a,n),Er(o,t),Er(i,n),Er(c,l),Er(p,u),d!=null&&J(d)}}function d8(e){let t=[];e instanceof nt&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(Dh(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function Er(e,t){if(e==null)return;let n=[];if(t instanceof nt)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof nt)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function YG(e){return e instanceof nt}function ty(e){return Array.isArray(e)}function d7(e){return!YG(e)&&!ty(e)}function p7(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(ty(e)&&e.length>0)o=!0;else if(d7(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new j(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(d7(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new j(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(ty(e)){if(e=e,e.length!==t.length)throw new j(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new j(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=d8(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new j(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c>=0&&u!==c)throw new j(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function JG(e,t,n){let s=ho(e.map(a=>a.shape[0]));s.sort();let r=ho(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new j(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new j(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!v.arraysEqual(s,r))throw new j(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function QG(e,t,n){let s=[lu,k2,Op];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===Op&&a.shape[a.shape.length-1]===1)throw new j(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),u=i.slice(1);for(let c=0;c<l.length;++c){let p=l[c],d=u[c];if(d!=null&&p!==d)throw new j(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function h7(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new j(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new j(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new j(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c!==u)throw new j(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function eH(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var tH="layers-model",xa=class extends Hr{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new j("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");OG(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=FG(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Wa))throw new j("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new j(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(I3(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new j(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>I3(o))}else{let a=I3(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],rl("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=eH(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};rl("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let u="",c,p,d;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===k2?["accuracy","acc"].indexOf(h)!==-1?p=N5:["crossentropy","ce"].indexOf(h)!==-1&&(p=r8):this.lossFunctions[a]===Fm?["accuracy","acc"].indexOf(h)!==-1?p=a8:["crossentropy","ce"].indexOf(h)!==-1&&(p=o8):["accuracy","acc"].indexOf(h)!==-1?p=E5:["crossentropy","ce"].indexOf(h)!==-1&&(p=R5);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),d=p,c=u+g}else d=PG(h),c=u+em(h);let f;rl(c,()=>{f=d}),r(a,c,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;Q3(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return fs(l)}finally{Er(a[0],e),Er(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),XG(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new j(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new j(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new j("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new el;if(e instanceof nt&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new j(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new j(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=pp(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=hl(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new j(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return Z(()=>{let s=this.checkNumSamples(e);if(n)throw new qe("Verbose predictLoop() is not implemented yet.");let r=ey(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)Z(()=>{let l=r[o][0],u=r[o][1],c=hp(e,l,u),p=[];if(Array.isArray(c))for(let h=0;h<c.length;++h)p.push({key:this.inputs[h],value:c[h]});else p.push({key:this.inputs[0],value:c});let d=new el(p);return pp(this.outputs,d)}).forEach((l,u)=>a[u].push(l));return fs(a.map(o=>St(o,0)))})}predict(e,t={}){let n=d8(e);h7(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return Q3(s),this.predictLoop(n,s)}finally{Er(n,e)}}predictOnBatch(e){h7(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new Rr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===Fm?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=p7(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=p7(t,this.feedOutputNames,r,!1,"target"),JG(e,t,null),QG(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!==0)throw new j(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let u=l8(s,this.outputNames);l=[];for(let c=0;c<u.length;++c)l.push(await u8(i[c],null,u[c]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return Z(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new qe("Verbose mode is not implemented yet.");if(r!=null)throw new qe("steps mode in testLoop() is not implemented yet");{let i=ey(a,n),l=Ft(Fr(0,a));for(let u=0;u<i.length;++u){let c=i[u][0],p=i[u][1],d=al(l,c,p-c),h=D5(t,d),f=e(h);if(u===0)for(let m=0;m<f.length;++m)o.push(Ce(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=ue(o[m],z(p-c,g))}}for(let u=0;u<o.length;++u)o[u]=fe(o[u],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;Yv(e,s)>1&&(r+=`_${Yv(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let c=[];for(let f=0;f<this.inputs.length;++f)c.push({key:this.inputs[f],value:n[f]});let p=new el(c),d=pp(this.outputs,p,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let m=this.lossFunctions[f],g=m(s[f],d[f]);r[f]!=null&&(g=VG(g,r[f]));let y=Wt(g);t.push(y),f===0?h=g:h=ue(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],y=this.metricsTensors[f][1];m=Wt(g(s[y],d[y]))}An(m),a.push(m)}return h=Wt(h),this.calculateLosses().forEach(f=>{h=ue(h,f)}),h},i=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>Z(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new el(a),i=pp(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],c=Wt(u(r[l],i[l]));l===0?n=c:n=ue(n,c),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],c=this.metricsTensors[l][1],p=Wt(u(r[c],i[c]));t.push(p)}return t})}async fit(e,t,n={}){return ZG(this,e,t,n)}async fitDataset(e,t){return HG(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let u=await l.data();i.push(u[0])}return J(o),Er(n[0],e),Er(n[1],t),fs(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Nm().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Nm().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=ma(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>ma(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=ma(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ma(em(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ma(em(e)));{let e={};for(let t in this.metrics)e[t]=ma(em(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Mp(e.optimizer_config),n=$r(t),s;if(typeof e.loss=="string")s=Yi(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>Yi(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=Yi(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>Yi(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=Yi(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=Ns.getSaveHandlers(e);if(l.length===0)throw new j(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new j(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new j("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Ns.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:tH,generatedBy:`TensorFlow.js tfjs-layers v${_5}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:u,specs:c}=await Ns.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...c),n.data=Ns.concatenateArrayBuffers([n.data,u])}return this.userDefinedMetadata!=null&&(l7(this.userDefinedMetadata,this.name,!0),o.userDefinedMetadata=this.userDefinedMetadata),o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){l7(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};xa.className="Model";de.registerClass(xa);var p8=class extends xa{};p8.className="Functional";de.registerClass(p8);async function nH(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=Mp(n),r=$r(s,t);if(e.weightsManifest!=null){let a=await Ns.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),J(a)}return r}async function sH(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Ns.getLoadHandlers(e,t);if(n.length===0)n.push(Ns.browserHTTPRequest(e,t));else if(n.length>1)throw new j(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return rH(e,void 0,t)}async function rH(e,t,n){if(n==null&&(n={}),e.load==null)throw new j("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=$r(Mp(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new j("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=aH(s.weightData,s.weightSpecs);i.loadWeights(u,a),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),J(u),J(c.map(p=>p.tensor))}return i}function aH(e,t){let n=Ns.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var cc=class extends xa{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:d2("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new j(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof cc||e instanceof xa,n;if(t){if(n=e,n.outputs.length!==1)throw new j("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new j("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new j("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=jk({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new j(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new j("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=Hk(this.outputs[0])}this.inboundNodes=[],new v2({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:hl(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(At(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new xa({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Rr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Rr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Rr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Rr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new j("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof cc))throw new qe(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let u=$r(i,void 0,s);s&&u.setFastWeightInitDuringBuild(!0),o.add(u)}return o}set stopTraining(e){if(this.model==null)throw new j("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new j("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};cc.className="Sequential";de.registerClass(cc);function oH(e){return new xa(e)}function iH(e){return new cc(e)}function lH(e,t){return t==null&&(t={}),sH(e,t)}function h8(e){return jk(e)}function uH(e,t){ir.registerCallbackConstructor(e,t)}var bs=class extends de.Serializable{getConfig(){return{}}},f8=class extends bs{apply(e,t=1){return RU(e,t)}};f8.className="elu";de.registerClass(f8);var m8=class extends bs{apply(e){return H0(e)}};m8.className="selu";de.registerClass(m8);var g8=class extends bs{apply(e){return zr(e)}};g8.className="relu";de.registerClass(g8);var y8=class extends bs{apply(e){return Z(()=>td(6,zr(e)))}};y8.className="relu6";de.registerClass(y8);var A8=class extends bs{apply(e){return e}};A8.className="linear";de.registerClass(A8);var x8=class extends bs{apply(e){return Cn(e)}};x8.className="sigmoid";de.registerClass(x8);var b8=class extends bs{apply(e){return DU(e)}};b8.className="hardSigmoid";de.registerClass(b8);var v8=class extends bs{apply(e){return su(e)}};v8.className="softplus";de.registerClass(v8);var w8=class extends bs{apply(e){return _U(e)}};w8.className="softsign";de.registerClass(w8);var k8=class extends bs{apply(e){return cl(e)}};k8.className="tanh";de.registerClass(k8);var $5=class extends bs{apply(e,t=-1){return au(e,t)}};$5.className="softmax";de.registerClass($5);var I8=class extends bs{apply(e,t=-1){return M0(e,t)}};I8.className="logSoftmax";de.registerClass(I8);var S8=class extends bs{apply(e,t=1){return Z(()=>z(Cn(z(e,t)),e))}};S8.className="swish";de.registerClass(S8);var C8=class extends bs{apply(e){return Z(()=>z(e,cl(su(e))))}};C8.className="mish";de.registerClass(C8);function ko(e){return e.getClassName()}function S3(e,t={}){return _h(e,de.SerializationMap.getMap().classNameMap,t,"activation")}function Io(e){if(e==null){let t={};return t.className="linear",t.config={},S3(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},S3(t)}else return e instanceof bs?e:S3(e)}function P5(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var T8=class extends de.Serializable{},Oh=class extends T8{constructor(e){super(),P5(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return Z(()=>{let t=Vt([1]);return this.hasL1&&(t=ue(t,ke(z(this.l1,tn(e))))),this.hasL2&&(t=ue(t,ke(z(this.l2,$h(e))))),V(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Oh.className="L1L2";de.registerClass(Oh);function cH(e){return P5(e),new Oh({l1:e!=null?e.l1:null,l2:0})}function dH(e){return P5(e),new Oh({l2:e!=null?e.l2:null,l1:0})}var f7={l1l2:"L1L2"};function It(e){return d5(e)}function m7(e,t={}){return _h(e,de.SerializationMap.getMap().classNameMap,t,"regularizer")}function Mt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in f7?f7[e]:e,config:{}};return m7(n)}else return e instanceof T8?e:m7(e)}var F5=class extends ut{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Xe(e);let n=zr(e);return this.maxValue!=null&&(n=gs(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};F5.className="ReLU";de.registerClass(F5);var O5=class extends ut{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Xe(e);return bh(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};O5.className="LeakyReLU";de.registerClass(O5);var M5=class extends ut{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Ot(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Mt(e.alphaRegularizer),this.alphaConstraint=mn(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new j(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=At(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new rn({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Xe(e),Ch(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Ut(this.alphaInitializer),alphaRegularizer:It(this.alphaRegularizer),alphaConstraint:fn(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};M5.className="PReLU";de.registerClass(M5);var z5=class extends ut{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new qe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Xe(e);return Zc(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};z5.className="ELU";de.registerClass(z5);var L5=class extends ut{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Xe(e);return z(n,ye(xs(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};L5.className="ThresholdedReLU";de.registerClass(L5);var B5=class extends ut{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new $5().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Xe(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};B5.className="Softmax";de.registerClass(B5);function Ju(e,t,n){if(typeof e=="number")return hl(e,t);if(e.length!==t)throw new j(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!CU(r))throw new j(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Pr(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function Xr(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+wo([n-t,0]);else if(s==="same")e=e*t;else throw new j(`Unsupport padding mode: ${s}.`);return e}function W5(e,t){return Z(()=>(Yt(t),t==="channelsFirst"?et(e,[0,2,3,1]):e))}function N8(e,t){return Z(()=>(Yt(t),t==="channelsFirst"?et(e,[0,2,3,4,1]):e))}function pH(e,t,n,s=1,r="valid",a,o=1){return Z(()=>{if(a==null&&(a=Or()),Yt(a),e.shape.length!==3)throw new j(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new j(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new j(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=et(e,[0,2,1])),r==="causal")throw new qe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=R0(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=Lr(i,n)),i})}function g7(e,t,n,s=[1,1],r="valid",a,o,i=null){return Z(()=>{if(a==null&&(a=Or()),Yt(a),e.rank!==3&&e.rank!==4)throw new j(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new j(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=W5(e,a);if(r==="causal")throw new qe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=ic.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=et(l,[0,3,1,2])),l})}function hH(e,t,n,s=[1,1,1],r="valid",a,o){return Z(()=>{if(a==null&&(a=Or()),Yt(a),e.rank!==4&&e.rank!==5)throw new j(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new j(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=N8(e,a);if(r==="causal")throw new qe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=TA(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=Lr(i,n)),a==="channelsFirst"&&(i=et(i,[0,4,1,2,3])),i})}var V5=class extends ut{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",V5.verifyArgs(t),this.rank=e,xn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new qe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Ju(t.kernelSize,e,"kernelSize"),this.strides=Ju(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Js(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Yt(this.dataFormat),this.activation=Io(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Ot(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=mn(t.biasConstraint),this.biasRegularizer=Mt(t.biasRegularizer),this.activityRegularizer=Mt(t.activityRegularizer),this.dilationRate=Ju(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new j(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new j(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new j(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(qr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!p5(e.kernelSize,"number",1,3))throw new j(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:ko(this.activation),useBias:this.useBias,biasInitializer:Ut(this.biasInitializer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),biasConstraint:fn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Mh=class extends V5{constructor(e,t){super(e,t),this.kernel=null,Mh.verifyArgs(t),this.filters=t.filters,xn(this.filters,"filters"),this.kernelInitializer=Ot(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=mn(t.kernelConstraint),this.kernelRegularizer=Mt(t.kernelRegularizer)}build(e){e=At(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return Z(()=>{e=Xe(e);let n,s=this.bias==null?null:this.bias.read(),r=Ok(this.activation.getClassName());if(r!=null&&this.rank===2)n=g7(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=pH(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=g7(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=hH(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new qe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=At(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=Pr(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:Ut(this.kernelInitializer),kernelRegularizer:It(this.kernelRegularizer),kernelConstraint:fn(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new j(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},zh=class extends Mh{constructor(e){super(2,e),zh.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!p5(e.kernelSize,"number",1,2))throw new j(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};zh.className="Conv2D";de.registerClass(zh);var Lh=class extends Mh{constructor(e){super(3,e),Lh.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new j(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Lh.className="Conv3D";de.registerClass(Lh);var U5=class extends zh{constructor(e){if(super(e),this.inputSpec=[new rn({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new j(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=At(e),e.length!==4)throw new j("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new rn({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return Z(()=>{let n=Xe(e);if(n.shape.length!==4)throw new j(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],u=this.kernelSize[0],c=this.kernelSize[1],p=this.strides[0],d=this.strides[1],h=Xr(i,p,u,this.padding),f=Xr(l,d,c,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=et(n,[0,2,3,1]));let g=_0(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=et(g,[0,3,1,2])),this.bias!=null&&(g=Lr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=At(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=Xr(t[s],i,a,this.padding),t[r]=Xr(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};U5.className="Conv2DTranspose";de.registerClass(U5);var G5=class extends Lh{constructor(e){if(super(e),this.inputSpec=[new rn({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new j(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=At(e),e.length!==5)throw new j("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new rn({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return Z(()=>{let n=Xe(e);if(n.shape.length!==5)throw new j(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],u=s[a],c=s[o],p=this.kernelSize[0],d=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],y=Xr(l,f,p,this.padding),x=Xr(u,m,d,this.padding),A=Xr(c,g,h,this.padding),b=[r,y,x,A,this.filters];this.dataFormat!=="channelsLast"&&(n=et(n,[0,2,3,4,1]));let w=NA(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=et(w,[0,4,1,2,3])),this.bias!==null&&(w=Lr(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=At(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],c=this.strides[1],p=this.strides[2];return t[n]=this.filters,t[s]=Xr(t[s],u,o,this.padding),t[r]=Xr(t[r],c,i,this.padding),t[a]=Xr(t[a],p,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};G5.className="Conv3DTranspose";de.registerClass(G5);var E8=class extends Mh{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new j("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new j("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new j(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Ot(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Mt(t.depthwiseRegularizer),this.depthwiseConstraint=mn(t.depthwiseConstraint),this.pointwiseInitializer=Ot(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Mt(t.pointwiseRegularizer),this.pointwiseConstraint=mn(t.pointwiseConstraint)}build(e){if(e=At(e),e.length<this.rank+2)throw new j(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new j(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new rn({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return Z(()=>{e=Xe(e);let n;if(this.rank===1)throw new qe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=et(e,[0,2,3,1])),n=j0(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Lr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=et(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ut(this.depthwiseInitializer),e.pointwiseInitializer=Ut(this.pointwiseInitializer),e.depthwiseRegularizer=It(this.depthwiseRegularizer),e.pointwiseRegularizer=It(this.pointwiseRegularizer),e.depthwiseConstraint=fn(this.depthwiseConstraint),e.pointwiseConstraint=fn(this.pointwiseConstraint),e}};E8.className="SeparableConv";var H5=class extends E8{constructor(e){super(2,e)}};H5.className="SeparableConv2D";de.registerClass(H5);var I2=class extends Mh{constructor(e){super(1,e),I2.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!p5(e.kernelSize,"number",1,1))throw new j(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};I2.className="Conv1D";de.registerClass(I2);var j5=class extends ut{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return Z(()=>{if(e=Xe(e),this.dataFormat==="channelsLast"){let n=Qf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Qf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Qf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Qf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};j5.className="Cropping2D";de.registerClass(j5);var q5=class extends ut{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Yt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,kU(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return Z(()=>{let n=Xe(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=et(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?Se.resizeNearestNeighbor(n,[r,a]):Se.resizeBilinear(n,[r,a]);return et(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?Se.resizeNearestNeighbor(n,[r,a]):Se.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};q5.className="UpSampling2D";de.registerClass(q5);function fH(e,t,n=[1,1],s="valid",r,a){return Z(()=>{r==null&&(r=Or()),Yt(r);let o=W5(e,r);if(e.rank!==4)throw new j(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new j(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=Kc(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=et(o,[0,3,1,2])),o})}var X5=class extends V5{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Ot(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=mn(e.depthwiseConstraint),this.depthwiseRegularizer=Mt(e.depthwiseRegularizer)}build(e){if(e=At(e),e.length<4)throw new j(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new j(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Z(()=>{e=Xe(e);let n=fH(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Lr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Pr(t,this.kernelSize[0],this.padding,this.strides[0]),a=Pr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ut(this.depthwiseInitializer),e.depthwiseRegularizer=It(this.depthwiseRegularizer),e.depthwiseConstraint=fn(this.depthwiseRegularizer),e}};X5.className="DepthwiseConv2D";de.registerClass(X5);function R8(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new j("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function _8(e,t,n,s=!1,r,a,o=!1,i=!1){return Z(()=>{let l=t.shape.length;if(l<3)throw new j(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Fr(2,l));if(t=et(t,u),a!=null)throw new qe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=ye(ye(r,"bool"),"float32"),r.rank===l-1&&(r=Bt(r,-1)),r=et(r,u)),s&&(t=Ks(t,0),r!=null&&(r=Ks(r,0)));let c=[],p,d=n,h=t.shape[0],f=Rn(t),m;r!=null&&(m=Rn(r));for(let y=0;y<h;++y){let x=f[y],A=Z(()=>e(x,d));if(r==null)p=A[0],d=A[1];else{let b=Z(()=>{let w=m[y],I=me(Ps(w),w),k=ue(z(A[0],w),z(d[0],I)),E=d.map((_,D)=>ue(z(A[1][D],w),z(_,I)));return{output:k,newStates:E}});p=b.output,d=b.newStates}i&&c.push(p)}let g;return i&&(g=on(c,1)),[p,g,d]})}var aa=class extends ut{constructor(e){super(e);let t;if(e.cell==null)throw new j("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new T2({cells:e.cell}):t=e.cell,t.stateSize==null)throw new j("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new rn({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Fr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){K3(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return Z(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new qe("Constants support is not implemented in RNN yet.");K3(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new rn({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new j(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new rn({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){Z(()=>{if(!this.stateful)throw new fa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new j("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Vt([n,s])):this.states_=[Vt([n,this.cell.stateSize])];else if(e==null)J(this.states_),this.keptStates!=null&&(J(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Vt([n,s])):this.states_[0]=Vt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new j(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):J(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!v.arraysEqual(r.shape,o))throw new j(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>An(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=R8(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new rn({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof _r){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return Z(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=Xe(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new j(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=_8((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),u=l[0],c=l[1],p=l[2];this.stateful&&this.resetStates(p,s);let d=this.returnSequences?c:u;return this.returnState?[d].concat(p):d})}getInitialState(e){return Z(()=>{let t=Vt(e.shape);return t=ke(t,[1,2]),t=Dh(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?q3(t,[1,n]):t):this.cell.stateSize>1?[q3(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===aa.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let s=t.cell,r=$r(s,n);return new e(Object.assign(t,{cell:r}))}};aa.className="RNN";de.registerClass(aa);var Bh=class extends ut{},S2=class extends Bh{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,xn(this.units,"units"),this.activation=Io(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ot(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ot(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ot(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Mt(e.kernelRegularizer),this.recurrentRegularizer=Mt(e.recurrentRegularizer),this.biasRegularizer=Mt(e.biasRegularizer),this.kernelConstraint=mn(e.kernelConstraint),this.recurrentConstraint=mn(e.recurrentConstraint),this.biasConstraint=mn(e.biasConstraint),this.dropout=lc([1,wo([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=lc([1,wo([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=At(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Z(()=>{if(e=e,e.length!==2)throw new j(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=So({ones:()=>Ps(e),rate:this.dropout,training:s,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=So({ones:()=>Ps(n),rate:this.recurrentDropout,training:s,dropoutFunc:this.dropoutFunc}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=Yr(z(e,a),this.kernel.read()):r=Yr(e,this.kernel.read()),this.bias!=null&&(r=Lr(r,this.bias.read())),o!=null&&(n=z(n,o));let i=ue(r,Yr(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ko(this.activation),useBias:this.useBias,kernelInitializer:Ut(this.kernelInitializer),recurrentInitializer:Ut(this.recurrentInitializer),biasInitializer:Ut(this.biasInitializer),kernelRegularizer:It(this.kernelRegularizer),recurrentRegularizer:It(this.recurrentRegularizer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),kernelConstraint:fn(this.kernelConstraint),recurrentConstraint:fn(this.recurrentConstraint),biasConstraint:fn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};S2.className="SimpleRNNCell";de.registerClass(S2);var K5=class extends aa{constructor(e){e.cell=new S2(e),super(e)}call(e,t){return Z(()=>{this.cell.dropoutMask!=null&&(J(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(J(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};K5.className="SimpleRNN";de.registerClass(K5);var C2=class extends Bh{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new j("GRUCell does not support reset_after parameter set to true.");this.units=e.units,xn(this.units,"units"),this.activation=Io(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Io(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ot(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ot(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ot(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Mt(e.kernelRegularizer),this.recurrentRegularizer=Mt(e.recurrentRegularizer),this.biasRegularizer=Mt(e.biasRegularizer),this.kernelConstraint=mn(e.kernelConstraint),this.recurrentConstraint=mn(e.recurrentConstraint),this.biasConstraint=mn(e.biasConstraint),this.dropout=lc([1,wo([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=lc([1,wo([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=At(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Z(()=>{if(e=e,e.length!==2)throw new j(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=So({ones:()=>Ps(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=So({ones:()=>Ps(s),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=z(e,r[0]));let u=Yr(e,this.kernel.read());this.useBias&&(u=Lr(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=z(s,a[0]));let c=this.recurrentKernel.read(),[p,d]=Zt(c,[2*this.units,this.units],c.rank-1),h=Yr(s,p),[f,m,g]=Zt(u,3,u.rank-1),[y,x]=Zt(h,2,h.rank-1);o=this.recurrentActivation.apply(ue(f,y)),i=this.recurrentActivation.apply(ue(m,x));let A=Yr(z(i,s),d);l=this.activation.apply(ue(g,A));let b=ue(z(o,s),z(ue(1,$t(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ko(this.activation),recurrentActivation:ko(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ut(this.kernelInitializer),recurrentInitializer:Ut(this.recurrentInitializer),biasInitializer:Ut(this.biasInitializer),kernelRegularizer:It(this.kernelRegularizer),recurrentRegularizer:It(this.recurrentRegularizer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),kernelConstraint:fn(this.kernelConstraint),recurrentConstraint:fn(this.recurrentConstraint),biasConstraint:fn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};C2.className="GRUCell";de.registerClass(C2);var Z5=class extends aa{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new C2(e),super(e)}call(e,t){return Z(()=>{this.cell.dropoutMask!=null&&(J(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(J(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Z5.className="GRU";de.registerClass(Z5);var Wh=class extends Bh{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,xn(this.units,"units"),this.activation=Io(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Io(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ot(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ot(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ot(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Mt(e.kernelRegularizer),this.recurrentRegularizer=Mt(e.recurrentRegularizer),this.biasRegularizer=Mt(e.biasRegularizer),this.kernelConstraint=mn(e.kernelConstraint),this.recurrentConstraint=mn(e.recurrentConstraint),this.biasConstraint=mn(e.biasConstraint),this.dropout=lc([1,wo([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=lc([1,wo([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=At(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends fr{apply(i,l){let u=r.apply([a]),c=new f2().apply([a]),p=r.apply([a*2]);return Qv(Qv(u,c),p)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return Z(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new j(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=So({ones:()=>Ps(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=So({ones:()=>Ps(s),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,u,c;0<this.dropout&&this.dropout<1&&(e=z(e,a[0]));let p=Yr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=z(s,o[0])),p=ue(p,Yr(s,this.recurrentKernel.read())),this.useBias&&(p=Lr(p,this.bias.read()));let[d,h,f,m]=Zt(p,4,p.rank-1);i=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(h),u=ue(z(l,r),z(i,this.activation.apply(f))),c=this.recurrentActivation.apply(m);let g=z(c,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ko(this.activation),recurrentActivation:ko(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ut(this.kernelInitializer),recurrentInitializer:Ut(this.recurrentInitializer),biasInitializer:Ut(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:It(this.kernelRegularizer),recurrentRegularizer:It(this.recurrentRegularizer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),kernelConstraint:fn(this.kernelConstraint),recurrentConstraint:fn(this.recurrentConstraint),biasConstraint:fn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Wh.className="LSTMCell";de.registerClass(Wh);var Y5=class extends aa{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Wh(e),super(e)}call(e,t){return Z(()=>{this.cell.dropoutMask!=null&&(J(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(J(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Y5.className="LSTM";de.registerClass(Y5);var T2=class extends Bh{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return Z(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){K3(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{rl(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return Object.assign({},e,s)}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push($r(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Z3(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}v5(t)}};T2.className="StackedRNNCells";de.registerClass(T2);function So(e){let{ones:t,rate:n,training:s=!1,count:r=1,dropoutFunc:a}=e,o=()=>a!=null?a(t(),n):Uk(t(),n),i=()=>Ph(o,t,s);return!r||r<=1?An(i().clone()):Array(r).fill(void 0).map(i).map(u=>An(u.clone()))}var mH=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,s=Object.getOwnPropertySymbols(e);r<s.length;r++)t.indexOf(s[r])<0&&Object.prototype.propertyIsEnumerable.call(e,s[r])&&(n[s[r]]=e[s[r]]);return n},D8=class extends aa{constructor(e){if(e.unroll)throw new qe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new qe("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new rn({ndim:5})]}call(e,t){return Z(()=>{if(this.cell.dropoutMask!=null&&(J(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(J(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new j("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return Z(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Vt(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){Z(()=>{if(!this.stateful)throw new fa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new j("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Vt(r)):this.states_=[Vt(r)];else if(e==null)J(this.states_),this.keptStates!=null&&(J(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Vt(r)):this.states_[0]=Vt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new j(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):J(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!v.arraysEqual(i.shape,l))throw new j(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>An(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],u=e[i?4:3],c=Pr(l,s[0],r,a[0],o[0]),p=Pr(u,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,c,p]:[c,p,n]]}};D8.className="ConvRNN2D";var N2=class extends Wh{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t})),this.filters=t,xn(this.filters,"filters"),this.kernelSize=Ju(n,2,"kernelSize"),this.kernelSize.forEach(i=>xn(i,"kernelSize")),this.strides=Ju(s||1,2,"strides"),this.strides.forEach(i=>xn(i,"strides")),this.padding=r||"valid",Js(this.padding),this.dataFormat=a||"channelsLast",Yt(this.dataFormat),this.dilationRate=Ju(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>xn(i,"dilationRate"))}build(e){var t;e=At(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new j(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;i=new(t=class extends fr{apply(p,d){let h=l.apply([u]),f=Es([u]),m=l.apply([u*2]);return h5([h,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return Z(()=>{if(e.length!==3)throw new j(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=So({ones:()=>Ps(s),rate:this.dropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,l=(Y,re,ee)=>!re||!re[ee]?Y:z(re[ee],Y),u=l(s,i,0),c=l(s,i,1),p=l(s,i,2),d=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=So({ones:()=>Ps(r),rate:this.recurrentDropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=l(r,h,0),m=l(r,h,1),g=l(r,h,2),y=l(r,h,3),x=3,[A,b,w,I]=Zt(this.kernel.read(),o,x),[k,E,_,D]=this.useBias?Zt(this.bias.read(),o):[null,null,null,null];u=this.inputConv(u,A,k,this.padding),c=this.inputConv(c,b,E,this.padding),p=this.inputConv(p,w,_,this.padding),d=this.inputConv(d,I,D,this.padding);let[R,P,T,M]=Zt(this.recurrentKernel.read(),o,x);f=this.recurrentConv(f,R),m=this.recurrentConv(m,P),g=this.recurrentConv(g,T),y=this.recurrentConv(y,M);let W=this.recurrentActivation.apply(ue(u,f)),G=this.recurrentActivation.apply(ue(c,m)),X=ue(z(G,a),z(W,this.activation.apply(ue(p,g)))),K=z(this.recurrentActivation.apply(ue(d,y)),this.activation.apply(X));return[K,K,X]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=mH(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){let r=va(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Lr(r,n,this.dataFormat):r}recurrentConv(e,t){return va(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};N2.className="ConvLSTM2DCell";de.registerClass(N2);var J5=class extends D8{constructor(e){let t=new N2(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};J5.className="ConvLSTM2D";de.registerClass(J5);var E2=class extends ut{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Xe(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Ph(()=>Uk(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};E2.className="Dropout";de.registerClass(E2);var Q5=class extends E2{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Q5.className="SpatialDropout1D";de.registerClass(Q5);var ex=class extends ut{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,xn(this.units,"units"),this.activation=Io(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Ot(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Ot(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=mn(e.kernelConstraint),this.biasConstraint=mn(e.biasConstraint),this.kernelRegularizer=Mt(e.kernelRegularizer),this.biasRegularizer=Mt(e.biasRegularizer),this.activityRegularizer=Mt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=At(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=At(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Xe(e),s=Ok(this.activation.getClassName()),r;return s!=null?r=Yr(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=Yr(n,this.kernel.read()),this.bias!=null&&(r=Lr(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:ko(this.activation),useBias:this.useBias,kernelInitializer:Ut(this.kernelInitializer),biasInitializer:Ut(this.biasInitializer),kernelRegularizer:It(this.kernelRegularizer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),kernelConstraint:fn(this.kernelConstraint),biasConstraint:fn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};ex.className="Dense";de.registerClass(ex);var tx=class extends ut{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=At(e);for(let t of e.slice(1))if(t==null)throw new j(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],fo(e,1)]}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Xe(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=et(n,s)}return EU(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};tx.className="Flatten";de.registerClass(tx);var nx=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.activation=Io(e.activation)}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Xe(e);return this.activation.apply(n)})}getConfig(){let e={activation:ko(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};nx.className="Activation";de.registerClass(nx);var sx=class extends ut{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return Z(()=>(e=Xe(e),TU(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};sx.className="RepeatVector";de.registerClass(sx);var rx=class extends ut{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new j("Can only specifiy one unknown dimension.");else r*=l}let o=fo(e);if(a!==null){if(r===0||o%r!==0)throw new j(n);s[a]=o/r}else if(o!==r)throw new j(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Xe(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return V(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};rx.className="Reshape";de.registerClass(rx);var ax=class extends ut{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Fr(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new rn({ndim:this.dims.length+1})]}computeOutputShape(e){e=At(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return et(Xe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};ax.className="Permute";de.registerClass(ax);var ox=class extends ut{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Xe(e),s=-1;return Pp(pl(n,this.maskValue),s)}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Xe(e),s=-1,r=!0,a=Pp(pl(n,this.maskValue),s,r);return z(n,ye(a,n.dtype))})}};ox.className="Masking";de.registerClass(ox);var ix=class extends ut{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(Dt(e.inputLength))}this.inputDim=e.inputDim,xn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,xn(this.outputDim,"outputDim"),this.embeddingsInitializer=Ot(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Mt(e.embeddingsRegularizer),this.activityRegularizer=Mt(e.activityRegularizer),this.embeddingsConstraint=mn(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return Z(()=>this.maskZero?(e=Xe(e),pl(e,it(e))):null)}computeOutputShape(e){if(e=At(e),this.inputLength==null)return[...e,this.outputDim];let t=Dt(this.inputLength);if(t.length!==e.length-1)throw new j(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new j(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Xe(e);n.dtype!=="int32"&&(n=p2(n,"int32"));let s=Vk(this.embeddings.read(),V(n,[n.size]));return V(s,At(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ut(this.embeddingsInitializer),embeddingsRegularizer:It(this.embeddingsRegularizer),activityRegularizer:It(this.activityRegularizer),embeddingsConstraint:fn(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};ix.className="Embedding";de.registerClass(ix);var uu=class extends ut{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new qe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new j("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[At(e)]),e=e,e.length<2)throw new j(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=ho(t),t.length>1)throw new j(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&ho(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return Z(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=wo(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=Dh(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let u=i.shape,c=u[0],p=u.slice(1).concat([c]),d=V(i,[c].concat(fo(u.slice(1))));d=et(d,[1,0]),d=V(d,p),n.push(d),r=!0}else if(l>1){let u=Fr(1,l).concat([0]);n.push(et(i,u)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,u=i[l-1],c=[u].concat(i.slice(0,i.length-1));a=V(et(V(a,[-1,u]),[1,0]),c)}else if(o>1){let i=[o-1].concat(Fr(0,o-1));a=et(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=ho(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return Z(()=>{if(t==null)return null;if(!Array.isArray(t))throw new j("`mask` should be an Array");if(!Array.isArray(e))throw new j("`inputs` should be an Array");if(t.length!==e.length)throw new j(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Bt(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=cr(n,t[s]);return n})}},lx=class extends uu{constructor(e){super(e)}mergeFunction(e){return Z(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ue(t,e[n]);return t})}};lx.className="Add";de.registerClass(lx);var ux=class extends uu{constructor(e){super(e)}mergeFunction(e){return Z(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=z(t,e[n]);return t})}};ux.className="Multiply";de.registerClass(ux);var cx=class extends uu{constructor(e){super(e)}mergeFunction(e){return Z(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ue(t,e[n]);return z(1/e.length,t)})}};cx.className="Average";de.registerClass(cx);var dx=class extends uu{constructor(e){super(e)}mergeFunction(e){return Z(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=ra(t,e[n]);return t})}};dx.className="Maximum";de.registerClass(dx);var px=class extends uu{constructor(e){super(e)}mergeFunction(e){return Z(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=td(t,e[n]);return t})}};px.className="Minimum";de.registerClass(px);var hx=class extends uu{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new j("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(v.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new j("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return Z(()=>h5(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new j("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new j("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new j("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new j(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return Z(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(ye(Ps(e[a]),"bool")):t[a].rank<e[a].rank?s.push(Bt(t[a],-1)):s.push(t[a]);let r=St(s,this.axis);return E0(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};hx.className="Concatenate";de.registerClass(hx);function ip(e,t){for(;e<0;)e+=t;return e}function gH(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new qe("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new qe("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return Z(()=>{let o;if(s>r){o=s-r;let l=[];for(let u=0;u<o;++u)l.push(1);t=V(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let u=0;u<o;++u)l.push(1);e=V(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=ke(z(e,t),a[0]):i=ke(z(et(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,u=a[1]===t.shape.length-1;i=Qe(e,t,l,u)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let u=[];for(let c=l;c<l+o;++c)u.push(c);i=st(i,u)}return i.shape.length===1&&(i=Bt(i,1)),i})}var fx=class extends uu{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new qe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new j(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new j(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>ip(r,e[a].shape.length)):s=[ip(this.axes,t.shape.length),ip(this.axes,n.shape.length)],this.normalize&&(t=Pm(t,s[0]),n=Pm(n,s[1])),gH(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[ip(this.axes,e.length),ip(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new qe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};fx.className="Dot";de.registerClass(fx);var mx=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Xe(e);return Ph(()=>ue(h2(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};mx.className="GaussianNoise";de.registerClass(mx);var gx=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Xe(e);return this.rate>0&&this.rate<1?Ph(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return z(n,h2(n.shape,1,r))},()=>n,t.training||!1):n})}};gx.className="GaussianDropout";de.registerClass(gx);var yx=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Xe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return Z(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Ph(()=>{let r=Xe(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=xi(nd(n),this.rate);l=p2(l,"float32");let u=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-u*i*this.rate,p=ue(z(r,l),z(ue(l,-1),i));return ue(z(p,u),c)},()=>Xe(e),t.training||!1)}return e})}};yx.className="AlphaDropout";de.registerClass(yx);function zp(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=AA(e,t,n,s,r,a);else if(e.rank===3)o=xA(e,t,n,s,r,a);else if(e.rank===4)o=bA(e,t,n,s,r,a);else throw new qe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function yH(e,t,n,s,r=.001){return Z(()=>{let a=Ih(e,s),o=a.mean,i=a.variance;return[zp(e,o,i,n,t,r),o,i]})}function AH(e,t,n,s,r=.001){return Z(()=>{let a=Ih(e,s),o=a.mean,i=a.variance,l=[];for(let f of Fr(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let u=V(o,l),c=V(i,l),p=t==null?null:V(t,l),d=n==null?null:V(n,l);return[zp(e,u,c,d,p,r),o,i]})}function xH(e,t,n,s,r=.001){return v.arraysEqual(s.slice().sort(),Fr(0,e.rank-1))?yH(e,t,n,s,r):AH(e,t,n,s,r)}var Ax=class extends ut{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ot(e.betaInitializer||"zeros"),this.gammaInitializer=Ot(e.gammaInitializer||"ones"),this.movingMeanInitializer=Ot(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Ot(e.movingVarianceInitializer||"ones"),this.betaConstraint=mn(e.betaConstraint),this.gammaConstraint=mn(e.gammaConstraint),this.betaRegularizer=Mt(e.betaRegularizer),this.gammaRegularizer=Mt(e.gammaRegularizer)}build(e){e=At(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new j(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new rn({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return Z(()=>{let n=t.training==null?!1:t.training,s=Xe(e),r=s.shape,a=r.length,o=Fr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=hl(1,a);l[i]=r[i];let u=o.slice();u.sort();let c=!v.arraysEqual(u,Fr(0,a).slice(0,a-1)),p=()=>{if(c){let y=V(this.movingMean.read(),l),x=V(this.movingVariance.read(),l),A=this.center?V(this.beta.read(),l):null,b=this.scale?V(this.gamma.read(),l):null;return zp(s,y,x,A,b,this.epsilon)}else return zp(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[d,h,f]=xH(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(y,x,A)=>{Z(()=>{let b=1-A,w=y.read(),I=z(me(w,x),b);y.write(me(w,I))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ut(this.betaInitializer),gammaInitializer:Ut(this.gammaInitializer),movingMeanInitializer:Ut(this.movingMeanInitializer),movingVarianceInitializer:Ut(this.movingVarianceInitializer),betaRegularizer:It(this.betaRegularizer),gammaRegularizer:It(this.gammaRegularizer),betaConstraint:fn(this.betaConstraint),gammaConstraint:fn(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Ax.className="BatchNormalization";de.registerClass(Ax);var xx=class extends ut{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ot(e.betaInitializer||"zeros"),this.gammaInitializer=Ot(e.gammaInitializer||"ones"),this.betaRegularizer=Mt(e.betaRegularizer),this.gammaRegularizer=Mt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=At(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==ho(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=Xe(e),s=n.shape,r=s.length;return Z(()=>{let{mean:o,variance:i}=Ih(n,this.axis,!0),l=hl(1,r);for(let f of this.axis)l[f]=s[f];let u=f=>f!=null&&f.shape.length!==r?V(f,l):f,c=this.scale?u(this.gamma.read()):null,p=this.center?u(this.beta.read()):null,d=[],h=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(d.push(s[f]),h.push(1)):(d.push(1),h.push(s[f]));return o=Hs(o,d),i=Hs(i,d),c!=null&&(c=Hs(c,h)),p!=null&&(p=Hs(p,h)),zp(n,o,i,p,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ut(this.betaInitializer),gammaInitializer:Ut(this.gammaInitializer),betaRegularizer:It(this.betaRegularizer),gammaRegularizer:It(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};xx.className="LayerNormalization";de.registerClass(xx);function bH(e,t,n){return Z(()=>{if(e.rank!==4)throw new j(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new j("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Or()),n!=="channelsLast"&&n!=="channelsFirst")throw new j(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],Ys(e,s)})}var bx=class extends ut{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Or():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new j(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new j(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new j(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new rn({ndim:4})]}computeOutputShape(e){e=At(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return Z(()=>bH(Xe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};bx.className="ZeroPadding2D";de.registerClass(bx);function R2(e,t,n,s,r,a){return Z(()=>{Yt(r),zk(a),Js(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=Or()),a==null&&(a="max"),e=W5(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=kh(e,t,n,i):o=yh(e,t,n,i),r==="channelsFirst"&&(o=et(o,[0,3,1,2])),o})}function $8(e,t,n,s,r,a){return Z(()=>{Yt(r),zk(a),Js(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=Or()),a==null&&(a="max"),e=N8(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=GA(e,t,n,i):o=yA(e,t,n,i),r==="channelsFirst"&&(o=et(o,[0,4,1,2,3])),o})}var P8=class extends ut{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new j(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(xn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new j(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);xn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Js(this.padding),this.inputSpec=[new rn({ndim:3})]}computeOutputShape(e){e=At(e);let t=Pr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return Z(()=>{this.invokeCallHook(e,t),e=Dh(Xe(e),2);let n=this.poolingFunction(Xe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return st(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},vx=class extends P8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Yt(r),Js(s),R2(e,t,n,s,r,"max")}};vx.className="MaxPooling1D";de.registerClass(vx);var wx=class extends P8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Yt(r),Js(s),R2(e,t,n,s,r,"avg")}};wx.className="AveragePooling1D";de.registerClass(wx);var F8=class extends ut{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new j(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];xn(this.poolSize,"poolSize"),xn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Yt(this.dataFormat),Js(this.padding),this.inputSpec=[new rn({ndim:4})]}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Pr(t,this.poolSize[0],this.padding,this.strides[0]),n=Pr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return Z(()=>(this.invokeCallHook(e,t),this.poolingFunction(Xe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},kx=class extends F8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Yt(r),Js(s),R2(e,t,n,s,r,"max")}};kx.className="MaxPooling2D";de.registerClass(kx);var Ix=class extends F8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Yt(r),Js(s),R2(e,t,n,s,r,"avg")}};Ix.className="AveragePooling2D";de.registerClass(Ix);var O8=class extends ut{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new j(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];xn(this.poolSize,"poolSize"),xn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Yt(this.dataFormat),Js(this.padding),this.inputSpec=[new rn({ndim:5})]}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Pr(t,this.poolSize[0],this.padding,this.strides[0]),n=Pr(n,this.poolSize[1],this.padding,this.strides[1]),s=Pr(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return Z(()=>(this.invokeCallHook(e,t),this.poolingFunction(Xe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Sx=class extends O8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Yt(r),Js(s),$8(e,t,n,s,r,"max")}};Sx.className="MaxPooling3D";de.registerClass(Sx);var Cx=class extends O8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Yt(r),Js(s),$8(e,t,n,s,r,"avg")}};Cx.className="AveragePooling3D";de.registerClass(Cx);var M8=class extends ut{constructor(e){super(e),this.inputSpec=[new rn({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new qe}},Tx=class extends M8{constructor(e){super(e||{})}call(e,t){return Z(()=>{let n=Xe(e);return Wt(n,1)})}};Tx.className="GlobalAveragePooling1D";de.registerClass(Tx);var Nx=class extends M8{constructor(e){super(e||{})}call(e,t){return Z(()=>{let n=Xe(e);return hn(n,1)})}};Nx.className="GlobalMaxPooling1D";de.registerClass(Nx);var z8=class extends ut{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Yt(this.dataFormat),this.inputSpec=[new rn({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new qe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Ex=class extends z8{call(e,t){return Z(()=>{let n=Xe(e);return this.dataFormat==="channelsLast"?Wt(n,[1,2]):Wt(n,[2,3])})}};Ex.className="GlobalAveragePooling2D";de.registerClass(Ex);var Rx=class extends z8{call(e,t){return Z(()=>{let n=Xe(e);return this.dataFormat==="channelsLast"?hn(n,[1,2]):hn(n,[2,3])})}};Rx.className="GlobalMaxPooling2D";de.registerClass(Rx);var L8=class extends ut{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=$r(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},_x=class extends L8{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=At(e),e.length<3)throw new j(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=At(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return Z(()=>(e=Xe(e),_8((a,o)=>[Xe(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};_x.className="TimeDistributed";de.registerClass(_x);function vH(e){iu(wU,"BidirectionalMergeMode",e)}var wH="concat",Dx=class extends L8{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=$r(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=$r(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?wH:e.mergeMode,vH(this.mergeMode),e.weights)throw new qe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):fs(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=R8(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new j("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let u=n.map(c=>new rn({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),o.push(...u)}if(s!=null)throw new qe("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof _r;for(let l of a)if(l instanceof _r!==i)throw new j("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return Z(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=Ks(r,1));let o;return this.mergeMode==="concat"?o=h5([s,r]):this.mergeMode==="sum"?o=ue(s,r):this.mergeMode==="ave"?o=z(.5,ue(s,r)):this.mergeMode==="mul"?o=z(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){rl(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),rl(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=$r(t.layer);if(delete t.layer,t.numConstants!=null)throw new qe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};Dx.className="Bidirectional";de.registerClass(Dx);function kH(e){return new rd(e)}function IH(e){return new z5(e)}function SH(e){return new F5(e)}function CH(e){return new O5(e)}function TH(e){return new M5(e)}function NH(e){return new B5(e)}function EH(e){return new L5(e)}function RH(e){return new I2(e)}function _H(e){return new zh(e)}function DH(e){return new U5(e)}function $H(e){return new Lh(e)}function PH(e){return new G5(e)}function FH(e){return new H5(e)}function OH(e){return new j5(e)}function MH(e){return new q5(e)}function zH(e){return new X5(e)}function LH(e){return new nx(e)}function BH(e){return new ex(e)}function WH(e){return new E2(e)}function VH(e){return new Q5(e)}function UH(e){return new tx(e)}function GH(e){return new sx(e)}function HH(e){return new rx(e)}function jH(e){return new ax(e)}function qH(e){return new ix(e)}function XH(e){return new lx(e)}function KH(e){return new cx(e)}function ZH(e){return new hx(e)}function YH(e){return new dx(e)}function JH(e){return new px(e)}function QH(e){return new ux(e)}function ej(e){return new fx(e)}function tj(e){return new Ax(e)}function nj(e){return new xx(e)}function sj(e){return new bx(e)}function $x(e){return new wx(e)}function rj(e){return $x(e)}function aj(e){return $x(e)}function Px(e){return new Ix(e)}function oj(e){return Px(e)}function ij(e){return Px(e)}function Fx(e){return new Cx(e)}function lj(e){return Fx(e)}function uj(e){return Fx(e)}function cj(e){return new Tx(e)}function dj(e){return new Ex(e)}function B8(e){return new Nx(e)}function W8(e){return new Rx(e)}function V8(e){return new vx(e)}function U8(e){return new kx(e)}function pj(e){return new Sx(e)}function hj(e){return new Z5(e)}function fj(e){return new C2(e)}function mj(e){return new Y5(e)}function gj(e){return new Wh(e)}function yj(e){return new K5(e)}function Aj(e){return new S2(e)}function xj(e){return new J5(e)}function bj(e){return new N2(e)}function vj(e){return new aa(e)}function wj(e){return new T2(e)}function kj(e){return new Dx(e)}function Ij(e){return new _x(e)}var Sj=B8,Cj=W8,Tj=V8,Nj=U8;function Ej(e){return new mx(e)}function Rj(e){return new gx(e)}function _j(e){return new yx(e)}function Dj(e){return new ox(e)}var G8={};Ve(G8,{MAPE:()=>Uj,MSE:()=>jj,binaryAccuracy:()=>$j,binaryCrossentropy:()=>Pj,categoricalAccuracy:()=>Oj,categoricalCrossentropy:()=>Mj,cosineProximity:()=>Bj,mape:()=>Gj,meanAbsoluteError:()=>Wj,meanAbsolutePercentageError:()=>Vj,meanSquaredError:()=>Hj,mse:()=>qj,precision:()=>zj,recall:()=>Lj,sparseCategoricalAccuracy:()=>Fj});function $j(e,t){return N5(e,t)}function Pj(e,t){return r8(e,t)}function Fj(e,t){return a8(e,t)}function Oj(e,t){return E5(e,t)}function Mj(e,t){return R5(e,t)}function zj(e,t){return s8(e,t)}function Lj(e,t){return CG(e,t)}function Bj(e,t){return T5(e,t)}function Wj(e,t){return w2(e,t)}function Vj(e,t){return ad(e,t)}function Uj(e,t){return ad(e,t)}function Gj(e,t){return ad(e,t)}function Hj(e,t){return lu(e,t)}function jj(e,t){return lu(e,t)}function qj(e,t){return lu(e,t)}var H8={};Ve(H8,{modelFromJSON:()=>nH});var j8={};Ve(j8,{l1:()=>Kj,l1l2:()=>Xj,l2:()=>Zj});function Xj(e){return new Oh(e)}function Kj(e){return cH(e)}function Zj(e){return dH(e)}var q8=class extends uc{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof xa))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function tm(e,t){return e<t}function y7(e,t){return e>t}var X8=class extends q8{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new qe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=tm:this.mode==="max"?this.monitorFunc=y7:this.monitor.indexOf("acc")!==-1?this.monitorFunc=y7:this.monitorFunc=tm,this.monitorFunc===tm&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===tm?1/0:-1/0}async onEpochEnd(e,t){await oo(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Yj(e){return new X8(e)}var Jj={earlyStopping:Yj},Qj=H();Qj.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var or;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(or||(or={}));var A7;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(A7||(A7={}));var Ox={};function eq(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Ox[e]=n}function K8(e){return Ox[e]}function tq(e){delete Ox[e]}function S(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return ts(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(d=>ts(d,n,s,r));let u=ts(t.inputNames.slice(i)[0],n,s,r),c=u.dataSync();return a.type==="number"?c[0]:v.toNestedArray(u.shape,c)}let o=t.attrParams[e];return o&&o.value}function ts(e,t,n,s){let[r,a]=Cs(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[Lm(r,i)]);return o!==void 0?t[Lm(r,o)][a]:void 0}function nq(e,t,n){return t[Lm(e,n.currentContextId)]}function Kr(e,t){let[n,s,r]=Cs(e);return[Lm(n,t&&t.currentContextId),s,r]}function Lm(e,t){return t?`${e}-${t}`:e}function Cs(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function pm(e,t,n){let s=S("pad",e,t,n);if(s==="explicit"){s=S("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function ga(e){return e.kept?e:Mn(e)}var Z8={};Ve(Z8,{json:()=>sq});var sq=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Y8={};Ve(Y8,{json:()=>rq});var rq=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],J8={};Ve(J8,{json:()=>aq});var aq=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],Q8={};Ve(Q8,{json:()=>oq});var oq=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],eI={};Ve(eI,{json:()=>iq});var iq=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],tI={};Ve(tI,{json:()=>lq});var lq=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],nI={};Ve(nI,{json:()=>uq});var uq=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],sI={};Ve(sI,{json:()=>cq});var cq=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],rI={};Ve(rI,{json:()=>dq});var dq=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],aI={};Ve(aI,{json:()=>pq});var pq=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],oI={};Ve(oI,{json:()=>hq});var hq=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],iI={};Ve(iI,{json:()=>fq});var fq=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],lI={};Ve(lI,{json:()=>mq});var mq=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],uI={};Ve(uI,{json:()=>gq});var gq=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],cI={};Ve(cI,{json:()=>yq});var yq=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],dI={};Ve(dI,{json:()=>Aq});var Aq=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],pI={};Ve(pI,{json:()=>xq});var xq=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],hI={};Ve(hI,{json:()=>bq});var bq=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],fI={};Ve(fI,{json:()=>vq});var vq=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],x7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Z8,Y8,J8,Q8,eI,tI,nI,sI,rI,aI,oI,iI,lI,uI,cI,dI,pI,hI,fI],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let p=Object.keys(o);p.forEach(f=>{let m=o[f];m.inputNames.forEach((g,y)=>{let[x,,A]=Kr(g),b=o[x];if(b.outputs!=null){let w=b.outputs.indexOf(A);if(w!==-1){let I=`${x}:${w}`;m.inputNames[y]=I}}m.inputs.push(b),b.children.push(m)})}),Object.keys(c).length===0?p.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(c).forEach(f=>{let[m]=Kr(f),g=o[m];g!=null&&(g.signatureKey=c[f],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=Kr(f),g=o[m];g&&(g.signatureKey=u[f],i.push(g))}):i=s;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:d};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=K8(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.slice(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=ny(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ny(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=uy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=uy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=ry(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=ry(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=ly(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ly(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=sy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=sy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=dy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=dy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=iy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=iy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=cy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=cy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=ay(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ay(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=oy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=oy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=b7(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=b7(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((c,p)=>(c[p.name]=this.mapNode(p),p.op==="Const"&&s.push(c[p.name]),c),{}));let a=[],o=[];e.signature.inputArg.forEach(c=>{let[p]=Kr(c.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Mx(c.type),type:"dtype"}},children:[]};d.signatureKey=c.name,a.push(d),r[p]=d}),Object.keys(r).forEach(c=>{let p=r[c];p.inputNames.forEach((d,h)=>{let[f,,m]=Kr(d),g=r[f];if(g.outputs!=null){let y=g.outputs.indexOf(m);if(y!==-1){let x=`${f}:${y}`;p.inputNames[h]=x}}p.inputs.push(g),g.children.push(p)})});let l=e.ret;e.signature.outputArg.forEach(c=>{let[p,d]=Kr(l[c.name]),h=r[p];h!=null&&(h.defaultOutput=d,o.push(h))});let u=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:u}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function wq(e){let t=H().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function mI(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):wq(e);return t?n:n.toLowerCase()}function ny(e,t,n,s=!1){let r=e[t];return r!=null?mI(r.s,s):n}function sy(e,t,n){let s=e[t];return s?s.b:n}function ry(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function Mx(e){switch(typeof e=="string"&&(e=or[e]),e){case or.DT_FLOAT:case or.DT_HALF:return"float32";case or.DT_INT32:case or.DT_INT64:case or.DT_INT8:case or.DT_UINT8:return"int32";case or.DT_BOOL:return"bool";case or.DT_DOUBLE:return"float32";case or.DT_STRING:return"string";default:return null}}function b7(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function ay(e,t,n){let s=e[t];return s&&s.type?Mx(s.type):n}function oy(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>Mx(r)):n}function gI(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function iy(e,t,n){let s=e[t];return s&&s.shape?gI(s.shape):n}function ly(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function uy(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>mI(a,s)):n}function cy(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>gI(r)):n}function dy(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var kq=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return ts(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return ts(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return ry(this.node.rawAttrs,e,t);if(n.s!=null)return ny(this.node.rawAttrs,e,t);if(n.b!=null)return sy(this.node.rawAttrs,e,t);if(n.shape!=null)return iy(this.node.rawAttrs,e,t);if(n.type!=null)return ay(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return ly(this.node.rawAttrs,e,t);if(n.list.s!=null)return uy(this.node.rawAttrs,e,t);if(n.list.shape!=null)return cy(this.node.rawAttrs,e,t);if(n.list.b!=null)return dy(this.node.rawAttrs,e,t);if(n.list.type!=null)return oy(this.node.rawAttrs,e,t)}return t}},_n={};Ve(_n,{OP_SCOPE_SUFFIX:()=>Uy,abs:()=>tn,acos:()=>lA,acosh:()=>uA,add:()=>ue,addN:()=>N0,all:()=>E0,any:()=>Pp,argMax:()=>Rs,argMin:()=>cA,asin:()=>dA,asinh:()=>pA,atan:()=>hA,atan2:()=>fA,atanh:()=>mA,avgPool:()=>yh,avgPool3d:()=>yA,basicLSTMCell:()=>C6,batchNorm:()=>Xc,batchNorm2d:()=>AA,batchNorm3d:()=>xA,batchNorm4d:()=>bA,batchToSpaceND:()=>Ah,bincount:()=>vA,booleanMaskAsync:()=>lk,broadcastArgs:()=>T6,broadcastTo:()=>sl,buffer:()=>De,cast:()=>ye,ceil:()=>wA,clipByValue:()=>gs,clone:()=>Mn,complex:()=>ba,concat:()=>St,concat1d:()=>kA,concat2d:()=>nu,concat3d:()=>IA,concat4d:()=>SA,conv1d:()=>R0,conv2d:()=>va,conv2dTranspose:()=>_0,conv3d:()=>TA,conv3dTranspose:()=>NA,cos:()=>xh,cosh:()=>D0,cosineWindow:()=>e2,cumprod:()=>Fp,cumsum:()=>$0,denseBincount:()=>E6,depthToSpace:()=>EA,depthwiseConv2d:()=>Kc,diag:()=>R6,dilation2d:()=>RA,div:()=>fe,divNoNan:()=>_A,dot:()=>DA,dropout:()=>r5,einsum:()=>_6,elu:()=>Zc,enclosingPowerOfTwo:()=>a5,equal:()=>_s,erf:()=>$A,euclideanNorm:()=>OA,exp:()=>Ds,expandDims:()=>Bt,expm1:()=>MA,eye:()=>P0,fft:()=>Nh,fill:()=>Jc,floor:()=>Qc,floorDiv:()=>qc,fused:()=>ic,gather:()=>ed,gatherND:()=>pk,greater:()=>xs,greaterEqual:()=>xi,ifft:()=>oc,imag:()=>mh,image:()=>Se,inTopKAsync:()=>hk,irfft:()=>Z0,isFinite:()=>zA,isInf:()=>LA,isNaN:()=>BA,leakyRelu:()=>bh,less:()=>F0,lessEqual:()=>bi,linalg:()=>l5,linspace:()=>O6,localResponseNormalization:()=>WA,log:()=>$s,log1p:()=>vh,logSigmoid:()=>VA,logSoftmax:()=>M0,logSumExp:()=>z0,logicalAnd:()=>cr,logicalNot:()=>wh,logicalOr:()=>L0,logicalXor:()=>UA,losses:()=>Sk,lowerBound:()=>z6,matMul:()=>Qe,max:()=>hn,maxPool:()=>kh,maxPool3d:()=>GA,maxPoolWithArgmax:()=>L6,maximum:()=>ra,mean:()=>Wt,meshgrid:()=>B6,min:()=>wa,minimum:()=>td,mirrorPad:()=>HA,mod:()=>ru,moments:()=>Ih,movingAverage:()=>uk,mul:()=>z,multiRNNCell:()=>W6,multinomial:()=>V6,neg:()=>$t,norm:()=>Yc,notEqual:()=>pl,oneHot:()=>sc,ones:()=>Es,onesLike:()=>Ps,op:()=>B,outerProduct:()=>U6,pad:()=>Ys,pad1d:()=>G6,pad2d:()=>H6,pad3d:()=>j6,pad4d:()=>q6,pool:()=>jA,pow:()=>ka,prelu:()=>Ch,print:()=>qy,prod:()=>qA,raggedTensorToTensor:()=>X6,rand:()=>K6,randomGamma:()=>Z6,randomNormal:()=>W0,randomStandardNormal:()=>Y6,randomUniform:()=>nd,range:()=>ac,real:()=>rc,reciprocal:()=>ZA,relu:()=>zr,relu6:()=>V0,reshape:()=>V,reverse:()=>Ks,reverse1d:()=>J6,reverse2d:()=>Q6,reverse3d:()=>ek,reverse4d:()=>tk,rfft:()=>Eh,round:()=>U0,rsqrt:()=>G0,scalar:()=>Ce,scatterND:()=>ck,searchSorted:()=>B0,selu:()=>H0,separableConv2d:()=>j0,setdiff1dAsync:()=>nk,sigmoid:()=>Cn,sign:()=>YA,signal:()=>Ik,sin:()=>q0,sinh:()=>X0,slice:()=>Le,slice1d:()=>Th,slice2d:()=>K0,slice3d:()=>vi,slice4d:()=>vo,softmax:()=>au,softplus:()=>su,spaceToBatchND:()=>Sh,sparse:()=>Ck,sparseToDense:()=>dk,spectral:()=>kk,split:()=>Zt,sqrt:()=>En,square:()=>bt,squaredDifference:()=>Y0,squeeze:()=>st,stack:()=>on,step:()=>ou,stridedSlice:()=>JA,string:()=>Tk,sub:()=>me,sum:()=>ke,tan:()=>QA,tanh:()=>cl,tensor:()=>ct,tensor1d:()=>Ft,tensor2d:()=>ur,tensor3d:()=>eA,tensor4d:()=>sk,tensor5d:()=>rk,tensor6d:()=>ak,tile:()=>Hs,topk:()=>e5,transpose:()=>et,truncatedNormal:()=>J0,unique:()=>t5,unsortedSegmentSum:()=>Q0,unstack:()=>Rn,upperBound:()=>ok,variable:()=>n5,where:()=>zn,whereAsync:()=>s5,zeros:()=>Vt,zerosLike:()=>it});var Iq=(e,t,n,s=_n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[s.add(S("a",e,t,n),S("b",e,t,n))];case"AddN":return[s.addN(S("tensors",e,t,n))];case"FloorMod":case"Mod":return[s.mod(S("a",e,t,n),S("b",e,t,n))];case"Mul":return[s.mul(S("a",e,t,n),S("b",e,t,n))];case"RealDiv":case"Div":return[s.div(S("a",e,t,n),S("b",e,t,n))];case"DivNoNan":return[s.divNoNan(S("a",e,t,n),S("b",e,t,n))];case"FloorDiv":return[s.floorDiv(S("a",e,t,n),S("b",e,t,n))];case"Sub":return[s.sub(S("a",e,t,n),S("b",e,t,n))];case"Minimum":return[s.minimum(S("a",e,t,n),S("b",e,t,n))];case"Maximum":return[s.maximum(S("a",e,t,n),S("b",e,t,n))];case"Pow":return[s.pow(S("a",e,t,n),S("b",e,t,n))];case"SquaredDifference":return[s.squaredDifference(S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Sq=(e,t,n,s=_n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[s.abs(S("x",e,t,n))];case"Acos":return[s.acos(S("x",e,t,n))];case"Acosh":return[s.acosh(S("x",e,t,n))];case"Asin":return[s.asin(S("x",e,t,n))];case"Asinh":return[s.asinh(S("x",e,t,n))];case"Atan":return[s.atan(S("x",e,t,n))];case"Atan2":return[s.atan2(S("x",e,t,n),S("y",e,t,n))];case"Atanh":return[s.atanh(S("x",e,t,n))];case"Ceil":return[s.ceil(S("x",e,t,n))];case"Complex":return[s.complex(S("real",e,t,n),S("imag",e,t,n))];case"Cos":return[s.cos(S("x",e,t,n))];case"Cosh":return[s.cosh(S("x",e,t,n))];case"Elu":return[s.elu(S("x",e,t,n))];case"Erf":return[s.erf(S("x",e,t,n))];case"Exp":return[s.exp(S("x",e,t,n))];case"Expm1":return[s.expm1(S("x",e,t,n))];case"Floor":return[s.floor(S("x",e,t,n))];case"Log":return[s.log(S("x",e,t,n))];case"Log1p":return[s.log1p(S("x",e,t,n))];case"Imag":return[s.imag(S("x",e,t,n))];case"Neg":return[s.neg(S("x",e,t,n))];case"Reciprocal":return[s.reciprocal(S("x",e,t,n))];case"Real":return[s.real(S("x",e,t,n))];case"Relu":return[s.relu(S("x",e,t,n))];case"Round":return[s.round(S("x",e,t,n))];case"Selu":return[s.selu(S("x",e,t,n))];case"Sigmoid":return[s.sigmoid(S("x",e,t,n))];case"Sin":return[s.sin(S("x",e,t,n))];case"Sign":return[s.sign(S("x",e,t,n))];case"Sinh":return[s.sinh(S("x",e,t,n))];case"Softplus":return[s.softplus(S("x",e,t,n))];case"Sqrt":return[s.sqrt(S("x",e,t,n))];case"Square":return[s.square(S("x",e,t,n))];case"Tanh":return[s.tanh(S("x",e,t,n))];case"Tan":return[s.tan(S("x",e,t,n))];case"ClipByValue":return[s.clipByValue(S("x",e,t,n),S("clipValueMin",e,t,n),S("clipValueMax",e,t,n))];case"Relu6":return[s.relu6(S("x",e,t,n))];case"Rsqrt":return[s.rsqrt(ts(e.inputNames[0],t,n))];case"Prod":return[s.prod(S("x",e,t,n),S("axes",e,t,n))];case"LeakyRelu":return[s.leakyRelu(S("x",e,t,n),S("alpha",e,t,n))];case"Prelu":return[s.prelu(S("x",e,t,n),S("alpha",e,t,n))];case"IsNan":return[s.isNaN(ts(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function lr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];v.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function v7(e){return!(typeof e=="number"||e.some(t=>t<0))}function lp(e,t,n){let s=py(e,n),r=!v7(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=py(a.shape,s)}),!v7(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function py(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var Cq=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Ce(0),An(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),lr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,An(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return ct([],[0].concat(this.elementShape));let n=this.readMany(e);return lr(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),on(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return ct([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return lr(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),St(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,Rn(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];Z(()=>{t=V(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],u=[0,l,0],c=[1,e[i],r];a[i]=V(Le(t,u,c),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},dc=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);lr(t,r.shape,"TensorList shape mismatch: "),An(r)}),this.idTensor=Ce(0),this.maxNumElements=s,An(this.idTensor)}get id(){return this.idTensor.id}copy(){return new dc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);lr(e,this.elementShape,"TensorList shape mismatch: ");let s=lp(this.elementShape,this.tensors,e);return Z(()=>{let r=this.tensors.map(a=>V(a,s));return on(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=lp(this.elementShape,this.tensors,e),s=this.tensors.pop();return s.kept=!1,lr(s.shape,e,"TensorList shape mismatch: "),V(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(lr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");An(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new dc([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;n<Math.min(this.tensors.length,e);++n)t.tensors[n]=this.tensors[n];return t}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);lr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=lp(this.elementShape,this.tensors,t);return V(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);lr(this.elementShape,t.shape,"TensorList shape mismatch: "),An(t),this.tensors[e]!=null&&(this.tensors[e].kept=!1),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);lr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=lp(this.elementShape,this.tensors,n);return e.length===0?ct([],[0].concat(s)):Z(()=>{let r=e.map(a=>V(this.tensors[a],s));return on(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);lr(this.elementShape,t,"TensorList shape mismatch: ");let n=lp(this.elementShape,this.tensors,t);return this.size()===0?ct([],[0].concat(n)):Z(()=>{let s=this.tensors.map(r=>V(r,n));return St(s,0)})}};function Tq(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);lr(r,t,"TensorList shape mismatch: ");let a=Rn(e);return new dc(a,t,s)}function Nq(e,t,n,s){return new dc([],e,t,s)}function Eq(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new dc([],n,e.dtype,s),o=Rn(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function Rq(e,t,n){let s=0,r=t.map(c=>(s+=c,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=py(a,n),i=s===0?0:e.size/s,l=Z(()=>{let c=[];e=V(e,[1,s,i]);for(let p=0;p<t.length;++p){let d=p===0?0:r[p-1],h=[0,d,0],f=[1,t[p],i];c[p]=V(Le(e,h,f),o)}return e.dispose(),c}),u=new dc([],n,e.dtype,t.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var _q=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=S("thenBranch",e,t,n),r=S("elseBranch",e,t,n),a=S("cond",e,t,n),o=S("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=S("body",e,t,n),r=S("cond",e,t,n),a=S("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(c=>c.id),l=await o[0].data();o.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=a;for(;l[0];){let c=u;u=await n.functionMap[s].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let p=u.map(h=>h.id);c.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let d=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let s=S("pred",e,t,n);return[ga(s)]}case"Switch":{let s=S("pred",e,t,n),r=S("data",e,t,n);return r.kept||(r=ga(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>ts(r,t,n)!==void 0);if(s){let r=ts(s,t,n);return[ga(r)]}return}case"Enter":{let s=S("frameName",e,t,n),r=S("tensor",e,t,n);return n.enterFrame(s),[ga(r)]}case"Exit":{let s=S("tensor",e,t,n);return n.exitFrame(),[ga(s)]}case"NextIteration":{let s=S("tensor",e,t,n);return n.nextIteration(),[ga(s)]}case"TensorArrayV3":{let s=S("size",e,t,n),r=S("dtype",e,t,n),a=S("elementShape",e,t,n),o=S("dynamicSize",e,t,n),i=S("clearAfterRead",e,t,n),l=S("identicalElementShapes",e,t,n),u=S("name",e,t,n),c=new Cq(u,r,s,a,l,o,i);return n.addTensorArray(c),[c.idTensor,Ce(1)]}case"TensorArrayWriteV3":{let s=S("tensorArrayId",e,t,n),r=S("index",e,t,n),a=S("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=S("tensorArrayId",e,t,n),r=S("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),a=S("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),a=S("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=S("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=S("tensorArrayId",e,t,n),r=S("tensor",e,t,n),a=S("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Ce(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=S("tensorListId",e,t,n),r=S("index",e,t,n),a=S("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=S("tensorListId",e,t,n),r=S("index",e,t,n),a=S("elementShape",e,t,n),o=S("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=S("indices",e,t,n),r=S("tensor",e,t,n),a=S("elementShape",e,t,n),o=S("numElements",e,t,n),i=Eq(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=S("elementShape",e,t,n),r=S("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=S(a,e,t,n),i=e.op==="TensorListReserve"?-1:o,l=Nq(s,r,o,i);return n.addTensorList(l),[l.idTensor]}case"TensorListGather":{let s=S("tensorListId",e,t,n),r=S("indices",e,t,n),a=S("elementShape",e,t,n),o=S("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n),o=S("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=S("tensor",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n),o=Tq(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let s=S("tensorListId",e,t,n),r=n.getTensorList(s.id),a=S("dtype",e,t,n),o=S("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=S("tensorListId",e,t,n),r=S("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=S("tensor",e,t,n),r=S("elementShape",e,t,n),a=S("lengths",e,t,n),o=Rq(s,a,r);return n.addTensorList(o),[o.idTensor]}case"TensorListLength":{let s=S("tensorListId",e,t,n),r=n.getTensorList(s.id);return[Ce(r.size(),"int32")]}case"TensorListResize":{let s=S("tensorListId",e,t,n),r=S("size",e,t,n),o=n.getTensorList(s.id).resize(r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function w7(e,t,n){let[s,r]=S("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",u=S("numArgs",e,t,n);if(a){if(i&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=S("strides",e,t,n),p=pm(e,t,n),d=S("dataFormat",e,t,n).toUpperCase(),h=S("dilations",e,t,n),[f,m]=S("args",e,t,n);o&&(m=f,f=void 0);let g=S("leakyreluAlpha",e,t,n);return{stride:c,pad:p,dataFormat:d,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var Dq=(e,t,n,s=_n)=>{switch(e.op){case"Conv1D":{let r=S("stride",e,t,n),a=S("pad",e,t,n),o=S("dataFormat",e,t,n).toUpperCase(),i=S("dilation",e,t,n);return[s.conv1d(S("x",e,t,n),S("filter",e,t,n),r,a,o,i)]}case"Conv2D":{let r=S("strides",e,t,n),a=pm(e,t,n),o=S("dataFormat",e,t,n).toUpperCase(),i=S("dilations",e,t,n);return[s.conv2d(S("x",e,t,n),S("filter",e,t,n),[r[1],r[2]],a,o,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:o,dilations:i,biasArg:l,preluArg:u,activationFunc:c,leakyreluAlpha:p}=w7(e,t,n);return[s.fused.conv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:o,dilations:[i[1],i[2]],bias:l,activation:c,preluActivationWeights:u,leakyreluAlpha:p})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:o,dilations:i,biasArg:l,preluArg:u,activationFunc:c,leakyreluAlpha:p}=w7(e,t,n);return[s.fused.depthwiseConv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:o,dilations:[i[1],i[2]],bias:l,activation:c,preluActivationWeights:u,leakyreluAlpha:p})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=S("outputShape",e,t,n),a=S("strides",e,t,n),o=pm(e,t,n);return[s.conv2dTranspose(S("x",e,t,n),S("filter",e,t,n),r,[a[1],a[2]],o)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=S("strides",e,t,n),a=pm(e,t,n),o=S("dilations",e,t,n),i=S("dataFormat",e,t,n).toUpperCase();return[s.depthwiseConv2d(S("input",e,t,n),S("filter",e,t,n),[r[1],r[2]],a,i,[o[1],o[2]])]}case"Conv3D":{let r=S("strides",e,t,n),a=S("pad",e,t,n),o=S("dataFormat",e,t,n).toUpperCase(),i=S("dilations",e,t,n);return[s.conv3d(S("x",e,t,n),S("filter",e,t,n),[r[1],r[2],r[3]],a,o,[i[1],i[2],i[3]])]}case"AvgPool":{let r=S("strides",e,t,n),a=S("pad",e,t,n),o=S("kernelSize",e,t,n);return[s.avgPool(S("x",e,t,n),[o[1],o[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=S("strides",e,t,n),a=S("pad",e,t,n),o=S("kernelSize",e,t,n);return[s.maxPool(S("x",e,t,n),[o[1],o[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=S("strides",e,t,n),a=S("pad",e,t,n),o=S("kernelSize",e,t,n),i=S("includeBatchInIndex",e,t,n),{result:l,indexes:u}=s.maxPoolWithArgmax(S("x",e,t,n),[o[1],o[2]],[r[1],r[2]],a,i);return[l,u]}case"AvgPool3D":{let r=S("strides",e,t,n),a=S("pad",e,t,n),o=S("kernelSize",e,t,n);return[s.avgPool3d(S("x",e,t,n),[o[1],o[2],o[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=S("strides",e,t,n),a=S("pad",e,t,n),o=S("kernelSize",e,t,n);return[s.maxPool3d(S("x",e,t,n),[o[1],o[2],o[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=S("strides",e,t,n),a=S("pad",e,t,n),o=S("dilations",e,t,n),i=r[1],l=r[2],u=o[1],c=o[2];return[s.dilation2d(S("x",e,t,n),S("filter",e,t,n),[i,l],a,[u,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},$q=(e,t,n,s=_n)=>{switch(e.op){case"Fill":{let r=S("shape",e,t,n),a=S("dtype",e,t,n),o=S("value",e,t,n);return[s.fill(r,o,a)]}case"LinSpace":{let r=S("start",e,t,n),a=S("stop",e,t,n),o=S("num",e,t,n);return[s.linspace(r,a,o)]}case"Multinomial":{let r=S("logits",e,t,n),a=S("numSamples",e,t,n),o=S("seed",e,t,n);return[s.multinomial(r,a,o)]}case"OneHot":{let r=S("indices",e,t,n),a=S("depth",e,t,n),o=S("onValue",e,t,n),i=S("offValue",e,t,n),l=S("dtype",e,t,n);return[s.oneHot(r,a,o,i,l)]}case"Ones":return[s.ones(S("shape",e,t,n),S("dtype",e,t,n))];case"OnesLike":return[s.onesLike(S("x",e,t,n))];case"RandomStandardNormal":return[s.randomStandardNormal(S("shape",e,t,n),S("dtype",e,t,n),S("seed",e,t,n))];case"RandomUniform":return[s.randomUniform(S("shape",e,t,n),S("minval",e,t,n),S("maxval",e,t,n),S("dtype",e,t,n))];case"Range":{let r=S("start",e,t,n),a=S("stop",e,t,n),o=S("step",e,t,n);return[s.range(r,a,o,S("dtype",e,t,n))]}case"TruncatedNormal":{let r=S("shape",e,t,n),a=S("mean",e,t,n),o=S("stdDev",e,t,n),i=S("seed",e,t,n);return[s.truncatedNormal(r,a,o,S("dtype",e,t,n),i)]}case"Zeros":return[s.zeros(S("shape",e,t,n),S("dtype",e,t,n))];case"ZerosLike":return[s.zerosLike(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function C3(e,t,n){let s=S("boxes",e,t,n),r=S("scores",e,t,n),a=S("maxOutputSize",e,t,n),o=S("iouThreshold",e,t,n),i=S("scoreThreshold",e,t,n),l=S("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var Pq=async(e,t,n,s,r=_n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:o,maxOutputSize:i,iouThreshold:l,scoreThreshold:u,softNmsSigma:c}=C3(e,t,n),p=await r.image.nonMaxSuppressionWithScoreAsync(a,o,i,l,u,c);return[p.selectedIndices,p.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:o,maxOutputSize:i,iouThreshold:l,scoreThreshold:u}=C3(e,t,n),c=S("padToMaxOutputSize",e,t,n),p=await r.image.nonMaxSuppressionPaddedAsync(a,o,i,l,u,c);return[p.selectedIndices,p.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:o,maxOutputSize:i,iouThreshold:l,scoreThreshold:u}=C3(e,t,n);return[await r.image.nonMaxSuppressionAsync(a,o,i,l,u)]}case"Where":{let a=r.cast(S("condition",e,t,n),"bool"),o=[await r.whereAsync(a)];return a.dispose(),o}case"ListDiff":return r.setdiff1dAsync(S("x",e,t,n),S("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Fq=(e,t,n,s=_n)=>{switch(e.op){case"LowerBound":{let r=S("sortedSequence",e,t,n),a=S("values",e,t,n);return[s.lowerBound(r,a)]}case"TopKV2":{let r=S("x",e,t,n),a=S("k",e,t,n),o=S("sorted",e,t,n),i=s.topk(r,a,o);return[i.values,i.indices]}case"UpperBound":{let r=S("sortedSequence",e,t,n),a=S("values",e,t,n);return[s.upperBound(r,a)]}case"Unique":{let r=S("x",e,t,n),a=s.unique(r);return[a.values,a.indices]}case"UniqueV2":{let r=S("x",e,t,n),a=S("axis",e,t,n),o=s.unique(r,a);return[o.values,o.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Oq=(e,t,n,s=_n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=S("default",e,t,n);return[ts(e.name,t,n)||r];case"Placeholder":return[ts(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=S("x",e,t,n);return[ga(c)]}case"IdentityN":return S("x",e,t,n).map(c=>ga(c));case"Snapshot":let a=S("x",e,t,n);return[ga(a)];case"Shape":return[s.tensor1d(S("x",e,t,n).shape,"int32")];case"ShapeN":return S("x",e,t,n).map(c=>s.tensor1d(c.shape));case"Size":return[s.scalar(S("x",e,t,n).size,"int32")];case"Rank":return[s.scalar(S("x",e,t,n).rank,"int32")];case"NoOp":return[s.scalar(1)];case"Print":let o=S("x",e,t,n),i=S("data",e,t,n),l=S("message",e,t,n),u=S("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(l);for(let c=0;c<i.length;c++)console.log(Array.prototype.slice.call(i[c].dataSync()).slice(0,u));return[o];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Mq=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Ce(0),this.tensorMap=new Map,An(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ce(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),Z(()=>{let s=Rn(t),r=n.length,a=s.length;v.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];An(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return Z(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return on(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},zq=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=S("keyDType",e,t,n),a=S("valueDType",e,t,n),o=new Mq(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=S("tableHandle",e,t,n,s),a=S("keys",e,t,n),o=S("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=S("tableHandle",e,t,n,s),a=S("keys",e,t,n),o=S("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=S("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Lq=(e,t,n,s=_n)=>{switch(e.op){case"ResizeBilinear":{let r=S("images",e,t,n),a=S("size",e,t,n),o=S("alignCorners",e,t,n),i=S("halfPixelCenters",e,t,n);return[s.image.resizeBilinear(r,[a[0],a[1]],o,i)]}case"ResizeNearestNeighbor":{let r=S("images",e,t,n),a=S("size",e,t,n),o=S("alignCorners",e,t,n),i=S("halfPixelCenters",e,t,n);return[s.image.resizeNearestNeighbor(r,[a[0],a[1]],o,i)]}case"CropAndResize":{let r=S("image",e,t,n),a=S("boxes",e,t,n),o=S("boxInd",e,t,n),i=S("cropSize",e,t,n),l=S("method",e,t,n),u=S("extrapolationValue",e,t,n);return[s.image.cropAndResize(r,a,o,i,l,u)]}case"ImageProjectiveTransformV3":{let r=S("images",e,t,n),a=S("transforms",e,t,n),o=S("outputShape",e,t,n),i=S("fillValue",e,t,n),l=S("interpolation",e,t,n),u=S("fillMode",e,t,n);return[s.image.transform(r,a,l.toLowerCase(),u.toLowerCase(),i,o)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Bq=(e,t,n,s=_n)=>{switch(e.op){case"Equal":return[s.equal(S("a",e,t,n),S("b",e,t,n))];case"NotEqual":return[s.notEqual(S("a",e,t,n),S("b",e,t,n))];case"Greater":return[s.greater(S("a",e,t,n),S("b",e,t,n))];case"GreaterEqual":return[s.greaterEqual(S("a",e,t,n),S("b",e,t,n))];case"Less":return[s.less(S("a",e,t,n),S("b",e,t,n))];case"LessEqual":return[s.lessEqual(S("a",e,t,n),S("b",e,t,n))];case"LogicalAnd":return[s.logicalAnd(S("a",e,t,n),S("b",e,t,n))];case"LogicalNot":return[s.logicalNot(S("a",e,t,n))];case"LogicalOr":return[s.logicalOr(S("a",e,t,n),S("b",e,t,n))];case"Select":case"SelectV2":return[s.where(S("condition",e,t,n),S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Wq=(e,t,n,s=_n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[s.matMul(S("a",e,t,n),S("b",e,t,n),S("transposeA",e,t,n),S("transposeB",e,t,n))];case"Einsum":return[s.einsum(S("equation",e,t,n),...S("tensors",e,t,n))];case"Transpose":return[s.transpose(S("x",e,t,n),S("perm",e,t,n))];case"_FusedMatMul":let[r,a]=S("fusedOps",e,t,n),o=r==="biasadd",i=a==="prelu",l=S("numArgs",e,t,n),u=S("leakyreluAlpha",e,t,n);if(o){if(i&&l!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,p]=S("args",e,t,n);return[s.fused.matMul({a:S("a",e,t,n),b:S("b",e,t,n),transposeA:S("transposeA",e,t,n),transposeB:S("transposeB",e,t,n),bias:c,activation:a,preluActivationWeights:p,leakyreluAlpha:u})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Vq=(e,t,n,s=_n)=>{switch(e.op){case"EuclideanNorm":return[s.euclideanNorm(S("x",e,t,n),S("axis",e,t,n),S("keepDims",e,t,n))];case"FusedBatchNorm":case"FusedBatchNormV2":return[s.batchNorm(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"FusedBatchNormV3":return[s.batchNorm(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"LRN":return[s.localResponseNormalization(S("x",e,t,n),S("radius",e,t,n),S("bias",e,t,n),S("alpha",e,t,n),S("beta",e,t,n))];case"Softmax":return[s.softmax(S("x",e,t,n))];case"LogSoftmax":return[s.logSoftmax(S("x",e,t,n))];case"SparseToDense":return[s.sparseToDense(S("sparseIndices",e,t,n),S("outputShape",e,t,n),S("sparseValues",e,t,n),S("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Uq=(e,t,n,s=_n)=>{switch(e.op){case"Max":{let i=S("axis",e,t,n),l=S("keepDims",e,t,n);return[s.max(S("x",e,t,n),i,l)]}case"Mean":{let i=S("axis",e,t,n),l=S("keepDims",e,t,n);return[s.mean(S("x",e,t,n),i,l)]}case"Min":{let i=S("axis",e,t,n),l=S("keepDims",e,t,n);return[s.min(S("x",e,t,n),i,l)]}case"Sum":{let i=S("axis",e,t,n),l=S("keepDims",e,t,n);return[s.sum(S("x",e,t,n),i,l)]}case"All":{let i=S("axis",e,t,n),l=S("keepDims",e,t,n);return[s.all(S("x",e,t,n),i,l)]}case"Any":{let i=S("axis",e,t,n),l=S("keepDims",e,t,n);return[s.any(S("x",e,t,n),i,l)]}case"ArgMax":{let i=S("axis",e,t,n);return[s.argMax(S("x",e,t,n),i)]}case"ArgMin":{let i=S("axis",e,t,n);return[s.argMin(S("x",e,t,n),i)]}case"Prod":{let i=S("axis",e,t,n),l=S("keepDims",e,t,n);return[s.prod(S("x",e,t,n),i,l)]}case"Cumprod":{let i=S("axis",e,t,n),l=S("exclusive",e,t,n),u=S("reverse",e,t,n);return[s.cumprod(S("x",e,t,n),i,l,u)]}case"Cumsum":{let i=S("axis",e,t,n),l=S("exclusive",e,t,n),u=S("reverse",e,t,n);return[s.cumsum(S("x",e,t,n),i,l,u)]}case"Bincount":let r=S("x",e,t,n),a=S("weights",e,t,n),o=S("size",e,t,n);return[s.bincount(r,a,o)];case"DenseBincount":{let i=S("x",e,t,n),l=S("weights",e,t,n),u=S("size",e,t,n),c=S("binaryOutput",e,t,n);return[s.denseBincount(i,l,u,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Gq=(e,t,n,s=_n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=S("n",e,t,n),a=S("axis",e,t,n),o=S("tensors",e,t,n);return o=o.slice(0,r),[s.concat(o,a)]}case"Gather":{let r=S("x",e,t,n),a=S("indices",e,t,n);return[s.gather(r,s.cast(a,"int32"),0)]}case"GatherV2":{let r=S("axis",e,t,n),a=S("batchDims",e,t,n),o=S("x",e,t,n),i=S("indices",e,t,n);return[s.gather(o,s.cast(i,"int32"),r,a)]}case"Reverse":{let r=S("dims",e,t,n),a=[];for(let i=0;i<r.length;i++)r[i]&&a.push(i);let o=S("x",e,t,n);return[s.reverse(o,a)]}case"ReverseV2":{let r=S("axis",e,t,n),a=S("x",e,t,n);return[s.reverse(a,r)]}case"Slice":{let r=S("begin",e,t,n),a=S("size",e,t,n);return[s.slice(S("x",e,t,n),r,a)]}case"StridedSlice":{let r=S("begin",e,t,n),a=S("end",e,t,n),o=S("strides",e,t,n),i=S("beginMask",e,t,n),l=S("endMask",e,t,n),u=S("ellipsisMask",e,t,n),c=S("newAxisMask",e,t,n),p=S("shrinkAxisMask",e,t,n),d=S("x",e,t,n);return[s.stridedSlice(d,r,a,o,i,l,u,c,p)]}case"Pack":return Z(()=>{let r=S("axis",e,t,n),a=S("tensors",e,t,n),o=a[0].shape,i=s.squeeze(a[0]).shape,l=a.map(u=>{let c=v.arraysEqual(u.shape,o);if(!c&&!v.arraysEqual(s.squeeze(u).shape,i))throw new Error("the input tensors shape does not match");return c?u:s.reshape(u,o)});return[s.stack(l,r)]});case"Unpack":{let r=S("axis",e,t,n),a=S("tensor",e,t,n);return s.unstack(a,r)}case"Tile":{let r=S("reps",e,t,n);return[s.tile(S("x",e,t,n),r)]}case"Split":case"SplitV":{let r=S("axis",e,t,n),a=S("numOrSizeSplits",e,t,n),o=S("x",e,t,n);return s.split(o,a,r)}case"ScatterNd":{let r=S("indices",e,t,n),a=S("values",e,t,n),o=S("shape",e,t,n);return[s.scatterND(r,a,o)]}case"GatherNd":{let r=S("x",e,t,n),a=S("indices",e,t,n);return[s.gatherND(r,a)]}case"SparseToDense":{let r=S("sparseIndices",e,t,n),a=S("outputShape",e,t,n),o=S("sparseValues",e,t,n),i=S("defaultValue",e,t,n);return[s.sparseToDense(r,o,a,o.dtype===i.dtype?i:s.cast(i,o.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Hq=(e,t,n,s=_n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:a,emptyRowIndicator:o,reverseIndexMap:i}=s.sparse.sparseFillEmptyRows(S("indices",e,t,n),S("values",e,t,n),S("denseShape",e,t,n),S("defaultValue",e,t,n));return[r,a,o,i]}case"SparseReshape":{let{outputIndices:r,outputShape:a}=s.sparse.sparseReshape(S("inputIndices",e,t,n),S("inputShape",e,t,n),S("newShape",e,t,n));return[r,a]}case"SparseSegmentMean":return[s.sparse.sparseSegmentMean(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];case"SparseSegmentSum":return[s.sparse.sparseSegmentSum(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},jq=(e,t,n,s=_n)=>{switch(e.op){case"FFT":return[s.fft(S("x",e,t,n))];case"IFFT":return[s.ifft(S("x",e,t,n))];case"RFFT":return[s.rfft(S("x",e,t,n))];case"IRFFT":return[s.irfft(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},qq=(e,t,n,s=_n)=>{switch(e.op){case"StringNGrams":{let{nGrams:r,nGramsSplits:a}=s.string.stringNGrams(S("data",e,t,n),S("dataSplits",e,t,n),S("separator",e,t,n),S("nGramWidths",e,t,n),S("leftPad",e,t,n),S("rightPad",e,t,n),S("padWidth",e,t,n),S("preserveShortSequences",e,t,n));return[r,a]}case"StringSplit":{let{indices:r,values:a,shape:o}=s.string.stringSplit(S("input",e,t,n),S("delimiter",e,t,n),S("skipEmpty",e,t,n));return[r,a,o]}case"StringToHashBucketFast":return[s.string.stringToHashBucketFast(S("input",e,t,n),S("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Xq=(e,t,n,s=_n)=>{switch(e.op){case"Cast":return[s.cast(S("x",e,t,n),S("dtype",e,t,n))];case"ExpandDims":{let r=S("axis",e,t,n);return[s.expandDims(S("x",e,t,n),r)]}case"Squeeze":{let r=S("axis",e,t,n);return[s.squeeze(S("x",e,t,n),r)]}case"Reshape":return[s.reshape(S("x",e,t,n),S("shape",e,t,n))];case"MirrorPad":return[s.mirrorPad(S("x",e,t,n),S("padding",e,t,n),S("mode",e,t,n))];case"PadV2":case"Pad":return[s.pad(S("x",e,t,n),S("padding",e,t,n),S("constantValue",e,t,n))];case"SpaceToBatchND":{let r=S("blockShape",e,t,n),a=S("paddings",e,t,n);return[s.spaceToBatchND(S("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=S("blockShape",e,t,n),a=S("crops",e,t,n);return[s.batchToSpaceND(S("x",e,t,n),r,a)]}case"DepthToSpace":{let r=S("blockSize",e,t,n),a=S("dataFormat",e,t,n).toUpperCase();return[s.depthToSpace(S("x",e,t,n),r,a)]}case"BroadcastTo":return[s.broadcastTo(S("x",e,t,n),S("shape",e,t,n))];case"BroadcastArgs":return[s.broadcastArgs(S("s0",e,t,n),S("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function k7(e,t,n,s,r=Z){let a=((o,i,l)=>{switch(o.category){case"arithmetic":return r(()=>Iq(o,i,l));case"basic_math":return r(()=>Sq(o,i,l));case"control":return _q(o,i,l);case"convolution":return r(()=>Dq(o,i,l));case"creation":return r(()=>$q(o,i,l));case"dynamic":return Pq(o,i,l);case"evaluation":return r(()=>Fq(o,i,l));case"image":return r(()=>Lq(o,i,l));case"graph":return r(()=>Oq(o,i,l));case"logical":return r(()=>Bq(o,i,l));case"matrices":return r(()=>Wq(o,i,l));case"normalization":return r(()=>Vq(o,i,l));case"reduction":return r(()=>Uq(o,i,l));case"slice_join":return r(()=>Gq(o,i,l));case"sparse":return r(()=>Hq(o,i,l));case"spectral":return r(()=>jq(o,i,l));case"string":return r(()=>qq(o,i,l));case"transformation":return r(()=>Xq(o,i,l));case"hash_table":return zq(o,i,l,s);case"custom":let u=K8(o.op);if(u&&u.customExecutor)return u.customExecutor(new kq(o,i,l));throw TypeError(`Custom op ${o.op} is not registered.`);default:throw TypeError(`Unknown op '${o.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(a)?a.then(o=>[].concat(o)):[].concat(a)}var I7=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function S7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,u=Object.keys(e).map(d=>Cs(d)[0]),c=[];s!=null&&(c=s.map(d=>Cs(d.name)[0]));let p=[...t];for(;p.length>0;){let d=p.pop();if((yI(d)||Qq(d)||eX(d))&&o==null&&(o=d,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(d.name),n[d.name]==null&&u.indexOf(d.name)===-1&&c.indexOf(d.name)===-1){if(d.inputs.length===0){a.push(d.name);continue}d.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function Kq(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(c=>Cs(c)[0]).map(c=>e.nodes[c]),i=e.initNodes;o.forEach(c=>{s.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{s.has(c.name)&&a.push(c)}),i!=null&&i.forEach(c=>{s.has(c.name)&&a.push(c)});let l=new Set,u=[];for(;a.length>0;){let c=a.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(p=>{!l.has(p.name)&&s.has(p.name)&&p.inputs.every(d=>l.has(d.name))&&a.push(p)})}return u}var Zq=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Yq=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Jq=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function yI(e){return Zq.indexOf(e.op)>=0}function Qq(e){return Yq.indexOf(e.op)>=0}function eX(e){return Jq.indexOf(e.op)>=0}var hy=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new hy(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=S7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return Kq(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(c=>this.graph.nodes[Cs(c)[0]]),r=t.map(c=>Cs(c)[0]),a=r.map(c=>this.graph.nodes[c]);this.resetIntermediateTensors(),a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},u={};return Z(()=>{let c=new I7(this.weightMap,l,u,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,g]=Cs(f),y=[];y[g]=e[f],p[m]=y});let d=this.getFrozenTensorIds(p),h={};for(let f=0;f<i.length;f++){let m=i[f];if(!p[m.name]){let g=k7(m,p,c,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);p[m.name]=g,this.checkTensorForDisposal(m.name,m,p,c,d,r,h)}}return this.parent==null&&c.dispose(d),t.map(f=>ts(f,p,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=nq(i.name,n,s);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let c=o[u.id];if(c===1){if(!this.keepTensorForDebug)u.dispose();else{let[p,d]=Kr(t.name,s);this.intermediateTensors[p]?this.intermediateTensors[p][d]=u:(this.intermediateTensors[p]=[],this.intermediateTensors[p][d]=u)}delete o[u.id]}else c!=null&&o[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(n=>{n&&!n.kept&&!n.isDisposed&&!this.keepIds.has(n.id)&&n.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=H().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let a=new I7(this.weightMap,s,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,a,t,n);let o=t.map(u=>ts(u,this.tensorsMap,a)),i=o.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...i,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&a.dispose(this.keepIds),o}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(x=>this.graph.nodes[Cs(x)[0]]),o=n.map(x=>Cs(x)[0]),i=o.map(x=>this.graph.nodes[x]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:p}=S7(e,i,this.weightMap,this._initNodes),d=[...a,...this.graph.weights,...this._initNodes||[]].map(x=>({node:x,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(x=>{let[A,b]=Cs(x),w=[];w[b]=e[x],h[A]=w});let f={},m=this.getFrozenTensorIds(h),g={};for(;d.length>0;){let x=this.processStack(a,d,t,h,g,m,o,f,l);await Promise.all(x)}c==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=i.filter(x=>!yI(x)&&!ts(x.name,h,t)).map(x=>x.name);if(y.length>0){let x="";throw c!=null&&(x=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${x}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let p="";if(c.node.op==="Enter"&&S("isConstant",c.node,s,n)&&([p]=Kr(c.node.name,n)),s[c.node.name]==null){let d=k7(c.node,s,n,this._resourceManager);p||([p]=Kr(c.node.name,n));let h=n.currentContext;v.isPromise(d)?u.push(d.then(f=>(s[p]=f,n.currentContext=h,this.checkTensorForDisposal(p,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l),f))):(s[p]=d,this.checkTensorForDisposal(p,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l))}else this.processChildNodes(c.node,t,n,s,r,l)}return u}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=Kr(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!ts(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!ts(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=Cs(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);v.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=Cs(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Cs(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},tX=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},nX="?tfjs-format=file",sX="model.json",Vh=class{constructor(e,t={},n=Ns){this.modelUrl=e,this.loadOptions=t,this.version="n/a",this.io=n,t==null&&(this.loadOptions={}),this.resourceManager=new tX}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(e,this.loadOptions);else{let t=this.io.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(this.io.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return v.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let r=this.artifacts.userDefinedMetadata;r.signature!=null&&(n=r.signature),r.structuredOutputKeys!=null&&(this.structuredOutputKeys=r.structuredOutputKeys)}this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=this.io.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new hy(x7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=x7.Instance.transformGraph(e.modelInitializer);this.initializer=new hy(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=this.io.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){let n=this.execute(e,this.outputNodes);if(this.structuredOutputKeys){let s=n instanceof nt?[n]:n,r={};return s.forEach((a,o)=>r[this.structuredOutputKeys[o]]=a),r}return n}normalizeInputs(e){if(!(e instanceof nt)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function rX(e,t={},n=Ns){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=oX(e));let s=new Vh(e,t,n);return await s.load(),s}function aX(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide a url or an IOHandler that loads the model");if(!e.load)throw new Error(`modelUrl IO Handler ${e} has no load function`);let t=new Vh(e);return t.load(),t}function oX(e){return e.endsWith("/")||(e=e+"/"),`${e}${sX}${nX}`}var iX="3.20.0",AI={};Ve(AI,{CSVDataset:()=>TI,Dataset:()=>od,FileDataSource:()=>PI,TextLineDataset:()=>CI,URLDataSource:()=>FI,array:()=>RX,csv:()=>WX,func:()=>VX,generator:()=>UX,microphone:()=>HX,version_data:()=>jX,webcam:()=>GX,zip:()=>_X});var lX=No(Qm()),uX=No(Qm());function cX(e,t){return Bm(e,t)}function Bm(e,t,n=new Map,s=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(pc(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=Bm(i,t,n,s);a[o]=l}return s.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function dX(e,t=bI){return xI(e,t)}function xI(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(pc(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(u=>u[o]),l=xI(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function bI(e){return e===null?null:pc(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function vI(e,t){let n=new Map;Bm(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(v.isPromise(a)){let o=await a;n.set(r,o)}}return Bm(e,t,n)}function pc(e){let t=!1;if(H().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=bw();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof nt)&&!(e instanceof Promise)&&!t)}function pX(e){return e==null||hX(e)||Array.isArray(e)||typeof e=="object"&&e instanceof nt||v.isTypedArray(e)}function hX(e){return e===null||typeof e!="object"&&typeof e!="function"}function fX(e){return cX(e,mX)}function mX(e){return e instanceof nt?{value:e.clone(),recurse:!1}:pc(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var wI=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},zx=class extends wI{constructor(){super(zx.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};zx.INITIAL_CAPACITY=32;function kI(e){return new AX(e)}function Lx(e){return new xX(e)}function gX(e,t){return new II(e,t)}function yX(e,t=co.FAIL){return new NX(e,t)}var bn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new CX(this,e)}filter(e){return new IX(this,e)}map(e){return new SX(this,e)}mapAsync(e){return new C7(this,e)}serialMapAsync(e){return new C7(this,e).serial()}flatmap(e){return new TX(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new kX(this,e,t)}columnMajorBatch(e,t=!0,n=bI){return this.rowMajorBatch(e,t).map(r=>dX(r,n))}concatenate(e,t){return new II(kI([this,e]),t)}take(e){return e<0||e==null?this:new wX(this,e)}skip(e){return e<0||e==null?this:new vX(this,e)}prefetch(e){return new SI(this,e)}shuffle(e,t){return new EX(this,e,t)}serial(){return new bX(this)}},AX=class extends bn{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:fX(e),done:!1}}},xX=class extends bn{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},bX=class extends bn{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},vX=class extends bn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;J(e.value)}return this.upstream.next()}},wX=class extends bn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},kX=class extends bn{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},IX=class extends bn{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;J(e.value)}}},SX=class extends bn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Dr.getTensorsInContainer(e.value),n=this.transform(e.value),s=Dr.getTensorsInContainer(n);for(let r of t)Dr.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},CX=class extends bn{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},C7=class extends bn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Dr.getTensorsInContainer(e.value),n=await this.transform(e.value),s=Dr.getTensorsInContainer(n);for(let r of t)Dr.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},Bx=class extends bn{constructor(){super(),this.outputQueue=new zx,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},TX=class extends Bx{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Dr.getTensorsInContainer(e.value),n=this.transform(e.value),s=Dr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Dr.isTensorInList(r,s)||r.dispose();return!0}},II=class extends bn{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},co;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(co||(co={}));var NX=class extends bn{constructor(e,t=co.FAIL){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof bn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await vI(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case co.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case co.SHORTEST:return{value:null,done:!0};case co.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},SI=class extends bn{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new wI(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},EX=class extends SI{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=uX.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},od=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),Ss(async()=>(await n.iterator()).columnMajorBatch(e,t,DX),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Ss(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Ss(async()=>(await t.iterator()).filter(s=>Z(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Ss(async()=>(await t.iterator()).map(n=>Z(()=>e(n))),this.size)}mapAsync(e){let t=this;return Ss(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Ss(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Ss(async()=>{let s=Lx(async()=>({value:await t.iterator(),done:!1}));return gX(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Ss(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=lX.alea(t||v.now().toString());return Ss(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Ss(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};od.MAX_BUFFER_SIZE=1e4;function Ss(e,t=null){return new class extends od{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function RX(e){return Ss(async()=>kI(e),e.length)}function _X(e){if(!pc(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Ss(async()=>{let n=await vI(e,s=>{if(s instanceof od)return{value:s.iterator(),recurse:!1};if(pc(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return yX(n,co.SHORTEST)},t)}function DX(e){if(e===null)return null;let t=e[0];return pX(t)?{value:$X(e),recurse:!1}:{value:null,recurse:!0}}function $X(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof nt?on(e):ct(e)}var CI=class extends od{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},nm='"',up=Symbol("out"),T7=Symbol("field"),sm=Symbol("quote"),T3=Symbol("quoteafterquote"),N7=Symbol("quoteinquote"),TI=class extends od{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new CI(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let u=Number(i);if(isNaN(u))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=u;else switch(o.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(i);break;default:l=u}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=up;for(let o=0;o<r;o++)switch(a){case up:switch(e.charAt(o)){case nm:s=o+1,a=sm;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=up;break;default:a=T7,s=o;break}break;case T7:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=up,s=o+1;break;default:}break;case sm:switch(e.charAt(o)){case nm:a=T3;break;default:}break;case T3:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=up,s=o+1;break;case nm:a=sm;break;default:a=N7;break}break;case N7:switch(e.charAt(o)){case nm:a=sm;break;default:}break;default:}if(a===T3?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},NI=class extends bn{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!H().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new NI(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),ct(n,t)}},EI=class extends bn{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ft([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=ur([a,r,i,o],[1,4])}else this.cropBox=ur([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!H().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new EI(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Zs.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return Z(()=>{let t=Bt(ye(e,"float32"),0),n;n=Se.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return V(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},RI=class{},_I=class extends bn{split(e){return new PX(this,e)}},PX=class extends _I{constructor(e,t){super(),this.upstream=e,this.impl=new FX(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},FX=class extends Bx{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},OX=class extends bn{decodeUTF8(){return new MX(this)}},MX=class extends _I{constructor(e){super(),this.upstream=e,this.impl=new zX(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},zX=class extends Bx{constructor(e){if(super(),this.upstream=e,H().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=bw();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return H().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},DI=class extends OX{constructor(e,t={}){super(),this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(H().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function LX(e,t={},n){let s,r;typeof e=="string"?s=e:(s=e.url,r=BX(e));let a=await(n||v.fetch)(s,r);if(a.ok){let o=new Uint8Array(await a.arrayBuffer());return new DI(o,t)}else throw new Error(a.statusText)}var BX=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function $I(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var PI=class extends RI{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if($I(this.input)&&H().get("IS_NODE")){let e=Fy();this.input=e.readFileSync(this.input.slice(7))}return new DI(this.input,this.options)}},FI=class extends RI{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return $I(this.url)?new PI(this.url,this.fileOptions).iterator():LX(this.url,this.fileOptions)}};function WX(e,t={}){return new TI(new FI(e),t)}function VX(e){let t=Lx(e);return Ss(async()=>t)}function UX(e){return Ss(async()=>{let t=await e();return Lx(()=>t.next())})}async function GX(e,t){return EI.create(e,t)}async function HX(e){return NI.create(e)}var jX="3.20.0";function Te(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var qX=hr.whereImpl,Wx=class extends yc{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new jp(this,sn())}nextDataId(){return Wx.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,H().get("IS_NODE")&&C.warn(`
|
|
============================
|
|
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>v.decodeString(s));return De(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return De(e.shape,e.dtype,t)}makeOutput(e,t,n){return sn().makeTensorFromTensorInfo(this.makeTensorInfo(t,n,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Te([e],"where");let t=this.readSync(e.dataId);return qX(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Wx.nextDataId=0;var OI={};Ve(OI,{addImpl:()=>LI,bincountImpl:()=>Ux,bincountReduceImpl:()=>BI,castImpl:()=>zI,ceilImpl:()=>WI,concatImpl:()=>Gx,equalImpl:()=>VI,expImpl:()=>GI,expm1Impl:()=>jI,floorImpl:()=>qI,gatherNdImpl:()=>XI,gatherV2Impl:()=>KI,greaterEqualImpl:()=>YI,greaterImpl:()=>ZI,lessEqualImpl:()=>QI,lessImpl:()=>JI,linSpaceImpl:()=>eS,logImpl:()=>tS,maxImpl:()=>nS,maximumImpl:()=>sS,minimumImpl:()=>rS,multiplyImpl:()=>Hx,negImpl:()=>aS,notEqualImpl:()=>oS,prodImpl:()=>iS,raggedTensorToTensorImpl:()=>lS,rangeImpl:()=>qx,rsqrtImpl:()=>uS,scatterImpl:()=>Xu,sigmoidImpl:()=>FK,simpleAbsImpl:()=>MI,sliceImpl:()=>Vm,sparseFillEmptyRowsImpl:()=>dS,sparseReshapeImpl:()=>pS,sparseSegmentReductionImpl:()=>Xx,sqrtImpl:()=>zK,squaredDifferenceImpl:()=>hS,stridedSliceImpl:()=>fS,stringNGramsImpl:()=>Kx,stringSplitImpl:()=>Zx,stringToHashBucketFastImpl:()=>Yx,subImpl:()=>mS,tileImpl:()=>gS,topKImpl:()=>AS,transposeImpl:()=>jx,uniqueImpl:()=>xS});function MI(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var XX=e=>{let{x:t}=e.inputs,n=e.backend;Te(t,"abs");let s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=MI(r),n.makeOutput(s,t.shape,t.dtype)},KX={kernelName:bl,backendName:"cpu",kernelFunc:XX};function un(e){return(t,n,s,r,a)=>{let o=C.assertAndGetBroadcastShape(t,n),i=o.length,l=v.computeStrides(o),u=v.sizeFromShape(o),c=v.getTypedArrayFromDType(a,u),p=t.length,d=n.length,h=v.computeStrides(t),f=v.computeStrides(n),m=C.getBroadcastDims(t,o),g=C.getBroadcastDims(n,o);if(m.length+g.length===0)for(let y=0;y<c.length;++y)c[y]=e(s[y%s.length],r[y%r.length]);else for(let y=0;y<c.length;++y){let x=v.indexToLoc(y,i,l),A=x.slice(-p);m.forEach(k=>A[k]=0);let b=v.locToIndex(A,p,h),w=x.slice(-d);g.forEach(k=>w[k]=0);let I=v.locToIndex(w,d,f);c[y]=e(s[b],r[I])}return[c,o]}}function Ts(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var ZX={kernelName:Xp,backendName:"cpu",kernelFunc:Ts};function Wm(e,t,n="float32"){if(n==="complex64"){let r=Wm(e,t,"float32"),a=Wm(e,t,"float32");return Ts({inputs:{real:r,imag:a},backend:e})}let s=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function ta(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var YX={kernelName:Xo,backendName:"cpu",kernelFunc:ta};function fl(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var JX={kernelName:nh,backendName:"cpu",kernelFunc:fl};function zI(e,t,n,s){if(s==="int32"){let r=Int32Array.from(e);return[t,"int32",r]}if(s==="bool"){let r=v.toTypedArray([0],n),[a,o]=un((i,l)=>i!==l?1:0)(t,[],e,r,"bool");return[o,"bool",a]}throw new Error(`Error in Cast: failed to cast ${n} to ${s}`)}function Co(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return ta({inputs:{x:r},backend:n});let c=Wm(n,r.shape,r.dtype),p=Co({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),d=Ts({inputs:{real:p,imag:c},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),d}if(r.dtype==="complex64"){let c=fl({inputs:{input:r},backend:n}),p=Co({inputs:{x:c},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(c),p}if(!v.hasEncodingLoss(r.dtype,a)){let c=ta({inputs:{x:r},backend:n});return{dataId:c.dataId,shape:c.shape,dtype:a}}let o=n.data.get(r.dataId).values,[i,l,u]=zI(o,r.shape,r.dtype,a);return n.makeTensorInfo(i,l,u)}var QX={kernelName:Po,backendName:"cpu",kernelFunc:Co};function vn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Te([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,p=o.dtype==="string"?C.fromUint8ToStringArray(u):u,d=o.dtype==="string"?C.fromUint8ToStringArray(c):c,h=s||o.dtype,[f,m]=t(o.shape,i.shape,p,d,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=Co({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),p=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,h=l.data.get(p.dataId).values,f=l.data.get(d.dataId).values,m=Co({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),y=g.complexTensorInfos.real,x=g.complexTensorInfos.imag,A=l.data.get(y.dataId).values,b=l.data.get(x.dataId).values,[w,I,k]=n(o.shape,i.shape,h,f,A,b),E=l.makeTensorInfo(k,"float32",w),_=l.makeTensorInfo(k,"float32",I),D=Ts({inputs:{real:E,imag:_},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(_),D}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,p=s||o.dtype,[d,h]=t(o.shape,i.shape,u,c,p);return l.makeTensorInfo(h,p,d)}}}function Vx(e){return(t,n,s,r,a,o)=>{let i=C.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(i),u=i.length,c=v.computeStrides(i),p=v.getTypedArrayFromDType("float32",l),d=v.getTypedArrayFromDType("float32",l),h=C.getBroadcastDims(t,i),f=C.getBroadcastDims(n,i),m=C.mergeRealAndImagArrays(s,r),g=C.mergeRealAndImagArrays(a,o),y=t.length,x=v.computeStrides(t),A=n.length,b=v.computeStrides(n);if(h.length+f.length===0)for(let w=0;w<p.length;w++){let I=w%m.length,k=w%g.length,E=e(m[I*2],m[I*2+1],g[k*2],g[k*2+1]);p[w]=E.real,d[w]=E.imag}else for(let w=0;w<p.length;w++){let I=v.indexToLoc(w,u,c),k=I.slice(-y);h.forEach(P=>k[P]=0);let E=v.locToIndex(k,y,x),_=I.slice(-A);f.forEach(P=>_[P]=0);let D=v.locToIndex(_,A,b),R=e(m[E*2],m[E*2+1],g[D*2],g[D*2+1]);p[w]=R.real,d[w]=R.imag}return[p,d,i]}}var LI=un((e,t)=>e+t),eK=Vx((e,t,n,s)=>({real:e+n,imag:t+s})),hc=vn(na,LI,eK),tK={kernelName:na,backendName:"cpu",kernelFunc:hc};function Ux(e,t,n,s,r){let a=v.sizeFromShape(s),o=v.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function BI(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=De([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let u=e.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(s?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function wi(e){return(t,n,s)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function xt(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Te(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=v.sizeFromShape(o.shape),c=n||o.dtype,p=v.getArrayFromDType(c,u);for(let d=0;d<u;++d)p[d]=t(l[d],r);return i.makeTensorInfo(o.shape,c,p)}}function id(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Te(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,r);return i.makeTensorInfo(o.shape,u,c)}}var WI=wi(e=>Math.ceil(e)),nK=id(Sa,WI),sK={kernelName:Sa,backendName:"cpu",kernelFunc:nK};function Gx(e,t,n,s){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=v.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?C.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;u<o.shape[0];++u){let c=u*t[1]+a;for(let p=0;p<o.shape[1];++p)r[c+p]=i[l++]}a+=o.shape[1]})}return r}var VI=un((e,t)=>e===t?1:0),UI=vn(Uo,VI,null,"bool"),rK={kernelName:Uo,backendName:"cpu",kernelFunc:UI},GI=wi(e=>Math.exp(e)),HI=id(Ta,GI,"float32"),aK={kernelName:Ta,backendName:"cpu",kernelFunc:HI},jI=wi(e=>Math.expm1(e)),oK=id(Go,jI),iK={kernelName:Go,backendName:"cpu",kernelFunc:oK},qI=wi(e=>Math.floor(e)),lK=id(Na,qI),uK={kernelName:Na,backendName:"cpu",kernelFunc:lK};function XI(e,t,n,s,r,a,o,i,l){let u=De([s,a],n);for(let c=0;c<s;c++){let p=[],d=0;for(let h=0;h<r;h++){let f=e[c*r+h];d+=f*o[h],p.push(f)}if(d<0||d>=l/a)throw new Error(`Invalid indices: ${p} does not index into ${i}`);for(let h=0;h<a;h++)u.values[c*a+h]=t.get(...t.indexToLoc(d*a+h))}return u}function KI(e,t,n){let s=De(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],u=t.locToIndex([i,l]);o[2]=t.values[u];let c=e.locToIndex(o);0<=c&&c<e.values.length&&(s.values[r]=e.values[c])}return s}var ZI=un((e,t)=>e>t?1:0),cK=vn(qo,ZI,null,"bool"),dK={kernelName:qo,backendName:"cpu",kernelFunc:cK},YI=un((e,t)=>e>=t?1:0),pK=vn(Ea,YI,null,"bool"),hK={kernelName:Ea,backendName:"cpu",kernelFunc:pK},JI=un((e,t)=>e<t?1:0),fK=vn(Zo,JI,null,"bool"),mK={kernelName:Zo,backendName:"cpu",kernelFunc:fK},QI=un((e,t)=>e<=t?1:0),gK=vn(Yo,QI,null,"bool"),yK={kernelName:Yo,backendName:"cpu",kernelFunc:gK};function eS(e,t,n){let s=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var tS=wi(e=>Math.log(e)),AK=id(Ra,tS),xK={kernelName:Ra,backendName:"cpu",kernelFunc:AK};function nS(e,t,n,s){let r=v.getTypedArrayFromDType(s,v.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let u=e[o+l];(Number.isNaN(u)||u>i)&&(i=u)}r[a]=i}return r}var sS=un((e,t)=>Math.max(e,t)),bK=vn(_a,sS),vK={kernelName:_a,backendName:"cpu",kernelFunc:bK},rS=un((e,t)=>Math.min(e,t)),wK=vn(Da,rS),kK={kernelName:Da,backendName:"cpu",kernelFunc:wK},Hx=un((e,t)=>e*t),IK=Vx((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),_2=vn($a,Hx,IK),SK={kernelName:$a,backendName:"cpu",kernelFunc:_2};function aS(e,t,n){let s=v.createScalarValue(-1,n);return Hx([],t,s,e,n)}function CK(e){let{inputs:t,backend:n}=e,{x:s}=t;Te(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=aS(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var TK={kernelName:Dl,backendName:"cpu",kernelFunc:CK},oS=un((e,t)=>e!==t?1:0),NK=vn(si,oS,null,"bool"),EK={kernelName:si,backendName:"cpu",kernelFunc:NK};function jx(e,t,n,s,r){let a=t.length,o=v.sizeFromShape(t),i=v.computeStrides(t),l=v.computeStrides(r),u=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let c=0;c<o;++c){let p=v.indexToLoc(c,a,i),d=new Array(p.length);for(let f=0;f<d.length;f++)d[f]=p[s[f]];let h=v.locToIndex(d,a,l);u[h]=e[c]}return u}function As(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;Te(r,"transpose");let o=r.shape.length,i=new Array(o);for(let p=0;p<i.length;p++)i[p]=r.shape[a[p]];let l=s.data.get(r.dataId).values,u=jx(l,r.shape,r.dtype,a,i);return{dataId:s.write(u,i,r.dtype),shape:i,dtype:r.dtype}}var RK={kernelName:Zr,backendName:"cpu",kernelFunc:As};function iS(e,t,n,s){let[r,a]=C.computeOutAndReduceShapes(e,s),o=Nn(t,"int32"),i=v.makeZerosTypedArray(v.sizeFromShape(r),o),l=v.sizeFromShape(a);for(let u=0;u<i.length;++u){let c=u*l,p=1;for(let d=0;d<l;++d)p*=n[c+d];i[u]=p}return{outVals:i,outShape:r,outDtype:o}}function _K(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"prod");let i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=C.getAxesPermutation(l,i),c=l,p=r,d=[];u!=null&&(p=As({inputs:{x:r},backend:n,attrs:{perm:u}}),d.push(p),c=C.getInnerMostAxes(c.length,i));let h=n.data.get(p.dataId).values,{outVals:f,outShape:m,outDtype:g}=iS(p.shape,p.dtype,h,c),y=m;return o&&(y=C.expandShapeToKeepDim(m,l)),d.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.makeTensorInfo(y,g,f)}var DK={kernelName:ii,backendName:"cpu",kernelFunc:_K},ar=C.RowPartitionType,fy=class{constructor(e,t,n,s,r,a,o,i,l,u){this.shape=e,this.shapeShape=t,this.values=n,this.valuesShape=s,this.valuesDType=r,this.defaultValue=a,this.defaultValueShape=o,this.rowPartitionValues=i,this.rowPartitionValuesShapes=l,this.rowPartitionTypes=C.getRowPartitionTypesHelper(u),this.raggedRank=C.getRaggedRank(this.rowPartitionTypes)}getRowPartitionTypeByDimension(e){return this.rowPartitionTypes[0]===ar.FIRST_DIM_SIZE?this.rowPartitionTypes[e+1]:this.rowPartitionTypes[e]}getRowPartitionTensor(e){return this.rowPartitionTypes[0]===ar.FIRST_DIM_SIZE?this.rowPartitionValues[e+1]:this.rowPartitionValues[e]}getMaxWidth(e){let t=this.getRowPartitionTensor(e-1);switch(this.getRowPartitionTypeByDimension(e-1)){case ar.VALUE_ROWIDS:return fy.getMaxWidthValueRowID(t);case ar.ROW_SPLITS:return fy.getMaxWidthRowSplit(t);default:throw new Error(`Cannot handle partition type ${ar[this.getRowPartitionTypeByDimension(e-1)]}`)}}static getMaxWidthRowSplit(e){let t=e.length;if(t===0||t===1)return 0;let n=0;for(let s=0;s<t-1;++s){let r=e[s+1]-e[s];r>n&&(n=r)}return n}static getMaxWidthValueRowID(e){let t=e.length;if(t===0)return 0;let n=0,s=e[0],r=0;for(let a=1;a<t;++a){let o=e[a];o!==s&&(s=o,r=Math.max(a-n,r),n=a)}return Math.max(t-n,r)}tensorShapeFromTensor(e,t,n=!0){if(t.length===0){if(e[0]===-1)return[];throw new Error("The only valid scalar shape tensor is the fully unknown shape specified as -1.")}return R7(e,n)}calculateOutputSize(e){let t=this.valuesShape,n=this.defaultValueShape;C.validateDefaultValueShape(n,t);let s=this.tensorShapeFromTensor(this.shape,this.shapeShape),a=C.combineRaggedTensorToTensorShapes(this.raggedRank,s,t);a[0]<0&&(a[0]=e);for(let o=1;o<=this.raggedRank;++o)a[o]<0&&(a[o]=this.getMaxWidth(o));return a}calculateFirstParentOutputIndex(e,t,n){let s=Math.min(e,n),r=[],a=0;for(let o=0;o<s;++o,a+=t)r.push(a);for(let o=s;o<e;++o)r.push(-1);return v.assert(r.length===e,()=>"Final length of result must be equal to firstDimension."),r}calculateOutputIndexRowSplit(e,t,n,s){let r=e.length,a=[];for(let o=0;o<r-1;++o){let i=e[o+1]-e[o],l=Math.min(s,i),u=t[o];u===-1&&(l=0);for(let c=0;c<l;++c)a.push(u),u+=n;for(let c=0;c<i-l;++c)a.push(-1)}if(r>0&&a.length!==e[r-1])throw new Error("Invalid row split size.");return a}calculateOutputIndexValueRowID(e,t,n,s){let r=e.length,a=[];if(r===0)return[];let o=0,i=e[0];if(i>=t.length)throw new Error(`Got currentValueRowId=${i}, which is not less than ${t.length}`);let l=t[i];a.push(l);for(let u=1;u<r;++u){let c=e[u];if(c===i)l>=0&&(++o,o<s?l+=n:l=-1);else{if(o=0,i=c,c>=t.length)throw new Error(`Got nextValueRowId=${c} which is not less than ${t.length}`);l=t[c]}a.push(l)}if(a.length!==e.length)throw new Error("Invalid row ids.");return a}calculateOutputIndex(e,t,n,s){let r=this.getRowPartitionTensor(e),a=this.getRowPartitionTypeByDimension(e);switch(a){case ar.VALUE_ROWIDS:return this.calculateOutputIndexValueRowID(r,t,n,s);case ar.ROW_SPLITS:if(r.length-1>t.length)throw new Error(`Row partition size is greater than output size: ${r.length-1} > ${t.length}`);return this.calculateOutputIndexRowSplit(r,t,n,s);default:throw new Error(`Unsupported partition type: ${ar[a]}`)}}getFirstDimensionSize(){let e=this.rowPartitionValues[0];if(this.rowPartitionTypes.length===0)throw new Error("No row_partition_types given.");let t=this.rowPartitionTypes[0];switch(t){case ar.FIRST_DIM_SIZE:return e[0];case ar.VALUE_ROWIDS:throw new Error("Cannot handle VALUE_ROWIDS in first dimension.");case ar.ROW_SPLITS:return this.rowPartitionValuesShapes[0][0]-1;default:throw new Error(`Cannot handle type ${ar[t]}`)}}compute(){if(this.rowPartitionValues[0].length<=0)throw new Error("Invalid first partition input. Tensor requires at least one element.");let t=this.getFirstDimensionSize(),n=this.calculateOutputSize(t),s=new Array(this.raggedRank+1);s[s.length-1]=1;for(let i=s.length-2;i>=0;--i)s[i]=s[i+1]*n[i+1];let r=R7(n,!1),a=v.getArrayFromDType(this.valuesDType,v.sizeFromShape(r));if(s[0]*n[0]>0){let i=this.calculateFirstParentOutputIndex(t,s[0],n[0]);for(let l=1;l<=this.raggedRank;++l)i=this.calculateOutputIndex(l-1,i,s[l],n[l]);this.setOutput(this.raggedRank,i,a,r)}return[r,a]}setOutput(e,t,n,s){if(n.length===0)return;let r=this.values,a=n,o=s.slice();o=o.slice(e+1);let i=v.sizeFromShape(o),l=t.length,u=this.defaultValue;if(u.length!==i&&u.length!==1){let h=this.defaultValueShape;Z(()=>{let f=V(u,h);u=sl(f,o).dataSync()})}let c=0,p=0,d=0;for(let h=0;h<=l;++h){let f=h<l?t[h]:-1;if(f===d){++d;continue}if(p<d){let m=r.subarray(c*i),g=a.subarray(p*i),y=(d-p)*i;E7(g,m,y)}if(h>=l){let m=n.length;f=Math.floor(m/i)}if(f>d)if(this.defaultValue.length===1)a.subarray(d*i,f*i).fill(this.defaultValue[0]),d=f;else for(;f>d;){let m=a.slice(d*i);E7(m,u,i),++d}f<0?(c=h+1,p=d):(c=h,p=d,d=p+1)}}};function E7(e,t,n){for(let s=0;s<n;s++)e[s]=t[s]}function R7(e,t){let n=[];for(let s of e){if(s<0){if(!t)throw new Error(`Dimension ${s} must be >= 0`);if(s<-1)throw new Error(`Dimension ${s} must be >= -1`);s=-1}n.push(s)}return n}function lS(e,t,n,s,r,a,o,i,l,u){return new fy(e,t,n,s,r,a,o,i,l,u).compute()}function qx(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return v.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var uS=wi(e=>1/Math.sqrt(e)),$K=id(Pa,uS),PK={kernelName:Pa,backendName:"cpu",kernelFunc:$K};function Xu(e,t,n,s,r,a,o,i,l,u){let c=[s/r,r],p=e.values,d=t.values;if(s===0)return De(n,t.dtype);let h=De(c,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let f=0;f<a;f++){let m=[],g=0;for(let y=0;y<o;y++){let x=p[f*o+y];m.push(x),g+=x*i[y]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y<r;y++)u?h.values[g*r+y]+=d[f*r+y]:h.values[g*r+y]=t.rank===0?d[0]:d[f*r+y]}return h}var FK=wi(e=>1/(1+Math.exp(-e))),cS=xt(Fa,e=>1/(1+Math.exp(-e))),OK={kernelName:Fa,backendName:"cpu",kernelFunc:cS};function Vm(e,t,n,s,r){let a=Pt.isSliceContinous(s,t,n),o=v.sizeFromShape(n),i=v.computeStrides(s);if(a){let p=Pt.computeFlatOffset(t,i);return r==="string"?e.slice(p,p+o):e.subarray(p,p+o)}let l=r==="string"?C.fromUint8ToStringArray(e):e,u=De(s,r,l),c=De(n,r);for(let p=0;p<c.size;++p){let d=c.indexToLoc(p),h=d.map((f,m)=>f+t[m]);c.set(u.get(...h),...d)}return r==="string"?C.fromStringArrayToUint8(c.values):c.values}function ml(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Te(r,"slice");let[i,l]=Pt.parseSliceParams(r,a,o);Pt.assertParamsValid(r,i,l);let u=n.data.get(r.dataId).values,c=Vm(u,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}var MK={kernelName:Ul,backendName:"cpu",kernelFunc:ml};function dS(e,t,n,s,r,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),p=t[1];if(l===0){if(i!==0)throw new Error(C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(i));let g=v.getArrayFromDType(n,0),y=v.getArrayFromDType(r,0);return[g,[0,p],y,u,c]}let d=!0,h=0,f=new Array(l).fill(0);for(let g=0;g<i;++g){let y=e[g*p];if(y<0)throw new Error(C.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,y));if(y>=l)throw new Error(C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++f[y],d=d&&y>=h,h=y}let m=!0;for(let g=0;g<l;++g){let y=f[g]===0;u[g]=y,m=m&&!y,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&d){let g=e,y=s;for(let x=0;x<i;++x)c[x]=x;return[g,[i,p],y,u,c]}else{let g=f[l-1],y=v.getArrayFromDType(n,g*p),x=v.getArrayFromDType(r,g),A=new Array(l).fill(0);for(let b=0;b<i;++b){let w=e[b*p],I=A[w],k=(w===0?0:f[w-1])+I;A[w]++;for(let E=0;E<p;++E)y[k*p+E]=e[b*p+E];x[k]=s[b],c[b]=k}for(let b=0;b<l;++b)if(A[b]===0){let I=b===0?0:f[b-1];y[I*p+0]=b;for(let k=1;k<p;++k)y[I*p+k]=0;x[I]=o}return[y,[g,p],x,u,c]}}function pS(e,t,n,s,r){let a=v.sizeFromShape(s),o=t[0],i=r.length,l=[],u=1,c=-1;for(let g=0;g<i;++g){let y=r[g];if(y===-1){if(c!==-1)throw new Error(C.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(c,g));c=g,l.push(1)}else{if(y<0)throw new Error(C.getSparseReshapeNegativeOutputDimErrorMessage(g,y));u*=y,l.push(y)}}if(c!==-1){if(u<=0)throw new Error(C.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let g=Math.trunc(a/u);if(u*g!==a)throw new Error(C.getSparseReshapeInputOutputMultipleErrorMessage(s,l));l[c]=g}if(v.sizeFromShape(l)!==a)throw new Error(C.getSparseReshapeInputOutputMismatchErrorMessage(s,l));let d=s.length,h=[];if(d>0){h[d-1]=1;for(let g=d-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=v.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let y=0;for(let x=0;x<d;++x)y+=e[g*d+x]*h[x];for(let x=0;x<i;++x)m[g*i+x]=Math.trunc(y/f[x]),y%=f[x]}return[m,[o,i],l]}function Xx(e,t,n,s,r,a=!1,o=0){let i=s.length,l=[t[0],e.length/t[0]],u=l[1],p=i>0?r[i-1]+1:0;if(p<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let h=d.reduce((A,b)=>A*b,1),f=v.getArrayFromDType(n,h);if(i===0)return p>0&&f.fill(o),[f,d];if(p<=0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,g=1,y=0,x=r[m];for(;;){let A=0;if(g<i){if(A=r[g],x===A){++g;continue}if(x>=A)throw new Error(C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(x<0||x>=p)throw new Error(C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(x,p));x>y&&f.fill(o,y*u,x*u);for(let b=m;b<g;++b){let w=s[b];if(w<0||w>=l[0])throw new Error(C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(b,s[b],l[0]));for(let I=0;I<u;I++)f[x*u+I]+=e[w*u+I]}if(a)for(let b=0;b<u;b++)f[x*u+b]/=g-m;if(m=g,++g,y=x+1,x=A,g>i)break}return y<p&&f.fill(o,y*u,p*u),[f,d]}var zK=wi(e=>Math.sqrt(e)),LK=xt(Oa,e=>Math.sqrt(e)),BK={kernelName:Oa,backendName:"cpu",kernelFunc:LK},hS=un((e,t)=>{let n=e-t;return n*n}),WK=vn(Ma,hS),VK={kernelName:Ma,backendName:"cpu",kernelFunc:WK};function fS(e,t,n,s){let r=De(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var UK=class{constructor(e,t,n,s,r,a){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(n),this.rightPad=v.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),u=Math.max(0,i-(r-(o+1))),c=a-(l+u),p=t+(l>0?0:o-i),d=0;d+=l*this.leftPad.length;for(let y=0;y<c;++y)d+=e[p+y].length;d+=u*this.rightPad.length,d+=(l+u+c-1)*this.separator.length,n[s+o]=new Uint8Array(d);let f=n[s+o],m=0,g=y=>y.forEach(x=>f[m++]=x);for(let y=0;y<l;++y)g(this.leftPad),g(this.separator);for(let y=0;y<c-1;++y)g(e[p+y]),g(this.separator);if(c>0){g(e[p+c-1]);for(let y=0;y<u;++y)g(this.separator),g(this.rightPad)}else{for(let y=0;y<u-1;++y)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let u=t[l]>=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=v.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],u=a[i];if(this.nGramWidths.forEach(c=>{let p=t[i+1]-t[i],d=this.getNumNGrams(p,c);this.createNGrams(e,l,o,u,d,c),u+=d}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let p=c+2*this.padWidth,d=1;this.createNGrams(e,l,o,u,d,p)}}return[o,a]}};function Kx(e,t,n,s,r,a,o,i){return new UK(n,s,r,a,o,i).compute(e,t)}function GK(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&s.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}}function Zx(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let d=0;d<s;++d){let h=r.length;GK(e[d],t,n,r);let f=r.length-h;i[d]=f,a+=f,o=Math.max(o,f)}let l=v.getArrayFromDType("int32",a*2),u=new Array(a),c=[s,o],p=0;for(let d=0;d<s;++d)for(let h=0;h<i[d];++h)l[p*2]=d,l[p*2+1]=h,u[p]=r[p],++p;return[l,u,c]}function Yx(e,t){let n=v.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=v.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var mS=un((e,t)=>e-t),HK=Vx((e,t,n,s)=>({real:e-n,imag:t-s})),Jx=vn(za,mS,HK),jK={kernelName:za,backendName:"cpu",kernelFunc:Jx};function gS(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=De(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var fp=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function yS(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,u=Math.log(i),c=.5*Math.exp(2*u/3),p=.5*Math.sqrt(u*c*(i-c)/i)*Math.sign(l-i/2),d=Math.max(n,Math.floor(t-l*c/i+p)),h=Math.min(s,Math.floor(t+(i-l)*c/i+p));yS(e,t,d,h)}let r=e[t],a=n,o=s;for(v.swap(e,n,t),fp(e[s],r)>0&&v.swap(e,n,s);a<o;){for(v.swap(e,a,o),a++,o--;fp(e[a],r)<0;)a=a+1;for(;fp(e[o],r)>0;)o=o-1}fp(e[n],r)===0?v.swap(e,n,o):(o=o+1,v.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function AS(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=v.getTypedArrayFromDType(n,o*s),u=v.getTypedArrayFromDType("int32",o*s);for(let p=0;p<o;p++){let d=p*i,h=e.subarray(d,d+i),f=new Array(h.length);h.forEach((x,A)=>f[A]={value:x,index:A}),s<f.length&&(yS(f,s),f=f.slice(0,s)),r&&f.sort(fp);let m=p*s,g=l.subarray(m,m+s),y=u.subarray(m,m+s);for(let x=0;x<s;x++)g[x]=f[x].value,y[x]=f[x].index}let c=t.slice();return c[c.length-1]=s,[De(c,n,l),De(c,"int32",u)]}function xS(e,t,n,s){let r=v.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[r]),l=new Kt(a,s,e),u=[],c=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(c)m=e[f].toString();else{let g=[];for(let y=0;y<a[0];y++)for(let x=0;x<a[2];x++)g.push(l.get(y,f,x));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,u.push(f)}}let p=a.slice();p[1]=Object.keys(o).length;let d=new Kt(p,s);u.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let y=0;y<a[2];y++)d.set(l.get(g,f,y),g,m,y)});let h=n.slice();return h[r]=p[1],{outputValues:d.values,outputShape:h,indices:i}}eu("cpu",()=>new Wx,1);var bS=xt(Vo,e=>e>=0?e:Math.exp(e)-1),qK={kernelName:Vo,backendName:"cpu",kernelFunc:bS};function vS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Te([r],"leakyRelu");let o=v.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",o);for(let u=0;u<i.length;u++)l[u]=i[u]<0?a*i[u]:i[u];return n.makeTensorInfo(r.shape,"float32",l)}var XK={kernelName:Ko,backendName:"cpu",kernelFunc:vS},KK=un((e,t)=>e<0?t*e:e);function wS(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Te([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=KK(s.shape,r.shape,a,o,"float32");return n.makeTensorInfo(l,"float32",i)}var ZK={kernelName:oi,backendName:"cpu",kernelFunc:wS},kS=xt(li,e=>Math.max(0,e)),YK={kernelName:li,backendName:"cpu",kernelFunc:kS},IS=xt(di,e=>Math.min(Math.max(0,e),6)),JK={kernelName:di,backendName:"cpu",kernelFunc:IS};function Um(e,t,n,s,r){if(n==="linear")return ta({inputs:{x:t},backend:e});if(n==="relu")return kS({inputs:{x:t},backend:e});if(n==="elu")return bS({inputs:{x:t},backend:e});if(n==="relu6")return IS({inputs:{x:t},backend:e});if(n==="prelu")return wS({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return vS({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return cS({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function Rt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=v.sizeFromShape(r.shape),i=v.inferFromImplicitShape(a,o),l=v.sizeFromShape(i);v.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;c.shape=i,p.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var QK={kernelName:zl,backendName:"cpu",kernelFunc:Rt};function SS(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Te([r,a],"matMul");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],p=i?a.shape[u-1]:a.shape[u-2],d=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=tu.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);v.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,c,d]:[g,d,c],w=i?[y,h,p]:[y,p,h],I=Rt({inputs:{x:r},backend:n,attrs:{shape:b}}),k=Rt({inputs:{x:a},backend:n,attrs:{shape:w}}),E=o?I.shape[1]:I.shape[2],_=o?I.shape[2]:I.shape[1],D=i?k.shape[1]:k.shape[2],R=Math.max(g,y),P=n.data.get(I.dataId).values,T=n.data.get(k.dataId).values,M=v.computeStrides(I.shape),W=v.computeStrides(k.shape),[G,X,K]=o?[M[0],1,M[1]]:[M[0],M[1],1],[Y,re,ee]=i?[1,W[1],W[0]]:[W[1],1,W[0]],ie=_*D,ne=De([R,_,D],I.dtype),pe=ne.values,ce=n.blockSize;for(let Ae=0;Ae<R;Ae++)for(let oe=0;oe<_;oe+=ce)for(let Re=0;Re<D;Re+=ce)for(let _e=0;_e<E;_e+=ce){let Ue=Math.min(oe+ce,_),Me=Math.min(Re+ce,D),ot=Math.min(_e+ce,E);for(let gt=oe;gt<Ue;gt++)for(let pt=Re;pt<Me;pt++){let yt=0;for(let Oe=_e;Oe<ot;Oe++){let Tt=Math.min(Ae,g-1)*G,kt=Math.min(Ae,y-1)*ee,jn=P[Tt+gt*X+Oe*K],Qt=T[Oe*Y+pt*re+kt];yt+=jn*Qt}pe[Ae*ie+(gt*D+pt)]+=yt}}return n.disposeIntermediateTensorInfo(I),n.disposeIntermediateTensorInfo(k),n.makeTensorInfo(A,ne.dtype,ne.values)}var eZ={kernelName:$o,backendName:"cpu",kernelFunc:SS};function tZ(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s,d,h,f,m=[];d=SS({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:u},backend:n}),o&&(h=hc({inputs:{a:d,b:o},backend:n}),m.push(d),d=h),c&&(f=Um(n,d,c,i,p),m.push(d),d=f);for(let y of m)n.disposeIntermediateTensorInfo(y);return d}var nZ={kernelName:yo,backendName:"cpu",kernelFunc:tZ},sZ=xt(xc,e=>Math.acos(e)),rZ={kernelName:xc,backendName:"cpu",kernelFunc:sZ},aZ=xt(bc,e=>Math.acosh(e)),oZ={kernelName:bc,backendName:"cpu",kernelFunc:aZ};function iZ(e){let{inputs:t,backend:n}=e,s=t;Te(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=De(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let u=0;u<o.length;u++)o[u]+=l[u]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var lZ={kernelName:Ro,backendName:"cpu",kernelFunc:iZ};function uZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"all");let i=v.parseAxisParam(a,r.shape),l=i,u=C.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=As({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("all",l,c.shape.length);let[p,d]=C.computeOutAndReduceShapes(c.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let x=y*h,A=m[x];for(let b=0;b<h;++b){let w=m[x+b];A=A&&w}f[y]=A}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(o){let y=C.expandShapeToKeepDim(p,i),x=Rt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),x}return g}var cZ={kernelName:vc,backendName:"cpu",kernelFunc:uZ};function dZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"any");let i=v.parseAxisParam(a,r.shape),l=i,u=C.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=As({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("any",l,c.shape.length);let[p,d]=C.computeOutAndReduceShapes(c.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let x=y*h,A=m[x];for(let b=0;b<h;++b){let w=m[x+b];A=A||w}f[y]=A}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(o){let y=C.expandShapeToKeepDim(p,i),x=Rt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),x}return g}var pZ={kernelName:wc,backendName:"cpu",kernelFunc:dZ};function hZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Te(r,"argMax");let o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=As({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],C.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[c,p]=C.computeOutAndReduceShapes(l.shape,o),d=v.sizeFromShape(c),h=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(p),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*f,x=m[y],A=0;for(let b=0;b<f;++b){let w=m[y+b];w>x&&(x=w,A=b)}h[g]=A}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var fZ={kernelName:_o,backendName:"cpu",kernelFunc:hZ};function mZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Te(r,"argMin");let o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=As({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],C.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[c,p]=C.computeOutAndReduceShapes(l.shape,o),d=v.sizeFromShape(c),h=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(p),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*f,x=m[y],A=0;for(let b=0;b<f;++b){let w=m[y+b];w<x&&(x=w,A=b)}h[g]=A}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var gZ={kernelName:kc,backendName:"cpu",kernelFunc:mZ},yZ=xt(Ic,e=>Math.asin(e)),AZ={kernelName:Ic,backendName:"cpu",kernelFunc:yZ},xZ=xt(Sc,e=>Math.asinh(e)),bZ={kernelName:Sc,backendName:"cpu",kernelFunc:xZ},vZ=xt(Cc,e=>Math.atan(e)),wZ={kernelName:Cc,backendName:"cpu",kernelFunc:vZ},kZ=un((e,t)=>Math.atan2(e,t)),IZ=vn(Nc,kZ),SZ={kernelName:Nc,backendName:"cpu",kernelFunc:IZ},CZ=xt(Tc,e=>Math.atanh(e)),TZ={kernelName:Tc,backendName:"cpu",kernelFunc:CZ};function Qx(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,c=r.effectiveFilterHeight,p=r.effectiveFilterWidth,d=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=De(r.outShape,n),g=m.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],x=r.outShape[2]*r.outShape[3],A=r.outShape[3];for(let b=0;b<r.batchSize;++b){let w=b*y,I=b*s[0];for(let k=0;k<r.inChannels;++k)for(let E=0;E<r.outHeight;++E){let _=E*o-d,D=Math.max(0,_),R=Math.min(r.inHeight,c+_),P=w+E*x;for(let T=0;T<r.outWidth;++T){let M=T*i-h,W=Math.max(0,M),G=Math.min(r.inWidth,p+M),X=f,K=0,Y=0;for(let ee=D;ee<R;ee+=l){let ie=I+ee*s[1];for(let ne=W;ne<G;ne+=u){let pe=ie+ne*s[2],ce=e[pe+k];a==="max"&&ce>X?X=ce:a==="avg"&&(K+=ce,Y++)}if(isNaN(X))break}let re=P+T*A+k;g[re]=a==="avg"?K/Y:X}}}return m}function CS(e,t,n,s,r=!1,a=!1){let o=De(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,u=s.dilationHeight,c=s.dilationWidth,p=s.effectiveFilterHeight,d=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=De(t,n,e);for(let g=0;g<s.batchSize;++g)for(let y=0;y<s.inChannels;++y)for(let x=0;x<s.outHeight;++x){let A=x*i-h,b=A;for(;b<0;)b+=u;let w=Math.min(s.inHeight,p+A);for(let I=0;I<s.outWidth;++I){let k=I*l-f,E=k;for(;E<0;)E+=c;let _=Math.min(s.inWidth,d+k),D=Number.NEGATIVE_INFINITY,R=-1;for(let P=b;P<w;P+=u){let T=P-A;for(let M=E;M<_;M+=c){let W=M-k,G=m.get(g,P,M,y);G>D&&(D=G,r?R=a?((g*s.inHeight+P)*s.inWidth+M)*s.inChannels+y:(P*s.inWidth+M)*s.inChannels+y:R=T*d+W)}}o.set(R,g,x,I,y)}}return o}function TS(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,c=r.dilationHeight,p=r.dilationWidth,d=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,x=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,A=De(r.outShape,n),b=A.values,w=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],I=r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let _=0;_<r.batchSize;++_){let D=_*w,R=_*s[0];for(let P=0;P<r.inChannels;++P)for(let T=0;T<r.outDepth;++T){let M=T*o-m,W=M;for(;W<0;)W+=u;let G=Math.min(r.inDepth,d+M),X=D+T*I;for(let K=0;K<r.outHeight;++K){let Y=K*i-g,re=Y;for(;re<0;)re+=c;let ee=Math.min(r.inHeight,h+Y),ie=X+K*k;for(let ne=0;ne<r.outWidth;++ne){let pe=ne*l-y,ce=pe;for(;ce<0;)ce+=p;let Ae=Math.min(r.inWidth,f+pe),oe=ie+ne*E,Re=x,_e=0,Ue=0;for(let ot=W;ot<G;ot+=u){let gt=R+ot*s[1];for(let pt=re;pt<ee;pt+=c){let yt=gt+pt*s[2];for(let Oe=ce;Oe<Ae;Oe+=p){let Tt=yt+Oe*s[3],kt=e[Tt+P];if(a==="max"&&kt>Re?Re=kt:a==="avg"&&(_e+=kt,Ue++),isNaN(Re))break}if(isNaN(Re))break}if(isNaN(Re))break}let Me=oe+P;b[Me]=a==="avg"?_e/Ue:Re}}}}return A}function NZ(e,t){let n=De(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,p=t.effectiveFilterWidth,d=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let x=y*s-d,A=x;for(;A<0;)A+=o;let b=Math.min(t.inDepth,u+x);for(let w=0;w<t.outHeight;++w){let I=w*r-h,k=I;for(;k<0;)k+=i;let E=Math.min(t.inHeight,c+I);for(let _=0;_<t.outWidth;++_){let D=_*a-f,R=D;for(;R<0;)R+=l;let P=Math.min(t.inWidth,p+D),T=Number.NEGATIVE_INFINITY,M=-1;for(let W=A;W<b;W+=o){let G=W-x;for(let X=k;X<E;X+=i){let K=X-I;for(let Y=R;Y<P;Y+=l){let re=Y-D,ee=e.get(m,W,X,Y,g);ee>=T&&(T=ee,M=G*c*p+K*c+re)}}}n.set(M,m,y,w,_,g)}}}return n}function EZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Te(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(C.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=C.computePool2DInfo(r.shape,a,o,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))p=ta({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=Qx(d,r.shape,r.dtype,h,c,"avg");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var RZ={kernelName:Do,backendName:"cpu",kernelFunc:EZ};function _Z(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Te(r,"avgPool3d");let c=C.computePool3DInfo(r.shape,a,o,1,i,l,u),p=n.data.get(r.dataId).values,d=TS(p,r.shape,r.dtype,v.computeStrides(r.shape),c,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var DZ={kernelName:qp,backendName:"cpu",kernelFunc:_Z};function $Z(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Te([r,a],"avgPool3DGrad");let c=C.computePool3DInfo(a.shape,o,i,1,l,u),p=c.strideDepth,d=c.strideHeight,h=c.strideWidth,f=c.filterDepth,m=c.filterHeight,g=c.filterWidth,y=c.dilationDepth,x=c.dilationHeight,A=c.dilationWidth,b=c.effectiveFilterDepth,w=c.effectiveFilterHeight,I=c.effectiveFilterWidth,k=b-1-c.padInfo.front,E=I-1-c.padInfo.left,_=w-1-c.padInfo.top,D=De(a.shape,"float32"),R=1/(f*m*g),P=n.bufferSync(r);for(let T=0;T<c.batchSize;++T)for(let M=0;M<c.inChannels;++M)for(let W=0;W<c.inDepth;++W)for(let G=0;G<c.inHeight;++G)for(let X=0;X<c.inWidth;++X){let K=W-k,Y=G-_,re=X-E,ee=0;for(let ie=0;ie<b;ie+=y){let ne=(K+ie)/p;if(!(ne<0||ne>=c.outDepth||Math.floor(ne)!==ne))for(let pe=0;pe<w;pe+=x){let ce=(Y+pe)/d;if(!(ce<0||ce>=c.outHeight||Math.floor(ce)!==ce))for(let Ae=0;Ae<I;Ae+=A){let oe=(re+Ae)/h;if(oe<0||oe>=c.outWidth||Math.floor(oe)!==oe)continue;ee+=P.get(T,ne,ce,oe,M)}}}D.set(ee*R,T,W,G,X,M)}return n.makeTensorInfo(D.shape,D.dtype,D.values)}var PZ={kernelName:s0,backendName:"cpu",kernelFunc:$Z};function FZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Te([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=C.computePool2DInfo(o.shape,i,l,1,u),p=c.strideHeight,d=c.strideWidth,h=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,g=c.dilationWidth,y=c.effectiveFilterHeight,x=c.effectiveFilterWidth,A=x-1-c.padInfo.left,b=y-1-c.padInfo.top,w=De(o.shape,"float32"),I=1/(h*f),k=n.data.get(r.dataId).values,E=De(r.shape,"float32",k);for(let _=0;_<c.batchSize;++_)for(let D=0;D<c.inChannels;++D)for(let R=0;R<c.inHeight;++R)for(let P=0;P<c.inWidth;++P){let T=R-b,M=P-A,W=0;for(let G=0;G<y;G+=m){let X=(T+G)/p;if(!(X<0||X>=c.outHeight||Math.floor(X)!==X))for(let K=0;K<x;K+=g){let Y=(M+K)/d;if(Y<0||Y>=c.outWidth||Math.floor(Y)!==Y)continue;W+=E.get(_,X,Y,D)}}w.set(W*I,_,R,P,D)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var OZ={kernelName:n0,backendName:"cpu",kernelFunc:FZ};function MZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;v.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Te([r,i,l,a,o],"batchNorm");let{varianceEpsilon:u}=s;u==null&&(u=.001);let c=n.data.get(r.dataId).values,p=n.data.get(i.dataId).values,d=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),g=f.length,y=h.length,x=d.length,A=p.length,b=0,w=0,I=0,k=0;for(let E=0;E<c.length;++E)m[E]=f[b++]+(c[E]-p[w++])*h[I++]/Math.sqrt(d[k++]+u),b>=g&&(b=0),w>=A&&(w=0),I>=y&&(I=0),k>=x&&(k=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var zZ={kernelName:jo,backendName:"cpu",kernelFunc:MZ};function LZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Te([r],"batchToSpaceND");let i=a.reduce((y,x)=>y*x),l=C.getReshaped(r.shape,a,i),u=C.getPermuted(l.length,a.length),c=C.getReshapedPermuted(r.shape,a,i),p=C.getSliceBeginCoords(o,a.length),d=C.getSliceSize(c,o,a.length),h=Rt({inputs:{x:r},backend:n,attrs:{shape:l}}),f=As({inputs:{x:h},backend:n,attrs:{perm:u}}),m=Rt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=ml({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var BZ={kernelName:vl,backendName:"cpu",kernelFunc:LZ};function WZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=Ux(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var VZ={kernelName:r0,backendName:"cpu",kernelFunc:WZ};function UZ(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=C.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var GZ={kernelName:a0,backendName:"cpu",kernelFunc:UZ},HZ=xt(Ca,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),jZ={kernelName:Ca,backendName:"cpu",kernelFunc:HZ},qZ=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],p=l[u];s[u]=Math.hypot(c,p)}return n.makeOutput(s,t.shape,"float32")},XZ={kernelName:Kp,backendName:"cpu",kernelFunc:qZ};function fc(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var KZ={kernelName:Qp,backendName:"cpu",kernelFunc:fc};function mc(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=C.computeOutShape(t.map(m=>m.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>v.sizeFromShape(m.shape)>0);if(i.length===1)return ta({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(C.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>fl({inputs:{input:b},backend:n})),g=i.map(b=>fc({inputs:{input:b},backend:n})),y=mc({inputs:m,backend:n,attrs:{axis:a}}),x=mc({inputs:g,backend:n,attrs:{axis:a}}),A=Ts({inputs:{real:y,imag:x},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x),A}let u=i.map(m=>{let g=v.sizeFromShape(m.shape.slice(a));return Rt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=C.computeOutShape(u.map(m=>m.shape),1);let p=u[0].shape[0]===1,d=Gx(c,o,t[0].dtype,p),h=C.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,d);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var ZZ={kernelName:wl,backendName:"cpu",kernelFunc:mc};function NS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s;Te([r,a],"conv2d");let p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p),h=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,g=d.dilationWidth,y=d.padInfo.left,x=d.padInfo.top,A=d.dataFormat==="channelsLast",b=new Kt(d.outShape,r.dtype),w=v.computeStrides(r.shape),I=v.computeStrides(a.shape),k=w[0],E=A?w[1]:w[2],_=A?w[2]:1,D=A?1:w[1],R=b.strides[0],P=A?b.strides[1]:b.strides[2],T=A?b.strides[2]:1,M=A?1:b.strides[1],W=n.data.get(r.dataId).values,G=n.data.get(a.dataId).values,X=b.values;for(let K=0;K<d.batchSize;++K){let Y=K*k,re=K*R;for(let ee=0;ee<d.outHeight;++ee){let ie=re+ee*P,ne=ee*d.strideHeight-x;for(let pe=0;pe<h;++pe){let ce=ne+pe*m;if(ce<0||ce>=d.inHeight)continue;let Ae=pe*I[0],oe=Y+ce*E;for(let Re=0;Re<d.outWidth;++Re){let _e=ie+Re*T,Ue=Re*d.strideWidth-y;for(let Me=0;Me<f;++Me){let ot=Ue+Me*g;if(ot<0||ot>=d.inWidth)continue;let gt=Ae+Me*I[1],pt=oe+ot*_,yt=gt;for(let Oe=0;Oe<d.inChannels;++Oe){let Tt=W[pt+Oe*D];for(let kt=0;kt<d.outChannels;++kt)X[_e+kt*M]+=Tt*G[yt+kt];yt+=d.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,X)}var YZ={kernelName:Fo,backendName:"cpu",kernelFunc:NS};function JZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s;Te([r,a],"conv2dBackpropFilter");let p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(r.shape,c,o,1,i,u,!1,p),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=d,y=d.dataFormat==="channelsLast",x=new Kt(d.filterShape,"float32"),A=d.padInfo.left,b=d.padInfo.top,w=n.data.get(r.dataId).values,I=n.data.get(a.dataId).values,k=new Kt(r.shape,r.dtype,w),E=new Kt(a.shape,a.dtype,I);for(let _=0;_<m;++_){let D=Math.max(0,Math.ceil((b-_)/h)),R=Math.min(d.outHeight,(d.inHeight+b-_)/h);for(let P=0;P<g;++P){let T=Math.max(0,Math.ceil((A-P)/f)),M=Math.min(d.outWidth,(d.inWidth+A-P)/f);for(let W=0;W<d.inChannels;++W)for(let G=0;G<d.outChannels;++G){let X=0;for(let K=0;K<d.batchSize;++K)for(let Y=D;Y<R;++Y){let re=_+Y*h-b;for(let ee=T;ee<M;++ee){let ie=P+ee*f-A;y?X+=k.get(K,re,ie,W)*E.get(K,Y,ee,G):X+=k.get(K,W,re,ie)*E.get(K,G,Y,ee)}}x.set(X,_,P,W,G)}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var QZ={kernelName:o0,backendName:"cpu",kernelFunc:JZ};function eY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s;Te([r,a],"conv2dBackpropInput");let p=v.computeStrides(a.shape),d=v.computeStrides(r.shape),h=C.convertConv2DDataFormat(u),f=C.computeConv2DInfo(o,a.shape,i,1,l,c,!1,h),m=new Kt(f.inShape,"float32"),g=m.values,y=n.data.get(r.dataId).values,x=n.data.get(a.dataId).values,[A,b,w]=p,{batchSize:I,filterHeight:k,filterWidth:E,inChannels:_,inHeight:D,inWidth:R,outChannels:P,outHeight:T,outWidth:M,strideHeight:W,strideWidth:G}=f;h=f.dataFormat;let X=k-1-f.padInfo.top,K=E-1-f.padInfo.left,Y=h==="channelsLast",re=m.strides[0],ee=Y?m.strides[1]:m.strides[2],ie=Y?m.strides[2]:1,ne=Y?1:m.strides[1],pe=d[0],ce=Y?d[1]:d[2],Ae=Y?d[2]:1,oe=Y?1:d[1];for(let Re=0;Re<I;++Re)for(let _e=0;_e<_;++_e)for(let Ue=0;Ue<D;++Ue){let Me=Ue-X,ot=Math.max(0,Math.ceil(Me/W)),gt=Math.min(T,(k+Me)/W);for(let pt=0;pt<R;++pt){let yt=pt-K,Oe=Math.max(0,Math.ceil(yt/G)),Tt=Math.min(M,(E+yt)/G),kt=0;for(let Qt=ot;Qt<gt;++Qt){let vs=Qt*W-Me;for(let dn=Oe;dn<Tt;++dn){let qn=dn*G-yt,ws=pe*Re+ce*Qt+Ae*dn,ks=A*(k-1-vs)+b*(E-1-qn)+w*_e;for(let Fn=0;Fn<P;++Fn){let Ws=y[ws+oe*Fn],Xn=x[ks+Fn];kt+=Ws*Xn}}}let jn=re*Re+ee*Ue+ie*pt+ne*_e;g[jn]=kt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var tY={kernelName:Oo,backendName:"cpu",kernelFunc:eY};function nY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;Te([r,a],"conv3d");let u=C.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:c,filterHeight:p,filterWidth:d,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=u,y=g.front,x=g.left,A=g.top,b=new Kt(u.outShape,r.dtype),w=n.data.get(r.dataId).values,I=n.data.get(a.dataId).values,k=b.values,E=v.computeStrides(r.shape),_=v.computeStrides(a.shape);for(let D=0;D<u.batchSize;++D){let R=D*E[0],P=D*b.strides[0];for(let T=0;T<u.outDepth;++T){let M=P+T*b.strides[1],W=T*u.strideDepth-y;for(let G=0;G<c;++G){let X=W+G*h;if(X<0||X>=u.inDepth)continue;let K=G*_[0],Y=R+X*E[1];for(let re=0;re<u.outHeight;++re){let ee=M+re*b.strides[2],ie=re*u.strideHeight-A;for(let ne=0;ne<p;++ne){let pe=ie+ne*f;if(pe<0||pe>=u.inHeight)continue;let ce=K+ne*_[1],Ae=Y+pe*E[2];for(let oe=0;oe<u.outWidth;++oe){let Re=ee+oe*u.outChannels,_e=oe*u.strideWidth-x;for(let Ue=0;Ue<d;++Ue){let Me=_e+Ue*m;if(Me<0||Me>=u.inWidth)continue;let ot=ce+Ue*_[2],gt=Ae+Me*u.inChannels,pt=ot;for(let yt=0;yt<u.inChannels;++yt){let Oe=w[gt+yt];for(let Tt=0;Tt<u.outChannels;++Tt)k[Re+Tt]+=Oe*I[pt+Tt];pt+=u.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var sY={kernelName:Zp,backendName:"cpu",kernelFunc:nY};function rY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;Te([r,a],"conv3dBackpropFilterV2");let u=v.computeStrides(r.shape),c=v.computeStrides(a.shape),p=C.computeConv3DInfo(r.shape,l,o,1,i),d=p.strideDepth,h=p.strideHeight,f=p.strideWidth,m=p.filterDepth,g=p.filterHeight,y=p.filterWidth,x=new Kt(p.filterShape,"float32"),A=x.values,[b,w,I,k]=x.strides,E=n.data.get(a.dataId).values,[_,D,R,P]=c,T=n.data.get(r.dataId).values,[M,W,G,X]=u,K=p.padInfo.front,Y=p.padInfo.left,re=p.padInfo.top;for(let ee=0;ee<m;++ee){let ie=Math.max(0,Math.ceil((K-ee)/d)),ne=Math.min(p.outDepth,(p.inDepth+K-ee)/d),pe=ee*b;for(let ce=0;ce<g;++ce){let Ae=Math.max(0,Math.ceil((re-ce)/h)),oe=Math.min(p.outHeight,(p.inHeight+re-ce)/h),Re=ce*w+pe;for(let _e=0;_e<y;++_e){let Ue=Math.max(0,Math.ceil((Y-_e)/f)),Me=Math.min(p.outWidth,(p.inWidth+Y-_e)/f),ot=_e*I+Re;for(let gt=0;gt<p.inChannels;++gt){let pt=gt*k+ot;for(let yt=0;yt<p.outChannels;++yt){let Oe=0;for(let Tt=0;Tt<p.batchSize;++Tt){let kt=Tt*M,jn=Tt*_;for(let Qt=ie;Qt<ne;++Qt){let dn=(ee+Qt*d-K)*W+kt,qn=Qt*D+jn;for(let ws=Ae;ws<oe;++ws){let Fn=(ce+ws*h-re)*G+dn,Ws=ws*R+qn;for(let Xn=Ue;Xn<Me;++Xn){let da=(_e+Xn*f-Y)*X+Fn,Tu=Xn*P+Ws;Oe+=T[da+gt]*E[Tu+yt]}}}}A[pt+yt]=Oe}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var aY={kernelName:i0,backendName:"cpu",kernelFunc:rY};function oY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;Te([r],"conv3dBackpropInputV2");let u=v.computeStrides(r.shape),c=v.computeStrides(a.shape),p=C.computeConv3DInfo(l,a.shape,i,1,o),d=new Kt(p.inShape,"float32"),h=d.values,[f,m,g,y]=d.strides,x=n.data.get(r.dataId).values,[A,b,w,I]=u,k=n.data.get(a.dataId).values,[E,_,D,R]=c,{batchSize:P,filterDepth:T,filterHeight:M,filterWidth:W,inChannels:G,inDepth:X,inHeight:K,inWidth:Y,outChannels:re,outDepth:ee,outHeight:ie,outWidth:ne,strideDepth:pe,strideHeight:ce,strideWidth:Ae}=p,oe=T-1-p.padInfo.front,Re=M-1-p.padInfo.top,_e=W-1-p.padInfo.left;for(let Ue=0;Ue<P;++Ue)for(let Me=0;Me<G;++Me)for(let ot=0;ot<X;++ot){let gt=ot-oe,pt=Math.max(0,Math.ceil(gt/pe)),yt=Math.min(ee,(T+gt)/pe);for(let Oe=0;Oe<K;++Oe){let Tt=Oe-Re,kt=Math.max(0,Math.ceil(Tt/ce)),jn=Math.min(ie,(M+Tt)/ce);for(let Qt=0;Qt<Y;++Qt){let vs=Qt-_e,dn=Math.max(0,Math.ceil(vs/Ae)),qn=Math.min(ne,(W+vs)/Ae),ws=0;for(let ks=pt;ks<yt;++ks){let Fn=ks*pe-gt;for(let Ws=kt;Ws<jn;++Ws){let Xn=Ws*ce-Tt;for(let ca=dn;ca<qn;++ca){let da=ca*Ae-vs,Tu=A*Ue+b*ks+w*Ws+I*ca,eo=E*(T-1-Fn)+_*(M-1-Xn)+D*(W-1-da)+R*Me;for(let pa=0;pa<re;++pa){let Gd=x[Tu+pa],Nu=k[eo+pa];ws+=Gd*Nu}}}}h[f*Ue+m*ot+g*Oe+y*Qt+Me]=ws}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var iY={kernelName:l0,backendName:"cpu",kernelFunc:oY},lY=xt(Mo,e=>Math.cos(e)),uY={kernelName:Mo,backendName:"cpu",kernelFunc:lY},cY=xt(zo,e=>Math.cosh(e)),dY={kernelName:zo,backendName:"cpu",kernelFunc:cY};function pY(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,[c,p,d,h]=r.shape,f=a.shape[0],[m,g]=i,y=De([f,m,g,h],"float32"),x=n.data.get(a.dataId).values,A=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,w=v.computeStrides(r.shape),I=v.computeStrides(y.shape);for(let k=0;k<f;k++){let E=k*4,_=x[E],D=x[E+1],R=x[E+2],P=x[E+3],T=A[k];if(T>=c)continue;let M=m>1?(R-_)*(p-1)/(m-1):0,W=g>1?(P-D)*(d-1)/(g-1):0;for(let G=0;G<m;G++){let X=m>1?_*(p-1)+G*M:.5*(_+R)*(p-1);if(X<0||X>p-1){for(let K=0;K<g;K++)for(let Y=0;Y<h;Y++){let re=Y+K*I[2]+G*I[1]+k*I[0];y.values[re]=u}continue}if(l==="bilinear"){let K=Math.floor(X),Y=Math.ceil(X),re=X-K;for(let ee=0;ee<g;ee++){let ie=g>1?D*(d-1)+ee*W:.5*(D+P)*(d-1);if(ie<0||ie>d-1){for(let Ae=0;Ae<h;Ae++){let oe=Ae+ee*I[2]+G*I[1]+k*I[0];y.values[oe]=u}continue}let ne=Math.floor(ie),pe=Math.ceil(ie),ce=ie-ne;for(let Ae=0;Ae<h;Ae++){let oe=Ae+ne*w[2]+K*w[1]+T*w[0],Re=b[oe];oe=Ae+pe*w[2]+K*w[1]+T*w[0];let _e=b[oe];oe=Ae+ne*w[2]+Y*w[1]+T*w[0];let Ue=b[oe];oe=Ae+pe*w[2]+Y*w[1]+T*w[0];let Me=b[oe],ot=Re+(_e-Re)*ce,gt=Ue+(Me-Ue)*ce;oe=Ae+ee*I[2]+G*I[1]+k*I[0],y.values[oe]=ot+(gt-ot)*re}}}else for(let K=0;K<g;++K){let Y=g>1?D*(d-1)+K*W:.5*(D+P)*(d-1);if(Y<0||Y>d-1){for(let ie=0;ie<h;ie++){let ne=ie+K*I[2]+G*I[1]+k*I[0];y.values[ne]=u}continue}let re=Math.round(Y),ee=Math.round(X);for(let ie=0;ie<h;ie++){let ne=ie+re*w[2]+ee*w[1]+T*w[0],pe=ie+K*I[2]+G*I[1]+k*I[0];y.values[pe]=b[ne]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var hY={kernelName:Il,backendName:"cpu",kernelFunc:pY};function fY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Te(r,"cumprod");let l=C.getAxesPermutation([a],r.shape.length),u=r;l!=null&&(u=As({inputs:{x:r},backend:n,attrs:{perm:l}}));let c=C.getInnerMostAxes(1,r.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=Nn(u.dtype,"int32"),d=v.makeOnesTypedArray(v.sizeFromShape(u.shape),p),h=n.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=i?(y,x)=>y+f-x-1:(y,x)=>y+x;for(let y=0;y<h.length;y+=f)for(let x=0;x<f;x++){let A=m(y,x);if(x===0)d[A]=o?1:h[A];else{let b=m(y,x-1);d[A]=o?h[b]*d[b]:h[A]*d[b]}}let g=n.makeTensorInfo(u.shape,p,d);if(l!=null){let y=C.getUndoAxesPermutation(l),x=As({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),x}return g}var mY={kernelName:kl,backendName:"cpu",kernelFunc:fY};function gY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Te(r,"cumsum");let l=C.getAxesPermutation([a],r.shape.length),u=r;l!=null&&(u=As({inputs:{x:r},backend:n,attrs:{perm:l}}));let c=C.getInnerMostAxes(1,r.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=Nn(u.dtype,"int32"),d=v.makeZerosTypedArray(v.sizeFromShape(u.shape),p),h=n.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=i?(y,x)=>y+f-x-1:(y,x)=>y+x;for(let y=0;y<h.length;y+=f)for(let x=0;x<f;x++){let A=m(y,x);if(x===0)d[A]=o?0:h[A];else{let b=m(y,x-1);d[A]=o?h[b]+d[b]:h[A]+d[b]}}let g=n.makeTensorInfo(u.shape,p,d);if(l!=null){let y=C.getUndoAxesPermutation(l),x=As({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),x}return g}var yY={kernelName:Lo,backendName:"cpu",kernelFunc:gY};function AY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=Ux(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=BI(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var xY={kernelName:u0,backendName:"cpu",kernelFunc:AY};function bY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;v.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`);let i=r.shape[0],l=r.shape[1],u=r.shape[2],c=r.shape[3],p=l*a,d=u*a,h=c/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*p*d*h),g=0;for(let y=0;y<i;++y)for(let x=0;x<p;++x){let A=Math.floor(x/a),b=x%a;for(let w=0;w<d;++w){let I=Math.floor(w/a),k=w%a,E=(b*a+k)*h;for(let _=0;_<h;++_){let R=_+E+c*(I+u*(A+l*y));m[g++]=f[R]}}}return n.makeTensorInfo([i,p,d,h],r.dtype,m)}var vY={kernelName:Sl,backendName:"cpu",kernelFunc:bY};function ES(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s;Te([r,a],"depthwiseConv2DNative");let c=v.computeStrides(r.shape),p=v.computeStrides(a.shape),d=l;d==null&&(d=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(o,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${d}'`);let h=C.computeConv2DInfo(r.shape,a.shape,o,d,i,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:y,padInfo:x}=h,A=x.left,b=x.top,w=h.outChannels/h.inChannels,I=new Kt(h.outShape,r.dtype),k=n.data.get(r.dataId).values,E=n.data.get(a.dataId).values,_=I.values;for(let D=0;D<h.batchSize;++D){let R=D*c[0],P=D*I.strides[0];for(let T=0;T<h.outHeight;++T){let M=P+T*I.strides[1],W=T*h.strideHeight-b;for(let G=0;G<f;++G){let X=W+G*g;if(X<0||X>=h.inHeight)continue;let K=G*p[0],Y=R+X*c[1];for(let re=0;re<h.outWidth;++re){let ee=M+re*I.strides[2],ie=re*h.strideWidth-A;for(let ne=0;ne<m;++ne){let pe=ie+ne*y;if(pe<0||pe>=h.inWidth)continue;let ce=K+ne*p[1],Ae=Y+pe*h.inChannels,oe=ee,Re=ce;for(let _e=0;_e<h.inChannels;++_e){let Ue=k[Ae+_e];for(let Me=0;Me<w;++Me)_[oe+Me]+=Ue*E[Re+Me];oe+=w,Re+=w}}}}}}return n.makeTensorInfo(I.shape,I.dtype,I.values)}var wY={kernelName:Bo,backendName:"cpu",kernelFunc:ES};function kY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s;Te([r,a],"depthwiseConv2dNativeBackpropFilter");let p=C.computeConv2DInfo(r.shape,c,o,i,l,u,!0),{strideHeight:d,strideWidth:h,filterHeight:f,filterWidth:m}=p,g=new Kt(p.filterShape,"float32"),y=p.padInfo.left,x=p.padInfo.top,A=p.outChannels/p.inChannels,b=n.data.get(r.dataId).values,w=new Kt(r.shape,r.dtype,b),I=n.data.get(a.dataId).values,k=new Kt(a.shape,a.dtype,I);for(let E=0;E<f;++E){let _=Math.max(0,Math.ceil((x-E)/d)),D=Math.min(p.outHeight,(p.inHeight+x-E)/d);for(let R=0;R<m;++R){let P=Math.max(0,Math.ceil((y-R)/h)),T=Math.min(p.outWidth,(p.inWidth+y-R)/h);for(let M=0;M<p.outChannels;++M){let W=Math.trunc(M/A),G=M%A,X=0;for(let K=0;K<p.batchSize;++K)for(let Y=_;Y<D;++Y){let re=E+Y*d-x;for(let ee=P;ee<T;++ee){let ie=R+ee*h-y;X+=w.get(K,re,ie,W)*k.get(K,Y,ee,M)}}g.set(X,E,R,W,G)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var IY={kernelName:c0,backendName:"cpu",kernelFunc:kY};function SY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s;Te([r,a],"depthwiseConv2DNativeBackpropInput");let p=v.computeStrides(r.shape),d=v.computeStrides(a.shape),h=C.computeConv2DInfo(c,a.shape,o,i,l,u,!0),f=new Kt(h.inShape,"float32"),m=f.values,[g,y,x]=f.strides,A=n.data.get(r.dataId).values,[b,w,I]=p,k=n.data.get(a.dataId).values,[E,_,D]=d,{batchSize:R,filterHeight:P,filterWidth:T,inChannels:M,inHeight:W,inWidth:G,outChannels:X,outHeight:K,outWidth:Y,strideHeight:re,strideWidth:ee}=h,ie=P-1-h.padInfo.top,ne=T-1-h.padInfo.left,pe=X/M;for(let ce=0;ce<R;++ce)for(let Ae=0;Ae<M;++Ae)for(let oe=0;oe<W;++oe){let Re=oe-ie,_e=Math.max(0,Math.ceil(Re/re)),Ue=Math.min(K,(P+Re)/re);for(let Me=0;Me<G;++Me){let ot=Me-ne,gt=Math.max(0,Math.ceil(ot/ee)),pt=Math.min(Y,(T+ot)/ee),yt=0;for(let Oe=_e;Oe<Ue;++Oe){let Tt=Oe*re-Re;for(let kt=gt;kt<pt;++kt){let jn=kt*ee-ot,Qt=b*ce+w*Oe+I*kt,vs=E*(P-1-Tt)+_*(T-1-jn)+D*Ae;for(let dn=0;dn<pe;++dn){let qn=Ae*pe+dn,ws=A[Qt+qn],ks=k[vs+dn];yt+=ws*ks}}}m[g*ce+y*oe+x*Me+Ae]=yt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var CY={kernelName:d0,backendName:"cpu",kernelFunc:SY};function TY(e){let{inputs:t,backend:n}=e,{x:s}=t,r=v.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=De([r,r],s.dtype),i=o.values;for(let u=0;u<a.length;u++)i[u*r+u]=a[u];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var NY={kernelName:p0,backendName:"cpu",kernelFunc:TY},EY={kernelName:Yp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,u=l.data.get(s.dataId).values,c=s.shape.length,p=l.data.get(r.dataId).values,d=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:y,outWidth:x,padInfo:A,strideHeight:b,strideWidth:w,filterHeight:I,filterWidth:k,dilationHeight:E,dilationWidth:_,outShape:D}=C.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),R=v.sizeFromShape(D),P=D.length,T=v.getArrayFromDType(s.dtype,R);for(let W=0;W<h;++W)for(let G=0;G<y;++G){let X=G*b-A.top;for(let K=0;K<x;++K){let Y=K*w-A.left;for(let re=0;re<g;++re){let ee=Number.MIN_SAFE_INTEGER;for(let ne=0;ne<I;++ne){let pe=X+ne*E;if(pe>=0&&pe<f)for(let ce=0;ce<k;++ce){let Ae=Y+ce*_;if(Ae>=0&&Ae<m){let oe=v.locToIndex([W,pe,Ae,re],c,v.computeStrides(s.shape)),Re=v.locToIndex([ne,ce,re],d,v.computeStrides(r.shape)),_e=u[oe]+p[Re];_e>ee&&(ee=_e)}}}let ie=v.locToIndex([W,G,K,re],P,v.computeStrides(D));T[ie]=ee}}}return{dataId:l.write(v.toTypedArray(T,s.dtype),D,s.dtype),shape:D,dtype:s.dtype}}},RY={kernelName:Im,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=v.toNestedArray(s.shape,u.data.get(s.dataId).values),p=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:x,strideHeight:A,strideWidth:b,filterHeight:w,filterWidth:I,dilationHeight:k,dilationWidth:E,outShape:_}=C.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===_.length,()=>`Error in ${Im}, dy must have the same rank as output ${_.length}, but got ${a.rank}`);let D=v.toNestedArray(_,u.data.get(a.dataId).values),R=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T<d;++T)for(let M=0;M<g;++M){let W=M*A-x.top;for(let G=0;G<y;++G){let X=G*b-x.left;for(let K=0;K<m;++K){let Y=Number.MIN_SAFE_INTEGER,re=0,ee=0;for(let ie=0;ie<w;++ie){let ne=W+ie*k;if(ne>=0&&ne<h)for(let pe=0;pe<I;++pe){let ce=X+pe*E;if(ce>=0&&ce<f){let Ae=c[T][ne][ce][K]+p[ie][pe][K];Ae>Y&&(Y=Ae,re=ie,ee=pe)}}}R[re][ee][K]+=D[T][M][G][K]}}}return{dataId:u.write(v.toTypedArray(R,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},_Y={kernelName:km,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=v.toNestedArray(s.shape,u.data.get(s.dataId).values),p=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:x,strideHeight:A,strideWidth:b,filterHeight:w,filterWidth:I,dilationHeight:k,dilationWidth:E,outShape:_}=C.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===_.length,()=>`Error in ${km}, dy must have the same rank as output ${_.length}, but got ${a.rank}`);let D=v.toNestedArray(_,u.data.get(a.dataId).values),R=v.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T<d;++T)for(let M=0;M<g;++M){let W=M*A-x.top;for(let G=0;G<y;++G){let X=G*b-x.left;for(let K=0;K<m;++K){let Y=Number.MIN_SAFE_INTEGER,re=W<0?0:W,ee=X<0?0:X;for(let ie=0;ie<w;++ie){let ne=W+ie*k;if(ne>=0&&ne<h)for(let pe=0;pe<I;++pe){let ce=X+pe*E;if(ce>=0&&ce<f){let Ae=c[T][ne][ce][K]+p[ie][pe][K];Ae>Y&&(Y=Ae,re=ne,ee=ce)}}}R[T][re][ee][K]+=D[T][M][G][K]}}}return{dataId:u.write(v.toTypedArray(R,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Uh(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"sum");let i;r.dtype==="bool"?i=Co({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=ta({inputs:{x:r},backend:n});let l=i.shape.length,u=v.parseAxisParam(a,i.shape),c=C.getAxesPermutation(u,l),p=u,d=i;c!=null&&(d=As({inputs:{x:i},backend:n,attrs:{perm:c}}),p=C.getInnerMostAxes(p.length,l)),C.assertAxesAreInnerMostDims("sum",p,d.shape.length);let[h,f]=C.computeOutAndReduceShapes(d.shape,p),m=C.upcastType(d.dtype,"int32"),g=Wm(n,h,m),y=v.sizeFromShape(f),x=n.data.get(g.dataId).values,A=n.data.get(d.dataId).values;for(let b=0;b<x.length;++b){let w=b*y,I=0;for(let k=0;k<y;++k)I+=A[w+k];x[b]=I}if(o){let b=C.expandShapeToKeepDim(g.shape,u),w=g;g=Rt({inputs:{x:g},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(w)}return n.disposeIntermediateTensorInfo(i),c!=null&&n.disposeIntermediateTensorInfo(d),g}var DY={kernelName:hi,backendName:"cpu",kernelFunc:Uh};function $Y(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=C.decodeEinsumEquation(r,a.length);C.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=C.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:y,expandDims:x}=C.getEinsumPermutation(h,l[g]),A;C.isIdentityPermutation(y)?A=a[g]:(A=As({inputs:{x:a[g]},backend:n,attrs:{perm:y}}),f.push(A));let b=A.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(A.shape,b)||(A=Rt({inputs:{x:A},backend:n,attrs:{shape:b}}),f.push(A)),d===null?d=A:(d=_2({inputs:{a:A,b:d},backend:n}),f.push(d))}m<p-1&&(u[m]>=0&&(d=Uh({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var PY={kernelName:Jp,backendName:"cpu",kernelFunc:$Y};function FY(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Te([s,r],"eluGrad");let a=new Float32Array(v.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let u=o[l];u>=1?a[l]=i[l]:a[l]=i[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",a)}var OY={kernelName:h0,backendName:"cpu",kernelFunc:FY},MY=C.ERF_P,zY=C.ERF_A1,LY=C.ERF_A2,BY=C.ERF_A3,WY=C.ERF_A4,VY=C.ERF_A5,UY=xt(Ec,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+MY*n);return t*(1-((((VY*s+WY)*s+BY)*s+LY)*s+zY)*s*Math.exp(-n*n))}),GY={kernelName:Ec,backendName:"cpu",kernelFunc:UY};function Gm(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Rt({inputs:{x:r},backend:n,attrs:{shape:i}})}var HY={kernelName:Cl,backendName:"cpu",kernelFunc:Gm},jY=un((e,t)=>e/t),eb=vn(Wo,jY),my={kernelName:Wo,backendName:"cpu",kernelFunc:eb};function RS(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,u=[r,a],c=v.sizeFromShape(u),p=v.getTypedArrayFromDType("float32",c),d=v.getTypedArrayFromDType("float32",c);for(let g=0;g<r;g++){let y=ml({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),x=ml({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,a]}}),A=Ts({inputs:{real:y,imag:x},backend:n}),{real:b,imag:w}=qY(A,t,n),I=C.mergeRealAndImagArrays(b,w);for(let k=0;k<a;k++){let E=C.getComplexWithIndex(I,k);p[g*a+k]=E.real,d[g*a+k]=E.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(A)}let h=n.makeTensorInfo(u,"float32",p),f=n.makeTensorInfo(u,"float32",d),m=Ts({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function qY(e,t,n){let s=v.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if(XY(s)){let i=gy(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",i.real),c=n.makeTensorInfo(l,"float32",i.imag),p=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),d=ta({inputs:{x:p},backend:n}),h=my.kernelFunc({inputs:{a:u,b:p},backend:n}),f=my.kernelFunc({inputs:{a:c,b:d},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=C.mergeRealAndImagArrays(a,o),l=KY(i,s,t);return C.splitRealAndImagArrays(l)}}function XY(e){return(e&e-1)===0}function gy(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=C.mergeRealAndImagArrays(e,t),o=n/2,i=C.complexWithEvenIndex(a),l=i.real,u=i.imag,c=[l.length],p=r.makeTensorInfo(c,"float32",l),d=r.makeTensorInfo(c,"float32",u),h=Ts({inputs:{real:p,imag:d},backend:r}),f=C.complexWithOddIndex(a),m=f.real,g=f.imag,y=[m.length],x=r.makeTensorInfo(y,"float32",m),A=r.makeTensorInfo(y,"float32",g),b=Ts({inputs:{real:x,imag:A},backend:r}),w=gy(l,u,o,s,r),I=w.real,k=w.imag,E=[I.length],_=r.makeTensorInfo(E,"float32",I),D=r.makeTensorInfo(E,"float32",k),R=Ts({inputs:{real:_,imag:D},backend:r}),P=gy(m,g,o,s,r),T=P.real,M=P.imag,W=[T.length],G=r.makeTensorInfo(W,"float32",T),X=r.makeTensorInfo(W,"float32",M),K=Ts({inputs:{real:G,imag:X},backend:r}),Y=C.exponents(n,s),re=[Y.real.length],ee=r.makeTensorInfo(re,"float32",Y.real),ie=r.makeTensorInfo(re,"float32",Y.imag),ne=Ts({inputs:{real:ee,imag:ie},backend:r}),pe=_2({inputs:{a:ne,b:K},backend:r}),ce=hc({inputs:{a:R,b:pe},backend:r}),Ae=Jx({inputs:{a:R,b:pe},backend:r}),oe=fl({inputs:{input:ce},backend:r}),Re=fl({inputs:{input:Ae},backend:r}),_e=fc({inputs:{input:ce},backend:r}),Ue=fc({inputs:{input:Ae},backend:r}),Me=mc({inputs:[oe,Re],backend:r,attrs:{axis:0}}),ot=mc({inputs:[_e,Ue],backend:r,attrs:{axis:0}}),gt=r.data.get(Me.dataId).values,pt=r.data.get(ot.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(_),r.disposeIntermediateTensorInfo(D),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo(G),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(K),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(ne),r.disposeIntermediateTensorInfo(pe),r.disposeIntermediateTensorInfo(ce),r.disposeIntermediateTensorInfo(Ae),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(_e),r.disposeIntermediateTensorInfo(Re),r.disposeIntermediateTensorInfo(Ue),r.disposeIntermediateTensorInfo(Me),r.disposeIntermediateTensorInfo(ot),{real:gt,imag:pt}}function KY(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=C.exponent(r*i,t,n),u=C.getComplexWithIndex(e,i);a+=u.real*l.real-u.imag*l.imag,o+=u.real*l.imag+u.imag*l.real}n&&(a/=t,o/=t),C.assignToTypedArray(s,a,o,r)}return s}function ZY(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Rt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=RS(i,!1,n),u=Rt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var YY={kernelName:f0,backendName:"cpu",kernelFunc:ZY};function tb(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||v.inferDtype(r),i=v.getArrayFromDType(o,v.sizeFromShape(s));return QY(i,r,o),t.makeTensorInfo(s,o,i)}var JY={kernelName:Rc,backendName:"cpu",kernelFunc:tb};function QY(e,t,n){e.fill(t)}var eJ={kernelName:Tl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[o,i,l,u]=s.shape,c=r.data.get(s.dataId).values;for(let d=0;d<o;d++){let h=d*l*i*u;for(let f=0;f<i;f++){let m=f*(l*u);for(let g=0;g<l;g++){let y=g*u;for(let x=0;x<u;x++){let A=Math.round(l-g-1),b=h+m+y+x,w=c[b];if(A>=0&&A<l){let I=A*u,k=h+m+I+x;w=c[k]}a[b]=w}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},tJ=un((e,t)=>Math.floor(e/t)),nJ=vn(Ho,tJ,null,"int32"),sJ={kernelName:Ho,backendName:"cpu",kernelFunc:nJ};function rJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=NS({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d}});if(o){let g=m;if(c==="NCHW"&&o.shape.length===1&&o.shape[0]!==1){let y=Rt({inputs:{x:o},backend:n,attrs:{shape:[o.shape[0],1,1]}});m=hc({inputs:{a:m,b:y},backend:n}),n.disposeIntermediateTensorInfo(y)}else m=hc({inputs:{a:m,b:o},backend:n});n.disposeIntermediateTensorInfo(g)}if(h){let g=m;if(c==="NCHW"&&h==="prelu"&&i.shape.length===1&&i.shape[0]!==1){let y=Rt({inputs:{x:i},backend:n,attrs:{shape:[i.shape[0],1,1]}});m=Um(n,m,h,y,f),n.disposeIntermediateTensorInfo(y)}else m=Um(n,m,h,i,f);n.disposeIntermediateTensorInfo(g)}return m}var aJ={kernelName:Ao,backendName:"cpu",kernelFunc:rJ};function oJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=ES({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d}});if(o){let g=m;m=hc({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Um(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var iJ={kernelName:xo,backendName:"cpu",kernelFunc:oJ};function lJ(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=v.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,u,c,p]=C.prepareAndValidate(s,r);if(u===0)return n.makeTensorInfo(l,s.dtype,[]);let d=n.data.get(r.dataId).values,h=n.bufferSync(s),f=XI(d,h,s.dtype,u,i,c,p,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var uJ={kernelName:El,backendName:"cpu",kernelFunc:lJ};function cJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Te([r,a],"gatherV2");let l=v.parseAxisParam(o,r.shape)[0],u=n.data.get(a.dataId).values,c=r.shape[l];for(let b=0;b<u.length;++b){let w=u[b];v.assert(w<=c-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${c-1}]`)}let p=i;i==null&&(p=0);let d=v.sizeFromShape(a.shape),h=C.segment_util.collectGatherOpShapeInfo(r,a,l,p),f=Rt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=Rt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,d/h.batchSize]}}),g=[h.batchSize,h.outerSize,d/h.batchSize,h.sliceSize],y=n.bufferSync(m),x=n.bufferSync(f),A=KI(x,y,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,A.dtype,A.values)}var dJ={kernelName:Nl,backendName:"cpu",kernelFunc:cJ};function pJ(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Rt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=RS(i,!0,n),u=Rt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var hJ={kernelName:m0,backendName:"cpu",kernelFunc:pJ},fJ=xt(_c,e=>Number.isFinite(e)?1:0,"bool"),mJ={kernelName:_c,backendName:"cpu",kernelFunc:fJ},gJ=xt(Dc,e=>Math.abs(e)===1/0?1:0,"bool"),yJ={kernelName:Dc,backendName:"cpu",kernelFunc:gJ},AJ=xt($c,e=>Number.isNaN(e)?1:0,"bool"),xJ={kernelName:$c,backendName:"cpu",kernelFunc:AJ};function bJ(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=eS(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var vJ={kernelName:g0,backendName:"cpu",kernelFunc:bJ},wJ=xt(Pc,e=>Math.log1p(e)),kJ={kernelName:Pc,backendName:"cpu",kernelFunc:wJ},IJ=un((e,t)=>e&&t),SJ=vn(Rl,IJ,null,"bool"),CJ={kernelName:Rl,backendName:"cpu",kernelFunc:SJ},TJ=xt(_l,e=>e?0:1,"bool"),NJ={kernelName:_l,backendName:"cpu",kernelFunc:TJ},EJ=un((e,t)=>e||t),RJ=vn(Fc,EJ,null,"bool"),_J={kernelName:Fc,backendName:"cpu",kernelFunc:RJ};function DJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Te(r,"LRN");let u=r.shape[3],c=u-1,p=n.data.get(r.dataId).values,d=v.sizeFromShape(r.shape),h=new Float32Array(d);function f(m){let g=m%u,y=m-g+Math.max(0,g-a),x=m-g+Math.min(g+a,c),A=0;for(;y<=x;y++){let b=p[y];A+=b*b}return A}for(let m=0;m<d;m++){let g=f(m),y=p[m]*Math.pow(o+i*g,-l);h[m]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var $J={kernelName:eh,backendName:"cpu",kernelFunc:DJ};function PJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s;Te(o,"LRNGrad");let p=v.sizeFromShape(o.shape),d=o.shape[3],h=n.data.get(o.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(p),y=p;for(let x=0;x<y;x++){let A=x%d,b=x-A+Math.max(0,A-i),w=x-A+Math.min(d,A+i+1),I=0;for(let k=b;k<w;k++)I+=Math.pow(f[k],2);I=u*I+l;for(let k=b;k<w;k++){let E=-2*u*c*f[k]*m[x]/I;x===k&&(E+=Math.pow(I,-c)),E*=h[x],g[k]+=E}}return n.makeTensorInfo(o.shape,r.dtype,g)}var FJ={kernelName:y0,backendName:"cpu",kernelFunc:PJ};function _S(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,u=l.length,c=v.parseAxisParam(a,l),p=c,d=C.getAxesPermutation(p,u),h=i.data.get(r.dataId).values;if(d!=null){let b=new Array(u);for(let w=0;w<b.length;w++)b[w]=l[d[w]];h=jx(h,l,r.dtype,d,b),p=C.getInnerMostAxes(p.length,u),l=b}Te(r,"max"),C.assertAxesAreInnerMostDims("max",p,u);let[f,m]=C.computeOutAndReduceShapes(l,p),g=v.sizeFromShape(m),y=nS(h,g,f,r.dtype),x=i.write(y,f,r.dtype),A=f;return o&&(A=C.expandShapeToKeepDim(f,c)),{dataId:x,shape:A,dtype:r.dtype}}var OJ={kernelName:Jo,backendName:"cpu",kernelFunc:_S};function MJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Te(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(C.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=C.computePool2DInfo(r.shape,a,o,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))p=ta({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=Qx(d,r.shape,r.dtype,h,c,"max");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var zJ={kernelName:Qo,backendName:"cpu",kernelFunc:MJ};function LJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Te(r,"maxPool3d");let c=C.computePool3DInfo(r.shape,a,o,1,i,l,u),p=n.data.get(r.dataId).values,d=TS(p,r.shape,r.dtype,v.computeStrides(r.shape),c,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var BJ={kernelName:th,backendName:"cpu",kernelFunc:LJ};function WJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Te([r,a],"maxPool3DGrad");let c=C.computePool3DInfo(a.shape,o,i,1,l,u),p=n.bufferSync(a),d=NZ(p,c),h=c.strideDepth,f=c.strideHeight,m=c.strideWidth,g=c.dilationDepth,y=c.dilationHeight,x=c.dilationWidth,A=c.effectiveFilterDepth,b=c.effectiveFilterHeight,w=c.effectiveFilterWidth,I=A-1-c.padInfo.front,k=w-1-c.padInfo.left,E=b-1-c.padInfo.top,_=De(a.shape,"float32"),D=n.bufferSync(r);for(let R=0;R<c.batchSize;++R)for(let P=0;P<c.inChannels;++P)for(let T=0;T<c.inDepth;++T)for(let M=0;M<c.inHeight;++M)for(let W=0;W<c.inWidth;++W){let G=T-I,X=M-E,K=W-k,Y=0;for(let re=0;re<A;re+=g){let ee=(G+re)/h;if(!(ee<0||ee>=c.outDepth||Math.floor(ee)!==ee))for(let ie=0;ie<b;ie+=y){let ne=(X+ie)/f;if(!(ne<0||ne>=c.outHeight||Math.floor(ne)!==ne))for(let pe=0;pe<w;pe+=x){let ce=(K+pe)/m;if(ce<0||ce>=c.outWidth||Math.floor(ce)!==ce)continue;let Ae=A*b*w-1-d.get(R,ee,ne,ce,P),oe=re*b*w+ie*w+pe,Re=Ae===oe?1:0;if(Re===0)continue;Y+=D.get(R,ee,ne,ce,P)*Re}}}_.set(Y,R,T,M,W,P)}return n.makeTensorInfo(_.shape,_.dtype,_.values)}var VJ={kernelName:x0,backendName:"cpu",kernelFunc:WJ};function UJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Te([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=s,d=C.computePool2DInfo(i.shape,l,u,1,c,p),h=n.data.get(i.dataId).values,f=De(d.outShape,i.dtype,CS(h,i.shape,i.dtype,d).values),m=d.strideHeight,g=d.strideWidth,y=d.dilationHeight,x=d.dilationWidth,A=d.effectiveFilterHeight,b=d.effectiveFilterWidth,w=b-1-d.padInfo.left,I=A-1-d.padInfo.top,k=De(i.shape,"float32"),E=n.data.get(r.dataId).values,_=De(r.shape,"float32",E);for(let D=0;D<d.batchSize;++D)for(let R=0;R<d.inChannels;++R)for(let P=0;P<d.inHeight;++P)for(let T=0;T<d.inWidth;++T){let M=P-I,W=T-w,G=0;for(let X=0;X<A;X+=y){let K=(M+X)/m;if(!(K<0||K>=d.outHeight||Math.floor(K)!==K))for(let Y=0;Y<b;Y+=x){let re=(W+Y)/g;if(re<0||re>=d.outWidth||Math.floor(re)!==re)continue;let ee=A*b-1-f.get(D,K,re,R),ie=X*b+Y,ne=ee===ie?1:0;if(ne===0)continue;G+=_.get(D,K,re,R)*ne}}k.set(G,D,P,T,R)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var GJ={kernelName:A0,backendName:"cpu",kernelFunc:UJ};function HJ(e,t,n,s,r){let a=v.computeStrides(t),o=Qx(e,t,n,a,r,"max"),i=CS(e,t,n,r,!0,s);return[o.values,i.values]}var jJ={kernelName:b0,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Te(s,"MaxPoolWithArgmax");let u=l.data.get(s.dataId).values,c=C.computePool2DInfo(s.shape,r,a,[1,1],o),[p,d]=HJ(u,s.shape,s.dtype,i,c),h=l.write(p,c.outShape,s.dtype),f=l.write(d,c.outShape,s.dtype);return[{dataId:h,shape:c.outShape,dtype:s.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function qJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=v.parseAxisParam(a,r.shape),u=C.computeOutAndReduceShapes(r.shape,i)[1],c=v.sizeFromShape(u),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([c]));p.push(d);let h=Co({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(h);let f=eb({inputs:{a:h,b:d},backend:n});p.push(f);let m=Uh({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var XJ={kernelName:ei,backendName:"cpu",kernelFunc:qJ};function KJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"min");let i=v.parseAxisParam(a,r.shape),l=i,u=C.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=As({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",l,c.shape.length);let[p,d]=C.computeOutAndReduceShapes(c.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let x=y*h,A=m[x];for(let b=0;b<h;++b){let w=m[x+b];(Number.isNaN(w)||w<A)&&(A=w)}f[y]=A}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(o){let y=C.expandShapeToKeepDim(p,i),x=Rt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),x}return g}var ZJ={kernelName:ti,backendName:"cpu",kernelFunc:KJ};function YJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;Te(r,"mirrorPad");let i=a.map((A,b)=>A[0]+r.shape[b]+A[1]),l=a.map(A=>A[0]),u=a.map((A,b)=>A[0]+r.shape[b]),c=o==="reflect"?0:1,p=n.data.get(r.dataId).values,d=r.shape.length,h=v.computeStrides(r.shape),f=v.sizeFromShape(i),m=i.length,g=v.computeStrides(i),y=v.getTypedArrayFromDType(r.dtype,f);for(let A=0;A<f;A++){let b=v.indexToLoc(A,m,g);for(let I=0;I<m;I++)b[I]<l[I]?b[I]=l[I]*2-b[I]-c:b[I]>=u[I]&&(b[I]=(u[I]-1)*2-b[I]+c);b=b.map((I,k)=>I-l[k]);let w=v.locToIndex(b,d,h);y[A]=p[w]}return{dataId:n.write(y,i,r.dtype),shape:i,dtype:r.dtype}}var JJ={kernelName:ni,backendName:"cpu",kernelFunc:YJ},QJ=un((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),eQ=vn(Oc,QJ),tQ={kernelName:Oc,backendName:"cpu",kernelFunc:eQ},nQ=No(Qm());function DS(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=v.parseAxisParam([i],r.shape),u=_S({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=C.expandShapeToKeepDim(u.shape,l),p=Rt({inputs:{x:u},backend:n,attrs:{shape:c}}),d=Jx({inputs:{a:r,b:p},backend:n}),h=HI({inputs:{x:d},backend:n}),f=Uh({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),m=Rt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=eb({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var sQ={kernelName:fi,backendName:"cpu",kernelFunc:DS};function rQ(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Te(r,"multinomial");let l=i?r:DS({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],p=n.data.get(l.dataId).values,d=[u,a],h=v.makeZerosTypedArray(v.sizeFromShape(d),"int32");for(let f=0;f<u;++f){let m=f*c,g=new Float32Array(c-1);g[0]=p[m];for(let A=1;A<g.length;++A)g[A]=g[A-1]+p[m+A];let y=nQ.alea(o.toString()),x=f*a;for(let A=0;A<a;++A){let b=y();h[x+A]=g.length;for(let w=0;w<g.length;w++)if(b<g[w]){h[x+A]=w;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",h)}var aQ={kernelName:v0,backendName:"cpu",kernelFunc:rQ},oQ=hr.nonMaxSuppressionV3Impl;function iQ(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;Te(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,{selectedIndices:p}=oQ(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var lQ={kernelName:$l,backendName:"cpu",kernelFunc:iQ},uQ=hr.nonMaxSuppressionV4Impl;function cQ(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s;Te(r,"NonMaxSuppressionPadded");let c=n.data.get(r.dataId).values,p=n.data.get(a.dataId).values,{selectedIndices:d,validOutputs:h}=uQ(c,p,o,i,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var dQ={kernelName:Mc,backendName:"cpu",kernelFunc:cQ},pQ=hr.nonMaxSuppressionV5Impl;function hQ(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s;Te(r,"NonMaxSuppressionWithScore");let c=n.data.get(r.dataId).values,p=n.data.get(a.dataId).values,d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=pQ(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var fQ={kernelName:Pl,backendName:"cpu",kernelFunc:hQ};function mQ(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{dtype:a,depth:o,onValue:i,offValue:l}=s;Te(r,"oneHot");let u=v.sizeFromShape(r.shape),c=new Float32Array(u*o);c.fill(l);let p=n.data.get(r.dataId).values;for(let d=0;d<u;++d)p[d]>=0&&p[d]<o&&(c[d*o+p[d]]=i);return n.makeTensorInfo([...r.shape,o],a,c)}var gQ={kernelName:Ol,backendName:"cpu",kernelFunc:mQ};function Hm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=fl({inputs:{input:s},backend:n}),a=Hm({inputs:{x:r},backend:n}),o=fc({inputs:{input:s},backend:n}),i=Hm({inputs:{x:o},backend:n}),l=Ts({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return tb({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var yQ={kernelName:Jl,backendName:"cpu",kernelFunc:Hm};function $S(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=fl({inputs:{input:s},backend:n}),a=$S({inputs:{x:r},backend:n}),o=fc({inputs:{input:s},backend:n}),i=Hm({inputs:{x:o},backend:n}),l=Ts({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return tb({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var AQ={kernelName:Fl,backendName:"cpu",kernelFunc:$S};function PS(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Gm({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=Gm({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=mc({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var xQ={kernelName:Ml,backendName:"cpu",kernelFunc:PS};function bQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Te(r,"pad");let i=a.map((x,A)=>x[0]+r.shape[A]+x[1]),l=a.map(x=>x[0]),u=n.data.get(r.dataId).values,c=v.sizeFromShape(r.shape),p=r.shape.length,d=v.computeStrides(r.shape),h=v.sizeFromShape(i),f=i.length,m=v.computeStrides(i),g=v.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let x=0;x<c;x++){let b=v.indexToLoc(x,p,d).map((I,k)=>I+l[k]),w=v.locToIndex(b,f,m);g[w]=u[x]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var FS={kernelName:ri,backendName:"cpu",kernelFunc:bQ},vQ=un((e,t)=>Math.pow(e,t)),wQ=vn(ai,vQ),kQ={kernelName:ai,backendName:"cpu",kernelFunc:wQ};function IQ(e){let{inputs:t,backend:n,attrs:s}=e,{shape:r,values:a,defaultValue:o,rowPartitionTensors:i}=t,{rowPartitionTypes:l}=s,u=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,p=n.data.get(o.dataId).values,d=i.map(g=>n.data.get(g.dataId).values),h=i.map(g=>g.shape),[f,m]=lS(u,r.shape,c,a.shape,a.dtype,p,o.shape,d,h,l);return n.makeTensorInfo(f,a.dtype,m)}var SQ={kernelName:w0,backendName:"cpu",kernelFunc:IQ};function CQ(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=qx(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var TQ={kernelName:zc,backendName:"cpu",kernelFunc:CQ},NQ=xt(Lc,e=>1/e),EQ={kernelName:Lc,backendName:"cpu",kernelFunc:NQ};function RQ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Te(r,"resizeBilinear");let l=v.computeStrides(r.shape),[u,c]=i,[p,d,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([p,u,c,f])),y=[a&&u>1?d-1:d,a&&c>1?h-1:h],x=[a&&u>1?u-1:u,a&&c>1?c-1:c],A=0,b=y[0]/x[0],w=y[1]/x[1];for(let I=0;I<p;I++)for(let k=0;k<u;k++){let E;o?E=b*(k+.5)-.5:E=b*k;let _=Math.max(0,Math.floor(E)),D=E-_,R=Math.min(d-1,Math.ceil(E)),P=I*l[0]+_*l[1],T=I*l[0]+R*l[1];for(let M=0;M<c;M++){let W;o?W=w*(M+.5)-.5:W=w*M;let G=Math.max(0,Math.floor(W)),X=W-G,K=Math.min(h-1,Math.ceil(W)),Y=P+G*l[2],re=T+G*l[2],ee=P+K*l[2],ie=T+K*l[2];for(let ne=0;ne<f;ne++){let pe=m[Y+ne],ce=m[re+ne],Ae=m[ee+ne],oe=m[ie+ne],Re=pe+(Ae-pe)*X,_e=ce+(oe-ce)*X,Ue=Re+(_e-Re)*D;g[A++]=Ue}}}return n.makeTensorInfo([p,u,c,f],"float32",g)}var _Q={kernelName:ci,backendName:"cpu",kernelFunc:RQ};function DQ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Te([a,r],"resizeBilinearGrad");let i=v.computeStrides(r.shape),[l,u,c,p]=r.shape,[,d,h]=a.shape,f=new Float32Array(l*u*c*p),m=[o&&d>1?u-1:u,o&&h>1?c-1:c],g=[o&&d>1?d-1:d,o&&h>1?h-1:h],y=m[0]/g[0],x=m[1]/g[1],A=n.data.get(a.dataId).values,b=0;for(let w=0;w<l;w++){let I=w*i[0];for(let k=0;k<d;k++){let E=k*y,_=Math.floor(E),D=Math.min(Math.ceil(E),u-1),R=I+_*i[1],P=I+D*i[1],T=E-_,M=1-T;for(let W=0;W<h;W++){let G=W*x,X=Math.floor(G),K=Math.min(Math.ceil(G),c-1),Y=G-X,re=1-Y,ee=R+X*i[2],ie=R+K*i[2],ne=P+X*i[2],pe=P+K*i[2],ce=M*re,Ae=M*Y,oe=T*re,Re=T*Y;for(let _e=0;_e<p;_e++){let Ue=A[b++];f[ee+_e]+=Ue*ce,f[ie+_e]+=Ue*Ae,f[ne+_e]+=Ue*oe,f[pe+_e]+=Ue*Re}}}}return n.makeTensorInfo([l,c,u,p],"float32",f)}var $Q={kernelName:I0,backendName:"cpu",kernelFunc:DQ};function PQ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Te(r,"resizeNearestNeighbor");let l=v.computeStrides(r.shape),[u,c]=i,[p,d,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(p*u*c*f),y=[a&&u>1?d-1:d,a&&c>1?h-1:h],x=[a&&u>1?u-1:u,a&&c>1?c-1:c],A=y[0]/x[0],b=y[1]/x[1],w=0;for(let I=0;I<p;I++){let k=I*l[0];for(let E=0;E<u;E++){let _=o?A*(E+.5):A*E,D=Math.min(d-1,a?Math.round(_):Math.floor(_));o&&(D=Math.max(0,D));let R=k+D*l[1];for(let P=0;P<c;P++){let T=o?b*(P+.5):b*P,M=Math.min(h-1,a?Math.round(T):Math.floor(T));o&&(M=Math.max(0,M));let W=R+M*l[2];for(let G=0;G<f;G++){let X=m[W+G];g[w++]=X}}}}return n.makeTensorInfo([p,u,c,f],r.dtype,g)}var FQ={kernelName:ui,backendName:"cpu",kernelFunc:PQ};function OQ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Te([a,r],"resizeNearestNeighborGrad");let i=v.computeStrides(r.shape),l=v.computeStrides(a.shape),[u,c,p,d]=r.shape,[,h,f]=a.shape,m=new Float32Array(u*c*p*d),g=n.data.get(a.dataId).values,y=[o&&h>1?c-1:c,o&&f>1?p-1:p],x=[o&&h>1?h-1:h,o&&f>1?f-1:f],A=y[0]/x[0],b=y[1]/x[1],w=1/A,I=1/b,k=Math.ceil(w)*2+2,E=Math.ceil(I)*2+2;for(let _=0;_<u;_++){let D=_*i[0];for(let R=0;R<c;R++){let P=D+R*i[1],T=Math.floor(R*w),M=Math.floor(T-k/2);for(let W=0;W<p;W++){let G=P+W*i[2],X=Math.floor(W*I),K=Math.floor(X-E/2);for(let Y=0;Y<d;Y++){let re=0;for(let ee=0;ee<k;ee++){let ie=ee+M;if(ie<0||ie>=h)continue;let ne=D+ie*l[1],pe=ie*A,ce=Math.min(c-1,o?Math.round(pe):Math.floor(pe));if(R===ce)for(let Ae=0;Ae<E;Ae++){let oe=Ae+K;if(oe<0||oe>=f)continue;let Re=ne+oe*l[2],_e=oe*b,Ue=Math.min(p-1,o?Math.round(_e):Math.floor(_e));W===Ue&&(re+=g[Re+Y])}}m[G+Y]=re}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var MQ={kernelName:k0,backendName:"cpu",kernelFunc:OQ};function zQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Te(r,"reverse");let o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return ta({inputs:{x:r},backend:n});let l=new Kt(r.shape,r.dtype),u=n.bufferSync(r);for(let c=0;c<l.size;c++){let p=l.indexToLoc(c),d=p.slice();i.forEach(h=>d[h]=r.shape[h]-1-d[h]),l.set(u.get(...d),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var LQ={kernelName:Ll,backendName:"cpu",kernelFunc:zQ},BQ={kernelName:Ql,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[u,c,p,d]=s.shape,[h,f]=C.getImageCenter(o,c,p),m=255,g=Math.sin(r),y=Math.cos(r),x=i.data.get(s.dataId).values;for(let b=0;b<u;b++){let w=b*p*c*d;for(let I=0;I<c;I++){let k=I*(p*d);for(let E=0;E<p;E++){let _=E*d;for(let D=0;D<d;D++){let R=[u,I,E,D],P=R[2],T=R[1],M=(P-h)*y-(T-f)*g,W=(P-h)*g+(T-f)*y;M=Math.round(M+h),W=Math.round(W+f);let G=a;if(typeof a!="number"&&(D===3?G=m:G=a[D]),M>=0&&M<p&&W>=0&&W<c){let K=W*(p*d),Y=M*d,re=w+K+Y+D;G=x[re]}let X=w+k+_+D;l[X]=G}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},WQ=xt(Bl,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),VQ={kernelName:Bl,backendName:"cpu",kernelFunc:WQ};function UQ(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=C.calculateShapes(a,r,o),d=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=Xu(h,f,o,p,u,l,i,c,0,d);return n.makeTensorInfo(o,m.dtype,m.values)}var GQ={kernelName:Wl,backendName:"cpu",kernelFunc:UQ};function HQ(e,t){let n=0,s=e.length,r=0;for(;n<s;)r=Math.floor((n+s)/2),e[r]<t?n=r+1:s=r;return s}function jQ(e,t){let n=0,s=e.length,r=0;for(;n<s;)r=Math.floor((n+s)/2),e[r]<=t?n=r+1:s=r;return s}function qQ(e,t,n,s,r,a){let o=v.getArrayFromDType("int32",n*r);for(let i=0;i<n;++i){let l=e.slice(i*s,(i+1)*s),u=i*r;for(let c=0;c<r;++c)o[u+c]=a==="left"?HQ(l,t[c+u]):jQ(l,t[c+u])}return o}function XQ(e){let{inputs:t,backend:n,attrs:s}=e,{sortedSequence:r,values:a}=t,{side:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=qQ(i,l,r.shape[0],r.shape[1],a.shape[1],o);return n.makeTensorInfo(a.shape,"int32",u)}var KQ={kernelName:S0,backendName:"cpu",kernelFunc:XQ};function ZQ(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;Te([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=Nn(r.dtype,a.dtype),p=v.makeZerosTypedArray(v.sizeFromShape(r.shape),c),d=0,h=o===0||o>1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<h;m++)i[f]===1?p[d++]=l[f]:p[d++]=u[f];return n.makeTensorInfo(r.shape,c,p)}var YQ={kernelName:Vl,backendName:"cpu",kernelFunc:ZQ},JQ=C.SELU_SCALEALPHA,QQ=C.SELU_SCALE,eee=xt(Bc,e=>e>=0?QQ*e:JQ*(Math.exp(e)-1)),tee={kernelName:Bc,backendName:"cpu",kernelFunc:eee},nee=xt(Wc,e=>e<0?-1:e>0?1:0),see={kernelName:Wc,backendName:"cpu",kernelFunc:nee},ree=xt(pi,e=>Math.sin(e)),aee={kernelName:pi,backendName:"cpu",kernelFunc:ree},oee=xt(Gl,e=>Math.sinh(e)),iee={kernelName:Gl,backendName:"cpu",kernelFunc:oee},lee=11920928955078125e-23,_7=Math.log(lee)+2,uee=xt(Vc,e=>{let t=e>-_7,n=e<_7,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),cee={kernelName:Vc,backendName:"cpu",kernelFunc:uee};function dee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;Te([r],"spaceToBatchND");let i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let I=1+a.length;I<r.shape.length;++I)l.push([0,0]);let u=FS.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=C.getReshaped(u.shape,a,i,!1),p=C.getPermuted(c.length,a.length,!1),d=C.getReshapedPermuted(u.shape,a,i,!1),m=Rt({inputs:{x:u},backend:n,attrs:{shape:c}}),x=As({inputs:{x:m},backend:n,attrs:{perm:p}}),w=Rt({inputs:{x},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(x),w}var pee={kernelName:Hl,backendName:"cpu",kernelFunc:dee};function hee(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values[0],[p,d,h,f,m]=dS(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(d,s.dtype,p),n.makeTensorInfo([d[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var fee={kernelName:sh,backendName:"cpu",kernelFunc:hee};function mee(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[u,c,p]=pS(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var gee={kernelName:Uc,backendName:"cpu",kernelFunc:mee};function yee(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=Xx(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var Aee={kernelName:rh,backendName:"cpu",kernelFunc:yee};function xee(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=Xx(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var bee={kernelName:ah,backendName:"cpu",kernelFunc:xee};function vee(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=C.calculateShapes(a,r,i),h=!1,f=n.bufferSync(r),m;switch(a.dtype){case"bool":{let g=n.bufferSync(a),y=Boolean(n.data.get(o.dataId).values[0]);m=Xu(f,g,i,d,c,u,l,p,y,h);break}case"float32":{let g=n.bufferSync(a),y=n.data.get(o.dataId).values[0];m=Xu(f,g,i,d,c,u,l,p,y,h);break}case"int32":{let g=n.bufferSync(a),y=n.data.get(o.dataId).values[0];m=Xu(f,g,i,d,c,u,l,p,y,h);break}case"string":{let g=n.bufferSync(a),y=v.decodeString(n.data.get(o.dataId).values[0]);m=Xu(f,g,i,d,c,u,l,p,y,h);break}default:throw new Error(`Unsupported type ${a.dtype}`)}return n.makeTensorInfo(i,m.dtype,m.values)}var wee={kernelName:oh,backendName:"cpu",kernelFunc:vee};function kee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=C.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(p=>{let d=[...c];d[i]=p;let h=ml({inputs:{x:r},backend:n,attrs:{begin:u,size:d}});return u[i]+=p,h})}var Iee={kernelName:jl,backendName:"cpu",kernelFunc:kee},See={kernelName:Gc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Te(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},Cee=xt(gi,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),Tee={kernelName:gi,backendName:"cpu",kernelFunc:Cee};function Nee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s;Te(r,"stridedSlice");let{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Pt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=Rt({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let I=Pt.computeOutShape(x,A,b),k=ml({inputs:{x:r},backend:n,attrs:{begin:x,size:I}});w=Rt({inputs:{x:k},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(k)}else{let I=n.bufferSync(r),k=fS(h,I,b,x);w=n.makeTensorInfo(f,k.dtype,k.values)}return w}var Eee={kernelName:ql,backendName:"cpu",kernelFunc:Nee};function Ree(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.data.get(c.dataId).values,h=n.data.get(p.dataId).values,[f,m]=Kx(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var _ee={kernelName:Hc,backendName:"cpu",kernelFunc:Ree};function Dee(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[u,c,p]=Zx(i,l,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",u),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var $ee={kernelName:ih,backendName:"cpu",kernelFunc:Dee};function Pee(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=Yx(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var Fee={kernelName:lh,backendName:"cpu",kernelFunc:Pee},Oee=xt(Xl,e=>Math.tan(e)),Mee={kernelName:Xl,backendName:"cpu",kernelFunc:Oee},zee=xt(mi,e=>Math.tanh(e)),Lee={kernelName:mi,backendName:"cpu",kernelFunc:zee};function Bee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Te(r,"tile");let o=gS(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var Wee={kernelName:La,backendName:"cpu",kernelFunc:Bee};function Vee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Te(r,"topk");let i=n.data.get(r.dataId).values,[l,u]=AS(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var Uee={kernelName:Kl,backendName:"cpu",kernelFunc:Vee};function Gee(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=n,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=v.computeStrides(r.shape),x=y[0],A=y[1],b=y[2],w=v.computeStrides(g),I=w[0],k=w[1],E=w[2],_=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));_.fill(l);let D=s.data.get(r.dataId).values,R=s.data.get(a.dataId).values;for(let T=0;T<c;++T){let M=a.shape[0]===1?R:R.subarray(T*8,T*8+8);for(let W=0;W<f;++W)for(let G=0;G<m;++G)for(let X=0;X<h;++X){let K,Y=M[6]*G+M[7]*W+1;if(Y===0)continue;let re=(M[0]*G+M[1]*W+M[2])/Y,ee=(M[3]*G+M[4]*W+M[5])/Y,ie=D7(re,d,i),ne=D7(ee,p,i);switch(o){case"nearest":K=Zee(D,p,d,x,A,b,T,ne,ie,X,l);break;case"bilinear":K=Yee(D,p,d,x,A,b,T,ne,ie,X,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let pe=T*I+W*k+G*E+X;_[pe]=K}return s.makeTensorInfo(g,r.dtype,_)}return{dataId:s.write(_,g,r.dtype),shape:r.shape,dtype:r.dtype}}var Hee={kernelName:Zl,backendName:"cpu",kernelFunc:Gee};function D7(e,t,n){switch(n){case"reflect":return jee(e,t);case"wrap":return qee(e,t);case"nearest":return Kee(e,t);case"constant":default:return Xee(e,t)}}function jee(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return v.clamp(0,n,t-1)}function qee(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return v.clamp(0,n,t-1)}function Xee(e,t){return e}function Kee(e,t){return v.clamp(0,e,t-1)}function mp(e,t,n,s,r,a,o,i,l,u,c){let p=o*s+i*r+l*a+u;return 0<=i&&i<t&&0<=l&&l<n?e[p]:c}function Zee(e,t,n,s,r,a,o,i,l,u,c){let p=Math.round(i),d=Math.round(l);return mp(e,t,n,s,r,a,o,p,d,u,c)}function Yee(e,t,n,s,r,a,o,i,l,u,c){let p=Math.floor(i),d=Math.floor(l),h=p+1,f=d+1,m=(f-l)*mp(e,t,n,s,r,a,o,p,d,u,c)+(l-d)*mp(e,t,n,s,r,a,o,p,f,u,c),g=(f-l)*mp(e,t,n,s,r,a,o,h,d,u,c)+(l-d)*mp(e,t,n,s,r,a,o,h,f,u,c);return(h-i)*m+(i-p)*g}function Jee(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Te(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:u}=xS(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var Qee={kernelName:C0,backendName:"cpu",kernelFunc:Jee};function ete(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==a&&(l[u++]=r.shape[h]);let c=new Array(o).fill(0),p=r.shape.slice();p[a]=1;let d=new Array(i);for(let h=0;h<d.length;h++){c[a]=h;let f=ml({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});d[h]=Rt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return d}var tte={kernelName:Yl,backendName:"cpu",kernelFunc:ete};function nte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;Te(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,u=[],c=[],p=i-l,d=a;for(let f=0;f<p;++f){let m=Gm({inputs:{input:d},backend:n,attrs:{dim:f+1}});d=m,c.push(m)}for(let f=0;f<o;++f){let m=v.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),y=UI({inputs:{a:g,b:d},backend:n}),x=Co({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),A=_2({inputs:{a:x,b:r},backend:n}),b=Uh({inputs:{x:A},backend:n,attrs:{axis:0,keepDims:!1}});u.push(b),c.push(g),c.push(y),c.push(x),c.push(A),c.push(b)}let h=PS({inputs:u,backend:n,attrs:{axis:0}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var ste={kernelName:uh,backendName:"cpu",kernelFunc:nte},rte=[nZ,KX,rZ,oZ,tK,lZ,cZ,pZ,fZ,gZ,AZ,bZ,wZ,SZ,TZ,RZ,DZ,PZ,OZ,eZ,zZ,BZ,VZ,GZ,QX,sK,jZ,ZX,XZ,ZZ,YZ,QZ,tY,sY,aY,iY,uY,dY,hY,mY,yY,xY,vY,wY,IY,CY,NY,EY,RY,_Y,PY,qK,OY,rK,GY,aK,HY,iK,YY,JY,eJ,uK,sJ,aJ,iJ,uJ,dJ,dK,hK,YX,hJ,KZ,mJ,yJ,xJ,XK,mK,yK,vJ,xK,kJ,CJ,NJ,_J,$J,FJ,OJ,vK,zJ,BJ,VJ,GJ,jJ,XJ,ZJ,kK,JJ,tQ,aQ,SK,TK,lQ,dQ,fQ,EK,gQ,AQ,xQ,FS,kQ,ZK,DK,SQ,TQ,JX,my,EQ,YK,JK,QK,_Q,$Q,FQ,MQ,LQ,BQ,VQ,PK,GQ,KQ,YQ,tee,OK,see,aee,iee,MK,sQ,cee,pee,fee,gee,Aee,bee,wee,Iee,BK,See,VK,Tee,Eee,_ee,$ee,Fee,jK,DY,Mee,Lee,Wee,Uee,Hee,RK,Qee,tte,ste,yQ];for(let e of rte)pr(e);var OS={};Ve(OS,{assertNotComplex:()=>ud,bindCanvasToFramebuffer:()=>mte,bindColorTextureToFramebuffer:()=>fm,bindTextureToProgramUniformSampler:()=>YS,bindTextureUnit:()=>XS,bindVertexBufferToProgramAttribute:()=>yy,callAndCheck:()=>Ie,canBeRepresented:()=>MS,createFragmentShader:()=>BS,createFramebuffer:()=>qS,createProgram:()=>WS,createStaticIndexBuffer:()=>GS,createStaticVertexBuffer:()=>US,createTexture:()=>HS,createVertexShader:()=>LS,getBatchDim:()=>gl,getExtensionOrThrow:()=>gp,getFramebufferErrorMessage:()=>JS,getMaxTexturesInShader:()=>n9,getNumChannels:()=>hte,getProgramUniformLocation:()=>ZS,getProgramUniformLocationOrThrow:()=>KS,getRowsCols:()=>yl,getShapeAs3D:()=>mm,getTextureShapeFromLogicalShape:()=>e9,getWebGLDisjointQueryTimerVersion:()=>s9,getWebGLErrorMessage:()=>zS,getWebGLMaxTextureSize:()=>t9,hasExtension:()=>qs,isCapableOfRenderingToFloatTexture:()=>r9,isDownloadFloatTextureEnabled:()=>a9,isReshapeFree:()=>Bp,isWebGLFenceEnabled:()=>o9,isWebGLVersionEnabled:()=>xy,linkProgram:()=>VS,logShaderSourceAndInfoLog:()=>sb,resetMaxTextureSize:()=>gte,resetMaxTexturesInShader:()=>yte,unbindColorTextureFromFramebuffer:()=>Ay,unbindTextureUnit:()=>fte,validateFramebuffer:()=>yp,validateProgram:()=>hm,validateTextureSize:()=>jS});var Ji={},rm={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function D2(e,t){Ji[e]=t}function Mr(e,t){if(!(e in Ji)||t!=null){let s=ote(e,t);if(s!==null)Ji[e]=s;else return console.log("Could not get context for WebGL version",e),null}let n=Ji[e];return n==null||n.isContextLost()?(delete Ji[e],Mr(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),Ji[e])}function ate(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function ote(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?ate(e):t;return n.addEventListener("webglcontextlost",s=>{s.preventDefault(),delete Ji[e]},!1),H().getBool("SOFTWARE_WEBGL_ENABLED")&&(rm.failIfMajorPerformanceCaveat=!1),e===1?n.getContext("webgl",rm)||n.getContext("experimental-webgl",rm):n.getContext("webgl2",rm)}var Lp;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Lp||(Lp={}));var js;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(js||(js={}));var Sn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Sn||(Sn={}));function Gh(e,t){return[t,e]}function ite(e,t){return e*t}function am(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function ld(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function lte(e,t){let[n,s]=ld(e,t);return n*s*4}function nb(e,t){let n=e,s,r,a,o,i,l,u,c,p,d;return H().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,u=4,c=1,p=n.HALF_FLOAT,d=n.FLOAT,l=n.RGBA8):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,u=4,c=4,p=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT,l=e.RGBA),{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:d}}function Ie(e,t){let n=t();return H().getBool("DEBUG")&&ute(e),n}function ute(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+zS(e,t))}var cte=596e-10,dte=65504;function MS(e){return!!(H().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||cte<Math.abs(e)&&Math.abs(e)<dte)}function zS(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function gp(e,t){return Va(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function LS(e,t){let n=Va(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function BS(e,t){let n=Va(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),H().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw sb(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var pte=/ERROR: [0-9]+:([0-9]+):/g;function sb(e,t){let n=pte.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
|
|
`),a=r.length.toString().length+2,o=r.map((p,d)=>v.rightPad((d+1).toString(),a)+p),i=0;for(let p=0;p<o.length;p++)i=Math.max(o[p].length,i);let l=o.slice(0,s-1),u=o.slice(s-1,s),c=o.slice(s);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${v.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function WS(e){return Va(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function VS(e,t){if(Ie(e,()=>e.linkProgram(t)),!H().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function hm(e,t){if(Ie(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function US(e,t){let n=Va(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function GS(e,t){let n=Va(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function hte(){return H().getNumber("WEBGL_VERSION")===2?1:4}function HS(e){return Va(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function jS(e,t){let n=H().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function qS(e){return Va(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function yy(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),Ie(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),Ie(e,()=>e.enableVertexAttribArray(i)),!0)}function XS(e,t,n){QS(e,n),Ie(e,()=>e.activeTexture(e.TEXTURE0+n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function fte(e,t){QS(e,t),Ie(e,()=>e.activeTexture(e.TEXTURE0+t)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function KS(e,t,n){return Va(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function ZS(e,t,n){return e.getUniformLocation(t,n)}function YS(e,t,n,s){Ie(e,()=>XS(e,t,s)),Ie(e,()=>e.uniform1i(n,s))}function mte(e){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),Ie(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function fm(e,t,n){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function Ay(e,t){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function yp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+JS(e,t))}function JS(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Va(e,t,n){let s=Ie(e,()=>t());if(s==null)throw new Error(n);return s}function QS(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function gl(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function yl(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function mm(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[gl(e),...yl(e)]),t}function e9(e,t=!1){let n=H().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?v.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let s=v.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=gl(e),a=2,o=2;return e.length&&([a,o]=yl(e)),s=r*(a/2)*(o/2),v.sizeToSquarishShape(s).map(i=>i*2)}return v.sizeToSquarishShape(s)}function om(e){return e%2===0}function Bp(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||om(n)&&om(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&om(e[0])&&om(t[0])}var gm,ym;function t9(e){if(gm==null){let t=Mr(e);gm=t.getParameter(t.MAX_TEXTURE_SIZE)}return gm}function gte(){gm=null}function yte(){ym=null}function n9(e){if(ym==null){let t=Mr(e);ym=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,ym)}function s9(e){if(e===0)return 0;let t,n=Mr(e);return qs(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:qs(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function qs(e,t){return e.getExtension(t)!=null}function xy(e){try{if(Mr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function r9(e){if(e===0)return!1;let t=Mr(e);if(e===1){if(!qs(t,"OES_texture_float"))return!1}else if(!qs(t,"EXT_color_buffer_float"))return!1;return by(t)}function a9(e){if(e===0)return!1;let t=Mr(e);if(e===1){if(!qs(t,"OES_texture_float")||!qs(t,"WEBGL_color_buffer_float"))return!1}else{if(qs(t,"EXT_color_buffer_float"))return by(t);let s="EXT_color_buffer_half_float";if(qs(t,s)){let r=t.getExtension(s);return Ate(t,r)}return!1}return by(t)}function by(e){let t=nb(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function Ate(e,t){let n=nb(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function o9(e){return e!==2?!1:Mr(e).fenceSync!=null}function ud(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Pe=H();Pe.registerFlag("HAS_WEBGL",()=>Pe.getNumber("WEBGL_VERSION")>0);Pe.registerFlag("WEBGL_VERSION",()=>xy(2)?2:xy(1)?1:0);Pe.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Pe.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Pe.get("WEBGL_VERSION")===2);Pe.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Pe.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Pe.registerFlag("WEBGL_PACK",()=>Pe.getBool("HAS_WEBGL"));Pe.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_CLIP",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_REDUCE",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_LAZILY_UNPACK",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_CONV_IM2COL",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>t9(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>n9(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Pe.getNumber("WEBGL_VERSION");return e===0?0:s9(e)});Pe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Pe.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!hh.isMobile());Pe.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>r9(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Pe.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Pe.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Pe.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>a9(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_FENCE_API_ENABLED",()=>o9(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Pe.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Pe.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Pe.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>hh.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Pe.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Pe.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Pe.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Pe.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);Pe.registerFlag("WEBGL_EXP_CONV",()=>!1);Pe.registerFlag("SOFTWARE_WEBGL_ENABLED",()=>Pe.getBool("IS_TEST"));function os(){let e,t,n,s,r,a,o,i,l,u;return H().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
|
|
bool isnan_custom(float val) {
|
|
uint floatToUint = floatBitsToUint(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function cu(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function $2(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function xte(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function bte(e,t,n="index"){let s=e.map((a,o)=>o),r=xte(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function rb(e){let t=v.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function ab(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var i9=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:l9}=C;function vte(e,t,n){let s=[];if(e.forEach(h=>{let f=v.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=ob(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
|
|
`),a=e.map(h=>wte(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),o=t.texShape,i=os(),l=Ste(i),u,c,p=Nte(i);return t.isPacked?(u=kte(t.logicalShape,o,n.enableShapeUniforms),c=Tte(i)):(u=Ite(t.logicalShape,o,n.enableShapeUniforms),c=Cte(i)),n.packedInputs&&(p+=Dte),[p,l,c,r,u,a,n.userCode].join(`
|
|
`)}function cd(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return Gte(e,t);case 1:return jte(e,t);case 2:return Xte(e,t);case 3:return Zte(e,t);case 4:return Jte(e,t);case 5:return Qte(e);case 6:return ene(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function u9(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return Ute(e);case 1:return Hte(e,t);case 2:return qte(e,t);case 3:return Kte(e,t);default:return Yte(e,t)}}function wte(e,t,n=!1,s){let r="";n?r+=u9(e,s):r+=cd(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=tne(e,t):r+=nne(e,t)),r}function kte(e,t,n){switch(e.length){case 0:return c9();case 1:return $te(e,t,n);case 2:return Wte(e,t,n);case 3:return Fte(e,t,n);default:return Mte(e,t,n)}}function Ite(e,t,n){switch(e.length){case 0:return c9();case 1:return Pte(e,t,n);case 2:return Vte(e,t,n);case 3:return Ote(e,t,n);case 4:return zte(e,t,n);case 5:return Lte(e,t);case 6:return Bte(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function Ste(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function Cte(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function Tte(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function Nte(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${Ete}
|
|
${Rte}
|
|
${_te}
|
|
`}var Ete=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Rte=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,_te=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Dte=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function c9(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function $te(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${s[1]}.0);
|
|
}
|
|
`:s[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${s[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
|
|
}
|
|
`}function Pte(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function Fte(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function Ote(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${$2(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let s=cu(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function Mte(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let u=2;u<e.length-1;u++)o*=e[e.length-u-1],i=`
|
|
int b${u} = index / ${o};
|
|
index -= b${u} * ${o};
|
|
`+i,l=`b${u}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function zte(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${$2(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let s=cu(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function Lte(e,t){let n=cu(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function Bte(e,t){let n=cu(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function Wte(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Vte(e,t,n){return v.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function du(e){return`offset${e}`}function Ute(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=os();return`
|
|
vec4 ${n}() {
|
|
return ${s.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function Gte(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${s}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=du(n);if(t)return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[i,l]=e.shapeInfo.texShape;return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Hte(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=os();if(t)return`
|
|
vec4 ${s}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${s}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${o[0]}, ${o[1]}, index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`}function jte(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int index) {
|
|
${dd(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
|
|
float ${s}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=du(n);return o===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:a===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function qte(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=os();if(a!=null&&v.arraysEqual(n,a))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;let u=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],c=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${c}, ${u[0]}, ${u[1]}, row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`}function Xte(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&v.arraysEqual(n,a)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let d=a[0],h=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}let{newShape:o,keptDims:i}=v.squeezeShape(n),l=o;if(l.length<n.length){let d=pd(e,l),h=["row","col"];return`
|
|
${cd(d,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${hd(h,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${dd(e)}
|
|
}
|
|
`;let u=a[0],c=a[1],p=du(s);return c===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s}Shape[1] + col + ${p};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${p};
|
|
vec2 uv = uvFromFlat(${u}, ${c}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function Kte(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let d=n.slice(1),h=[1,2],f=pd(e,d),m=["b","row","col"];return`
|
|
${u9(f,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${hd(m,h)});
|
|
}
|
|
`}let i=os();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`;let l=o[0],u=o[1],c=Math.ceil(n[2]/2),p=c*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${u}, ${p}, ${c}, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`}function Zte(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=v.squeezeShape(n),u=i;if(u.length<n.length){let m=pd(e,u),g=["row","col","depth"];return`
|
|
${cd(m,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${hd(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${o}, 1)));
|
|
${dd(e)}
|
|
}
|
|
`;let c=e.shapeInfo.texShape,p=c[0],d=c[1],h=e.shapeInfo.flatOffset;if(d===a&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${s}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(d===o&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${d}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let f=du(s);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${s}Shape[1] * ${s}Shape[2];
|
|
int stride1 = ${s}Shape[2];
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${d}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function Yte(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=os();if(t)return`
|
|
vec4 ${s}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],u=l[0],c=l[1],p=Math.ceil(a[o-1]/2),d=p*Math.ceil(a[o-2]/2),h="int b, int row, int col",f=`b * ${d} + (row / 2) * ${p} + (col / 2)`;for(let m=2;m<o-1;m++)h=`int b${m}, `+h,d*=a[o-m-1],f=`b${m} * ${d} + `+f;return`
|
|
vec4 ${s}(${h}) {
|
|
int index = ${f};
|
|
int texR = index / ${c};
|
|
int texC = index - texR * ${c};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${u});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function Jte(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:u}=v.squeezeShape(n);if(l.length<n.length){let x=pd(e,l),A=["row","col","depth","depth2"];return`
|
|
${cd(x,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${hd(A,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, 1)));
|
|
${dd(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===i&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${o}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(h===a&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let y=du(s);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${y});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${d}, ${h}, index + ${y});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function Qte(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let m=pd(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${cd(m)}
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${s}(${hd(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, ${r})) +
|
|
depth3;
|
|
${dd(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1];if(h===i&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${o}, ${a}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=du(n);return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} + depth * ${a} +
|
|
depth2 * ${r} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function ene(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=v.squeezeShape(t);if(r.length<t.length){let g=pd(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${cd(g)}
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${s}(${hd(y,a)});
|
|
}
|
|
`}let o=t[5],i=t[4]*o,l=t[3]*i,u=t[2]*l,c=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${u}, ${l}, ${i})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${o}, 1)));
|
|
${dd(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],f=d[1];if(f===c&&p==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${i}, ${o})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===o&&p==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=du(n);return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${u} + depth * ${l} +
|
|
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${h}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function dd(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function tne(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=l9(e.shapeInfo.logicalShape,t.logicalShape),l=vt(o),u=o-a,c,p=["x","y","z","w","u","v"];a===0?c="":o<2&&i.length>=1?c="coords = 0;":c=i.map(x=>`coords.${p[x+u]} = 0;`).join(`
|
|
`);let d="";o<2&&a>0?d="coords":d=e.shapeInfo.logicalShape.map((x,A)=>`coords.${p[A+u]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,y=v.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!y)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!y)o===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(i.length){let x=a-2,A=a-1;i.indexOf(x)>-1&&i.indexOf(A)>-1?h="return vec4(outputValue.x);":i.indexOf(x)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(A)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${s}(${d});
|
|
${h}
|
|
}
|
|
`}function nne(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(o,a))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=vt(l),c=l9(e.shapeInfo.logicalShape,t.logicalShape),p=l-i,d,h=["x","y","z","w","u","v"];i===0?d="":l<2&&c.length>=1?d="coords = 0;":d=c.map(m=>`coords.${h[m+p]} = 0;`).join(`
|
|
`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+p]}`).join(", "),`
|
|
float ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${d}
|
|
return get${s}(${f});
|
|
}
|
|
`}function vt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function ob(e,t,n){let{newShape:s,keptDims:r}=v.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!v.arraysEqual(t,n)&&s.length<a||o;return{useSqueezeShape:l,uniformShape:l?i:t,keptDims:r}}function pd(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function hd(e,t){return t.map(n=>e[n]).join(", ")}function sne(e,t,n,s){let r=n.map((c,p)=>{let d={logicalShape:c.shape,texShape:c.isUniform?null:c.texData.texShape,isUniform:c.isUniform,isPacked:c.isUniform?!1:c.texData.isPacked,flatOffset:null};return c.texData!=null&&c.texData.slice!=null&&c.texData.slice.flatOffset>0&&(d.flatOffset=c.texData.slice.flatOffset),{name:t.variableNames[p],shapeInfo:d}}),a=r.map(c=>c.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=vte(r,o,t),l=BS(e.gl,i),u=e.createProgram(l);return H().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:i,webGLProgram:u,inShapeInfos:a,outShapeInfo:o,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:l,source:i,webGLProgram:u,inShapeInfos:a,outShapeInfo:o},d9(e,t,u))}function d9(e,t,n){let s={},r={},a={},o=[],i,l,u,c=null,p=null;p=e.getUniformLocation(n,"NAN",!1),H().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(n,"INFINITY",!1));let d=!1;for(let h=0;h<t.variableNames.length;h++){let f=t.variableNames[h];s[f]=e.getUniformLocation(n,f,d),s[`offset${f}`]=e.getUniformLocation(n,`offset${f}`,d),t.enableShapeUniforms&&(r[`${f}Shape`]=e.getUniformLocation(n,`${f}Shape`,d),a[`${f}TexShape`]=e.getUniformLocation(n,`${f}TexShape`,d))}return t.enableShapeUniforms&&(i=e.getUniformLocation(n,"outShape",d),u=e.getUniformLocation(n,"outShapeStrides",d),l=e.getUniformLocation(n,"outTexShape",d)),t.customUniforms&&t.customUniforms.forEach((h,f)=>{o[f]=e.getUniformLocation(n,h.name,d)}),{uniformLocations:s,customUniformLocations:o,infLoc:c,nanLoc:p,inShapesLocations:r,inTexShapesLocations:a,outShapeLocation:i,outShapeStridesLocation:u,outTexShapeLocation:l}}function $7(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!v.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!v.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function rne(e,t,n,s,r){t.program.enableShapeUniforms||($7(t.inShapeInfos,n),$7([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a.texture,o[0],o[1]):e.setOutputMatrixTexture(a.texture,o[0],o[1]),e.setProgram(t.webGLProgram),H().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let c=t.program.variableNames[u],p=t.uniformLocations[c],d=t.uniformLocations[`offset${c}`],h=t.inShapesLocations[`${c}Shape`],f=t.inTexShapesLocations[`${c}TexShape`];if(h){let{uniformShape:m}=ob(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),p!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(p,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(p,m)}return}l.texData.slice!=null&&d!=null&&e.gl.uniform1i(d,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,p,u)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let c=t.customUniformLocations[u],p=r[u];if(l.type==="float")e.gl.uniform1fv(c,p);else if(l.type==="vec2")e.gl.uniform2fv(c,p);else if(l.type==="vec3")e.gl.uniform3fv(c,p);else if(l.type==="vec4")e.gl.uniform4fv(c,p);else if(l.type==="int")e.gl.uniform1iv(c,p);else if(l.type==="ivec2")e.gl.uniform2iv(c,p);else if(l.type==="ivec3")e.gl.uniform3iv(c,p);else if(l.type==="ivec4")e.gl.uniform4iv(c,p);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function ane(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:u,uniformShape:c,keptDims:p}=ob(e.packedInputs,o.shape,l),d="",h="",f="";if(c.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];d=`${w[0]>1}_${w[1]>1}`}else if(c.length===2&&!e.packedInputs)h=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!e.packedInputs){let w=v.computeStrides(c);f=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let m=o.shape.length,g=c.length===2&&v.arraysEqual(o.shape,l),y=v.sizeFromShape(o.shape)===1,x=C.getBroadcastDims(o.shape,n.shape),A=!e.packedInputs&&m===n.shape.length&&v.arraysEqual(l,n.texData.texShape),b=e.packedInputs||c.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${A}_${u?p:""}_${c.length}_${y}_${x}_${g}_${d}_${h}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${H().getNumber("WEBGL_VERSION")}`,a}function is(e){return H().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var one=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Lp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=os();this.outputShape=e,this.enableShapeUniforms=is(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?$2(["r","c","d"],e):cu(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},ine=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Lp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=os();this.outputShape=e,this.enableShapeUniforms=is(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?$2(["r","c","d"],e):cu(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},lne=class{constructor(e){this.variableNames=["A"],this.outTexUsage=js.DOWNLOAD;let t=os();this.outputShape=e,this.userCode=`
|
|
${i9}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},une=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=js.DOWNLOAD;let t=os();this.outputShape=e,this.userCode=`
|
|
${i9}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},cne=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=os();this.outputShape=e,this.enableShapeUniforms=is(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?ab():rb(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${s}, 0., 0., 0.);
|
|
}
|
|
`}},dne=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=os();this.outputShape=e,this.enableShapeUniforms=is(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${o};
|
|
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${a};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${i}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${i}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${i}] = values[2];
|
|
} else {
|
|
result[${i}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?ab():rb(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${s}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},p9={};Ve(p9,{bindVertexProgramAttributeStreams:()=>v9,createBufferFromOutputTexture:()=>I9,createFloat16MatrixTexture:()=>y9,createFloat16PackedMatrixTexture:()=>b9,createFloat32MatrixTexture:()=>g9,createIndexBuffer:()=>m9,createPackedMatrixTexture:()=>x9,createUnsignedBytesMatrixTexture:()=>A9,createVertexBuffer:()=>f9,createVertexShader:()=>h9,downloadByteEncodedFloatMatrixFromOutputTexture:()=>C9,downloadFloat32MatrixFromBuffer:()=>S9,downloadMatrixFromPackedOutputTexture:()=>N9,downloadPackedMatrixFromBuffer:()=>T9,getInternalFormatForFloat16MatrixTexture:()=>lb,getInternalFormatForFloat16PackedMatrixTexture:()=>db,getInternalFormatForFloat32MatrixTexture:()=>ib,getInternalFormatForPackedMatrixTexture:()=>cb,getInternalFormatForUnsignedBytesMatrixTexture:()=>ub,uploadDenseMatrixToTexture:()=>w9,uploadPixelDataToTexture:()=>k9});function h9(e){let t=os(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return LS(e,n)}function f9(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return US(e,t)}function m9(e){let t=new Uint16Array([0,1,2,2,1,3]);return GS(e,t)}function Hh(e,t,n,s,r,a){jS(t,n);let o=HS(e),i=e.TEXTURE_2D;return Ie(e,()=>e.bindTexture(i,o)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),H().getNumber("WEBGL_VERSION")===1?Ie(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)):Ie(e,()=>e.texStorage2D(i,1,s,t,n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:o,texShape:[n,t]}}function ib(e){return e.internalFormatFloat}function g9(e,t,n,s){let[r,a]=Gh(t,n);return Hh(e,r,a,ib(s),s.textureFormatFloat,e.FLOAT)}function lb(e){return e.internalFormatHalfFloat}function y9(e,t,n,s){let[r,a]=Gh(t,n);return Hh(e,r,a,lb(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function ub(e){return e.downloadTextureFormat}function A9(e,t,n,s){let[r,a]=Gh(t,n);return Hh(e,r,a,ub(s),e.RGBA,e.UNSIGNED_BYTE)}function cb(e){return e.internalFormatPackedFloat}function x9(e,t,n,s){let[r,a]=ld(t,n);return Hh(e,r,a,cb(s),e.RGBA,e.FLOAT)}function db(e){return e.internalFormatPackedHalfFloat}function b9(e,t,n,s){let[r,a]=ld(t,n);return Hh(e,r,a,db(s),e.RGBA,s.textureTypeHalfFloat)}function v9(e,t,n){return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),yy(e,t,"clipSpacePos",n,3,20,0)&&yy(e,t,"uv",n,2,20,12)}function w9(e,t,n,s,r,a){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),H().getNumber("WEBGL_VERSION")===2?Ie(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,s,e.RGBA,i,o)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function k9(e,t,n){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?H().getNumber("WEBGL_VERSION")===2?Ie(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):H().getNumber("WEBGL_VERSION")===2?Ie(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function I9(e,t,n,s){let r=e.createBuffer();Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return Ie(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function S9(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function C9(e,t,n,s){let[r,a]=Gh(t,n),o=4,i=new Uint8Array(ite(t*n,o));return Ie(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function T9(e,t,n,s,r,a,o,i){let l=e,u=new Float32Array(lte(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function N9(e,t,n){let s=new Float32Array(t*n*4);return Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var Qu=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=H().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,D2(t,e)):this.gl=Mr(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),H().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=gp(this.gl,r),qs(this.gl,a))this.textureHalfFloatExtension=gp(this.gl,a);else if(H().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),qs(this.gl,s))this.colorBufferHalfFloatExtension=gp(this.gl,s);else if(H().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",qs(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(qs(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=f9(this.gl),this.indexBuffer=m9(this.gl),this.framebuffer=qS(this.gl),this.textureConfig=nb(this.gl,this.textureHalfFloatExtension)}get debug(){return H().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ie(e,()=>e.finish()),Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.deleteFramebuffer(this.framebuffer)),Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ie(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),g9(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),y9(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),A9(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),k9(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),w9(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),b9(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),x9(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(Ay(this.gl,this.framebuffer),this.outputTexture=null),Ie(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>C9(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return T9(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return S9(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=I9(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(H().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>N9(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=h9(t));let n=WS(t);return Ie(t,()=>t.attachShader(n,this.vertexShader)),Ie(t,()=>t.attachShader(n,e)),VS(t,n),this.debug&&hm(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=v9(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ie(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&hm(this.gl,this.program),Ie(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?KS(this.gl,e,t):ZS(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ie(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),YS(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=ld(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&hm(this.gl,this.program),yp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ie(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=gp(this.gl,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=pne(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),fm(this.gl,e,this.framebuffer),this.debug&&yp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(fm(this.gl,this.outputTexture,this.framebuffer),this.debug&&yp(this.gl)):Ay(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;fm(s,e,this.framebuffer),this.debug&&yp(s),this.outputTexture=e,Ie(s,()=>s.viewport(0,0,t,n)),Ie(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function pne(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:hne,bincountImpl:E9,bincountReduceImpl:fne,castImpl:mne,ceilImpl:gne,concatImpl:yne,equalImpl:Ane,expImpl:xne,expm1Impl:bne,floorImpl:vne,gatherNdImpl:wne,gatherV2Impl:kne,greaterImpl:Ine,greaterEqualImpl:Sne,lessImpl:Cne,lessEqualImpl:Tne,linSpaceImpl:Nne,logImpl:Ene,maxImpl:Rne,maximumImpl:_ne,minimumImpl:Dne,multiplyImpl:$ne,negImpl:Pne,notEqualImpl:Fne,prodImpl:One,raggedTensorToTensorImpl:Mne,rangeImpl:zne,rsqrtImpl:Lne,scatterImpl:Bne,sigmoidImpl:Wne,simpleAbsImpl:R9,sliceImpl:Vne,sparseFillEmptyRowsImpl:Une,sparseReshapeImpl:Gne,sparseSegmentReductionImpl:_9,sqrtImpl:Hne,stridedSliceImpl:jne,stringNGramsImpl:qne,stringSplitImpl:Xne,stringToHashBucketFastImpl:Kne,subImpl:Zne,tileImpl:Yne,topKImpl:Jne,transposeImpl:pb,uniqueImpl:Qne}=OI;function D9(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function ns(e,t){return t===1?[e]:D9(e,t)}function ese(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var tse=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=is(this.outputShape.length),this.rank===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let t=ns("rc",this.rank),n=vt(this.rank),s=this.getOutOfBoundsCondition(t),r=this.getSetup(t),a=this.getOutput(t);this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
|
|
if(${s}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${r}
|
|
|
|
setOutput(vec4(${a}));
|
|
}
|
|
}
|
|
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let s=0;s<=1;s++){let r=`${n===0?"r":"rp1"}, ${s===0?"c":"cp1"}`;for(let a=2;a<this.rank;a++)r=`${e[e.length-1-a]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],s=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
|
|
int r = ${t[0]};
|
|
int c = ${t[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${n};
|
|
bool rEdge = rp1 >= ${s};
|
|
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
|
|
cEdge ? 0. : getA(${t[1]}),
|
|
rEdge ? 0. : getA(${t[2]}),
|
|
rEdge || cEdge ? 0. : getA(${t[3]})`}},$9=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=is(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2===1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${s}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${s>0?"}":""}
|
|
`}this.userCode=`
|
|
${nse(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?ab():rb(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function nse(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?bte(["r","c","d"],"inputShape"):cu(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var sse=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=F7(t,n),r=O7(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=P7(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===Sn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===Sn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===Sn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===Sn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===Sn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=F7(n,s),a=O7(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=P7(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=H().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function rse(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function P7(e,t,n,s,r){let a=ase(t,s),o;if(r){let[l,u]=ld(e[0],e[1]);o=l*u}else{let[l,u]=Gh(e[0],e[1]);o=l*u}let i=rse(n,a);return o*i}function ase(e,t){switch(e){case Sn.PACKED_2X2_FLOAT32:return cb(t);case Sn.PACKED_2X2_FLOAT16:return db(t);case Sn.UNPACKED_FLOAT32:return ib(t);case Sn.UNPACKED_FLOAT16:return lb(t);case Sn.PACKED_4X1_UNSIGNED_BYTE:return ub(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function ose(e){return H().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Sn.PACKED_2X2_FLOAT32:Sn.UNPACKED_FLOAT32:e?Sn.PACKED_2X2_FLOAT16:Sn.UNPACKED_FLOAT16}function F7(e,t){if(e===js.UPLOAD)return Sn.PACKED_2X2_FLOAT32;if(e===js.RENDER||e==null)return ose(t);if(e===js.DOWNLOAD||e===js.PIXELS)return Sn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function O7(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Aa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=is(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},mr="if (isnan(x)) return x;",ise="return x;",M7="return abs(x);",lse="return (x >= 0.0) ? x : (exp(x) - 1.0);",use=mr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,cse=mr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Vu="return x;",dse="return 1.0 / (1.0 + exp(-1.0 * x));",pse="return x;",hse=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,fse=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,mse=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,gse="return 1.0 / (1.0 + exp(-1.0 * x));",tl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=is(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},yse=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=is(this.outputShape.length);let t=e.length,n=ns("rc",t),s=vt(t),r=ese(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${o}));
|
|
}
|
|
`}},Ase=hr.whereImpl,xse=1e-7,bse=1e-4,im={};function vse(e){return e in im||(im[e]={}),im[e]}var wse=H().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),kse=600;function Ise(){return H().global.screen==null?1024:H().global.screen.height*H().global.screen.width*window.devicePixelRatio*kse/1024/1024}var fd=class extends yc{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!H().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof Qu)t=e;else{let n=Mr(H().getNumber("WEBGL_VERSION"),e);t=new Qu(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Mr(H().getNumber("WEBGL_VERSION"));t=new Qu(n),this.binaryCache=vse(H().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new sse(this.gpgpu),this.numMBBeforeWarning=Ise(),this.texData=new jp(this,sn())}nextDataId(){return fd.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((H().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||H().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:js.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(H().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:js.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let p;i?p=new tl(o,Vu):p=new Aa(o,Vu);let d=this.runWebGLProgram(p,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let c;if(s==="complex64"){let p=this.readSync(r.real.dataId),d=this.readSync(r.imag.dataId);c=C.mergeRealAndImagArrays(p,d)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new tl(s,Vu):h=new Aa(s,Vu);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(H().getBool("DEBUG")&&!H().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&H().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(a!=="complex64"&&H().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...am(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];c=C.mergeRealAndImagArrays(f,m)}else if(l==null)c=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(s);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;Ie(h,()=>h.deleteBuffer(l))}let p=this.convertAndCacheOnCPU(e,c),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&sn().removeDataId(e,this),this.pendingDeletes--),p}readToGPU(e,t={}){let n=this.texData.get(e),{values:s,shape:r,slice:a,dtype:o,isPacked:i,texture:l}=n;if(o==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(a!=null){let d;i?d=new tl(r,Vu):d=new Aa(r,Vu);let h=this.runWebGLProgram(d,[{dataId:e,shape:r,dtype:o}],o),f=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),f}if(l==null)throw s!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),c=sn().makeTensorFromTensorInfo(u),p=this.texData.get(u.dataId);return Object.assign({tensorRef:c},p.texture)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>v.decodeString(s));return De(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return De(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!MS(n))throw H().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=v.sizeFromShape(t);if(H().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),d=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(d.texture.texture,...am(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let a=H().getBool("WEBGL_PACK")&&s===!0,o=a?mm(t):t,i=a?new une(o):new lne(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),c}timerAvailable(){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=v.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=wse){return H().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return Ase(e.shape,t)}packedUnaryOp(e,t,n){let s=new tl(e.shape,t),r=this.compileAndRun(s,[e],n);return sn().makeTensorFromTensorInfo(r)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=R9(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(H().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,M7,e.dtype);let t=new Aa(e.shape,M7),n=this.compileAndRun(t,[e]);return sn().makeTensorFromTensorInfo(n)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){return sn().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,n),this)}unpackTensor(e){let t=new yse(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new tse(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[gl(e.shape),...yl(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[gl(t),...yl(t)],a=new $9(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:s,shape:r,dtype:a}=n;if(t!=null){let p=v.sizeFromShape(r),d=t[0]*t[1]*4;v.assert(p<=d,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let o=mm(r),i;s?i=new ine(o):i=new one(o);let l=!0,u=[t!=null?t:am(o)],c=this.runWebGLProgram(i,[{shape:o,dtype:a,dataId:e}],a,u,l,t);return{dtype:a,shape:r,dataId:c.dataId}}runWebGLProgram(e,t,n,s,r=!1,a){let o=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(o.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===Lp.DENSE){let g=a!=null?a:am(e.outputShape);i.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),v.sizeFromShape(o.shape)===0)return i.values=v.getTypedArrayFromDType(o.dtype,0),o;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=H().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!Bp(y.shape,g.shape)){let x=g,A=g.shape;g.shape=y.shape,g=this.packedReshape(g,A),l.push(g),y=this.texData.get(g.dataId),x.shape=A}return{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(o.dataId);let c={shape:o.shape,texData:i,isUniform:!1},p=ane(e,u,c),d=this.getAndSaveBinary(p,()=>sne(this.gpgpu,e,u,c)),h=this.activeTimers!=null,f;h&&(f=this.startTimer()),H().get("ENGINE_COMPILE_ONLY")||rne(this.gpgpu,d,u,c,s),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(f=this.endTimer(f),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(f)}));let m=H().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let g=v.now();g-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!H().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let g=this.unpackTensor(o);return this.disposeIntermediateTensorInfo(o),g}return o}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(H().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=Z(()=>{if(!H().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=H().getBool("DEBUG");H().set("DEBUG",!1);let t=this.abs(Ce(1e-8)).dataSync()[0];if(H().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?xse:bse}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let c=t.texShape;if(c==null&&(c=e9(n,i),t.texShape=c),r!=null){let p=mm(n),d,h=c[1],f=c[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(i||!m)&&([h,f]=ld(c[0],c[1])),i?d=new dne(p,m):d=new cne(p,m);let g=m?[f,h]:c,y=this.makeTensorInfo(g,s),x=this.texData.get(y.dataId);m?x.usage=js.PIXELS:x.usage=js.UPLOAD,x.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),h,f,r);let A=[[f,h]],b=!0,w=this.runWebGLProgram(d,[y],s,A,b),I=this.texData.get(w.dataId);t.texShape=I.texShape,t.isPacked=I.isPacked,t.usage=I.usage,H().get("ENGINE_COMPILE_ONLY")?this.disposeData(w.dataId):(t.texture=I.texture,t.values=null,this.texData.delete(w.dataId)),this.disposeIntermediateTensorInfo(y),l&&(this.uploadWaitMs+=v.now()-u)}else{let p=this.acquireTexture(c,o,s,i);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=Sse(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(s=>{try{this.checkCompletion_(t),s(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await u5(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(sb(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:n,infLoc:s,nanLoc:r,inShapesLocations:a,inTexShapesLocations:o,outShapeLocation:i,outShapeStridesLocation:l,outTexShapeLocation:u}=d9(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=n,e.infLoc=s,e.nanLoc=r,e.inShapesLocations=a,e.inTexShapesLocations=o,e.outShapeLocation=i,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}};fd.nextDataId=0;function Sse(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var Cse="3.20.0";function P9(){H().set("WEBGL_FORCE_F16_TEXTURES",!0)}hh.isBrowser()&&eu("webgl",()=>new fd,2);var Tse={forceHalfFloat:P9},F9=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,gc=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=is(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},P2=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,jh=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=is(r);let a="";if(s)if(r===0||v.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${vt(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?a+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=ns("coords",r);this.enableShapeUniforms?a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Fs(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var Nse={kernelName:Xo,backendName:"webgl",kernelFunc:Fs};function ki(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=Fs({inputs:{x:s},backend:n}),l=Fs({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var Ese={kernelName:Xp,backendName:"webgl",kernelFunc:ki},O9="return (a < 0.) ? b * a : a;",M9=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function Rse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),i=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new jh(M9,r.shape,o.shape):new gc(O9,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],"float32");return n.disposeIntermediateTensorInfo(o),l}var _se={kernelName:Ko,backendName:"webgl",kernelFunc:Rse},z9="return (a < 0.) ? b * a : a;",L9=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function Dse(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new jh(L9,s.shape,r.shape):new gc(z9,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],"float32")}var $se={kernelName:oi,backendName:"webgl",kernelFunc:Dse},md="if (isnan(x)) return x;",Pse=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Fse=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function dt({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let p=i.texData.get(o.dataId),d=n(p.values,l);return i.makeTensorInfo(o.shape,l,d)}let u=H().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new tl(o.shape,t):c=new Aa(o.shape,e),i.runWebGLProgram(c,[o],l)}}function Dn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:u}=o,c=i;if(s&&l.dtype==="complex64"){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[g,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(A=>{let[b,w]=A,I={dataId:b.dataId,dtype:b.dtype,shape:l.shape},k={dataId:w.dataId,dtype:w.dtype,shape:u.shape},E=new gc(e,l.shape,u.shape);return c.runWebGLProgram(E,[I,k],Nn(b.dtype,w.dtype))}),x=ki({inputs:{real:g,imag:y},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(y),x}let p=a||Nn(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||c.shouldExecuteOnCPU([l,u]))&&r!=null){let f=c.texData.get(l.dataId).values,m=c.texData.get(u.dataId).values,g=l.dtype==="string"?C.fromUint8ToStringArray(f):f,y=l.dtype==="string"?C.fromUint8ToStringArray(m):m,[x,A]=r(l.shape,u.shape,g,y,p),b=c.makeTensorInfo(A,p),w=c.texData.get(b.dataId);return w.values=x,b}let d=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return d?h=new jh(t,l.shape,u.shape,n):h=new gc(e,l.shape,u.shape),c.runWebGLProgram(h,[l,u],p)}}function Wp(e,t=!1){if(e==="linear")return t?pse:ise;if(e==="relu")return t?fse:use;if(e==="elu")return t?hse:lse;if(e==="relu6")return t?mse:cse;if(e==="prelu")return t?L9:z9;if(e==="leakyrelu")return t?M9:O9;if(e==="sigmoid")return t?gse:dse;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var B9=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=is(this.outputShape.length);let u=s?e[1]:e[2],c=Math.ceil(u/2),p=s?"i * 2, rc.y":"rc.y, i * 2",d=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${o}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${o}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${o}
|
|
}`,g="result = activation(result);");let y=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let x="rc.x",A="rc.x";e[0]<t[0]?x=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(A=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${c}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${c}; i++) {
|
|
int batchA = ${x};
|
|
int batchB = ${A};
|
|
vec4 a = getMatrixA(batchA, ${p});
|
|
vec4 b = getMatrixB(batchB, ${d});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${f[0]});
|
|
result += (${h[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},z7={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},L7=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},B7="return a * b;";function hb(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=C.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),u=new L7(z7.REAL,s.shape,r.shape),c=new L7(z7.IMAG,s.shape,r.shape),p=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],d=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=ki({inputs:{real:d,imag:h},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[u,c]=$ne(s.shape,r.shape,i.values,l.values,a),p=n.makeTensorInfo(c,a),d=n.texData.get(p.dataId);return d.values=u,p}let o;return H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new jh(B7,s.shape,r.shape):o=new gc(B7,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var Ose={kernelName:$a,backendName:"webgl",kernelFunc:hb};function Mse(e,t,n){let s=[gl(e.shape),...yl(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[gl(t),...yl(t)],o=new $9(a,s),i=!0,l=[s],u=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function ve(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(a,i),u=v.sizeFromShape(l);v.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=o.texData.get(r.dataId);return c.isPacked&&!Bp(r.shape,l)&&!(c.texture!==null&&Bp(c.shape,l))?Mse(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var zse={kernelName:zl,backendName:"webgl",kernelFunc:ve},W7=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${v.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";r%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${o}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${o};
|
|
if (${i===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},Lse=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,p=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,d="vec4";t==="all"?(o="1.0",p=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,d="bvec4"):t==="any"&&(o="0.0",p=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,d="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${o});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===2}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===3}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function Bse(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=C.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function pu(e,t,n,s){let r=Bse(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:u}=r[o],c,p;n==="mean"?c=o===0?new W7({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},i):new W7({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u}):c=new Lse({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},n),p=a,a=s.runWebGLProgram(c,[a],t),p.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(p)}return a}var Wse=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=vt(this.rank),r=Vse(t);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function Vse(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var Use=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=vt(this.rank),r=D9("rc",this.rank),a=new Array(this.rank);for(let u=0;u<t.length;u++)a[t[u]]=r[u];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${i}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${i}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function F2(e,t,n){let s=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Use(e.shape,t):new Wse(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function Gse(e,t,n,s){let r=t,a=e.shape.length,o=v.parseAxisParam(r,e.shape),i=o,l=C.getAxesPermutation(i,a),u=l!=null,c=e;u&&(c=F2(e,l,s),i=C.getInnerMostAxes(i.length,a)),C.assertAxesAreInnerMostDims("sum",i,a);let[p,d]=C.computeOutAndReduceShapes(c.shape,i),h=p;n&&(h=C.expandShapeToKeepDim(p,o));let f=v.sizeFromShape(d),g=v.sizeFromShape(e.shape)/f,y=ve({inputs:{x:c},attrs:{shape:[g,f]},backend:s}),x=ph(e.dtype),A=pu(y,x,"sum",s),b=ve({inputs:{x:A},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(y),s.disposeIntermediateTensorInfo(A),u&&s.disposeIntermediateTensorInfo(c),b}function O2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Gse(r,a,o,n)}var Hse={kernelName:hi,backendName:"webgl",kernelFunc:O2};function ss(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=r.shape[a[c]];let u;if(o.shouldExecuteOnCPU([r])){let p=o.texData.get(r.dataId).values,d=pb(p,r.shape,r.dtype,a,l);u=o.makeTensorInfo(l,r.dtype);let h=o.texData.get(u.dataId);h.values=d}else u=F2(r,a,o);return u}var jse={kernelName:Zr,backendName:"webgl",kernelFunc:ss},W9=1e3;function jm({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,p=n?e.shape[u-2]:e.shape[u-1],d=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[u-1]:e.shape[u-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(m),x=v.sizeFromShape(g),b=tu.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[y,p,h]:[y,h,p],I=s?[x,f,d]:[x,d,f],k=ve({inputs:{x:e},backend:r,attrs:{shape:w}}),E=ve({inputs:{x:t},backend:r,attrs:{shape:I}}),_=[k,E],D=Math.max(y,x),R=n?k.shape[1]:k.shape[2],P=a!=null,T=o!=null,M=l==="leakyrelu",W=l!=null?Wp(l,!0):null,G=P||T||M||W!=null,X;if((h===1||f===1)&&R>W9&&G===!1){let Y=k,re=E;n&&(Y=ss({inputs:{x:k},backend:r,attrs:{perm:[0,2,1]}}),_.push(Y)),s&&(re=ss({inputs:{x:E},backend:r,attrs:{perm:[0,2,1]}}),_.push(re));let ee=f!==1,ie=f===1,ne=Y;ee&&(ne=ve({inputs:{x:Y},backend:r,attrs:{shape:[D,R,1]}}),_.push(ne));let pe=f===1?2:1,ce=re;ie&&(ce=ve({inputs:{x:re},backend:r,attrs:{shape:[D,1,R]}}),_.push(ce));let Ae=hb({inputs:{a:ne,b:ce},backend:r});X=O2({inputs:{x:Ae},backend:r,attrs:{axis:pe,keepDims:!0}}),_.push(Ae)}else{let Y=Nn(e.dtype,t.dtype),re=new B9(w,I,[D,h,f],n,s,P,W,T,M),ee=[k,E];if(a!=null&&ee.push(a),T&&ee.push(o),M){let ie=r.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));ee.push(ie),_.push(ie)}X=r.runWebGLProgram(re,ee,Y)}let K=ve({inputs:{x:X},backend:r,attrs:{shape:b}});_.push(X);for(let Y of _)r.disposeIntermediateTensorInfo(Y);return K}function qse(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s;return jm({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var Xse={kernelName:yo,backendName:"webgl",kernelFunc:qse},V7="return abs(x);";function Kse(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=R9(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return H().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new tl(s.shape,V7):r=new Aa(s.shape,V7),n.runWebGLProgram(r,[s],s.dtype)}var Zse={kernelName:bl,backendName:"webgl",kernelFunc:Kse},Yse=mr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,Jse=dt({opSnippet:Yse}),Qse={kernelName:xc,backendName:"webgl",kernelFunc:Jse},ere=mr+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,tre=dt({opSnippet:ere}),nre={kernelName:bc,backendName:"webgl",kernelFunc:tre},U7="return a + b;",sre=Dn({opSnippet:U7,packedOpSnippet:U7,supportsComplex:!0,cpuKernelImpl:hne}),rre={kernelName:na,backendName:"webgl",kernelFunc:sre},are=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}},ore=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}};function Am(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Fs({inputs:{x:s[0]},backend:n});if(s.length>H().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),u=Am({inputs:s.slice(0,l),backend:n}),c=Am({inputs:s.slice(l),backend:n});return Am({inputs:[u,c],backend:n})}let r=s.map(l=>l.dtype).reduce((l,u)=>Nn(l,u)),a=s.map(l=>l.shape),i=H().getBool("WEBGL_PACK")?new ore(s[0].shape,a):new are(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var ire={kernelName:Ro,backendName:"webgl",kernelFunc:Am};function lre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=C.getAxesPermutation(u,i),p=r;c!=null&&(p=ss({inputs:{x:r},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,i)),C.assertAxesAreInnerMostDims("all",u,i);let[d,h]=C.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=pu(m,m.dtype,"all",n),y;if(o){let x=C.expandShapeToKeepDim(d,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var ure={kernelName:vc,backendName:"webgl",kernelFunc:lre};function cre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=C.getAxesPermutation(u,i),p=r;c!=null&&(p=ss({inputs:{x:r},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,i)),C.assertAxesAreInnerMostDims("any",u,i);let[d,h]=C.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=pu(m,m.dtype,"any",n),y;if(o){let x=C.expandShapeToKeepDim(d,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var dre={kernelName:wc,backendName:"webgl",kernelFunc:cre},pre=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${s};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
int inIdx = ${i};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${o} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},hre=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=vt(i),u=ns("coords",i),c,p;if(a===1){p=i+1;let k=vt(p);c=`
|
|
${k} sourceLocR = ${k}(${u.join()}, 0);
|
|
++${u[i-1]};
|
|
${k} sourceLocG = ${k}(${u.join()}, 0);
|
|
++${u[i-2]};
|
|
${k} sourceLocA = ${k}(${u.join()}, 0);
|
|
--${u[i-1]};
|
|
${k} sourceLocB = ${k}(${u.join()}, 0);
|
|
--${u[i-2]};`}else p=i,c=`
|
|
${l} sourceLocR = coords;
|
|
++${u[i-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[i-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[i-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[i-2]};`;let d=["x","y","z","w","u","v"].slice(0,p),h="."+d[p-1],f=d.map(k=>"int "+k),m=ns("sourceLocR",p-1).concat("inIdx.r"),g=ns("sourceLocG",p-1).concat("inIdx.g"),y=ns("sourceLocB",p-1).concat("inIdx.b"),x=ns("sourceLocA",p-1).concat("inIdx.a"),A=n==="max"?"greaterThan":"lessThan",b=s?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${x.join()})));`,w=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${x.join()}) : 0.)`,I=s?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}
|
|
${I}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[i-1]} < ${o[i-1]-1};
|
|
bool hasNextRow = ${u[i-2]} < ${o[i-2]-1};
|
|
${c}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${w};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${w};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${A}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function V9(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=C.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new pre(i,n,s==null),u=[t];s!=null&&u.push(s);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let p=V9(e,t,n,c);return e.disposeIntermediateTensorInfo(c),p}function U9(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=C.computeOptimalWindowSize(a),i=new hre(r,o,n,s==null),l=s==null?[t]:[t,s],u=e.runWebGLProgram(i,l,"int32");if(u.shape.length===t.shape.length){let c=U9(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function G9(e,t,n,s){let r=[n];if(C.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!H().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[u,c]=C.computeOutAndReduceShapes(l.shape,r),p=v.sizeFromShape(c),d=ve({inputs:{x:l},backend:e,attrs:{shape:[-1,p]}});a.push(d);let h=V9(e,d,s);a.push(h);let f=ve({inputs:{x:h},backend:e,attrs:{shape:u}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return U9(e,t,s)}function fre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=ss({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=G9(n,l,o[0],"max");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var mre={kernelName:_o,backendName:"webgl",kernelFunc:fre};function gre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=ss({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=G9(n,l,o[0],"min");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var yre={kernelName:kc,backendName:"webgl",kernelFunc:gre},Are=mr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,xre=dt({opSnippet:Are}),bre={kernelName:Ic,backendName:"webgl",kernelFunc:xre},vre=mr+"return log(x + sqrt(x * x + 1.0));",wre=dt({opSnippet:vre}),kre={kernelName:Sc,backendName:"webgl",kernelFunc:wre},Ire=mr+`
|
|
return atan(x);
|
|
`,Sre=dt({opSnippet:Ire}),Cre={kernelName:Cc,backendName:"webgl",kernelFunc:Sre},Tre=Pse+`
|
|
return atan(a, b);
|
|
`,Nre=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Fse+`
|
|
return result;
|
|
`,Ere=Dn({opSnippet:Tre,packedOpSnippet:Nre}),Rre={kernelName:Nc,backendName:"webgl",kernelFunc:Ere},_re=mr+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernelName:Tc,backendName:"webgl",kernelFunc:Dre},Vp=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,d=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let k=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${k} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?m:g:`wR * ${p} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let x="max",A=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(A="avgValue / count");let b=Math.floor(a/4)*4,w=a%4,I=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${x}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${I}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${w===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${I}
|
|
} else if (${w===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${I}
|
|
} else if (${w===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${I}
|
|
}
|
|
}
|
|
setOutput(${A});
|
|
}
|
|
`}},fb=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,p=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let x=t==="avg",A="0.0";if(x||(A="-1.0 / 1e-20"),n){let _=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${p}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${_} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let I=Math.floor(a/4)*4,k=a%4,E=`
|
|
if (${x}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${y});
|
|
const float initializationValue = ${A};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${A});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${I}; wC += 4) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
|
|
);
|
|
|
|
${E}
|
|
}
|
|
|
|
int xC = xCCorner + ${I};
|
|
if (${k===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${k===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${k===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
}
|
|
}
|
|
setOutput(${w});
|
|
}
|
|
}
|
|
`}};function Pre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;ud(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(C.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=C.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Fs({inputs:{x:r},backend:n});let p=new Vp(c,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var Fre={kernelName:Do,backendName:"webgl",kernelFunc:Pre};function Ore(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s,c=[1,1,1],p=C.computePool3DInfo(r.shape,a,o,c,i,l,u),d=new fb(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var Mre={kernelName:qp,backendName:"webgl",kernelFunc:Ore},zre=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=i-1-e.padInfo.top,c=l-1-e.padInfo.left,p=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${c});
|
|
const float avgMultiplier = float(${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${i};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Lre=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=c-1-e.padInfo.front,f=p-1-e.padInfo.top,m=d-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${f}, ${m});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${i}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Bre(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,p=[1,1,1],d=C.computePool3DInfo(o.shape,i,l,p,u,c),h=new Lre(d);return n.runWebGLProgram(h,[r],o.dtype)}var Wre={kernelName:s0,backendName:"webgl",kernelFunc:Bre};function Vre(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;ud([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=C.computePool2DInfo(o.shape,i,l,1,u),p=new zre(c);return n.runWebGLProgram(p,[r],o.dtype)}var Ure={kernelName:n0,backendName:"webgl",kernelFunc:Vre};function Gre(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return jm({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var Hre={kernelName:$o,backendName:"webgl",kernelFunc:Gre},jre=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(C.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${o};
|
|
float scale = ${i};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},qre=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(C.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${o};
|
|
vec4 scale = ${i};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},Xre=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;v.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[s,r,a],c=null;o!=null&&(c=o.shape,u.push(o));let p=null;i!=null&&(p=i.shape,u.push(i));let d=H().getBool("WEBGL_PACK_NORMALIZATION")?new qre(s.shape,r.shape,a.shape,c,p,l):new jre(s.shape,r.shape,a.shape,c,p,l);return t.runWebGLProgram(d,u,u[0].dtype)},Kre={kernelName:jo,backendName:"webgl",kernelFunc:Xre},Zre=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=vt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=Yre(this.rank),s,r=e.map((a,o)=>`sourceLoc.${vy[o]} = start[${o}] + coords.${vy[o]};`);s=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${s}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},vy=["x","y","z","w","u","v"];function Yre(e){if(e===1)return"sourceLoc";if(e<=6)return vy.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var Jre=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=vt(this.rank),n=ns("coords",this.rank),s=ns("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
|
|
result.x = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.y = ${a};
|
|
--${s[this.rank-1]};
|
|
}
|
|
`,i=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${s[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${s[c]} = ${n[c]} + start[${c}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${o}
|
|
${i}
|
|
setOutput(result);
|
|
}
|
|
`}};function Qre(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=Pt.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function gd(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Pt.parseSliceParams(r,a,o);if(Pt.assertParamsValid(r,i,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),d=Vne(p.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}let{isPacked:u}=n.texData.get(r.dataId),c=Pt.isSliceContinous(r.shape,i,l);if(u||!c){let p=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Jre(l):new Zre(l),d=[i];return n.runWebGLProgram(p,[r],r.dtype,d)}return n.uploadToGPU(r.dataId),Qre(r,i,l,n)}var eae={kernelName:Ul,backendName:"webgl",kernelFunc:gd},tae=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((x,A)=>x*A),l=C.getReshaped(r.shape,a,i),u=C.getPermuted(l.length,a.length),c=C.getReshapedPermuted(r.shape,a,i),p=C.getSliceBeginCoords(o,a.length),d=C.getSliceSize(c,o,a.length),h=[],f=ve({inputs:{x:r},backend:n,attrs:{shape:l}}),m=ss({inputs:{x:f},backend:n,attrs:{perm:u}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:c}}),y=gd({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeIntermediateTensorInfo(x)),y},nae={kernelName:vl,backendName:"webgl",kernelFunc:tae};function sae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),u=E9(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var rae={kernelName:r0,backendName:"webgl",kernelFunc:sae};function aae(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.readSync(s.dataId),o=n.readSync(r.dataId),i=C.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var oae={kernelName:a0,backendName:"webgl",kernelFunc:aae},iae="return float(a != b);",H9=Dn({opSnippet:iae,cpuKernelImpl:Fne,dtype:"bool"}),lae={kernelName:si,backendName:"webgl",kernelFunc:H9};function qh(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Fs({inputs:{x:r.complexTensorInfos.real},backend:n})}var uae={kernelName:nh,backendName:"webgl",kernelFunc:qh},cae="return float(int(x));";function dae(e,t){let n=new Aa(e.shape,cae),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function wy(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Fs({inputs:{x:r},backend:n});let o=Vt(r.shape),i=wy({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=ki({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=qh({inputs:{input:r},backend:n}),i=wy({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Fs({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(n.shouldExecuteOnCPU([r])){let o=n.texData.get(r.dataId).values,[i,l,u]=mne(o,r.shape,r.dtype,a);return n.makeTensorInfo(i,l,u)}if(a==="int32")return dae(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=H9({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var pae={kernelName:Po,backendName:"webgl",kernelFunc:wy},G7="return ceil(x);",hae=dt({opSnippet:G7,packedOpSnippet:G7,cpuKernelImpl:gne}),fae={kernelName:Sa,backendName:"webgl",kernelFunc:hae},mae=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},gae=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function yae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;H().getBool("WEBGL_PACK_CLIP")?i=new gae(r.shape):i=new mae(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var Aae={kernelName:Ca,backendName:"webgl",kernelFunc:yae},xae=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function H7(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function bae(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new xae(s.shape),o=[H7(s,r.complexTensorInfos.real),H7(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var vae={kernelName:Kp,backendName:"webgl",kernelFunc:bae},wae=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},kae=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=vt(s),a=ns("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let l=o[t],u=o.slice(-2),c=o.join(),p=`if (${l} < ${i[0]}) {
|
|
return getChannel(
|
|
getT0(${c}), vec2(${u.join()}));
|
|
}`;for(let f=1;f<i.length;f++){let m=i[f-1];p+=`
|
|
if (${l} < ${i[f]} && ${l} >= ${i[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${lm(o,l,m)}),
|
|
vec2(${lm(u,l,m)}));
|
|
}`}let d=i.length,h=i[i.length-1];p+=`
|
|
return getChannel(
|
|
getT${d}(${lm(o,l,h)}),
|
|
vec2(${lm(u,l,h)}));`,this.userCode=`
|
|
float getValue(${o.map(f=>"int "+f)}) {
|
|
${p}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[s-1]} = ${a[s-1]} + 1;
|
|
if (${a[s-1]} < ${n[s-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[s-2]} = ${a[s-2]} + 1;
|
|
if (${a[s-2]} < ${n[s-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[s-1]} = ${a[s-1]} - 1;
|
|
if (${a[s-2]} < ${n[s-2]} &&
|
|
${a[s-1]} < ${n[s-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function lm(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function M2(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Fs({inputs:{x:r.complexTensorInfos.imag},backend:n})}var Iae={kernelName:Qp,backendName:"webgl",kernelFunc:M2};function Ap(e,t,n){let s=e[0].dtype;if(s==="complex64"){let p=e.map(g=>qh({inputs:{input:g},backend:n})),d=e.map(g=>M2({inputs:{input:g},backend:n})),h=Ap(p,t,n),f=Ap(d,t,n),m=ki({inputs:{real:h,imag:f},backend:n});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),d.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let p=e.map(x=>{let A=v.sizeFromShape(x.shape.slice(t));return ve({inputs:{x},backend:n,attrs:{shape:[-1,A]}})}),d=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape})),h=C.computeOutShape(p.map(x=>x.shape),1),f=p[0].shape[0]===1,m=yne(d,h,s,f),g=C.computeOutShape(e.map(x=>x.shape),t),y=n.makeTensorInfo(g,s,m);return p.forEach(x=>n.disposeIntermediateTensorInfo(x)),y}let a=H().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(e.length>a){let p=[];for(let h=0;h<e.length;h+=a){let f=e.slice(h,h+a);p.push(Ap(f,t,n))}let d=Ap(p,t,n);for(let h of p)n.disposeIntermediateTensorInfo(h);return d}if(H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let p=new kae(e.map(d=>d.shape),t);return n.runWebGLProgram(p,e,s)}let{tensors2D:o,outShape:i}=Sae(e,t,n),l=new wae(o.map(p=>p.shape)),u=n.runWebGLProgram(l,o,s);o.forEach(p=>n.disposeIntermediateTensorInfo(p));let c=ve({inputs:{x:u},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(u),c}function Sae(e,t,n){let s=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ve({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function j9(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=C.computeOutShape(t.map(u=>u.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>v.sizeFromShape(u.shape)>0);if(i.length===1)return Fs({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return C.assertParamsConsistent(l,a),Ap(i,a,n)}var Cae={kernelName:wl,backendName:"webgl",kernelFunc:j9},q9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,y=m?2:3,x=m?3:1,A="",b="";n&&(s?A=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?A=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:A=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${A}
|
|
|
|
const ivec2 strides = ivec2(${i}, ${l});
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${x}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${w}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},Tae=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${a}, ${o});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${s});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${c}; wF++) {
|
|
int xF = xFCorner + wF * ${i};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},X9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=is(this.outputShape.length);let a=e.padInfo.left,o=e.strideWidth,i=e.dilationWidth,l=e.filterHeight,u=e.filterWidth,c=u,p=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let m=0;m<u;m++)p+=`
|
|
vec4 xTexelC${m*2};
|
|
int xTexelC${m*2}Ready;
|
|
vec4 xTexelC${m*2+1};
|
|
int xTexelC${m*2+1}Ready;
|
|
vec4 xC${m};`;p+=`
|
|
for (int r = 0; r < ${l}; r++) {
|
|
for (int d1 = 0; d1 < ${e.inChannels}; d1 += 2) {
|
|
`;for(let m=0;m<u;m++)p+=`
|
|
xTexelC${m*2} = vec4(0.0);
|
|
xTexelC${m*2}Ready = 0;
|
|
xTexelC${m*2+1} = vec4(0.0);
|
|
xTexelC${m*2+1}Ready = 0;
|
|
xC${m} = vec4(0.0);`;p+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let m=0;m<(c+1)/2;m++){let g=m*2;if(p+=`
|
|
xC = xCCorner + ${g*i};
|
|
`,o===1){if(g<u&&(a%2===1?(p+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
|
|
xTexelC${g} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${g}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g}Ready = 1;
|
|
}
|
|
`,i===1&&g>0?p+=`
|
|
xC${g} = vec4(xTexelC${g-2}.zw, xTexelC${g}.xy);
|
|
`:p+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${g} = vec4(previous.zw, xTexelC${g}.xy);
|
|
} else {
|
|
xC${g} = vec4(0.0, 0.0, xTexelC${g}.xy);
|
|
}
|
|
`):p+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
|
|
xTexelC${g} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${g}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g}Ready = 1;
|
|
}
|
|
|
|
xC${g} = xTexelC${g};
|
|
`,g+1<u)){let y=a%2===0?v.nearestLargerEven(i):i;i%2===0&&a%2===1||i%2!==0&&a%2!==1?(p+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
|
|
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${g+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g+1}Ready = 1;
|
|
}
|
|
`,i>1?p+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
xC${g+1} = vec4(previous.zw, xTexelC${g+1}.xy);
|
|
} else {
|
|
xC${g+1} = vec4(0.0, 0.0, xTexelC${g+1}.xy);
|
|
}
|
|
`:p+=`
|
|
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.xy);
|
|
`):y===1?p+=`
|
|
xC${g+1} = xTexelC${g};
|
|
`:p+=`
|
|
xCOffset = xC + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
|
|
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${g+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g+1}Ready = 1;
|
|
}
|
|
|
|
xC${g+1} = xTexelC${g+1};
|
|
`}}else g<u&&(a%2===1?(p+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
|
|
xTexelC${g} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${g}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${g+1}Ready == 0) {
|
|
xTexelC${g+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${g+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g+1}Ready = 1;
|
|
}
|
|
|
|
xC${g} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
|
|
`,g+1<u&&(p+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${g+1} = vec4(xTexelC${g+1}.xy, final.xy);
|
|
`)):(p+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
|
|
xTexelC${g} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${g}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
|
|
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${g+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${g+1}Ready = 1;
|
|
}
|
|
|
|
xC${g} = vec4(
|
|
xTexelC${g}.xy, xTexelC${g+1}.xy);
|
|
`,g+1<u&&(p+=`
|
|
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
|
|
`)));g<u&&(p+=`
|
|
wTexel = getW(r, ${g}, d1, d2);
|
|
dotProd += xC${g}.xxzz * vec4(wTexel.xy, wTexel.xy);
|
|
if(d1 + 1 < ${e.inChannels}) {
|
|
dotProd += xC${g}.yyww * vec4(wTexel.zw, wTexel.zw);
|
|
}
|
|
`,g+1<u&&(p+=`
|
|
wTexel = getW(r, ${g+1}, d1, d2);
|
|
dotProd += xC${g+1}.xxzz * vec4(wTexel.xy, wTexel.xy);
|
|
if(d1 + 1 < ${e.inChannels}) {
|
|
dotProd += xC${g+1}.yyww * vec4(wTexel.zw, wTexel.zw);
|
|
}
|
|
`))}p+=`
|
|
}
|
|
`,p+=`
|
|
}
|
|
`,p+=`
|
|
}
|
|
`;let d="",h="";n&&(s?d=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?d=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:d=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,h="result = activation(result);");let f=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${d}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${p}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${f}
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},Nae=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec4"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=is(this.outputShape.length);let{dataFormat:n}=t,s=os(),r=n==="channelsLast",a=r?1:2,o=r?2:3,i=this.enableShapeUniforms?"if(blockIndex < outShape[2] && pos < outShape[1]) {":`if(blockIndex < ${e[2]} && pos < ${e[1]}) {`,l="";for(let u=0;u<=1;u++)for(let c=0;c<=1;c++)l+=`
|
|
blockIndex = rc.z + ${c};
|
|
pos = rc.y + ${u};
|
|
|
|
${i}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${a}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${o}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${u*2+c}] = getChannel(
|
|
getA(rc.x, d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${u*2+c}] = getChannel(
|
|
getA(rc.x, ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${s.output} = result;
|
|
}
|
|
`}};function qm(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function K9({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,u=s.texData.get(e.dataId),c=n.inChannels,p=l[0]*l[1]*l[2],d=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,y=[];if(a!=null){let b=qm(a.shape,h);b!=null&&(a=ve({inputs:{x:a},backend:s,attrs:{shape:b}}),y.push(a))}if(r!=null){let b=qm(r.shape,h);b!=null&&(r=ve({inputs:{x:r},backend:s,attrs:{shape:b}}),y.push(r))}if(!((p===1||d===1)&&c>W9)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),w={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},I=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(Bp(u.shape,w.shape),()=>`packed reshape ${u.shape} to ${w.shape} isn't free`);let k=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(k);let E=jm({a:w,b:k,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),_=s.texData.get(E.dataId);v.assert(_.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=I,_.shape=n.outShape,g=Fs({inputs:{x:E},backend:s}),g.shape=n.outShape,y.push(E)}else{let b=n.outHeight*n.outWidth,w=ve({inputs:{x:e},backend:s,attrs:{shape:h?[n.batchSize,b,n.inChannels]:[n.batchSize,n.inChannels,b]}}),I=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),k=jm({a:h?w:I,b:h?I:w,transposeA:!h,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=ve({inputs:{x:k},backend:s,attrs:{shape:n.outShape}}),y.push(w),y.push(I),y.push(k)}for(let b of y)s.disposeIntermediateTensorInfo(b);return g}function Z9({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:p,outHeight:d,dataFormat:h}=n,f=h==="channelsLast",m=l*u*c,g=d*p,y=[n.batchSize,m,g],x=!0,A=!1,b=[];if(a!=null){let K=qm(a.shape,f);K!=null&&(a=ve({inputs:{x:a},backend:s,attrs:{shape:K}}),b.push(a))}if(r!=null){let K=qm(r.shape,f);K!=null&&(r=ve({inputs:{x:r},backend:s,attrs:{shape:K}}),b.push(r))}let w=ve({inputs:{x:t},backend:s,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});b.push(w);let I=new Nae(y,n),k=[e.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],E=s.runWebGLProgram(I,[e],"float32",k),_=ve({inputs:{x:E},backend:s,attrs:{shape:y}});b.push(E),b.push(_);let D=r!=null,R=a!=null,P=i==="leakyrelu",T=i?Wp(i,!0):null,M=new B9(f?_.shape:w.shape,f?w.shape:_.shape,f?[n.batchSize,g,n.outChannels]:[n.batchSize,n.outChannels,g],x,A,D,T,R,P),W=f?[_,w]:[w,_];if(r&&W.push(r),R&&W.push(a),P){let K=s.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));W.push(K),b.push(K)}let G=s.runWebGLProgram(M,W,"float32"),X=ve({inputs:{x:G},backend:s,attrs:{shape:n.outShape}});b.push(G);for(let K of b)s.disposeIntermediateTensorInfo(K);return X}function Eae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p),h;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))h=K9({x:r,filter:a,convInfo:d,backend:n});else if(d.strideWidth<=2&&p==="channelsLast"&&H().getBool("WEBGL_EXP_CONV")){let m=new X9(d),g=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];h=n.runWebGLProgram(m,[r,a],"float32",g)}else if(H().getBool("WEBGL_CONV_IM2COL"))h=Z9({x:r,filter:a,convInfo:d,backend:n});else{let m=new q9(d);h=n.runWebGLProgram(m,[r,a],"float32")}let f=ve({inputs:{x:h},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(h),f}var Rae={kernelName:Fo,backendName:"webgl",kernelFunc:Eae},_ae=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Dae=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,u=a?2:3,c=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${c}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},$ae=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${s} - ${o};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Pae=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=s-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${i}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${s} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Fae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s,p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(r.shape,c,o,1,i,u,!1,p),h=new _ae(d);return n.runWebGLProgram(h,[r,a],"float32")}var Oae={kernelName:o0,backendName:"webgl",kernelFunc:Fae};function Mae(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,p=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(o,a.shape,i,1,l,c,!1,p),h=new Dae(d);return n.runWebGLProgram(h,[r,a],"float32")}var zae={kernelName:Oo,backendName:"webgl",kernelFunc:Mae};function Lae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=C.computeConv3DInfo(r.shape,a.shape,o,l,i),c=new Tae(u);return n.runWebGLProgram(c,[r,a],"float32")}var Bae={kernelName:Zp,backendName:"webgl",kernelFunc:Lae};function Wae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,u=C.computeConv3DInfo(r.shape,l,o,1,i),c=new $ae(u);return n.runWebGLProgram(c,[r,a],"float32")}var Vae={kernelName:i0,backendName:"webgl",kernelFunc:Wae};function Uae(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,u=C.computeConv3DInfo(l,a.shape,i,1,o),c=new Pae(u);return n.runWebGLProgram(c,[r,a],"float32")}var Gae={kernelName:l0,backendName:"webgl",kernelFunc:Uae},Hae=md+`
|
|
return cos(x);
|
|
`,jae=dt({opSnippet:Hae}),qae={kernelName:Mo,backendName:"webgl",kernelFunc:jae},Xae=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,Kae=dt({opSnippet:Xae}),Zae={kernelName:zo,backendName:"webgl",kernelFunc:Kae},Yae=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[u]=t,[c,p]=n;this.outputShape=[u,c,p,l];let d=s==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,y]=c>1?[`${(o-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[x,A,b]=p>1?[`${(i-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${x});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${A};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${d} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},Jae=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new Yae(r.shape,a.shape,i,l,u);return n.runWebGLProgram(c,[r,a,o],"float32")},Qae={kernelName:Il,backendName:"webgl",kernelFunc:Jae},Up;(function(e){e.Prod="*",e.Sum="+"})(Up||(Up={}));var j7=class{constructor(e,t,n,s){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let r=this.outputShape.length,a=this.op===Up.Prod?"1.0":"0.0",o=n?a:`getX(${q7(r,"coords",this.op)})`,i=this.outputShape[this.outputShape.length-1],l="",u="";n?(l=s?`end != ${i-1}`:"end != 0",u=s?"end + 1":"end - 1"):(l=s?`end + pow2 < ${i}`:"end >= pow2",u=s?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${vt(r)} coords = getOutputCoords();
|
|
int end = ${X7(r,"coords",this.op)};
|
|
float val = ${o};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${l}) {
|
|
int idx = ${u};
|
|
${X7(r,"coords",this.op)} = idx;
|
|
val ${this.op}= getX(${q7(r,"coords",this.op)});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function q7(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function X7(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function Y9(e,t,n,s,r,a){let o=t.shape.length,i=C.getAxesPermutation([s],o),l=t;i!=null&&(l=ss({inputs:{x:t},backend:n,attrs:{perm:i}}));let u=C.getInnerMostAxes(1,o)[0];if(u!==o-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${s}`);let c=l.shape[u],p=Fs({inputs:{x:l},backend:n});for(let d=0;d<=Math.ceil(Math.log2(c))-1;d++){let h=new j7(e,l.shape,!1,a),f=[[d]],m=p;p=n.runWebGLProgram(h,[p],p.dtype,f),n.disposeIntermediateTensorInfo(m)}if(r){let d=new j7(e,l.shape,r,a),h=p;p=n.runWebGLProgram(d,[p],p.dtype),n.disposeIntermediateTensorInfo(h)}if(i!=null){let d=C.getUndoAxesPermutation(i),h=ss({inputs:{x:p},backend:n,attrs:{perm:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(l),h}return p}function eoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return Y9(Up.Prod,r,n,a,o,i)}var toe={kernelName:kl,backendName:"webgl",kernelFunc:eoe};function noe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return Y9(Up.Sum,r,n,a,o,i)}var soe={kernelName:Lo,backendName:"webgl",kernelFunc:noe};function roe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=E9(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=fne(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var aoe={kernelName:u0,backendName:"webgl",kernelFunc:roe},ooe=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function ioe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=new ooe(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var loe={kernelName:Sl,backendName:"webgl",kernelFunc:ioe},J9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=is(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",u="";n&&(s?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,u="result = activation(result);");let c=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${i};
|
|
int q = d2 - d1 * ${i};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${a}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${o}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${c}
|
|
${u}
|
|
setOutput(result);
|
|
}
|
|
`}},Q9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=is(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,c=e.filterWidth,p=c,d=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<c;g++)d+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;d+=`
|
|
for (int r = 0; r < ${u}; r++) {
|
|
`;for(let g=0;g<c;g++)d+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;d+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(p+1)/2;g++){let y=g*2;if(d+=`
|
|
xC = xCCorner + ${y*l};
|
|
`,i===1){if(y<c&&(o%2===1?(d+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`,l===1&&y>0?d+=`
|
|
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
|
|
`:d+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
|
|
} else {
|
|
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
|
|
}
|
|
`):d+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xC${y} = xTexelC${y};
|
|
`,y+1<c)){let x=o%2===0?v.nearestLargerEven(l):l;l%2===0&&o%2===1||l%2!==0&&o%2!==1?(d+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
`,l>1?d+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
xC${y+1} = vec4(previous.zw, xTexelC${y+1}.xy);
|
|
} else {
|
|
xC${y+1} = vec4(0.0, 0.0, xTexelC${y+1}.xy);
|
|
}
|
|
`:d+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
|
|
`):x===1?d+=`
|
|
xC${y+1} = xTexelC${y};
|
|
`:d+=`
|
|
xCOffset = xC + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y+1} = xTexelC${y+1};
|
|
`}}else y<c&&(o%2===1?(d+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`,y+1<c&&(d+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
|
|
`)):(d+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(
|
|
xTexelC${y}.xy, xTexelC${y+1}.xy);
|
|
`,y+1<c&&(d+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`)));y<c&&(d+=`
|
|
wTexel = getW(r, ${y}, d1, q);
|
|
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
|
|
`,y+1<c&&(d+=`
|
|
wTexel = getW(r, ${y+1}, d1, q);
|
|
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}d+=`
|
|
}
|
|
`,d+=`
|
|
}
|
|
`;let h="",f="";n&&(s?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${a};
|
|
int q = d2 - d1 * ${a};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${d}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};function uoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s,c=l;c==null&&(c=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(o,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let p=C.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!0),d;H().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels===1?d=new Q9(p):d=new J9(p);let h=[[p.padInfo.top,p.padInfo.left],[p.strideHeight,p.strideWidth],[p.dilationHeight,p.dilationWidth],[p.inHeight,p.inWidth]];return n.runWebGLProgram(d,[r,a],"float32",h)}var coe={kernelName:Bo,backendName:"webgl",kernelFunc:uoe},doe=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},poe=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${i}; dm++) {
|
|
int d2 = d1 * ${i} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function hoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s,p=C.computeConv2DInfo(r.shape,c,o,i,l,u,!0),d=new doe(p);return n.runWebGLProgram(d,[r,a],"float32")}var foe={kernelName:c0,backendName:"webgl",kernelFunc:hoe};function moe(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s,p=C.computeConv2DInfo(c,a.shape,o,i,l,u,!0),d=new poe(p);return n.runWebGLProgram(d,[r,a],"float32")}var goe={kernelName:d0,backendName:"webgl",kernelFunc:moe},yoe=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function Aoe(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=v.sizeFromShape(s.shape),o=ve({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new yoe(a),l=n.runWebGLProgram(i,[o],o.dtype),u=ve({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var xoe={kernelName:p0,backendName:"webgl",kernelFunc:Aoe},boe=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:u}=e,{top:c,left:p}=s;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${a});
|
|
const ivec2 pads = ivec2(${c}, ${p});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${o}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${i}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function voe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=C.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),c,p=new boe(u);c=n.runWebGLProgram(p,[r,a],"float32");let d=ve({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),d}var woe={kernelName:Yp,backendName:"webgl",kernelFunc:voe};function koe(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=C.decodeEinsumEquation(r,a.length);C.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=C.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:y,expandDims:x}=C.getEinsumPermutation(h,l[g]),A;C.isIdentityPermutation(y)?A=a[g]:(A=ss({inputs:{x:a[g]},backend:n,attrs:{perm:y}}),f.push(A));let b=A.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(A.shape,b)||(A=ve({inputs:{x:A},backend:n,attrs:{shape:b}}),f.push(A)),d===null?d=A:(d=hb({inputs:{a:A,b:d},backend:n}),f.push(d))}m<p-1&&(u[m]>=0&&(d=O2({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var Ioe={kernelName:Jp,backendName:"webgl",kernelFunc:koe},Soe="return (x >= 0.0) ? x : (exp(x) - 1.0);",Coe=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,Toe=dt({opSnippet:Soe,packedOpSnippet:Coe}),Noe={kernelName:Vo,backendName:"webgl",kernelFunc:Toe},Eoe="return (b >= 1.0) ? a : a * (b + 1.0);",Roe=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,_oe=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new jh(Roe,s.shape,r.shape):new gc(Eoe,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},Doe={kernelName:h0,backendName:"webgl",kernelFunc:_oe},$oe=`
|
|
return vec4(equal(a, b));
|
|
`,Poe="return float(a == b);",Foe=Dn({opSnippet:Poe,packedOpSnippet:$oe,dtype:"bool",cpuKernelImpl:Ane}),Ooe={kernelName:Uo,backendName:"webgl",kernelFunc:Foe},Moe=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${C.ERF_P};
|
|
float a1 = ${C.ERF_A1};
|
|
float a2 = ${C.ERF_A2};
|
|
float a3 = ${C.ERF_A3};
|
|
float a4 = ${C.ERF_A4};
|
|
float a5 = ${C.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,zoe=dt({opSnippet:Moe}),Loe={kernelName:Ec,backendName:"webgl",kernelFunc:zoe},Boe=md+`
|
|
return exp(x);
|
|
`,Woe=`
|
|
vec4 result = exp(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,eC=dt({opSnippet:Boe,packedOpSnippet:Woe,cpuKernelImpl:xne,dtype:"float32"}),Voe={kernelName:Ta,backendName:"webgl",kernelFunc:eC};function ky(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),ve({inputs:{x:a},backend:s,attrs:{shape:i}})}var Uoe={kernelName:Cl,backendName:"webgl",kernelFunc:ky},K7="return exp(x) - 1.0;",Goe=dt({opSnippet:K7,packedOpSnippet:K7,cpuKernelImpl:bne}),Hoe={kernelName:Go,backendName:"webgl",kernelFunc:Goe},Z7=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${o}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${s});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function tC(e,t,n){let s=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=ve({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,u=new Z7("real",l,t),c=new Z7("imag",l,t),p=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=ki({inputs:{real:d,imag:h},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h);let m=ve({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function joe(e){let{inputs:t,backend:n}=e,{input:s}=t;return tC(s,!1,n)}var qoe={kernelName:f0,backendName:"webgl",kernelFunc:joe},Xoe=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function Xh(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new Xoe(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var Koe={kernelName:Rc,backendName:"webgl",kernelFunc:Xh},Zoe=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Yoe={kernelName:Tl,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new Zoe(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},Y7="return floor(x);",Joe=dt({opSnippet:Y7,packedOpSnippet:Y7,cpuKernelImpl:vne}),Qoe={kernelName:Na,backendName:"webgl",kernelFunc:Joe},eie=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,tie=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,nie=Dn({opSnippet:eie,packedOpSnippet:tie,dtype:"int32"}),sie={kernelName:Ho,backendName:"webgl",kernelFunc:nie},rie=class{constructor(e){this.variableNames=["A"];let t=os(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},aie=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=os(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},oie={kernelName:Np,backendName:"webgl",kernelFunc:iie},Uu,N3=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");function iie(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],c=[u,l],p=[u,l,a];if(i||o){let m=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(Uu==null||m!==N3)&&(N3=m,Uu=document.createElement("canvas").getContext("2d",{willReadFrequently:N3})),Uu.canvas.width=l,Uu.canvas.height=u,Uu.drawImage(r,0,0,l,u),r=Uu.canvas}let d=n.makeTensorInfo(c,"int32");n.texData.get(d.dataId).usage=js.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),r);let h=H().getBool("WEBGL_PACK")?new aie(p):new rie(p),f=n.runWebGLProgram(h,[d],"int32");return n.disposeData(d.dataId),f}function lie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=C.convertConv2DDataFormat(c),g=C.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!1,m),y,x=[],A=o!=null,b=i!=null,w=h==="leakyrelu",I=()=>{let E=[r,a],_=(D,R)=>{if(R==="NCHW"&&D.shape.length===1&&D.shape[0]!==1){let P=ve({inputs:{x:D},backend:n,attrs:{shape:[D.shape[0],1,1]}});return x.push(P),P}return D};if(A&&E.push(_(o,c)),b&&E.push(_(i,c)),w){let D=n.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));E.push(D),x.push(D)}return E};if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=K9({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(g.strideWidth<=2&&m==="channelsLast"&&H().getBool("WEBGL_EXP_CONV")){let E=h?Wp(h,!0):null,_=new X9(g,A,E,b,w),D=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],R=I();y=n.runWebGLProgram(_,R,"float32",D)}else if(H().getBool("WEBGL_CONV_IM2COL"))y=Z9({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let E=h?Wp(h,!1):null,_=new q9(g,A,E,b,w),D=I();y=n.runWebGLProgram(_,D,"float32")}let k=ve({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return x.push(y),x.forEach(E=>n.disposeIntermediateTensorInfo(E)),k}var uie={kernelName:Ao,backendName:"webgl",kernelFunc:lie};function cie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=[],m=c;m==null&&(m=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=C.computeConv2DInfo(r.shape,a.shape,l,m,u,p,!0),y=H().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,x=d?Wp(d,y):null,A=[r,a],b=o!=null,w=i!=null,I=d==="leakyrelu";if(b&&A.push(o),w&&A.push(i),I){let D=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));A.push(D),f.push(D)}let k;y?k=new Q9(g,b,x,w,I):k=new J9(g,b,x,w,I);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],_=n.runWebGLProgram(k,A,"float32",E);return f.forEach(D=>n.disposeIntermediateTensorInfo(D)),_}var die={kernelName:xo,backendName:"webgl",kernelFunc:cie},pie=class{constructor(e,t,n,s){this.sliceDim=e,this.strides=t,this.paramsShape=s,this.variableNames=["x","indices"],this.outputShape=n;let r=vt(t.length),a=vt(n.length),o=this.sliceDim>1?"strides[j]":"strides",i=vt(s.length),l=s.length>1?"paramsShape[j]":"paramsShape";this.userCode=`
|
|
${r} strides = ${r}(${this.strides});
|
|
${i} paramsShape = ${i}(${this.paramsShape});
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
bool out_of_bounds = false;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
out_of_bounds = out_of_bounds || index < 0;
|
|
out_of_bounds = out_of_bounds || index >= ${l};
|
|
flattenIndex += index * ${o};
|
|
}
|
|
setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function hie(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,u,c,p]=C.prepareAndValidate(s,r),d=ve({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),h=ve({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let y=n.readSync(r.dataId),x=n.bufferSync(s),A=wne(y,x,s.dtype,u,o,c,p,s.shape,i);return n.makeTensorInfo(l,s.dtype,A.values)}let f=new pie(o,p,[u,c],s.shape),m=n.runWebGLProgram(f,[h,d],h.dtype),g=ve({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var fie={kernelName:El,backendName:"webgl",kernelFunc:hie},mie=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=vt(this.rank),s=gie(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
int index = int(getIndices(resRC.x, resRC.z));
|
|
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
|
|
setOutput(inBounds * getA(${s}));
|
|
}
|
|
`}};function gie(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("index"):s.push(`${n[r]}`);return s.join()}function nC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0];if(H().get("DEBUG")){let x=n.readSync(a.dataId),A=r.shape[l];for(let b=0;b<x.length;++b){let w=x[b];v.assert(w<=A-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${A-1}]`)}}let u=C.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=v.sizeFromShape(a.shape),p=[],d=ve({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=ve({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(d),p.push(h);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let x=n.bufferSync(h),A=n.bufferSync(d),b=kne(A,x,f);return p.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new mie(d.shape,f),g=n.runWebGLProgram(m,[d,h],d.dtype);p.push(g);let y=ve({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return p.forEach(x=>n.disposeIntermediateTensorInfo(x)),y}var yie={kernelName:Nl,backendName:"webgl",kernelFunc:nC},Aie="return float(a > b);",xie=`
|
|
return vec4(greaterThan(a, b));
|
|
`,bie=Dn({opSnippet:Aie,packedOpSnippet:xie,cpuKernelImpl:Ine,dtype:"bool"}),vie={kernelName:qo,backendName:"webgl",kernelFunc:bie},wie="return float(a >= b);",kie=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,Iie=Dn({opSnippet:wie,packedOpSnippet:kie,dtype:"bool",cpuKernelImpl:Sne}),Sie={kernelName:Ea,backendName:"webgl",kernelFunc:Iie};function Cie(e){let{inputs:t,backend:n}=e,{input:s}=t;return tC(s,!0,n)}var Tie={kernelName:m0,backendName:"webgl",kernelFunc:Cie},Nie="return float(!isnan(x) && !isinf(x));",Eie=dt({opSnippet:Nie,dtype:"bool"}),Rie={kernelName:_c,backendName:"webgl",kernelFunc:Eie},_ie="return float(isinf(x));",Die=dt({opSnippet:_ie,dtype:"bool"}),$ie={kernelName:Dc,backendName:"webgl",kernelFunc:Die},Pie="return float(isnan(x));",Fie=dt({opSnippet:Pie,dtype:"bool"}),Oie={kernelName:$c,backendName:"webgl",kernelFunc:Fie},Mie="return float(a < b);",zie=`
|
|
return vec4(lessThan(a, b));
|
|
`,Lie=Dn({opSnippet:Mie,packedOpSnippet:zie,cpuKernelImpl:Cne,dtype:"bool"}),Bie={kernelName:Zo,backendName:"webgl",kernelFunc:Lie},Wie="return float(a <= b);",Vie=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,Uie=Dn({opSnippet:Wie,packedOpSnippet:Vie,cpuKernelImpl:Tne,dtype:"bool"}),Gie={kernelName:Yo,backendName:"webgl",kernelFunc:Uie};function Hie(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=Nne(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var jie={kernelName:g0,backendName:"webgl",kernelFunc:Hie},qie=md+`
|
|
return x < 0.0 ? 0./0. : log(x);
|
|
`,Xie=`
|
|
vec4 result = log(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
|
|
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
|
|
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
|
|
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
|
|
return result;
|
|
`,Kie=dt({opSnippet:qie,packedOpSnippet:Xie,cpuKernelImpl:Ene}),Zie={kernelName:Ra,backendName:"webgl",kernelFunc:Kie},Yie=md+`
|
|
return log(1.0 + x);
|
|
`,Jie=dt({opSnippet:Yie}),Qie={kernelName:Pc,backendName:"webgl",kernelFunc:Jie},ele="return float(a >= 1.0 && b >= 1.0);",tle=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,nle=Dn({opSnippet:ele,packedOpSnippet:tle,dtype:"bool"}),sle={kernelName:Rl,backendName:"webgl",kernelFunc:nle},rle="return float(!(x >= 1.0));",ale=dt({opSnippet:rle}),ole={kernelName:_l,backendName:"webgl",kernelFunc:ale},ile="return float(a >= 1.0 || b >= 1.0);",lle=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,ule=Dn({opSnippet:ile,packedOpSnippet:lle,dtype:"bool"}),cle={kernelName:Fc,backendName:"webgl",kernelFunc:ule},dle=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${o}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${i};
|
|
setOutput(val);
|
|
}
|
|
`}},ple=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${i};
|
|
setOutput(result);
|
|
}
|
|
`}},hle=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,u=H().getBool("WEBGL_PACK_NORMALIZATION")?new ple(r.shape,a,o,i,l):new dle(r.shape,a,o,i,l);return n.runWebGLProgram(u,[r],r.dtype)},fle={kernelName:eh,backendName:"webgl",kernelFunc:hle},mle=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${s}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${s})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},gle=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s,p=new mle(r.shape,i,l,u,c);return n.runWebGLProgram(p,[r,a,o],r.dtype)},yle={kernelName:y0,backendName:"webgl",kernelFunc:gle};function Ale(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=pu(i,e.dtype,"max",s),u=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}function sC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=C.getAxesPermutation(u,i),p=c!=null,d=n.shouldExecuteOnCPU([r]),h=r;if(p){if(d){let A=n.texData.get(h.dataId).values,b=new Array(i);for(let k=0;k<b.length;k++)b[k]=r.shape[c[k]];let w=pb(A,r.shape,r.dtype,c,b);h=n.makeTensorInfo(b,r.dtype);let I=n.texData.get(h.dataId);I.values=w}else h=F2(r,c,n);u=C.getInnerMostAxes(u.length,i)}C.assertAxesAreInnerMostDims("max",u,i);let[f,m]=C.computeOutAndReduceShapes(h.shape,u),g=f;o&&(g=C.expandShapeToKeepDim(f,l));let y;if(d){let A=n.texData.get(h.dataId).values,b=Rne(A,v.sizeFromShape(m),g,r.dtype);y=n.makeTensorInfo(g,r.dtype);let w=n.texData.get(y.dataId);w.values=b}else y=Ale(h,m,g,n);return p&&n.disposeIntermediateTensorInfo(h),y}var xle={kernelName:Jo,backendName:"webgl",kernelFunc:sC},ble=F9+`
|
|
return max(a, b);
|
|
`,vle=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+P2+`
|
|
return result;
|
|
`,wle=Dn({opSnippet:ble,packedOpSnippet:vle,cpuKernelImpl:_ne}),kle={kernelName:_a,backendName:"webgl",kernelFunc:wle};function Ile(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;ud(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(C.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=C.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Fs({inputs:{x:r},backend:n});let p=new Vp(c,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var Sle={kernelName:Qo,backendName:"webgl",kernelFunc:Ile};function Cle(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:u}=s,c=[1,1,1],p=C.computePool3DInfo(r.shape,a,o,c,i,u,l),d=new fb(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var Tle={kernelName:th,backendName:"webgl",kernelFunc:Cle},Nle=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Ele=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=i-1-e.padInfo.front,p=l-1-e.padInfo.top,d=u-1-e.padInfo.left,h=i*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${p}, ${d});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${i};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Rle(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,p=[1,1,1],d=C.computePool3DInfo(o.shape,i,l,p,u,c),h=new fb(d,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new Ele(d),g=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var _le={kernelName:x0,backendName:"webgl",kernelFunc:Rle};function Dle(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;ud([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=s,d=C.computePool2DInfo(i.shape,l,u,1,c,p),h=!0,f=new Vp(d,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new Nle(d),y=n.runWebGLProgram(g,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),y}var $le={kernelName:A0,backendName:"webgl",kernelFunc:Dle};function Ple(e,t,n,s){let r=new Vp(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new Vp(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var Fle={kernelName:b0,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;v.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let u=[1,1];v.assert(C.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=C.computePool2DInfo(s.shape,r,a,u,o),[p,d]=Ple(s,i,c,l);return[p,d]}};function Ole(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=pu(i,"float32","mean",s),u=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}var Mle={kernelName:ei,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=v.parseAxisParam(a,s.shape),u=l,c=C.getAxesPermutation(u,i),p=c!=null,d=o.shouldExecuteOnCPU([s]),h=[],f=s;if(p){if(d){let b=o.texData.get(f.dataId).values,w=new Array(i);for(let E=0;E<w.length;E++)w[E]=s.shape[c[E]];let I=pb(b,s.shape,s.dtype,c,w);f=o.makeTensorInfo(w,s.dtype);let k=o.texData.get(f.dataId);k.values=I}else f=F2(s,c,o);h.push(f),u=C.getInnerMostAxes(u.length,i)}C.assertAxesAreInnerMostDims("sum",u,i);let[m,g]=C.computeOutAndReduceShapes(f.shape,u),y=m;r&&(y=C.expandShapeToKeepDim(m,l));let x=Ole(f,g,y,o);for(let A of h)o.disposeIntermediateTensorInfo(A);return x}};function zle(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=C.getAxesPermutation(u,i),p=r;c!=null&&(p=ss({inputs:{x:r},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",u,i);let[d,h]=C.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=pu(m,m.dtype,"min",n),y;if(o){let x=C.expandShapeToKeepDim(d,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var Lle={kernelName:ti,backendName:"webgl",kernelFunc:zle},Ble=F9+`
|
|
return min(a, b);
|
|
`,Wle=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+P2+`
|
|
return result;
|
|
`,Vle=Dn({opSnippet:Ble,packedOpSnippet:Wle,cpuKernelImpl:Dne}),Ule={kernelName:Da,backendName:"webgl",kernelFunc:Vle},Gle=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let s=e.length,r=vt(s),a=t.map(u=>u[0]).join(","),o=t.map((u,c)=>u[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${s}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}},Hle=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=vt(s),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=ns("rc",s),l=ns("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,d="";if(s===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${p};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${p};
|
|
}
|
|
source -= start;
|
|
`;d=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${p}) +
|
|
gte * ((end - 1) * 2 - source + ${p});
|
|
source -= start;
|
|
`;d=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${d}
|
|
setOutput(result);
|
|
}
|
|
`}},jle=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Hle(s.shape,r,a):new Gle(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},qle={kernelName:ni,backendName:"webgl",kernelFunc:jle},Xle=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,Kle=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+P2+`
|
|
return result;
|
|
`,Zle=Dn({opSnippet:Xle,packedOpSnippet:Kle}),Yle={kernelName:Oc,backendName:"webgl",kernelFunc:Zle},Jle=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},Qle=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,eue=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,rC=Dn({opSnippet:Qle,packedOpSnippet:eue,checkOutOfBounds:!0}),tue={kernelName:Wo,backendName:"webgl",kernelFunc:rC},J7="return a - b;",aC=Dn({opSnippet:J7,packedOpSnippet:J7,supportsComplex:!0,cpuKernelImpl:Zne}),nue={kernelName:za,backendName:"webgl",kernelFunc:aC};function oC(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=sC({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=C.expandShapeToKeepDim(i.shape,o),u=ve({inputs:{x:i},backend:n,attrs:{shape:l}}),c=aC({inputs:{a:r,b:u},backend:n}),p=eC({inputs:{x:c},backend:n}),d=O2({inputs:{x:p},backend:n,attrs:{axis:o,keepDims:!1}}),h=ve({inputs:{x:d},backend:n,attrs:{shape:l}}),f=rC({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}var sue={kernelName:fi,backendName:"webgl",kernelFunc:oC};function rue(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:oC({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],c=l.shape[1],p=new Jle(u,c,a),d=[[o]],h=n.runWebGLProgram(p,[l],"int32",d);return i||n.disposeIntermediateTensorInfo(l),h}var aue={kernelName:v0,backendName:"webgl",kernelFunc:rue},oue=mr+`
|
|
return -x;
|
|
`,iue=`
|
|
vec4 result = -x;
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`;function lue(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=Pne(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return H().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new tl(s.shape,iue):r=new Aa(s.shape,oue),n.runWebGLProgram(r,[s],s.dtype)}var uue={kernelName:Dl,backendName:"webgl",kernelFunc:lue},cue=hr.nonMaxSuppressionV3Impl;function due(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=cue(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var pue={kernelName:$l,backendName:"webgl",kernelFunc:due},hue=hr.nonMaxSuppressionV4Impl;function fue(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),{selectedIndices:d,validOutputs:h}=hue(c,p,o,i,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var mue={kernelName:Mc,backendName:"webgl",kernelFunc:fue},gue=hr.nonMaxSuppressionV5Impl;function yue(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=gue(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Aue={kernelName:Pl,backendName:"webgl",kernelFunc:yue},xue=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${s}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},bue=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{dtype:a,depth:o,onValue:i,offValue:l}=s,u=v.sizeFromShape(r.shape),c=new xue(u,o,i,l),p=ve({inputs:{x:r},backend:n,attrs:{shape:[u]}}),d=n.runWebGLProgram(c,[p],a);n.disposeIntermediateTensorInfo(p);let h=[...r.shape,o],f=ve({inputs:{x:d},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(d),f},vue={kernelName:Ol,backendName:"webgl",kernelFunc:bue};function Xm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=qh({inputs:{input:s},backend:n}),a=Xm({inputs:{x:r},backend:n}),o=M2({inputs:{input:s},backend:n}),i=Xm({inputs:{x:o},backend:n}),l=ki({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Xh({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var wue={kernelName:Jl,backendName:"webgl",kernelFunc:Xm};function iC(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=qh({inputs:{input:s},backend:n}),a=iC({inputs:{x:r},backend:n}),o=M2({inputs:{input:s},backend:n}),i=Xm({inputs:{x:o},backend:n}),l=ki({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Xh({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var kue={kernelName:Fl,backendName:"webgl",kernelFunc:iC};function Iue(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return ky({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=ky({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=j9({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var Sue={kernelName:Ml,backendName:"webgl",kernelFunc:Iue},Cue=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let s=e.length,r=vt(s),a=t.map(l=>l[0]).join(","),o=t.map((l,u)=>l[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
}
|
|
`}},Tue=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=vt(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=ns("rc",s),l=ns("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
|
|
if(${u}) {
|
|
`,s===1?"":`}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
|
|
if(${u}) {`],d=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f<m;f++)h+=`
|
|
${p[f]}
|
|
if (${d}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`;h+=s===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},lC=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(v.sizeFromShape(r.shape)===0){let u=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return Xh({backend:n,attrs:{shape:u,value:o,dtype:r.dtype}})}let i=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Tue(r.shape,a,o):new Cue(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},Nue={kernelName:ri,backendName:"webgl",kernelFunc:lC},Eue=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,Rue=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+P2+`
|
|
return result;
|
|
`,_ue=Dn({opSnippet:Eue,packedOpSnippet:Rue}),Due={kernelName:ai,backendName:"webgl",kernelFunc:_ue};function $ue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],u=v.parseAxisParam(a,r.shape),c=u,p=C.getAxesPermutation(c,i),d=r;p!=null&&(d=ss({inputs:{x:r},backend:n,attrs:{perm:p}}),c=C.getInnerMostAxes(c.length,i),l.push(d)),C.assertAxesAreInnerMostDims("prod",c,i);let h;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:g,outDtype:y}=One(d.shape,d.dtype,f,c);h=n.makeTensorInfo(g,y,m)}else{let[f,m]=C.computeOutAndReduceShapes(d.shape,c),g=v.sizeFromShape(m),y=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,g]}}),x=ph(r.dtype),A=pu(y,x,"prod",n);h=ve({inputs:{x:A},backend:n,attrs:{shape:f}}),l.push(y),l.push(A)}if(o){l.push(h);let f=C.expandShapeToKeepDim(h.shape,u);h=ve({inputs:{x:h},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var Pue={kernelName:ii,backendName:"webgl",kernelFunc:$ue};function Fue(e){let{inputs:t,backend:n,attrs:s}=e,{shape:r,values:a,defaultValue:o,rowPartitionTensors:i}=t,{rowPartitionTypes:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),p=n.readSync(o.dataId),d=i.map(g=>n.readSync(g.dataId)),h=i.map(g=>g.shape),[f,m]=Mne(u,r.shape,c,a.shape,a.dtype,p,o.shape,d,h,l);return n.makeTensorInfo(f,a.dtype,m)}var Oue={kernelName:w0,backendName:"webgl",kernelFunc:Fue},uC=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=zne(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},Mue={kernelName:zc,backendName:"webgl",kernelFunc:uC},zue="return 1.0 / x;",Lue=dt({opSnippet:zue}),Bue={kernelName:Lc,backendName:"webgl",kernelFunc:Lue},Wue=mr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,Vue=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Uue=dt({opSnippet:Wue,packedOpSnippet:Vue}),Gue={kernelName:li,backendName:"webgl",kernelFunc:Uue},Hue=mr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,jue=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,que=dt({opSnippet:Hue,packedOpSnippet:jue}),Xue={kernelName:di,backendName:"webgl",kernelFunc:que},Kue=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Zue=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Yue(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=H().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Zue(r.shape,l,u,a,o):new Kue(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],"float32")}var Jue={kernelName:ci,backendName:"webgl",kernelFunc:Yue},Que=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],p=1/u,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function ece(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Que(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var tce={kernelName:I0,backendName:"webgl",kernelFunc:ece},nce=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},sce=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function rce(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=H().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new sce(r.shape,l,u,a,o):new nce(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],r.dtype)}var ace={kernelName:ui,backendName:"webgl",kernelFunc:rce},oce=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],p=1/u,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${i[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${i[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function ice(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new oce(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var lce={kernelName:k0,backendName:"webgl",kernelFunc:ice},uce=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=vt(n);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},cce=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=ns("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=vt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${i(s.slice())};
|
|
if(${r}){
|
|
result.g = ${l(s.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${u(s.slice())};
|
|
if(${r}) {
|
|
result.a = ${c(s.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function i(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function c(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let f=e.map((y,x)=>d(x,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function d(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function dce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return Fs({inputs:{x:r},backend:n});let l=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new cce(r.shape,i):new uce(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var pce={kernelName:Ll,backendName:"webgl",kernelFunc:dce},hce=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},fce={kernelName:Ql,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new hce(s.shape,a),[u,c]=C.getImageCenter(o,s.shape[1],s.shape[2]),p=[[u,c,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,p)}},mce=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,gce=dt({opSnippet:mce}),yce={kernelName:Bl,backendName:"webgl",kernelFunc:gce},Ace="return inversesqrt(x);",xce=dt({opSnippet:Ace,cpuKernelImpl:Lne}),bce={kernelName:Pa,backendName:"webgl",kernelFunc:xce},cC=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=vt(r.length),l=vt(a.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,p="";s===1?p="i":s===2&&(p="i, coords[1]");let d=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${i} strides = ${i}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${c});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${d};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function vce(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=C.calculateShapes(a,r,o),d=[p/u,u];if(p===0)return n.makeTensorInfo(o,r.dtype);let h=ve({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=ve({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new cC(l,i,h.shape.length,f.shape.length,c,d),y=n.runWebGLProgram(g,[f,h,m],f.dtype),x=ve({inputs:{x:y},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),x}var wce={kernelName:Wl,backendName:"webgl",kernelFunc:vce},kce=class{constructor(e,t,n,s){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,n];let r="while (left < right) {",a=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,o=H().getNumber("WEBGL_VERSION")===2?r:a,i=s==="left"?"<":"<=";this.userCode=`
|
|
int findBound(int batch, float value) {
|
|
int left = 0;
|
|
int right = numInputs;
|
|
int mid;
|
|
${o}
|
|
mid = (left + right) / 2;
|
|
if (getSortedSequence(batch, mid) ${i} value) {
|
|
left = mid + 1;
|
|
} else {
|
|
right = mid;
|
|
}
|
|
}
|
|
return right;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int valueIndex = coords[1];
|
|
|
|
float value = getValues(batch, valueIndex);
|
|
|
|
setOutput(float(findBound(batch, value)));
|
|
}
|
|
`}};function Ice(e){let{inputs:t,backend:n,attrs:s}=e,{sortedSequence:r,values:a}=t,{side:o}=s,i=new kce(r.shape[0],r.shape[1],a.shape[1],o),l=[[r.shape[1]]];return n.runWebGLProgram(i,[r,a],"int32",l)}var Sce={kernelName:S0,backendName:"webgl",kernelFunc:Ice},Cce=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let u=0;u<t.length;u++)l.push(`${o[u]}`),u<e&&i.push(`${o[u]}`);s=i.join(),r=l.join()}let a=vt(n);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${s});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function Tce(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new Cce(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],Nn(r.dtype,a.dtype))}var Nce={kernelName:Vl,backendName:"webgl",kernelFunc:Tce},Ece=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${C.SELU_SCALEALPHA};
|
|
float scale = ${C.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,Rce=dt({opSnippet:Ece}),_ce={kernelName:Bc,backendName:"webgl",kernelFunc:Rce},Dce=md+`
|
|
return 1.0 / (1.0 + exp(-1.0 * x));
|
|
`,$ce=`
|
|
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Pce=dt({opSnippet:Dce,packedOpSnippet:$ce,cpuKernelImpl:Wne}),Fce={kernelName:Fa,backendName:"webgl",kernelFunc:Pce},Oce=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,Mce=dt({opSnippet:Oce}),zce={kernelName:Wc,backendName:"webgl",kernelFunc:Mce},Lce=md+`
|
|
return sin(x);
|
|
`,Bce=dt({opSnippet:Lce}),Wce={kernelName:pi,backendName:"webgl",kernelFunc:Bce},Vce=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Uce=dt({opSnippet:Vce}),Gce={kernelName:Gl,backendName:"webgl",kernelFunc:Uce},Hce=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,jce=dt({opSnippet:Hce}),qce={kernelName:Vc,backendName:"webgl",kernelFunc:jce},Xce=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=[[0,0]];l.push(...o);for(let y=1+a.length;y<r.shape.length;++y)l.push([0,0]);let u=[],c=lC({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=C.getReshaped(c.shape,a,i,!1),d=C.getPermuted(p.length,a.length,!1),h=C.getReshapedPermuted(c.shape,a,i,!1),f=ve({inputs:{x:c},backend:n,attrs:{shape:p}}),m=ss({inputs:{x:f},backend:n,attrs:{perm:d}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:h}});return u.push(c),u.push(f),u.push(m),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},Kce={kernelName:Hl,backendName:"webgl",kernelFunc:Xce};function Zce(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[p,d,h,f,m]=Une(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(d,s.dtype,p),n.makeTensorInfo([d[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var Yce={kernelName:sh,backendName:"webgl",kernelFunc:Zce};function Jce(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[u,c,p]=Gne(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var Qce={kernelName:Uc,backendName:"webgl",kernelFunc:Jce};function ede(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=_9(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var tde={kernelName:rh,backendName:"webgl",kernelFunc:ede};function nde(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=_9(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var sde={kernelName:ah,backendName:"webgl",kernelFunc:nde};function rde(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=C.calculateShapes(a,r,i),h=!1;if(a.dtype==="string"){let y=n.bufferSync(r),x=n.bufferSync(a),A=v.decodeString(n.readSync(o.dataId)[0]),b=Bne(y,x,i,d,c,u,l,p,A,h);return n.makeTensorInfo(i,b.dtype,b.values)}let f=new cC(u,l,r.shape.length,a.shape.length,p,[d,1],h),m=n.runWebGLProgram(f,[a,r,o],a.dtype),g=ve({inputs:{x:m},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(m),g}var ade={kernelName:oh,backendName:"webgl",kernelFunc:rde};function ode(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=C.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[i]=d;let f=gd({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[i]+=d,f})}var ide={kernelName:jl,backendName:"webgl",kernelFunc:ode},Q7="return sqrt(x);",lde=dt({opSnippet:Q7,packedOpSnippet:Q7,cpuKernelImpl:Hne}),ude={kernelName:Oa,backendName:"webgl",kernelFunc:lde},cde="return x * x;",dde=dt({opSnippet:cde}),pde={kernelName:Gc,backendName:"webgl",kernelFunc:dde},ew="return (a - b) * (a - b);",hde=Dn({opSnippet:ew,packedOpSnippet:ew}),fde={kernelName:Ma,backendName:"webgl",kernelFunc:hde};function mde({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=mr+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,a=new Aa(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var gde={kernelName:gi,backendName:"webgl",kernelFunc:mde},yde=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=vt(n.length),a=vt(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,u)=>(i++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${i-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}};function Ade(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Pt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=ve({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Pt.computeOutShape(x,A,b),E=gd({inputs:{x:r},backend:n,attrs:{begin:x,size:k}});w=ve({inputs:{x:E},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(E)}else if(n.shouldExecuteOnCPU([r])){let E=n.readSync(r.dataId),_=De(r.shape,r.dtype,E),D=jne(h,_,b,x);w=n.makeTensorInfo(f,r.dtype,D.values)}else{let E=new yde(x,b,h);w=n.runWebGLProgram(E,[r],r.dtype)}let I=ve({inputs:{x:w},backend:n,attrs:{shape:f}});return n.disposeIntermediateTensorInfo(w),I}var xde={kernelName:ql,backendName:"webgl",kernelFunc:Ade};function bde(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=qne(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var vde={kernelName:Hc,backendName:"webgl",kernelFunc:bde};function wde(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[u,c,p]=Xne(i,l,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",u),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var kde={kernelName:ih,backendName:"webgl",kernelFunc:wde};function Ide(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=Kne(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var Sde={kernelName:lh,backendName:"webgl",kernelFunc:Ide},Cde="return tan(x);",Tde=dt({opSnippet:Cde}),Nde={kernelName:Xl,backendName:"webgl",kernelFunc:Tde},Ede=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,Rde=dt({opSnippet:Ede}),_de={kernelName:mi,backendName:"webgl",kernelFunc:Rde},Dde=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=vt(this.rank),r=$de(e);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function $de(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function dC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(d=>v.decodeString(d)):l,c=De(r.shape,r.dtype,u),p=Yne(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let o=new Dde(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var Pde={kernelName:La,backendName:"webgl",kernelFunc:dC},Fde=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},Ode=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function Hi(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function tw(e){let t=1;for(;t<e;)t*=2;return t}function Mde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=H().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=H().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,c=u[u.length-1];if(n.shouldExecuteOnCPU([r])||c<i||a>l){let D=n.readSync(r.dataId),[R,P]=Jne(D,u,r.dtype,a,o);return[n.makeTensorInfo(R.shape,R.dtype,R.values),n.makeTensorInfo(P.shape,P.dtype,P.values)]}if(a===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(c===1)return[r,Xh({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let p=n.texData.get(r.dataId),d=p!==null&&p.isPacked,h=d?n.unpackTensor(r):r,m=v.sizeFromShape(u)/c,g=ve({inputs:{x:h},attrs:{shape:[m,c]},backend:n});d&&Hi(n,h);let y=tw(a),x=tw(c),A=null,b=()=>A===null?[g,g]:[g,A],w=(D,R,P)=>{let T=b(),M=new Fde(P),G=[[c],[A===null?1:0],[Number.NEGATIVE_INFINITY],[D],[R]],X=A;A=n.runWebGLProgram(M,T,"int32",G),Hi(n,X)};for(let D=1;D<y;D*=2){let R=D*2;for(let P=D;P>=1;P/=2)w(R,P,[m,x])}for(let D=x;D>y;D/=2){let R=b(),P=new Ode([m,D/2]),M=[[c],[A===null?1:0],[y]],W=A;A=n.runWebGLProgram(P,R,"int32",M),Hi(n,W);let G=y/2,X=G*2;for(let K=G;K>=1;K/=2)w(X,K,A.shape)}let I=A;A=gd({inputs:{x:A},backend:n,attrs:{begin:0,size:[m,a]}}),Hi(n,I);let k=nC({inputs:{x:g,indices:A},backend:n,attrs:{axis:1,batchDims:1}});Hi(n,g);let E=u.slice(0,-1);E.push(a),I=A,A=ve({inputs:{x:A},attrs:{shape:E},backend:n}),Hi(n,I);let _=k;return k=ve({inputs:{x:k},attrs:{shape:E},backend:n}),Hi(n,_),[k,A]}var zde={kernelName:Kl,backendName:"webgl",kernelFunc:Mde},Lde=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${i} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${o} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function Bde(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new Lde(p,d,o,i,l,g);return n.runWebGLProgram(y,[r,a],"float32")}var Wde={kernelName:Zl,backendName:"webgl",kernelFunc:Bde};function Vde(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;ud(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:u}=Qne(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var Ude={kernelName:C0,backendName:"webgl",kernelFunc:Vde};function Gde(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;m<i;m++)m!==a&&(u[c++]=o.shape[m]);let p=[],d=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[a]=m;let g=gd({inputs:{x:o},backend:n,attrs:{begin:d,size:h}}),y=ve({inputs:{x:g},backend:n,attrs:{shape:u}});f[m]=y,p.push(g)}return p.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var Hde={kernelName:Yl,backendName:"webgl",kernelFunc:Gde},jde=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,p=`
|
|
sumValue += dot(values, segFilter);
|
|
`,d="";r%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function qde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],u=0,c=C.getAxesPermutation([u],i),p=r;c!=null&&(p=ss({inputs:{x:r},backend:n,attrs:{perm:c}}),l.push(p),u=C.getInnerMostAxes(1,i)[0]);let d=C.segment_util.computeOutShape(p.shape,u,o),h=v.sizeFromShape([p.shape[u]]),f=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(f);let m=ph(r.dtype),g=(b,w,I,k,E)=>{let _=b.shape[0],D=b.shape[1],R=C.segment_util.segOpComputeOptimalWindowSize(D,E),P={windowSize:R,inSize:D,batchSize:_,numSegments:E},T=new jde(P,w),M=n.compileAndRun(T,[b,I],k);if(l.push(M),M.shape[1]===E)return M;let W=uC({backend:n,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),G=dC({inputs:{x:W},backend:n,attrs:{reps:[D/R]}});return l.push(W),l.push(G),g(M,w,G,k,E)},y=g(f,"unsortedSegmentSum",a,m,o),x=ve({inputs:{x:y},backend:n,attrs:{shape:d}}),A=x;if(c!=null){l.push(x);let b=C.getUndoAxesPermutation(c);A=ss({inputs:{x:A},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),A}var Xde={kernelName:uh,backendName:"webgl",kernelFunc:qde},Kde=[Xse,Zse,Qse,nre,rre,ire,ure,dre,mre,yre,bre,kre,Cre,Rre,$re,Fre,Mre,Wre,Ure,Hre,Kre,nae,rae,oae,pae,fae,Aae,Ese,vae,Cae,Rae,Oae,zae,Bae,Vae,Gae,qae,Zae,Qae,toe,soe,aoe,loe,coe,foe,goe,xoe,woe,Ioe,Noe,Doe,Ooe,Loe,Voe,Uoe,Hoe,qoe,Koe,Yoe,Qoe,sie,oie,uie,die,fie,yie,vie,Sie,Nse,Tie,Iae,Rie,$ie,Oie,_se,Bie,Gie,jie,Zie,Qie,sle,ole,cle,fle,yle,xle,kle,Sle,Tle,_le,$le,Fle,Mle,Lle,Ule,qle,Yle,aue,Ose,uue,pue,mue,Aue,lae,vue,kue,Sue,Nue,Due,$se,Pue,Oue,Mue,uae,tue,Bue,Gue,Xue,zse,Jue,tce,ace,lce,pce,fce,yce,bce,wce,Sce,Nce,_ce,Fce,zce,Wce,Gce,eae,sue,qce,Kce,Yce,Qce,tde,sde,ade,ide,ude,pde,fde,gde,xde,vde,kde,Sde,nue,Hse,Nde,_de,Pde,zde,Wde,jse,Ude,Hde,Xde,wue];for(let e of Kde)pr(e);var Ht;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Ht||(Ht={}));var Gp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(Gp||(Gp={}));var pC;function Zde(e){pC=e.wasm.cwrap(yo,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Yde(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let E=n.dataIdMap.get(o.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);f=E.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=Gp[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],x=u?a.shape[1]:a.shape[2],A=tu.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)),b=n.makeOutput([...A,y,x],r.dtype),w=n.dataIdMap.get(b.dataId).id,I=new Uint8Array(new Int32Array(r.shape).buffer),k=new Uint8Array(new Int32Array(a.shape).buffer);return pC(d,I,r.shape.length,h,k,a.shape.length,l,u,g,f,m,p||0,w),b}var Jde={kernelName:yo,backendName:"wasm",setupFunc:Zde,kernelFunc:Yde};function wn(e,t){let n;function s(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function r(a){let{backend:o,inputs:{x:i}}=a,l=o.dataIdMap.get(i.dataId).id,u=o.makeOutput(i.shape,t||i.dtype),c=o.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||n(l,Ht[i.dtype],c),u}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:r}}var Qde=wn(bl);function $n(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:u,b:c}=l,p=i.dataIdMap.get(u.dataId).id,d=i.dataIdMap.get(c.dataId).id,h=n!=null?n:u.dtype,f=C.assertAndGetBroadcastShape(u.shape,c.shape),m=i.makeOutput(f,h);if(v.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(c.shape).buffer),x=i.dataIdMap.get(m.dataId).id;return(()=>s(p,g,u.shape.length,d,y,c.shape.length,Ht[u.dtype],x))(),m}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var epe=!0,tpe=$n(na,epe),hC;function npe(e){hC=e.wasm.cwrap(Ro,null,["array","number","number","number"])}function spe(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return hC(a,r.length,Ht[s.dtype],o),s}var rpe={kernelName:Ro,backendName:"wasm",setupFunc:npe,kernelFunc:spe};function z2(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var ape={kernelName:Xo,backendName:"wasm",kernelFunc:z2},fC;function ope(e){fC=e.wasm.cwrap(Zr,null,["number","array","number","number","number","array","number"])}function To(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=lpe(t.x.shape,s.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=ipe(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let f=z2({inputs:t,backend:n});return f.shape=i,f}let u=n.makeOutput(i,l.dtype),c=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(u.dataId).id,d=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return fC(c,h,l.shape.length,Ht[l.dtype],p,d,a.length),u}function ipe(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function lpe(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var upe={kernelName:Zr,backendName:"wasm",kernelFunc:To,setupFunc:ope};function Ii(e,t,n){let s=e.shape,r=e.shape.length,a=v.parseAxisParam(t,s),o=a,i=C.getAxesPermutation(o,r),l=null,u=!1;if(i!=null){let c=new Array(r);for(let h=0;h<c.length;h++)c[h]=s[i[h]];o=C.getInnerMostAxes(o.length,r),l=To({inputs:{x:e},attrs:{perm:i},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==p&&(u=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:u}}var mC;function cpe(e){mC=e.wasm.cwrap(vc,null,["number, number, number"])}function dpe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Ii(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;u=c,l=A}let f=u.shape.length;C.assertAxesAreInnerMostDims("all",p,f);let[m,g]=C.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;mC(l,y,A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var ppe={kernelName:vc,backendName:"wasm",setupFunc:cpe,kernelFunc:dpe},gC;function hpe(e){gC=e.wasm.cwrap(wc,null,["number, number, number"])}function fpe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Ii(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;u=c,l=A}let f=u.shape.length;C.assertAxesAreInnerMostDims("any",p,f);let[m,g]=C.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;gC(l,y,A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var mpe={kernelName:wc,backendName:"wasm",setupFunc:hpe,kernelFunc:fpe},yC;function gpe(e){yC=e.wasm.cwrap(_o,null,["number","number","number","number","number"])}function ype(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:u,axes:c,inputWasTransposed:p}=Ii(a,r,t);if(p){let y=t.dataIdMap.get(u.dataId).id;y!==o&&(l=u,i=y)}let d=l.shape.slice(0,-1),h=t.makeOutput(d,"int32"),f=t.dataIdMap.get(h.dataId).id,m=v.sizeFromShape(h.shape),g=l.shape[c[0]];return yC(i,Ht[l.dtype],m,g,f),p&&t.disposeData(u.dataId),h}var Ape={kernelName:_o,backendName:"wasm",kernelFunc:ype,setupFunc:gpe},AC;function xpe(e){AC=e.wasm.cwrap(Do,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function bpe(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=C.computePool2DInfo(r.shape,o,i,1,l,u),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,y=c.strideHeight,x=c.strideWidth,A=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let b=s.makeOutput(c.outShape,"float32"),w=s.dataIdMap.get(b.dataId).id;return AC(a,r.shape[0],r.shape[1],r.shape[2],p,d,h,f,m,g,y,x,A,w),b}var vpe={kernelName:Do,backendName:"wasm",setupFunc:xpe,kernelFunc:bpe};function ms(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a);return v.assert(a===v.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var wpe={kernelName:zl,backendName:"wasm",kernelFunc:ms},xC;function kpe(e){xC=e.wasm.cwrap($o,null,["number","array","number","number","array","number","number","number","number"])}function Ipe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],p=i?a.shape[u-1]:a.shape[u-2],d=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=tu.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);v.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,c,d]:[g,d,c],w=i?[y,h,p]:[y,p,h],I=ms({inputs:{x:r},backend:n,attrs:{shape:b}}),k=ms({inputs:{x:a},backend:n,attrs:{shape:w}}),E=n.dataIdMap.get(I.dataId).id,_=n.dataIdMap.get(k.dataId).id,D=o?I.shape[2]:I.shape[1],R=i?k.shape[1]:k.shape[2],P=Math.max(g,y),T=n.makeOutput([P,D,R],I.dtype),M=n.dataIdMap.get(T.dataId).id,W=new Uint8Array(new Int32Array(I.shape).buffer),G=new Uint8Array(new Int32Array(k.shape).buffer);return xC(E,W,I.shape.length,_,G,k.shape.length,o,i,M),n.disposeData(I.dataId),n.disposeData(k.dataId),T.shape=A,T}var Spe={kernelName:$o,backendName:"wasm",setupFunc:kpe,kernelFunc:Ipe};function Al(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=Pt.parseSliceParams(t,n,s),i=Pt.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),u=r.makeOutput(o,t.dtype),c=v.computeStrides(t.shape),p=r.dataIdMap.get(u.dataId);if(i){let f=Pt.computeFlatOffset(a,c);return t.dtype==="string"?p.stringBytes=l.slice(f,f+v.sizeFromShape(o)):r.typedArrayFromHeap(u).set(l.subarray(f,f+v.sizeFromShape(o))),u}if(t.dtype==="string"){let f=Vm(l,a,o,t.shape,t.dtype);return p.stringBytes=f,u}let d=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)Cpe(l,c[0],d,a,o);else if(h===3)Tpe(l,c[0],c[1],d,a,o);else if(h===4)Npe(l,c[0],c[1],c[2],d,a,o);else{let f=Vm(l,a,o,t.shape,t.dtype);d.set(f)}return u}function Cpe(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let u=o;u<l;u++){let c=u*t+i;n.set(e.subarray(c,c+r[1]),a),a+=r[1]}}function Tpe(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],u=r[2],c=i+a[0],p=l+a[1];for(let d=i;d<c;d++)for(let h=l;h<p;h++){let f=d*t+h*n+u;s.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function Npe(e,t,n,s,r,a,o){let i=0,l=a[0],u=a[1],c=a[2],p=l+o[0],d=u+o[1],h=c+o[2],f=a[3];for(let m=l;m<p;m++)for(let g=u;g<d;g++)for(let y=c;y<h;y++){let x=m*t+g*n+y*s+f;r.set(e.subarray(x,x+o[3]),i),i+=o[3]}}var Epe={kernelName:Ul,backendName:"wasm",kernelFunc:Al};function Rpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((y,x)=>y*x),l=C.getReshaped(r.shape,a,i),u=C.getPermuted(l.length,a.length),c=C.getReshapedPermuted(r.shape,a,i),p=C.getSliceBeginCoords(o,a.length),d=C.getSliceSize(c,o,a.length),h=ms({inputs:{x:r},backend:n,attrs:{shape:l}}),f=To({inputs:{x:h},backend:n,attrs:{perm:u}}),m=ms({inputs:{x:f},backend:n,attrs:{shape:c}}),g=Al({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var _pe={kernelName:vl,backendName:"wasm",kernelFunc:Rpe};function yd(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var Dpe={kernelName:Po,backendName:"wasm",kernelFunc:yd},$pe=wn(Sa),bC;function Ppe(e){bC=e.wasm.cwrap(Ca,null,["number","number","number","number"])}function Fpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return bC(i,a,o,u),l}var Ope={kernelName:Ca,backendName:"wasm",setupFunc:Ppe,kernelFunc:Fpe};function vC(e){let{inputs:t,backend:n}=e,s=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=C.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>v.sizeFromShape(h.shape)>0);if(a.length===1)return z2({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(v.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(C.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(A=>{let b=v.sizeFromShape(A.shape.slice(s));return ms({inputs:{x:A},backend:n,attrs:{shape:[-1,b]}})}),f=h.map(A=>({vals:n.readSync(A.dataId),shape:A.shape}));r=C.computeOutShape(h.map(A=>A.shape),1);let m=h[0].shape[0]===1,g=Gx(f,r,t[0].dtype,m),y=C.computeOutShape(a.map(A=>A.shape),s);o.shape=y;let x=n.dataIdMap.get(o.dataId);return x.stringBytes=C.fromStringArrayToUint8(g),h.forEach(A=>n.disposeData(A.dataId)),o}let l=v.sizeFromShape(a[0].shape.slice(0,s)),u=0,c=a.map(h=>{let f=v.sizeFromShape(h.shape.slice(s));return u+=f,f}),p=a.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let f=h*u;for(let m=0;m<p.length;m++){let g=c[m],y=h*g,x=p[m].subarray(y,y+g);d.set(x,f),f+=g}}return o}var Mpe={kernelName:wl,backendName:"wasm",kernelFunc:vC},wC;function zpe(e){wC=e.wasm.cwrap(Fo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Lpe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p,dataFormat:d}=n,h=C.convertConv2DDataFormat(d),f=C.computeConv2DInfo(r.shape,a.shape,l,u,c,p,!1,h),m=f.filterHeight,g=f.filterWidth,y=f.padInfo.top,x=f.padInfo.right,A=f.padInfo.bottom,b=f.padInfo.left,w=f.dilationHeight,I=f.dilationWidth,k=f.strideHeight,E=f.strideWidth,_=f.inChannels,D=f.outChannels,R=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let P=s.makeOutput(f.outShape,"float32"),T=s.dataIdMap.get(P.dataId).id;return wC(o,r.shape[0],r.shape[1],r.shape[2],i,m,g,y,x,A,b,R,w,I,k,E,_,D,T),P}var Bpe={kernelName:Fo,backendName:"wasm",setupFunc:zpe,kernelFunc:Lpe},kC;function Wpe(e){kC=e.wasm.cwrap(Oo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Vpe(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,inputShape:c}=s,p=1,d=C.convertConv2DDataFormat(l),h=C.computeConv2DInfo(c,a.shape,o,p,i,u,!1,d),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:y,inHeight:x,inWidth:A,outChannels:b,outHeight:w,outWidth:I,strideHeight:k,strideWidth:E}=h,_=m-1-h.padInfo.top,D=g-1-h.padInfo.left,R=h.dataFormat==="channelsLast",P=v.computeStrides(h.inShape),T=v.computeStrides(r.shape),[M,W,G]=v.computeStrides(a.shape),X=P[0],K=R?P[1]:P[2],Y=R?P[2]:1,re=R?1:P[1],ee=T[0],ie=R?T[1]:T[2],ne=R?T[2]:1,pe=R?1:T[1],ce=t.makeOutput(h.inShape,"float32"),Ae=t.dataIdMap.get(ce.dataId).id,oe=t.dataIdMap.get(r.dataId).id,Re=t.dataIdMap.get(a.dataId).id;return kC(oe,Re,f,m,g,x,A,y,w,I,b,k,E,_,D,M,W,G,X,K,Y,re,ee,ie,ne,pe,Ae),ce}var Upe={kernelName:Oo,backendName:"wasm",setupFunc:Wpe,kernelFunc:Vpe},Gpe=wn(Mo),Hpe=wn(zo),Iy;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(Iy||(Iy={}));var IC;function jpe(e){IC=e.wasm.cwrap(Il,null,["number","number","number","number","array","number","number","number","number","number"])}function qpe(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:u}=n,c=l.shape[0],[p,d]=o,h=[c,p,d,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=yd({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,y=t.dataIdMap.get(l.dataId).id,x=t.dataIdMap.get(u.dataId).id,A=t.makeOutput(h,"float32"),b=t.dataIdMap.get(A.dataId).id,w=new Uint8Array(new Int32Array(i.shape).buffer);return IC(g,y,x,c,w,p,d,Iy[r],a,b),m!=null&&t.disposeData(m.dataId),A}var Xpe={kernelName:Il,backendName:"wasm",setupFunc:jpe,kernelFunc:qpe},SC;function Kpe(e){SC=e.wasm.cwrap(kl,null,["number","number","number","number","number","number"])}function Zpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([a],l),c=r;u!==null&&(c=To({inputs:{x:r},attrs:{perm:u},backend:n}));let p=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumprod",[p],l);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;SC(f,o?1:0,i?1:0,h,m,Ht[r.dtype]);let g=d;if(u!==null){let y=C.getUndoAxesPermutation(u);g=To({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var Ype={kernelName:kl,backendName:"wasm",setupFunc:Kpe,kernelFunc:Zpe},CC;function Jpe(e){CC=e.wasm.cwrap(Lo,null,["number","number","number","number","number","number"])}function Qpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([a],l),c=r;u!==null&&(c=To({inputs:{x:r},attrs:{perm:u},backend:n}));let p=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumsum",[p],l);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;CC(f,o?1:0,i?1:0,h,m,Ht[r.dtype]);let g=d;if(u!==null){let y=C.getUndoAxesPermutation(u);g=To({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var ehe={kernelName:Lo,backendName:"wasm",setupFunc:Jpe,kernelFunc:Qpe},TC;function the(e){TC=e.wasm.cwrap(Sl,null,["number","number","number","array","number","array","array","number","number"])}function nhe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=t.makeOutput(f,"float32"),y=t.dataIdMap.get(r.dataId).id,x=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),A=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),w=t.dataIdMap.get(m.dataId).id;return TC(y,a,o==="NHWC"?1:0,x,r.shape.length-1,A,b,f.length,w),m}var she={kernelName:Sl,backendName:"wasm",setupFunc:the,kernelFunc:nhe},NC;function rhe(e){NC=e.wasm.cwrap(Bo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ahe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p}=n,d=u==null?[1,1]:u,h=C.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,x=h.padInfo.bottom,A=h.padInfo.left,b=h.dilationHeight,w=h.dilationWidth,I=h.strideHeight,k=h.strideWidth,E=h.inChannels,_=h.outChannels,D=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let R=s.makeOutput(h.outShape,"float32"),P=s.dataIdMap.get(R.dataId).id;return NC(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,y,x,A,D,b,w,I,k,E,_,P),R}var ohe={kernelName:Bo,backendName:"wasm",setupFunc:rhe,kernelFunc:ahe},ihe=wn(Vo),lhe=!1,uhe=$n(Uo,lhe,"bool"),che=wn(Ta,"float32");function Sy(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),ms({inputs:{x:r},backend:s,attrs:{shape:i}})}var dhe={kernelName:Cl,backendName:"wasm",kernelFunc:Sy};function EC(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var phe={kernelName:Rc,backendName:"wasm",kernelFunc:EC},RC;function hhe(e){RC=e.wasm.cwrap(Tl,null,["number","number","number","number","number","number"])}function fhe(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,u,c]=s.shape;return RC(a,i,l,u,c,o),r}var mhe={kernelName:Tl,backendName:"wasm",kernelFunc:fhe,setupFunc:hhe},ghe=wn(Na),yhe=!1,Ahe=$n(Ho,yhe),_C;function xhe(e){_C=e.wasm.cwrap(jo,null,["number","number","number","number","number","number","number"])}function bhe(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:u}=n,c=t.dataIdMap.get(a.dataId).id,p=t.dataIdMap.get(o.dataId).id,d=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(v.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return _C(c,p,d,h,f,r,g),m}var vhe={kernelName:jo,backendName:"wasm",setupFunc:xhe,kernelFunc:bhe},DC;function whe(e){DC=e.wasm.cwrap(Ao,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function khe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=C.computeConv2DInfo(r.shape,a.shape,l,c,u,d),g=Gp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,A=m.outChannels,b=0;if(o!=null){let ne=s.dataIdMap.get(o.dataId);if(ne.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==A)throw new Error(`FusedConv2D bias shape (${ne.shape}) does not match the number of output channels (${A})`);b=ne.id}let w=m.filterHeight,I=m.filterWidth,k=m.padInfo.top,E=m.padInfo.right,_=m.padInfo.bottom,D=m.padInfo.left,R=m.dilationHeight,P=m.dilationWidth,T=m.strideHeight,M=m.strideWidth,W=m.inChannels,G=m.padInfo.type==="SAME"?1:0,X=m.batchSize,K=m.inHeight,Y=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let re=s.makeOutput(m.outShape,"float32"),ee=s.dataIdMap.get(re.dataId).id,ie=i==null?0:s.dataIdMap.get(i.dataId).id;return DC(y,X,K,Y,x,w,I,b,k,E,_,D,G,R,P,T,M,W,A,g,ie,f||0,ee),re}var Ihe={kernelName:Ao,backendName:"wasm",setupFunc:whe,kernelFunc:khe},$C;function She(e){$C=e.wasm.cwrap(xo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Che(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=C.computeConv2DInfo(r.shape,a.shape,l,c,u,d,!0),g=Gp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,A=m.outChannels,b=0;if(o!=null){let ne=s.dataIdMap.get(o.dataId);if(ne.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==A)throw new Error(`FusedDepthwiseConv2D bias shape (${ne.shape}) does not match the number of output channels (${A})`);b=ne.id}let w=m.filterHeight,I=m.filterWidth,k=m.padInfo.top,E=m.padInfo.right,_=m.padInfo.bottom,D=m.padInfo.left,R=m.dilationHeight,P=m.dilationWidth,T=m.strideHeight,M=m.strideWidth,W=m.inChannels,G=m.padInfo.type==="SAME"?1:0,X=m.batchSize,K=m.inHeight,Y=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let re=s.makeOutput(m.outShape,"float32"),ee=s.dataIdMap.get(re.dataId).id,ie=i==null?0:s.dataIdMap.get(i.dataId).id;return $C(y,X,K,Y,x,w,I,b,k,E,_,D,G,R,P,T,M,W,A,g,ie,f||0,ee),re}var The={kernelName:xo,backendName:"wasm",setupFunc:She,kernelFunc:Che},PC;function Nhe(e){PC=e.wasm.cwrap(El,null,["number","number","number","number","number","number","array","number"])}function Ehe(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=tA.prepareAndValidate(s,r),u=t.makeOutput(a,s.dtype);if(o===0)return u;let c=r.shape,p=c[c.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),y=t.dataIdMap.get(u.dataId).id;return PC(h,Ht[s.dtype],m,o,p,i,g,y),u}var Rhe={kernelName:El,backendName:"wasm",setupFunc:Nhe,kernelFunc:Ehe},FC;function _he(e){FC=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Dhe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],u=t.readSync(a.dataId),c=r.shape[l];for(let _=0;_<u.length;++_){let D=u[_];v.assert(D<=c-1&&D>=0,()=>`GatherV2: the index value ${D} is not in [0, ${c-1}]`)}let p=C.segment_util.collectGatherOpShapeInfo(r,a,l,i),d=ms({inputs:{x:r},attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]},backend:t}),h=v.sizeFromShape(a.shape),f=ms({inputs:{x:a},attrs:{shape:[p.batchSize,h/p.batchSize]},backend:t}),m=[p.batchSize,p.outerSize,h/p.batchSize,p.sliceSize],g=t.makeOutput(m,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let y=d.shape.length-1,A=t.dataIdMap.get(d.dataId).id,w=t.dataIdMap.get(f.dataId).id,I=t.dataIdMap.get(g.dataId).id,k=new Uint8Array(new Int32Array(v.computeStrides(d.shape)).buffer),E=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer);return FC(A,Ht[r.dtype],k,y,w,p.batchSize,E,I),t.disposeData(d.dataId),t.disposeData(f.dataId),g.shape=p.outputShape,g}var $he={kernelName:Nl,backendName:"wasm",setupFunc:_he,kernelFunc:Dhe},Phe=!1,Fhe=$n(qo,Phe,"bool"),Ohe=!1,Mhe=$n(Ea,Ohe,"bool"),OC;function zhe(e){OC=e.wasm.cwrap(Ko,null,["number","number","number","number"])}function Lhe(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;OC(r,Ht[t.dtype],n,o)}return a}var Bhe={kernelName:Ko,backendName:"wasm",setupFunc:zhe,kernelFunc:Lhe},Whe=!1,Vhe=$n(Zo,Whe,"bool"),Uhe=!1,Ghe=$n(Yo,Uhe,"bool"),Hhe=wn(Ra),jhe=!1,qhe=$n(Rl,jhe,"bool"),Xhe=wn(_l),Khe=!1,Zhe=$n(Fc,Khe,"bool"),Yhe=!1,Jhe=$n(Pw,Yhe,"bool"),MC;function Qhe(e){MC=e.wasm.cwrap(Jo,null,["number","number","number","number"])}function efe(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Ii(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;u=c,l=A}let f=u.shape.length;C.assertAxesAreInnerMostDims("max",p,f);let[m,g]=C.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;MC(l,Ht[o.dtype],y,A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var tfe={kernelName:Jo,backendName:"wasm",setupFunc:Qhe,kernelFunc:efe},nfe=!1,sfe=$n(_a,nfe),zC;function rfe(e){zC=e.wasm.cwrap(Qo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function afe(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=C.computePool2DInfo(r.shape,o,i,1,l,u),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,y=c.dilationHeight,x=c.dilationWidth,A=c.strideHeight,b=c.strideWidth,w=c.inChannels,I=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let k=s.makeOutput(c.outShape,"float32"),E=s.dataIdMap.get(k.dataId).id;return zC(a,r.shape[0],r.shape[1],r.shape[2],p,d,h,f,m,g,y,x,A,b,w,I,E),k}var ofe={kernelName:Qo,backendName:"wasm",setupFunc:rfe,kernelFunc:afe},LC;function ife(e){LC=e.wasm.cwrap(ei,null,["number, number, number"])}function lfe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Ii(o,r,t),f=p;if(h){let b=t.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,f=C.getInnerMostAxes(f.length,u.shape.length))}C.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,g]=C.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=u;u.dtype!=="float32"&&(x=yd({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(x.dataId).id);let A=t.makeOutput(m,"float32");if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(A.dataId).id;LC(l,y,b)}if(h&&t.disposeData(c.dataId),a){let b=C.expandShapeToKeepDim(A.shape,d);A.shape=b}return u.dtype!=="float32"&&t.disposeData(x.dataId),A}var ufe={kernelName:ei,backendName:"wasm",setupFunc:ife,kernelFunc:lfe},BC;function cfe(e){BC=e.wasm.cwrap(ti,null,["number","number","number","number"])}function dfe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Ii(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A)}let f=u.shape.length;C.assertAxesAreInnerMostDims("min",p,f);let[m,g]=C.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;BC(l,Ht[o.dtype],y,A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var pfe={kernelName:ti,backendName:"wasm",setupFunc:cfe,kernelFunc:dfe},hfe=!1,ffe=$n(Da,hfe),Cy;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(Cy||(Cy={}));var WC;function mfe(e){WC=e.wasm.cwrap(ni,null,["number","array","number","number","array","array","number","number"])}function gfe(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(f=>f[0]),p=s.map(f=>f[1]),d=new Uint8Array(new Int32Array(c).buffer),h=new Uint8Array(new Int32Array(p).buffer);return WC(o,u,t.shape.length,Ht[t.dtype],d,h,Cy[r],l),i}var yfe={kernelName:ni,backendName:"wasm",kernelFunc:gfe,setupFunc:mfe},Afe=!0,xfe=$n($a,Afe),bfe=wn(Dl);function mb(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var VC;function vfe(e){VC=e.wasm.cwrap($l,"number",["number","number","number","number","number"])}function wfe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,u=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(l.dataId).id,p=VC(u,c,a,r,o),{pSelectedIndices:d,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=mb(t,p);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",d)}var kfe={kernelName:$l,backendName:"wasm",setupFunc:vfe,kernelFunc:wfe},UC;function Ife(e){UC=e.wasm.cwrap(Mc,"number",["number","number","number","number","number","bool"])}function Sfe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,d=UC(c,p,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=mb(t,d);t.wasm._free(m);let y=t.makeOutput([f],"int32",h),x=t.makeOutput([],"int32",g);return[y,x]}var Cfe={kernelName:Mc,backendName:"wasm",setupFunc:Ife,kernelFunc:Sfe},GC;function Tfe(e){GC=e.wasm.cwrap(Pl,"number",["number","number","number","number","number","number"])}function Nfe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,d=GC(c,p,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=mb(t,d);t.wasm._free(g);let y=t.makeOutput([f],"int32",h),x=t.makeOutput([f],"float32",m);return[y,x]}var Efe={kernelName:Pl,backendName:"wasm",setupFunc:Tfe,kernelFunc:Nfe},Rfe=!1,_fe=$n(si,Rfe,"bool"),HC;function Dfe(e){HC=e.wasm.cwrap(Ol,null,["number","number","number","number","number"])}function $fe(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{dtype:a,depth:o,onValue:i,offValue:l}=s,u=n.makeOutput([...r.shape,o],a),c=n.dataIdMap.get(u.dataId).id,d=n.dataIdMap.get(r.dataId).id;return HC(d,o,i,l,c),u}var Pfe={kernelName:Ol,backendName:"wasm",setupFunc:Dfe,kernelFunc:$fe};function Ffe(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var Ofe={kernelName:Fl,backendName:"wasm",kernelFunc:Ffe};function Mfe(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Sy({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=Sy({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=vC({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var zfe={kernelName:Ml,backendName:"wasm",kernelFunc:Mfe},jC;function Lfe(e){jC=e.wasm.cwrap(ri,null,["number","array","number","number","array","array","number","number"])}function Bfe(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(v.sizeFromShape(t.shape)===0)return EC({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),p=s.map(m=>m[0]),d=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(p).buffer),f=new Uint8Array(new Int32Array(d).buffer);return jC(o,c,t.shape.length,Ht[t.dtype],h,f,r,u),i}var qC={kernelName:ri,backendName:"wasm",kernelFunc:Bfe,setupFunc:Lfe},Wfe=!1,Vfe=$n(ai,Wfe),XC;function Ufe(e){XC=e.wasm.cwrap(oi,null,["number","number","number"])}function Gfe(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=a,l=s,u=l;l.dtype!=="float32"&&(u=yd({backend:n,inputs:{x:s},attrs:{dtype:"float32"}}),i=n.dataIdMap.get(u.dataId).id);let c=n.makeOutput(s.shape,"float32"),p=n.dataIdMap.get(c.dataId).id;return XC(i,o,p),l.dtype!=="float32"&&n.disposeData(u.dataId),c}var Hfe={kernelName:oi,backendName:"wasm",setupFunc:Ufe,kernelFunc:Gfe},KC;function jfe(e){KC=e.wasm.cwrap(ii,null,["number","number","number","number"])}function qfe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Ii(o,r,t),f=p;if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A,f=C.getInnerMostAxes(f.length,u.shape.length))}C.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,g]=C.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;KC(l,y,Ht[x.dtype],A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Xfe={kernelName:ii,backendName:"wasm",setupFunc:jfe,kernelFunc:qfe},Kfe=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=qx(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},Zfe={kernelName:zc,backendName:"wasm",kernelFunc:Kfe},Yfe=!0,Jfe=$n(Wo,Yfe),Qfe=wn(li),eme=wn(di),ZC;function tme(e){ZC=e.wasm.cwrap(ci,null,["number","number","number","number","number","number","number","number","number","number"])}function nme(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,p,d,h]=r.shape,f=[c,l,u,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=yd({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let y=m.id,x=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return x;let A=t.dataIdMap.get(x.dataId).id;return ZC(y,c,p,d,h,l,u,a?1:0,o?1:0,A),g!=null&&t.disposeData(g.dataId),x}var sme={kernelName:ci,backendName:"wasm",setupFunc:tme,kernelFunc:nme},YC;function rme(e){YC=e.wasm.cwrap(ui,null,["number","number","number","number","number","number","number","number","number","number"])}function ame(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,p,d,h]=r.shape,f=[c,l,u,h],m=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return m;let g=t.dataIdMap.get(r.dataId),y;g.dtype!=="float32"&&(y=yd({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(y.dataId));let x=g.id,A=t.dataIdMap.get(m.dataId).id;return YC(x,c,p,d,h,l,u,a?1:0,o?1:0,A),y!=null&&t.disposeData(y.dataId),m}var ome={kernelName:ui,backendName:"wasm",setupFunc:rme,kernelFunc:ame},JC;function ime(e){JC=e.wasm.cwrap(Ll,null,["number","array","number","array","number","number"])}function lme(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=v.parseAxisParam(a,r.shape);if(r.shape.length===0)return z2({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(o).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);JC(l,c,o.length,p,r.shape.length,u);let d=ms({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),d}var ume={kernelName:Ll,backendName:"wasm",kernelFunc:lme,setupFunc:ime},QC;function cme(e){QC=e.wasm.cwrap(Ql,null,["number","number","number","number","number","number","number","number","array","number","number"])}function dme(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(l.dataId).id,[p,d,h,f]=r.shape,[m,g]=C.getImageCenter(i,d,h),y=o===0,x=255,A=typeof o=="number"?[o,o,o,y?0:x]:[...o,x],b=new Uint8Array(new Int32Array(A).buffer);return QC(u,p,d,h,f,a,m,g,b,A.length,c),l}var pme={kernelName:Ql,backendName:"wasm",kernelFunc:dme,setupFunc:cme},hme=wn(Bl),fme=wn(Pa),eT;function mme(e){eT=e.wasm.cwrap(Wl,null,["number","number","number","number","number","number","array","number","number"])}function gme(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(v.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=nA.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(p).buffer),x=t.dataIdMap.get(i.dataId).id;return eT(f,g,Ht[a.dtype],l,u,c,y,d,x),i}var yme={kernelName:Wl,backendName:"wasm",setupFunc:mme,kernelFunc:gme},tT;function Ame(e){tT=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function xme(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,u=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(u.dataId).id,p=s.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:v.sizeFromShape(r.shape.slice(1));return tT(o,i,l,h,c),u}var bme={kernelName:Vl,backendName:"wasm",kernelFunc:xme,setupFunc:Ame},nT;function vme(e){nT=e.wasm.cwrap(Fa,null,["number","number"])}function wme(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||nT(s,a),r}var kme={kernelName:"Sigmoid",backendName:"wasm",setupFunc:vme,kernelFunc:wme},Ime=wn(pi),sT;function Sme(e){sT=e.wasm.cwrap(fi,null,["number","number","number","number"])}function Cme(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=v.sizeFromShape(n.shape)/i;return v.sizeFromShape(a.shape)===0||sT(r,o,i,l),a}var Tme={kernelName:fi,backendName:"wasm",setupFunc:Sme,kernelFunc:Cme};function Nme(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let I=1+a.length;I<r.shape.length;++I)l.push([0,0]);let u=qC.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=C.getReshaped(u.shape,a,i,!1),p=C.getPermuted(c.length,a.length,!1),d=C.getReshapedPermuted(u.shape,a,i,!1),m=ms({inputs:{x:u},backend:n,attrs:{shape:c}}),x=To({inputs:{x:m},backend:n,attrs:{perm:p}}),w=ms({inputs:{x},backend:n,attrs:{shape:d}});return n.disposeData(u.dataId),n.disposeData(m.dataId),n.disposeData(x.dataId),w}var Eme={kernelName:Hl,backendName:"wasm",kernelFunc:Nme},rT;function Rme(e){rT=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function _me(e){let{backend:t,inputs:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=n,i=s.shape[0],l=s.shape[1],u=t.readSync(a.dataId)[0],c=[i+u,l],p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(o.dataId).id,f=t.makeOutput(c,s.dtype),m=t.dataIdMap.get(f.dataId).id,g=t.makeOutput(c.slice(0,1),r.dtype),y=t.dataIdMap.get(g.dataId).id,x=t.makeOutput([u],"bool"),A=t.dataIdMap.get(x.dataId).id,b=t.makeOutput([i],s.dtype),w=t.dataIdMap.get(b.dataId).id,I=t.makeOutput([4],"int32"),k=t.dataIdMap.get(I.dataId).id,E=rT(p,d,Ht[r.dtype],i,u,l,h,m,y,A,w,k),_=t.readSync(I.dataId),D;switch(_[0]){case 1:{D=C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(_[1]);break}case 2:{D=C.getSparseFillEmptyRowsNegativeIndexErrorMessage(_[1],_[2]);break}case 3:D=C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(_[1],_[2],_[3]);break;default:D=""}if(t.disposeData(I.dataId),D)throw t.disposeData(f.dataId),t.disposeData(g.dataId),t.disposeData(x.dataId),t.disposeData(b.dataId),new Error(D);let R=f,P=g;return E!==c[0]&&(R=Al({inputs:{x:f},attrs:{begin:0,size:[E,l]},backend:t}),P=Al({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(f.dataId),t.disposeData(g.dataId)),[R,P,x,b]}var Dme={kernelName:sh,backendName:"wasm",setupFunc:Rme,kernelFunc:_me},aT;function $me(e){aT=e.wasm.cwrap(Uc,null,["number","number","number","number","number","number","number"])}function Pme(e){let{backend:t,inputs:n}=e,{inputIndices:s,inputShape:r,newShape:a}=n;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=t.dataIdMap.get(s.dataId).id,i=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(a.dataId).id,u=s.shape[0],c=v.sizeFromShape(a.shape),p=t.makeOutput([u,c],s.dtype),d=t.dataIdMap.get(p.dataId).id,h=t.makeOutput([c],a.dtype),f=t.dataIdMap.get(h.dataId).id,m=t.makeOutput([3],"int32"),g=t.dataIdMap.get(m.dataId).id;aT(o,i,l,u,d,f,g);let y=t.readSync(m.dataId),x;switch(y[0]){case 0:{x=C.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(y[1],y[2]);break}case 1:{x=C.getSparseReshapeNegativeOutputDimErrorMessage(y[1],y[2]);break}case 2:x=C.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let A=Array.from(t.readSync(r.dataId)),b=Array.from(t.readSync(h.dataId));x=C.getSparseReshapeInputOutputMultipleErrorMessage(A,b);break}case 4:{let A=Array.from(t.readSync(r.dataId)),b=Array.from(t.readSync(h.dataId));x=C.getSparseReshapeInputOutputMismatchErrorMessage(A,b);break}default:x=""}if(t.disposeData(m.dataId),x)throw t.disposeData(p.dataId),t.disposeData(h.dataId),new Error(x);return[p,h]}var Fme={kernelName:Uc,backendName:"wasm",setupFunc:$me,kernelFunc:Pme},oT;function iT(e){oT=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function lT(e,t){let{backend:n,inputs:s}=e,{data:r,indices:a,segmentIds:o}=s,i=a.shape[0],l=n.readSync(o.dataId,i-1,i)[0],c=i>0?l+1:0;if(c<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=c;let d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=n.dataIdMap.get(o.dataId).id,m=n.makeOutput(p,r.dtype),g=n.dataIdMap.get(m.dataId).id,y=n.makeOutput([4],"int32"),x=n.dataIdMap.get(y.dataId).id;oT(d,Ht[r.dtype],r.shape[0],h,f,g,x,t,0);let A=n.readSync(y.dataId),b;switch(A[0]){case 0:{b=C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{b=C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:b=C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(A[1],A[2]);break;case 3:b=C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(A[1],A[2],A[3]);break;default:b=""}if(n.disposeData(y.dataId),b)throw n.disposeData(m.dataId),new Error(b);return m}function Ome(e){return lT(e,!0)}var Mme={kernelName:rh,backendName:"wasm",setupFunc:iT,kernelFunc:Ome};function zme(e){return lT(e,!1)}var Lme={kernelName:ah,backendName:"wasm",setupFunc:iT,kernelFunc:zme};function Bme(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=v.parseAxisParam(o,r.shape)[0],l=C.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(p=>{let d=[...c];d[i]=p;let h=Al({inputs:{x:r},attrs:{begin:u,size:d},backend:s});return u[i]+=p,h})}var Wme={kernelName:jl,backendName:"wasm",kernelFunc:Bme},Vme=wn(Oa),Ume=wn(Gc),Gme=!0,Hme=$n(Ma,Gme),uT;function jme(e){uT=e.wasm.cwrap(gi,null,["number","number","number","number"])}function qme(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return uT(o,r,Ht[a.dtype],l),i}var Xme={kernelName:gi,backendName:"wasm",setupFunc:jme,kernelFunc:qme},cT;function Kme(e){cT=e.wasm.cwrap(ql,null,["number","array","number","array","array","array","array","array","number","number"])}function Zme(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Pt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=ms({inputs:{x:r},backend:t,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let I=Pt.computeOutShape(x,A,b),k=Al({inputs:{x:r},backend:t,attrs:{begin:x,size:I}});w=ms({inputs:{x:k},backend:t,attrs:{shape:f}}),t.disposeData(k.dataId)}else{let I=t.makeOutput(h,"float32"),k=t.dataIdMap.get(r.dataId).id,E=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),_=new Uint8Array(new Int32Array(x).buffer),D=new Uint8Array(new Int32Array(A).buffer),R=new Uint8Array(new Int32Array(b).buffer),P=new Uint8Array(new Int32Array(h).buffer),T=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),M=t.dataIdMap.get(I.dataId).id;cT(k,E,r.shape.length,_,D,R,P,T,h.length,M),w=ms({inputs:{x:I},backend:t,attrs:{shape:f}}),t.disposeData(I.dataId)}return w}var Yme={kernelName:ql,backendName:"wasm",setupFunc:Kme,kernelFunc:Zme};function Jme(e){let{backend:t,inputs:n,attrs:s}=e,{data:r,dataSplits:a}=n,{separator:o,nGramWidths:i,leftPad:l,rightPad:u,padWidth:c,preserveShortSequences:p}=s,d=t.readSync(r.dataId),h=t.readSync(a.dataId),[f,m]=Kx(d,h,o,i,l,u,c,p),g=t.makeOutput([f.length],"string"),y=t.dataIdMap.get(g.dataId);y.stringBytes=f;let x=t.makeOutput(a.shape,"int32");return t.typedArrayFromHeap(x).set(m),[g,x]}var Qme={kernelName:Hc,backendName:"wasm",kernelFunc:Jme};function e0e(e){let{backend:t,inputs:n,attrs:s}=e,{input:r,delimiter:a}=n,{skipEmpty:o}=s,i=t.readSync(r.dataId),l=t.readSync(a.dataId),[u,c,p]=Zx(i,l[0],o),d=c.length,h=t.makeOutput([d,2],"int32");t.typedArrayFromHeap(h).set(u);let m=t.makeOutput([d],"string"),g=t.dataIdMap.get(m.dataId);g.stringBytes=c;let y=t.makeOutput([2],"int32");return t.typedArrayFromHeap(y).set(p),[h,m,y]}var t0e={kernelName:ih,backendName:"wasm",kernelFunc:e0e};function n0e(e){let{backend:t,inputs:n,attrs:s}=e,{input:r}=n,{numBuckets:a}=s,o=t.readSync(r.dataId),i=Yx(o,a),l=t.makeOutput(r.shape,"int32");return t.typedArrayFromHeap(l).set(i),l}var s0e={kernelName:lh,backendName:"wasm",kernelFunc:n0e},r0e=!0,a0e=$n(za,r0e),dT;function o0e(e){dT=e.wasm.cwrap(hi,null,["number","number","number","number"])}function i0e(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Ii(o,r,t),f=p;if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A,f=C.getInnerMostAxes(f.length,u.shape.length))}C.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,g]=C.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;dT(l,y,Ht[x.dtype],A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var l0e={kernelName:hi,backendName:"wasm",setupFunc:o0e,kernelFunc:i0e},u0e=wn(Xl),c0e=wn(mi),pT;function d0e(e){pT=e.wasm.cwrap(La,null,["number","array","number","array","number","number"])}function p0e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let d=0;d<i.length;d++)i[d]=r.shape[d]*o[d];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=n.makeOutput(i,r.dtype),p=n.dataIdMap.get(c.dataId).id;return pT(a,l,r.shape.length,u,i.length,Ht[c.dtype],p),c}var h0e={kernelName:La,backendName:"wasm",setupFunc:d0e,kernelFunc:p0e},hT;function f0e(e){hT=e.wasm.cwrap(Kl,null,["number","array","number","number","number","bool","number","number"])}var m0e=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,s.dtype),c=t.dataIdMap.get(u.dataId).id,p=t.makeOutput(l,"int32"),d=t.dataIdMap.get(p.dataId).id;return hT(o,i,s.shape.length,Ht[s.dtype],r,a,c,d),[u,p]},g0e={kernelName:Kl,backendName:"wasm",setupFunc:f0e,kernelFunc:m0e},fT;function y0e(e){fT=e.wasm.cwrap(Zl,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function A0e(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),x=new Uint8Array(new Int32Array(v.computeStrides(g)).buffer),A=t.makeOutput(g,r.dtype),b=t.dataIdMap.get(A.dataId).id,I=t.dataIdMap.get(r.dataId).id,E=t.dataIdMap.get(a.dataId).id,_=o==="nearest"?1:2,D;switch(i){case"constant":D=1;break;case"reflect":D=2;break;case"wrap":D=3;break;case"nearest":D=4;break;default:D=1;break}return fT(I,E,a.shape[0]>1,c,f,m,h,d,p,y,r.shape.length-1,x,g.length-1,_,D,l,b),A}var x0e={kernelName:Zl,backendName:"wasm",setupFunc:y0e,kernelFunc:A0e};function b0e(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==a&&(l[u++]=r.shape[h]);let c=new Array(o),p=new Array(i).fill(0),d=r.shape.slice();d[a]=1;for(let h=0;h<c.length;h++)p[a]=h,c[h]=Al({inputs:{x:r},attrs:{begin:p,size:d},backend:n});return c.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:l}))}var v0e={kernelName:Yl,backendName:"wasm",kernelFunc:b0e};function w0e(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var k0e={kernelName:Jl,backendName:"wasm",kernelFunc:w0e},I0e=[Jde,Qde,tpe,rpe,ppe,mpe,Ape,vpe,Spe,_pe,Dpe,$pe,Ope,Mpe,Bpe,Upe,Gpe,Hpe,Xpe,Ype,ehe,she,ohe,ihe,uhe,che,dhe,phe,mhe,ghe,Ahe,vhe,Ihe,The,Rhe,$he,Fhe,Mhe,ape,Bhe,Vhe,Ghe,Hhe,qhe,Xhe,Zhe,Jhe,tfe,sfe,ofe,ufe,pfe,ffe,yfe,xfe,bfe,kfe,Cfe,Efe,_fe,Pfe,Ofe,zfe,qC,Vfe,Hfe,Xfe,Zfe,Jfe,Qfe,eme,wpe,sme,ome,ume,pme,hme,fme,yme,bme,kme,Ime,Epe,Tme,Eme,Dme,Fme,Mme,Lme,Wme,Vme,Ume,Hme,Xme,Yme,Qme,t0e,s0e,a0e,l0e,u0e,c0e,h0e,g0e,x0e,upe,v0e,k0e];for(let e of I0e)pr(e);var Ty=H();Ty.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Ty.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Ty.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var nw=No(fD()),S0e=No(mD()),sw=No(gD()),rw=nw.default||nw,C0e=sw.default||sw,mT=class extends yc{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(gT),Ny=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new jp(this,sn())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let u=t;this.dataIdMap.set(e,{id:a,stringBytes:u,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=v.sizeFromShape(n),i=o*v.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:s,dtype:r,shape:a,stringBytes:o}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=o.length)?o:o.slice(t,n);t=t||0,n=n||v.sizeFromShape(a);let i=v.bytesPerElement(r),l=this.wasm.HEAPU8.slice(s+t*i,s+n*i);return E0e(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function T0e(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function aw(e,t,n){if(Km!=null)return Km;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),Ip!=null&&Ip[s]!=null?Ip[s]:n+s}async function N0e(){let[e,t]=await Promise.all([H().getAsync("WASM_HAS_SIMD_SUPPORT"),H().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=S0e.wasmWorkerContents.replace(/\n/g,"\\n"),c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?aw(e,t,xp!=null?xp:l):l+i},gb&&(r.instantiateWasm=T0e(aw(e,t,xp!=null?xp:"")));let a=!1;r.onAbort=()=>{if(a||Sp)return;Sp=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&Km==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+rw.toString()],{type:"text/javascript"}),o=rw(r)):o=C0e(r),o.then(i=>{a=!0,Sp=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),initWithThreadsCount:i.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:i.cwrap("get_threads_count","number",[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})}).catch(s)})}function E0e(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var R0e=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Km=null,xp=null,Ip={},Sp=!1,gb=!1;function _0e(e,t=!1){if(Yy("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Sp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Km=e,gb=t}function L2(e,t=!1){if(Sp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")xp=e;else{Ip=e;let n=R0e.filter(s=>Ip[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}gb=t}var gT=-1,Ny=-1;function D0e(e){gT=e}function $0e(){if(Ny===-1)throw new Error("WASM backend not initialized.");return Ny}var P0e="3.20.0",F0e=2;eu("wasm",async()=>{let{wasm:e}=await N0e();return new mT(e)},F0e);var Ua=H();Ua.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);Ua.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);Ua.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD",()=>4);Ua.registerFlag("WEBGPU_MATMUL_PROGRAM_TYPE",()=>-1);Ua.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);Ua.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);Ua.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);Ua.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);Ua.registerFlag("WEBGPU_IMPORT_EXTERNAL_TEXTURE",()=>!1);var Ze;(function(e){e[e.MUL=0]="MUL",e[e.ADD=1]="ADD",e[e.SUB=2]="SUB",e[e.DIV=3]="DIV",e[e.EQUAL=4]="EQUAL",e[e.GREATER=5]="GREATER",e[e.GREATER_EQUAL=6]="GREATER_EQUAL",e[e.LESS=7]="LESS",e[e.LESS_EQUAL=8]="LESS_EQUAL",e[e.LOGICAL_AND=9]="LOGICAL_AND",e[e.NOT_EQUAL=10]="NOT_EQUAL",e[e.SQUARED_DIFFERENCE=11]="SQUARED_DIFFERENCE",e[e.INT_DIV=12]="INT_DIV",e[e.POW=13]="POW",e[e.PRELU=14]="PRELU",e[e.MAX=15]="MAX",e[e.MIN=16]="MIN",e[e.COMPLEX_MULTIPLY_REAL=17]="COMPLEX_MULTIPLY_REAL",e[e.COMPLEX_MULTIPLY_IMAG=18]="COMPLEX_MULTIPLY_IMAG"})(Ze||(Ze={}));var O0e="return a + b;",M0e="return areal * breal - aimag * bimag;",z0e="return areal * bimag + aimag * breal;",L0e="return a / b;",B0e="return a * b;",W0e="return (a - b) * (a - b);",V0e="return a - b;",U0e="return f32(a == b);",G0e="return vec4<f32>(a == b);",H0e="return f32(a > b);",j0e="return vec4<f32>(a > b);",q0e="return f32(a >= b);",X0e="return vec4<f32>(a >= b);",K0e="return f32(a < b);",Z0e="return vec4<f32>(a < b);",Y0e="return f32(a <= b);",J0e="return vec4<f32>(a <= b);",Q0e="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",e2e=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
|
|
vec4<f32>(b >= vec4<f32>(1.0)));`,t2e=`
|
|
if (isnan(a)) { return a; }
|
|
if (isnan(b)) { return b; }
|
|
`,yT=`
|
|
if (isNaN.r) {
|
|
resultTemp.r = uniforms.NAN;
|
|
}
|
|
if (isNaN.g) {
|
|
resultTemp.g = uniforms.NAN;
|
|
}
|
|
if (isNaN.b) {
|
|
resultTemp.b = uniforms.NAN;
|
|
}
|
|
if (isNaN.a) {
|
|
resultTemp.a = uniforms.NAN;
|
|
}
|
|
`,n2e=`
|
|
let s = sign(a) * sign(b);
|
|
let ia = i32(round(a));
|
|
let ib = i32(round(b));
|
|
return f32(idiv(ia, ib, s));
|
|
`,s2e=`
|
|
let ia = vec4<i32>(round(a));
|
|
let ib = vec4<i32>(round(b));
|
|
let cond = ib != vec4<i32>(0);
|
|
var resultTemp = vec4<i32>(0);
|
|
let s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4<f32>(resultTemp);
|
|
`,r2e="return f32(a != b);",a2e="return vec4<f32>(a != b);",o2e=`
|
|
if(a < 0.0 && floor(b) < b) {
|
|
return uniforms.NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
if (round(abs(b) % 2.0) != 1.0) {
|
|
return pow(abs(a), b);
|
|
}
|
|
return sign(a) * pow(abs(a), b);
|
|
`,i2e=`
|
|
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
|
|
let isModRound1 = vec4<f32>(isModRound1Bool);
|
|
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
|
|
var resultTemp = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
let isExpZero = b == vec4<f32>(0.0);
|
|
if (isExpZero.r) {
|
|
resultTemp.r = 1.0;
|
|
}
|
|
if (isExpZero.g) {
|
|
resultTemp.g = 1.0;
|
|
}
|
|
if (isExpZero.b) {
|
|
resultTemp.b = 1.0;
|
|
}
|
|
if (isExpZero.a) {
|
|
resultTemp.a = 1.0;
|
|
}
|
|
let isNaN = a < vec4<f32>(0.0) & floor(b) < b;
|
|
${yT}
|
|
return resultTemp;
|
|
`,l2e="if (a < 0.0) { return b * a; } return a;",u2e=`
|
|
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
|
|
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
|
|
`;function ow(e,t){let n=t?yT:t2e;return t?`
|
|
var resultTemp = vec4<f32>(${e}(a, b));
|
|
let isNaN = isnanVec4(a) | isnanVec4(b);
|
|
`+n+`
|
|
return resultTemp;
|
|
`:n+`
|
|
return ${e}(a, b);
|
|
`}function Zm(e,t){switch(e){case Ze.MUL:return B0e;case Ze.ADD:return O0e;case Ze.SUB:return V0e;case Ze.DIV:return L0e;case Ze.EQUAL:return t?G0e:U0e;case Ze.GREATER:return t?j0e:H0e;case Ze.GREATER_EQUAL:return t?X0e:q0e;case Ze.LESS:return t?Z0e:K0e;case Ze.LESS_EQUAL:return t?J0e:Y0e;case Ze.LOGICAL_AND:return t?e2e:Q0e;case Ze.NOT_EQUAL:return t?a2e:r2e;case Ze.SQUARED_DIFFERENCE:return W0e;case Ze.INT_DIV:return t?s2e:n2e;case Ze.PRELU:return t?u2e:l2e;case Ze.MAX:return ow("max",t);case Ze.MIN:return ow("min",t);case Ze.POW:return t?i2e:o2e;case Ze.COMPLEX_MULTIPLY_REAL:return M0e;case Ze.COMPLEX_MULTIPLY_IMAG:return z0e;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var ze;(function(e){e[e.ABS=0]="ABS",e[e.CEIL=1]="CEIL",e[e.COS=2]="COS",e[e.COSH=3]="COSH",e[e.ELU=4]="ELU",e[e.EXP=5]="EXP",e[e.EXPM1=6]="EXPM1",e[e.FLOOR=7]="FLOOR",e[e.LINEAR=8]="LINEAR",e[e.LOG=9]="LOG",e[e.LOGICAL_NOT=10]="LOGICAL_NOT",e[e.NEG=11]="NEG",e[e.RELU=12]="RELU",e[e.RELU6=13]="RELU6",e[e.LEAKYRELU=14]="LEAKYRELU",e[e.RSQRT=15]="RSQRT",e[e.SIN=16]="SIN",e[e.SINH=17]="SINH",e[e.SIGMOID=18]="SIGMOID",e[e.SQRT=19]="SQRT",e[e.SQUARE=20]="SQUARE",e[e.TANH=21]="TANH",e[e.TO_INT=22]="TO_INT"})(ze||(ze={}));var c2e="return abs(a);",d2e="return ceil(a);",p2e="return cos(a);",h2e=`
|
|
let e2x = exp(-a);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,f2e="return exp(a) - 1.0;",m2e="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",g2e=`
|
|
var resFloat = exp(a) - vec4<f32>(1.0);
|
|
if (a.r >= 0.0) {
|
|
resFloat.r = a.r;
|
|
}
|
|
if (a.g >= 0.0) {
|
|
resFloat.g = a.g;
|
|
}
|
|
if (a.b >= 0.0) {
|
|
resFloat.b = a.b;
|
|
}
|
|
if (a.a >= 0.0) {
|
|
resFloat.a = a.a;
|
|
}
|
|
return resFloat;
|
|
`,y2e="return exp(a);",A2e="return floor(a);",x2e="return a;",b2e=`if (a < 0.0) { return 1.0/0.0; }
|
|
return log(a);`,v2e="return f32(!(a >= 1.0));",w2e="return -a;",k2e="if (a < 0.0) { return uniforms.alpha * a; } return a;",I2e=`
|
|
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
|
|
return (aLessThanZero * (uniforms.alpha * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
|
|
`,S2e="return select(a, 0.0, a < 0.0);",C2e="return clamp(a, 0.0, 6.0);",T2e="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",N2e=`
|
|
return select(a, vec4<f32>(0.0), a < vec4<f32>(0.0));
|
|
`,E2e="return 1.0/sqrt(a);",R2e="return 1.0 / (1.0 + exp(-1.0 * a));",_2e="return sin(a);",D2e=`
|
|
let e2x = exp(a);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,$2e="return sqrt(a);",P2e="return a * a;",F2e=`
|
|
let e2x = exp(-2.0 * abs(a));
|
|
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,O2e="return f32(i32((a)));";function Xi(e,t){switch(e){case ze.ABS:return c2e;case ze.COS:return p2e;case ze.COSH:return h2e;case ze.CEIL:return d2e;case ze.ELU:return t?g2e:m2e;case ze.EXP:return y2e;case ze.EXPM1:return f2e;case ze.FLOOR:return A2e;case ze.LINEAR:return x2e;case ze.LOG:return b2e;case ze.LOGICAL_NOT:return v2e;case ze.NEG:return w2e;case ze.LEAKYRELU:return t?I2e:k2e;case ze.RELU:return t?N2e:S2e;case ze.RELU6:return t?T2e:C2e;case ze.RSQRT:return E2e;case ze.SIGMOID:return R2e;case ze.SIN:return _2e;case ze.SINH:return D2e;case ze.SQRT:return $2e;case ze.SQUARE:return P2e;case ze.TANH:return F2e;case ze.TO_INT:return O2e;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var nn=e=>{switch(e){case 1:return"f32";case 2:return"vec2<f32>";case 3:return"vec3<f32>";case 4:return"vec4<f32>";default:throw new Error(`${e}-component is not supported.`)}};function Ga(e,t=!1,n=!1,s=3){if(e===null)return"";let r="";if(e==="linear")r=Xi(ze.LINEAR);else if(e==="relu")r=Xi(ze.RELU,n);else if(e==="elu")r=Xi(ze.ELU,n);else if(e==="relu6")r=Xi(ze.RELU6,n);else if(e==="prelu")r=Zm(Ze.PRELU,n);else if(e==="sigmoid")r=Xi(ze.SIGMOID,n);else if(e==="leakyrelu")r=Xi(ze.LEAKYRELU,n);else throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`);let o=nn(n?4:1),i="";return t?i=`
|
|
fn activation(a : ${o}, coords : vec${s}<i32>) -> ${o} {
|
|
let b = getPreluActivationWeightsByOutputCoords(coords);
|
|
${r}
|
|
}`:i=`
|
|
fn activation(a : ${o}, coords : vec${s}<i32>) -> ${o} {
|
|
${r}
|
|
}`,i}function Ad(e,t){return`
|
|
${e?"value = value + getBiasByOutputCoords(coords);":""}
|
|
${t?"value = activation(value, coords);":""}
|
|
`}function M2e(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}var z2e=(e,t,n,s)=>{let r={dtype:s.dtype,shape:s.shape},a=L2e(n,r,t),o=e.createShaderModule({code:a,label:t.constructor.name});return e.createComputePipeline({compute:{module:o,entryPoint:"main"},label:t.constructor.name,layout:"auto"})};function Tn(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";if(e===5)return"vec5";if(e===6)return"vec6";throw Error(`GPU for rank ${e} is not yet supported`)}function mo(e){if(e===0)return"x";if(e===1)return"y";if(e===2)return"z";if(e===3)return"w";if(e===4)return"u";if(e===5)return"v";throw Error(`Index ${e} is not yet supported`)}function lt(){return`
|
|
${xd()}
|
|
let index = getGlobalIndex();
|
|
`}function xd(){return`
|
|
${B2()}
|
|
fn main(@builtin(local_invocation_id) LocalId : vec3<u32>,
|
|
@builtin(global_invocation_id) GlobalId : vec3<u32>,
|
|
@builtin(num_workgroups) NumWorkgroups: vec3<u32>) {
|
|
localId = LocalId;
|
|
globalId = GlobalId;
|
|
numWorkgroups = NumWorkgroups;
|
|
`}function B2(){return`
|
|
@compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
|
|
`}function L2e(e,t,n){let s=[];if(s.push(`
|
|
const workGroupSizeX = ${n.workGroupSize[0]}u;
|
|
const workGroupSizeY = ${n.workGroupSize[1]}u;
|
|
const workGroupSizeZ = ${n.workGroupSize[2]}u;
|
|
|
|
var<private> localId: vec3<u32>;
|
|
var<private> globalId: vec3<u32>;
|
|
var<private> numWorkgroups: vec3<u32>;
|
|
|
|
// Only used when the y/z dimension of workgroup size is 1.
|
|
fn getGlobalIndex() -> i32 {
|
|
${AT(n)?" return i32(globalId.x);":` let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +
|
|
localId.y * workGroupSizeX + localId.x;
|
|
let workGroupID = (globalId - localId)/vec3<u32>(
|
|
workGroupSizeX, workGroupSizeY, workGroupSizeZ);
|
|
|
|
return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y +
|
|
workGroupID.y * numWorkgroups.x + workGroupID.x) *
|
|
(workGroupSizeX * workGroupSizeY * workGroupSizeZ) +
|
|
localInvocationIndex);
|
|
`}
|
|
}
|
|
`),n.isFromPixels)return s.push(`
|
|
struct Uniform {
|
|
size : i32,
|
|
numChannels : i32,
|
|
outShapeStrides : vec2<i32>,
|
|
};
|
|
|
|
@group(0) @binding(0) var<storage, read_write> result: array<${Cp(t.dtype,n.isVec4)}>;
|
|
@group(0) @binding(2) var<uniform> uniforms: Uniform;
|
|
`),[iw,s.join(`
|
|
`),lw(t.shape),n.getUserCode()].join(`
|
|
`);let r=!1,a=!1,o="struct Uniforms { NAN : f32, ";n.variableNames.forEach((f,m)=>{let g=Tn(e[m].shape.length);(g==="vec5"||g==="vec6")&&(a=!0),(r||a)&&(o+="@align(16) "),r=a,o+=`${f.charAt(0).toLowerCase()+f.slice(1)}Shape : ${g}, `});let i=Tn(t.shape.length);a=i==="vec5"||i==="vec6",(r||a)&&(o+="@align(16) "),r=a,o+=`outShape : ${i}, `;let l=t.shape.length-1,u=Tn(l);a=u==="vec5"||u==="vec6",(r||a)&&(o+="@align(16) "),r=a,o+=`
|
|
outShapeStrides: ${u}, `,n.size&&(r&&(o+="@align(16) "),r=!1,o+="size : i32, "),n.uniforms&&(r&&(o+="@align(16) "),o+=n.uniforms),o+="};",s.push(o),n.atomic?s.push(`
|
|
@group(0) @binding(0) var<storage, read_write> result: array<atomic<i32>>;
|
|
`):s.push(`
|
|
@group(0) @binding(0) var<storage, read_write> result: array<${Cp(t.dtype,n.isVec4)}>;
|
|
`),n.variableNames.forEach((f,m)=>{s.push(`
|
|
@group(0) @binding(${1+m}) var<storage, read> ${f}: array<${n.variableTypes?n.variableTypes[m]:Cp(e[m].dtype,n.isVec4)}>;
|
|
`)}),o!==""&&s.push(`
|
|
@group(0) @binding(${1+n.variableNames.length}) var<uniform> uniforms: Uniforms;
|
|
`);let c=G2e(t.shape,n.dispatchLayout),p=[iw,s.join(`
|
|
`),lw(t.shape),c,H2e(t.shape.length)];n.atomic||p.push(j2e(t.shape,t.dtype,n.isVec4));let d=e.map((f,m)=>U2e(f,t.shape,n.variableTypes?n.variableTypes[m]==="vec4<f32>":n.isVec4,n.dispatchLayout.x.length===t.shape.length)).join(`
|
|
`);return p.push(d),p.push(n.getUserCode()),p.join(`
|
|
`)}function B2e(e,t,n,s){let r=e.shaderKey;if(e.isFromPixels)return r;let a=n.map(c=>c.dtype).concat(s.dtype),o=n.map(c=>C.getBroadcastDims(c.shape,s.shape)),i=n.map(c=>v.arraysEqual(c.shape,s.shape)).join("_"),l=o.map(c=>c.join("_")).join(";"),u=AT(e)?"flatDispatch":"";return r+="_"+(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(c=>c.length).join(",")+a.join(",")+e.variableNames.join(",")+l+i+u,r}var iw=`
|
|
struct vec5 {x: i32, y: i32, z: i32, w: i32, u: i32};
|
|
struct vec6 {x: i32, y: i32, z: i32, w: i32, u: i32, v: i32};
|
|
|
|
// Checks whether coordinates lie within the bounds of the shape.
|
|
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
|
|
return all(coord >= vec2<i32>(0)) && all(coord < shape);
|
|
}
|
|
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
|
|
return all(coord >= vec3<i32>(0)) && all(coord < shape);
|
|
}
|
|
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
|
|
return all(coord >= vec4<i32>(0)) && all(coord < shape);
|
|
}
|
|
|
|
fn getIndexFromCoords1D(coord : i32, shape : i32) -> i32 {
|
|
return coord;
|
|
}
|
|
fn getIndexFromCoords2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
|
|
return dot(coords, vec2<i32>(shape.y, 1));
|
|
}
|
|
fn getIndexFromCoords3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
|
|
return dot(coords, vec3<i32>(shape.y * shape.z, shape.z, 1));
|
|
}
|
|
fn getIndexFromCoords4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
|
|
return dot(coords, vec4<i32>(
|
|
shape.y * shape.z * shape.w, shape.z * shape.w, shape.w, 1));
|
|
}
|
|
fn getIndexFromCoords5D(coords : vec5, shape : vec5) -> i32 {
|
|
let shapeStrides: vec5 = vec5(shape.y * shape.z * shape.w * shape.u, shape.z * shape.w * shape.u, shape.w * shape.u, shape.u, 1);
|
|
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u;
|
|
}
|
|
fn getIndexFromCoords6D(coords : vec6, shape : vec6) -> i32 {
|
|
let shapeStrides: vec6 = vec6(shape.y * shape.z * shape.w * shape.u * shape.v, shape.z * shape.w * shape.u * shape.v, shape.w * shape.u * shape.v, shape.u * shape.v, shape.v, 1);
|
|
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u + coords.v*shapeStrides.v;
|
|
}
|
|
|
|
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
|
|
var res: i32 = a / b;
|
|
let mod: i32 = a % b;
|
|
if (sign < 0. && mod != 0) {
|
|
res = res - 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// NaN defination in IEEE 754-1985 is :
|
|
// - sign = either 0 or 1.
|
|
// - biased exponent = all 1 bits.
|
|
// - fraction = anything except all 0 bits (since all 0 bits represents infinity).
|
|
// https://en.wikipedia.org/wiki/IEEE_754-1985#Representation_of_non-numbers
|
|
fn isnan(val: f32) -> bool {
|
|
let floatToUint: u32 = bitcast<u32>(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
fn isnanVec4(val : vec4<f32>) -> vec4<bool> {
|
|
return vec4<bool>(isnan(val[0]), isnan(val[1]), isnan(val[2]), isnan(val[3]));
|
|
}
|
|
`;function lw(e){let t=e.length;if(t<=1)return"fn getCoordsFromIndex(index : i32) -> i32 { return index; }";let n=v.computeStrides(e),s=Tn(t),r=[];for(let o=0;o<t;o++)r.push(`d${o}`);if(n.length===1)return` fn getCoordsFromIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
|
|
return vec2<i32>(d0, d1);
|
|
}`;let a;return a="var index2 = index;"+n.map((o,i)=>{let l=`let ${r[i]} = index2 / uniforms.outShapeStrides.${mo(i)}`,u=i===n.length-1?`let ${r[i+1]} = index2 - ${r[i]} * uniforms.outShapeStrides.${mo(i)}`:`index2 = index2 - ${r[i]} * uniforms.outShapeStrides.${mo(i)}`;return`${l}; ${u};`}).join(""),`
|
|
fn getCoordsFromIndex(index : i32) -> ${s} {
|
|
${a}
|
|
return ${s}(${r.join(",")});
|
|
}
|
|
`}function W2e(e,t){let n=e.name,s=e.shape.length,r=Tn(s),a="get"+n.charAt(0).toUpperCase()+n.slice(1),o=["d0","d1","d2","d3","d4","d5"].slice(0,s),i=o.map(c=>`${c} : i32`).join(", ");if(s<1)return t?`
|
|
fn ${a}() -> vec4<f32> {
|
|
return vec4<f32>(${n}[0]);
|
|
}
|
|
`:`
|
|
fn ${a}() ->f32 {
|
|
return f32(${n}[0]);
|
|
}
|
|
`;let l=`uniforms.${n.charAt(0).toLowerCase()+n.slice(1)}Shape`,u=`${s}D`;return s===0&&(u="1D"),t?`
|
|
fn ${a}(${i}) -> vec4<f32> {
|
|
return vec4<f32>(${n}[getIndexFromCoords${u}(${r}(${o.join(",")}),
|
|
${l}) / 4]);
|
|
}
|
|
`:`
|
|
fn ${a}(${i}) -> f32 {
|
|
return f32(${n}[getIndexFromCoords${u}(${r}(${o.join(",")}),
|
|
${l})]);
|
|
}
|
|
`}function V2e(e,t,n,s){let r=e.name,a=r.charAt(0).toUpperCase()+r.slice(1),o="get"+a+"ByOutput",i=e.shape.length,l=t.length,u=Tn(l);if(v.arraysEqual(e.shape,t)&&s)return n?`
|
|
fn ${o}Index(globalIndex : i32) -> vec4<f32> {
|
|
return vec4<f32>(${r}[globalIndex]);
|
|
}
|
|
|
|
fn ${o}Coords(coords : ${u}) -> vec4<f32> {
|
|
return vec4<f32>(${r}[${l>1?"getOutputIndexFromCoords(coords)":"coords"} / 4]);
|
|
}
|
|
`:`
|
|
fn ${o}Index(globalIndex : i32) -> f32 {
|
|
return f32(${r}[globalIndex]);
|
|
}
|
|
|
|
fn ${o}Coords(coords : ${u}) -> f32 {
|
|
return f32(${r}[${l>1?"getOutputIndexFromCoords(coords)":"coords"}]);
|
|
}
|
|
`;let c=C.getBroadcastDims(e.shape,t),p=l-i,d="";if(i===0)return n?`
|
|
fn ${o}Index(globalIndex : i32) -> vec4<f32> {
|
|
return get${a}();
|
|
}
|
|
|
|
fn ${o}Coords(coords : ${u}) -> vec4<f32> {
|
|
return get${a}();
|
|
}
|
|
`:`
|
|
fn ${o}Index(globalIndex : i32) -> f32{
|
|
return get${a}();
|
|
}
|
|
|
|
fn ${o}Coords(coords : ${u}) -> f32{
|
|
return get${a}();
|
|
}
|
|
`;l<2&&c.length>=1?d="coords = 0;":d=c.map(g=>`coords.${mo(g+p)} = 0;`).join(`
|
|
`);let h="";if(l<2&&i>0)h="coords";else if(l>1){let g=Tn(i),y=e.shape.map((x,A)=>`coords.${mo(A+p)}`).join(", ");h=`${g}(${y})`}else h="coords";let f=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,m=`${i}D`;return n?`
|
|
fn ${o}Index(globalIndex : i32) -> vec4<f32> {
|
|
var coords = getCoordsFromIndex(globalIndex);
|
|
${d}
|
|
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
|
|
}
|
|
|
|
fn ${o}Coords(coordsIn : ${u}) -> vec4<f32> {
|
|
var coords = coordsIn;
|
|
${d}
|
|
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
|
|
}
|
|
`:`
|
|
fn ${o}Index(globalIndex : i32) -> f32 {
|
|
var coords = getCoordsFromIndex(globalIndex);
|
|
${d}
|
|
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
|
|
}
|
|
|
|
fn ${o}Coords(coordsIn : ${u}) -> f32 {
|
|
var coords = coordsIn;
|
|
${d}
|
|
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
|
|
}
|
|
`}function U2e(e,t,n,s){let r=W2e(e,n);return e.shape.length<=t.length&&(r+=V2e(e,t,n,s)),r}function G2e(e,t){let{x:n,y:s=[],z:r=[]}=t,a=e.length;if(n.length===a)return`fn getOutputCoords() -> ${Tn(a)}{
|
|
let globalIndex = getGlobalIndex();
|
|
return getCoordsFromIndex(globalIndex);
|
|
}
|
|
`;let o="",i=[n,s,r],l=0;for(let d=0;d<i.length;d++){let h=i[d];if(h.length!==0)if(l+=h.length,h.length===1)o+=`let d${h[0]} = i32(globalId[${d}]);`;else{let f=M2e(h,"uniforms.outShape");o+=`var index${d} = i32(globalId[${d}]);`;for(let m=0;m<f.length;m++)o+=`let d${h[m]} = index${d} / ${f[m]};`,m===f.length-1?o+=`let d${h[m+1]} = index${d} - d${h[m]} * ${f[m]};`:o+=`index${d} = index${d} - d${h[m]} * ${f[m]};`}}let u=[];for(let d=0;d<l;d++)u.push(`d${d}`);let c=Tn(l),p=`fn getOutputCoords() -> ${c} {
|
|
${o}
|
|
`;return u.length===0?p+=`return ${c}(0); }`:p+=`return ${c}(${u.join(",")}); }`,p}function H2e(e){let t="";switch(e){case 0:case 1:t+=`
|
|
fn getOutputIndexFromCoords(coords : i32) -> i32 {
|
|
return coords;
|
|
}
|
|
`;break;case 2:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec2<i32>) -> i32 {
|
|
return dot(coords, vec2<i32>(uniforms.outShapeStrides, 1));
|
|
}
|
|
`;break;case 3:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec3<i32>) -> i32 {
|
|
return dot(coords, vec3<i32>(uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, 1));
|
|
}
|
|
`;break;case 4:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec4<i32>) -> i32 {
|
|
return dot(coords, vec4<i32>(
|
|
uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, uniforms.outShapeStrides.z, 1));
|
|
}
|
|
`;break;case 5:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec5) -> i32 {
|
|
return coords.x * uniforms.outShapeStrides.x +
|
|
coords.y * uniforms.outShapeStrides.y +
|
|
coords.z * uniforms.outShapeStrides.z +
|
|
coords.w * uniforms.outShapeStrides.w +
|
|
coords.u;
|
|
}
|
|
`;break;case 6:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec6) -> i32 {
|
|
return coords.x * uniforms.outShapeStrides.x +
|
|
coords.y * uniforms.outShapeStrides.y +
|
|
coords.z * uniforms.outShapeStrides.z +
|
|
coords.w * uniforms.outShapeStrides.w +
|
|
coords.u * uniforms.outShapeStrides.u +
|
|
coords.v;
|
|
}
|
|
`;break;default:v.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function AT(e){return e.dispatch[1]===1&&e.dispatch[2]===1}function Cp(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function j2e(e,t,n){let s=e.length,r=Cp(t,n),a;if(n?a=`fn setOutputAtIndex(flatIndex : i32, value : vec4<f32>) {
|
|
result[flatIndex] = ${r}(value);
|
|
}
|
|
fn setOutputAtIndexI32(flatIndex : i32, value : vec4<i32>) {
|
|
result[flatIndex] = ${r}(value);
|
|
}`:a=`fn setOutputAtIndex(flatIndex : i32, value : f32) {
|
|
result[flatIndex] = ${r}(value);
|
|
}
|
|
fn setOutputAtIndexI32(flatIndex : i32, value : i32) {
|
|
result[flatIndex] = ${r}(value);
|
|
}`,s>=2){let o=["d0","d1","d2","d3","d4","d5"].slice(0,s),i=Tn(s);n?a+=`
|
|
fn setOutputAtCoords(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<f32>) {
|
|
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
|
|
setOutputAtIndex(flatIndex / 4, value);
|
|
}
|
|
fn setOutputAtCoordsI32(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<i32>) {
|
|
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
|
|
setOutputAtIndexI32(flatIndex / 4, value);
|
|
}
|
|
`:a+=`
|
|
fn setOutputAtCoords(${o.map(l=>`${l} : i32`).join(", ")}, value : f32) {
|
|
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
|
|
setOutputAtIndex(flatIndex, value);
|
|
}
|
|
fn setOutputAtCoordsI32(${o.map(l=>`${l} : i32`).join(", ")}, value : i32) {
|
|
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
|
|
setOutputAtIndexI32(flatIndex, value);
|
|
}
|
|
`}return a}var xT={};Ve(xT,{ArrayBufferToTypedArray:()=>wT,GPUBytesPerElement:()=>vT,MatMulProgramType:()=>Gs,computeDispatch:()=>Ge,computeWorkGroupSizeForConv2d:()=>yb,computeWorkGroupSizeForMatMul:()=>bT,computeWorkPerThreadForConv2d:()=>Ab,flatDispatchLayout:()=>at,isWebGPUSupported:()=>xb,tilesFitEvenlyIntoShape:()=>q2e});var ol=e=>{let t=1;for(let n=0;n<e.length;n++)t*=e[n];return t};function q2e(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((n,s)=>n%e[s]===0)}function Ge(e,t,n=[1,1,1],s=[1,1,1]){let[r,a,o]=[Math.ceil(ol(e.x.map(i=>t[i]))/(n[0]*s[0])),e.y?Math.ceil(ol(e.y.map(i=>t[i]))/(n[1]*s[1])):1,e.z?Math.ceil(ol(e.z.map(i=>t[i]))/(n[2]*s[2])):1];return[r,a,o]}function yb(e,t,n=!1){if(n)return[8,8,1];let s=ol(e.x.map(a=>t[a])),r=ol(e.y.map(a=>t[a]));return s<=4?[4,16,1]:r<=4?[16,4,1]:[16,16,1]}function bT(e,t,n){return e===1?[32,1,1]:n===1?[1,32,1]:[8,8,1]}function Ab(e,t,n=!1){if(n)return[4,4,1];let s=ol(e.x.map(a=>t[a])),r=ol(e.y.map(a=>t[a]));return s<=4?[1,2,1]:r<=4?[2,1,1]:[2,2,1]}function at(e){return{x:e.map((t,n)=>n)}}function vT(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function wT(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(e));throw new Error(`Unknown dtype ${t}`)}function xb(){return(typeof window!="undefined"||typeof WorkerGlobalScope!="undefined")&&!!navigator.gpu}var Gs;(function(e){e[e.MatMulPackedVec4Program=0]="MatMulPackedVec4Program",e[e.MatMulReduceProgram=1]="MatMulReduceProgram",e[e.MatMulSplitKProgram=2]="MatMulSplitKProgram",e[e.MatMulSmallOutputSizeProgram=3]="MatMulSmallOutputSizeProgram",e[e.MatMulPackedProgram=4]="MatMulPackedProgram",e[e.MatMulMax=5]="MatMulMax"})(Gs||(Gs={}));function kT(e,t,n,s,r=!1,a=!1,o=!1,i=1){v.assert(n&&i===1||!n,()=>`transposeA ${n} is not compatible with component size ${i}`);let l=`
|
|
let batch = ${e?"0":"batchIn"};
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
${n?`value = A[(batch * batchASize + col * uniforms.aShape[2] + row) / ${i}];`:`value = A[(batch * batchASize + row * uniforms.aShape[2] + col) / ${i}];`}
|
|
|
|
`,u;return s===!1?u=`value = B[(batch * batchBSize + row * uniforms.bShape[2] + col) / ${i}];`:u=`value = B[(batch * batchBSize + col * uniforms.bShape[2] + row) / ${i}];`,`
|
|
fn mm_readA(batchIn: i32, row: i32, colIn: i32) -> ${nn(i)} {
|
|
var value = ${nn(i)}(0.0);
|
|
let col = colIn * ${i};
|
|
${r&&o?l:`
|
|
${n?"if(row < uniforms.dimAOuter && col < uniforms.dimInner)":"if(row < uniforms.aShape[1] && col < uniforms.aShape[2])"}
|
|
{
|
|
${l}
|
|
}
|
|
`}
|
|
return value;
|
|
}
|
|
|
|
fn mm_readB(batchIn: i32, row: i32, colIn: i32) -> ${nn(i)} {
|
|
let col = colIn * ${i};
|
|
let batch = ${t?"0":"batchIn"};
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
var value = ${nn(i)}(0.0);
|
|
${u}
|
|
return value;
|
|
}
|
|
`}function W2(e,t,n,s,r,a,o=!1,i=!1,l=!1,u=1){return`
|
|
${kT(n,s,r,a,o,i,l,u)}
|
|
fn mm_write(batch: i32, row: i32, colIn: i32, valueIn: ${nn(u)}) {
|
|
let col = colIn * ${u};
|
|
${o&&i?"":"if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)"}
|
|
{
|
|
var value = valueIn;
|
|
let coords = vec3<i32>(batch, row, col);
|
|
${Ad(e,t)}
|
|
setOutputAtCoords(coords[0], coords[1], coords[2], value);
|
|
}
|
|
}
|
|
`}var X2e=e=>e?`
|
|
mm_Asub[inputRow][inputCol] = mm_readA(batch,
|
|
t * TileInner + inputRow,
|
|
globalRowStart + inputCol);
|
|
`:`
|
|
mm_Asub[inputRow][inputCol] = mm_readA(batch,
|
|
globalRowStart + inputRow,
|
|
t * TileInner + inputCol);
|
|
`,K2e=e=>e?"let ACached = mm_Asub[k][tileRow + innerRow];":"let ACached = mm_Asub[tileRow + innerRow][k];";function bb(e,t,n=!1,s=32){let r=e[1]*t[1],a=e[0]*t[0],o=n?r:s,i=n?s:r;v.assert(i%t[1]===0&&o%t[0]===0&&s%t[1]===0,()=>`tileAHight ${i} must be divisible by workGroupSize[1]${t[1]}, tileAWidth ${o} must be divisible by workGroupSize[0]${t[0]}, tileInner ${s} must be divisible by workGroupSize[1]${t[1]}`);let l=i/t[1],u=o/t[0],c=s/t[1];return`
|
|
var<workgroup> mm_Asub : array<array<f32, ${o}>, ${i}>;
|
|
var<workgroup> mm_Bsub : array<array<f32, ${a}>, ${s}>;
|
|
const RowPerThread = ${e[1]};
|
|
const ColPerThread = ${e[0]};
|
|
const TileInner = ${s};
|
|
|
|
@compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
|
|
fn main(@builtin(local_invocation_id) LocalId : vec3<u32>,
|
|
@builtin(global_invocation_id) GlobalId : vec3<u32>,
|
|
@builtin(num_workgroups) NumWorkgroups: vec3<u32>,
|
|
@builtin(workgroup_id) workgroupId: vec3<u32>) {
|
|
localId = LocalId;
|
|
globalId = GlobalId;
|
|
numWorkgroups = NumWorkgroups;
|
|
|
|
let tileRow = i32(localId.y) * RowPerThread;
|
|
let tileCol = i32(localId.x) * ColPerThread;
|
|
|
|
let globalRow = i32(globalId.y) * RowPerThread;
|
|
let globalCol = i32(globalId.x) * ColPerThread;
|
|
let batch = i32(globalId.z);
|
|
let globalRowStart = i32(workgroupId.y) * ${r};
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
|
|
|
|
var acc : array<array<f32, ColPerThread>, RowPerThread>;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = 0.0;
|
|
}
|
|
}
|
|
|
|
let tileRowA = i32(localId.y) * ${l};
|
|
let tileColA = i32(localId.x) * ${u};
|
|
let tileRowB = i32(localId.y) * ${c};
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < ${l}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${u}; innerCol = innerCol + 1) {
|
|
let inputRow = tileRowA + innerRow;
|
|
let inputCol = tileColA + innerCol;
|
|
${X2e(n)}
|
|
}
|
|
}
|
|
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < ${c}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol + innerCol;
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(batch,
|
|
t * TileInner + inputRow,
|
|
globalCol + innerCol);
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
var BCached : array<f32, ColPerThread>;
|
|
for (var k = 0; k < TileInner; k = k + 1) {
|
|
for (var inner = 0; inner < ColPerThread; inner = inner + 1) {
|
|
BCached[inner] = mm_Bsub[k][tileCol + inner];
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
${K2e(n)}
|
|
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
|
|
}
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
|
|
mm_write(batch, globalRow + innerRow, globalCol + innerCol,
|
|
acc[innerRow][innerCol]);
|
|
}
|
|
}
|
|
}
|
|
`}var Z2e=e=>e?`
|
|
mm_readA(batch, colA, globalRow),
|
|
mm_readA(batch, colA + 1, globalRow),
|
|
mm_readA(batch, colA + 2, globalRow),
|
|
mm_readA(batch, colA + 3, globalRow)
|
|
`:`
|
|
mm_readA(batch, globalRow, colA),
|
|
mm_readA(batch, globalRow, colA + 1),
|
|
mm_readA(batch, globalRow, colA + 2),
|
|
mm_readA(batch, globalRow, colA + 3)
|
|
`;function Y2e(e,t=!1){return v.assert(e[1]===1&&e[2]===1,()=>`A linear work group size is required. But got ${e}.`),`
|
|
const TileSize = ${e[0]*4};
|
|
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
|
|
|
|
${xd()}
|
|
let tileCol = i32(localId.x);
|
|
let globalCol = i32(globalId.x);
|
|
let globalRow = i32(globalId.y);
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / TileSize + 1;
|
|
let batch = i32(globalId.z);
|
|
// Without this initialization strange values show up in acc.
|
|
var acc = 0.0;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
let colA = t * TileSize + tileCol * 4;
|
|
mm_Asub[tileCol] = vec4<f32>(${Z2e(t)});
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileSize / 4; k = k + 1) {
|
|
let rowB = t * TileSize + k * 4;
|
|
let BCached = vec4<f32>(mm_readB(batch, rowB, globalCol),
|
|
mm_readB(batch, rowB + 1, globalCol),
|
|
mm_readB(batch, rowB + 2, globalCol),
|
|
mm_readB(batch, rowB + 3, globalCol));
|
|
|
|
let ACached = mm_Asub[k];
|
|
acc = acc + dot(ACached, BCached);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
mm_write(batch, globalRow, globalCol, acc);
|
|
}
|
|
`}var J2e=class{constructor(e,t,n,s,r,a=!1,o=!1,i=null,l=null,u=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[16,16,1],this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let c=a?e[1]:e[2];this.workGroupSize=bT(t[1],c,t[2]),(t[1]===1||t[2]===1)&&(n=1),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]),v.arraysEqual(this.dispatch,[1,1,1])&&(n=1,this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]));let p=i!=null,d=u!=null;p&&this.variableNames.push("bias"),d&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.transposeA=a,this.transposeB=o,this.addBias=p,this.activation=l,this.hasPreluActivationWeights=d,this.batchAEqualOne=s,this.batchBEqualOne=r,[this.fitAOuter,this.fitBOuter,this.fitInner]=this.getShapeFit(t[1],t[2],c),this.shaderKey=`matMulPacked_${this.workPerThread}_${a}_${o}_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.outputShape[1]>1}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getShapeFit(e,t,n){let s=this.workGroupSize[1]*this.workPerThread,r=this.workGroupSize[0]*this.workPerThread;this.tileInner=32,this.outputShape[1]===1&&(this.tileInner=this.workGroupSize[0]*4);let a=e%s===0,o=t%r===0,i=n%this.tileInner===0;return[a,o,i]}getUserCode(){return`
|
|
${Ga(this.activation,this.hasPreluActivationWeights)}
|
|
${W2(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,!1,this.transposeB,this.fitAOuter,this.fitBOuter,this.fitInner)}
|
|
${this.outputShape[1]>1?bb([this.workPerThread,this.workPerThread,1],this.workGroupSize,this.transposeA,this.tileInner):Y2e(this.workGroupSize,this.transposeA)}
|
|
`}},Q2e=(e,t)=>e?`
|
|
mm_Asub[inputRow][inputCol] = mm_readA(batch,
|
|
t * TileInner + inputRow,
|
|
globalRowStart / ${t} + inputCol);
|
|
`:`
|
|
mm_Asub[inputRow][inputCol] = mm_readA(batch,
|
|
globalRow + innerRow,
|
|
t * TileInner / ${t} + inputCol);
|
|
`,e1e=(e,t)=>e?`
|
|
let ACached0 = mm_Asub[k * InnerElementSize][localRow];
|
|
let ACached1 = mm_Asub[k * InnerElementSize + 1][localRow];
|
|
let ACached2 = mm_Asub[k * InnerElementSize + 2][localRow];
|
|
${t===3?"":"let ACached3 = mm_Asub[k * InnerElementSize + 3][localRow];"}
|
|
for (var i = 0; i < RowPerThread; i = i + 1) {
|
|
acc[i] = BCached[0] * ACached0[i] + acc[i];
|
|
acc[i] = BCached[1] * ACached1[i] + acc[i];
|
|
acc[i] = BCached[2] * ACached2[i] + acc[i];
|
|
${t===3?"":"acc[i] = BCached[3] * ACached3[i] + acc[i];"}
|
|
}`:`
|
|
for (var i = 0; i < RowPerThread; i = i + 1) {
|
|
let ACached = mm_Asub[tileRow + i][k];
|
|
acc[i] = BCached[0] * ACached.x + acc[i];
|
|
acc[i] = BCached[1] * ACached.y + acc[i];
|
|
acc[i] = BCached[2] * ACached.z + acc[i];
|
|
${t===3?"":"acc[i] = BCached[3] * ACached.w + acc[i];"}
|
|
}`;function vb(e,t,n,s,r=4,a=!1){let o=a?t:s,i=a?s:t,l=a?e[1]:r;return v.assert((a&&t===n||s%4===0||s%3===0)&&e[0]===4&&(r===3||r===4),()=>`tileInner ${s} must be divisible by 4|3. ColPerThread ${e[0]} must be 4.
|
|
innerElementSize ${r} must be 3|4.`),`
|
|
var<workgroup> mm_Asub : array<array<vec${l}<f32>, ${o/l}>, ${i}>;
|
|
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${n/e[0]}>, ${s}>;
|
|
|
|
const RowPerThread = ${e[1]};
|
|
const ColPerThread = ${e[0]};
|
|
const InnerElementSize = ${r};
|
|
const TileInner = ${s};
|
|
|
|
@compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
|
|
fn main(@builtin(local_invocation_id) LocalId : vec3<u32>,
|
|
@builtin(global_invocation_id) GlobalId : vec3<u32>,
|
|
@builtin(num_workgroups) NumWorkgroups: vec3<u32>,
|
|
@builtin(workgroup_id) workgroupId: vec3<u32>) {
|
|
localId = LocalId;
|
|
globalId = GlobalId;
|
|
numWorkgroups = NumWorkgroups;
|
|
|
|
let localRow = i32(localId.y);
|
|
let tileRow = ${t===1?"0":"localRow * RowPerThread"};
|
|
let tileCol = i32(localId.x);
|
|
|
|
let globalRow = ${t===1?"0":"i32(globalId.y) * RowPerThread"};
|
|
let globalCol = i32(globalId.x);
|
|
let batch = i32(globalId.z);
|
|
let globalRowStart = i32(workgroupId.y) * ${t};
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
|
|
|
|
var acc: array<vec4<f32>, RowPerThread>;
|
|
var BCached : array<vec4<f32>, 4>;
|
|
|
|
// Loop over shared dimension.
|
|
let RowPerThreadB = TileInner / i32(workGroupSizeY);
|
|
let tileRowB = localRow * RowPerThreadB;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileCol;
|
|
${Q2e(a,l)}
|
|
}
|
|
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(batch, t * TileInner + inputRow, globalCol);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileInner / InnerElementSize; k = k + 1) {
|
|
BCached[0] = mm_Bsub[k * InnerElementSize][tileCol];
|
|
BCached[1] = mm_Bsub[k * InnerElementSize + 1][tileCol];
|
|
BCached[2] = mm_Bsub[k * InnerElementSize + 2][tileCol];
|
|
${r===3?"":"BCached[3] = mm_Bsub[k * InnerElementSize + 3][tileCol];"}
|
|
|
|
${e1e(a,r)}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
mm_write(batch, globalRow + innerRow, globalCol, acc[innerRow]);
|
|
}
|
|
}`}var t1e=class{constructor(e,t,n,s,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]},t[1]===1&&!r?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread);let l=a!=null,u=i!=null;l&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.tileAOuter=t[1]===1&&!r?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.tileBOuter,this.aShape=e,this.addBias=l,this.activation=o,this.hasPreluActivationWeights=u,this.batchAEqualOne=n,this.batchBEqualOne=s,this.transposeA=r;let c=r?e[1]:e[2];this.fitAOuter=t[1]%this.tileAOuter===0,this.fitBOuter=t[2]%this.tileBOuter===0,this.fitInner=c%this.tileInner===0,this.shaderKey=`matMulPackedVec4_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.elementsPerThread}_${this.batchAEqualOne}_${this.batchBEqualOne}_${this.transposeA}`}getUserCode(){return`
|
|
${Ga(this.activation,this.hasPreluActivationWeights,!0)}
|
|
${W2(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,!1,!1,this.fitAOuter,this.fitBOuter,this.fitInner,4)}
|
|
${vb(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner,4,this.transposeA)}
|
|
`}};function n1e(){return`
|
|
var<workgroup> sumValues : array<f32, workGroupSizeX>;
|
|
${xd()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let row = coords[1];
|
|
let col = coords[2];
|
|
var sum = 0.0;
|
|
let Length = uniforms.dimInner;
|
|
for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) {
|
|
let dataA = mm_readA(batch, row, k);
|
|
let dataB = mm_readB(batch, k, col);
|
|
sum = sum + dataA * dataB;
|
|
}
|
|
sumValues[localId.x] = sum;
|
|
workgroupBarrier();
|
|
|
|
for(var currentSize = workGroupSizeX / 2u; currentSize > 1u;
|
|
currentSize = currentSize / 2u) {
|
|
if (localId.x < currentSize)
|
|
{
|
|
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u) {
|
|
sum = sumValues[0] + sumValues[1];
|
|
mm_write(batch, row, col, sum);
|
|
}
|
|
}
|
|
`}var s1e=class{constructor(e,t,n,s=!1,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize);let l=a!=null,u=i!=null;l&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.transposeA=s,this.transposeB=r,this.addBias=l,this.activation=o,this.hasPreluActivationWeights=u,this.batchAEqualOne=t,this.batchBEqualOne=n,this.shaderKey=`matMulReduce_${this.activation}_${s}_${r}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){return`
|
|
${Ga(this.activation,this.hasPreluActivationWeights)}
|
|
${W2(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,this.transposeA,this.transposeB)}
|
|
${n1e()}
|
|
`}};function r1e(e){let t=e[1],n=e[0],s=t>n?t:n;return`
|
|
var<workgroup> mm_Asub : array<array<f32, ${s}>, ${t}>;
|
|
var<workgroup> mm_Bsub : array<array<f32, ${n}>, ${s}>;
|
|
|
|
// If the output size is small for matrix multiplication, avoid to use vec4
|
|
// and handle some elements per thread to optimally utilize the ALU.
|
|
// Read data from global memory to registers firstly, then store them into
|
|
// shared memory, so it is instruction-Level parallelism for arithmetic
|
|
// operations and others handle IO operations between barrier api, makes ALU
|
|
// and load/store units work simultaneously, could improves the performance.
|
|
${xd()}
|
|
let tileRow = i32(localId.y);
|
|
let tileCol = i32(localId.x);
|
|
let globalRow = i32(globalId.y);
|
|
let globalCol = i32(globalId.x);
|
|
let batch = i32(globalId.z);
|
|
|
|
// uniforms.dimInner should be greater than 0.
|
|
let numTiles = (uniforms.dimInner - 1) / ${s} + 1;
|
|
var acc = 0.0;
|
|
|
|
var globalColA = tileCol;
|
|
var globalRowB = 0;
|
|
var regA = mm_readA(batch, globalRow, globalColA);
|
|
var regB0 = mm_readB(batch, globalRowB + 2 * tileRow, globalCol);
|
|
var regB1 = mm_readB(batch, globalRowB + 2 * tileRow + 1, globalCol);
|
|
globalColA = globalColA + ${s};
|
|
globalRowB = globalRowB + ${s};
|
|
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
mm_Asub[tileRow][tileCol] = regA;
|
|
mm_Bsub[2 * tileRow][tileCol] = regB0;
|
|
mm_Bsub[2 * tileRow + 1][tileCol] = regB1;
|
|
|
|
workgroupBarrier();
|
|
|
|
regA = mm_readA(batch, globalRow, globalColA);
|
|
regB0 = mm_readB(batch, globalRowB + 2 * tileRow, globalCol);
|
|
regB1 = mm_readB(batch, globalRowB + 2 * tileRow + 1, globalCol);
|
|
globalColA = globalColA + ${s};
|
|
globalRowB = globalRowB + ${s};
|
|
|
|
for (var k = 0; k < ${s}; k = k + 1) {
|
|
acc = acc + mm_Asub[tileRow][k] * mm_Bsub[k][tileCol];
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
|
|
mm_write(batch, globalRow, globalCol, acc);
|
|
}
|
|
`}var a1e=class{constructor(e,t,n,s=!1,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[16,8,1],this.outputShape=n,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(n[2]/this.workGroupSize[0]),Math.ceil(n[1]/this.workGroupSize[1]),n[0]];let l=a!=null;l&&this.variableNames.push("bias");let u=i!=null;u&&this.variableNames.push("preluActivationWeights"),this.transposeA=s,this.transposeB=r,this.addBias=l,this.activation=o,this.hasPreluActivationWeights=u,this.batchAEqualOne=e[0]===1,this.batchBEqualOne=t[0]===1,this.shaderKey=`matMulSmallOutputSize_${this.activation}_${s}_${r}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){return`
|
|
${Ga(this.activation,this.hasPreluActivationWeights)}
|
|
${W2(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,this.transposeA,this.transposeB)}
|
|
${r1e(this.workGroupSize)}
|
|
`}},o1e=class{constructor(e,t,n,s,r=!1,a=!1){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,8,1],this.atomic=!0,this.tileInner=32,v.assert(e[0]===1,()=>"MatMulSplitKProgram only supports batch = 1."),this.outputShape=e,this.dispatchLayout={x:[2],y:[1],z:[0,3]},this.elementsPerThread=[4,4,this.tileInner],this.outputShape[1]<16&&(this.elementsPerThread[1]=1),this.outputShape[2]<16&&(this.elementsPerThread[0]=1),this.dispatch=Ge(this.dispatchLayout,[this.outputShape[0],this.outputShape[1],this.outputShape[2],t],this.workGroupSize,this.elementsPerThread),this.transposeA=r,this.transposeB=a,this.batchAEqualOne=n,this.batchBEqualOne=s,this.shaderKey=`matMulSplitK_${r}_${a}_${n}_${s}_${this.elementsPerThread}`}getUserCode(){let e=`
|
|
var oldValue = atomicLoad(&(result[flatIndex]));
|
|
var exchanged = false;
|
|
for (; !exchanged;) {
|
|
let newValueF32 = bitcast<f32>(oldValue) + value;
|
|
let newValue = bitcast<i32>(newValueF32);
|
|
let res = atomicCompareExchangeWeak(&(result[flatIndex]), oldValue, newValue);
|
|
oldValue = res.old_value;
|
|
exchanged = res.exchanged;
|
|
}
|
|
`;return`
|
|
${kT(this.batchAEqualOne,this.batchBEqualOne,this.transposeA,this.transposeB)}
|
|
fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) {
|
|
if (row < uniforms.dimAOuter && col < uniforms.dimBOuter) {
|
|
let coords = vec3<i32>(batch, row, col);
|
|
let flatIndex = getOutputIndexFromCoords(coords);
|
|
var value = valueIn;
|
|
// The problem is that we should initialize output to zero before using.
|
|
// Otherwise, the original value will be added to the result.
|
|
${e}
|
|
}
|
|
}
|
|
|
|
${this.makeMatMulSplitKSource()}
|
|
`}makeMatMulSplitKSource(){let e=this.workGroupSize[1]*this.elementsPerThread[1],t=this.workGroupSize[0]*this.elementsPerThread[0],n=this.elementsPerThread[1],s=this.elementsPerThread[0],r=this.tileInner/this.workGroupSize[0],a=this.tileInner/this.workGroupSize[1];return v.assert(this.tileInner%this.workGroupSize[0]===0&&this.tileInner%this.workGroupSize[1]===0,()=>`tileInner ${this.tileInner} must be divisible by workGroupSize[0]${this.workGroupSize[0]} and workGroupSize[1]${this.workGroupSize[1]}`),`
|
|
var<workgroup> mm_Asub : array<array<f32, ${this.tileInner}>, ${e}>;
|
|
var<workgroup> mm_Bsub : array<array<f32, ${t}>, ${this.tileInner}>;
|
|
${xd()}
|
|
let tileRow = i32(localId.y) * ${n};
|
|
let tileCol = i32(localId.x) * ${s};
|
|
|
|
let globalRow = i32(globalId.y) * ${n};
|
|
let globalCol = i32(globalId.x) * ${s};
|
|
let batch = 0;
|
|
let kStart = i32(globalId.z) * ${this.tileInner};
|
|
|
|
// Load one tile of A into local memory.
|
|
let tileColA = i32(localId.x) * ${r};
|
|
for (var innerRow = 0; innerRow < ${n}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${r}; innerCol = innerCol + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileColA + innerCol;
|
|
mm_Asub[inputRow][inputCol] = mm_readA(${this.batchAEqualOne?0:"batch"},
|
|
globalRow + innerRow,
|
|
kStart + inputCol);
|
|
}
|
|
}
|
|
// Load one tile of B into local memory.
|
|
let tileRowB = i32(localId.y) * ${a};
|
|
for (var innerRow = 0; innerRow < ${a}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${s}; innerCol = innerCol + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol + innerCol;
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(${this.batchBEqualOne?0:"batch"},
|
|
kStart + inputRow,
|
|
globalCol + innerCol);
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
var acc : array<array<f32, ${s}>, ${n}>;
|
|
// Loop over shared dimension. Compute acc values for a single thread.
|
|
for (var k = 0; k < ${this.tileInner}; k = k + 1) {
|
|
var BCached : array<f32, ${s}>;
|
|
for (var inner = 0; inner < ${s}; inner = inner + 1) {
|
|
BCached[inner] = mm_Bsub[k][tileCol + inner];
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${n}; innerRow = innerRow + 1) {
|
|
let ACached = mm_Asub[tileRow + innerRow][k];
|
|
for (var innerCol = 0; innerCol < ${s}; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
|
|
}
|
|
}
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${n}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${s}; innerCol = innerCol + 1) {
|
|
mm_write(batch, globalRow + innerRow, globalCol + innerCol, acc[innerRow][innerCol]);
|
|
}
|
|
}
|
|
}
|
|
`}},i1e=class{constructor(e,t=null,n=null,s=null){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.addBias=t!=null,this.hasPreluActivationWeights=s!=null,this.activation=n,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.shaderKey=`biasActivation_${n}`}getUserCode(){return`
|
|
${Ga(this.activation,this.hasPreluActivationWeights)}
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var value = getXByOutputIndex(index);
|
|
${Ad(this.addBias,this.activation)}
|
|
setOutputAtIndex(index, value);
|
|
}
|
|
}
|
|
`}},l1e=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill"}getUserCode(){return`
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
setOutputAtIndex(index, uniforms.value);
|
|
}
|
|
}
|
|
`}};function hu(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new l1e(s),i=[{type:"float32",data:[r]}];return t.runWebGPUProgram(o,[],a,i)}}var u1e={kernelName:Rc,backendName:"webgpu",kernelFunc:hu};function He(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a),i=v.sizeFromShape(o);return v.assert(a===i,()=>`The new shape (${o}) has ${i} elements and the old shape (${s.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var c1e={kernelName:zl,backendName:"webgpu",kernelFunc:He};function wb({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,p=n?e.shape[u-2]:e.shape[u-1],d=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[u-1]:e.shape[u-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(m),x=v.sizeFromShape(g),b=tu.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[y,p,h]:[y,h,p],I=s?[x,f,d]:[x,d,f],k=He({inputs:{x:e},backend:r,attrs:{shape:w}}),E=He({inputs:{x:t},backend:r,attrs:{shape:I}}),_=[k,E],D=Math.max(y,x),R=y===1,P=x===1,T=(p%4===0&&!n||h%4===0&&n)&&f%4===0&&!s,M=[k,E],W=[{type:"int32",data:[h]},{type:"int32",data:[f]},{type:"int32",data:[p]}],G,X,K=[D,h,f],Y=H().get("WEBGPU_MATMUL_PROGRAM_TYPE");switch(Y<0&&(h*f<=128?Y=Gs.MatMulReduceProgram:D===1&&h<=128&&f<=48&&d>=2e3?Y=Gs.MatMulSplitKProgram:h<=16&&(f<=512||d>=2*f)||f<=16&&(h<=512||p>=2*h)?Y=Gs.MatMulSmallOutputSizeProgram:T?Y=Gs.MatMulPackedVec4Program:Y=Gs.MatMulPackedProgram),Y){case Gs.MatMulPackedVec4Program:G=new t1e(w,K,R,P,n,a,l,o);break;case Gs.MatMulReduceProgram:G=new s1e(K,R,P,n,s,a,l,o);break;case Gs.MatMulSplitKProgram:{if(X=hu({backend:r,attrs:{shape:K,value:0,dtype:e.dtype}}),G=new o1e(K,d,R,P,n,s),a||l){X=r.runWebGPUProgram(G,M,e.dtype,W,X);let ee=new i1e(X.shape,a,l,o),ie=null,ne=[X];a&&ne.push(a),o&&ne.push(o),l==="leakyrelu"&&(ie=[{type:"float32",data:[i]}],ee.uniforms+=" alpha : f32,");let pe=r.runWebGPUProgram(ee,ne,X.dtype,ie);_.push(X);let ce=He({inputs:{x:pe},backend:r,attrs:{shape:b}});_.push(pe);for(let Ae of _)r.disposeData(Ae.dataId);return ce}break}case Gs.MatMulSmallOutputSizeProgram:G=new a1e(w,I,K,n,s,a,l,o);break;case Gs.MatMulPackedProgram:G=new J2e(w,K,H().get("WEBGPU_MATMUL_WORK_PER_THREAD"),R,P,n,s,a,l,o);break;default:throw new Error(`Unsupported MatMulProgramType ${Y}.`)}a&&M.push(a),o&&M.push(o),l==="leakyrelu"&&(W.push({type:"float32",data:[i]}),G.uniforms+=" alpha : f32,"),X=r.runWebGPUProgram(G,M,e.dtype,W,X);let re=He({inputs:{x:X},backend:r,attrs:{shape:b}});_.push(X);for(let ee of _)r.disposeData(ee.dataId);return re}function d1e(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s;return wb({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var p1e={kernelName:yo,backendName:"webgpu",kernelFunc:d1e},uw=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n),this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return`
|
|
fn binaryOpComplex(
|
|
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
|
|
${Zm(this.op,!1)}
|
|
}
|
|
|
|
${lt()}
|
|
if(index < uniforms.size) {
|
|
let areal = getARealByOutputIndex(index);
|
|
let aimag = getAImagByOutputIndex(index);
|
|
let breal = getBRealByOutputIndex(index);
|
|
let bimag = getBImagByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
}
|
|
`}},Ey=class{constructor(e,t,n){this.size=!0,this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.dispatchLayout=at(this.outputShape),this.op=e,this.useSharedMemoryWithA=t.length===1&&n.length>1&&t[0]<1024,this.useSharedMemoryWithB=n.length===1&&t.length>1&&n[0]<1024,this.useSharedMemoryWithA||this.useSharedMemoryWithB?(this.isVec4=!1,this.lastDimensionSize=this.useSharedMemoryWithB?n[0]:t[0],this.shaderKey=`binary_${this.type}_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`,this.type="shared",this.workGroupSize=[256,1,1],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4):(v.arraysEqual(t,n)&&v.sizeFromShape(t)%4===0?(this.isVec4=!0,this.type="vec4",this.workPerThread=4):(this.isVec4=!1,this.type="plain",this.workPerThread=1),this.shaderKey=`binary_${this.type}_${e}`,this.workGroupSize=[128,1,1]),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1])}getUserCode(){let e;if(this.type==="shared"){let t=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",n=this.useSharedMemoryWithB?`let a = getAByOutputCoords(coords);
|
|
let b = sharedBuf[${t}];`:`let a = sharedBuf[${t}];
|
|
let b = getBByOutputCoords(coords);`;e=`
|
|
fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${Zm(this.op,this.isVec4)}
|
|
}
|
|
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
|
|
${lt()}
|
|
|
|
// Fill in the shared memory buffer. Here we need a loop to make sure
|
|
// that all data in A|B are uploaded when |sharedMemorySize| is larger
|
|
// than work group size.
|
|
for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {
|
|
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}[localIndex]);
|
|
}
|
|
workgroupBarrier();
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
|
|
${n}
|
|
setOutputAtIndex(flatIndex, binaryOperation(a, b));
|
|
}
|
|
}
|
|
}
|
|
`}else{let t=this.type==="vec4"?"vec4<f32>":"f32",n=Zm(this.op,this.isVec4);e=`
|
|
fn binaryOperation(a : ${t}, b : ${t}) -> ${t} {
|
|
${n}
|
|
}
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
let b = getBByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`}return e}};function Os(e){let{inputs:t}=e,{x:n}=t;return e.backend.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var h1e={kernelName:Xo,backendName:"webgpu",kernelFunc:Os};function bd(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.tensorMap.get(a.dataId),i=Os({inputs:{x:s},backend:n}),l=Os({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var f1e={kernelName:Xp,backendName:"webgpu",kernelFunc:bd},Kh=class{constructor(e,t){this.variableNames=["A"],this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
|
|
fn unaryOperation(a : f32) -> f32 {
|
|
${Xi(this.op,!1)}
|
|
}
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
setOutputAtIndex(index, unaryOperation(a));
|
|
}
|
|
}
|
|
`}};function Pn({opType:e,cpuKernelImpl:t,dtype:n}){return({inputs:s,backend:r})=>{let{x:a}=s,o=r,i=n||a.dtype;if(o.shouldExecuteOnCPU([a])&&t!=null){let u=o.tensorMap.get(a.dataId),c=t(u.values,i);return o.makeTensorInfo(a.shape,i,c)}let l=new Kh(a.shape,e);return o.runWebGPUProgram(l,[a],i)}}function ls({opType:e,cpuKernelImpl:t,supportsComplex:n=!1,dtype:s}){return({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(n&&o.dtype==="complex64"){let p=l.tensorMap.get(o.dataId),d=l.tensorMap.get(i.dataId),h,f;if(e!==Ze.MUL)[h,f]=[[p.complexTensorInfos.real,d.complexTensorInfos.real],[p.complexTensorInfos.imag,d.complexTensorInfos.imag]].map(g=>{let[y,x]=g,A={dataId:y.dataId,dtype:y.dtype,shape:o.shape},b={dataId:x.dataId,dtype:x.dtype,shape:i.shape},w=new Ey(e,o.shape,i.shape);return l.runWebGPUProgram(w,[A,b],Nn(y.dtype,x.dtype))});else{let g=new uw(Ze.COMPLEX_MULTIPLY_REAL,o.shape,i.shape),y=new uw(Ze.COMPLEX_MULTIPLY_IMAG,o.shape,i.shape),x=[{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:o.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:d.complexTensorInfos.real.dataId,dtype:d.complexTensorInfos.real.dtype,shape:i.shape},{dataId:d.complexTensorInfos.imag.dataId,dtype:d.complexTensorInfos.imag.dtype,shape:i.shape}];h=l.runWebGPUProgram(g,x,"float32"),f=l.runWebGPUProgram(y,x,"float32")}let m=bd({inputs:{real:h,imag:f},backend:l});return l.disposeData(h.dataId),l.disposeData(f.dataId),m}let u=s||Nn(o.dtype,i.dtype);if((o.dtype==="string"||i.dtype==="string"||l.shouldExecuteOnCPU([o,i]))&&t!=null){let p=l.tensorMap.get(o.dataId).values,d=l.tensorMap.get(i.dataId).values,h=o.dtype==="string"?C.fromUint8ToStringArray(p):p,f=o.dtype==="string"?C.fromUint8ToStringArray(d):d,[m,g]=t(o.shape,i.shape,h,f,u);return l.makeTensorInfo(g,u,m)}let c=new Ey(e,o.shape,i.shape);return l.runWebGPUProgram(c,[o,i],u)}}var IT={};Ve(IT,{addImpl:()=>ST,bincountImpl:()=>A1e,bincountReduceImpl:()=>x1e,ceilImpl:()=>TT,concatImpl:()=>b1e,equalImpl:()=>NT,expImpl:()=>ET,expm1Impl:()=>RT,floorImpl:()=>_T,gatherNdImpl:()=>v1e,gatherV2Impl:()=>w1e,greaterEqualImpl:()=>$T,greaterImpl:()=>DT,lessEqualImpl:()=>FT,lessImpl:()=>PT,linSpaceImpl:()=>k1e,logImpl:()=>OT,maxImpl:()=>I1e,maximumImpl:()=>MT,minimumImpl:()=>zT,multiplyImpl:()=>Cb,negImpl:()=>C1e,notEqualImpl:()=>LT,prodImpl:()=>N1e,rangeImpl:()=>E1e,rsqrtImpl:()=>BT,scatterImpl:()=>R1e,sigmoidImpl:()=>_1e,simpleAbsImpl:()=>m1e,sliceImpl:()=>D1e,sparseFillEmptyRowsImpl:()=>$1e,sparseReshapeImpl:()=>P1e,sparseSegmentReductionImpl:()=>F1e,sqrtImpl:()=>O1e,squaredDifferenceImpl:()=>WT,stridedSliceImpl:()=>M1e,stringNGramsImpl:()=>L1e,stringSplitImpl:()=>W1e,stringToHashBucketFastImpl:()=>V1e,subImpl:()=>VT,tileImpl:()=>G1e,topKImpl:()=>H1e,transposeImpl:()=>T1e,uniqueImpl:()=>j1e});function kb(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}function m1e(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}function Qs(e){return(t,n,s,r,a)=>{let o=C.assertAndGetBroadcastShape(t,n),i=o.length,l=v.computeStrides(o),u=v.sizeFromShape(o),c=v.getTypedArrayFromDType(a,u),p=t.length,d=n.length,h=v.computeStrides(t),f=v.computeStrides(n),m=C.getBroadcastDims(t,o),g=C.getBroadcastDims(n,o);if(m.length+g.length===0)for(let y=0;y<c.length;++y)c[y]=e(s[y%s.length],r[y%r.length]);else for(let y=0;y<c.length;++y){let x=v.indexToLoc(y,i,l),A=x.slice(-p);m.forEach(k=>A[k]=0);let b=v.locToIndex(A,p,h),w=x.slice(-d);g.forEach(k=>w[k]=0);let I=v.locToIndex(w,d,f);c[y]=e(s[b],r[I])}return[c,o]}}function Ib(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}function Ry(e,t,n="float32"){if(n==="complex64"){let r=Ry(e,t,"float32"),a=Ry(e,t,"float32");return Ib({inputs:{real:r,imag:a},backend:e})}let s=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function cw(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function g1e(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}function Ym(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return cw({inputs:{x:r},backend:n});let o=Ry(n,r.shape,r.dtype),i=Ym({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Ib({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=g1e({inputs:{input:r},backend:n}),i=Ym({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=cw({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=v.toTypedArray([0],r.dtype),[l,u]=Qs((c,p)=>c!==p?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}function gr(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;kb([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,p=o.dtype==="string"?C.fromUint8ToStringArray(u):u,d=o.dtype==="string"?C.fromUint8ToStringArray(c):c,h=s||o.dtype,[f,m]=t(o.shape,i.shape,p,d,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=Ym({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),p=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,h=l.data.get(p.dataId).values,f=l.data.get(d.dataId).values,m=Ym({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),y=g.complexTensorInfos.real,x=g.complexTensorInfos.imag,A=l.data.get(y.dataId).values,b=l.data.get(x.dataId).values,[w,I,k]=n(o.shape,i.shape,h,f,A,b),E=l.makeTensorInfo(k,"float32",w),_=l.makeTensorInfo(k,"float32",I),D=Ib({inputs:{real:E,imag:_},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(_),D}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,p=s||o.dtype,[d,h]=t(o.shape,i.shape,u,c,p);return l.makeTensorInfo(h,p,d)}}}function Sb(e){return(t,n,s,r,a,o)=>{let i=C.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(i),u=i.length,c=v.computeStrides(i),p=v.getTypedArrayFromDType("float32",l),d=v.getTypedArrayFromDType("float32",l),h=C.getBroadcastDims(t,i),f=C.getBroadcastDims(n,i),m=C.mergeRealAndImagArrays(s,r),g=C.mergeRealAndImagArrays(a,o),y=t.length,x=v.computeStrides(t),A=n.length,b=v.computeStrides(n);if(h.length+f.length===0)for(let w=0;w<p.length;w++){let I=w%m.length,k=w%g.length,E=e(m[I*2],m[I*2+1],g[k*2],g[k*2+1]);p[w]=E.real,d[w]=E.imag}else for(let w=0;w<p.length;w++){let I=v.indexToLoc(w,u,c),k=I.slice(-y);h.forEach(P=>k[P]=0);let E=v.locToIndex(k,y,x),_=I.slice(-A);f.forEach(P=>_[P]=0);let D=v.locToIndex(_,A,b),R=e(m[E*2],m[E*2+1],g[D*2],g[D*2+1]);p[w]=R.real,d[w]=R.imag}return[p,d,i]}}var ST=Qs((e,t)=>e+t),y1e=Sb((e,t,n,s)=>({real:e+n,imag:t+s})),B4e=gr(na,ST,y1e);function A1e(e,t,n,s,r){let a=v.sizeFromShape(s),o=v.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function x1e(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=De([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let u=e.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(s?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function Si(e){return(t,n,s)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function CT(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(kb(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=v.sizeFromShape(o.shape),c=n||o.dtype,p=v.getArrayFromDType(c,u);for(let d=0;d<u;++d)p[d]=t(l[d],r);return i.makeTensorInfo(o.shape,c,p)}}function vd(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(kb(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,r);return i.makeTensorInfo(o.shape,u,c)}}var TT=Si(e=>Math.ceil(e)),W4e=vd(Sa,TT);function b1e(e,t,n,s){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=v.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?C.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;u<o.shape[0];++u){let c=u*t[1]+a;for(let p=0;p<o.shape[1];++p)r[c+p]=i[l++]}a+=o.shape[1]})}return r}var NT=Qs((e,t)=>e===t?1:0),V4e=gr(Uo,NT,null,"bool"),ET=Si(e=>Math.exp(e)),U4e=vd(Ta,ET,"float32"),RT=Si(e=>Math.expm1(e)),G4e=vd(Go,RT),_T=Si(e=>Math.floor(e)),H4e=vd(Na,_T);function v1e(e,t,n,s,r,a,o,i,l){let u=De([s,a],n);for(let c=0;c<s;c++){let p=[],d=0;for(let h=0;h<r;h++){let f=e[c*r+h];d+=f*o[h],p.push(f)}if(d<0||d>=l/a)throw new Error(`Invalid indices: ${p} does not index into ${i}`);for(let h=0;h<a;h++)u.values[c*a+h]=t.get(...t.indexToLoc(d*a+h))}return u}function w1e(e,t,n){let s=De(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],u=t.locToIndex([i,l]);o[2]=t.values[u];let c=e.locToIndex(o);0<=c&&c<e.values.length&&(s.values[r]=e.values[c])}return s}var DT=Qs((e,t)=>e>t?1:0),j4e=gr(qo,DT,null,"bool"),$T=Qs((e,t)=>e>=t?1:0),q4e=gr(Ea,$T,null,"bool"),PT=Qs((e,t)=>e<t?1:0),X4e=gr(Zo,PT,null,"bool"),FT=Qs((e,t)=>e<=t?1:0),K4e=gr(Yo,FT,null,"bool");function k1e(e,t,n){let s=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var OT=Si(e=>Math.log(e)),Z4e=vd(Ra,OT);function I1e(e,t,n,s){let r=v.getTypedArrayFromDType(s,v.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let u=e[o+l];(Number.isNaN(u)||u>i)&&(i=u)}r[a]=i}return r}var MT=Qs((e,t)=>Math.max(e,t)),Y4e=gr(_a,MT),zT=Qs((e,t)=>Math.min(e,t)),J4e=gr(Da,zT),Cb=Qs((e,t)=>e*t),S1e=Sb((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),Q4e=gr($a,Cb,S1e);function C1e(e,t,n){let s=v.createScalarValue(-1,n);return Cb([],t,s,e,n)}var LT=Qs((e,t)=>e!==t?1:0),eve=gr(si,LT,null,"bool");function T1e(e,t,n,s,r){let a=t.length,o=v.sizeFromShape(t),i=v.computeStrides(t),l=v.computeStrides(r),u=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let c=0;c<o;++c){let p=v.indexToLoc(c,a,i),d=new Array(p.length);for(let f=0;f<d.length;f++)d[f]=p[s[f]];let h=v.locToIndex(d,a,l);u[h]=e[c]}return u}function N1e(e,t,n,s){let[r,a]=C.computeOutAndReduceShapes(e,s),o=Nn(t,"int32"),i=v.makeZerosTypedArray(v.sizeFromShape(r),o),l=v.sizeFromShape(a);for(let u=0;u<i.length;++u){let c=u*l,p=1;for(let d=0;d<l;++d)p*=n[c+d];i[u]=p}return{outVals:i,outShape:r,outDtype:o}}function E1e(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return v.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var BT=Si(e=>1/Math.sqrt(e)),tve=vd(Pa,BT);function R1e(e,t,n,s,r,a,o,i,l,u){let c=[s/r,r],p=e.values,d=t.values;if(s===0)return De(n,t.dtype);let h=De(c,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let f=0;f<a;f++){let m=[],g=0;for(let y=0;y<o;y++){let x=p[f*o+y];m.push(x),g+=x*i[y]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y<r;y++)u?h.values[g*r+y]+=d[f*r+y]:h.values[g*r+y]=t.rank===0?d[0]:d[f*r+y]}return h}var _1e=Si(e=>1/(1+Math.exp(-e))),nve=CT(Fa,e=>1/(1+Math.exp(-e)));function D1e(e,t,n,s,r){let a=Pt.isSliceContinous(s,t,n),o=v.sizeFromShape(n),i=v.computeStrides(s);if(a){let p=Pt.computeFlatOffset(t,i);return r==="string"?e.slice(p,p+o):e.subarray(p,p+o)}let l=r==="string"?C.fromUint8ToStringArray(e):e,u=De(s,r,l),c=De(n,r);for(let p=0;p<c.size;++p){let d=c.indexToLoc(p),h=d.map((f,m)=>f+t[m]);c.set(u.get(...h),...d)}return r==="string"?C.fromStringArrayToUint8(c.values):c.values}function $1e(e,t,n,s,r,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),p=t[1];if(l===0){if(i!==0)throw new Error(C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(i));let g=v.getArrayFromDType(n,0),y=v.getArrayFromDType(r,0);return[g,[0,p],y,u,c]}let d=!0,h=0,f=new Array(l).fill(0);for(let g=0;g<i;++g){let y=e[g*p];if(y<0)throw new Error(C.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,y));if(y>=l)throw new Error(C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++f[y],d=d&&y>=h,h=y}let m=!0;for(let g=0;g<l;++g){let y=f[g]===0;u[g]=y,m=m&&!y,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&d){let g=e,y=s;for(let x=0;x<i;++x)c[x]=x;return[g,[i,p],y,u,c]}else{let g=f[l-1],y=v.getArrayFromDType(n,g*p),x=v.getArrayFromDType(r,g),A=new Array(l).fill(0);for(let b=0;b<i;++b){let w=e[b*p],I=A[w],k=(w===0?0:f[w-1])+I;A[w]++;for(let E=0;E<p;++E)y[k*p+E]=e[b*p+E];x[k]=s[b],c[b]=k}for(let b=0;b<l;++b)if(A[b]===0){let I=b===0?0:f[b-1];y[I*p+0]=b;for(let k=1;k<p;++k)y[I*p+k]=0;x[I]=o}return[y,[g,p],x,u,c]}}function P1e(e,t,n,s,r){let a=v.sizeFromShape(s),o=t[0],i=r.length,l=[],u=1,c=-1;for(let g=0;g<i;++g){let y=r[g];if(y===-1){if(c!==-1)throw new Error(C.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(c,g));c=g,l.push(1)}else{if(y<0)throw new Error(C.getSparseReshapeNegativeOutputDimErrorMessage(g,y));u*=y,l.push(y)}}if(c!==-1){if(u<=0)throw new Error(C.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let g=Math.trunc(a/u);if(u*g!==a)throw new Error(C.getSparseReshapeInputOutputMultipleErrorMessage(s,l));l[c]=g}if(v.sizeFromShape(l)!==a)throw new Error(C.getSparseReshapeInputOutputMismatchErrorMessage(s,l));let d=s.length,h=[];if(d>0){h[d-1]=1;for(let g=d-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=v.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let y=0;for(let x=0;x<d;++x)y+=e[g*d+x]*h[x];for(let x=0;x<i;++x)m[g*i+x]=Math.trunc(y/f[x]),y%=f[x]}return[m,[o,i],l]}function F1e(e,t,n,s,r,a=!1,o=0){let i=s.length,l=[t[0],e.length/t[0]],u=l[1],p=i>0?r[i-1]+1:0;if(p<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let h=d.reduce((A,b)=>A*b,1),f=v.getArrayFromDType(n,h);if(i===0)return p>0&&f.fill(o),[f,d];if(p<=0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,g=1,y=0,x=r[m];for(;;){let A=0;if(g<i){if(A=r[g],x===A){++g;continue}if(x>=A)throw new Error(C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(x<0||x>=p)throw new Error(C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(x,p));x>y&&f.fill(o,y*u,x*u);for(let b=m;b<g;++b){let w=s[b];if(w<0||w>=l[0])throw new Error(C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(b,s[b],l[0]));for(let I=0;I<u;I++)f[x*u+I]+=e[w*u+I]}if(a)for(let b=0;b<u;b++)f[x*u+b]/=g-m;if(m=g,++g,y=x+1,x=A,g>i)break}return y<p&&f.fill(o,y*u,p*u),[f,d]}var O1e=Si(e=>Math.sqrt(e)),sve=CT(Oa,e=>Math.sqrt(e)),WT=Qs((e,t)=>{let n=e-t;return n*n}),rve=gr(Ma,WT);function M1e(e,t,n,s){let r=De(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var z1e=class{constructor(e,t,n,s,r,a){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(n),this.rightPad=v.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),u=Math.max(0,i-(r-(o+1))),c=a-(l+u),p=t+(l>0?0:o-i),d=0;d+=l*this.leftPad.length;for(let y=0;y<c;++y)d+=e[p+y].length;d+=u*this.rightPad.length,d+=(l+u+c-1)*this.separator.length,n[s+o]=new Uint8Array(d);let f=n[s+o],m=0,g=y=>y.forEach(x=>f[m++]=x);for(let y=0;y<l;++y)g(this.leftPad),g(this.separator);for(let y=0;y<c-1;++y)g(e[p+y]),g(this.separator);if(c>0){g(e[p+c-1]);for(let y=0;y<u;++y)g(this.separator),g(this.rightPad)}else{for(let y=0;y<u-1;++y)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let u=t[l]>=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=v.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],u=a[i];if(this.nGramWidths.forEach(c=>{let p=t[i+1]-t[i],d=this.getNumNGrams(p,c);this.createNGrams(e,l,o,u,d,c),u+=d}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let p=c+2*this.padWidth,d=1;this.createNGrams(e,l,o,u,d,p)}}return[o,a]}};function L1e(e,t,n,s,r,a,o,i){return new z1e(n,s,r,a,o,i).compute(e,t)}function B1e(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&s.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}}function W1e(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let d=0;d<s;++d){let h=r.length;B1e(e[d],t,n,r);let f=r.length-h;i[d]=f,a+=f,o=Math.max(o,f)}let l=v.getArrayFromDType("int32",a*2),u=new Array(a),c=[s,o],p=0;for(let d=0;d<s;++d)for(let h=0;h<i[d];++h)l[p*2]=d,l[p*2+1]=h,u[p]=r[p],++p;return[l,u,c]}function V1e(e,t){let n=v.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=v.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var VT=Qs((e,t)=>e-t),U1e=Sb((e,t,n,s)=>({real:e-n,imag:t-s})),ave=gr(za,VT,U1e);function G1e(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=De(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var bp=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function UT(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,u=Math.log(i),c=.5*Math.exp(2*u/3),p=.5*Math.sqrt(u*c*(i-c)/i)*Math.sign(l-i/2),d=Math.max(n,Math.floor(t-l*c/i+p)),h=Math.min(s,Math.floor(t+(i-l)*c/i+p));UT(e,t,d,h)}let r=e[t],a=n,o=s;for(v.swap(e,n,t),bp(e[s],r)>0&&v.swap(e,n,s);a<o;){for(v.swap(e,a,o),a++,o--;bp(e[a],r)<0;)a=a+1;for(;bp(e[o],r)>0;)o=o-1}bp(e[n],r)===0?v.swap(e,n,o):(o=o+1,v.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function H1e(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=v.getTypedArrayFromDType(n,o*s),u=v.getTypedArrayFromDType("int32",o*s);for(let p=0;p<o;p++){let d=p*i,h=e.subarray(d,d+i),f=new Array(h.length);h.forEach((x,A)=>f[A]={value:x,index:A}),s<f.length&&(UT(f,s),f=f.slice(0,s)),r&&f.sort(bp);let m=p*s,g=l.subarray(m,m+s),y=u.subarray(m,m+s);for(let x=0;x<s;x++)g[x]=f[x].value,y[x]=f[x].index}let c=t.slice();return c[c.length-1]=s,[De(c,n,l),De(c,"int32",u)]}function j1e(e,t,n,s){let r=v.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[r]),l=new Kt(a,s,e),u=[],c=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(c)m=e[f].toString();else{let g=[];for(let y=0;y<a[0];y++)for(let x=0;x<a[2];x++)g.push(l.get(y,f,x));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,u.push(f)}}let p=a.slice();p[1]=Object.keys(o).length;let d=new Kt(p,s);u.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let y=0;y<a[2];y++)d.set(l.get(g,f,y),g,m,y)});let h=n.slice();return h[r]=p[1],{outputValues:d.values,outputShape:h,indices:i}}var{addImpl:q1e,ceilImpl:X1e,concatImpl:K1e,equalImpl:Z1e,expImpl:Y1e,expm1Impl:J1e,floorImpl:Q1e,gatherNdImpl:ege,gatherV2Impl:tge,greaterEqualImpl:nge,greaterImpl:sge,lessEqualImpl:rge,lessImpl:age,logImpl:oge,maxImpl:ige,maximumImpl:lge,minimumImpl:uge,multiplyImpl:cge,negImpl:dge,notEqualImpl:pge,prodImpl:hge,rangeImpl:fge,rsqrtImpl:mge,scatterImpl:gge,simpleAbsImpl:yge,sliceImpl:Age,stridedSliceImpl:xge,stringNGramsImpl:bge,subImpl:vge,tileImpl:wge,topKImpl:kge,transposeImpl:Ige,uniqueImpl:ove}=IT,Sge=Pn({opType:ze.ABS,cpuKernelImpl:yge}),Cge={kernelName:bl,backendName:"webgpu",kernelFunc:Sge},Tge=ls({opType:Ze.ADD,cpuKernelImpl:q1e,supportsComplex:!0}),Nge={kernelName:na,backendName:"webgpu",kernelFunc:Tge},Ege=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(s=>{e.push(`let v${s} = get${s}ByOutputCoords(coords);`)});let t=this.variableNames.map(s=>`v${s}`).join(" + ");return`
|
|
${lt()}
|
|
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
${e.join(`
|
|
`)}
|
|
setOutputAtIndex(flatIndex, ${t});
|
|
}
|
|
}
|
|
}
|
|
`}};function Rge(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Os({inputs:{x:s[0]},backend:n});let r=s.map(i=>i.dtype).reduce((i,l)=>Nn(i,l)),a=s.map(i=>i.shape),o=new Ege(a);return n.runWebGPUProgram(o,s,r)}var _ge={kernelName:Ro,backendName:"webgpu",kernelFunc:Rge},GT=class{constructor(e,t,n){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="infinityValue : f32,",this.size=!0;let s=[t];C.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),s,e.length),this.op=n==="min"?"<":">";let[r]=C.computeOutAndReduceShapes(e,s);this.outputShape=r.length===0?[1]:r,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,[1,1,1]),this.inputShape=e,this.shaderKey=`argMinMax${this.op}`}getUserCode(){let e=`
|
|
var<workgroup> xBestIndices : array<i32, ${this.workGroupSize[0]}>;
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`,t=()=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape.${mo(this.inputShape.length-1)}`,n=()=>{let r="";if(this.outputShape.length===1)this.inputShape.length!==1&&(r+="outputCoords,");else for(let a=0;a<this.outputShape.length;a++)r+=`outputCoords.${mo(a)},`;return r};return`
|
|
fn DIV_CEIL(a : u32, b : u32) -> u32 {
|
|
return ((a - 1u) / b + 1u);
|
|
}
|
|
|
|
${e}
|
|
|
|
${lt()}
|
|
let outputIndex = index / i32(workGroupSizeX);
|
|
let reduceLength = ${t()};
|
|
|
|
var bestIndex = i32(localId.x);
|
|
var bestValue = uniforms.infinityValue;
|
|
let outputCoords = getCoordsFromIndex(outputIndex);
|
|
for (var k = i32(localId.x); k < reduceLength && outputIndex < uniforms.size;
|
|
k = k + i32(workGroupSizeX)) {
|
|
let candidate = getX(${n()} k);
|
|
if (!isnan(candidate) && candidate ${this.op} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = k;
|
|
}
|
|
}
|
|
xBestValues[localId.x] = bestValue;
|
|
xBestIndices[localId.x] = bestIndex;
|
|
workgroupBarrier();
|
|
|
|
var reduceSize = min(u32(reduceLength), workGroupSizeX);
|
|
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
|
|
currentSize = reduceSize / 2u) {
|
|
let interval = DIV_CEIL(reduceSize, 2u);
|
|
if (localId.x < currentSize) {
|
|
let candidate = xBestValues[localId.x + interval];
|
|
if (candidate ${this.op} bestValue) {
|
|
bestValue = candidate;
|
|
xBestValues[localId.x] = bestValue;
|
|
xBestIndices[localId.x] = xBestIndices[localId.x + interval];
|
|
}
|
|
}
|
|
reduceSize = interval;
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u && outputIndex < uniforms.size) {
|
|
setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]);
|
|
}
|
|
}
|
|
`}},Dge=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout={x:[0],y:[1]},this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return`
|
|
const TILE_DIM = ${this.workGroupSize[0]};
|
|
var<workgroup> tile : array<array<f32, ${this.workGroupSize[0]+1}>, ${this.workGroupSize[0]}>;
|
|
${B2()}
|
|
fn main(@builtin(local_invocation_id) localId : vec3<u32>,
|
|
@builtin(workgroup_id) workgroupId : vec3<u32>) {
|
|
var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x);
|
|
var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y);
|
|
let width = uniforms.outShape[0];
|
|
let height = uniforms.outShape[1];
|
|
if (x < width && y < height) {
|
|
tile[localId.y][localId.x] = A[y * width + x];
|
|
}
|
|
workgroupBarrier();
|
|
|
|
x = i32(workgroupId.y) * TILE_DIM + i32(localId.x);
|
|
y = i32(workgroupId.x) * TILE_DIM + i32(localId.y);
|
|
if (x < height && y < width) {
|
|
setOutputAtIndex((y * height + x), tile[localId.x]
|
|
[localId.y]);
|
|
}
|
|
}
|
|
`}},$ge=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`}getUserCode(){let e=Tn(this.outputShape.length),t=Pge(this.newDim);return`
|
|
${lt()}
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(flatIndex);
|
|
setOutputAtIndex(flatIndex, A[getIndexFromCoords${this.outputShape.length}D(
|
|
${e}(${t}), uniforms.aShape)]);
|
|
}
|
|
}
|
|
}
|
|
`}};function Pge(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=new Array(t);for(let s=0;s<e.length;s++)n[e[s]]=`resRC.${mo(s)}`;return n.join()}function Ia(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=r.shape[a[c]];if(n.shouldExecuteOnCPU([r])){let p=o.tensorMap.get(r.dataId).values,d=Ige(p,r.shape,r.dtype,a,l);return n.makeTensorInfo(l,r.dtype,d)}if(r.shape.length===2&&v.arraysEqual(a,[1,0])){let c=new Dge(r.shape,a);return o.runWebGPUProgram(c,[r],r.dtype)}let u=new $ge(r.shape,a);return o.runWebGPUProgram(u,[r],r.dtype)}var Fge={kernelName:Zr,backendName:"webgpu",kernelFunc:Ia};function Oge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=Ia({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=new GT(l.shape,o[0],"max"),p=[{type:"float32",data:[Number.NEGATIVE_INFINITY]}],d=n.runWebGPUProgram(c,[l],"int32",p);return u.forEach(h=>n.disposeData(h.dataId)),d}var Mge={kernelName:_o,backendName:"webgpu",kernelFunc:Oge};function zge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=Ia({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=new GT(l.shape,o[0],"min"),p=[{type:"float32",data:[Number.POSITIVE_INFINITY]}],d=n.runWebGPUProgram(c,[l],"int32",p);return u.forEach(h=>n.disposeData(h.dataId)),d}var Lge={kernelName:kc,backendName:"webgpu",kernelFunc:zge},HT=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>, pad : vec2<i32>, dilation : vec2<i32>, convDims : vec2<i32>, filterDims : vec2<i32>,",this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
|
|
var count = 0.0;
|
|
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
|
|
let xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= uniforms.convDims.x) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
|
|
let xC = xCCorner + wC;
|
|
if (xC < 0 || xC >= uniforms.convDims.y) {
|
|
continue;
|
|
}
|
|
|
|
let value = getX(batch, xR, xC, coords[3]);
|
|
${e}
|
|
}
|
|
}
|
|
|
|
setOutputAtIndex(index, ${t});
|
|
}
|
|
}
|
|
`}},jT=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>,",this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let d = coords[3];
|
|
|
|
let xRCCorner = coords.yz * uniforms.stride;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
let value = getX(batch, xRCorner, xCCorner, d);
|
|
setOutputAtIndex(index, value);
|
|
}
|
|
}
|
|
`}};function Bge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1,c=C.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Os({inputs:{x:r},backend:n});let p,d=[{type:"int32",data:[c.strideHeight,c.strideWidth]}];return c.filterHeight===1&&c.filterWidth===1?p=new jT(c):(p=new HT(c,"avg"),d.push({type:"int32",data:[c.padInfo.top,c.padInfo.left]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[c.inHeight,c.inWidth]},{type:"int32",data:[c.effectiveFilterHeight,c.effectiveFilterWidth]})),n.runWebGPUProgram(p,[r],r.dtype,d)}var Wge={kernelName:Do,backendName:"webgpu",kernelFunc:Bge};function Vge(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return wb({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var Uge={kernelName:$o,backendName:"webgpu",kernelFunc:Vge},Gge=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${Tn(e.length)}, `,this.shaderKey="slice"}getUserCode(){let e=Tn(this.rank),t=Hge(this.rank),n;return this.start.length===1?n=this.outputShape.map((r,a)=>"sourceLoc = uniforms.start + coords;"):n=this.outputShape.map((r,a)=>`sourceLoc.${_y[a]} = uniforms.start[${a}] + coords.${_y[a]};`),`
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
var sourceLoc : ${e};
|
|
let coords = getCoordsFromIndex(index);
|
|
${n.join(`
|
|
`)}
|
|
setOutputAtIndex(index, getSource(${t}));
|
|
}
|
|
}
|
|
`}},_y=["x","y","z","w","u","v"];function Hge(e){if(e===1)return"sourceLoc";if(e<=6)return _y.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function wd(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Pt.parseSliceParams(r,a,o);if(Pt.assertParamsValid(r,i,l),n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.tensorMap.get(r.dataId),d=Age(p.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}if(v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);let u=new Gge(i,l),c=[{type:"int32",data:i}];return n.runWebGPUProgram(u,[r],r.dtype,c)}var jge={kernelName:Ul,backendName:"webgpu",kernelFunc:wd},qge=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((x,A)=>x*A),l=C.getReshaped(r.shape,a,i),u=C.getPermuted(l.length,a.length),c=C.getReshapedPermuted(r.shape,a,i),p=C.getSliceBeginCoords(o,a.length),d=C.getSliceSize(c,o,a.length),h=[],f=He({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Ia({inputs:{x:f},backend:n,attrs:{perm:u}}),g=He({inputs:{x:m},backend:n,attrs:{shape:c}}),y=wd({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeData(x.dataId)),y},Xge={kernelName:vl,backendName:"webgpu",kernelFunc:qge},qT=ls({opType:Ze.NOT_EQUAL,dtype:"bool",cpuKernelImpl:pge}),Kge={kernelName:si,backendName:"webgpu",kernelFunc:qT};function Zh(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return Os({inputs:{x:r.complexTensorInfos.real},backend:n})}var Zge={kernelName:nh,backendName:"webgpu",kernelFunc:Zh};function Yge(e,t){let n=new Kh(e.shape,ze.TO_INT),s=t.runWebGPUProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function Dy(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Os({inputs:{x:r},backend:n});let o=Vt(r.shape),i=Dy({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=bd({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeData(i.dataId),l}if(r.dtype==="complex64"){let o=Zh({inputs:{input:r},backend:n}),i=Dy({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeData(o.dataId),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Os({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return Yge(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=qT({inputs:{a:r,b:o},backend:n});return n.disposeData(o.dataId),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var Jge={kernelName:Po,backendName:"webgpu",kernelFunc:Dy},Qge=Pn({opType:ze.CEIL,cpuKernelImpl:X1e}),e3e={kernelName:Sa,backendName:"webgpu",kernelFunc:Qge},t3e=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return`
|
|
${lt()}
|
|
if(index < uniforms.size) {
|
|
let value = getAByOutputIndex(index);
|
|
var clampedValue : vec4<f32>;
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
if (isnan(value[i])) {
|
|
clampedValue[i] = value[i];
|
|
} else {
|
|
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
|
|
}
|
|
}
|
|
|
|
setOutputAtIndex(index, clampedValue);
|
|
}
|
|
}
|
|
`}},n3e=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip"}getUserCode(){return`
|
|
${lt()}
|
|
if(index < uniforms.size) {
|
|
let value = getAByOutputIndex(index);
|
|
if (isnan(value)) {
|
|
setOutputAtIndex(index, value);
|
|
return;
|
|
}
|
|
setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal));
|
|
}
|
|
}
|
|
`}};function s3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i,l=[{type:"float32",data:[a]},{type:"float32",data:[o]}];return v.sizeFromShape(r.shape)%4===0?i=new t3e(r.shape):i=new n3e(r.shape),n.runWebGPUProgram(i,[r],r.dtype,l)}var r3e={kernelName:Ca,backendName:"webgpu",kernelFunc:s3e},a3e=class{constructor(e){this.uniforms="",this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.offsetLength=e.length-1;for(let t=0;t<this.offsetLength;t++)this.uniforms+=`offset${t} : i32,`;this.shaderKey="concat"}getUserCode(){let e=[];if(this.offsetLength>0){e.push("if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }");for(let r=1;r<this.offsetLength;r++)e.push(`else if (yC < uniforms.offset${[r]}){ setOutputAtCoords(coords.x, coords.y, getT${r}(yR, yC - uniforms.offset${r-1})); }`);let n=this.offsetLength,s=this.offsetLength-1;e.push(`else { setOutputAtCoords(coords.x, coords.y, getT${n}(yR, yC - uniforms.offset${s})); }`)}else e.push("setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));");return`
|
|
${lt()}
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
let yR = coords.x;
|
|
let yC = coords.y;
|
|
|
|
${e.join(`
|
|
`)}
|
|
}
|
|
}
|
|
}
|
|
`}};function V2(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return Os({inputs:{x:r.complexTensorInfos.imag},backend:n})}var o3e={kernelName:Qp,backendName:"webgpu",kernelFunc:V2};function vp(e,t,n){let s=e[0].dtype;if(s==="complex64"){let f=e.map(A=>Zh({inputs:{input:A},backend:n})),m=e.map(A=>V2({inputs:{input:A},backend:n})),g=vp(f,t,n),y=vp(m,t,n),x=bd({inputs:{real:g,imag:y},backend:n});return f.forEach(A=>n.disposeData(A.dataId)),m.forEach(A=>n.disposeData(A.dataId)),n.disposeData(g.dataId),n.disposeData(y.dataId),x}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let f=e.map(w=>{let I=v.sizeFromShape(w.shape.slice(t));return He({inputs:{x:w},backend:n,attrs:{shape:[-1,I]}})}),m=f.map(w=>({vals:n.readSync(w.dataId),shape:w.shape})),g=C.computeOutShape(f.map(w=>w.shape),1),y=f[0].shape[0]===1,x=K1e(m,g,s,y),A=C.computeOutShape(e.map(w=>w.shape),t),b=n.makeTensorInfo(A,s,x);return f.forEach(w=>n.disposeData(w.dataId)),b}let a=n.device.limits.maxStorageBuffersPerShaderStage-1;if(e.length>a){let f=[];for(let g=0;g<e.length;g+=a){let y=e.slice(g,g+a);f.push(vp(y,t,n))}let m=vp(f,t,n);for(let g of f)n.disposeData(g.dataId);return m}let{tensors2D:o,outShape:i}=i3e(e,t,n),l=o.map(f=>f.shape),u=new a3e(l),c=[],p=new Array(l.length-1);if(p.length>0){p[0]=l[0][1],c.push({type:"int32",data:[p[0]]});for(let f=1;f<p.length;f++)p[f]=p[f-1]+l[f][1],c.push({type:"int32",data:[p[f]]})}let d=n.runWebGPUProgram(u,o,o[0].dtype,c);o.forEach(f=>n.disposeData(f.dataId));let h=He({inputs:{x:d},backend:n,attrs:{shape:i}});return n.disposeData(d.dataId),h}function i3e(e,t,n){let s=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>He({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape.slice(0,t)),v.sizeFromShape(a.shape.slice(t))]}})),outShape:s}}function XT(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=C.computeOutShape(t.map(u=>u.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>v.sizeFromShape(u.shape)>0);if(i.length===1)return Os({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return C.assertParamsConsistent(l,a),vp(i,a,n)}var l3e={kernelName:wl,backendName:"webgpu",kernelFunc:XT};function u3e(e,t,n,s,r=!1,a=null,o=!1,i=4,l=4,u=4){let c=_=>{switch(_){case 1:return"resData = x[xIndex];";case 3:return"resData = vec3<f32>(x[xIndex], x[xIndex + 1], x[xIndex + 2]);";case 4:return"resData = x[xIndex / 4];";default:throw new Error(`innerElementSize ${_} is not supported.`)}},p=_=>{switch(_){case 1:return"return W[row * uniforms.wShape[3] + colIn];";case 4:return"return W[row * uniforms.wShape[3] / 4 + colIn];";default:throw new Error(`innerElementSize ${_} is not supported.`)}},d=e?`
|
|
let coord = vec4<i32>(batch, xRow, xCol, xCh);
|
|
`:`
|
|
let coord = vec4<i32>(batch, xCh, xRow, xCol);
|
|
`,h=e?`
|
|
let coords = vec4<i32>(
|
|
batch,
|
|
row / outWidth,
|
|
row % outWidth,
|
|
col);
|
|
`:`
|
|
let coords = vec4<i32>(
|
|
batch,
|
|
row,
|
|
col / outWidth,
|
|
col % outWidth);
|
|
`,f=e?"uniforms.xShape[1]":"uniforms.xShape[2]",m=e?"uniforms.xShape[2]":"uniforms.xShape[3]",g=e?"row":"col",y=e?"col":"row",x=`
|
|
let inChannels = uniforms.wShape[2];
|
|
let outWidth = ${e?"uniforms.outShape[2]":"uniforms.outShape[3]"};
|
|
let outRow = ${g} / outWidth;
|
|
let outCol = ${g} % outWidth;
|
|
|
|
let WRow = ${y} / (uniforms.filterDims[1] * inChannels);
|
|
let WCol = ${y} / inChannels % uniforms.filterDims[1];
|
|
let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0];
|
|
let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1];
|
|
let xCh = ${y} % inChannels;
|
|
var resData = ${nn(i)}(0.0);
|
|
// The bounds checking is always needed since we use it to pad zero for
|
|
// the 'same' padding type.
|
|
if (xRow >= 0 && xRow < ${f} && xCol >= 0 && xCol < ${m}) {
|
|
${d}
|
|
let xIndex = getIndexFromCoords4D(coord, uniforms.xShape);
|
|
${c(i)}
|
|
}
|
|
return resData;`,A=e?t&&s?`
|
|
let col = colIn * ${i};
|
|
${x}`:`
|
|
let col = colIn * ${i};
|
|
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
${x}
|
|
}
|
|
return ${nn(i)}(0.0);`:s&&n?`
|
|
let col = colIn * ${i};
|
|
${x}`:`
|
|
let col = colIn * ${i};
|
|
if (row < uniforms.dimInner && col < uniforms.dimBOuter) {
|
|
${x}
|
|
}
|
|
return ${nn(i)}(0.0);`,b=`${p(l)}`,w=nn(u),I=nn(e?i:l),k=nn(e?l:i);return`
|
|
${Ga(a,o,u===4,4)}
|
|
fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${I} {
|
|
${e?A:b}
|
|
}
|
|
|
|
fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${k} {
|
|
${e?b:A}
|
|
}
|
|
|
|
fn mm_write(batch: i32, row : i32, colIn : i32, valueIn : ${w}) {
|
|
let col = colIn * ${u};
|
|
if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)
|
|
{
|
|
var value = valueIn;
|
|
let outWidth = ${e?"uniforms.outShape[2]":"uniforms.outShape[3]"};
|
|
${h}
|
|
${Ad(r,a)}
|
|
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
|
|
}
|
|
}`}var c3e=class{constructor(e,t,n,s,r=!1,a=null,o=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.outShape,this.isChannelsLast=e.dataFormat==="channelsLast",this.isVec4=((e.inChannels%4===0||e.inChannels%3===0)&&this.isChannelsLast||e.outWidth%4===0&&!this.isChannelsLast)&&e.outChannels%4===0,this.dispatchLayout=this.isChannelsLast?{x:[3],y:[1,2],z:[0]}:{x:[2,3],y:[1],z:[0]},this.workGroupSize=yb(this.dispatchLayout,this.outputShape,this.isVec4),this.elementsPerThread=Ab(this.dispatchLayout,this.outputShape,this.isVec4),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.isVec4?(this.isChannelsLast&&e.inChannels%4!==0?(this.innerElementSize=3,this.variableTypes=["f32","vec4<f32>"]):(this.innerElementSize=4,this.variableTypes=["vec4<f32>","vec4<f32>"]),r&&(this.variableNames.push("bias"),this.variableTypes.push("vec4<f32>")),o&&(this.variableNames.push("preluActivationWeights"),this.variableTypes.push("vec4<f32>"))):(this.innerElementSize=this.elementsPerThread[0],r&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights")),this.addBias=r,this.activation=a,this.hasPreluActivationWeights=o,this.tileAOuter=this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=Math.max(this.workGroupSize[0]*this.innerElementSize,this.workGroupSize[1]),this.fitAOuter=t%this.tileAOuter===0,this.fitBOuter=n%this.tileBOuter===0,this.fitInner=s%this.tileInner===0,this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.innerElementSize}_${this.isChannelsLast}`}getUserCode(){let e=this.isVec4?vb(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner,this.innerElementSize,!this.isChannelsLast):bb(this.elementsPerThread,this.workGroupSize,!this.isChannelsLast,this.tileInner),t=this.isVec4?[this.isChannelsLast?this.innerElementSize:4,4,4]:[1,1,1];return`
|
|
${u3e(this.isChannelsLast,this.fitAOuter,this.fitBOuter,this.fitInner,this.addBias,this.activation,this.hasPreluActivationWeights,t[0],t[1],t[2])}
|
|
${e}
|
|
`}};function dw(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function d3e({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=n.dataFormat==="channelsLast",u=!l,c=!1,p=l&&n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID",d=[],h,f;if(p){let y=n.inHeight*n.inWidth*n.inChannels;h=He({inputs:{x:e},backend:s,attrs:{shape:[1,n.batchSize,y]}}),f=He({inputs:{x:t},backend:s,attrs:{shape:[1,y,n.outChannels]}})}else h=He({inputs:{x:e},backend:s,attrs:{shape:l?[n.batchSize,n.inHeight*n.inWidth,n.inChannels]:[n.batchSize,n.inChannels,n.inHeight*n.inWidth]}}),f=He({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});if(d.push(h),d.push(f),a!=null){let y=dw(a.shape,l);y!=null&&(a=He({inputs:{x:a},backend:s,attrs:{shape:y}}),d.push(a))}if(r!=null){let y=dw(r.shape,l);y!=null&&(r=He({inputs:{x:r},backend:s,attrs:{shape:y}}),d.push(r))}let m=wb({a:l?h:f,b:l?f:h,transposeA:u,transposeB:c,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),g=He({inputs:{x:m},backend:s,attrs:{shape:n.outShape}});d.push(m);for(let y of d)s.disposeData(y.dataId);return g}function KT({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=r!=null,u=a!=null,c=n.dataFormat==="channelsLast";if(c&&n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID"||n.filterHeight===1&&n.filterWidth===1&&n.dilationHeight===1&&n.dilationWidth===1&&n.strideHeight===1&&n.strideWidth===1&&(n.padInfo.type==="SAME"||n.padInfo.type==="VALID"))return d3e({x:e,filter:t,convInfo:n,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});let d=c?n.outHeight*n.outWidth:n.outChannels,h=c?n.outChannels:n.outHeight*n.outWidth,f=n.filterHeight*n.filterWidth*n.inChannels,m=[n.padInfo.top,n.padInfo.left],g=[{type:"int32",data:[n.filterHeight,n.filterWidth]},{type:"int32",data:[...m]},{type:"int32",data:[n.strideHeight,n.strideWidth]},{type:"int32",data:[n.dilationHeight,n.dilationWidth]},{type:"int32",data:[d]},{type:"int32",data:[h]},{type:"int32",data:[f]}],y=new c3e(n,d,h,f,l,i,u),x=[],A=[e,t];l&&(!c&&r.shape.length===1&&(r=He({inputs:{x:r},backend:s,attrs:{shape:[r.shape[0],1,1]}}),x.push(r)),A.push(r)),u&&(!c&&a.shape.length===1&&(a=He({inputs:{x:a},backend:s,attrs:{shape:[a.shape[0],1,1]}}),x.push(a)),A.push(a)),i==="leakyrelu"&&(g.push({type:"float32",data:[o]}),y.uniforms+=" alpha : f32,");let b=s.runWebGPUProgram(y,A,e.dtype,g);for(let w of x)s.disposeData(w.dataId);return b}function p3e(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=n,p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p);return KT({x:r,filter:a,convInfo:d,backend:s})}var h3e={kernelName:Fo,backendName:"webgpu",kernelFunc:p3e};function f3e(e=4){let t=a=>{switch(a){case 1:return"return W[getIndexFromCoords4D(coord, uniforms.wShape)];";case 4:return`
|
|
let coord1 = vec4<i32>(coordX, coordY, col + 1, rowInner);
|
|
let coord2 = vec4<i32>(coordX, coordY, col + 2, rowInner);
|
|
let coord3 = vec4<i32>(coordX, coordY, col + 3, rowInner);
|
|
let v0 = W[getIndexFromCoords4D(coord, uniforms.wShape)];
|
|
let v1 = W[getIndexFromCoords4D(coord1, uniforms.wShape)];
|
|
let v2 = W[getIndexFromCoords4D(coord2, uniforms.wShape)];
|
|
let v3 = W[getIndexFromCoords4D(coord3, uniforms.wShape)];
|
|
return vec4<f32>(v0, v1, v2, v3);
|
|
`;default:throw new Error(`innerElementSize ${a} is not supported.`)}},s=`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
${`
|
|
let outRow = row / uniforms.outShape[2];
|
|
let outCol = row % uniforms.outShape[2];
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
|
|
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
|
|
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
|
|
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
|
|
return ${nn(e)}(0.0);
|
|
}
|
|
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
|
|
return ${nn(e)}(0.0);
|
|
}
|
|
let coord = vec4<i32>(
|
|
batch,
|
|
i32(xR),
|
|
i32(xC),
|
|
col % uniforms.outBackprop[3]);
|
|
return x[getIndexFromCoords4D(coord, uniforms.xShape)/${e}];`}
|
|
}
|
|
return ${nn(e)}(0.0);`;return`
|
|
fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${nn(e)} {
|
|
let col = colIn * ${e};
|
|
${s}
|
|
}
|
|
|
|
fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${nn(e)} {
|
|
let col = colIn * ${e};
|
|
let coordX = uniforms.filterDims.x - 1 -
|
|
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let coordY = uniforms.filterDims.y - 1 -
|
|
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
|
|
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
|
|
coordX >= 0 && coordY >= 0) {
|
|
let rowInner = row % uniforms.outBackprop[3];
|
|
let coord = vec4<i32>(coordX, coordY, col, rowInner);
|
|
${t(e)}
|
|
}
|
|
return ${nn(e)}(0.0);
|
|
}
|
|
|
|
fn mm_write(batch: i32, row : i32, colIn : i32, valueInput : ${nn(e)}) {
|
|
let col = colIn * ${e};
|
|
if (row < uniforms.dimAOuter && (col + ${e-1}) < uniforms.dimBOuter) {
|
|
var value = valueInput;
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col);
|
|
result[getIndexFromCoords4D(outCoord, uniforms.outShape)/${e}] = value;
|
|
}
|
|
}`}var m3e=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.inShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.isVec4=e.inChannels%4===0&&e.outChannels%4===0,this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=yb(this.dispatchLayout,this.outputShape,this.isVec4),this.elementsPerThread=Ab(this.dispatchLayout,this.outputShape,this.isVec4),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.isVec4?(this.innerElementSize=4,this.variableTypes=["vec4<f32>","f32"]):this.innerElementSize=this.elementsPerThread[0],this.tileAOuter=this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=Math.max(this.workGroupSize[0]*this.innerElementSize,this.workGroupSize[1]),this.shaderKey=`conv2DDerInputMM_${this.isVec4}_${this.elementsPerThread}_${this.innerElementSize}`}getUserCode(){let e=this.isVec4?vb(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner,this.innerElementSize):bb(this.elementsPerThread,this.workGroupSize);return`
|
|
${f3e(this.isVec4?4:1)}
|
|
${e}
|
|
`}},g3e=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,n=this.isChannelsLast?3:1;return`
|
|
${lt()} {
|
|
if(index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let d1 = coords[${n}];
|
|
|
|
let dyCorner = vec2<i32>(coords[${e}]), coords[${t}]) - uniforms.pads;
|
|
let dyRCorner = dyCorner.x;
|
|
let dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
|
|
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
|
|
let wRPerm = uniforms.filterDims.x - 1 - wR;
|
|
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
|
|
wRPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyR = dyR;
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
|
|
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
|
|
let wCPerm = uniforms.filterDims.y - 1 - wC;
|
|
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
|
|
fract(dyC) > 0.0 || wCPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyC = dyC;
|
|
|
|
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
|
|
if (${this.isChannelsLast}) {
|
|
let xValue = getDy(batch, idyR, idyC, d2);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
} else {
|
|
let xValue = getDy(batch, d2, idyR, idyC);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutputAtIndex(index, dotProd);
|
|
}
|
|
}
|
|
`}};function y3e(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,p=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(o,a.shape,i,1,l,c,!1,p),h=[{type:"int32",data:[d.filterHeight,d.filterWidth]},{type:"int32",data:[d.filterHeight-1-d.padInfo.top,d.filterWidth-1-d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.batchSize,d.outHeight,d.outWidth,d.outChannels]}],f;if(H().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new g3e(d);else{f=new m3e(d);let m=d.inShape[1]*d.inShape[2],g=d.inShape[3],y=d.filterHeight*d.filterWidth*d.outChannels;h.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[y]})}return n.runWebGPUProgram(f,[r,a],"float32",h)}var A3e={kernelName:Oo,backendName:"webgpu",kernelFunc:y3e},x3e=Pn({opType:ze.COS}),b3e={kernelName:Mo,backendName:"webgpu",kernelFunc:x3e},v3e=Pn({opType:ze.COSH}),w3e={kernelName:zo,backendName:"webgpu",kernelFunc:v3e},k3e=class{constructor(e,t,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32,",this.workGroupSize=[64,1,1],this.size=!0;let[r]=t;this.outputShape=[r,n[0],n[1],e],this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=s==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[n,s,r]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[a,o,i]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let height_ratio = f32(${n});
|
|
let width_ratio = f32(${a});
|
|
let b = coords[0];
|
|
let y = coords[1];
|
|
let x = coords[2];
|
|
let d = coords[3];
|
|
// get box vals
|
|
let y1 = getBoxes(b, 0);
|
|
let x1 = getBoxes(b, 1);
|
|
let y2 = getBoxes(b, 2);
|
|
let x2 = getBoxes(b, 3);
|
|
// get image in batch index
|
|
let bInd = i32(round(getBoxInd(b)));
|
|
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
|
|
return;
|
|
}
|
|
let height_scale = ${s};
|
|
let width_scale = ${o};
|
|
let in_y = ${r};
|
|
if( in_y < 0.0 || in_y > ${e} ) {
|
|
setOutputAtIndex(index, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let in_x = ${i};
|
|
if( in_x < 0.0 || in_x > ${t} ) {
|
|
setOutputAtIndex(index, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
|
|
if(${this.methodId} == 1) {
|
|
// Compute the four integer indices.
|
|
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
|
|
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
|
|
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
|
|
let top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
let newValue = top + (bottom - top) * fracCR.y;
|
|
setOutputAtIndex(index, newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let sourceNearestCR = vec2<i32>(floor(
|
|
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
|
|
let newValue = getImage(
|
|
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
}
|
|
`}},I3e=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new k3e(r.shape[3],a.shape,i,l),p=[{type:"float32",data:[u]}];return n.runWebGPUProgram(c,[r,a,o],"float32",p)},S3e={kernelName:Il,backendName:"webgpu",kernelFunc:I3e},Hp;(function(e){e.Prod="*",e.Sum="+"})(Hp||(Hp={}));var pw=class{constructor(e,t,n,s){this.variableNames=["x"],this.uniforms="index : f32,",this.size=!0;let r=128;this.workGroupSize=[r,1,1],this.outputShape=t,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.exclusive=n,this.reverse=s,this.op=e,this.shaderKey=`cum_${this.op}_${this.exclusive}_${this.reverse}`}getUserCode(){let e=this.outputShape.length,t=this.op===Hp.Prod?"1.0":"0.0",n=this.exclusive?t:`getX(${hw(e,"coords",this.op)})`,s=this.outputShape[this.outputShape.length-1],r="",a="";return this.exclusive?(r=this.reverse?`end != ${s-1}`:"end != 0",a=this.reverse?"end + 1":"end - 1"):(r=this.reverse?`end + pow2 < ${s}`:"end >= pow2",a=this.reverse?"end + pow2":"end - pow2"),`
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
var coords = getCoordsFromIndex(index);
|
|
|
|
let end = ${fw(e,"coords",this.op)};
|
|
var val = ${n};
|
|
let pow2 = i32(pow(2.0, uniforms.index));
|
|
if (${r}) {
|
|
let idx = ${a};
|
|
${fw(e,"coords",this.op)} = idx;
|
|
val ${this.op}= getX(${hw(e,"coords",this.op)});
|
|
}
|
|
setOutputAtIndex(index, val);
|
|
}
|
|
}
|
|
`}};function hw(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function fw(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function ZT(e,t,n,s,r,a){let o=t.shape.length,i=C.getAxesPermutation([s],o),l=t;i!=null&&(l=Ia({inputs:{x:t},backend:n,attrs:{perm:i}}));let u=C.getInnerMostAxes(1,o)[0];if(u!==o-1)throw new Error(`WebGPU cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${s}`);let c=l.shape[u],p=Os({inputs:{x:l},backend:n});for(let d=0;d<=Math.ceil(Math.log2(c))-1;d++){let h=new pw(e,l.shape,!1,a),f=p,m=[{type:"float32",data:[d]}];p=n.runWebGPUProgram(h,[p],p.dtype,m),n.disposeData(f.dataId)}if(r){let d=new pw(e,l.shape,r,a),h=p,f=[{type:"float32",data:[0]}];p=n.runWebGPUProgram(d,[p],p.dtype,f),n.disposeData(h.dataId)}if(i!=null){let d=C.getUndoAxesPermutation(i),h=Ia({inputs:{x:p},backend:n,attrs:{perm:d}});return n.disposeData(p.dataId),n.disposeData(l.dataId),h}return p}function C3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return ZT(Hp.Prod,r,n,a,o,i)}var T3e={kernelName:kl,backendName:"webgpu",kernelFunc:C3e};function N3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return ZT(Hp.Sum,r,n,a,o,i)}var E3e={kernelName:Lo,backendName:"webgpu",kernelFunc:N3e},R3e=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32,",this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return`
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let h = ${this.getHeightCoordString()};
|
|
let w = ${this.getWidthCoordString()};
|
|
let d = ${this.getDepthCoordString()};
|
|
|
|
let in_h = h / uniforms.blockSize;
|
|
let offset_h = h % uniforms.blockSize;
|
|
let in_w = w / uniforms.blockSize;
|
|
let offset_w = w % uniforms.blockSize;
|
|
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
let in_d = d + offset_d;
|
|
|
|
let rlt = ${this.getInputSamplingString()};
|
|
setOutputAtIndex(index, rlt);
|
|
}
|
|
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function _3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=[{type:"int32",data:[a]}],g=new R3e(f,o);return n.runWebGPUProgram(g,[r],r.dtype,m)}var D3e={kernelName:Sl,backendName:"webgpu",kernelFunc:_3e},$3e=class{constructor(e,t,n,s=!1,r=null,a=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>, inDims : vec2<i32>,",this.workGroupSize=[16,16,1],this.outputShape=e,this.dispatchLayout={x:[3],y:[2],z:[0,1]},this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),s&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),this.addBias=s,this.activation=r,this.hasPreluActivation=a,this.filterHeight=t,this.filterWidth=n,this.shaderKey=`depthwiseNCHW_${this.activation}_${this.filterHeight}_${this.filterWidth}`}getUserCode(){let e=this.filterWidth*this.filterHeight,t=this.workGroupSize[0]*this.workGroupSize[1]*this.workGroupSize[2],n=this.workGroupSize[1]+this.filterHeight-1,s=this.workGroupSize[0]+this.filterWidth-1;return`
|
|
${Ga(this.activation,this.hasPreluActivation,!1,4)}
|
|
|
|
var<workgroup> mm_Asub : array<array<f32, ${s}>, ${n}>;
|
|
var<workgroup> mm_Bsub : array<array<f32, ${this.filterWidth}>, ${this.filterHeight}>;
|
|
fn readX(batch : i32, channel : i32, row : i32, col : i32) -> f32 {
|
|
var value = 0.0;
|
|
if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1])
|
|
{
|
|
value = getX(batch, channel, row, col);
|
|
}
|
|
return value;
|
|
}
|
|
|
|
${B2()}
|
|
fn main(@builtin(local_invocation_id) LocalId : vec3<u32>,
|
|
@builtin(global_invocation_id) GlobalId : vec3<u32>,
|
|
@builtin(local_invocation_index) LocalIndex: u32,
|
|
@builtin(num_workgroups) NumWorkgroups: vec3<u32>) {
|
|
localId = LocalId;
|
|
globalId = GlobalId;
|
|
let localIndex = i32(LocalIndex);
|
|
numWorkgroups = NumWorkgroups;
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.zw) - uniforms.pad;
|
|
let channelMul = uniforms.wShape[3];
|
|
let d1 = coords[1] / channelMul;
|
|
let q = coords[1] % channelMul;
|
|
|
|
let inputRowStart = xRCCorner.x;
|
|
let inputColStart = xRCCorner.y;
|
|
|
|
let localRow = i32(localId.y);
|
|
let localCol = i32(localId.x);
|
|
|
|
// Load one tile of X into local memory.
|
|
for (var inputRow = localRow; inputRow < ${n}; inputRow = inputRow + ${this.workGroupSize[1]}) {
|
|
for (var inputCol = localCol; inputCol < ${s}; inputCol = inputCol + ${this.workGroupSize[0]}) {
|
|
let rowOffset = inputRow - localRow;
|
|
let colOffset = inputCol - localCol;
|
|
mm_Asub[inputRow][inputCol] = readX(batch, d1, inputRowStart + rowOffset, inputColStart + colOffset);
|
|
}
|
|
}
|
|
|
|
// Load one tile of W into local memory.
|
|
var wIndex = localIndex;
|
|
${e<t?`if (wIndex < ${e})`:`for(; wIndex < ${e}; wIndex = wIndex + ${t})`}
|
|
|
|
{
|
|
let wRow = wIndex / ${this.filterWidth};
|
|
let wCol = wIndex % ${this.filterWidth};
|
|
mm_Bsub[wRow][wCol] = getW(wRow, wCol, d1, q);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
var value = 0.0;
|
|
for (var wR = 0; wR < ${this.filterHeight}; wR = wR + 1) {
|
|
for (var wC = 0; wC < ${this.filterWidth}; wC = wC + 1) {
|
|
let xVal = mm_Asub[localRow + wR][localCol + wC];
|
|
let wVal = mm_Bsub[wR][wC];
|
|
value = fma(xVal, wVal, value);
|
|
}
|
|
}
|
|
${Ad(this.addBias,this.activation)}
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
|
|
}
|
|
}
|
|
`}},YT=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>, inDims : vec2<i32>,",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[3],y:[2],z:[0,1]},this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[4,4,1]),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwiseVec4_${n}_${this.convInfo.filterHeight}_${this.convInfo.filterWidth}`}getUserCode(){let e=4+this.convInfo.filterWidth-1;return`
|
|
${Ga(this.activation,this.hasPreluActivation,!0,4)}
|
|
fn readX(batch : i32, row : i32, col : i32, channel : i32) -> vec4<f32> {
|
|
var value = vec4<f32>(0.0);
|
|
if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1])
|
|
{
|
|
value = getX(batch, row, col, channel);
|
|
}
|
|
return value;
|
|
}
|
|
${B2()}
|
|
fn main(@builtin(global_invocation_id) globalId: vec3<u32>) {
|
|
let batch = i32(globalId.z) / uniforms.outShape[1];
|
|
let r = i32(globalId.z) % uniforms.outShape[1];
|
|
let c = i32(globalId.y) * 4;
|
|
let d1 = i32(globalId.x) * 4;
|
|
let xRCCorner = vec2<i32>(r, c) - uniforms.pad;
|
|
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
var xVals : array<vec4<f32>, ${e}>;
|
|
var dotProd : array<vec4<f32>, 4>;
|
|
dotProd[0] = vec4<f32>(0.0);
|
|
dotProd[1] = vec4<f32>(0.0);
|
|
dotProd[2] = vec4<f32>(0.0);
|
|
dotProd[3] = vec4<f32>(0.0);
|
|
|
|
// Use constant instead of uniform can give better performance.
|
|
for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) {
|
|
let xR = xRCorner + wR;
|
|
for (var i = 0; i < ${e}; i++)
|
|
{
|
|
xVals[i] = readX(batch, xR, xCCorner + i, d1);
|
|
}
|
|
for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) {
|
|
let wValue = getW(wR, wC, d1, 0);
|
|
dotProd[0] = dotProd[0] + xVals[0 + wC] * wValue;
|
|
dotProd[1] = dotProd[1] + xVals[1 + wC] * wValue;
|
|
dotProd[2] = dotProd[2] + xVals[2 + wC] * wValue;
|
|
dotProd[3] = dotProd[3] + xVals[3 + wC] * wValue;
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
let coords = vec4<i32>(batch, r, c + i, d1);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
var value = dotProd[i];
|
|
${Ad(this.addBias,this.activation)}
|
|
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
|
|
}
|
|
}
|
|
}
|
|
`}},JT=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms=`pad : vec2<i32>, inDims : vec2<i32>, filterHeight : i32,
|
|
filterWidth : i32, stride : vec2<i32>, dilation : vec2<i32>,`,this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise_${this.activation}_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?"getX(batch, xR, xC, d1);":"getX(batch, d1, xR, xC);";return`
|
|
${Ga(this.activation,this.hasPreluActivation,!1,4)}
|
|
|
|
${xd()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.${this.isChannelsLast?"yz":"zw"}) * uniforms.stride - uniforms.pad;
|
|
let d2 = coords[${this.isChannelsLast?3:1}];
|
|
let channelMul = uniforms.wShape[3];
|
|
let d1 = d2 / channelMul;
|
|
let q = d2 % channelMul;
|
|
|
|
let inputRowStart = xRCCorner.x;
|
|
let inputColStart = xRCCorner.y;
|
|
let inputRowEnd = inputRowStart + uniforms.filterHeight *
|
|
uniforms.dilation[0];
|
|
let inputColEnd = inputColStart + uniforms.filterWidth *
|
|
uniforms.dilation[1];
|
|
|
|
// Convolve x(?, ?, d1)|x(d1, ?, ?) with w(:, :, d1, q) to get
|
|
// y(yR, yC, d2)|y(d2, yR, yC). ? = to be determined. : = across all
|
|
// values in that axis. x(?, ?, d1) and y(yR, yC, d2) is for NHWC.
|
|
// x(d1, ?, ?) and y(d2, yR, yC) is for NCHW.
|
|
var value = 0.0;
|
|
|
|
// Extract if checking out of for loop for performance.
|
|
if (inputRowStart >= 0 && inputColStart >= 0 &&
|
|
inputRowEnd < uniforms.inDims[0] &&
|
|
inputColEnd < uniforms.inDims[1]) {
|
|
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
let xVal = ${e};
|
|
let wVal = getW(wR, wC, d1, q);
|
|
value = value + xVal * wVal;
|
|
}
|
|
}
|
|
} else {
|
|
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
if (xR < 0 || xR >= uniforms.inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
if (xC < 0 || xC >= uniforms.inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
let xVal = ${e};
|
|
let wVal = getW(wR, wC, d1, q);
|
|
value = value + xVal * wVal;
|
|
}
|
|
}
|
|
}
|
|
${Ad(this.addBias,this.activation)}
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
|
|
}
|
|
}
|
|
`}};function P3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,p=C.convertConv2DDataFormat(l),d=u;d==null&&(d=[1,1]);let h=C.computeConv2DInfo(r.shape,a.shape,o,d,i,c,!0,p),f=[{type:"int32",data:[h.padInfo.top,h.padInfo.left]},{type:"int32",data:[h.inHeight,h.inWidth]}],m=h.dataFormat==="channelsLast",g;return!m&&h.inHeight>16&&h.inWidth>16&&h.strideHeight===1&&h.strideWidth===1&&h.dilationWidth===1&&h.dilationHeight===1&&h.inChannels===h.outChannels?g=new $3e(h.outShape,h.filterHeight,h.filterWidth):m&&h.inHeight>4&&h.inWidth>4&&h.strideHeight===1&&h.strideWidth===1&&h.inChannels===h.outChannels&&h.dilationHeight===1&&h.dilationWidth===1&&h.inChannels%4===0?g=new YT(h):(g=new JT(h),f.push({type:"int32",data:[h.filterHeight]},{type:"int32",data:[h.filterWidth]},{type:"int32",data:[h.strideHeight,h.strideWidth]},{type:"int32",data:[h.dilationHeight,h.dilationWidth]})),n.runWebGPUProgram(g,[r,a],r.dtype,f)}var F3e={kernelName:Bo,backendName:"webgpu",kernelFunc:P3e},QT=ls({opType:Ze.MUL,cpuKernelImpl:cge,supportsComplex:!0}),O3e={kernelName:$a,backendName:"webgpu",kernelFunc:QT},M3e=class{constructor(e,t){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="reduceSize : i32,",this.size=!0,this.inputShape=[e.batchSize,e.inSize];let[n]=C.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=n.length===0?[1]:n,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,[1,1,1]),this.reduceType=t,this.shaderKey=`reduce_${t}`}getUserCode(){let e="",t="0.0";this.reduceType==="min"||this.reduceType==="max"?(e=`
|
|
if (isnan(candidate)) {
|
|
bestValue = uniforms.NAN;
|
|
} else if (!isnan(bestValue) && candidate ${this.reduceType==="min"?"<":">"} bestValue)
|
|
{ bestValue = candidate; }`,t="f32(x[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?e=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(e=" bestValue = bestValue * candidate; ",t="1.0");let n=this.reduceType==="mean"?"setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputAtIndex(outputIndex, bestValue);";return`
|
|
fn DIV_CEIL(a : u32, b : u32) -> u32 {
|
|
return ((a - 1u) / b + 1u);
|
|
}
|
|
|
|
${`
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`}
|
|
fn getOffset(outputIndex : i32) -> i32 {
|
|
let outputCoords = getCoordsFromIndex(outputIndex);
|
|
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
|
|
return offset;
|
|
}
|
|
${lt()}
|
|
let outputIndex = index / i32(workGroupSizeX);
|
|
let offset = getOffset(outputIndex);
|
|
var bestValue = ${t};
|
|
let Length = uniforms.reduceSize;
|
|
let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX);
|
|
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
|
|
k = k + i32(workGroupSizeX)) {
|
|
let candidate = f32(x[offset + k]);
|
|
${e}
|
|
}
|
|
xBestValues[localId.x] = bestValue;
|
|
workgroupBarrier();
|
|
|
|
var reduceSize = min(u32(Length), workGroupSizeX);
|
|
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
|
|
currentSize = reduceSize / 2u) {
|
|
let interval = DIV_CEIL(reduceSize, 2u);
|
|
if (localId.x < currentSize) {
|
|
let candidate = xBestValues[localId.x + interval];
|
|
${e}
|
|
xBestValues[localId.x] = bestValue;
|
|
}
|
|
reduceSize = interval;
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u && outputIndex < uniforms.size) {
|
|
${n}
|
|
}
|
|
}
|
|
`}};function Yh(e,t,n,s,r){let a=e.shape.length,o=[],i=v.parseAxisParam(t,e.shape),l=i,u=C.getAxesPermutation(l,a),c=e;u!=null&&(c=Ia({inputs:{x:e},attrs:{perm:u},backend:r}),l=C.getInnerMostAxes(l.length,a),o.push(c)),C.assertAxesAreInnerMostDims(s,l,a);let[p,d]=C.computeOutAndReduceShapes(c.shape,l),h=p;n&&(h=C.expandShapeToKeepDim(p,i));let f;if((s==="max"||s==="prod")&&r.shouldExecuteOnCPU([c])){let m=r.tensorMap.get(c.dataId).values;switch(s){case"max":let g=ige(m,v.sizeFromShape(d),h,e.dtype);f=r.makeTensorInfo(h,e.dtype,g);break;case"prod":let{outVals:y,outShape:x,outDtype:A}=hge(c.shape,c.dtype,m,l);f=r.makeTensorInfo(x,A,y);break;default:throw new Error(`${s} CPU implementation is not yet supported.`)}}else{let m=v.sizeFromShape(d),y=v.sizeFromShape(c.shape)/m,x={windowSize:m,inSize:m,batchSize:y,outSize:1},A=s==="mean"?"float32":ph(e.dtype),b=[{type:"int32",data:[m]}],w=new M3e(x,s),I=r.runWebGPUProgram(w,[c],A,b);o.push(I),f=He({inputs:{x:I},attrs:{shape:h},backend:r})}return o.forEach(m=>r.disposeData(m.dataId)),f}function Tb(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Yh(r,a,o,"sum",n)}var z3e={kernelName:hi,backendName:"webgpu",kernelFunc:Tb};function L3e(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=C.decodeEinsumEquation(r,a.length);C.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=C.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:y,expandDims:x}=C.getEinsumPermutation(h,l[g]),A;C.isIdentityPermutation(y)?A=a[g]:(A=Ia({inputs:{x:a[g]},backend:n,attrs:{perm:y}}),f.push(A));let b=A.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(A.shape,b)||(A=He({inputs:{x:A},backend:n,attrs:{shape:b}}),f.push(A)),d===null?d=A:(d=QT({inputs:{a:A,b:d},backend:n}),f.push(d))}m<p-1&&(u[m]>=0&&(d=Tb({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeData(m.dataId);return d}var B3e={kernelName:Jp,backendName:"webgpu",kernelFunc:L3e},W3e=Pn({opType:ze.ELU}),V3e={kernelName:Vo,backendName:"webgpu",kernelFunc:W3e},U3e=ls({opType:Ze.EQUAL,dtype:"bool",cpuKernelImpl:Z1e}),G3e={kernelName:Uo,backendName:"webgpu",kernelFunc:U3e},eN=Pn({opType:ze.EXP,cpuKernelImpl:Y1e,dtype:"float32"}),H3e={kernelName:Ta,backendName:"webgpu",kernelFunc:eN};function $y(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),He({inputs:{x:a},backend:s,attrs:{shape:i}})}var j3e={kernelName:Cl,backendName:"webgpu",kernelFunc:$y},q3e=Pn({opType:ze.EXPM1,cpuKernelImpl:J1e}),X3e={kernelName:Go,backendName:"webgpu",kernelFunc:q3e},K3e=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return`
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let coordX = uniforms.xShape[2] - coords[2] - 1;
|
|
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}},Z3e={kernelName:Tl,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new K3e(n.shape);return s.runWebGPUProgram(r,[n],n.dtype)}},Y3e=Pn({opType:ze.FLOOR,cpuKernelImpl:Q1e}),J3e={kernelName:Na,backendName:"webgpu",kernelFunc:Y3e},Q3e=ls({opType:Ze.INT_DIV,dtype:"int32"}),eye={kernelName:Ho,backendName:"webgpu",kernelFunc:Q3e},tye=class{constructor(e,t,n=!1){this.isFromPixels=!0,this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[t,1,1]),this.importVideo=n,this.shaderKey=`fromPixels_${this.importVideo}`}getUserCode(){let e=this.importVideo?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
|
|
@binding(1) @group(0) var src: ${this.importVideo?"texture_external":"texture_2d<f32>"};
|
|
${lt()}
|
|
let flatIndex = index * uniforms.numChannels;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
let values = ${e};
|
|
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
|
|
result[flatIndex + i] = i32(floor(255.0 * values[i]));
|
|
}
|
|
}
|
|
}
|
|
`}},nye={kernelName:Np,backendName:"webgpu",kernelFunc:sye},Gu,um=new Map;function sye(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s;if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,l=typeof HTMLCanvasElement!="undefined"&&r instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&r instanceof OffscreenCanvas,u=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[c,p]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],d=[p,c,a],h=H().getBool("WEBGPU_IMPORT_EXTERNAL_TEXTURE")&&o,f=o||i;if(u||l||f){let x;if(h){let D=r;if(!um.has(D)||um.get(D).expired){let R={source:D};um.set(D,n.device.importExternalTexture(R))}x={width:c,height:p,format:null,usage:null,texture:um.get(D)}}else{f&&(Gu==null&&(Gu=document.createElement("canvas").getContext("2d")),Gu.canvas.width=c,Gu.canvas.height=p,Gu.drawImage(r,0,0,c,p),r=Gu.canvas);let D=GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING,R="rgba8unorm",P=n.textureManager.acquireTexture(d[1],d[0],R,D);n.queue.copyExternalImageToTexture({source:r},{texture:P},[d[1],d[0]]),x={width:c,height:p,format:R,usage:D,texture:P}}let A=v.sizeFromShape(d),b=v.computeStrides(d),w=new tye(d,a,h),I=[{type:"uint32",data:[A]},{type:"uint32",data:[a]},{type:"uint32",data:[...b]}],k=n.makeTensorInfo([p,c],"int32"),E=n.tensorMap.get(k.dataId);E.resourceInfo=x;let _=n.runWebGPUProgram(w,[k],"int32",I);return n.disposeData(k.dataId),_}let m=r.data,g=m;if(a!=null&&a!==4){g=new Uint8Array(r.width*r.height*a);let x=m.length,A=0;for(let b=0;b<x;b++)b%4<a&&(g[A++]=m[b])}let y=n.makeTensorInfo(d,"int32",new Int32Array(g));return n.uploadToGPU(y.dataId),y}var rye=class{constructor(e,t,n,s,r){this.uniforms="varianceEpsilon : f32,",this.workGroupSize=[128,1,1],this.size=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n),this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),s!=null&&(C.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset")),r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale")),this.offsetShape=s,this.scaleShape=r,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetByOutputIndex(index)");let t="1.0";return this.scaleShape!=null&&(t="getScaleByOutputIndex(index)"),`
|
|
${lt()}
|
|
if (index < uniforms.size)
|
|
{
|
|
let xValue = getXByOutputIndex(index);
|
|
let meanValue = getMeanByOutputIndex(index);
|
|
let varianValue = getVarianceByOutputIndex(index);
|
|
let offsetValue = ${e};
|
|
let scaleValue = ${t};
|
|
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
|
|
setOutputAtIndex(index,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
|
|
}
|
|
}
|
|
`}},aye={kernelName:jo,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s,scale:r,offset:a,mean:o,variance:i}=e,{varianceEpsilon:l}=t,u=n,c=[s,o,i],p=null;a!=null&&(p=a.shape,c.push(a));let d=null;r!=null&&(d=r.shape,c.push(r));let h=new rye(s.shape,o.shape,i.shape,p,d),f=[{type:"float32",data:[l]}];return u.runWebGPUProgram(h,c,s.dtype,f)}};function oye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=C.convertConv2DDataFormat(c),g=C.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!1,m);return KT({x:r,filter:a,convInfo:g,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:f,activation:h})}var iye={kernelName:Ao,backendName:"webgpu",kernelFunc:oye};function lye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=c;f==null&&(f=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let m=C.computeConv2DInfo(r.shape,a.shape,l,f,u,p,!0),g=[r,a],y=o!=null,x=i!=null;y&&g.push(o),x&&g.push(i);let A=[{type:"int32",data:[m.padInfo.top,m.padInfo.left]},{type:"int32",data:[m.inHeight,m.inWidth]}],b;return m.inHeight>4&&m.inWidth>4&&m.strideHeight===1&&m.strideWidth===1&&m.inChannels===m.outChannels&&m.dilationHeight===1&&m.dilationWidth===1&&m.inChannels%4===0?b=new YT(m,y,d,x):(b=new JT(m,y,d,x),A.push({type:"int32",data:[m.filterHeight]},{type:"int32",data:[m.filterWidth]},{type:"int32",data:[m.strideHeight,m.strideWidth]},{type:"int32",data:[m.dilationHeight,m.dilationWidth]})),d==="leakyrelu"&&(A.push({type:"float32",data:[h]}),b.uniforms+=" alpha : f32,"),n.runWebGPUProgram(b,g,"float32",A)}var uye={kernelName:xo,backendName:"webgpu",kernelFunc:lye},cye=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32, strides : ${Tn(e)},`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var flattenIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexTemp = i32(round(getIndices(coords[0], j)));
|
|
let strideNum = ${e};
|
|
flattenIndex = flattenIndex + indexTemp * strideNum;
|
|
}
|
|
|
|
setOutputAtIndex(index, getA(flattenIndex, coords[1]));
|
|
}
|
|
}
|
|
`}};function dye(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,u,c,p]=C.prepareAndValidate(s,r),d=He({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),h=He({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let x=n.readSync(r.dataId),A=n.bufferSync(s),b=ege(x,A,s.dtype,u,o,c,p,s.shape,i);return n.makeTensorInfo(l,s.dtype,b.values)}let f=new cye(o,[u,c]),m=[{type:"int32",data:[o]},{type:"int32",data:p}],g=n.runWebGPUProgram(f,[h,d],h.dtype,m),y=He({inputs:{x:g},backend:n,attrs:{shape:l}});return n.disposeData(d.dataId),n.disposeData(h.dataId),n.disposeData(g.dataId),y}var pye={kernelName:El,backendName:"webgpu",kernelFunc:dye},hye=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather"}getUserCode(){let e=fye(this.aShape);return`
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
let indexZ = i32(getIndices(resRC.x, resRC.z));
|
|
let inBounds = select(0.0, 1.0, indexZ >= 0 && indexZ < uniforms.aShape[2]);
|
|
setOutputAtIndex(index, inBounds * getA(${e}));
|
|
}
|
|
}
|
|
`}};function fye(e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let s=0;s<e.length;s++)s===2?n.push("indexZ"):n.push(`${t[s]}`);return n.join()}function tN(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],u=C.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=v.sizeFromShape(a.shape),p=[],d=He({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=He({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(d),p.push(h);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,a])){let A=n.tensorMap.get(h.dataId).values,b=De(h.shape,h.dtype,A),I=n.tensorMap.get(d.dataId).values,k=De(d.shape,d.dtype,I),E=tge(k,b,f);return p.forEach(_=>n.disposeData(_.dataId)),n.makeTensorInfo(u.outputShape,E.dtype,E.values)}let m=new hye(d.shape,f),g=n.runWebGPUProgram(m,[d,h],d.dtype);p.push(g);let y=He({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return p.forEach(x=>n.disposeData(x.dataId)),y}var mye={kernelName:Nl,backendName:"webgpu",kernelFunc:tN},gye=ls({opType:Ze.GREATER,cpuKernelImpl:sge,dtype:"bool"}),yye={kernelName:qo,backendName:"webgpu",kernelFunc:gye},Aye=ls({opType:Ze.GREATER_EQUAL,dtype:"bool",cpuKernelImpl:nge}),xye={kernelName:Ea,backendName:"webgpu",kernelFunc:Aye};function bye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=[{type:"float32",data:[a]}],i=new Kh(r.shape,ze.LEAKYRELU);return i.uniforms="alpha : f32,",n.runWebGPUProgram(i,[r],"float32",o)}var vye={kernelName:Ko,backendName:"webgpu",kernelFunc:bye},wye=ls({opType:Ze.LESS,dtype:"bool",cpuKernelImpl:age}),kye={kernelName:Zo,backendName:"webgpu",kernelFunc:wye},Iye=ls({opType:Ze.LESS_EQUAL,dtype:"bool",cpuKernelImpl:rge}),Sye={kernelName:Yo,backendName:"webgpu",kernelFunc:Iye},Cye=Pn({opType:ze.LOG,cpuKernelImpl:oge}),Tye={kernelName:Ra,backendName:"webgpu",kernelFunc:Cye},Nye=ls({opType:Ze.LOGICAL_AND,dtype:"bool"}),Eye={kernelName:Rl,backendName:"webgpu",kernelFunc:Nye},Rye=Pn({opType:ze.LOGICAL_NOT}),_ye={kernelName:_l,backendName:"webgpu",kernelFunc:Rye};function nN(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s;return Yh(r,a,o,"max",n)}var Dye={kernelName:Jo,backendName:"webgpu",kernelFunc:nN},$ye=ls({opType:Ze.MAX,cpuKernelImpl:lge}),Pye={kernelName:_a,backendName:"webgpu",kernelFunc:$ye};function Fye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1,c=C.computePool2DInfo(r.shape,a,o,u,i,l),p,d=[];if(c.filterHeight===1&&c.filterWidth===1){if(v.arraysEqual(c.inShape,c.outShape))return Os({inputs:{x:r},backend:n});p=new jT(c),d.push({type:"int32",data:[c.strideHeight,c.strideWidth]})}else p=new HT(c,"max"),d.push({type:"int32",data:[c.strideHeight,c.strideWidth]},{type:"int32",data:[c.padInfo.top,c.padInfo.left]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[c.inHeight,c.inWidth]},{type:"int32",data:[c.effectiveFilterHeight,c.effectiveFilterWidth]});return n.runWebGPUProgram(p,[r],r.dtype,d)}var Oye={kernelName:Qo,backendName:"webgpu",kernelFunc:Fye};function Mye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{keepDims:a,axis:o}=s;return Yh(r,o,a,"mean",n)}var zye={kernelName:ei,backendName:"webgpu",kernelFunc:Mye};function Lye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Yh(r,a,o,"min",n)}var Bye={kernelName:ti,backendName:"webgpu",kernelFunc:Lye},Wye=ls({opType:Ze.MIN,cpuKernelImpl:uge}),Vye={kernelName:Da,backendName:"webgpu",kernelFunc:Wye},Uye=class{constructor(e,t,n){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((s,r)=>s[0]+e[r]+s[1]),this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((s,r)=>{this.uniforms+=` pad${r} : vec2<i32>,`}),this.offset=n==="reflect"?0:1,this.shaderKey=`mirrorPad_${n}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,u)=>`uniforms.pad${u}[0]`).join(","),n=this.xShape.map((l,u)=>`uniforms.pad${u}[0] + uniforms.xShape${e>1?`[${u}]`:""}`).join(","),s=e===1?"start":"start[i]",r=e===1?"end":"end[i]",a=e===1?"outC":"outC[i]",o=Tn(e),i=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
let start = ${o}(${t});
|
|
let end = ${o}(${n});
|
|
var outC = getCoordsFromIndex(index);
|
|
for (var i = 0; i < ${e}; i = i + 1) {
|
|
if (${a} < ${s}) {
|
|
${a} = ${s} * 2 - ${a} - ${this.offset};
|
|
} else if(${a} >= ${r}) {
|
|
${a} = (${r} - 1) * 2 - ${a} + ${this.offset};
|
|
}
|
|
}
|
|
let coords = outC - start;
|
|
setOutputAtIndex(index, getX(${i}));
|
|
}
|
|
}
|
|
`}},Gye={kernelName:ni,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{paddings:r,mode:a}=t,o=n,i=r.map(c=>({type:"int32",data:[c[0],c[1]]})),l=new Uye(s.shape,r,a);return o.runWebGPUProgram(l,[s],s.dtype,i)}};function Hye(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.tensorMap.get(s.dataId),[o,i]=dge(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r=new Kh(s.shape,ze.NEG);return n.runWebGPUProgram(r,[s],s.dtype)}var jye={kernelName:Dl,backendName:"webgpu",kernelFunc:Hye};function qye(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=hr.nonMaxSuppressionV3Impl(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var Xye={kernelName:$l,backendName:"webgpu",kernelFunc:qye};function Kye(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=hr.nonMaxSuppressionV5Impl(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Zye={kernelName:Pl,backendName:"webgpu",kernelFunc:Kye};function Jm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Zh({inputs:{input:s},backend:n}),a=Jm({inputs:{x:r},backend:n}),o=V2({inputs:{input:s},backend:n}),i=Jm({inputs:{x:o},backend:n}),l=bd({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return hu({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var Yye={kernelName:Jl,backendName:"webgpu",kernelFunc:Jm};function sN(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Zh({inputs:{input:s},backend:n}),a=sN({inputs:{x:r},backend:n}),o=V2({inputs:{input:s},backend:n}),i=Jm({inputs:{x:o},backend:n}),l=bd({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return hu({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var Jye={kernelName:Fl,backendName:"webgpu",kernelFunc:sN};function Qye(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return $y({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=$y({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=XT({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var eAe={kernelName:Ml,backendName:"webgpu",kernelFunc:Qye},tAe=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,s)=>n[0]+e[s]+n[1]),this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((n,s)=>{this.uniforms+=` pad${s} : vec2<i32>,`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=Tn(e),n=this.xShape.map((c,p)=>`uniforms.pad${p}[0]`).join(","),s=this.xShape.map((c,p)=>`uniforms.pad${p}[0] + uniforms.xShape${e>1?`[${p}]`:""}`).join(","),r=e>1?`${t}(${n})`:`${n}`,a=e>1?`${t}(${s})`:`${s}`,o=e>1?"any(outC < start)":"outC < start",i=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
let start = ${r};
|
|
let end = ${a};
|
|
let outC = getCoordsFromIndex(index);
|
|
|
|
if (${o} || ${i}) {
|
|
setOutputAtIndex(index, uniforms.constantValue);
|
|
} else {
|
|
let coords = outC - start;
|
|
setOutputAtIndex(index, getX(${l}));
|
|
}
|
|
}
|
|
}
|
|
`}},rN=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(a.every(u=>v.arraysEqual(u,[0,0])))return Os({inputs:{x:r},backend:n});if(v.sizeFromShape(r.shape)===0){let u=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return hu({backend:n,attrs:{shape:u,value:o,dtype:r.dtype}})}let i=[{type:"float32",data:[o]}];a.map(u=>i.push({type:"int32",data:[u[0],u[1]]}));let l=new tAe(r.shape,a);return n.runWebGPUProgram(l,[r],r.dtype,i)},nAe={kernelName:ri,backendName:"webgpu",kernelFunc:rN},sAe=ls({opType:Ze.POW}),rAe={kernelName:ai,backendName:"webgpu",kernelFunc:sAe};function aAe(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=new Ey(Ze.PRELU,s.shape,r.shape);return n.runWebGPUProgram(a,[s,r],"float32")}var oAe={kernelName:oi,backendName:"webgpu",kernelFunc:aAe};function iAe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Yh(r,a,o,"prod",n)}var lAe={kernelName:ii,backendName:"webgpu",kernelFunc:iAe},uAe=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=fge(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},cAe={kernelName:zc,backendName:"webgpu",kernelFunc:uAe},aN=ls({opType:Ze.DIV}),dAe={kernelName:Wo,backendName:"webgpu",kernelFunc:aN},pAe=Pn({opType:ze.RELU}),hAe={kernelName:li,backendName:"webgpu",kernelFunc:pAe},fAe=Pn({opType:ze.RELU6}),mAe={kernelName:di,backendName:"webgpu",kernelFunc:fAe},gAe=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, halfPixelCenters : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="resizeBilinear"}getUserCode(){return`
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC =
|
|
(vec2<f32>(rc) + vec2<f32>(uniforms.halfPixelCenters)) *
|
|
effectiveInputOverOutputRatioRC - vec2<f32>(uniforms.halfPixelCenters);
|
|
|
|
// Compute the four integer indices.
|
|
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
|
|
let sourceCeilRC = vec2<i32>(
|
|
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
|
|
|
|
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
|
|
|
|
let top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
let newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
`}};function yAe(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,size:o,halfPixelCenters:i}=s,[l,u]=o,c=a&&l>1?1:0,p=a&&u>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[i?.5:0]}],f=new gAe(r.shape,l,u);return n.runWebGPUProgram(f,[r],"float32",h)}var AAe={kernelName:ci,backendName:"webgpu",kernelFunc:yAe},xAe=class{constructor(e,t,n,s){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, roundBase : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.halfPixelCenters=s,this.shaderKey=`resizeNearest_${s}`}getUserCode(){let e;return this.halfPixelCenters?e="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":e="vec2<f32>(rc) * effectiveInputOverOutputRatioRC",`
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC = ${e};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
|
|
let sourceNearestRC = vec2<i32>(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase)));
|
|
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
`}};function bAe(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=a&&l>1?1:0,p=a&&u>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[a?.5:0]}],f=new xAe(r.shape,l,u,o);return n.runWebGPUProgram(f,[r],r.dtype,h)}var vAe={kernelName:ui,backendName:"webgpu",kernelFunc:bAe},wAe=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32, centerY : f32, sinRadians : f32,
|
|
cosRadians : f32,`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32,",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>,",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
|
|
${lt()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.sinRadians;
|
|
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.cosRadians;
|
|
let coordX = i32(round(coordXFloat + uniforms.centerX));
|
|
let coordY = i32(round(coordYFloat + uniforms.centerY));
|
|
${this.fillSnippet}
|
|
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
|
|
coordY < uniforms.xShape[1]) {
|
|
outputValue = getX(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}},kAe={kernelName:Ql,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new wAe(s.shape,a),[u,c]=C.getImageCenter(o,s.shape[1],s.shape[2]),p=[{type:"float32",data:[u]},{type:"float32",data:[c]},{type:"float32",data:[Math.sin(r)]},{type:"float32",data:[Math.cos(r)]}];return typeof a=="number"?p.push({type:"float32",data:[Number.parseFloat(a.toFixed(2))]}):p.push({type:"float32",data:a}),i.runWebGPUProgram(l,[s],s.dtype,p)}},IAe=Pn({opType:ze.RSQRT,cpuKernelImpl:mge}),SAe={kernelName:Pa,backendName:"webgpu",kernelFunc:IAe},xm=class{constructor(e,t,n,s,r,a,o,i=!0){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=a,this.type=o,this.sumDupeIndices=i,this.dispatchLayout=at(e),this.dispatch=Ge(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${n}_${s}_${this.sliceDimGreaterThanOne}_${o}_${i}`;let l=Tn(r.length);this.uniforms=`sliceDim : i32, strides: ${l}, size: i32,`,this.updatesRank=s,this.indicesRank=n}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,n=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",s="",r="";this.dispatchLayout.x.length===1?(s="flattenedIndex",r=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
|
|
return index;
|
|
}
|
|
`):this.dispatchLayout.x.length===2&&(s="vec2<i32>(flattenedIndex, coords[1])",r=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
|
|
// N.B. |updates| could be a scalar tensor, conceptually representing a
|
|
// 2D tensor with all values equal to that. By design, its size must be
|
|
// the same as |outShape[1]| in one dimension, and |indicesShape[0]|
|
|
// gives the other.
|
|
let sliceSize = uniforms.outShape[1];
|
|
let d0 = index / sliceSize;
|
|
let d1 = index - d0 * sliceSize;
|
|
return vec2<i32>(d0, d1);
|
|
}
|
|
`);let o=`getUpdates(${Array.from({length:this.updatesRank},(u,c)=>`coords[${c}]`).join(", ")})`,i=(u,c)=>{let p=`atomicAdd(${u}, bitcast<i32>(${c}))`;this.type==="float32"&&(p=`
|
|
{
|
|
var oldBits = 0;
|
|
var newBits = bitcast<i32>(${c});
|
|
loop {
|
|
let info = atomicCompareExchangeWeak(${u}, oldBits, newBits);
|
|
if (info.exchanged) {
|
|
break;
|
|
}
|
|
oldBits = info.old_value;
|
|
let oldValue = bitcast<f32>(oldBits);
|
|
let newValue = oldValue + (${c});
|
|
newBits = bitcast<i32>(newValue);
|
|
}
|
|
}
|
|
`);let d=`atomicStore(${u}, bitcast<i32>(${c}));`;return this.sumDupeIndices?p:d};return`
|
|
${r}
|
|
|
|
${lt()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getUpdatesCoordsFromFlatIndex(index);
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${t}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${n};
|
|
}
|
|
let updateValue =
|
|
${Cp(this.type,!1)}(${o});
|
|
let flatIndex = getOutputIndexFromCoords(${s});
|
|
|
|
${i("&result[flatIndex]","updateValue")};
|
|
}
|
|
}`}};function CAe(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=C.calculateShapes(a,r,o),d=[p/u,u];if(p===0)return n.makeTensorInfo(o,r.dtype);let h=He({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=He({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),m=f.dtype,g=hu({backend:n,attrs:{shape:d,value:0,dtype:m}}),y=v.sizeFromShape(f.shape),x=[{type:"int32",data:[i]},{type:"int32",data:c},{type:"int32",data:[y]}],A=new xm(f.shape,i,h.shape.length,f.shape.length,c,d,m),b=n.runWebGPUProgram(A,[f,h],m,x,g),w=He({inputs:{x:b},backend:n,attrs:{shape:o}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(b.dataId),w}var TAe={kernelName:Wl,backendName:"webgpu",kernelFunc:CAe},NAe=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=n,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let s=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[],a=[];for(let o=0;o<this.outputShape.length;o++)a.push(`${s[o]}`),o<this.cRank&&r.push(`${s[o]}`);e=r.join(),t=a.join()}return`
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
let cVal = getC(${e});
|
|
if (cVal >= 1.0) {
|
|
setOutputAtIndex(index, getA(${t}));
|
|
} else {
|
|
setOutputAtIndex(index, getB(${t}));
|
|
}
|
|
}
|
|
}
|
|
`}};function EAe(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new NAe(s.shape.length,r.shape,r.shape.length);return n.runWebGPUProgram(o,[s,r,a],Nn(r.dtype,a.dtype))}var RAe={kernelName:Vl,backendName:"webgpu",kernelFunc:EAe},_Ae=Pn({opType:ze.SIGMOID}),DAe={kernelName:Fa,backendName:"webgpu",kernelFunc:_Ae},$Ae=Pn({opType:ze.SIN}),PAe={kernelName:pi,backendName:"webgpu",kernelFunc:$Ae},FAe=Pn({opType:ze.SINH}),OAe={kernelName:Gl,backendName:"webgpu",kernelFunc:FAe},oN=ls({opType:Ze.SUB,cpuKernelImpl:vge,supportsComplex:!0}),MAe={kernelName:za,backendName:"webgpu",kernelFunc:oN};function zAe(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=nN({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=C.expandShapeToKeepDim(i.shape,o),u=He({inputs:{x:i},backend:n,attrs:{shape:l}}),c=oN({inputs:{a:r,b:u},backend:n}),p=eN({inputs:{x:c},backend:n}),d=Tb({inputs:{x:p},backend:n,attrs:{axis:o,keepDims:!1}}),h=He({inputs:{x:d},backend:n,attrs:{shape:l}}),f=aN({inputs:{a:p,b:h},backend:n});return n.disposeData(i.dataId),n.disposeData(u.dataId),n.disposeData(c.dataId),n.disposeData(p.dataId),n.disposeData(d.dataId),n.disposeData(h.dataId),f}var LAe={kernelName:fi,backendName:"webgpu",kernelFunc:zAe},BAe=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=[[0,0]];l.push(...o);for(let y=1+a.length;y<r.shape.length;++y)l.push([0,0]);let u=[],c=rN({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=C.getReshaped(c.shape,a,i,!1),d=C.getPermuted(p.length,a.length,!1),h=C.getReshapedPermuted(c.shape,a,i,!1),f=He({inputs:{x:c},backend:n,attrs:{shape:p}}),m=Ia({inputs:{x:f},backend:n,attrs:{perm:d}}),g=He({inputs:{x:m},backend:n,attrs:{shape:h}});return u.push(c),u.push(f),u.push(m),u.forEach(y=>n.disposeData(y.dataId)),g},WAe={kernelName:Hl,backendName:"webgpu",kernelFunc:BAe},VAe=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.rank=this.outputShape.length,this.shaderKey="tile"}getUserCode(){let e=UAe(this.rank,"uniforms.");return`
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, getA(${e}));
|
|
}
|
|
}
|
|
`}};function UAe(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e;r++)s.push(`(${n[r]} % ${t}aShape[${r}])`);return s.join()}function iN(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(n.shouldExecuteOnCPU([r])||r.dtype==="string"||r.shape.length>=5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(d=>v.decodeString(d)):l,c=De(r.shape,r.dtype,u),p=wge(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let o=new VAe(r.shape,a);return n.runWebGPUProgram(o,[r],r.dtype)}var GAe={kernelName:La,backendName:"webgpu",kernelFunc:iN};function HAe(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=C.calculateShapes(a,r,i),h=!1;if(a.dtype==="string"){let E=n.bufferSync(r),_=n.bufferSync(a),D=v.decodeString(n.readSync(o.dataId)[0]),R=gge(E,_,i,d,c,u,l,p,D,h);return n.makeTensorInfo(i,R.dtype,R.values)}let f=[d/c,c],m=He({inputs:{x:r},backend:n,attrs:{shape:[u,l]}}),g=a.shape.length?He({inputs:{x:a},backend:n,attrs:{shape:[u,c]}}):Os({inputs:{x:a},backend:n}),y=g.dtype,x=n.makeTensorInfo([],y,v.makeZerosTypedArray(1,y)),A=He({inputs:{x:o},backend:n,attrs:{shape:Array(f.length).fill(1)}}),b=iN({inputs:{x:A},backend:n,attrs:{reps:f}}),w=v.sizeFromShape([u,c]),I=[{type:"int32",data:[l]},{type:"int32",data:p},{type:"int32",data:[w]}];switch(u){case 0:break;case 1:{let E=new xm([u,c],l,m.shape.length,g.shape.length,p,f,y,h);n.runWebGPUProgram(E,[g,m],y,I,b)}break;default:{let E=new xm([u,c],l,m.shape.length,x.shape.length,p,f,y,h);n.runWebGPUProgram(E,[x,m],y,I,b)}{let E=new xm([u,c],l,m.shape.length,g.shape.length,p,f,y);n.runWebGPUProgram(E,[g,m],y,I,b)}}let k=He({inputs:{x:b},backend:n,attrs:{shape:i}});return n.disposeData(m.dataId),n.disposeData(g.dataId),n.disposeData(A.dataId),n.disposeData(x.dataId),n.disposeData(b.dataId),k}var jAe={kernelName:oh,backendName:"webgpu",kernelFunc:HAe};function qAe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=C.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[i]=d;let f=wd({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[i]+=d,f})}var XAe={kernelName:jl,backendName:"webgpu",kernelFunc:qAe},KAe=Pn({opType:ze.SQRT}),ZAe={kernelName:Oa,backendName:"webgpu",kernelFunc:KAe},YAe={kernelName:Gc,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t,r=new Kh(n.shape,ze.SQUARE);return s.runWebGPUProgram(r,[n],n.dtype)}},JAe=ls({opType:Ze.SQUARED_DIFFERENCE}),QAe={kernelName:Ma,backendName:"webgpu",kernelFunc:JAe},e5e=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=Tn(this.outputShape.length);this.uniforms=`begin : ${t}, strides : ${t}, `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let s=0;t=this.outputShape.map((r,a)=>(s++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${s-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, getX(${t}));
|
|
}
|
|
}
|
|
`}};function t5e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Pt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=He({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let I=Pt.computeOutShape(x,A,b),k=wd({inputs:{x:r},backend:n,attrs:{begin:x,size:I}});w=He({inputs:{x:k},backend:n,attrs:{shape:f}}),n.disposeData(k.dataId)}else if(n.shouldExecuteOnCPU([r])){let k=n.readSync(r.dataId),E=De(r.shape,r.dtype,k),_=xge(h,E,b,x);w=n.makeTensorInfo(f,r.dtype,_.values)}else{let k=new e5e(h),E=[{type:"int32",data:x},{type:"int32",data:b}],_=n.runWebGPUProgram(k,[r],r.dtype,E);w=He({inputs:{x:_},backend:n,attrs:{shape:f}}),n.disposeData(_.dataId)}return w}var n5e={kernelName:ql,backendName:"webgpu",kernelFunc:t5e};function s5e(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=bge(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var r5e={kernelName:Hc,backendName:"webgpu",kernelFunc:s5e},a5e=Pn({opType:ze.TANH}),o5e={kernelName:mi,backendName:"webgpu",kernelFunc:a5e},i5e=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32, firstPass : i32, negativeInf : f32,
|
|
dir : i32, inc : i32,`,this.shaderKey="swap"}getUserCode(){return`
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
let outC = getCoordsFromIndex(index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced
|
|
// above, Figure5(a) shows that element[1] is in the second half of
|
|
// the group when group size is 2, but it is in the first half of
|
|
// the group when group size is 4.
|
|
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
|
|
var i = 0;
|
|
if (isFirstInPair) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx - uniforms.inc;
|
|
}
|
|
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.inc;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.inc));
|
|
}
|
|
|
|
var x0 = f32(0.0);
|
|
var x1 = f32(0.0);
|
|
if (i0 < uniforms.inputSize) {
|
|
x0 = getX(batch, i0);
|
|
} else {
|
|
x0 = uniforms.negativeInf;
|
|
}
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = uniforms.negativeInf;
|
|
}
|
|
|
|
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
|
|
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) {
|
|
// Elements in opposite order of direction
|
|
let iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutputAtIndex(index, f32(i0));
|
|
} else {
|
|
setOutputAtIndex(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}},l5e=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32, firstPass : i32, k : i32,",this.shaderKey="merge"}getUserCode(){return`
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
let outC = getCoordsFromIndex(index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
|
|
// (k=4), we only need to output the indices at positions |, the
|
|
// indices at positions _ can be thrown away, see Figure5(b) After
|
|
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
|
|
// above.
|
|
// For example, the paper shows we only need to output the orange
|
|
// bars. The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back to
|
|
// the previous sequence to find the corresponding value, we need
|
|
// to double the index. When we double the index, we basically
|
|
// interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
|
|
// position of each 2k positions by - elemIdx % k. E.g. for output
|
|
// at index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
var i = 0;
|
|
if (elemIdx < uniforms.k) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx * 2 - elemIdx % uniforms.k;
|
|
}
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.k;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.k));
|
|
}
|
|
|
|
let x0 = getX(batch, i0);
|
|
var x1 = f32(0.0);
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = x0;
|
|
}
|
|
|
|
if (x0 >= x1) {
|
|
setOutputAtIndex(index, f32(i0));
|
|
} else {
|
|
setOutputAtIndex(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}};function Hu(e,t){t!==null&&e.disposeData(t.dataId)}function mw(e){let t=1;for(;t<e;)t*=2;return t}function u5e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=r.shape,l=i[i.length-1];if(n.shouldExecuteOnCPU([r])){let w=n.readSync(r.dataId),[I,k]=kge(w,i,r.dtype,a,o);return[n.makeTensorInfo(I.shape,I.dtype,I.values),n.makeTensorInfo(k.shape,k.dtype,k.values)]}if(a===0)return i[i.length-1]=0,[n.makeTensorInfo(i,r.dtype,[]),n.makeTensorInfo(i,"int32",[])];if(l===1)return[r,hu({attrs:{shape:i,dtype:"int32",value:0},backend:n})];let c=v.sizeFromShape(i)/l,p=He({inputs:{x:r},attrs:{shape:[c,l]},backend:n}),d=mw(a),h=mw(l),f=null,m=()=>f===null?[p,p]:[p,f],g=(w,I,k)=>{let E=m(),_=new i5e(k),R=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[w]},{type:"int32",data:[I]}],P=f;f=n.runWebGPUProgram(_,E,"int32",R),Hu(n,P)};for(let w=1;w<d;w*=2){let I=w*2;for(let k=w;k>=1;k/=2)g(I,k,[c,h])}for(let w=h;w>d;w/=2){let I=m(),k=new l5e([c,w/2]),_=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"int32",data:[d]}],D=f;f=n.runWebGPUProgram(k,I,"int32",_),Hu(n,D);let R=d/2,P=R*2;for(let T=R;T>=1;T/=2)g(P,T,f.shape)}let y=f;f=wd({inputs:{x:f},backend:n,attrs:{begin:0,size:[c,a]}}),Hu(n,y);let x=tN({inputs:{x:p,indices:f},backend:n,attrs:{axis:1,batchDims:1}});Hu(n,p);let A=i.slice(0,-1);A.push(a),y=f,f=He({inputs:{x:f},attrs:{shape:A},backend:n}),Hu(n,y);let b=x;return x=He({inputs:{x},attrs:{shape:A},backend:n}),Hu(n,b),[x,f]}var c5e={kernelName:Kl,backendName:"webgpu",kernelFunc:u5e},d5e=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32, fillModeId : i32, fillValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return`
|
|
fn mapCoord(outCoord : f32, len : f32) -> f32{
|
|
var inCoord = outCoord;
|
|
if(uniforms.fillModeId == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
if (inCoord < -len) {
|
|
inCoord = inCoord + sz2;
|
|
} else {
|
|
inCoord = -inCoord - 1.0;
|
|
}
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (uniforms.fillModeId == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (uniforms.fillModeId == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
}
|
|
return outCoord;
|
|
}
|
|
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
|
|
channel : i32) -> f32 {
|
|
var outputValue : f32;
|
|
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = uniforms.fillValue;
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
${lt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var outputValue : f32;
|
|
let batch = coords[0];
|
|
let x = coords[2];
|
|
let y = coords[1];
|
|
let channel = coords[3];
|
|
let xf = f32(x);
|
|
let yf = f32(y);
|
|
let a1 = getTransforms(batch, 0);
|
|
let a2 = getTransforms(batch, 1);
|
|
let a3 = getTransforms(batch, 2);
|
|
let b1 = getTransforms(batch, 3);
|
|
let b2 = getTransforms(batch, 4);
|
|
let b3 = getTransforms(batch, 5);
|
|
let c1 = getTransforms(batch, 6);
|
|
let c2 = getTransforms(batch, 7);
|
|
let projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = uniforms.fillValue;
|
|
} else {
|
|
let inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
let inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
|
|
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
|
|
|
|
if (uniforms.interpolationModeId == 1) {
|
|
let coordY = i32(round(mapY));
|
|
let coordX = i32(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
let yFloor = floor(mapY);
|
|
let xFloor = floor(mapX);
|
|
let yCeil = yFloor + 1.0;
|
|
let xCeil = xFloor + 1.0;
|
|
let valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
|
|
let valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}};function p5e(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new d5e(g),x=o==="nearest"?1:2,A;switch(i){case"constant":A=1;break;case"reflect":A=2;break;case"wrap":A=3;break;case"nearest":A=4;break;default:A=1;break}let b=[{type:"int32",data:[x]},{type:"int32",data:[A]},{type:"float32",data:[l]}];return n.runWebGPUProgram(y,[r,a],"float32",b)}var h5e={kernelName:Zl,backendName:"webgpu",kernelFunc:p5e};function f5e(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;m<i;m++)m!==a&&(u[c++]=o.shape[m]);let p=[],d=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[a]=m;let g=wd({inputs:{x:o},backend:n,attrs:{begin:d,size:h}}),y=He({inputs:{x:g},backend:n,attrs:{shape:u}});f[m]=y,p.push(g)}return p.forEach(m=>n.disposeData(m.dataId)),f}var m5e={kernelName:Yl,backendName:"webgpu",kernelFunc:f5e},g5e=[p1e,Cge,Nge,_ge,Mge,Lge,Wge,Uge,Xge,Jge,e3e,r3e,f1e,l3e,h3e,A3e,b3e,w3e,S3e,T3e,E3e,D3e,F3e,B3e,V3e,G3e,H3e,j3e,X3e,u1e,Z3e,nye,J3e,eye,aye,iye,uye,pye,mye,yye,xye,h1e,o3e,vye,kye,Sye,Tye,Eye,_ye,Dye,Pye,Oye,zye,Bye,Vye,Gye,O3e,jye,Xye,Zye,Kge,Jye,eAe,nAe,rAe,oAe,lAe,cAe,Zge,dAe,hAe,mAe,c1e,AAe,vAe,kAe,SAe,TAe,RAe,DAe,PAe,OAe,jge,n5e,r5e,LAe,WAe,jAe,XAe,ZAe,YAe,QAe,MAe,z3e,o5e,GAe,c5e,h5e,Fge,m5e,Yye];for(let e of g5e)pr(e);var y5e=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireUploadBuffer(e,t){return this.acquireBuffer(e,t,!0)}acquireBuffer(e,t,n=!1){let s=gw(e,t);if(this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.usedBuffers.has(s)||this.usedBuffers.set(s,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(s).length>0){this.numFreeBuffers--;let a=this.freeBuffers.get(s).shift();return this.usedBuffers.get(s).push(a),a}this.numBytesAllocated+=e;let r=this.device.createBuffer({size:e,usage:t,mappedAtCreation:n});return this.usedBuffers.get(s).push(r),r}releaseBuffer(e,t,n){if(this.freeBuffers.size===0)return;let s=gw(t,n);this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.freeBuffers.get(s).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let r=this.usedBuffers.get(s),a=r.indexOf(e);if(a<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");r.splice(a,1),this.numBytesUsed-=t}releaseUploadBuffer(e,t,n){e.mapAsync(GPUMapMode.WRITE).then(()=>{this.releaseBuffer(e,t,n)},s=>{})}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}dispose(){this.freeBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function gw(e,t){return`${e}_${t}`}var A5e=class{constructor(e){this.device=e,this.numUsedTextures=0,this.numFreeTextures=0,this.freeTextures=new Map,this.usedTextures=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireTexture(e,t,n,s){let r=Aw(n),a=e*t*r,o=yw(e,t,n,s);if(this.freeTextures.has(o)||this.freeTextures.set(o,[]),this.usedTextures.has(o)||this.usedTextures.set(o,[]),this.numBytesUsed+=a,this.numUsedTextures++,this.freeTextures.get(o).length>0){this.numFreeTextures--;let l=this.freeTextures.get(o).shift();return this.usedTextures.get(o).push(l),l}this.numBytesAllocated+=a;let i=this.device.createTexture({size:[e,t],format:n,usage:s});return this.usedTextures.get(o).push(i),i}releaseTexture(e,t,n,s,r){if(this.freeTextures.size===0)return;let a=yw(t,n,s,r);this.freeTextures.has(a)||this.freeTextures.set(a,[]),this.freeTextures.get(a).push(e),this.numFreeTextures++,this.numUsedTextures--;let o=this.usedTextures.get(a),i=o.indexOf(e);if(i<0)throw new Error("Cannot release a texture that was never provided by this texture manager");o.splice(i,1);let l=Aw(s),u=t*n*l;this.numBytesUsed-=u}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){this.freeTextures.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedTextures.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeTextures=new Map,this.usedTextures=new Map,this.numUsedTextures=0,this.numFreeTextures=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function yw(e,t,n,s){return`${e}_${t}_${n}_${s}`}function Aw(e){if(e==="rgba8unorm")return 16;throw new Error(`${e} is not supported!`)}var x5e=H().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),b5e=(e,t)=>{let n=e.limits.maxComputeWorkgroupsPerDimension,s=t.dispatchLayout,r=t.dispatch;if(r.every(o=>o<=n))return r;v.assert(r[0]>n&&s.y===void 0&&s.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let a=Math.ceil(Math.sqrt(r[0]));return a>n?(a=Math.ceil(Math.cbrt(r[0])),v.assert(a<=n,()=>"Total dispatch size exceeds WebGPU maximum."),[a,a,a]):[a,a,1]},U2=class extends yc{constructor(e,t=!1){if(super(),this.commandQueueOwnedIds=new WeakSet,this.dispatchNumberInEncoder=0,this.disposed=!1,this.downloadWaitMs=0,this.tensorDataPendingDisposal=[],this.stagingPendingDisposal=[],this.uniformPendingDisposal=[],this.uploadWaitMs=0,!xb())throw new Error("WebGPU is not supported on this device");this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=t,this.bufferManager=new y5e(this.device),this.textureManager=new A5e(this.device),this.tensorMap=new jp(this,sn()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),H().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return U2.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}disposeData(e,t=!1){if(this.tensorDataPendingDisposal.indexOf(e)>=0)return!1;if(!this.tensorMap.has(e))return!0;let n=this.tensorMap.get(e);if(this.decRef(e),!t&&n.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDataPendingDisposal.push(e),!1;let{complexTensorInfos:s}=this.tensorMap.get(e);return s!=null&&(this.disposeData(s.real.dataId,t),this.disposeData(s.imag.dataId,t)),this.releaseResource(e),this.tensorMap.delete(e),!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}releaseResource(e){let t=this.tensorMap.get(e);if(!(!t||!t.resourceInfo)){if("texture"in t.resourceInfo){let n=t.resourceInfo;n.texture instanceof GPUTexture&&this.textureManager.releaseTexture(n.texture,n.width,n.height,n.format,n.usage),n.texture=null}else{let n=t.resourceInfo;this.bufferManager.releaseBuffer(n.buffer,n.size,n.usage),n.buffer=null}t.resourceInfo=null}}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,n){if(n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.tensorMap.set(s,{dtype:n,shape:t,values:e,refCount:1}),s}move(e,t,n,s,r){if(s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.tensorMap.set(e,{dtype:s,shape:n,values:t,refCount:r})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.tensorDataPendingDisposal.forEach(e=>{this.releaseResource(e),this.tensorMap.delete(e)}),this.uniformPendingDisposal.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.size,e.usage)),this.stagingPendingDisposal.forEach(e=>this.bufferManager.releaseUploadBuffer(e.buffer,e.size,e.usage)),this.tensorDataPendingDisposal=[],this.uniformPendingDisposal=[],this.stagingPendingDisposal=[]}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.end(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e,t){let n=this.bufferManager.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e,0,n,0,t),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=n.getMappedRange().slice(0);return n.unmap(),n!=null&&this.bufferManager.releaseBuffer(n,t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),H().getBool("WEBGPU_USE_PROFILE_TOOL")&&(v.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),s}convertAndCacheOnCPU(e,t){let n=this.tensorMap.get(e);return this.releaseResource(e),n.values=t,n.values}readSync(e){let t=this.tensorMap.get(e),{values:n}=t;if(n==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return n}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:n}=t;if(n!=null)return this.convertAndCacheOnCPU(e,n);let s;if(t.dtype==="complex64"){let r=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),a=r[0],o=r[1];s=C.mergeRealAndImagArrays(a,o)}else{let r=t.resourceInfo,a=await this.getBufferData(r.buffer,r.size);s=wT(a,t.dtype)}return this.convertAndCacheOnCPU(e,s),s}readToGPU(e){let t=this.tensorMap.get(e),{values:n,dtype:s,shape:r,resourceInfo:a}=t;if(s==="complex64")throw new Error("Does not support reading buffer for complex64 dtype.");if(a==null)throw n!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let o=a.size,i=this.bufferManager.acquireBuffer(o,a.usage);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(a.buffer,0,i,0,o),this.submitQueue();let l=this.makeTensorInfo(r,s),u=sn().makeTensorFromTensorInfo(l),c=this.tensorMap.get(l.dataId);return c.resourceInfo={size:o,usage:this.defaultGpuBufferUsage(),buffer:i},{tensorRef:u,buffer:i,bufSize:o}}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>v.decodeString(s));return De(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return De(e.shape,e.dtype,t)}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=v.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},i=await Promise.all(r);return o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,o}makeTensorInfo(e,t,n){return t==="string"&&n!=null&&n.length>0&&v.isString(n[0])&&(n=n.map(r=>v.encodeString(r))),{dataId:this.write(n,e,t),shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);if("texture"in t.resourceInfo){let s=t.resourceInfo;return s.texture instanceof GPUExternalTexture?s.texture:s.texture.createView()}let n=t.resourceInfo;return{offset:0,size:n.size,buffer:n.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);if(t.resourceInfo)return;let n=vT(t.dtype)*v.sizeFromShape(t.shape),s=this.bufferManager.acquireBuffer(n,this.defaultGpuBufferUsage());if(t.resourceInfo={size:n,usage:this.defaultGpuBufferUsage(),buffer:s},t.values){let r=this.bufferManager.acquireUploadBuffer(n,GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC),a=r.getMappedRange();t.dtype==="int32"||t.dtype==="bool"?new Int32Array(a).set(t.values):new Float32Array(a).set(t.values),r.unmap(),this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(r,0,s,0,n);let o={size:n,usage:GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC,buffer:r};this.stagingPendingDisposal.push(o)}}makeUniforms(e){let t=0,n=0,s=[];e.forEach(i=>{i.data.length===0&&(i.data=[1]);let l;switch(i.data.length){case 1:l=4;break;case 2:l=8;break;case 3:l=16;break;case 4:l=16;break;case 5:l=16;break;case 6:l=16;break;default:v.assert(!1,()=>`Unsupported ${i.data.length}D shape`)}(n===5||n===6)&&(l=16),t=Math.ceil(t/l)*l,n=i.data.length,s.push(t),t+=i.data.length*4});let r=new ArrayBuffer(t);e.forEach((i,l)=>{let u=s[l];i.type==="int32"?new Int32Array(r,u,i.data.length).set(i.data):i.type==="uint32"?new Uint32Array(r,u,i.data.length).set(i.data):new Float32Array(r,u,i.data.length).set(i.data)});let a=this.bufferManager.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);this.queue.writeBuffer(a,0,r,0,t);let o={size:t,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:a};return this.uniformPendingDisposal.push(o),{offset:0,size:t,buffer:a}}runWebGPUProgram(e,t,n,s,r){if(r||(r=this.makeTensorInfo(e.outputShape,n)),v.sizeFromShape(r.shape)===0)return this.tensorMap.get(r.dataId).values=v.getTypedArrayFromDType(r.dtype,0),r;this.uploadToGPU(r.dataId),e.dispatch=b5e(this.device,e);let a=[],o=[];if(!e.isFromPixels){a.push({type:"float32",data:[NaN]}),o=t.concat(r).map(g=>g.shape);let f="int32";o.map(g=>{a.push({type:f,data:g})});let m=v.computeStrides(r.shape);if(a.push({type:f,data:m}),e.size){let g=v.sizeFromShape(e.outputShape);a.push({type:f,data:[e.isVec4?g/4:g]})}}let i=t.map((f,m)=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(f.dataId),{dtype:this.tensorMap.get(f.dataId).dtype,shape:f.shape,name:e.variableNames[m]}}),l=B2e(e,o,i,r),u;l in this.pipelineCache?u=this.pipelineCache[l]:(u=z2e(this.device,e,i,r),this.pipelineCache[l]=u),s&&(a=[...a,...s]);let c=[this.tensorToBinding(r),...t.map(f=>this.tensorToBinding(f)),this.makeUniforms(a)],p=this.device.createBindGroup({layout:u.getBindGroupLayout(0),entries:c.map((f,m)=>({binding:m,resource:f}))});this.ensureCommandEncoderReady();let d=this.getComputePass(),h=this.activeTimers!=null;return h&&this.supportTimeQuery&&d.writeTimestamp(this.querySet,0),d.setPipeline(u),d.setBindGroup(0,p),d.dispatchWorkgroups(e.dispatch[0],e.dispatch[1],e.dispatch[2]),h&&this.supportTimeQuery&&d.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(f=>{this.commandQueueOwnedIds.add(f.dataId)}),this.commandQueueOwnedIds.add(r.dataId),H().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),h&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),r}async getTimeFromQuerySet(e){let t=this.bufferManager.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),n=this.bufferManager.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,n,0,16),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=new BigUint64Array(n.getMappedRange()),r=Number(s[1]-s[0]);return n.unmap(),this.bufferManager.releaseBuffer(n,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r/1e6}shouldExecuteOnCPU(e,t=x5e){return H().getBool("WEBGPU_CPU_FORWARD")&&e.every(n=>this.tensorMap.get(n.dataId).resourceInfo==null&&v.sizeFromShape(n.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDataPendingDisposal.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.textureManager.dispose(),this.disposed=!0)}};U2.nextDataId=0;var lN={};Ve(lN,{WebGPUBackend:()=>U2,webgpu_util:()=>xT});xb()&&eu("webgpu",async()=>{H().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:H().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),n=t.limits,s={},r=t.features.has("timestamp-query");s.requiredLimits={maxComputeWorkgroupStorageSize:n.maxComputeWorkgroupStorageSize,maxComputeWorkgroupsPerDimension:n.maxComputeWorkgroupsPerDimension,maxStorageBufferBindingSize:n.maxStorageBufferBindingSize},r?s.requiredFeatures=["timestamp-query"]:console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.");let a=await t.requestDevice(s);return new U2(a,r)},3);var v5e="3.20.0",w5e="3.20.0",k5e="3.20.0",I5e="3.20.0",S5e="3.20.0",C5e="3.20.0",T5e="3.20.0",Jh={tfjs:v5e,"tfjs-core":w5e,"tfjs-data":k5e,"tfjs-layers":I5e,"tfjs-converter":S5e,"tfjs-backend-webgl":C5e,"tfjs-backend-wasm":T5e};var uN=`
|
|
precision highp float;
|
|
attribute vec2 pos;
|
|
attribute vec2 uv;
|
|
varying vec2 vUv;
|
|
uniform float flipY;
|
|
void main(void) {
|
|
vUv = uv;
|
|
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
|
|
}
|
|
`;var cN=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
|
|
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
|
|
}
|
|
`,dN=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
|
|
gl_FragColor.a = c.a;
|
|
}
|
|
`,pN=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform vec2 size;
|
|
uniform sampler2D texture;
|
|
vec2 pixelate(vec2 coord, vec2 size) {
|
|
return floor( coord / size ) * size;
|
|
}
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
vec2 coord = pixelate(vUv, size);
|
|
gl_FragColor += texture2D(texture, coord);
|
|
}
|
|
`,hN=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
|
|
}
|
|
`,fN=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
uniform float m[9];
|
|
void main(void) {
|
|
vec4 c11 = texture2D(texture, vUv - px); // top left
|
|
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
|
|
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
|
|
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
|
|
vec4 c22 = texture2D(texture, vUv); // mid center
|
|
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
|
|
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
|
|
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
|
|
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
|
|
gl_FragColor =
|
|
c11 * m[0] + c12 * m[1] + c22 * m[2] +
|
|
c21 * m[3] + c22 * m[4] + c23 * m[5] +
|
|
c31 * m[6] + c32 * m[7] + c33 * m[8];
|
|
gl_FragColor.a = c22.a;
|
|
}
|
|
`;var Nb=(e,t,n)=>{let s=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(s,(r,a)=>(n[a]=0,r))},Eb=class{constructor(t,n,s){ge(this,"uniform",{});ge(this,"attribute",{});ge(this,"gl");ge(this,"id");ge(this,"compile",(t,n)=>{let s=this.gl.createShader(n);return s?(this.gl.shaderSource(s,t),this.gl.compileShader(s),this.gl.getShaderParameter(s,this.gl.COMPILE_STATUS)?s:(ae(`filter: gl compile failed: ${this.gl.getShaderInfoLog(s)||"unknown"}`),null)):(ae("filter: could not create shader"),null)});this.gl=t;let r=this.compile(n,this.gl.VERTEX_SHADER),a=this.compile(s,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!r||!a)){if(!this.id){ae("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,a),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){ae(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)||"unknown"}`);return}this.gl.useProgram(this.id),Nb(n,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=this.gl.getAttribLocation(this.id,o);Nb(n,"uniform",this.uniform),Nb(s,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=this.gl.getUniformLocation(this.id,o)}}};function mN(){let e=0,t=null,n=!1,s=-1,r=[null,null],a=[],o=null,i=null,l=us(100,100),u={},c={INTERMEDIATE:1},p=l.getContext("webgl");if(!p){ae("filter: cannot get webgl context");return}this.gl=p;function d(x,A){if(!(x===l.width&&A===l.height)){if(l.width=x,l.height=A,!o){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);o=p.createBuffer(),p.bindBuffer(p.ARRAY_BUFFER,o),p.bufferData(p.ARRAY_BUFFER,b,p.STATIC_DRAW),p.pixelStorei(p.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}p.viewport(0,0,l.width,l.height),r=[null,null]}}function h(x,A){let b=p.createFramebuffer();p.bindFramebuffer(p.FRAMEBUFFER,b);let w=p.createRenderbuffer();p.bindRenderbuffer(p.RENDERBUFFER,w);let I=p.createTexture();return p.bindTexture(p.TEXTURE_2D,I),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,x,A,0,p.RGBA,p.UNSIGNED_BYTE,null),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.framebufferTexture2D(p.FRAMEBUFFER,p.COLOR_ATTACHMENT0,p.TEXTURE_2D,I,0),p.bindTexture(p.TEXTURE_2D,null),p.bindFramebuffer(p.FRAMEBUFFER,null),{fbo:b,texture:I}}function f(x){return r[x]=r[x]||h(l.width,l.height),r[x]}function m(x=0){if(!i)return;let A=null,b=null,w=!1;e===0?A=t:A=f(s).texture||null,e++,n&&!(x&c.INTERMEDIATE)?(b=null,w=e%2===0):(s=(s+1)%2,b=f(s).fbo||null),p.bindTexture(p.TEXTURE_2D,A),p.bindFramebuffer(p.FRAMEBUFFER,b),p.uniform1f(i.uniform.flipY,w?-1:1),p.drawArrays(p.TRIANGLES,0,6)}function g(x){if(u[x])return i=u[x],p.useProgram((i?i.id:null)||null),i;if(i=new Eb(p,uN,x),!i)return ae("filter: could not get webgl program"),null;let A=Float32Array.BYTES_PER_ELEMENT,b=4*A;return p.enableVertexAttribArray(i.attribute.pos),p.vertexAttribPointer(i.attribute.pos,2,p.FLOAT,!1,b,0*A),p.enableVertexAttribArray(i.attribute.uv),p.vertexAttribPointer(i.attribute.uv,2,p.FLOAT,!1,b,2*A),u[x]=i,i}let y={colorMatrix:x=>{let A=new Float32Array(x);A[4]/=255,A[9]/=255,A[14]/=255,A[19]/=255;let b=A[18]===1&&A[3]===0&&A[8]===0&&A[13]===0&&A[15]===0&&A[16]===0&&A[17]===0&&A[19]===0?dN:cN,w=g(b);!w||(p.uniform1fv(w.uniform.m,A),m())},brightness:x=>{let A=(x||0)+1;y.colorMatrix([A,0,0,0,0,0,A,0,0,0,0,0,A,0,0,0,0,0,1,0])},saturation:x=>{let A=(x||0)*2/3+1,b=(A-1)*-.5;y.colorMatrix([A,b,b,0,0,b,A,b,0,0,b,b,A,0,0,0,0,0,1,0])},desaturate:()=>{y.saturation(-1)},contrast:x=>{let A=(x||0)+1,b=-128*(A-1);y.colorMatrix([A,0,0,0,b,0,A,0,0,b,0,0,A,0,b,0,0,0,1,0])},negative:()=>{y.contrast(-2)},hue:x=>{x=(x||0)/180*Math.PI;let A=Math.cos(x),b=Math.sin(x),w=.213,I=.715,k=.072;y.colorMatrix([w+A*(1-w)+b*-w,I+A*-I+b*-I,k+A*-k+b*(1-k),0,0,w+A*-w+b*.143,I+A*(1-I)+b*.14,k+A*-k+b*-.283,0,0,w+A*-w+b*-(1-w),I+A*-I+b*I,k+A*(1-k)+b*k,0,0,0,0,0,1,0])},desaturateLuminance:()=>{y.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{y.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{y.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{y.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{y.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{y.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{y.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{y.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:x=>{let A=new Float32Array(x),b=1/l.width,w=1/l.height,I=g(fN);!I||(p.uniform1fv(I.uniform.m,A),p.uniform2f(I.uniform.px,b,w),m())},detectEdges:()=>{y.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{y.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{y.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:x=>{let A=x||1;y.convolution.call(this,[0,-1*A,0,-1*A,1+4*A,-1*A,0,-1*A,0])},emboss:x=>{let A=x||1;y.convolution.call(this,[-2*A,-1*A,0,-1*A,1,1*A,0,1*A,2*A])},blur:x=>{let A=x/7/l.width,b=x/7/l.height,w=g(hN);!w||(p.uniform2f(w.uniform.px,0,b),m(c.INTERMEDIATE),p.uniform2f(w.uniform.px,A,0),m())},pixelate:x=>{let A=x/l.width,b=x/l.height,w=g(pN);!w||(p.uniform2f(w.uniform.size,A,b),m())}};this.add=function(x){let A=Array.prototype.slice.call(arguments,1),b=y[x];a.push({func:b,args:A})},this.reset=function(){a=[]},this.get=function(){return a},this.apply=function(x){d(x.width,x.height),e=0,t||(t=p.createTexture()),p.bindTexture(p.TEXTURE_2D,t),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.NEAREST),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.NEAREST),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,p.RGBA,p.UNSIGNED_BYTE,x);for(let A=0;A<a.length;A++){n=A===a.length-1;let b=a[A];b.func.apply(this,b.args||[])}return l},this.draw=function(x){return this.add("brightness",0),this.apply(x)}}async function G2(e){let t=e.shape.length===4?st(e):e,n=Zt(t,3,2),s=[wa(n[0]),wa(n[1]),wa(n[2])],r=[hn(n[0]),hn(n[1]),hn(n[2])],a=await Promise.all(r.map(h=>h.data())),o=.99*Math.max(a[0][0],a[1][0],a[2][0]),i=[me(n[0],s[0]),me(n[1],s[1]),me(n[2],s[2])],l=[me(r[0],s[0]),me(r[1],s[1]),me(r[2],s[2])],u=[fe(o,l[0]),fe(o,l[1]),fe(o,l[2])],c=[z(i[0],u[0]),z(i[1],u[1]),z(i[2],u[2])],p=on([c[0],c[1],c[2]],2),d=V(p,[1,t.shape[0],t.shape[1],3]);return J([...n,...s,...r,...i,...l,...u,...c,p,t]),d}var H2=3840,kn=null,In=null,kd=null,_t,Ha={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function us(e,t){let n;if(he.browser)if(he.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");n=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");n=document.createElement("canvas"),n.width=e,n.height=t}else typeof he.Canvas!="undefined"?n=new he.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(n=new globalThis.Canvas(e,t));return n}function j2(e,t){let n=t||us(e.width,e.height);return n.getContext("2d").drawImage(e,0,0),n}async function Id(e,t,n=!0){var d,h;if(!e)return t.debug&&ae("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof nt)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof he.Canvas!="undefined"&&e instanceof he.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof nt){let f=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)f=Bt(e,0);else if(e.shape[2]===4){let m=vi(e,[0,0,0],[-1,-1,3]);f=Bt(m,0),J(m)}}else e.shape.length===4&&(e.shape[3]===3?f=Mn(e):e.shape[3]===4&&(f=vo(e,[0,0,0,0],[-1,-1,-1,3])));if(f==null||f.shape.length!==4||f.shape[0]!==1||f.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape.toString()}`);if(f.dtype==="int32"){let m=ye(f,"float32");J(f),f=m}return{tensor:f,canvas:t.filter.return?In:null}}if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&ae("input stream is not ready"),{tensor:null,canvas:kn};let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return t.debug&&ae("cannot determine input dimensions"),{tensor:null,canvas:kn};let a=s,o=r;if(a>H2&&(a=H2,o=Math.trunc(a*r/s)),o>H2&&(o=H2,a=Math.trunc(o*s/r)),(((d=t.filter)==null?void 0:d.width)||0)>0?a=t.filter.width:(((h=t.filter)==null?void 0:h.height)||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("input error: cannot determine dimension");(!kn||kn.width!==a||kn.height!==o)&&(kn=us(a,o));let i=kn.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,kn.width,kn.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,kn.width,kn.height),(!In||kn.width!==In.width||kn.height!==In.height)&&(In=us(kn.width,kn.height)),t.filter.enabled&&he.webgl.supported?(_t||(_t=he.browser?new mN:null),he.filter=!!_t,_t!=null&&_t.add?(_t.reset(),t.filter.brightness!==0&&_t.add("brightness",t.filter.brightness),t.filter.contrast!==0&&_t.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&_t.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&_t.add("blur",t.filter.blur),t.filter.saturation!==0&&_t.add("saturation",t.filter.saturation),t.filter.hue!==0&&_t.add("hue",t.filter.hue),t.filter.negative&&_t.add("negative"),t.filter.sepia&&_t.add("sepia"),t.filter.vintage&&_t.add("brownie"),t.filter.sepia&&_t.add("sepia"),t.filter.kodachrome&&_t.add("kodachrome"),t.filter.technicolor&&_t.add("technicolor"),t.filter.polaroid&&_t.add("polaroid"),t.filter.pixelate!==0&&_t.add("pixelate",t.filter.pixelate),_t.get()>0?In=_t.apply(kn):In=_t.draw(kn)):(t.debug&&ae("input process error: cannot initialize filters"),he.webgl.supported=!1,t.filter.enabled=!1,j2(kn,In))):(j2(kn,In),_t&&(_t=null),he.filter=!!_t),!n)return{tensor:null,canvas:In};if(!In)throw new Error("canvas error: cannot create output");let l,u=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(he.browser&&Zs)l=Zs?Zs.fromPixels(e):null;else{u=e.data.length/e.height/e.width;let f=new Uint8Array(e.data.buffer);l=ct(f,[e.height,e.width,u],"int32")}else if((!kd||In.width!==kd.width||In.height!==kd.height)&&(kd=us(In.width,In.height)),Zs&&he.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=Zs.fromPixels(In):(kd=j2(In),l=Zs.fromPixels(kd));else{let g=j2(In).getContext("2d").getImageData(0,0,a,o);u=g.data.length/a/o;let y=new Uint8Array(g.data.buffer);l=ct(y,[a,o,u])}if(u===4){let f=vi(l,[0,0,0],[-1,-1,3]);J(l),l=f}if(!l)throw new Error("input error: cannot create tensor");let c=ye(l,"float32"),p=t.filter.equalization?await G2(c):Bt(c,0);return J([l,c]),{tensor:p,canvas:t.filter.return?In:null}}async function gN(e,t){let n=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return n;if(!Ha.inputTensor)Ha.inputTensor=Mn(t);else if(Ha.inputTensor.shape[1]!==t.shape[1]||Ha.inputTensor.shape[2]!==t.shape[2])J(Ha.inputTensor),Ha.inputTensor=Mn(t);else{let s={};s.diff=me(t,Ha.inputTensor),s.squared=z(s.diff,s.diff),s.sum=ke(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;J([Ha.inputTensor,s.diff,s.squared,s.sum]),Ha.inputTensor=Mn(t),n=a<=(e.cacheSensitivity||0)}return n}async function yN(e,t,n){let s={};if(!t||!n||t.shape.length!==4||t.shape.length!==n.shape.length)return e.debug||ae("invalid input tensor or tensor shapes do not match:",t.shape,n.shape),0;if(t.shape[0]!==1||n.shape[0]!==1||t.shape[3]!==3||n.shape[3]!==3)return e.debug||ae("input tensors must be of shape [1, height, width, 3]:",t.shape,n.shape),0;s.input1=Mn(t),s.input2=t.shape[1]!==n.shape[1]||t.shape[2]!==n.shape[2]?Se.resizeBilinear(n,[t.shape[1],t.shape[2]]):Mn(n),s.diff=me(s.input1,s.input2),s.squared=z(s.diff,s.diff),s.sum=ke(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return J([s.input1,s.input2,s.diff,s.squared,s.sum]),a}var Rb=class{constructor(){ge(this,"browser");ge(this,"node");ge(this,"worker");ge(this,"platform","");ge(this,"agent","");ge(this,"backends",[]);ge(this,"initial");ge(this,"filter");ge(this,"tfjs");ge(this,"offscreen");ge(this,"perfadd",!1);ge(this,"tensorflow",{version:void 0,gpu:void 0});ge(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});ge(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});ge(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});ge(this,"cpu",{model:void 0,flags:[]});ge(this,"kernels",[]);ge(this,"Canvas");ge(this,"Image");ge(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:Jh["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t!=null&&t[0]){let n=t[0].match(/\(([^()]+)\)/g);this.platform=n!=null&&n[0]?n[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(sn().registryFactory),this.tensorflow={version:Bn().binding?Bn().binding.TF_Version:void 0,gpu:Bn().binding?Bn().binding.isUsingGpuDevice():void 0},this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&Ln()==="wasm"&&(this.wasm.simd=H().get("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=H().get("WASM_HAS_MULTITHREAD_SUPPORT"));let t=us(100,100),n=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof n!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(Ln()==="webgl"||Ln()==="humangl")){let s=Bn().gpgpu!=="undefined"?await Bn().getGPGPUContext().gl:null;s&&(this.webgl.version=s.getParameter(s.VERSION),this.webgl.renderer=s.getParameter(s.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{if(this.webgpu.supported){let s=await navigator.gpu.requestAdapter();this.webgpu.adapter=s?s.name:void 0}}catch(s){this.webgpu.supported=!1}try{this.kernels=Jr(Ln()).map(s=>s.kernelName.toLowerCase())}catch(s){}}updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},he=new Rb;var _b={};ha(_b,{age:()=>G5e,"anti-spoofing":()=>vxe,antispoof:()=>_5e,blazeface:()=>D5e,"blazeface-back":()=>H5e,"blazeface-front":()=>j5e,"blazepose-detect":()=>bxe,"blazepose-detector2d":()=>q5e,"blazepose-detector3d":()=>X5e,"blazepose-full":()=>K5e,"blazepose-heavy":()=>Z5e,"blazepose-lite":()=>Y5e,default:()=>Pxe,efficientpose:()=>J5e,"efficientpose-i-lite":()=>wxe,"efficientpose-ii-lite":()=>kxe,"efficientpose-iv":()=>Ixe,emotion:()=>$5e,faceboxes:()=>Q5e,facemesh:()=>P5e,"facemesh-attention":()=>txe,"facemesh-attention-alt":()=>exe,"facemesh-detection-full":()=>nxe,"facemesh-detection-short":()=>sxe,"facemesh-orig":()=>rxe,faceres:()=>F5e,"faceres-deep":()=>axe,gear:()=>oxe,gender:()=>lxe,"gender-ssrnet-imdb":()=>ixe,handdetect:()=>uxe,"handlandmark-full":()=>O5e,"handlandmark-lite":()=>cxe,"handlandmark-sparse":()=>dxe,handskeleton:()=>pxe,handtrack:()=>M5e,"insightface-efficientnet-b0":()=>Sxe,"insightface-ghostnet-strides1":()=>Cxe,"insightface-ghostnet-strides2":()=>Txe,"insightface-mobilenet-emore":()=>Nxe,"insightface-mobilenet-swish":()=>Exe,iris:()=>z5e,liveness:()=>L5e,"mb3-centernet":()=>B5e,meet:()=>hxe,mobileface:()=>fxe,mobilefacenet:()=>mxe,models:()=>W5e,"movenet-lightning":()=>V5e,"movenet-multipose":()=>gxe,"movenet-thunder":()=>yxe,nanodet:()=>Axe,"nanodet-e":()=>Rxe,"nanodet-g":()=>_xe,"nanodet-m":()=>Dxe,"nanodet-t":()=>$xe,posenet:()=>xxe,selfie:()=>U5e});var _5e=853098,D5e=538928,$5e=820516,P5e=1477958,F5e=6978814,O5e=5431368,M5e=2964837,z5e=2599092,L5e=592976,B5e=4030290,W5e=0,V5e=4650216,U5e=212886,G5e=161240,H5e=538928,j5e=402048,q5e=7499400,X5e=5928856,K5e=6338290,Z5e=27501554,Y5e=2725490,J5e=5651240,Q5e=2013002,exe=2387598,txe=2382414,nxe=1026192,sxe=201268,rxe=2955780,axe=13957620,oxe=1498916,ixe=161236,lxe=201808,uxe=3515612,cxe=2023432,dxe=5286322,pxe=5502280,hxe=372228,fxe=2183192,mxe=5171976,gxe=9448838,yxe=12477112,Axe=7574558,xxe=5032780,bxe=5928804,vxe=853098,wxe=2269064,kxe=5651240,Ixe=25643252,Sxe=13013224,Cxe=8093408,Txe=8049584,Nxe=6938536,Exe=12168584,Rxe=12319156,_xe=7574558,Dxe=1887474,$xe=5294216,Pxe={antispoof:_5e,blazeface:D5e,emotion:$5e,facemesh:P5e,faceres:F5e,"handlandmark-full":O5e,handtrack:M5e,iris:z5e,liveness:L5e,"mb3-centernet":B5e,models:W5e,"movenet-lightning":V5e,selfie:U5e,age:G5e,"blazeface-back":H5e,"blazeface-front":j5e,"blazepose-detector2d":q5e,"blazepose-detector3d":X5e,"blazepose-full":K5e,"blazepose-heavy":Z5e,"blazepose-lite":Y5e,efficientpose:J5e,faceboxes:Q5e,"facemesh-attention-alt":exe,"facemesh-attention":txe,"facemesh-detection-full":nxe,"facemesh-detection-short":sxe,"facemesh-orig":rxe,"faceres-deep":axe,gear:oxe,"gender-ssrnet-imdb":ixe,gender:lxe,handdetect:uxe,"handlandmark-lite":cxe,"handlandmark-sparse":dxe,handskeleton:pxe,meet:hxe,mobileface:fxe,mobilefacenet:mxe,"movenet-multipose":gxe,"movenet-thunder":yxe,nanodet:Axe,posenet:xxe,"blazepose-detect":bxe,"anti-spoofing":vxe,"efficientpose-i-lite":wxe,"efficientpose-ii-lite":kxe,"efficientpose-iv":Ixe,"insightface-efficientnet-b0":Sxe,"insightface-ghostnet-strides1":Cxe,"insightface-ghostnet-strides2":Txe,"insightface-mobilenet-emore":Nxe,"insightface-mobilenet-swish":Exe,"nanodet-e":Rxe,"nanodet-g":_xe,"nanodet-m":Dxe,"nanodet-t":$xe};var y1={};ha(y1,{Models:()=>cf,getModelStats:()=>G4,load:()=>H4,reset:()=>g1,validate:()=>R1,validateModel:()=>Od});var yr,Db=[],Fxe=["white","black","asian","indian","other"],Oxe=[15,23,28,35.5,45.5,55.5,65],AN=0,xN=0,$b=Number.MAX_SAFE_INTEGER;async function bN(e){var t;return he.initial&&(yr=null),yr?e.debug&&ae("cached model:",yr.modelUrl):yr=await je((t=e.face.gear)==null?void 0:t.modelPath),yr}async function Pb(e,t,n,s){var o,i;if(!yr)return{age:0,gender:"unknown",genderScore:0,race:[]};let r=$b<(((o=t.face.gear)==null?void 0:o.skipFrames)||0),a=(((i=t.face.gear)==null?void 0:i.skipTime)||0)>le()-xN;return t.skipAllowed&&a&&r&&AN===s&&Db[n]?($b++,Db[n]):($b=0,new Promise(async l=>{var y,x;if(!(yr!=null&&yr.inputs[0].shape))return;let u={},c=[[0,.1,.9,.9]];u.resize=Se.cropAndResize(e,c,[0],[yr.inputs[0].shape[2],yr.inputs[0].shape[1]]);let p={age:0,gender:"unknown",genderScore:0,race:[]};(y=t.face.gear)!=null&&y.enabled&&([u.age,u.gender,u.race]=yr.execute(u.resize,["age_output","gender_output","race_output"]));let d=await u.gender.data();p.gender=d[0]>d[1]?"male":"female",p.genderScore=Math.round(100*(d[0]>d[1]?d[0]:d[1]))/100;let h=await u.race.data();for(let A=0;A<h.length;A++)h[A]>(((x=t.face.gear)==null?void 0:x.minConfidence)||.2)&&p.race.push({score:Math.round(100*h[A])/100,race:Fxe[A]});p.race.sort((A,b)=>b.score-A.score);let m=Array.from(await u.age.data()).map((A,b)=>[Oxe[b],A]).sort((A,b)=>b[1]-A[1]),g=m[0][0];for(let A=1;A<m.length;A++)g+=m[A][1]*(m[A][0]-g);p.age=Math.round(10*g)/10,Object.keys(u).forEach(A=>J(u[A])),Db[n]=p,AN=s,xN=le(),l(p)}))}var rt={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function wN(){rt.tf255=Ce(255,"float32"),rt.tf1=Ce(1,"float32"),rt.tf2=Ce(2,"float32"),rt.tf05=Ce(.5,"float32"),rt.tf127=Ce(127.5,"float32"),rt.rgb=Ft([.2989,.587,.114],"float32")}var Ms,q2=[],kN=0,IN=0,Fb=Number.MAX_SAFE_INTEGER;async function SN(e){return he.initial&&(Ms=null),Ms?e.debug&&ae("cached model:",Ms.modelUrl):Ms=await je(e.face.ssrnet.modelPathAge),Ms}async function Ob(e,t,n,s){var o,i,l,u;if(!Ms)return{age:0};let r=Fb<(((o=t.face.ssrnet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>le()-IN;return t.skipAllowed&&r&&a&&kN===s&&((l=q2[n])==null?void 0:l.age)&&((u=q2[n])==null?void 0:u.age)>0?(Fb++,q2[n]):(Fb=0,new Promise(async c=>{var h;if(!(Ms!=null&&Ms.inputs)||!Ms.inputs[0]||!Ms.inputs[0].shape)return;let p={};p.resize=Se.resizeBilinear(e,[Ms.inputs[0].shape[2],Ms.inputs[0].shape[1]],!1),p.enhance=z(p.resize,rt.tf255);let d={age:0};if((h=t.face.ssrnet)!=null&&h.enabled&&(p.age=Ms.execute(p.enhance)),p.age){let f=await p.age.data();d.age=Math.trunc(10*f[0])/10}Object.keys(p).forEach(f=>J(p[f])),q2[n]=d,kN=s,IN=le(),c(d)}))}var Ar,X2=[],TN=0,NN=0,Mb=Number.MAX_SAFE_INTEGER,zb=[.2989,.587,.114];async function EN(e){var t;return he.initial&&(Ar=null),Ar?e.debug&&ae("cached model:",Ar.modelUrl):Ar=await je((t=e.face.ssrnet)==null?void 0:t.modelPathGender),Ar}async function Lb(e,t,n,s){var o,i,l,u;if(!Ar)return{gender:"unknown",genderScore:0};let r=Mb<(((o=t.face.ssrnet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>le()-NN;return t.skipAllowed&&r&&a&&TN===s&&((l=X2[n])==null?void 0:l.gender)&&((u=X2[n])==null?void 0:u.genderScore)>0?(Mb++,X2[n]):(Mb=0,new Promise(async c=>{var f;if(!(Ar!=null&&Ar.inputs[0].shape))return;let p={};p.resize=Se.resizeBilinear(e,[Ar.inputs[0].shape[2],Ar.inputs[0].shape[1]],!1),p.enhance=Z(()=>{let[m,g,y]=Zt(p.resize,3,3),x=z(m,zb[0]),A=z(g,zb[1]),b=z(y,zb[2]),w=N0([x,A,b]);return z(me(w,rt.tf05),2)});let d={gender:"unknown",genderScore:0};(f=t.face.ssrnet)!=null&&f.enabled&&(p.gender=Ar.execute(p.enhance));let h=await p.gender.data();d.gender=h[0]>h[1]?"female":"male",d.genderScore=h[0]>h[1]?Math.trunc(100*h[0])/100:Math.trunc(100*h[1])/100,Object.keys(p).forEach(m=>J(p[m])),X2[n]=d,TN=s,NN=le(),c(d)}))}var Wn,K2=[],Bb=Number.MAX_SAFE_INTEGER,_N=0,DN=0;async function $N(e){var t;return he.initial&&(Wn=null),Wn?e.debug&&ae("cached model:",Wn.modelUrl):Wn=await je((t=e.face.antispoof)==null?void 0:t.modelPath),Wn}async function Wb(e,t,n,s){var o,i;if(!Wn)return 0;let r=(((o=t.face.antispoof)==null?void 0:o.skipTime)||0)>le()-DN,a=Bb<(((i=t.face.antispoof)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&_N===s&&K2[n]?(Bb++,K2[n]):(Bb=0,new Promise(async l=>{let u=Se.resizeBilinear(e,[Wn!=null&&Wn.inputs[0].shape?Wn.inputs[0].shape[2]:0,Wn!=null&&Wn.inputs[0].shape?Wn.inputs[0].shape[1]:0],!1),c=Wn==null?void 0:Wn.execute(u),p=(await c.data())[0];K2[n]=Math.round(100*p)/100,_N=s,DN=le(),J([u,c]),l(K2[n])}))}var xr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[185,40,39,37,0,267,269,270,409],lipsLowerOuter:[61,146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[191,80,81,82,13,312,311,310,415],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],lipsLowerSemiOuter:[76,77,90,180,85,16,315,404,320,307,306],lipsUpperSemiOuter:[184,74,73,72,11,302,303,304,408],lipsLowerSemiInner:[62,96,89,179,86,15,316,403,319,325,292],lipsUpperSemiInner:[183,42,41,38,12,268,271,272,407],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Vb={count:468,mouth:13,symmetryLine:[13,xr.midwayBetweenEyes[0]]},fu={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Ub=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}],ef=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],mu=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var zxe=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Lxe=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Bxe=[33,133,362,263,1,78,308],pSe=zxe.map(e=>ef[e]),hSe=Lxe.map(e=>ef[e]),fSe=Bxe.map(e=>ef[e]);function Ci(e){let t=e.map(n=>n[0]);return t.push(e[e.length-1][1]),t}var Wxe=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],Vxe=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],Uxe=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],Gxe=[[474,475],[475,476],[476,477],[477,474]],Hxe=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],jxe=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],qxe=[[469,470],[470,471],[471,472],[472,469]],Xxe=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]],mSe={lips:Ci(Wxe),leftEye:Ci(Vxe),leftEyebrow:Ci(Uxe),leftIris:Ci(Gxe),rightEye:Ci(Hxe),rightEyebrow:Ci(jxe),rightIris:Ci(qxe),faceOval:Ci(Xxe)};var Sd=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],Z2=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],Y2=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],J2=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],MN=(e,t)=>{let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s,landmarks:e.landmarks,confidence:e.confidence}},Hb=(e,t,n)=>{let s=t.shape[1],r=t.shape[2],a=[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r],o=Se.cropAndResize(t,[a],[0],n),i=fe(o,rt.tf255);return J(o),i},Q2=(e,t)=>{let n=Z2(e),s=Sd(e),r=[t*s[0]/2,t*s[1]/2];return{startPoint:[n[0]-r[0],n[1]-r[1]],endPoint:[n[0]+r[0],n[1]+r[1]],landmarks:e.landmarks,confidence:e.confidence}},e1=e=>{let t=Z2(e),n=Sd(e),s=Math.max(...n)/2;return{startPoint:[Math.round(t[0]-s),Math.round(t[1]-s)],endPoint:[Math.round(t[0]+s),Math.round(t[1]+s)],landmarks:e.landmarks,confidence:e.confidence}},zN=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return{startPoint:[Math.min(...t),Math.min(...n)],endPoint:[Math.max(...t),Math.max(...n)],landmarks:e}},jb=[[1,0,0],[0,1,0],[0,0,1]],Kxe=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),Zxe=(e,t)=>Kxe(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var FN=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],gu=(e,t)=>{let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n},Yxe=(e,t)=>{let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n},ON=(e,t)=>{let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(gu(e[r],Yxe(t,a)))}return n},LN=(e,t)=>{let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=FN(t[0],t[1]),o=ON(a,r),i=FN(-t[0],-t[1]);return ON(o,i)},Jxe=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-gu(t[0],n),-gu(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]},Qxe=(e,t)=>[gu(e,t[0]),gu(e,t[1])];function BN(e){let t=e===192?{strides:[4],anchors:[1]}:{strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let u=r*(l+.5);for(let c=0;c<o;c++){let p=r*(c+.5);for(let d=0;d<i;d++)n.push([p,u])}}}return n}function WN(e,t,n,s,r){let a=Sd(t),o=e.map(h=>[a[0]/r*(h[0]-r/2),a[1]/r*(h[1]-r/2),h[2]||0]),i=n&&n!==0&&Math.abs(n)>.2,l=i?LN(n,[0,0]):jb,u=i?o.map(h=>[...Qxe(h,l),h[2]]):o,c=i?Jxe(s):jb,p=Z2(t),d=[gu(p,c[0]),gu(p,c[1])];return u.map(h=>[Math.trunc(h[0]+d[0]),Math.trunc(h[1]+d[1]),Math.trunc(h[2]||0)])}function VN(e,t,n,s){let r=t.landmarks.length>=Vb.count?Vb.symmetryLine:fu.symmetryLine,a=0,o=jb,i;if(e&&he.kernels.includes("rotatewithoffset"))if(a=Zxe(t.landmarks[r[0]],t.landmarks[r[1]]),a&&a!==0&&Math.abs(a)>.2){let u=Z2(t),c=[u[0]/n.shape[2],u[1]/n.shape[1]],p=Se.rotateWithOffset(n,a,0,c);o=LN(-a,u),i=Hb(t,p,[s,s]),J(p)}else i=Hb(t,n,[s,s]);else i=Hb(t,n,[s,s]);return[a,o,i]}var ebe=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...n)+(Math.max(...n)-Math.min(...n))/2]},UN=(e,t)=>{let n=ebe(e),s=Sd(t);return{startPoint:[n[0]-s[0]/2,n[1]-s[1]/2],endPoint:[n[0]+s[0]/2,n[1]+s[1]/2]}};var GN=6,tbe=1.4,oa,HN=null,Ti=0,tf=null,Cd=()=>Ti;async function jN(e){var t;return he.initial&&(oa=null),oa?e.debug&&ae("cached model:",oa.modelUrl):oa=await je((t=e.face.detector)==null?void 0:t.modelPath),Ti=oa.inputs[0].shape?oa.inputs[0].shape[2]:0,tf=Ce(Ti,"int32"),HN=ur(BN(Ti)),oa}function nbe(e){let t={};t.boxStarts=Le(e,[0,1],[-1,2]),t.centers=ue(t.boxStarts,HN),t.boxSizes=Le(e,[0,3],[-1,2]),t.boxSizesNormalized=fe(t.boxSizes,tf),t.centersNormalized=fe(t.centers,tf),t.halfBoxSize=fe(t.boxSizesNormalized,rt.tf2),t.starts=me(t.centersNormalized,t.halfBoxSize),t.ends=ue(t.centersNormalized,t.halfBoxSize),t.startNormalized=z(t.starts,tf),t.endNormalized=z(t.ends,tf);let n=nu([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(s=>J(t[s])),n}async function qN(e,t){var i,l,u,c;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let n={};n.resized=Se.resizeBilinear(e,[Ti,Ti]),n.div=fe(n.resized,rt.tf127),n.normalized=me(n.div,rt.tf05);let s=oa==null?void 0:oa.execute(n.normalized);if(Array.isArray(s)&&s.length>2){let p=s.sort((d,h)=>d.size-h.size);n.concat384=St([p[0],p[2]],2),n.concat512=St([p[1],p[3]],2),n.concat=St([n.concat512,n.concat384],1),n.batch=st(n.concat,0)}else Array.isArray(s)?n.batch=st(s[0]):n.batch=st(s);J(s),n.boxes=nbe(n.batch),n.logits=Le(n.batch,[0,0],[-1,1]),n.sigmoid=Cn(n.logits),n.scores=st(n.sigmoid),n.nms=await Se.nonMaxSuppressionAsync(n.boxes,n.scores,((i=t.face.detector)==null?void 0:i.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((u=t.face.detector)==null?void 0:u.minConfidence)||0);let r=await n.nms.array(),a=[],o=await n.scores.data();for(let p=0;p<r.length;p++){let d=o[r[p]];if(d>(((c=t.face.detector)==null?void 0:c.minConfidence)||0)){let h={};h.bbox=Le(n.boxes,[r[p],0],[1,-1]),h.slice=Le(n.batch,[r[p],GN-1],[1,-1]),h.squeeze=st(h.slice),h.landmarks=V(h.squeeze,[GN,-1]);let f=await h.bbox.data(),m={startPoint:[f[0],f[1]],endPoint:[f[2],f[3]],landmarks:await h.landmarks.array(),confidence:d},g=MN(m,[(e.shape[2]||0)/Ti,(e.shape[1]||0)/Ti]),y=Q2(g,t.face.scale||tbe),x=e1(y);a.push(x),Object.keys(h).forEach(A=>J(h[A]))}}return Object.keys(n).forEach(p=>J(n[p])),a}var t1={};ha(t1,{connected:()=>Kb,kpt:()=>Xb});var Xb=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],Kb={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var KN=224,sbe,rbe=5,n1=[8,16,32,32,32];function ZN(){let e=[],t=0;for(;t<rbe;){let n=0,s=t;for(;s<n1.length&&n1[s]===n1[t];)n+=2,s++;let r=n1[t],a=Math.ceil(KN/r),o=Math.ceil(KN/r);for(let i=0;i<a;++i)for(let l=0;l<o;++l)for(let u=0;u<n;++u)e.push({x:(l+.5)/o,y:(i+.5)/a});t=s}sbe={x:Ft(e.map(n=>n.x)),y:Ft(e.map(n=>n.y))}}function ja(e,t=[1,1]){let n=[e.map(i=>i[0]),e.map(i=>i[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[s[0],s[1],r[0]-s[0],r[1]-s[1]],o=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:o}}function YN(e,t=[1,1]){let n=[e.map(u=>u[0]),e.map(u=>u[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[(s[0]+r[0])/2,(s[1]+r[1])/2],o=Math.max(a[0]-s[0],a[1]-s[1],-a[0]+r[0],-a[1]+r[1]),i=[Math.trunc(a[0]-o),Math.trunc(a[1]-o),Math.trunc(2*o),Math.trunc(2*o)],l=[i[0]/t[0],i[1]/t[1],i[2]/t[0],i[3]/t[1]];return{box:i,boxRaw:l}}function s1(e,t){let n=[e[2]*t,e[3]*t];return[e[0]-(n[0]-e[2])/2,e[1]-(n[1]-e[3])/2,n[0],n[1]]}var eE={initial:!0},zs={detector:null,landmarks:null},Td={detector:[224,224],landmarks:[256,256]},Zb=Number.MAX_SAFE_INTEGER,obe={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},a1=null,nf,Ni=[[0,0],[0,0],[0,0],[0,0]],JN=0,QN=e=>1-1/(1+Math.exp(e));async function tE(e){if(eE.initial&&(zs.detector=null),!zs.detector&&e.body.detector&&e.body.detector.modelPath){zs.detector=await je(e.body.detector.modelPath);let t=Object.values(zs.detector.modelSignature.inputs);Td.detector[0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,Td.detector[1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}else e.debug&&zs.detector&&ae("cached model:",zs.detector.modelUrl);return ZN(),zs.detector}async function nE(e){if(eE.initial&&(zs.landmarks=null),zs.landmarks)e.debug&&ae("cached model:",zs.landmarks.modelUrl);else{zs.landmarks=await je(e.body.modelPath);let t=Object.values(zs.landmarks.modelSignature.inputs);Td.landmarks[0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,Td.landmarks[1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return zs.landmarks}function ibe(e,t){var r,a;let n={};if(!((r=e==null?void 0:e.shape)!=null&&r[1])||!((a=e==null?void 0:e.shape)!=null&&a[2]))return e;let s;if(nf&&(n.cropped=Se.cropAndResize(e,[nf],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let o=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],i=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];Ni=[[0,0],o,i,[0,0]],n.pad=Ys(n.cropped||e,Ni),n.resize=Se.resizeBilinear(n.pad,[t,t]),s=fe(n.resize,rt.tf255)}else e.shape[1]!==t?(n.resize=Se.resizeBilinear(n.cropped||e,[t,t]),s=fe(n.resize,rt.tf255)):s=fe(n.cropped||e,rt.tf255);return Object.keys(n).forEach(o=>J(n[o])),s}function lbe(e,t){for(let n of e)n.position=[Math.trunc(n.position[0]*(t[0]+Ni[2][0]+Ni[2][1])/t[0]-Ni[2][0]),Math.trunc(n.position[1]*(t[1]+Ni[1][0]+Ni[1][1])/t[1]-Ni[1][0]),n.position[2]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1],2*n.position[2]/(t[0]+t[1])];if(nf)for(let n of e)n.positionRaw=[n.positionRaw[0]+nf[1],n.positionRaw[1]+nf[0],n.positionRaw[2]],n.position=[Math.trunc(n.positionRaw[0]*t[0]),Math.trunc(n.positionRaw[1]*t[1]),n.positionRaw[2]];return e}function ube(e){let t=e.find(i=>i.part==="leftPalm"),n=e.find(i=>i.part==="leftWrist"),s=e.find(i=>i.part==="leftIndex");t.position[2]=((n.position[2]||0)+(s.position[2]||0))/2;let r=e.find(i=>i.part==="rightPalm"),a=e.find(i=>i.part==="rightWrist"),o=e.find(i=>i.part==="rightIndex");r.position[2]=((a.position[2]||0)+(o.position[2]||0))/2}async function cbe(e,t,n){var f;let s={};[s.ld,s.segmentation,s.heatmap,s.world,s.poseflag]=(f=zs.landmarks)==null?void 0:f.execute(e,obe.landmarks);let r=(await s.poseflag.data())[0],a=await s.ld.data(),o=await s.world.data();Object.keys(s).forEach(m=>J(s[m]));let i=[],l=5;for(let m=0;m<a.length/l;m++){let g=QN(a[l*m+3]),y=QN(a[l*m+4]),x=Math.trunc(100*g*y*r)/100,A=[a[l*m+0]/Td.landmarks[0],a[l*m+1]/Td.landmarks[1],a[l*m+2]+0],b=[Math.trunc(n[0]*A[0]),Math.trunc(n[1]*A[1]),A[2]],w=[o[l*m+0],o[l*m+1],o[l*m+2]+0];i.push({part:Xb[m],positionRaw:A,position:b,distance:w,score:x})}if(r<(t.body.minConfidence||0))return null;ube(i);let u=lbe(i,n),c=u.map(m=>m.position),p=ja(c,[n[0],n[1]]),d={};for(let[m,g]of Object.entries(Kb)){let y=[];for(let x=0;x<g.length-1;x++){let A=u.find(w=>w.part===g[x]),b=u.find(w=>w.part===g[x+1]);A&&b&&y.push([A.position,b.position])}d[m]=y}return{id:0,score:Math.trunc(100*r)/100,box:p.box,boxRaw:p.boxRaw,keypoints:u,annotations:d}}async function Yb(e,t){let n=[e.shape[2]||0,e.shape[1]||0],s=(t.body.skipTime||0)>le()-JN,r=Zb<(t.body.skipFrames||0);if(t.skipAllowed&&s&&r&&a1!==null)Zb++;else{let a={};a.landmarks=ibe(e,256),a1=await cbe(a.landmarks,t,n),Object.keys(a).forEach(o=>J(a[o])),JN=le(),Zb=0}return a1?[a1]:[]}var Nd=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var qa,yu=0,Jb=[],rE=0,Qb=Number.MAX_SAFE_INTEGER;async function aE(e){if(he.initial&&(qa=null),qa)e.debug&&ae("cached model:",qa.modelUrl);else{qa=await je(e.object.modelPath);let t=Object.values(qa.modelSignature.inputs);yu=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return qa}async function dbe(e,t,n){if(!e)return[];let s={},r=[],a=await e.array();s.squeeze=st(e);let o=Zt(s.squeeze,6,1);s.stack=on([o[1],o[0],o[3],o[2]],1),s.boxes=st(s.stack),s.scores=st(o[4]),s.classes=st(o[5]),J([e,...o]),s.nms=await Se.nonMaxSuppressionAsync(s.boxes,s.scores,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence||0);let i=await s.nms.data(),l=0;for(let u of Array.from(i)){let c=Math.trunc(100*a[0][u][4])/100,p=a[0][u][5],d=Nd[p].label,[h,f]=[a[0][u][0]/yu,a[0][u][1]/yu],m=[h,f,a[0][u][2]/yu-h,a[0][u][3]/yu-f],g=[Math.trunc(m[0]*t[0]),Math.trunc(m[1]*t[1]),Math.trunc(m[2]*t[0]),Math.trunc(m[3]*t[1])];r.push({id:l++,score:c,class:p,label:d,box:g,boxRaw:m})}return Object.keys(s).forEach(u=>J(s[u])),r}async function e4(e,t){let n=(t.object.skipTime||0)>le()-rE,s=Qb<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&Jb.length>0?(Qb++,Jb):(Qb=0,new Promise(async r=>{let a=[e.shape[2]||0,e.shape[1]||0],o=Se.resizeBilinear(e,[yu,yu]),i=t.object.enabled?qa==null?void 0:qa.execute(o,["tower_0/detections"]):null;rE=le(),J(o);let l=await dbe(i,a,t);Jb=l,r(l)}))}var o1={};ha(o1,{connected:()=>n4,kpt:()=>t4});var t4=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],n4={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var Vn,iE=0,cs={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},s4=Number.MAX_SAFE_INTEGER;async function lE(e){return he.initial&&(Vn=null),Vn?e.debug&&ae("cached model:",Vn.modelUrl):Vn=await je(e.body.modelPath),Vn}async function pbe(e,t){let[n,s]=e.shape,r=V(e,[s*n]),a=hn(r,0),o=(await a.data())[0];if(o>t){let i=Rs(r,0),l=ru(i,n),u=(await l.data())[0],c=fe(i,n),p=(await c.data())[0];return J([r,a,i,l,c]),[u,p,o]}return J([r,a]),[0,0,o]}async function r4(e,t){let n=(t.body.skipTime||0)>le()-iE,s=s4<(t.body.skipFrames||0);return t.skipAllowed&&n&&s&&Object.keys(cs.keypoints).length>0?(s4++,[cs]):(s4=0,new Promise(async r=>{let a=Z(()=>{if(!(Vn!=null&&Vn.inputs[0].shape))return null;let p=Se.resizeBilinear(e,[Vn.inputs[0].shape[2],Vn.inputs[0].shape[1]],!1),d=z(p,rt.tf2);return me(d,rt.tf1)}),o;if(t.body.enabled&&(o=Vn==null?void 0:Vn.execute(a)),iE=le(),J(a),o){cs.keypoints.length=0;let p=st(o);J(o);let d=Rn(p,2);J(p);for(let h=0;h<d.length;h++){let[f,m,g]=await pbe(d[h],t.body.minConfidence);g>(t.body.minConfidence||0)&&cs.keypoints.push({score:Math.round(100*g)/100,part:t4[h],positionRaw:[f/Vn.inputs[0].shape[2],m/Vn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*f/Vn.inputs[0].shape[2]),Math.round(e.shape[1]*m/Vn.inputs[0].shape[1])]})}d.forEach(h=>J(h))}cs.score=cs.keypoints.reduce((p,d)=>d.score>p?d.score:p,0);let i=cs.keypoints.map(p=>p.position[0]),l=cs.keypoints.map(p=>p.position[1]);cs.box=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)];let u=cs.keypoints.map(p=>p.positionRaw[0]),c=cs.keypoints.map(p=>p.positionRaw[1]);cs.boxRaw=[Math.min(...u),Math.min(...c),Math.max(...u)-Math.min(...u),Math.max(...c)-Math.min(...c)];for(let[p,d]of Object.entries(n4)){let h=[];for(let f=0;f<d.length-1;f++){let m=cs.keypoints.find(y=>y.part===d[f]),g=cs.keypoints.find(y=>y.part===d[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}cs.annotations[p]=h}r([cs])}))}var hbe=["angry","disgust","fear","happy","sad","surprise","neutral"],er,i1=[],cE=0,dE=0,a4=Number.MAX_SAFE_INTEGER;async function pE(e){var t;return he.initial&&(er=null),er?e.debug&&ae("cached model:",er.modelUrl):er=await je((t=e.face.emotion)==null?void 0:t.modelPath),er}async function o4(e,t,n,s){var o,i;if(!er)return[];let r=a4<(((o=t.face.emotion)==null?void 0:o.skipFrames)||0),a=(((i=t.face.emotion)==null?void 0:i.skipTime)||0)>le()-dE;return t.skipAllowed&&a&&r&&cE===s&&i1[n]&&i1[n].length>0?(a4++,i1[n]):(a4=0,new Promise(async l=>{var c;let u=[];if((c=t.face.emotion)!=null&&c.enabled){let p={},d=er!=null&&er.inputs[0].shape?er.inputs[0].shape[2]:0;p.resize=Se.resizeBilinear(e,[d,d],!1),p.channels=z(p.resize,rt.rgb),p.grayscale=ke(p.channels,3,!0),p.grayscaleSub=me(p.grayscale,rt.tf05),p.grayscaleMul=z(p.grayscaleSub,rt.tf2),p.emotion=er==null?void 0:er.execute(p.grayscaleMul),dE=le();let h=await p.emotion.data();for(let f=0;f<h.length;f++)h[f]>(t.face.emotion.minConfidence||0)&&u.push({score:Math.min(.99,Math.trunc(100*h[f])/100),emotion:hbe[f]});u.sort((f,m)=>m.score-f.score),Object.keys(p).forEach(f=>J(p[f]))}i1[n]=u,cE=s,l(u)}))}var br,i4=[],fE=0,mE=0,gE=Number.MAX_SAFE_INTEGER;async function yE(e){var t;return he.initial&&(br=null),br?e.debug&&ae("cached model:",br.modelUrl):br=await je((t=e.face.mobilefacenet)==null?void 0:t.modelPath),br}async function l4(e,t,n,s){var o,i;if(!br)return[];let r=gE<(((o=t.face.mobilefacenet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.mobilefacenet)==null?void 0:i.skipTime)||0)>le()-mE;return t.skipAllowed&&a&&r&&fE===s&&i4[n]?(gE++,i4[n]):new Promise(async l=>{var c;let u=[];if(((c=t.face.mobilefacenet)==null?void 0:c.enabled)&&(br==null?void 0:br.inputs[0].shape)){let p={};p.crop=Se.resizeBilinear(e,[br.inputs[0].shape[2],br.inputs[0].shape[1]],!1),p.data=br.execute(p.crop);let d=await p.data.data();u=Array.from(d),Object.keys(p).forEach(h=>J(p[h]))}i4[n]=u,fE=s,mE=le(),l(u)})}var vr,u4=[],xE=0,bE=0,vE=Number.MAX_SAFE_INTEGER;async function wE(e){return he.initial&&(vr=null),vr?e.debug&&ae("cached model:",vr.modelUrl):vr=await je(e.face.insightface.modelPath),vr}async function c4(e,t,n,s){var o,i;if(!vr)return[];let r=vE<(((o=t.face.insightface)==null?void 0:o.skipFrames)||0),a=(((i=t.face.insightface)==null?void 0:i.skipTime)||0)>le()-bE;return t.skipAllowed&&a&&r&&xE===s&&u4[n]?(vE++,u4[n]):new Promise(async l=>{var c;let u=[];if(((c=t.face.insightface)==null?void 0:c.enabled)&&(vr==null?void 0:vr.inputs[0].shape)){let p={};p.crop=Se.resizeBilinear(e,[vr.inputs[0].shape[2],vr.inputs[0].shape[1]],!1),p.data=vr.execute(p.crop);let d=await p.data.data();u=Array.from(d),Object.keys(p).forEach(h=>J(p[h]))}u4[n]=u,xE=s,bE=le(),l(u)})}var Xa,Ei=0,fbe=2.3,d4=xr.leftEyeLower0,p4=xr.rightEyeLower0,Ed={leftBounds:[d4[0],d4[d4.length-1]],rightBounds:[p4[0],p4[p4.length-1]]},Rd={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function TE(e){var t;return he.initial&&(Xa=null),Xa?e.debug&&ae("cached model:",Xa.modelUrl):Xa=await je((t=e.face.iris)==null?void 0:t.modelPath),Ei=Xa.inputs[0].shape?Xa.inputs[0].shape[2]:0,Ei===-1&&(Ei=64),Xa}function l1(e,t,n,s){for(let r=0;r<Ub.length;r++){let{key:a,indices:o}=Ub[r],i=xr[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let u=o[l];e[i[l]]=[t[u][0],t[u][1],(t[u][2]+e[i[l]][2])/2]}}}var mbe=e=>{let t=e[Ed.leftBounds[0]][2],n=e[Ed.rightBounds[0]][2];return t-n},IE=(e,t,n,s,r,a=!1)=>{let o=e1(Q2(zN([e[n],e[s]]),fbe)),i=Sd(o),l=Se.cropAndResize(t,[[o.startPoint[1]/r,o.startPoint[0]/r,o.endPoint[1]/r,o.endPoint[0]/r]],[0],[Ei,Ei]);if(a&&he.kernels.includes("flipleftright")){let u=Se.flipLeftRight(l);J(l),l=u}return{box:o,boxSize:i,crop:l}},SE=(e,t,n,s=!1)=>{let r=[];for(let a=0;a<Rd.numCoordinates;a++){let o=e[a*3],i=e[a*3+1],l=e[a*3+2];r.push([(s?1-o/Ei:o/Ei)*n[0]+t.startPoint[0],i/Ei*n[1]+t.startPoint[1],l])}return{rawCoords:r,iris:r.slice(Rd.index)}},CE=(e,t,n)=>{let s=e[xr[`${n}EyeUpper0`][Rd.upperCenter]][2],r=e[xr[`${n}EyeLower0`][Rd.lowerCenter]][2],a=(s+r)/2;return t.map((o,i)=>{let l=a;return i===2?l=s:i===4&&(l=r),[o[0],o[1],l]})};async function NE(e,t,n,s){if(!Xa)return n.debug&&ae("face mesh iris detection requested, but model is not loaded"),e;let{box:r,boxSize:a,crop:o}=IE(e,t,Ed.leftBounds[0],Ed.leftBounds[1],s,!0),{box:i,boxSize:l,crop:u}=IE(e,t,Ed.rightBounds[0],Ed.rightBounds[1],s,!0),c=St([o,u]);J(o),J(u);let p=Xa.execute(c);J(c);let d=await p.data();J(p);let h=d.slice(0,Rd.numCoordinates*3),{rawCoords:f,iris:m}=SE(h,r,a,!0),g=d.slice(Rd.numCoordinates*3),{rawCoords:y,iris:x}=SE(g,i,l,!1),A=mbe(e);Math.abs(A)<30?(l1(e,f,"left",null),l1(e,y,"right",null)):A<1?l1(e,f,"left",["EyeUpper0","EyeLower0"]):l1(e,y,"right",["EyeUpper0","EyeLower0"]);let b=CE(e,m,"left"),w=CE(e,x,"right");return e.concat(b).concat(w)}var gbe=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],ybe=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],Abe=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],xbe=[[474,475],[475,476],[476,477],[477,474]],bbe=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],vbe=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],wbe=[[469,470],[470,471],[471,472],[472,469]],kbe=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]];function Ri(e){let t=e.map(n=>n[0]);return t.push(e[e.length-1][1]),t}var Ibe={lips:Ri(gbe),leftEye:Ri(ybe),leftEyebrow:Ri(Abe),leftIris:Ri(xbe),rightEye:Ri(bbe),rightEyebrow:Ri(vbe),rightIris:Ri(wbe),faceOval:Ri(kbe)},Sbe=Object.entries(Ibe).map(([e,t])=>t.map(n=>[n,e])).flat(),qSe=new Map(Sbe),sf=[61,146,91,181,84,17,314,405,321,375,291,185,40,39,37,0,267,269,270,409,78,95,88,178,87,14,317,402,318,324,308,191,80,81,82,13,312,311,310,415,76,77,90,180,85,16,315,404,320,307,306,184,74,73,72,11,302,303,304,408,62,96,89,179,86,15,316,403,319,325,292,183,42,41,38,12,268,271,272,407],Au=[33,7,163,144,145,153,154,155,133,246,161,160,159,158,157,173,130,25,110,24,23,22,26,112,243,247,30,29,27,28,56,190,226,31,228,229,230,231,232,233,244,113,225,224,223,222,221,189,35,124,46,53,52,65,143,111,117,118,119,120,121,128,245,156,70,63,105,66,107,55,193],xu=[263,249,390,373,374,380,381,382,362,466,388,387,386,385,384,398,359,255,339,254,253,252,256,341,463,467,260,259,257,258,286,414,446,261,448,449,450,451,452,453,464,342,445,444,443,442,441,413,265,353,276,283,282,295,372,340,346,347,348,349,350,357,465,383,300,293,334,296,336,285,417];async function _E(e,t){let n={lips:await t.filter(a=>a.size===160)[0].data(),irisL:await t.filter(a=>a.size===10)[0].data(),eyeL:await t.filter(a=>a.size===142)[0].data(),irisR:await t.filter(a=>a.size===10)[1].data(),eyeR:await t.filter(a=>a.size===142)[1].data()},s=Au.reduce((a,o)=>a+=e[o][2],0)/Au.length;for(let a=0;a<n.irisL.length/2;a++)e.push([n.irisL[2*a+0],n.irisL[2*a+1],s]);let r=xu.reduce((a,o)=>a+=e[o][2],0)/xu.length;for(let a=0;a<n.irisR.length/2;a++)e.push([n.irisR[2*a+0],n.irisR[2*a+1],r]);for(let a=0;a<n.eyeL.length/2;a++)e[Au[a]]=[n.eyeL[2*a+0],n.eyeL[2*a+1],e[Au[a]][2]];for(let a=0;a<n.eyeR.length/2;a++)e[xu[a]]=[n.eyeR[2*a+0],n.eyeR[2*a+1],e[xu[a]][2]];for(let a=0;a<n.lips.length/2;a++)e[sf[a]]=[n.lips[2*a+0],n.lips[2*a+1],e[sf[a]][2]];return e}var ia={boxes:[],skipped:Number.MAX_SAFE_INTEGER,timestamp:0},Un=null,rf=0;async function DE(e,t){var l,u,c,p,d,h,f,m,g,y;let n=(((l=t.face.detector)==null?void 0:l.skipTime)||0)>le()-ia.timestamp,s=ia.skipped<(((u=t.face.detector)==null?void 0:u.skipFrames)||0);!t.skipAllowed||!n||!s||ia.boxes.length===0?(ia.boxes=await qN(e,t),ia.timestamp=le(),ia.skipped=0):ia.skipped++;let r=[],a=[],o=0,i=rf;for(let x=0;x<ia.boxes.length;x++){let A=ia.boxes[x],b=0,w,I={id:o++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if([b,w,I.tensor]=VN((c=t.face.detector)==null?void 0:c.rotation,A,e,(p=t.face.mesh)!=null&&p.enabled?rf:Cd()),t.filter.equalization){let k=I.tensor?await G2(I.tensor):void 0;J(I.tensor),k&&(I.tensor=k)}if(I.boxScore=Math.round(100*A.confidence)/100,(d=t.face.mesh)!=null&&d.enabled)if(!Un)t.debug&&ae("face mesh detection requested, but model is not loaded");else{if(((h=t.face.attention)==null?void 0:h.enabled)&&!he.kernels.includes("atan2"))return J(I.tensor),r;let k=Un.execute(I.tensor),_=await k.find(D=>D.shape[D.shape.length-1]===1).data();if(I.faceScore=Math.round(100*_[0])/100,I.faceScore<(((f=t.face.detector)==null?void 0:f.minConfidence)||1)){if(A.confidence=I.faceScore,t.face.mesh.keepInvalid){I.box=Y2(A,e),I.boxRaw=J2(A,e),I.score=I.boxScore,I.mesh=A.landmarks.map(D=>[(A.startPoint[0]+A.endPoint[0])/2+(A.endPoint[0]+A.startPoint[0])*D[0]/Cd(),(A.startPoint[1]+A.endPoint[1])/2+(A.endPoint[1]+A.startPoint[1])*D[1]/Cd()]),I.meshRaw=I.mesh.map(D=>[D[0]/(e.shape[2]||1),D[1]/(e.shape[1]||1),(D[2]||0)/i]);for(let D of Object.keys(fu))I.annotations[D]=[I.mesh[fu[D]]]}}else{let D=k.find(M=>M.shape[M.shape.length-1]===1404),R=V(D,[-1,3]),P=await R.array();J(R),(m=t.face.attention)!=null&&m.enabled?P=await _E(P,k):(g=t.face.iris)!=null&&g.enabled&&(P=await NE(P,I.tensor,t,rf)),I.mesh=WN(P,A,b,w,rf),I.meshRaw=I.mesh.map(M=>[M[0]/(e.shape[2]||0),M[1]/(e.shape[1]||0),(M[2]||0)/i]);for(let M of Object.keys(xr))I.annotations[M]=xr[M].map(W=>I.mesh[W]);I.score=I.faceScore;let T={...UN(I.mesh,A),confidence:A.confidence,landmarks:A.landmarks};I.box=Y2(T,e),I.boxRaw=J2(T,e),a.push(T)}J(k)}else{I.box=Y2(A,e),I.boxRaw=J2(A,e),I.score=I.boxScore,I.mesh=A.landmarks.map(k=>[(A.startPoint[0]+A.endPoint[0])/2+(A.endPoint[0]+A.startPoint[0])*k[0]/Cd(),(A.startPoint[1]+A.endPoint[1])/2+(A.endPoint[1]+A.startPoint[1])*k[1]/Cd()]),I.meshRaw=I.mesh.map(k=>[k[0]/(e.shape[2]||0),k[1]/(e.shape[1]||0),(k[2]||0)/i]);for(let k of Object.keys(fu))I.annotations[k]=[I.mesh[fu[k]]]}I.score>(((y=t.face.detector)==null?void 0:y.minConfidence)||1)?r.push(I):J(I.tensor)}return ia.boxes=a,r}async function $E(e){var t,n,s,r;return he.initial&&(Un=null),((t=e.face.attention)==null?void 0:t.enabled)&&(Un==null?void 0:Un.signature)&&Object.keys(((n=Un==null?void 0:Un.signature)==null?void 0:n.outputs)||{}).length<6&&(Un=null),Un?e.debug&&ae("cached model:",Un.modelUrl):(s=e.face.attention)!=null&&s.enabled?Un=await je(e.face.attention.modelPath):Un=await je((r=e.face.mesh)==null?void 0:r.modelPath),rf=Un.inputs[0].shape?Un.inputs[0].shape[2]:0,Un}var PE=mu,FE=ef;var Ls,u1=[],OE=0,ME=0,f4=Number.MAX_SAFE_INTEGER;async function zE(e){var t;return he.initial&&(Ls=null),Ls?e.debug&&ae("cached model:",Ls.modelUrl):Ls=await je((t=e.face.description)==null?void 0:t.modelPath),Ls}function m4(e){let t=e.image||e.tensor||e;if(!(Ls!=null&&Ls.inputs[0].shape))return t;let n=Se.resizeBilinear(t,[Ls.inputs[0].shape[2],Ls.inputs[0].shape[1]],!1),s=z(n,rt.tf255);return J(n),s}async function g4(e,t,n,s){var o,i,l,u;if(!Ls)return{age:0,gender:"unknown",genderScore:0,descriptor:[]};let r=f4<(((o=t.face.description)==null?void 0:o.skipFrames)||0),a=(((i=t.face.description)==null?void 0:i.skipTime)||0)>le()-OE;return t.skipAllowed&&r&&a&&ME===s&&((l=u1[n])==null?void 0:l.age)&&((u=u1[n])==null?void 0:u.age)>0?(f4++,u1[n]):(f4=0,new Promise(async c=>{var d;let p={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((d=t.face.description)!=null&&d.enabled){let h=m4(e),f=Ls==null?void 0:Ls.execute(h);OE=le(),J(h);let g=await f.find(E=>E.shape[1]===1).data(),y=Math.trunc(200*Math.abs(g[0]-.5))/100;y>(t.face.description.minConfidence||0)&&(p.gender=g[0]<=.5?"female":"male",p.genderScore=Math.min(.99,y));let x=Rs(f.find(E=>E.shape[1]===100),1),A=(await x.data())[0];J(x);let w=await f.find(E=>E.shape[1]===100).data();p.age=Math.round(w[A-1]>w[A+1]?10*A-100*w[A-1]:10*A+100*w[A+1])/10;let I=f.find(E=>E.shape[1]===1024),k=I?await I.data():[];p.descriptor=Array.from(k),f.forEach(E=>J(E))}u1[n]=p,ME=s,c(p)}))}function c1(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function af(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function WE(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return Se.cropAndResize(t,a,[0],n)}function VE(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function d1(e,t=1.5){let n=af(e),s=c1(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function p1(e){let t=af(e),n=c1(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function Tbe(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function UE(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Tbe(n)}var LE=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function _i(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function Nbe(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function BE(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(_i(e[r],Nbe(t,a)))}return n}function A4(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=LE(t[0],t[1]),o=BE(a,r),i=LE(-t[0],-t[1]);return BE(o,i)}function GE(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-_i(t[0],n),-_i(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function x4(e,t){return[_i(e,t[0]),_i(e,t[1])]}var jE=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var h1=class{constructor(t){ge(this,"model");ge(this,"anchors");ge(this,"anchorsTensor");ge(this,"inputSize");ge(this,"inputSizeTensor");ge(this,"doubleInputSizeTensor");var n,s,r,a;this.model=t,this.anchors=jE.map(o=>[o.x,o.y]),this.anchorsTensor=ur(this.anchors),this.inputSize=((a=(r=(s=(n=this==null?void 0:this.model)==null?void 0:n.inputs)==null?void 0:s[0])==null?void 0:r.shape)==null?void 0:a[2])||0,this.inputSizeTensor=Ft([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Ft([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let n={};n.boxOffsets=Le(t,[0,0],[-1,2]),n.boxSizes=Le(t,[0,2],[-1,2]),n.div=fe(n.boxOffsets,this.inputSizeTensor),n.boxCenterPoints=ue(n.div,this.anchorsTensor),n.halfBoxSizes=fe(n.boxSizes,this.doubleInputSizeTensor),n.sub=me(n.boxCenterPoints,n.halfBoxSizes),n.startPoints=z(n.sub,this.inputSizeTensor),n.add=ue(n.boxCenterPoints,n.halfBoxSizes),n.endPoints=z(n.add,this.inputSizeTensor);let s=nu([n.startPoints,n.endPoints],1);return Object.keys(n).forEach(r=>J(n[r])),s}normalizeLandmarks(t,n){let s={};s.reshape=V(t,[-1,7,2]),s.div=fe(s.reshape,this.inputSizeTensor),s.landmarks=ue(s.div,this.anchors[n]?this.anchors[n]:0);let r=z(s.landmarks,this.inputSizeTensor);return Object.keys(s).forEach(a=>J(s[a])),r}async predict(t,n){var i;let s={};s.resize=Se.resizeBilinear(t,[this.inputSize,this.inputSize]),s.div=fe(s.resize,rt.tf127),s.image=me(s.div,rt.tf1),s.batched=this.model.execute(s.image),s.predictions=st(s.batched),s.slice=Le(s.predictions,[0,0],[-1,1]),s.sigmoid=Cn(s.slice),s.scores=st(s.sigmoid);let r=await s.scores.data();s.boxes=Le(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await Se.nonMaxSuppressionAsync(s.norm,s.scores,3*(((i=n.hand)==null?void 0:i.maxDetected)||1),n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let l of a){let u={};u.box=Le(s.norm,[l,0],[1,-1]),u.slice=Le(s.predictions,[l,5],[1,14]),u.norm=this.normalizeLandmarks(u.slice,l),u.palmLandmarks=V(u.norm,[-1,2]);let c=await u.box.data(),p=c.slice(0,2),d=c.slice(2,4),h=await u.palmLandmarks.array(),f={startPoint:p,endPoint:d,palmLandmarks:h,confidence:r[l]},m=VE(f,[(t.shape[2]||1)/this.inputSize,(t.shape[1]||0)/this.inputSize]);o.push(m),Object.keys(u).forEach(g=>J(u[g]))}return Object.keys(s).forEach(l=>J(s[l])),o}};var _be=5,qE=1.65,XE=[0,5,9,13,17,1,2],Dbe=0,$be=2,KE=0,f1=class{constructor(t,n){ge(this,"handDetector");ge(this,"handPoseModel");ge(this,"inputSize");ge(this,"storedBoxes");ge(this,"skipped");ge(this,"detectedHands");var s,r,a;this.handDetector=t,this.handPoseModel=n,this.inputSize=((a=(r=(s=this.handPoseModel)==null?void 0:s.inputs)==null?void 0:r[0].shape)==null?void 0:a[2])||0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>x4([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return d1(p1(r),_be)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=d1(p1(n),qE);s.palmLandmarks=[];for(let r=0;r<XE.length;r++)s.palmLandmarks.push(t[XE[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=c1(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(h=>[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=A4(s,[0,0]),u=i.map(h=>[...x4(h,l),h[2]]),c=GE(r),p=[...af(n),1],d=[_i(p,c[0]),_i(p,c[1])];return u.map(h=>[Math.trunc(h[0]+d[0]),Math.trunc(h[1]+d[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r,a=(n.hand.skipTime||0)>le()-KE,o=this.skipped<(n.hand.skipFrames||0);n.skipAllowed&&a&&o&&(r=await this.handDetector.predict(t,n),this.skipped=0),n.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let i=[];for(let l=0;l<this.storedBoxes.length;l++){let u=this.storedBoxes[l];if(!!u)if(n.hand.landmarks){let c=n.hand.rotation?UE(u.palmLandmarks[Dbe],u.palmLandmarks[$be]):0,p=af(u),d=[p[0]/t.shape[2],p[1]/t.shape[1]],h=n.hand.rotation&&he.kernels.includes("rotatewithoffset")?Se.rotateWithOffset(t,c,0,d):t.clone(),f=A4(-c,p),m=s?this.getBoxForPalmLandmarks(u.palmLandmarks,f):u,g=WE(m,h,[this.inputSize,this.inputSize]),y=fe(g,rt.tf255);J(g),J(h);let[x,A]=this.handPoseModel.execute(y);KE=le(),J(y);let b=(await x.data())[0];if(J(x),b>=n.hand.minConfidence/4){let w=V(A,[-1,3]),I=await w.array();J(A),J(w);let k=this.transformRawCoords(I,m,c,f),E=this.getBoxForHandLandmarks(k);this.storedBoxes[l]={...E,confidence:b};let _={landmarks:k,confidence:b,boxConfidence:u.confidence,fingerConfidence:b,box:{topLeft:E.startPoint,bottomRight:E.endPoint}};i.push(_)}else this.storedBoxes[l]=null;J(A)}else{let c=d1(p1(u),qE),p={confidence:u.confidence,boxConfidence:u.confidence,fingerConfidence:0,box:{topLeft:c.startPoint,bottomRight:c.endPoint},landmarks:[]};i.push(p)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=i.length,i.length>n.hand.maxDetected&&(i.length=n.hand.maxDetected),i}};var ds={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>ds.nameMapping[e],getPoints:e=>ds.pointsMapping[e]},$i={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>$i.nameMapping[e]},jt={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>jt.nameMapping[e]},Di=class{constructor(t){ge(this,"name");ge(this,"curls");ge(this,"directions");ge(this,"weights");ge(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}direction(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}weight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var{thumb:Br,index:Ka,middle:Za,ring:bu,pinky:vu}=ds,{none:Wr,half:Fbe,full:Vr}=$i,{verticalUp:_d,verticalDown:l9e,horizontalLeft:b4,horizontalRight:Obe,diagonalUpRight:Mbe,diagonalUpLeft:Dd,diagonalDownRight:u9e,diagonalDownLeft:c9e}=jt,Pi=new Di("thumbs up");Pi.curl(Br,Wr,1);Pi.direction(Br,_d,1);Pi.direction(Br,Dd,.25);Pi.direction(Br,Mbe,.25);for(let e of[ds.index,ds.middle,ds.ring,ds.pinky])Pi.curl(e,Vr,1),Pi.direction(e,b4,1),Pi.direction(e,Obe,1);var cn=new Di("victory");cn.curl(Br,Fbe,.5);cn.curl(Br,Wr,.5);cn.direction(Br,_d,1);cn.direction(Br,Dd,1);cn.curl(Ka,Wr,1);cn.direction(Ka,_d,.75);cn.direction(Ka,Dd,1);cn.curl(Za,Wr,1);cn.direction(Za,_d,1);cn.direction(Za,Dd,.75);cn.curl(bu,Vr,1);cn.direction(bu,_d,.2);cn.direction(bu,Dd,1);cn.direction(bu,b4,.2);cn.curl(vu,Vr,1);cn.direction(vu,_d,.2);cn.direction(vu,Dd,1);cn.direction(vu,b4,.2);cn.weight(Ka,2);cn.weight(Za,2);var Fi=new Di("point");Fi.curl(Br,Vr,1);Fi.curl(Ka,Wr,.5);Fi.curl(Za,Vr,.5);Fi.curl(bu,Vr,.5);Fi.curl(vu,Vr,.5);Fi.weight(Ka,2);Fi.weight(Za,2);var Oi=new Di("middle finger");Oi.curl(Br,Wr,1);Oi.curl(Ka,Vr,.5);Oi.curl(Za,Vr,.5);Oi.curl(bu,Vr,.5);Oi.curl(vu,Vr,.5);Oi.weight(Ka,2);Oi.weight(Za,2);var $d=new Di("open palm");$d.curl(Br,Wr,.75);$d.curl(Ka,Wr,.75);$d.curl(Za,Wr,.75);$d.curl(bu,Wr,.75);$d.curl(vu,Wr,.75);var ZE=[Pi,cn,Fi,Oi,$d];var zbe=.7,wu={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function YE(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function QE(e,t){if(!e||!t)return[0,0];let n=YE(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=YE(e[1],e[2],t[1],t[2]);return[n,s]}function JE(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function Lbe(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],u=e[2]-t[2],c=e[2]-n[2],p=t[2]-n[2],d=Math.sqrt(s*s+o*o+u*u),h=Math.sqrt(r*r+i*i+c*c),f=Math.sqrt(a*a+l*l+p*p),m=(f*f+d*d-h*h)/(2*f*d);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let y;return g>wu.NO_CURL_START_LIMIT?y=$i.none:g>wu.HALF_CURL_START_LIMIT?y=$i.half:y=$i.full,y}function eR(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=jt.horizontalLeft:r=jt.horizontalRight:s===Math.abs(t)?t>0?r=jt.horizontalLeft:r=jt.horizontalRight:n>0?r=jt.horizontalLeft:r=jt.horizontalRight,r}function tR(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=jt.verticalDown:r=jt.verticalUp:s===Math.abs(t)?t<0?r=jt.verticalDown:r=jt.verticalUp:n<0?r=jt.verticalDown:r=jt.verticalUp,r}function Bbe(e,t,n,s,r,a,o,i){let l,u=tR(e,t,n,s),c=eR(r,a,o,i);return u===jt.verticalUp?c===jt.horizontalLeft?l=jt.diagonalUpLeft:l=jt.diagonalUpRight:c===jt.horizontalLeft?l=jt.diagonalDownLeft:l=jt.diagonalDownRight,l}function Wbe(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],u=t[1]-n[1],c=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),p=Math.max(Math.abs(i),Math.abs(l),Math.abs(u)),d=0,h=0,f=0,m=p/(c+1e-5);m>1.5?d+=wu.DISTANCE_VOTE_POWER:m>.66?h+=wu.DISTANCE_VOTE_POWER:f+=wu.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),y=Math.sqrt(a*a+l*l),x=Math.sqrt(o*o+u*u),A=Math.max(g,y,x),b=e[0],w=e[1],I=n[0],k=n[1];A===g?(I=n[0],k=n[1]):A===x&&(b=t[0],w=t[1]);let D=QE([b,w],[I,k]),R=JE(D,wu.TOTAL_ANGLE_VOTE_POWER);d+=R[0],h+=R[1],f+=R[2];for(let T of s){let M=JE(T,wu.SINGLE_ANGLE_VOTE_POWER);d+=M[0],h+=M[1],f+=M[2]}let P;return d===Math.max(d,h,f)?P=tR(l,i,u,p):f===Math.max(h,f)?P=eR(a,r,o,c):P=Bbe(l,i,u,p,a,r,o,c),P}function nR(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of ds.all){let o=ds.getPoints(a),i=[],l=[];for(let u of o){let c=e[u[0]],p=e[u[1]],d=QE(c,p),h=d[0],f=d[1];i.push(h),l.push(f)}t.push(i),n.push(l)}for(let a of ds.all){let o=a===ds.thumb?1:0,i=ds.getPoints(a),l=e[i[o][0]],u=e[i[o+1][1]],c=e[i[3][1]],p=Lbe(l,u,c),d=Wbe(l,u,c,t[a].slice(o));s[a]=p,r[a]=d}return{curls:s,directions:r}}function m1(e){if(!e||e.length===0)return null;let t=nR(e),n={};for(let s of ds.all)n[ds.getName(s)]={curl:$i.getName(t.curls[s]),direction:jt.getName(t.directions[s])};return n}function sR(e){let t=[];if(!e||e.length===0)return t;let n=nR(e);for(let s of ZE){let r=s.matchAgainst(n.curls,n.directions);r>=zbe&&t.push({name:s.name,confidence:r})}return t}var rR={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},ku,Iu,aR;async function w4(e,t){let n=await aR.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let c of Object.keys(rR))a[c]=rR[c].map(p=>n[r].landmarks[p]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let c of o)c[0]<i[0]&&(i[0]=c[0]),c[1]<i[1]&&(i[1]=c[1]),c[0]>i[2]&&(i[2]=c[0]),c[1]>i[3]&&(i[3]=c[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let u=m1(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,boxScore:Math.round(100*n[r].boxConfidence)/100,fingerScore:Math.round(100*n[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:u})}return s}async function k4(e){var n,s;he.initial&&(ku=null,Iu=null),!ku||!Iu?[ku,Iu]=await Promise.all([e.hand.enabled?je((n=e.hand.detector)==null?void 0:n.modelPath):null,e.hand.landmarks?je((s=e.hand.skeleton)==null?void 0:s.modelPath):null]):(e.debug&&ae("cached model:",ku.modelUrl),e.debug&&ae("cached model:",Iu.modelUrl));let t=ku?new h1(ku):void 0;return t&&Iu&&(aR=new f1(t,Iu)),[ku,Iu]}var Ct={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Vbe(){let e=Ct.gl;!e||(Ct.extensions=e.getSupportedExtensions())}function iR(e){var t;if(e.config.backend==="humangl"&&(Ct.name in sn().registry&&!((t=Ct==null?void 0:Ct.gl)!=null&&t.getParameter(Ct.gl.VERSION))&&(ae("error: humangl backend invalid context"),g1(e)),!Qy(Ct.name))){try{Ct.canvas=us(100,100)}catch(s){ae("error: cannot create canvas:",s);return}try{if(Ct.gl=Ct.canvas.getContext("webgl2",Ct.webGLattr),!Ct.gl){ae("error: cannot get WebGL context");return}if(!Ct.gl.getParameter(Ct.gl.VERSION).includes("2.0")){ae("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}Ct.canvas&&(Ct.canvas.addEventListener("webglcontextlost",r=>{throw ae("error: humangl:",r.type),ae("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),Ct.canvas.addEventListener("webglcontextrestored",r=>{ae("error: humangl context restored:",r)}),Ct.canvas.addEventListener("webglcontextcreationerror",r=>{ae("error: humangl context create:",r)}))}catch(s){ae("error: cannot get WebGL context:",s);return}try{D2(2,Ct.gl)}catch(s){ae("error: cannot set WebGL context:",s);return}try{let s=new Qu(Ct.gl);eu(Ct.name,()=>new fd(s),Ct.priority)}catch(s){ae("error: cannot register WebGL backend:",s);return}try{Jr("webgl").forEach(r=>{let a={...r,backendName:Ct.name};pr(a)})}catch(s){ae("error: cannot update WebGL backend registration:",s);return}let n=Bn().getGPGPUContext?Bn().getGPGPUContext().gl:null;if(n)ae(`humangl webgl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`);else{ae("error: no current gl context:",n,Ct.gl);return}try{H().flagRegistry.WEBGL_VERSION&&H().set("WEBGL_VERSION",2)}catch(s){ae("error: cannot set WebGL backend flags:",s);return}Vbe(),ae("backend registered:",Ct.name)}}function Ube(){if(!he.kernels.includes("mod")){let e={kernelName:"Mod",backendName:Ln(),kernelFunc:t=>Z(()=>me(t.inputs.a,z(fe(t.inputs.a,t.inputs.b),t.inputs.b)))};pr(e),he.kernels.push("mod")}if(!he.kernels.includes("floormod")){let e={kernelName:"FloorMod",backendName:Ln(),kernelFunc:t=>Z(()=>ue(z(qc(t.inputs.a/t.inputs.b),t.inputs.b),ru(t.inputs.a,t.inputs.b)))};pr(e),he.kernels.push("floormod")}}async function A1(e,t=!1){if(e.state="backend",t||he.initial||e.config.backend&&e.config.backend.length>0&&Ln()!==e.config.backend){let n=le();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&ae("running inside web worker"),he.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&ae("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),he.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&ae(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),he.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")ae("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();if(e.config.debug&&ae("enumerated webgpu adapter:",r),!r)ae("override: backend set to webgpu but browser reports no available gpu"),e.config.backend="humangl";else{let a="requestAdapterInfo"in r?await r.requestAdapterInfo():void 0;ae("webgpu adapter info:",a)}}e.config.backend==="humangl"&&iR(e);let s=Object.keys(sn().registryFactory);if(e.config.debug&&ae("available backends:",s),s.includes(e.config.backend)||(ae(`error: backend ${e.config.backend} not found in registry`),e.config.backend=he.node?"tensorflow":"webgl",e.config.debug&&ae(`override: setting backend ${e.config.backend}`)),e.config.debug&&ae("setting backend:",e.config.backend),e.config.backend==="wasm"){if(H().flagRegistry.CANVAS2D_WILL_READ_FREQUENTLY&&H().set("CANVAS2D_WILL_READ_FREQUENTLY",!0),e.config.debug&&ae("wasm path:",e.config.wasmPath),typeof L2!="undefined")L2(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let r=!1,a=!1;try{r=await H().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"),a=await H().getAsync("WASM_HAS_SIMD_SUPPORT"),e.config.debug&&ae(`wasm execution: ${a?"simd":"no simd"} ${r?"multithreaded":"singlethreaded"}`),e.config.debug&&!a&&ae("warning: wasm simd support is not enabled")}catch(o){ae("wasm detection failed")}}try{await Jy(e.config.backend),await jc(),wN()}catch(r){return ae("error: cannot set backend:",e.config.backend,r),!1}}if(Ln()==="humangl"&&(H().flagRegistry.CHECK_COMPUTATION_FOR_ERRORS&&H().set("CHECK_COMPUTATION_FOR_ERRORS",!1),H().flagRegistry.WEBGL_CPU_FORWARD&&H().set("WEBGL_CPU_FORWARD",!0),H().flagRegistry.WEBGL_USE_SHAPES_UNIFORMS&&H().set("WEBGL_USE_SHAPES_UNIFORMS",!0),H().flagRegistry.CPU_HANDOFF_SIZE_THRESHOLD&&H().set("CPU_HANDOFF_SIZE_THRESHOLD",256),H().flagRegistry.WEBGL_EXP_CONV&&H().set("WEBGL_EXP_CONV",!0),H().flagRegistry.USE_SETTIMEOUTCUSTOM&&H().set("USE_SETTIMEOUTCUSTOM",!0),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(ae("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),H().set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),Bn().getGPGPUContext)){let s=await Bn().getGPGPUContext().gl;e.config.debug&&ae(`gl version:${s.getParameter(s.VERSION)} renderer:${s.getParameter(s.RENDERER)}`)}Ln(),Zy(),await jc(),e.performance.initBackend=Math.trunc(le()-n),e.config.backend=Ln(),await he.updateBackend(),Ube()}return!0}function x1(e,t){for(let n of e){let s={kernelName:n,backendName:t.backend,kernelFunc:()=>{t.debug&&ae("kernelFunc",n,t.backend)}};pr(s)}he.kernels=Jr(Ln()).map(n=>n.kernelName.toLowerCase())}var gn=[null,null],Hbe=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],Mi=[[0,0],[0,0]],jbe=["hand","fist","pinch","point","face","tip","pinchtip"],uR=4,cR=1.6,qbe=512,Xbe=1.4,b1=Number.MAX_SAFE_INTEGER,I4=0,Ya=[0,0],Jt={boxes:[],hands:[]},dR={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function pR(e){var t;if(he.initial&&(gn[0]=null),gn[0])e.debug&&ae("cached model:",gn[0].modelUrl);else{x1(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),gn[0]=await je((t=e.hand.detector)==null?void 0:t.modelPath);let n=Object.values(gn[0].modelSignature.inputs);Mi[0][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Mi[0][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}return gn[0]}async function hR(e){var t;if(he.initial&&(gn[1]=null),gn[1])e.debug&&ae("cached model:",gn[1].modelUrl);else{gn[1]=await je((t=e.hand.skeleton)==null?void 0:t.modelPath);let n=Object.values(gn[1].modelSignature.inputs);Mi[1][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Mi[1][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}return gn[1]}async function Kbe(e,t){let n=[];if(!e||!gn[0])return n;let s={},r=(e.shape[2]||1)/(e.shape[1]||1),a=Math.min(Math.round((e.shape[1]||0)/8)*8,qbe),o=Math.round(a*r/8)*8;s.resize=Se.resizeBilinear(e,[a,o]),s.cast=ye(s.resize,"int32"),[s.rawScores,s.rawBoxes]=await gn[0].executeAsync(s.cast,Hbe),s.boxes=st(s.rawBoxes,[0,2]),s.scores=st(s.rawScores,[0]);let i=Rn(s.scores,1);J(i[uR]),i.splice(uR,1),s.filtered=on(i,1),J(i),s.max=hn(s.filtered,1),s.argmax=Rs(s.filtered,1);let l=0;s.nms=await Se.nonMaxSuppressionAsync(s.boxes,s.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let u=await s.nms.data(),c=await s.max.data(),p=await s.argmax.data();for(let d of Array.from(u)){let h=Le(s.boxes,d,1),f=await h.data();J(h);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=s1(m,Xbe),y=[Math.trunc(m[0]*Ya[0]),Math.trunc(m[1]*Ya[1]),Math.trunc(m[2]*Ya[0]),Math.trunc(m[3]*Ya[1])],x=c[d],A=jbe[p[d]],b={id:l++,score:x,box:y,boxRaw:g,label:A};n.push(b)}return Object.keys(s).forEach(d=>J(s[d])),n.sort((d,h)=>h.score-d.score),n.length>(t.hand.maxDetected||1)&&(n.length=t.hand.maxDetected||1),n}async function S4(e,t,n){let s={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&gn[1]&&n.hand.landmarks&&t.score>(n.hand.minConfidence||0)){let r={},a=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];r.crop=Se.cropAndResize(e,[a],[0],[Mi[1][0],Mi[1][1]],"bilinear"),r.div=fe(r.crop,rt.tf255),[r.score,r.keypoints]=gn[1].execute(r.div,["Identity_1","Identity"]);let o=(await r.score.data())[0],i=(100-Math.trunc(100/(1+Math.exp(o))))/100;if(i>=(n.hand.minConfidence||0)){s.fingerScore=i,r.reshaped=V(r.keypoints,[-1,3]);let c=(await r.reshaped.array()).map(p=>[p[0]/Mi[1][1],p[1]/Mi[1][0],p[2]||0]).map(p=>[p[0]*t.boxRaw[2],p[1]*t.boxRaw[3],p[2]||0]);s.keypoints=c.map(p=>[Ya[0]*(p[0]+t.boxRaw[0]),Ya[1]*(p[1]+t.boxRaw[1]),p[2]||0]),s.landmarks=m1(s.keypoints);for(let p of Object.keys(dR))s.annotations[p]=dR[p].map(d=>s.landmarks&&s.keypoints[d]?s.keypoints[d]:null)}Object.keys(r).forEach(l=>J(r[l]))}return s}async function C4(e,t){if(!gn[0]||!gn[1]||!gn[0].inputs[0].shape||!gn[1].inputs[0].shape)return[];Ya=[e.shape[2]||0,e.shape[1]||0],b1++;let n=(t.hand.skipTime||0)>le()-I4,s=b1<(t.hand.skipFrames||0);return t.skipAllowed&&n&&s?Jt.hands:new Promise(async r=>{let a=3*(t.hand.skipTime||0)>le()-I4,o=b1<3*(t.hand.skipFrames||0);t.skipAllowed&&Jt.hands.length===t.hand.maxDetected?Jt.hands=await Promise.all(Jt.boxes.map(l=>S4(e,l,t))):t.skipAllowed&&a&&o&&Jt.hands.length>0?Jt.hands=await Promise.all(Jt.boxes.map(l=>S4(e,l,t))):(Jt.boxes=await Kbe(e,t),I4=le(),Jt.hands=await Promise.all(Jt.boxes.map(l=>S4(e,l,t))),b1=0);let i=[...Jt.boxes];if(Jt.boxes.length=0,t.cacheSensitivity>0)for(let l=0;l<Jt.hands.length;l++){let u=YN(Jt.hands[l].keypoints,Ya);if(u.box[2]/(e.shape[2]||1)>.05&&u.box[3]/(e.shape[1]||1)>.05&&Jt.hands[l].fingerScore&&Jt.hands[l].fingerScore>(t.hand.minConfidence||0)){let c=s1(u.box,cR),p=s1(u.boxRaw,cR);Jt.boxes.push({...i[l],box:c,boxRaw:p})}}for(let l=0;l<Jt.hands.length;l++){let u=ja(Jt.hands[l].keypoints,Ya);Jt.hands[l].box=u.box,Jt.hands[l].boxRaw=u.boxRaw}r(Jt.hands)})}var Gn,v1=[],T4=Number.MAX_SAFE_INTEGER,mR=0,gR=0;async function yR(e){var t;return he.initial&&(Gn=null),Gn?e.debug&&ae("cached model:",Gn.modelUrl):Gn=await je((t=e.face.liveness)==null?void 0:t.modelPath),Gn}async function N4(e,t,n,s){var o,i;if(!Gn)return 0;let r=(((o=t.face.liveness)==null?void 0:o.skipTime)||0)>le()-gR,a=T4<(((i=t.face.liveness)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&mR===s&&v1[n]?(T4++,v1[n]):(T4=0,new Promise(async l=>{let u=Se.resizeBilinear(e,[Gn!=null&&Gn.inputs[0].shape?Gn.inputs[0].shape[2]:0,Gn!=null&&Gn.inputs[0].shape?Gn.inputs[0].shape[1]:0],!1),c=Gn==null?void 0:Gn.execute(u),p=(await c.data())[0];v1[n]=Math.round(100*p)/100,mR=s,gR=le(),J([u,c]),l(v1[n])}))}var of={};ha(of,{connected:()=>k1,horizontal:()=>E4,kpt:()=>w1,relative:()=>_4,vertical:()=>R4});var w1=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],E4=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],R4=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],_4=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],k1={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var xR=.005,Bs={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function D4(e){for(let t of E4){let n=e.keypoints.findIndex(r=>r.part===t[0]),s=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[0]<e.keypoints[s].position[0]){let r=e.keypoints[n];e.keypoints[n]=e.keypoints[s],e.keypoints[s]=r}}for(let t of R4){let n=e.keypoints.findIndex(r=>r&&r.part===t[0]),s=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[1]<e.keypoints[s].position[1]&&e.keypoints.splice(n,1)}for(let[t,n]of _4){let s=e.keypoints.findIndex(u=>u&&u.part===t[0]),r=e.keypoints.findIndex(u=>u&&u.part===t[1]),a=e.keypoints.findIndex(u=>u&&u.part===n[0]),o=e.keypoints.findIndex(u=>u&&u.part===n[1]);if(!e.keypoints[a]||!e.keypoints[o])continue;let i=e.keypoints[s]?[Math.abs(e.keypoints[a].position[0]-e.keypoints[s].position[0]),Math.abs(e.keypoints[o].position[0]-e.keypoints[s].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[o].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[a].position[0]-e.keypoints[r].position[0])]:[0,0];if(i[0]>i[1]||l[0]>l[1]){let u=e.keypoints[s];e.keypoints[s]=e.keypoints[r],e.keypoints[r]=u}}}function bR(e){for(let t=0;t<e.length;t++)if(e[t]&&Bs.keypoints[t]){let n=[Math.abs(e[t].positionRaw[0]-Bs.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-Bs.keypoints[t].positionRaw[1])];n[0]<xR&&n[1]<xR?e[t]=Bs.keypoints[t]:Bs.keypoints[t]=e[t]}else Bs.keypoints[t]=e[t];return e}function vR(e,t){var r,a;let n={};if(!((r=e==null?void 0:e.shape)!=null&&r[1])||!((a=e==null?void 0:e.shape)!=null&&a[2]))return e;Bs.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],n.pad=Ys(e,Bs.padding),n.resize=Se.resizeBilinear(n.pad,[t,t]);let s=ye(n.resize,"int32");return Object.keys(n).forEach(o=>J(n[o])),s}function wR(e,t){e.keypoints=e.keypoints.filter(s=>s==null?void 0:s.position);for(let s of e.keypoints)s.position=[s.position[0]*(t[0]+Bs.padding[2][0]+Bs.padding[2][1])/t[0]-Bs.padding[2][0],s.position[1]*(t[1]+Bs.padding[1][0]+Bs.padding[1][1])/t[1]-Bs.padding[1][0]],s.positionRaw=[s.position[0]/t[0],s.position[1]/t[1]];let n=ja(e.keypoints.map(s=>s.position),t);return e.box=n.box,e.boxRaw=n.boxRaw,e}var tr,I1=0,$4=Number.MAX_SAFE_INTEGER,Su={boxes:[],bodies:[],last:0};async function kR(e){return he.initial&&(tr=null),tr?e.debug&&ae("cached model:",tr.modelUrl):(x1(["size"],e),tr=await je(e.body.modelPath)),I1=tr.inputs[0].shape?tr.inputs[0].shape[2]:0,I1<64&&(I1=256),tr}function Ybe(e,t,n){let s=e[0][0],r=[],a=0;for(let c=0;c<s.length;c++)if(a=s[c][2],a>t.body.minConfidence){let p=[s[c][1],s[c][0]];r.push({score:Math.round(100*a)/100,part:w1[c],positionRaw:p,position:[Math.round((n.shape[2]||0)*p[0]),Math.round((n.shape[1]||0)*p[1])]})}a=r.reduce((c,p)=>p.score>c?p.score:c,0);let o=[],i=ja(r.map(c=>c.position),[n.shape[2],n.shape[1]]),l={};for(let[c,p]of Object.entries(k1)){let d=[];for(let h=0;h<p.length-1;h++){let f=r.find(g=>g.part===p[h]),m=r.find(g=>g.part===p[h+1]);f&&m&&f.score>(t.body.minConfidence||0)&&m.score>(t.body.minConfidence||0)&&d.push([f.position,m.position])}l[c]=d}let u={id:0,score:a,box:i.box,boxRaw:i.boxRaw,keypoints:r,annotations:l};return D4(u),o.push(u),o}function Jbe(e,t,n){let s=[];for(let r=0;r<e[0].length;r++){let a=e[0][r],o=Math.round(100*a[51+4])/100;if(o>t.body.minConfidence){let i=[];for(let p=0;p<17;p++){let d=a[3*p+2];if(d>t.body.minConfidence){let h=[a[3*p+1],a[3*p+0]];i.push({part:w1[p],score:Math.round(100*d)/100,positionRaw:h,position:[Math.round((n.shape[2]||0)*h[0]),Math.round((n.shape[1]||0)*h[1])]})}}let l=ja(i.map(p=>p.position),[n.shape[2],n.shape[1]]),u={};for(let[p,d]of Object.entries(k1)){let h=[];for(let f=0;f<d.length-1;f++){let m=i.find(y=>y.part===d[f]),g=i.find(y=>y.part===d[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}u[p]=h}let c={id:r,score:o,box:l.box,boxRaw:l.boxRaw,keypoints:[...i],annotations:u};D4(c),s.push(c)}}return s.sort((r,a)=>a.score-r.score),s.length>t.body.maxDetected&&(s.length=t.body.maxDetected),s}async function P4(e,t){var r;if(!((r=tr==null?void 0:tr.inputs)!=null&&r[0].shape))return[];t.skipAllowed||(Su.boxes.length=0),$4++;let n=(t.body.skipTime||0)>le()-Su.last,s=$4<(t.body.skipFrames||0);return t.skipAllowed&&n&&s?Su.bodies:new Promise(async a=>{let o={};$4=0,o.input=vR(e,I1),o.res=tr==null?void 0:tr.execute(o.input),Su.last=le();let i=await o.res.array();Su.bodies=o.res.shape[2]===17?Ybe(i,t,e):Jbe(i,t,e);for(let l of Su.bodies)wR(l,[e.shape[2]||1,e.shape[1]||1]),bR(l.keypoints);Object.keys(o).forEach(l=>J(o[l])),a(Su.bodies)})}var Pd,S1=[],SR=0,F4=Number.MAX_SAFE_INTEGER,T1=0,C1=2.5;async function CR(e){if(!Pd||he.initial){Pd=await je(e.object.modelPath);let t=Object.values(Pd.modelSignature.inputs);T1=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}else e.debug&&ae("cached model:",Pd.modelUrl);return Pd}async function Qbe(e,t,n){let s=0,r=[],a=T1;for(let u of[1,2,4]){let c=u*13,p=st(e.find(y=>y.shape[1]===c**2&&(y.shape[2]||0)===Nd.length)),d=await p.array(),h=st(e.find(y=>y.shape[1]===c**2&&(y.shape[2]||0)<Nd.length)),f=h.reshape([-1,4,h.shape[1]/4]),m=f.argMax(2),g=await m.array();for(let y=0;y<p.shape[0];y++)for(let x=0;x<p.shape[1];x++){let A=d[y][x];if(A>(n.object.minConfidence||0)&&x!==61){let b=(.5+Math.trunc(y%c))/c,w=(.5+Math.trunc(y/c))/c,I=g[y].map(M=>M*(c/u/a)),[k,E]=[b-C1/u*I[0],w-C1/u*I[1]],[_,D]=[b+C1/u*I[2]-k,w+C1/u*I[3]-E],R=[k,E,_,D];R=R.map(M=>Math.max(0,Math.min(M,1)));let P=[R[0]*t[0],R[1]*t[1],R[2]*t[0],R[3]*t[1]],T={id:s++,score:Math.round(100*A)/100,class:x+1,label:Nd[x].label,box:P.map(M=>Math.trunc(M)),boxRaw:R};r.push(T)}}J([p,h,f,m])}let o=r.map(u=>[u.boxRaw[1],u.boxRaw[0],u.boxRaw[3],u.boxRaw[2]]),i=r.map(u=>u.score),l=[];if(o&&o.length>0){let u=await Se.nonMaxSuppressionAsync(o,i,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);l=await u.data(),J(u)}return r=r.filter((u,c)=>l.includes(c)).sort((u,c)=>c.score-u.score),r}async function O4(e,t){let n=(t.object.skipTime||0)>le()-SR,s=F4<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&S1.length>0?(F4++,S1):(F4=0,!he.kernels.includes("mod")||!he.kernels.includes("sparsetodense")?S1:new Promise(async r=>{let a=[e.shape[2]||0,e.shape[1]||0],o=Se.resizeBilinear(e,[T1,T1],!1),i=fe(o,rt.tf255),l=et(i,[0,3,1,2]),u;t.object.enabled&&(u=Pd.execute(l)),SR=le();let c=await Qbe(u,a,t);S1=c,J([o,i,l,...u]),r(c)}))}var uf=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],e4e=uf.length,lf=uf.reduce((e,t,n)=>(e[t]=n,e),{}),t4e=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],M9e=t4e.map(([e,t])=>[lf[e],lf[t]]),NR=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function ER(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function RR(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(u,c)=>({id:c,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/s,u.box[2]/r,u.box[3]/s],box:[Math.trunc(u.box[0]*o),Math.trunc(u.box[1]*a),Math.trunc(u.box[2]*o),Math.trunc(u.box[3]*a)],keypoints:u.keypoints.map(({score:p,part:d,position:h})=>({score:p,part:d,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]})),annotations:{}});return e.map((u,c)=>i(u,c))}var N1=class{constructor(t,n){ge(this,"priorityQueue");ge(this,"numberOfElements");ge(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function M4(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+e4e)}}function z4(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=M4(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function L4(e,t,n){return e<t?t:e>n?n:e}function _R(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function B4(e,t){return{x:e.x+t.x,y:e.y+t.y}}var Ur,s4e=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],E1=1,Fd=16,r4e=50**2;function DR(e,t,n,s,r,a,o=2){let i=y=>({y:a.get(y.y,y.x,e),x:a.get(y.y,y.x,a.shape[2]/2+e)}),l=(y,x,A)=>({y:L4(Math.round(y.y/Fd),0,x-1),x:L4(Math.round(y.x/Fd),0,A-1)}),[u,c]=s.shape,p=l(t.position,u,c),d=i(p),f=B4(t.position,d);for(let y=0;y<o;y++){let x=l(f,u,c),A=M4(x.y,x.x,n,r);f=B4({x:x.x*Fd,y:x.y*Fd},{x:A.x,y:A.y})}let m=l(f,u,c),g=s.get(m.y,m.x,n);return{position:f,part:uf[n],score:g}}function a4e(e,t,n,s,r){let a=NR.map(([d,h])=>[lf[d],lf[h]]),o=a.map(([,d])=>d),i=a.map(([d])=>d),l=t.shape[2],u=o.length,c=new Array(l),p=z4(e.part,Fd,n);c[e.part.id]={score:e.score,part:uf[e.part.id],position:p};for(let d=u-1;d>=0;--d){let h=o[d],f=i[d];c[h]&&!c[f]&&(c[f]=DR(d,c[h],f,t,n,r))}for(let d=0;d<u;++d){let h=i[d],f=o[d];c[h]&&!c[f]&&(c[f]=DR(d,c[h],f,t,n,s))}return c}function o4e(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-E1,0),u=Math.min(n+E1+1,a);for(let c=l;c<u;++c){let p=Math.max(s-E1,0),d=Math.min(s+E1+1,o);for(let h=p;h<d;++h)if(r.get(c,h,e)>t){i=!1;break}if(!i)break}return i}function i4e(e,t){let[n,s,r]=t.shape,a=new N1(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let u=t.get(o,i,l);u<e||o4e(l,u,o,i,t)&&a.enqueue({score:u,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function $R(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{var o;let a=(o=r[s])==null?void 0:o.position;return a?_R(n,t,a.y,a.x)<=r4e:!1})}function l4e(e,t){return t.reduce((s,{position:r,score:a},o)=>($R(e,r,o)||(s+=a),s),0)/t.length}function u4e(e,t,n,s,r,a){let o=[],i=i4e(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),u=z4(l.part,Fd,e);if($R(o,u,l.part.id))continue;let c=a4e(l,t,e,n,s);c=c.filter(h=>h.score>a);let p=l4e(o,c),d=ER(c);p>a&&o.push({keypoints:c,box:d,score:Math.round(100*p)/100})}return o}async function W4(e,t){let n=Z(()=>{if(!Ur.inputs[0].shape)return[];let o=Se.resizeBilinear(e,[Ur.inputs[0].shape[2],Ur.inputs[0].shape[1]]),i=me(fe(ye(o,"float32"),127.5),1),u=Ur.execute(i,s4e).map(c=>st(c,[0]));return u[1]=Cn(u[1]),u}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)J(o);let r=u4e(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return Ur.inputs[0].shape?RR(r,[e.shape[1],e.shape[2]],[Ur.inputs[0].shape[2],Ur.inputs[0].shape[1]]):[]}async function PR(e){return!Ur||he.initial?Ur=await je(e.body.modelPath):e.debug&&ae("cached model:",Ur.modelUrl),Ur}var la,V4=!1;async function U4(e){return!la||he.initial?la=await je(e.segmentation.modelPath):e.debug&&ae("cached model:",la.modelUrl),la}async function OR(e,t,n){var m,g;if(V4)return{data:[],canvas:null,alpha:null};V4=!0,la||await U4(n);let s=await Id(e,n),r=((m=s.tensor)==null?void 0:m.shape[2])||0,a=((g=s.tensor)==null?void 0:g.shape[1])||0;if(!s.tensor)return{data:[],canvas:null,alpha:null};let o={};o.resize=Se.resizeBilinear(s.tensor,[la.inputs[0].shape?la.inputs[0].shape[1]:0,la.inputs[0].shape?la.inputs[0].shape[2]:0],!1),J(s.tensor),o.norm=fe(o.resize,rt.tf255),o.res=la.execute(o.norm),o.squeeze=st(o.res,0),o.squeeze.shape[2]===2?(o.softmax=au(o.squeeze),[o.bg,o.fg]=Rn(o.softmax,2),o.expand=Bt(o.fg,2),o.pad=Bt(o.expand,0),o.crop=Se.cropAndResize(o.pad,[[0,0,.5,.5]],[0],[r,a]),o.data=st(o.crop,0)):o.data=Se.resizeBilinear(o.squeeze,[a,r]);let i=Array.from(await o.data.data());if(he.node&&!he.Canvas&&typeof ImageData=="undefined")return n.debug&&ae("canvas support missing"),Object.keys(o).forEach(y=>J(o[y])),{data:i,canvas:null,alpha:null};let l=us(r,a);Zs&&await Zs.toPixels(o.data,l);let u=l.getContext("2d");n.segmentation.blur&&n.segmentation.blur>0&&(u.filter=`blur(${n.segmentation.blur}px)`);let c=u.getImageData(0,0,r,a),p=us(r,a),d=p.getContext("2d");s.canvas&&d.drawImage(s.canvas,0,0),d.globalCompositeOperation="darken",n.segmentation.blur&&n.segmentation.blur>0&&(d.filter=`blur(${n.segmentation.blur}px)`),d.drawImage(l,0,0),d.globalCompositeOperation="source-over",d.filter="none";let h=d.getImageData(0,0,r,a);for(let y=0;y<r*a;y++)h.data[4*y+3]=c.data[4*y+0];d.putImageData(h,0,0);let f=null;if(t&&p){f=us(r,a);let y=await Id(t,n);J(y.tensor);let x=f.getContext("2d");x.drawImage(y.canvas,0,0,f.width,f.height),x.drawImage(p,0,0)}return Object.keys(o).forEach(y=>J(o[y])),V4=!1,{data:i,canvas:p,alpha:l}}var cf=class{constructor(){ge(this,"ssrnetage",null);ge(this,"gear",null);ge(this,"blazeposedetect",null);ge(this,"blazepose",null);ge(this,"centernet",null);ge(this,"efficientpose",null);ge(this,"mobilefacenet",null);ge(this,"insightface",null);ge(this,"emotion",null);ge(this,"facedetect",null);ge(this,"faceiris",null);ge(this,"facemesh",null);ge(this,"faceres",null);ge(this,"ssrnetgender",null);ge(this,"handpose",null);ge(this,"handskeleton",null);ge(this,"handtrack",null);ge(this,"liveness",null);ge(this,"movenet",null);ge(this,"nanodet",null);ge(this,"posenet",null);ge(this,"segmentation",null);ge(this,"antispoof",null)}},G4=e=>{let t=0,n=0,s=0;for(let a of Object.values(Gr))t+=a.sizeFromManifest,n+=a.sizeLoadedWeights,s+=a.sizeDesired;let r=s>0?n/s:0;return{numLoadedModels:Object.values(Gr).length,numEnabledModels:void 0,numDefinedModels:Object.keys(e.models).length,percentageLoaded:r,totalSizeFromManifest:t,totalSizeWeights:n,totalSizeLoading:s,totalSizeEnabled:void 0,modelStats:Object.values(Gr)}};function g1(e){for(let t of Object.keys(e.models))e.models[t]=null}async function H4(e){var t,n,s,r,a,o,i,l,u,c,p,d,h,f,m,g,y,x,A,b,w,I,k,E,_,D;he.initial&&g1(e),e.config.hand.enabled&&(!e.models.handpose&&((n=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:n.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await k4(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(s=e.config.hand.detector)==null?void 0:s.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await k4(e.config))),e.config.body.enabled&&!e.models.blazepose&&((a=e.config.body.modelPath)==null?void 0:a.includes("blazepose"))&&(e.models.blazepose=nE(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector&&e.config.body.detector.modelPath&&(e.models.blazeposedetect=tE(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((o=e.config.body.modelPath)==null?void 0:o.includes("efficientpose"))&&(e.models.efficientpose=lE(e.config)),e.config.body.enabled&&!e.models.movenet&&((i=e.config.body.modelPath)==null?void 0:i.includes("movenet"))&&(e.models.movenet=kR(e.config)),e.config.body.enabled&&!e.models.posenet&&((l=e.config.body.modelPath)==null?void 0:l.includes("posenet"))&&(e.models.posenet=PR(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=jN(e.config)),e.config.face.enabled&&((u=e.config.face.antispoof)==null?void 0:u.enabled)&&!e.models.antispoof&&(e.models.antispoof=$N(e.config)),e.config.face.enabled&&((c=e.config.face.liveness)==null?void 0:c.enabled)&&!e.models.liveness&&(e.models.liveness=yR(e.config)),e.config.face.enabled&&((p=e.config.face.description)==null?void 0:p.enabled)&&!e.models.faceres&&(e.models.faceres=zE(e.config)),e.config.face.enabled&&((d=e.config.face.emotion)==null?void 0:d.enabled)&&!e.models.emotion&&(e.models.emotion=pE(e.config)),e.config.face.enabled&&((h=e.config.face.iris)==null?void 0:h.enabled)&&!((f=e.config.face.attention)!=null&&f.enabled)&&!e.models.faceiris&&(e.models.faceiris=TE(e.config)),e.config.face.enabled&&((m=e.config.face.mesh)==null?void 0:m.enabled)&&!e.models.facemesh&&(e.models.facemesh=$E(e.config)),e.config.face.enabled&&((g=e.config.face.gear)==null?void 0:g.enabled)&&!e.models.gear&&(e.models.gear=bN(e.config)),e.config.face.enabled&&((y=e.config.face.ssrnet)==null?void 0:y.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=SN(e.config)),e.config.face.enabled&&((x=e.config.face.ssrnet)==null?void 0:x.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=EN(e.config)),e.config.face.enabled&&((A=e.config.face.mobilefacenet)==null?void 0:A.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=yE(e.config)),e.config.face.enabled&&((b=e.config.face.insightface)==null?void 0:b.enabled)&&!e.models.insightface&&(e.models.insightface=wE(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((I=(w=e.config.hand.detector)==null?void 0:w.modelPath)==null?void 0:I.includes("handtrack"))&&(e.models.handtrack=pR(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((E=(k=e.config.hand.detector)==null?void 0:k.modelPath)==null?void 0:E.includes("handtrack"))&&(e.models.handskeleton=hR(e.config)),e.config.object.enabled&&!e.models.centernet&&((_=e.config.object.modelPath)==null?void 0:_.includes("centernet"))&&(e.models.centernet=aE(e.config)),e.config.object.enabled&&!e.models.nanodet&&((D=e.config.object.modelPath)==null?void 0:D.includes("nanodet"))&&(e.models.nanodet=CR(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=U4(e.config));for await(let R of Object.keys(e.models))e.models[R]&&typeof e.models[R]!="undefined"&&(e.models[R]=await e.models[R])}var nr;function Od(e,t,n){var u;if(e&&(nr=e),!t||(nr||ae("instance not registred"),!nr.config.validateModels))return null;let s=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"],r=["biasadd","fusedbatchnormv3","matmul"],a=[],o=[],i=t.modelUrl,l=t.executor;if((u=l==null?void 0:l.graph)!=null&&u.nodes)for(let c of Object.values(l.graph.nodes)){let p=c.op.toLowerCase();a.includes(p)||a.push(p)}else!l&&nr.config.debug&&ae("model signature not determined:",n);for(let c of a)!s.includes(c)&&!r.includes(c)&&!nr.env.kernels.includes(c)&&!nr.env.kernels.includes(c.replace("_",""))&&!nr.env.kernels.includes(c.replace("native",""))&&!nr.env.kernels.includes(c.replace("v2",""))&&o.push(c);return nr.config.debug&&o.length>0&&ae("model validation failed:",n,o),o.length>0?{name:n,missing:o,ops:a,url:i}:null}function R1(e){nr=e;let t=[];for(let n of Object.keys(nr.models)){let s=nr.models[n];if(!s)continue;let r=Od(nr,s,n);r&&t.push(r)}return t}var ps={cacheModels:!0,cacheSupported:!0,verbose:!0,debug:!1,modelBasePath:""},Gr={};async function c4e(e,t){return ps.debug&&ae("load model fetch:",e,t),fetch(e,t)}function zR(e){ps.cacheModels=e.cacheModels,ps.verbose=e.debug,ps.modelBasePath=e.modelBasePath}async function je(e){var u,c,p;let t=Ev(ps.modelBasePath,e||"");t.toLowerCase().endsWith(".json")||(t+=".json");let n=t.includes("/")?t.split("/"):t.split("\\"),s=n[n.length-1].replace(".json",""),r="indexeddb://"+s;Gr[s]={name:s,sizeFromManifest:0,sizeLoadedWeights:0,sizeDesired:_b[s],inCache:!1},ps.cacheSupported=typeof window!="undefined"&&typeof window.localStorage!="undefined"&&typeof window.indexedDB!="undefined";let a={};try{a=ps.cacheSupported&&ps.cacheModels?await Ns.listModels():{}}catch(d){ps.cacheSupported=!1}Gr[s].inCache=ps.cacheSupported&&ps.cacheModels&&Object.keys(a).includes(r);let o=typeof fetch=="undefined"?{}:{fetchFunc:(d,h)=>c4e(d,h)},i=new Vh(Gr[s].inCache?r:t,o),l=!1;try{i.findIOHandler(),ps.debug&&ae("model load handler:",i.handler);let d=await i.handler.load();Gr[s].sizeFromManifest=((u=d==null?void 0:d.weightData)==null?void 0:u.byteLength)||0,i.loadSync(d),Gr[s].sizeLoadedWeights=((p=(c=i.artifacts)==null?void 0:c.weightData)==null?void 0:p.byteLength)||0,ps.verbose&&ae("load model:",i.modelUrl,{bytes:Gr[s].sizeLoadedWeights},ps),l=!0}catch(d){ae("error loading model:",t,d)}if(l&&ps.cacheModels&&ps.cacheSupported&&!Gr[s].inCache)try{let d=await i.save(r);ae("model saved:",r,d)}catch(d){ae("error saving model:",t,d)}return Od(null,i,`${e||""}`),i}var j4="2.9.4";var Q4={};ha(Q4,{all:()=>J4,body:()=>zd,canvas:()=>Y4,face:()=>Md,gesture:()=>Wd,hand:()=>Ld,object:()=>Bd,options:()=>Hn,person:()=>Z4});var sr=e=>{if(!e)ae("draw error: invalid canvas");else if(!e.getContext)ae("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)ae("draw error: cannot get canvas context");else return t}return null},Cu=e=>Math.round(e*180/Math.PI),Ja=(e,t)=>{if(!t.useDepth||typeof e=="undefined")return t.color;let n=Uint8ClampedArray.from([127+2*e,127-2*e,255]);return`rgba(${n[0]}, ${n[1]}, ${n[2]}, ${t.alpha})`};function Qa(e,t,n,s,r){e.fillStyle=Ja(s,r),e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function ua(e,t,n,s,r,a){if(e.beginPath(),e.lineWidth=a.lineWidth,a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function q4(e,t,n){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t)e.strokeStyle=Ja(s[2]||0,n),e.lineTo(Math.trunc(s[0]),Math.trunc(s[1]));e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function LR(e,t,n){if(!(t.length<2)){if(e.lineWidth=n.lineWidth,!n.useCurves||t.length<=2){q4(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function X4(e,t,n,s=5){let r,a,o;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(n[0],n[1]),r=Math.atan2(n[1]-t[1],n[0]-t[0]),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.moveTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),e.closePath(),e.stroke(),e.fill()}var Hn={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",alpha:.5,font:'small-caps 16px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawAttention:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1};var ft;function h4e(e,t){var n,s;if(ft.drawLabels){let r=[];if(r.push(`face: ${Math.trunc(100*e.score)}%`),e.genderScore&&r.push(`${e.gender||""} ${Math.trunc(100*e.genderScore)}%`),e.age&&r.push(`age: ${e.age||""}`),e.iris&&r.push(`distance: ${e.iris}`),e.real&&r.push(`real: ${Math.trunc(100*e.real)}%`),e.live&&r.push(`live: ${Math.trunc(100*e.live)}%`),e.emotion&&e.emotion.length>0){let a=e.emotion.map(o=>`${Math.trunc(100*o.score)}% ${o.emotion}`);a.length>3&&(a.length=3),r.push(a.join(" "))}((n=e.rotation)==null?void 0:n.angle)&&((s=e.rotation)==null?void 0:s.gaze)&&(e.rotation.angle.roll&&r.push(`roll: ${Cu(e.rotation.angle.roll)}\xB0 yaw:${Cu(e.rotation.angle.yaw)}\xB0 pitch:${Cu(e.rotation.angle.pitch)}\xB0`),e.rotation.gaze.bearing&&r.push(`gaze: ${Cu(e.rotation.gaze.bearing)}\xB0`)),r.length===0&&r.push("face"),t.fillStyle=ft.color;for(let a=r.length-1;a>=0;a--){let o=Math.max(e.box[0],0),i=a*ft.lineHeight+e.box[1];ft.shadowColor&&ft.shadowColor!==""&&(t.fillStyle=ft.shadowColor,t.fillText(r[a],o+5,i+16)),t.fillStyle=ft.labelColor,t.fillText(r[a],o+4,i+15)}}}function f4e(e,t){var n,s,r,a;if(((n=e.annotations)==null?void 0:n.leftEyeIris)&&((s=e.annotations)==null?void 0:s.leftEyeIris[0])){t.strokeStyle=ft.useDepth?"rgba(255, 200, 255, 0.3)":ft.color,t.beginPath();let o=Math.abs(e.annotations.leftEyeIris[3][0]-e.annotations.leftEyeIris[1][0])/2,i=Math.abs(e.annotations.leftEyeIris[4][1]-e.annotations.leftEyeIris[2][1])/2;t.ellipse(e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1],o,i,0,0,2*Math.PI),t.stroke(),ft.fillPolygons&&(t.fillStyle=ft.useDepth?"rgba(255, 255, 200, 0.3)":ft.color,t.fill())}if(((r=e.annotations)==null?void 0:r.rightEyeIris)&&((a=e.annotations)==null?void 0:a.rightEyeIris[0])){t.strokeStyle=ft.useDepth?"rgba(255, 200, 255, 0.3)":ft.color,t.beginPath();let o=Math.abs(e.annotations.rightEyeIris[3][0]-e.annotations.rightEyeIris[1][0])/2,i=Math.abs(e.annotations.rightEyeIris[4][1]-e.annotations.rightEyeIris[2][1])/2;t.ellipse(e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1],o,i,0,0,2*Math.PI),t.stroke(),ft.fillPolygons&&(t.fillStyle=ft.useDepth?"rgba(255, 255, 200, 0.3)":ft.color,t.fill())}}function m4e(e,t){var n;if(ft.drawGaze&&((n=e.rotation)==null?void 0:n.angle)&&typeof Path2D!="undefined"){t.strokeStyle="pink";let s=e.box[0]+e.box[2]/2-e.box[3]*Cu(e.rotation.angle.yaw)/90,r=e.box[1]+e.box[3]/2+e.box[2]*Cu(e.rotation.angle.pitch)/90,a=new Path2D(`
|
|
M ${e.box[0]+e.box[2]/2} ${e.box[1]}
|
|
C
|
|
${s} ${e.box[1]},
|
|
${s} ${e.box[1]+e.box[3]},
|
|
${e.box[0]+e.box[2]/2} ${e.box[1]+e.box[3]}
|
|
`),o=new Path2D(`
|
|
M ${e.box[0]} ${e.box[1]+e.box[3]/2}
|
|
C
|
|
${e.box[0]} ${r},
|
|
${e.box[0]+e.box[2]} ${r},
|
|
${e.box[0]+e.box[2]} ${e.box[1]+e.box[3]/2}
|
|
`);t.stroke(o),t.stroke(a)}}function g4e(e,t){var n;if(ft.drawGaze&&((n=e.rotation)==null?void 0:n.gaze.strength)&&e.rotation.gaze.bearing&&e.annotations.leftEyeIris&&e.annotations.rightEyeIris&&e.annotations.leftEyeIris[0]&&e.annotations.rightEyeIris[0]){t.strokeStyle="pink",t.fillStyle="pink";let s=[e.annotations.leftEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.leftEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];X4(t,[e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1]],[s[0],s[1]],4);let r=[e.annotations.rightEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.rightEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];X4(t,[e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1]],[r[0],r[1]],4)}}function y4e(e,t){if(ft.drawPolygons&&e.mesh.length>=468){t.lineWidth=1;for(let n=0;n<mu.length/3;n++){let s=[mu[n*3+0],mu[n*3+1],mu[n*3+2]].map(r=>e.mesh[r]);q4(t,s,ft)}f4e(e,t)}}function A4e(e,t){if(ft.drawPoints&&e.mesh.length>=468)for(let n=0;n<e.mesh.length;n++)Qa(t,e.mesh[n][0],e.mesh[n][1],e.mesh[n][2],ft),ft.drawAttention&&(sf.includes(n)&&Qa(t,e.mesh[n][0],e.mesh[n][1],e.mesh[n][2]+127,ft),Au.includes(n)&&Qa(t,e.mesh[n][0],e.mesh[n][1],e.mesh[n][2]-127,ft),xu.includes(n)&&Qa(t,e.mesh[n][0],e.mesh[n][1],e.mesh[n][2]-127,ft))}function x4e(e,t){ft.drawBoxes&&ua(t,e.box[0],e.box[1],e.box[2],e.box[3],ft)}function Md(e,t,n){if(ft=Xt(Hn,n),!t||!e)return;let s=sr(e);if(!!s){s.font=ft.font,s.strokeStyle=ft.color,s.fillStyle=ft.color;for(let r of t)x4e(r,s),h4e(r,s),r.mesh&&r.mesh.length>0&&(A4e(r,s),y4e(r,s),m4e(r,s),g4e(r,s))}}function zd(e,t,n){let s=Xt(Hn,n);if(!t||!e)return;let r=sr(e);if(!!r){r.lineJoin="round";for(let a=0;a<t.length;a++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[a].box&&t[a].box.length===4&&(ua(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[a].score}%`,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[a].score}%`,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2]))),s.drawPoints&&t[a].keypoints)for(let o=0;o<t[a].keypoints.length;o++)!t[a].keypoints[o].score||t[a].keypoints[o].score===0||(r.fillStyle=Ja(t[a].keypoints[o].position[2],s),Qa(r,t[a].keypoints[o].position[0],t[a].keypoints[o].position[1],0,s));if(s.drawLabels&&t[a].keypoints){r.font=s.font;for(let o of t[a].keypoints)!o.score||o.score===0||(r.fillStyle=Ja(o.position[2],s),r.fillText(`${o.part} ${Math.trunc(100*o.score)}%`,o.position[0]+4,o.position[1]+4))}if(s.drawPolygons&&t[a].keypoints&&t[a].annotations)for(let o of Object.values(t[a].annotations))for(let i of o)LR(r,i,s)}}}function Ld(e,t,n){let s=Xt(Hn,n);if(!t||!e)return;let r=sr(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,ua(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=Ja(o[2],s),Qa(r,o[0],o[1],0,s);if(s.drawLabels&&a.annotations){let o=(i,l)=>{if(!i||i.length===0||!i[0])return;let u=i[i.length-1][2]||-256;r.fillStyle=Ja(u,s),r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4)};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons&&a.annotations){let o=i=>{if(!(!i||i.length===0||!i[0]))for(let l=0;l<i.length;l++){r.beginPath();let u=i[l][2]||0;r.strokeStyle=Ja(l*u,s),r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()}};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}}function Bd(e,t,n){let s=Xt(Hn,n);if(!t||!e)return;let r=sr(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,ua(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}}function Wd(e,t,n){let s=Xt(Hn,n);if(!(!t||!e)&&s.drawGestures){let r=sr(e);if(!r)return;r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let u=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${u}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(c,6,0+a*s.lineHeight),a+=1}}}}var K4=0;function Z4(e,t,n){let s=Xt(Hn,n);if(!t||!e)return;let r=sr(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,ua(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}}function Y4(e,t){if(!e||!t)return;let n=sr(t);!n||n.drawImage(e,0,0)}async function J4(e,t,n){if(!(t!=null&&t.performance)||!e)return null;let s=le(),r=Xt(Hn,n),a=Promise.all([Md(e,t.face,r),zd(e,t.body,r),Ld(e,t.hand,r),Bd(e,t.object,r),Wd(e,t.gesture,r)]);return K4=he.perfadd?K4+Math.round(le()-s):Math.round(le()-s),t.performance.draw=K4,a}var Vd=.1,ev=.5;function b4e(e,t,n){let s=!1,r=n.length-1;for(let a=0;a<n.length;r=a++)n[a].y>t!=n[r].y>t&&e<(n[r].x-n[a].x)*(t-n[a].y)/(n[r].y-n[a].y)+n[a].x&&(s=!s);return s}async function BR(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,n=e.tensor.shape[1]||0,s=await e.tensor.buffer(),r=[];for(let o of xr.silhouette)r.push({x:(e.mesh[o][0]-e.box[0])/e.box[2],y:(e.mesh[o][1]-e.box[1])/e.box[3]});Vd&&Vd>0&&(r=r.map(o=>({x:o.x>.5?o.x+Vd:o.x-Vd,y:o.y>.5?o.y+Vd:o.y-Vd})));for(let o=0;o<t;o++)for(let i=0;i<n;i++)b4e(o/t,i/t,r)||(s.set(ev*s.get(0,i,o,0),0,i,o,0),s.set(ev*s.get(0,i,o,1),0,i,o,1),s.set(ev*s.get(0,i,o,2),0,i,o,2));let a=s.toTensor();return J(s),a}var w4e=e=>{let t=(p,d)=>Math.atan2(p[1]-d[1],p[0]-d[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],u=Math.sqrt(l[0]*l[0]+l[1]*l[1]);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},WR=(e,t)=>{let n=m=>{let g=Math.sqrt(m[0]*m[0]+m[1]*m[1]+m[2]*m[2]);return m[0]/=g,m[1]/=g,m[2]/=g,m},s=(m,g)=>{let y=m[0]-g[0],x=m[1]-g[1],A=m[2]-g[2];return[y,x,A]},r=(m,g)=>{let y=m[1]*g[2]-m[2]*g[1],x=m[2]*g[0]-m[0]*g[2],A=m[0]*g[1]-m[1]*g[0];return[y,x,A]},a=m=>{let[g,y,x,A,b,w,I,k,E]=m,_,D,R;return A<1?A>-1?(R=Math.asin(A),D=Math.atan2(-I,g),_=Math.atan2(-w,b)):(R=-Math.PI/2,D=-Math.atan2(k,E),_=0):(R=Math.PI/2,D=Math.atan2(k,E),_=0),Number.isNaN(_)&&(_=0),Number.isNaN(D)&&(D=0),Number.isNaN(R)&&(R=0),{pitch:2*-_,yaw:2*-D,roll:2*-R}},o=e.meshRaw;if(!o||o.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let i=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[o[10],o[152],o[234],o[454]].map(m=>[m[0]*t[0]/i,m[1]*t[1]/i,m[2]]),u=n(s(l[1],l[0])),c=n(s(l[3],l[2])),p=n(r(c,u));c=r(u,p);let d=[c[0],c[1],c[2],u[0],u[1],u[2],p[0],p[1],p[2]],h=a(d),f=o.length===478?w4e(e):{bearing:0,strength:0};return{angle:h,matrix:d,gaze:f}};var tv=async(e,t)=>{var f,m,g,y,x,A,b,w,I,k,E,_,D,R,P,T,M,W,G,X,K,Y,re,ee,ie,ne,pe,ce,Ae;let n=le(),s,r,a,o,i,l,u,c,p,d=[];e.state="run:face";let h=await DE(t,e.config);if(e.performance.face=he.perfadd?(e.performance.face||0)+Math.trunc(le()-n):Math.trunc(le()-n),!t.shape||t.shape.length!==4)return[];if(!h)return[];for(let oe=0;oe<h.length;oe++){if(e.analyze("Get Face"),!h[oe].tensor||h[oe].tensor.isDisposedInternal){ae("Face object is disposed:",h[oe].tensor);continue}if((f=e.config.face.detector)!=null&&f.mask){let ot=await BR(h[oe]);J(h[oe].tensor),ot&&(h[oe].tensor=ot)}let Re=h[oe].mesh&&h[oe].mesh.length>200?WR(h[oe],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?o=(m=e.config.face.emotion)!=null&&m.enabled?o4(h[oe].tensor||ct([]),e.config,oe,h.length):[]:(e.state="run:emotion",n=le(),o=(g=e.config.face.emotion)!=null&&g.enabled?await o4(h[oe].tensor||ct([]),e.config,oe,h.length):[],e.performance.emotion=he.perfadd?(e.performance.emotion||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?u=(y=e.config.face.antispoof)!=null&&y.enabled?Wb(h[oe].tensor||ct([]),e.config,oe,h.length):0:(e.state="run:antispoof",n=le(),u=(x=e.config.face.antispoof)!=null&&x.enabled?await Wb(h[oe].tensor||ct([]),e.config,oe,h.length):0,e.performance.antispoof=he.perfadd?(e.performance.antispoof||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?c=(A=e.config.face.liveness)!=null&&A.enabled?N4(h[oe].tensor||ct([]),e.config,oe,h.length):0:(e.state="run:liveness",n=le(),c=(b=e.config.face.liveness)!=null&&b.enabled?await N4(h[oe].tensor||ct([]),e.config,oe,h.length):0,e.performance.liveness=he.perfadd?(e.performance.antispoof||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?r=(w=e.config.face.gear)!=null&&w.enabled?Pb(h[oe].tensor||ct([]),e.config,oe,h.length):null:(e.state="run:gear",n=le(),r=(I=e.config.face.gear)!=null&&I.enabled?await Pb(h[oe].tensor||ct([]),e.config,oe,h.length):null,e.performance.gear=Math.trunc(le()-n)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(s=(k=e.config.face.ssrnet)!=null&&k.enabled?Ob(h[oe].tensor||ct([]),e.config,oe,h.length):null,a=(E=e.config.face.ssrnet)!=null&&E.enabled?Lb(h[oe].tensor||ct([]),e.config,oe,h.length):null):(e.state="run:ssrnet",n=le(),s=(_=e.config.face.ssrnet)!=null&&_.enabled?await Ob(h[oe].tensor||ct([]),e.config,oe,h.length):null,a=(D=e.config.face.ssrnet)!=null&&D.enabled?await Lb(h[oe].tensor||ct([]),e.config,oe,h.length):null,e.performance.ssrnet=Math.trunc(le()-n)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?i=(R=e.config.face.mobilefacenet)!=null&&R.enabled?l4(h[oe].tensor||ct([]),e.config,oe,h.length):null:(e.state="run:mobilefacenet",n=le(),i=(P=e.config.face.mobilefacenet)!=null&&P.enabled?await l4(h[oe].tensor||ct([]),e.config,oe,h.length):null,e.performance.mobilefacenet=Math.trunc(le()-n)),e.analyze("End MobileFaceNet:"),e.analyze("Start InsightFace:"),e.config.async?l=(T=e.config.face.insightface)!=null&&T.enabled?c4(h[oe].tensor||ct([]),e.config,oe,h.length):null:(e.state="run:mobilefacenet",n=le(),l=(M=e.config.face.insightface)!=null&&M.enabled?await c4(h[oe].tensor||ct([]),e.config,oe,h.length):null,e.performance.mobilefacenet=Math.trunc(le()-n)),e.analyze("End InsightFace:"),e.analyze("Start Description:"),e.config.async?p=g4(h[oe].tensor||ct([]),e.config,oe,h.length):(e.state="run:description",n=le(),p=await g4(h[oe].tensor||ct([]),e.config,oe,h.length),e.performance.description=he.perfadd?(e.performance.description||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,l,p,r,u,c]=await Promise.all([s,a,o,i,l,p,r,u,c])),e.analyze("Finish Face:"),((W=e.config.face.ssrnet)==null?void 0:W.enabled)&&s&&a&&(p={...p,age:s.age,gender:a.gender,genderScore:a.genderScore}),((G=e.config.face.gear)==null?void 0:G.enabled)&&r&&(p={...p,age:r.age,gender:r.gender,genderScore:r.genderScore,race:r.race}),((X=e.config.face.mobilefacenet)==null?void 0:X.enabled)&&i&&(p.descriptor=i),((K=e.config.face.insightface)==null?void 0:K.enabled)&&l&&(p.descriptor=l),(Y=e.config.face.iris)!=null&&Y.enabled;let _e=((ie=(ee=(re=h[oe])==null?void 0:re.annotations)==null?void 0:ee.leftEyeIris)==null?void 0:ie[0])&&((ce=(pe=(ne=h[oe])==null?void 0:ne.annotations)==null?void 0:pe.rightEyeIris)==null?void 0:ce[0])&&h[oe].annotations.leftEyeIris.length>0&&h[oe].annotations.rightEyeIris.length>0&&h[oe].annotations.leftEyeIris[0]!==null&&h[oe].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(h[oe].annotations.leftEyeIris[3][0]-h[oe].annotations.leftEyeIris[1][0]),Math.abs(h[oe].annotations.rightEyeIris[4][1]-h[oe].annotations.rightEyeIris[2][1]))/t.shape[2]:0,Ue=(Ae=e.config.face.detector)!=null&&Ae.return?st(h[oe].tensor):null;J(h[oe].tensor),h[oe].tensor&&delete h[oe].tensor;let Me={...h[oe],id:oe};p.age&&(Me.age=p.age),p.gender&&(Me.gender=p.gender),p.genderScore&&(Me.genderScore=p.genderScore),p.descriptor&&(Me.embedding=p.descriptor),p.race&&(Me.race=p.race),o&&(Me.emotion=o),u&&(Me.real=u),c&&(Me.live=c),_e&&_e!==0&&(Me.iris=Math.trunc(500/_e/11.7)/100),Re&&(Me.rotation=Re),Ue&&(Me.tensor=Ue),d.push(Me),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),d};var VR=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position[1]<a.position[1]&&r.position[1]<a.position[1]?t.push({body:n,gesture:"i give up"}):a&&s&&s.position[1]<a.position[1]?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position[1]<a.position[1]&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&Math.abs(o.positionRaw[1]-i.positionRaw[1])>.1&&t.push({body:n,gesture:`leaning ${o.position[1]>i.position[1]?"left":"right"}`})}return t},UR=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>450){let s=(e[n].mesh[33][2]||0)-(e[n].mesh[263][2]||0),r=e[n].mesh[33][0]-e[n].mesh[263][0];Math.abs(s/r)<=.15?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let l=e[n].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:n,gesture:`head ${l<0?"up":"down"}`})}return t},GR=e=>{var n,s,r,a;if(!e)return[];let t=[];for(let o=0;o<e.length;o++){if(!((s=(n=e[o].annotations)==null?void 0:n.leftEyeIris)!=null&&s[0])||!((a=(r=e[o].annotations)==null?void 0:r.rightEyeIris)!=null&&a[0]))continue;let i=e[o].annotations.leftEyeIris[3][0]-e[o].annotations.leftEyeIris[1][0],l=e[o].annotations.leftEyeIris[4][1]-e[o].annotations.leftEyeIris[2][1],u=Math.abs(i*l),c=e[o].annotations.rightEyeIris[3][0]-e[o].annotations.rightEyeIris[1][0],p=e[o].annotations.rightEyeIris[4][1]-e[o].annotations.rightEyeIris[2][1],d=Math.abs(c*p),h=!1;Math.abs(u-d)/Math.max(u,d)<.25&&(h=!0,t.push({iris:o,gesture:"facing center"}));let m=Math.abs(e[o].mesh[263][0]-e[o].annotations.leftEyeIris[0][0])/e[o].box[2],g=Math.abs(e[o].mesh[33][0]-e[o].annotations.rightEyeIris[0][0])/e[o].box[2];(m>.06||g>.06)&&(h=!1),m>g?m>.05&&t.push({iris:o,gesture:"looking right"}):g>.05&&t.push({iris:o,gesture:"looking left"});let y=Math.abs(e[o].mesh[145][1]-e[o].annotations.rightEyeIris[0][1])/e[o].box[3],x=Math.abs(e[o].mesh[374][1]-e[o].annotations.leftEyeIris[0][1])/e[o].box[3];(x<.01||y<.01||x>.022||y>.022)&&(h=!1),(x<.01||y<.01)&&t.push({iris:o,gesture:"looking down"}),(x>.022||y>.022)&&t.push({iris:o,gesture:"looking up"}),h&&t.push({iris:o,gesture:"looking center"})}return t},HR=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];if(e[n].annotations)for(let[r,a]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(a)&&a[0]&&s.push({name:r.toLowerCase(),position:a[0]});if(s&&s.length>0){let r=s.reduce((o,i)=>(o.position[2]||0)<(i.position[2]||0)?o:i);t.push({hand:n,gesture:`${r.name} forward`});let a=s.reduce((o,i)=>o.position[1]<i.position[1]?o:i);t.push({hand:n,gesture:`${a.name} up`})}if(e[n].keypoints){let r=sR(e[n].keypoints);for(let a of r)t.push({hand:n,gesture:a.name})}}return t};var Ee={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null},nv=0;function jR(e,t){var o,i,l,u,c,p,d,h,f,m,g,y,x,A,b,w,I;let n=le();if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null};let s=Date.now()-e.timestamp,r=s<1e3?8-Math.log(s+1):1;if(e.canvas&&(Ee.canvas=e.canvas),e.error&&(Ee.error=e.error),!Ee.body||e.body.length!==Ee.body.length)Ee.body=JSON.parse(JSON.stringify(e.body));else for(let k=0;k<e.body.length;k++){let E=e.body[k].box.map((T,M)=>((r-1)*Ee.body[k].box[M]+T)/r),_=e.body[k].boxRaw.map((T,M)=>((r-1)*Ee.body[k].boxRaw[M]+T)/r),D=e.body[k].keypoints.map((T,M)=>{var W,G,X,K,Y,re,ee,ie,ne;return{score:T.score,part:T.part,position:[Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].position[0]||0)+(T.position[0]||0))/r:T.position[0],Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].position[1]||0)+(T.position[1]||0))/r:T.position[1],Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].position[2]||0)+(T.position[2]||0))/r:T.position[2]],positionRaw:[Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].positionRaw[0]||0)+(T.positionRaw[0]||0))/r:T.positionRaw[0],Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].positionRaw[1]||0)+(T.positionRaw[1]||0))/r:T.positionRaw[1],Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].positionRaw[2]||0)+(T.positionRaw[2]||0))/r:T.positionRaw[2]],distance:[Ee.body[k].keypoints[M]?((r-1)*(((W=Ee.body[k].keypoints[M].distance)==null?void 0:W[0])||0)+(((G=T.distance)==null?void 0:G[0])||0))/r:(X=T.distance)==null?void 0:X[0],Ee.body[k].keypoints[M]?((r-1)*(((K=Ee.body[k].keypoints[M].distance)==null?void 0:K[1])||0)+(((Y=T.distance)==null?void 0:Y[1])||0))/r:(re=T.distance)==null?void 0:re[1],Ee.body[k].keypoints[M]?((r-1)*(((ee=Ee.body[k].keypoints[M].distance)==null?void 0:ee[2])||0)+(((ie=T.distance)==null?void 0:ie[2])||0))/r:(ne=T.distance)==null?void 0:ne[2]]}}),R={},P={connected:{}};(o=t.body.modelPath)!=null&&o.includes("efficientpose")?P=o1:(i=t.body.modelPath)!=null&&i.includes("blazepose")?P=t1:(l=t.body.modelPath)!=null&&l.includes("movenet")&&(P=of);for(let[T,M]of Object.entries(P.connected)){let W=[];for(let G=0;G<M.length-1;G++){let X=D.find(Y=>Y.part===M[G]),K=D.find(Y=>Y.part===M[G+1]);X&&K&&W.push([X.position,K.position])}R[T]=W}Ee.body[k]={...e.body[k],box:E,boxRaw:_,keypoints:D,annotations:R}}if(!Ee.hand||e.hand.length!==Ee.hand.length)Ee.hand=JSON.parse(JSON.stringify(e.hand));else for(let k=0;k<e.hand.length;k++){let E=e.hand[k].box.map((P,T)=>((r-1)*Ee.hand[k].box[T]+P)/r),_=e.hand[k].boxRaw.map((P,T)=>((r-1)*Ee.hand[k].boxRaw[T]+P)/r);Ee.hand[k].keypoints.length!==e.hand[k].keypoints.length&&(Ee.hand[k].keypoints=e.hand[k].keypoints);let D=e.hand[k].keypoints&&e.hand[k].keypoints.length>0?e.hand[k].keypoints.map((P,T)=>P.map((M,W)=>((r-1)*(Ee.hand[k].keypoints[T][W]||1)+(M||0))/r)):[],R={};if(Object.keys(Ee.hand[k].annotations).length!==Object.keys(e.hand[k].annotations).length)Ee.hand[k].annotations=e.hand[k].annotations,R=Ee.hand[k].annotations;else if(e.hand[k].annotations)for(let P of Object.keys(e.hand[k].annotations))R[P]=(p=(c=(u=e.hand[k])==null?void 0:u.annotations)==null?void 0:c[P])!=null&&p[0]?e.hand[k].annotations[P].map((T,M)=>T.map((W,G)=>((r-1)*Ee.hand[k].annotations[P][M][G]+W)/r)):null;Ee.hand[k]={...e.hand[k],box:E,boxRaw:_,keypoints:D,annotations:R}}if(!Ee.face||e.face.length!==Ee.face.length)Ee.face=JSON.parse(JSON.stringify(e.face));else for(let k=0;k<e.face.length;k++){let E=e.face[k].box.map((D,R)=>((r-1)*Ee.face[k].box[R]+D)/r),_=e.face[k].boxRaw.map((D,R)=>((r-1)*Ee.face[k].boxRaw[R]+D)/r);if(e.face[k].rotation){let D={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};D.matrix=(d=e.face[k].rotation)==null?void 0:d.matrix,D.angle={roll:((r-1)*(((h=Ee.face[k].rotation)==null?void 0:h.angle.roll)||0)+(((f=e.face[k].rotation)==null?void 0:f.angle.roll)||0))/r,yaw:((r-1)*(((m=Ee.face[k].rotation)==null?void 0:m.angle.yaw)||0)+(((g=e.face[k].rotation)==null?void 0:g.angle.yaw)||0))/r,pitch:((r-1)*(((y=Ee.face[k].rotation)==null?void 0:y.angle.pitch)||0)+(((x=e.face[k].rotation)==null?void 0:x.angle.pitch)||0))/r},D.gaze={bearing:((r-1)*(((A=Ee.face[k].rotation)==null?void 0:A.gaze.bearing)||0)+(((b=e.face[k].rotation)==null?void 0:b.gaze.bearing)||0))/r,strength:((r-1)*(((w=Ee.face[k].rotation)==null?void 0:w.gaze.strength)||0)+(((I=e.face[k].rotation)==null?void 0:I.gaze.strength)||0))/r},Ee.face[k]={...e.face[k],rotation:D,box:E,boxRaw:_}}Ee.face[k]={...e.face[k],box:E,boxRaw:_}}if(!Ee.object||e.object.length!==Ee.object.length)Ee.object=JSON.parse(JSON.stringify(e.object));else for(let k=0;k<e.object.length;k++){let E=e.object[k].box.map((D,R)=>((r-1)*Ee.object[k].box[R]+D)/r),_=e.object[k].boxRaw.map((D,R)=>((r-1)*Ee.object[k].boxRaw[R]+D)/r);Ee.object[k]={...e.object[k],box:E,boxRaw:_}}if(e.persons){let k=e.persons;if(!Ee.persons||k.length!==Ee.persons.length)Ee.persons=JSON.parse(JSON.stringify(k));else for(let E=0;E<k.length;E++)Ee.persons[E].box=k[E].box.map((_,D)=>((r-1)*Ee.persons[E].box[D]+_)/r)}e.gesture&&(Ee.gesture=e.gesture);let a=le();return nv=he.perfadd?nv+Math.round(a-n):Math.round(a-n),e.performance&&(Ee.performance={...e.performance,interpolate:nv}),Ee}var av={};ha(av,{distance:()=>df,match:()=>rv,similarity:()=>sv});function df(e,t,n={order:2,multiplier:25}){if(!e||!e)return Number.MAX_SAFE_INTEGER;let s=0;for(let r=0;r<e.length;r++){let a=!n.order||n.order===2?e[r]-t[r]:Math.abs(e[r]-t[r]);s+=!n.order||n.order===2?a*a:a**n.order}return(n.multiplier||20)*s}var qR=(e,t,n,s)=>{if(e===0)return 1;let r=t===2?Math.sqrt(e):e**(1/t),a=(1-r/100-n)/(s-n);return Math.max(Math.min(a,1),0)};function sv(e,t,n={order:2,multiplier:25,min:.2,max:.8}){let s=df(e,t,n);return qR(s,n.order||2,n.min||0,n.max||1)}function rv(e,t,n={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let s=Number.MAX_SAFE_INTEGER,r=-1;for(let o=0;o<t.length;o++){let i=t[o].length===e.length?df(e,t[o],n):Number.MAX_SAFE_INTEGER;if(i<s&&(s=i,r=o),s<(n.threshold||0))break}let a=qR(s,n.order||2,n.min||0,n.max||1);return{index:r,distance:s,similarity:a}}function XR(e,t,n,s,r){var i,l,u,c,p,d;let a=0,o=[];for(let h of e){let f={id:a++,face:h,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let b of t)h.box[0]>b.box[0]&&h.box[0]<b.box[0]+b.box[2]&&h.box[1]+h.box[3]>b.box[1]&&h.box[1]+h.box[3]<b.box[1]+b.box[3]&&(f.body=b);if(f.body)for(let b of n)b.box[0]+b.box[2]>f.body.box[0]&&b.box[0]+b.box[2]<f.body.box[0]+f.body.box[2]&&b.box[1]+b.box[3]>f.body.box[1]&&b.box[1]+b.box[3]<f.body.box[1]+f.body.box[3]&&f.hands&&(f.hands.left=b),b.box[0]<f.body.box[0]+f.body.box[2]&&b.box[0]>f.body.box[0]&&b.box[1]+b.box[3]>f.body.box[1]&&b.box[1]+b.box[3]<f.body.box[1]+f.body.box[3]&&f.hands&&(f.hands.right=b);for(let b of s)(b.face!==void 0&&b.face===h.id||b.iris!==void 0&&b.iris===h.id||b.body!==void 0&&b.body===((i=f.body)==null?void 0:i.id)||b.hand!==void 0&&b.hand===((l=f.hands.left)==null?void 0:l.id)||b.hand!==void 0&&b.hand===((u=f.hands.right)==null?void 0:u.id))&&f.gestures.push(b);let m=[],g=[],y=b=>{b&&b.length===4&&(m.push(b[0],b[0]+b[2]),g.push(b[1],b[1]+b[3]))};y(f.face.box),y((c=f.body)==null?void 0:c.box),y((p=f.hands.left)==null?void 0:p.box),y((d=f.hands.right)==null?void 0:d.box);let x=Math.min(...m),A=Math.min(...g);f.box=[x,A,Math.max(...m)-x,Math.max(...g)-A],(r==null?void 0:r[1])&&(r==null?void 0:r[2])&&(f.boxRaw=[f.box[0]/r[2],f.box[1]/r[1],f.box[2]/r[2],f.box[3]/r[1]]),o.push(f)}return o}var _1=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,D1=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;async function N4e(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(_1);break;case"body":case"full":n=await t(D1);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function E4e(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+_1;break;case"full":case"body":n="data:image/jpeg;base64,"+D1;break;default:n=""}let s;if(typeof Image!="undefined")s=new Image;else if(he.Image)s=new he.Image;else return;s.onload=async()=>{let r=us(s.naturalWidth,s.naturalHeight);if(!r)ae("Warmup: Canvas not found"),t(void 0);else{let a=r.getContext("2d");a&&a.drawImage(s,0,0);let o=await e.image(r),i=o.tensor?await e.detect(o.tensor,e.config):void 0;t(i)}},n?s.src=n:t(void 0)})}async function R4e(e){let t=r=>Buffer.from(r,"base64"),n;e.config.warmup==="face"?n=t(_1):n=t(D1);let s;if("node"in Ye&&Ln()==="tensorflow"){let r=(void 0).decodeJpeg(n),a=Bt(r,0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&ae("Warmup tfjs-node not loaded");return s}async function _4e(e){let t;return typeof createImageBitmap=="function"?t=await N4e(e):typeof Image!="undefined"||he.Canvas!==void 0?t=await E4e(e):t=await R4e(e),t}async function D4e(e){var i,l,u,c;if(!H().flagRegistry.ENGINE_COMPILE_ONLY)return;let t=Ln(),n=Bn();if(t!=="webgl"&&t!=="humangl"||!(n!=null&&n.checkCompileCompletion))return;H().set("ENGINE_COMPILE_ONLY",!0);let s=sn().state.numTensors,r=[];for(let[p,d]of Object.entries(e).filter(([h,f])=>h!==null&&f!==null)){let h=(l=(i=d.inputs)==null?void 0:i[0])!=null&&l.shape?[...d.inputs[0].shape]:[1,64,64,3],f=(c=(u=d.inputs)==null?void 0:u[0])!=null&&c.dtype?d.inputs[0].dtype:"float32";for(let g=0;g<h.length;g++)h[g]===-1&&(h[g]=g===0?1:64);let m=Vt(h,f);try{let g=d.execute(m);r.push(p),Array.isArray(g)?g.forEach(y=>J(y)):J(g)}catch(g){ae("compile fail model:",p)}J(m)}let a=await n.checkCompileCompletionAsync();n.getUniformLocations(),ae("compile pass models:",r),ae("compile pass kernels:",a.length),H().set("ENGINE_COMPILE_ONLY",!1);let o=sn().state.numTensors;o-s>0&&ae("tensor leak:",o-s)}async function KR(e,t){let n=le();return e.state="warmup",t&&(e.config=Xt(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:le(),persons:[],error:null}:new Promise(async s=>{await D4e(e.models);let r=await _4e(e),a=le();e.config.debug&&ae("warmup",e.config.warmup,Math.round(a-n),"ms"),e.emit("warmup"),s(r)})}var Ud,pf,hf,$1,ov=class{constructor(t){ge(this,"version");ge(this,"config");ge(this,"result");ge(this,"state");ge(this,"process");ge(this,"tf");ge(this,"env");ge(this,"draw");ge(this,"models");ge(this,"events");ge(this,"faceTriangulation");ge(this,"faceUVMap");ge(this,"performance");rp(this,Ud,void 0);rp(this,pf,void 0);rp(this,hf,void 0);ge(this,"gl");ge(this,"analyze",(...t)=>{if(!sp(this,pf))return;let n=this.tf.engine().state.numTensors,s=sp(this,Ud);ap(this,Ud,n);let r=n-s;r!==0&&ae(...t,r)});rp(this,$1,t=>{if(!sp(this,hf))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof nt))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});ge(this,"similarity",sv);ge(this,"distance",df);ge(this,"match",rv);ge(this,"emit",t=>{var n;(n=this.events)!=null&&n.dispatchEvent&&this.events.dispatchEvent(new Event(t))});this.env=he;let n=(Jh.tfjs||iA).replace(/-(.*)/,"");ro.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${n}/dist/`,ro.modelBasePath=he.browser?"../models/":"file://models/",ro.backend=he.browser?"humangl":"tensorflow",this.version=j4,Object.defineProperty(this,"version",{value:j4}),this.config=JSON.parse(JSON.stringify(ro)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=Xt(this.config,t)),zR(this.config),this.tf=Ye,this.state="idle",ap(this,Ud,0),ap(this,pf,!1),ap(this,hf,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new cf,this.draw={options:Hn,canvas:(s,r)=>Y4(s,r),face:(s,r,a)=>Md(s,r,a),body:(s,r,a)=>zd(s,r,a),hand:(s,r,a)=>Ld(s,r,a),gesture:(s,r,a)=>Wd(s,r,a),object:(s,r,a)=>Bd(s,r,a),person:(s,r,a)=>Z4(s,r,a),all:(s,r,a)=>J4(s,r,a)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=PE,this.faceUVMap=FE,this.gl=Ct,Od(this,null,""),this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(ro)),this.config.backend=t}validate(t){return m3(ro,t||this.config)}check(){return R1(this)}now(){return le()}image(t,n=!0){return Id(t,this.config,n)}async segmentation(t,n){return OR(t,n,this.config)}enhance(t){return m4(t)}compare(t,n){return yN(this.config,t,n)}async init(){await A1(this,!0),await this.tf.ready()}async load(t){this.state="load";let n=le(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=Xt(this.config,t)),this.env.initial&&(this.config.debug&&ae(`version: ${this.version}`),this.config.debug&&ae(`tfjs version: ${this.tf.version["tfjs-core"]}`),await A1(this)||ae("error: backend check failed"),await jc(),this.env.browser&&(this.config.debug&&ae("configuration:",this.config),this.config.debug&&ae("environment:",this.env),this.config.debug&&ae("tf flags:",this.tf.ENV.flags))),await H4(this),this.env.initial&&this.config.debug&&ae("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(R1(this),this.emit("load"));let a=Math.trunc(le()-n);a>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+a:a)}next(t=this.result){return jR(t,this.config)}getModelStats(){return G4(this)}async warmup(t){let n=le(),s=await KR(this,t),r=le();return this.performance.warmup=Math.trunc(r-n),s}async profile(t,n){let s=await this.tf.profile(()=>this.detect(t,n)),r={},a=0;for(let i of s.kernels)r[i.name]?r[i.name]+=i.kernelTimeMs:r[i.name]=i.kernelTimeMs,a+=i.kernelTimeMs;let o=[];Object.entries(r).forEach(i=>o.push({kernel:i[0],time:i[1],perc:0}));for(let i of o)i.perc=Math.round(1e3*i.time/a)/1e3,i.time=Math.round(1e3*i.time)/1e3;return o.sort((i,l)=>l.time-i.time),o.length=20,o}async detect(t,n){return this.state="detect",new Promise(async s=>{var g,y,x,A,b,w,I,k,E,_,D,R,P,T,M,W,G,X,K,Y,re;this.state="config";let r;this.config=Xt(this.config,n),this.state="check";let a=sp(this,$1).call(this,t);a&&(ae(a,t),this.emit("error"),s({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:le(),persons:[],error:a}));let o=le();await A1(this),await this.load(),r=le(),this.state="image";let i=await Id(t,this.config);if(this.process=i,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(le()-r):Math.trunc(le()-r),this.analyze("Get Image:"),!i.tensor){this.config.debug&&ae("could not convert input to tensor"),this.emit("error"),s({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:le(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),r=le(),this.config.skipAllowed=await gN(this.config,i.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(le()-r):Math.trunc(le()-r),this.analyze("Check Changed:");let l=[],u=[],c=[],p=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?tv(this,i.tensor):[],this.performance.face&&delete this.performance.face):(r=le(),l=this.config.face.enabled?await tv(this,i.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let d=this.config.body.maxDetected===-1?Xt(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?((g=this.config.body.modelPath)!=null&&g.includes("posenet")?u=this.config.body.enabled?W4(i.tensor,d):[]:(y=this.config.body.modelPath)!=null&&y.includes("blazepose")?u=this.config.body.enabled?Yb(i.tensor,d):[]:(x=this.config.body.modelPath)!=null&&x.includes("efficientpose")?u=this.config.body.enabled?r4(i.tensor,d):[]:(A=this.config.body.modelPath)!=null&&A.includes("movenet")&&(u=this.config.body.enabled?P4(i.tensor,d):[]),this.performance.body&&delete this.performance.body):(r=le(),(b=this.config.body.modelPath)!=null&&b.includes("posenet")?u=this.config.body.enabled?await W4(i.tensor,d):[]:(w=this.config.body.modelPath)!=null&&w.includes("blazepose")?u=this.config.body.enabled?await Yb(i.tensor,d):[]:(I=this.config.body.modelPath)!=null&&I.includes("efficientpose")?u=this.config.body.enabled?await r4(i.tensor,d):[]:(k=this.config.body.modelPath)!=null&&k.includes("movenet")&&(u=this.config.body.enabled?await P4(i.tensor,d):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let h=this.config.hand.maxDetected===-1?Xt(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((_=(E=this.config.hand.detector)==null?void 0:E.modelPath)!=null&&_.includes("handdetect")?c=this.config.hand.enabled?w4(i.tensor,h):[]:(R=(D=this.config.hand.detector)==null?void 0:D.modelPath)!=null&&R.includes("handtrack")&&(c=this.config.hand.enabled?C4(i.tensor,h):[]),this.performance.hand&&delete this.performance.hand):(r=le(),(T=(P=this.config.hand.detector)==null?void 0:P.modelPath)!=null&&T.includes("handdetect")?c=this.config.hand.enabled?await w4(i.tensor,h):[]:(W=(M=this.config.hand.detector)==null?void 0:M.modelPath)!=null&&W.includes("handtrack")&&(c=this.config.hand.enabled?await C4(i.tensor,h):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((G=this.config.object.modelPath)!=null&&G.includes("nanodet")?p=this.config.object.enabled?O4(i.tensor,this.config):[]:(X=this.config.object.modelPath)!=null&&X.includes("centernet")&&(p=this.config.object.enabled?e4(i.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=le(),(K=this.config.object.modelPath)!=null&&K.includes("nanodet")?p=this.config.object.enabled?await O4(i.tensor,this.config):[]:(Y=this.config.object.modelPath)!=null&&Y.includes("centernet")&&(p=this.config.object.enabled?await e4(i.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,u,c,p]=await Promise.all([l,u,c,p])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(r=le(),f=[...UR(l),...VR(u),...HR(c),...GR(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(le()-o):Math.trunc(le()-o);let m=((re=this.process.tensor)==null?void 0:re.shape)||[];this.result={face:l,body:u,hand:c,gesture:f,object:p,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return XR(l,u,c,f,m)}},J(i.tensor),this.emit("detect"),this.state="idle",s(this.result)})}};Ud=new WeakMap,pf=new WeakMap,hf=new WeakMap,$1=new WeakMap;return X_(P4e);})();
|